xref: /freebsd/sys/kern/subr_blist.c (revision 2b743a9e9ddc6736208dc8ca1ce06ce64ad20a19)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions
5  * are met:
6  * 1. Redistributions of source code must retain the above copyright
7  *    notice, this list of conditions and the following disclaimer.
8  * 2. Redistributions in binary form must reproduce the above copyright
9  *    notice, this list of conditions and the following disclaimer in the
10  *    documentation and/or other materials provided with the distribution.
11  * 4. Neither the name of the University nor the names of its contributors
12  *    may be used to endorse or promote products derived from this software
13  *    without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
19  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
21  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 /*
28  * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
29  *
30  *	This module implements a general bitmap allocator/deallocator.  The
31  *	allocator eats around 2 bits per 'block'.  The module does not
32  *	try to interpret the meaning of a 'block' other then to return
33  *	SWAPBLK_NONE on an allocation failure.
34  *
35  *	A radix tree is used to maintain the bitmap.  Two radix constants are
36  *	involved:  One for the bitmaps contained in the leaf nodes (typically
37  *	32), and one for the meta nodes (typically 16).  Both meta and leaf
38  *	nodes have a hint field.  This field gives us a hint as to the largest
39  *	free contiguous range of blocks under the node.  It may contain a
40  *	value that is too high, but will never contain a value that is too
41  *	low.  When the radix tree is searched, allocation failures in subtrees
42  *	update the hint.
43  *
44  *	The radix tree also implements two collapsed states for meta nodes:
45  *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
46  *	in either of these two states, all information contained underneath
47  *	the node is considered stale.  These states are used to optimize
48  *	allocation and freeing operations.
49  *
50  * 	The hinting greatly increases code efficiency for allocations while
51  *	the general radix structure optimizes both allocations and frees.  The
52  *	radix tree should be able to operate well no matter how much
53  *	fragmentation there is and no matter how large a bitmap is used.
54  *
55  *	Unlike the rlist code, the blist code wires all necessary memory at
56  *	creation time.  Neither allocations nor frees require interaction with
57  *	the memory subsystem.  In contrast, the rlist code may allocate memory
58  *	on an rlist_free() call.  The non-blocking features of the blist code
59  *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
60  *	rlist code uses a little less overall memory then the blist code (but
61  *	due to swap interleaving not all that much less), but the blist code
62  *	scales much, much better.
63  *
64  *	LAYOUT: The radix tree is layed out recursively using a
65  *	linear array.  Each meta node is immediately followed (layed out
66  *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
67  *	is a recursive structure but one that can be easily scanned through
68  *	a very simple 'skip' calculation.  In order to support large radixes,
69  *	portions of the tree may reside outside our memory allocation.  We
70  *	handle this with an early-termination optimization (when bighint is
71  *	set to -1) on the scan.  The memory allocation is only large enough
72  *	to cover the number of blocks requested at creation time even if it
73  *	must be encompassed in larger root-node radix.
74  *
75  *	NOTE: the allocator cannot currently allocate more then
76  *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
77  *	large' if you try.  This is an area that could use improvement.  The
78  *	radix is large enough that this restriction does not effect the swap
79  *	system, though.  Currently only the allocation code is effected by
80  *	this algorithmic unfeature.  The freeing code can handle arbitrary
81  *	ranges.
82  *
83  *	This code can be compiled stand-alone for debugging.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 #ifdef _KERNEL
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/lock.h>
94 #include <sys/kernel.h>
95 #include <sys/blist.h>
96 #include <sys/malloc.h>
97 #include <sys/proc.h>
98 #include <sys/mutex.h>
99 
100 #else
101 
102 #ifndef BLIST_NO_DEBUG
103 #define BLIST_DEBUG
104 #endif
105 
106 #define SWAPBLK_NONE ((daddr_t)-1)
107 
108 #include <sys/types.h>
109 #include <stdio.h>
110 #include <string.h>
111 #include <stdlib.h>
112 #include <stdarg.h>
113 
114 #define malloc(a,b,c)	calloc(a, 1)
115 #define free(a,b)	free(a)
116 
117 typedef unsigned int u_daddr_t;
118 
119 #include <sys/blist.h>
120 
121 void panic(const char *ctl, ...);
122 
123 #endif
124 
125 /*
126  * static support functions
127  */
128 
129 static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
130 static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
131 				daddr_t count, daddr_t radix, int skip);
132 static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
133 static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
134 					daddr_t radix, int skip, daddr_t blk);
135 static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
136 				daddr_t skip, blist_t dest, daddr_t count);
137 static int blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count);
138 static int blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count,
139 				daddr_t radix, int skip, daddr_t blk);
140 static daddr_t	blst_radix_init(blmeta_t *scan, daddr_t radix,
141 						int skip, daddr_t count);
142 #ifndef _KERNEL
143 static void	blst_radix_print(blmeta_t *scan, daddr_t blk,
144 					daddr_t radix, int skip, int tab);
145 #endif
146 
147 #ifdef _KERNEL
148 static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
149 #endif
150 
151 /*
152  * blist_create() - create a blist capable of handling up to the specified
153  *		    number of blocks
154  *
155  *	blocks must be greater then 0
156  *
157  *	The smallest blist consists of a single leaf node capable of
158  *	managing BLIST_BMAP_RADIX blocks.
159  */
160 
161 blist_t
162 blist_create(daddr_t blocks)
163 {
164 	blist_t bl;
165 	int radix;
166 	int skip = 0;
167 
168 	/*
169 	 * Calculate radix and skip field used for scanning.
170 	 */
171 	radix = BLIST_BMAP_RADIX;
172 
173 	while (radix < blocks) {
174 		radix *= BLIST_META_RADIX;
175 		skip = (skip + 1) * BLIST_META_RADIX;
176 	}
177 
178 	bl = malloc(sizeof(struct blist), M_SWAP, M_WAITOK | M_ZERO);
179 
180 	bl->bl_blocks = blocks;
181 	bl->bl_radix = radix;
182 	bl->bl_skip = skip;
183 	bl->bl_rootblks = 1 +
184 	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
185 	bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, M_WAITOK);
186 
187 #if defined(BLIST_DEBUG)
188 	printf(
189 		"BLIST representing %lld blocks (%lld MB of swap)"
190 		", requiring %lldK of ram\n",
191 		(long long)bl->bl_blocks,
192 		(long long)bl->bl_blocks * 4 / 1024,
193 		(long long)(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
194 	);
195 	printf("BLIST raw radix tree contains %lld records\n",
196 	    (long long)bl->bl_rootblks);
197 #endif
198 	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
199 
200 	return(bl);
201 }
202 
203 void
204 blist_destroy(blist_t bl)
205 {
206 	free(bl->bl_root, M_SWAP);
207 	free(bl, M_SWAP);
208 }
209 
210 /*
211  * blist_alloc() - reserve space in the block bitmap.  Return the base
212  *		     of a contiguous region or SWAPBLK_NONE if space could
213  *		     not be allocated.
214  */
215 
216 daddr_t
217 blist_alloc(blist_t bl, daddr_t count)
218 {
219 	daddr_t blk = SWAPBLK_NONE;
220 
221 	if (bl) {
222 		if (bl->bl_radix == BLIST_BMAP_RADIX)
223 			blk = blst_leaf_alloc(bl->bl_root, 0, count);
224 		else
225 			blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
226 		if (blk != SWAPBLK_NONE)
227 			bl->bl_free -= count;
228 	}
229 	return(blk);
230 }
231 
232 /*
233  * blist_free() -	free up space in the block bitmap.  Return the base
234  *		     	of a contiguous region.  Panic if an inconsistancy is
235  *			found.
236  */
237 
238 void
239 blist_free(blist_t bl, daddr_t blkno, daddr_t count)
240 {
241 	if (bl) {
242 		if (bl->bl_radix == BLIST_BMAP_RADIX)
243 			blst_leaf_free(bl->bl_root, blkno, count);
244 		else
245 			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
246 		bl->bl_free += count;
247 	}
248 }
249 
250 /*
251  * blist_fill() -	mark a region in the block bitmap as off-limits
252  *			to the allocator (i.e. allocate it), ignoring any
253  *			existing allocations.  Return the number of blocks
254  *			actually filled that were free before the call.
255  */
256 
257 int
258 blist_fill(blist_t bl, daddr_t blkno, daddr_t count)
259 {
260 	int filled;
261 
262 	if (bl) {
263 		if (bl->bl_radix == BLIST_BMAP_RADIX)
264 			filled = blst_leaf_fill(bl->bl_root, blkno, count);
265 		else
266 			filled = blst_meta_fill(bl->bl_root, blkno, count,
267 			    bl->bl_radix, bl->bl_skip, 0);
268 		bl->bl_free -= filled;
269 		return filled;
270 	} else
271 		return 0;
272 }
273 
274 /*
275  * blist_resize() -	resize an existing radix tree to handle the
276  *			specified number of blocks.  This will reallocate
277  *			the tree and transfer the previous bitmap to the new
278  *			one.  When extending the tree you can specify whether
279  *			the new blocks are to left allocated or freed.
280  */
281 
282 void
283 blist_resize(blist_t *pbl, daddr_t count, int freenew)
284 {
285     blist_t newbl = blist_create(count);
286     blist_t save = *pbl;
287 
288     *pbl = newbl;
289     if (count > save->bl_blocks)
290 	    count = save->bl_blocks;
291     blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
292 
293     /*
294      * If resizing upwards, should we free the new space or not?
295      */
296     if (freenew && count < newbl->bl_blocks) {
297 	    blist_free(newbl, count, newbl->bl_blocks - count);
298     }
299     blist_destroy(save);
300 }
301 
302 #ifdef BLIST_DEBUG
303 
304 /*
305  * blist_print()    - dump radix tree
306  */
307 
308 void
309 blist_print(blist_t bl)
310 {
311 	printf("BLIST {\n");
312 	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
313 	printf("}\n");
314 }
315 
316 #endif
317 
318 /************************************************************************
319  *			  ALLOCATION SUPPORT FUNCTIONS			*
320  ************************************************************************
321  *
322  *	These support functions do all the actual work.  They may seem
323  *	rather longish, but that's because I've commented them up.  The
324  *	actual code is straight forward.
325  *
326  */
327 
328 /*
329  * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
330  *
331  *	This is the core of the allocator and is optimized for the 1 block
332  *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
333  *	somewhat slower.  The 1 block allocation case is log2 and extremely
334  *	quick.
335  */
336 
337 static daddr_t
338 blst_leaf_alloc(
339 	blmeta_t *scan,
340 	daddr_t blk,
341 	int count
342 ) {
343 	u_daddr_t orig = scan->u.bmu_bitmap;
344 
345 	if (orig == 0) {
346 		/*
347 		 * Optimize bitmap all-allocated case.  Also, count = 1
348 		 * case assumes at least 1 bit is free in the bitmap, so
349 		 * we have to take care of this case here.
350 		 */
351 		scan->bm_bighint = 0;
352 		return(SWAPBLK_NONE);
353 	}
354 	if (count == 1) {
355 		/*
356 		 * Optimized code to allocate one bit out of the bitmap
357 		 */
358 		u_daddr_t mask;
359 		int j = BLIST_BMAP_RADIX/2;
360 		int r = 0;
361 
362 		mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX/2);
363 
364 		while (j) {
365 			if ((orig & mask) == 0) {
366 			    r += j;
367 			    orig >>= j;
368 			}
369 			j >>= 1;
370 			mask >>= j;
371 		}
372 		scan->u.bmu_bitmap &= ~(1 << r);
373 		return(blk + r);
374 	}
375 	if (count <= BLIST_BMAP_RADIX) {
376 		/*
377 		 * non-optimized code to allocate N bits out of the bitmap.
378 		 * The more bits, the faster the code runs.  It will run
379 		 * the slowest allocating 2 bits, but since there aren't any
380 		 * memory ops in the core loop (or shouldn't be, anyway),
381 		 * you probably won't notice the difference.
382 		 */
383 		int j;
384 		int n = BLIST_BMAP_RADIX - count;
385 		u_daddr_t mask;
386 
387 		mask = (u_daddr_t)-1 >> n;
388 
389 		for (j = 0; j <= n; ++j) {
390 			if ((orig & mask) == mask) {
391 				scan->u.bmu_bitmap &= ~mask;
392 				return(blk + j);
393 			}
394 			mask = (mask << 1);
395 		}
396 	}
397 	/*
398 	 * We couldn't allocate count in this subtree, update bighint.
399 	 */
400 	scan->bm_bighint = count - 1;
401 	return(SWAPBLK_NONE);
402 }
403 
404 /*
405  * blist_meta_alloc() -	allocate at a meta in the radix tree.
406  *
407  *	Attempt to allocate at a meta node.  If we can't, we update
408  *	bighint and return a failure.  Updating bighint optimize future
409  *	calls that hit this node.  We have to check for our collapse cases
410  *	and we have a few optimizations strewn in as well.
411  */
412 
413 static daddr_t
414 blst_meta_alloc(
415 	blmeta_t *scan,
416 	daddr_t blk,
417 	daddr_t count,
418 	daddr_t radix,
419 	int skip
420 ) {
421 	int i;
422 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
423 
424 	if (scan->u.bmu_avail == 0)  {
425 		/*
426 		 * ALL-ALLOCATED special case
427 		 */
428 		scan->bm_bighint = count;
429 		return(SWAPBLK_NONE);
430 	}
431 
432 	if (scan->u.bmu_avail == radix) {
433 		radix /= BLIST_META_RADIX;
434 
435 		/*
436 		 * ALL-FREE special case, initialize uninitialize
437 		 * sublevel.
438 		 */
439 		for (i = 1; i <= skip; i += next_skip) {
440 			if (scan[i].bm_bighint == (daddr_t)-1)
441 				break;
442 			if (next_skip == 1) {
443 				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
444 				scan[i].bm_bighint = BLIST_BMAP_RADIX;
445 			} else {
446 				scan[i].bm_bighint = radix;
447 				scan[i].u.bmu_avail = radix;
448 			}
449 		}
450 	} else {
451 		radix /= BLIST_META_RADIX;
452 	}
453 
454 	for (i = 1; i <= skip; i += next_skip) {
455 		if (count <= scan[i].bm_bighint) {
456 			/*
457 			 * count fits in object
458 			 */
459 			daddr_t r;
460 			if (next_skip == 1) {
461 				r = blst_leaf_alloc(&scan[i], blk, count);
462 			} else {
463 				r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
464 			}
465 			if (r != SWAPBLK_NONE) {
466 				scan->u.bmu_avail -= count;
467 				if (scan->bm_bighint > scan->u.bmu_avail)
468 					scan->bm_bighint = scan->u.bmu_avail;
469 				return(r);
470 			}
471 		} else if (scan[i].bm_bighint == (daddr_t)-1) {
472 			/*
473 			 * Terminator
474 			 */
475 			break;
476 		} else if (count > radix) {
477 			/*
478 			 * count does not fit in object even if it were
479 			 * complete free.
480 			 */
481 			panic("blist_meta_alloc: allocation too large");
482 		}
483 		blk += radix;
484 	}
485 
486 	/*
487 	 * We couldn't allocate count in this subtree, update bighint.
488 	 */
489 	if (scan->bm_bighint >= count)
490 		scan->bm_bighint = count - 1;
491 	return(SWAPBLK_NONE);
492 }
493 
494 /*
495  * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
496  *
497  */
498 
499 static void
500 blst_leaf_free(
501 	blmeta_t *scan,
502 	daddr_t blk,
503 	int count
504 ) {
505 	/*
506 	 * free some data in this bitmap
507 	 *
508 	 * e.g.
509 	 *	0000111111111110000
510 	 *          \_________/\__/
511 	 *		v        n
512 	 */
513 	int n = blk & (BLIST_BMAP_RADIX - 1);
514 	u_daddr_t mask;
515 
516 	mask = ((u_daddr_t)-1 << n) &
517 	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
518 
519 	if (scan->u.bmu_bitmap & mask)
520 		panic("blst_radix_free: freeing free block");
521 	scan->u.bmu_bitmap |= mask;
522 
523 	/*
524 	 * We could probably do a better job here.  We are required to make
525 	 * bighint at least as large as the biggest contiguous block of
526 	 * data.  If we just shoehorn it, a little extra overhead will
527 	 * be incured on the next allocation (but only that one typically).
528 	 */
529 	scan->bm_bighint = BLIST_BMAP_RADIX;
530 }
531 
532 /*
533  * BLST_META_FREE() - free allocated blocks from radix tree meta info
534  *
535  *	This support routine frees a range of blocks from the bitmap.
536  *	The range must be entirely enclosed by this radix node.  If a
537  *	meta node, we break the range down recursively to free blocks
538  *	in subnodes (which means that this code can free an arbitrary
539  *	range whereas the allocation code cannot allocate an arbitrary
540  *	range).
541  */
542 
543 static void
544 blst_meta_free(
545 	blmeta_t *scan,
546 	daddr_t freeBlk,
547 	daddr_t count,
548 	daddr_t radix,
549 	int skip,
550 	daddr_t blk
551 ) {
552 	int i;
553 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
554 
555 #if 0
556 	printf("FREE (%llx,%lld) FROM (%llx,%lld)\n",
557 	    (long long)freeBlk, (long long)count,
558 	    (long long)blk, (long long)radix
559 	);
560 #endif
561 
562 	if (scan->u.bmu_avail == 0) {
563 		/*
564 		 * ALL-ALLOCATED special case, with possible
565 		 * shortcut to ALL-FREE special case.
566 		 */
567 		scan->u.bmu_avail = count;
568 		scan->bm_bighint = count;
569 
570 		if (count != radix)  {
571 			for (i = 1; i <= skip; i += next_skip) {
572 				if (scan[i].bm_bighint == (daddr_t)-1)
573 					break;
574 				scan[i].bm_bighint = 0;
575 				if (next_skip == 1) {
576 					scan[i].u.bmu_bitmap = 0;
577 				} else {
578 					scan[i].u.bmu_avail = 0;
579 				}
580 			}
581 			/* fall through */
582 		}
583 	} else {
584 		scan->u.bmu_avail += count;
585 		/* scan->bm_bighint = radix; */
586 	}
587 
588 	/*
589 	 * ALL-FREE special case.
590 	 */
591 
592 	if (scan->u.bmu_avail == radix)
593 		return;
594 	if (scan->u.bmu_avail > radix)
595 		panic("blst_meta_free: freeing already free blocks (%lld) %lld/%lld",
596 		    (long long)count, (long long)scan->u.bmu_avail,
597 		    (long long)radix);
598 
599 	/*
600 	 * Break the free down into its components
601 	 */
602 
603 	radix /= BLIST_META_RADIX;
604 
605 	i = (freeBlk - blk) / radix;
606 	blk += i * radix;
607 	i = i * next_skip + 1;
608 
609 	while (i <= skip && blk < freeBlk + count) {
610 		daddr_t v;
611 
612 		v = blk + radix - freeBlk;
613 		if (v > count)
614 			v = count;
615 
616 		if (scan->bm_bighint == (daddr_t)-1)
617 			panic("blst_meta_free: freeing unexpected range");
618 
619 		if (next_skip == 1) {
620 			blst_leaf_free(&scan[i], freeBlk, v);
621 		} else {
622 			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
623 		}
624 		if (scan->bm_bighint < scan[i].bm_bighint)
625 		    scan->bm_bighint = scan[i].bm_bighint;
626 		count -= v;
627 		freeBlk += v;
628 		blk += radix;
629 		i += next_skip;
630 	}
631 }
632 
633 /*
634  * BLIST_RADIX_COPY() - copy one radix tree to another
635  *
636  *	Locates free space in the source tree and frees it in the destination
637  *	tree.  The space may not already be free in the destination.
638  */
639 
640 static void blst_copy(
641 	blmeta_t *scan,
642 	daddr_t blk,
643 	daddr_t radix,
644 	daddr_t skip,
645 	blist_t dest,
646 	daddr_t count
647 ) {
648 	int next_skip;
649 	int i;
650 
651 	/*
652 	 * Leaf node
653 	 */
654 
655 	if (radix == BLIST_BMAP_RADIX) {
656 		u_daddr_t v = scan->u.bmu_bitmap;
657 
658 		if (v == (u_daddr_t)-1) {
659 			blist_free(dest, blk, count);
660 		} else if (v != 0) {
661 			int i;
662 
663 			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
664 				if (v & (1 << i))
665 					blist_free(dest, blk + i, 1);
666 			}
667 		}
668 		return;
669 	}
670 
671 	/*
672 	 * Meta node
673 	 */
674 
675 	if (scan->u.bmu_avail == 0) {
676 		/*
677 		 * Source all allocated, leave dest allocated
678 		 */
679 		return;
680 	}
681 	if (scan->u.bmu_avail == radix) {
682 		/*
683 		 * Source all free, free entire dest
684 		 */
685 		if (count < radix)
686 			blist_free(dest, blk, count);
687 		else
688 			blist_free(dest, blk, radix);
689 		return;
690 	}
691 
692 
693 	radix /= BLIST_META_RADIX;
694 	next_skip = ((u_int)skip / BLIST_META_RADIX);
695 
696 	for (i = 1; count && i <= skip; i += next_skip) {
697 		if (scan[i].bm_bighint == (daddr_t)-1)
698 			break;
699 
700 		if (count >= radix) {
701 			blst_copy(
702 			    &scan[i],
703 			    blk,
704 			    radix,
705 			    next_skip - 1,
706 			    dest,
707 			    radix
708 			);
709 			count -= radix;
710 		} else {
711 			if (count) {
712 				blst_copy(
713 				    &scan[i],
714 				    blk,
715 				    radix,
716 				    next_skip - 1,
717 				    dest,
718 				    count
719 				);
720 			}
721 			count = 0;
722 		}
723 		blk += radix;
724 	}
725 }
726 
727 /*
728  * BLST_LEAF_FILL() -	allocate specific blocks in leaf bitmap
729  *
730  *	This routine allocates all blocks in the specified range
731  *	regardless of any existing allocations in that range.  Returns
732  *	the number of blocks allocated by the call.
733  */
734 
735 static int
736 blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count)
737 {
738 	int n = blk & (BLIST_BMAP_RADIX - 1);
739 	int nblks;
740 	u_daddr_t mask, bitmap;
741 
742 	mask = ((u_daddr_t)-1 << n) &
743 	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
744 
745 	/* Count the number of blocks we're about to allocate */
746 	bitmap = scan->u.bmu_bitmap & mask;
747 	for (nblks = 0; bitmap != 0; nblks++)
748 		bitmap &= bitmap - 1;
749 
750 	scan->u.bmu_bitmap &= ~mask;
751 	return nblks;
752 }
753 
754 /*
755  * BLIST_META_FILL() -	allocate specific blocks at a meta node
756  *
757  *	This routine allocates the specified range of blocks,
758  *	regardless of any existing allocations in the range.  The
759  *	range must be within the extent of this node.  Returns the
760  *	number of blocks allocated by the call.
761  */
762 static int
763 blst_meta_fill(
764 	blmeta_t *scan,
765 	daddr_t allocBlk,
766 	daddr_t count,
767 	daddr_t radix,
768 	int skip,
769 	daddr_t blk
770 ) {
771 	int i;
772 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
773 	int nblks = 0;
774 
775 	if (count == radix || scan->u.bmu_avail == 0)  {
776 		/*
777 		 * ALL-ALLOCATED special case
778 		 */
779 		nblks = scan->u.bmu_avail;
780 		scan->u.bmu_avail = 0;
781 		scan->bm_bighint = count;
782 		return nblks;
783 	}
784 
785 	if (scan->u.bmu_avail == radix) {
786 		radix /= BLIST_META_RADIX;
787 
788 		/*
789 		 * ALL-FREE special case, initialize sublevel
790 		 */
791 		for (i = 1; i <= skip; i += next_skip) {
792 			if (scan[i].bm_bighint == (daddr_t)-1)
793 				break;
794 			if (next_skip == 1) {
795 				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
796 				scan[i].bm_bighint = BLIST_BMAP_RADIX;
797 			} else {
798 				scan[i].bm_bighint = radix;
799 				scan[i].u.bmu_avail = radix;
800 			}
801 		}
802 	} else {
803 		radix /= BLIST_META_RADIX;
804 	}
805 
806 	if (count > radix)
807 		panic("blist_meta_fill: allocation too large");
808 
809 	i = (allocBlk - blk) / radix;
810 	blk += i * radix;
811 	i = i * next_skip + 1;
812 
813 	while (i <= skip && blk < allocBlk + count) {
814 		daddr_t v;
815 
816 		v = blk + radix - allocBlk;
817 		if (v > count)
818 			v = count;
819 
820 		if (scan->bm_bighint == (daddr_t)-1)
821 			panic("blst_meta_fill: filling unexpected range");
822 
823 		if (next_skip == 1) {
824 			nblks += blst_leaf_fill(&scan[i], allocBlk, v);
825 		} else {
826 			nblks += blst_meta_fill(&scan[i], allocBlk, v,
827 			    radix, next_skip - 1, blk);
828 		}
829 		count -= v;
830 		allocBlk += v;
831 		blk += radix;
832 		i += next_skip;
833 	}
834 	scan->u.bmu_avail -= nblks;
835 	return nblks;
836 }
837 
838 /*
839  * BLST_RADIX_INIT() - initialize radix tree
840  *
841  *	Initialize our meta structures and bitmaps and calculate the exact
842  *	amount of space required to manage 'count' blocks - this space may
843  *	be considerably less then the calculated radix due to the large
844  *	RADIX values we use.
845  */
846 
847 static daddr_t
848 blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
849 {
850 	int i;
851 	int next_skip;
852 	daddr_t memindex = 0;
853 
854 	/*
855 	 * Leaf node
856 	 */
857 
858 	if (radix == BLIST_BMAP_RADIX) {
859 		if (scan) {
860 			scan->bm_bighint = 0;
861 			scan->u.bmu_bitmap = 0;
862 		}
863 		return(memindex);
864 	}
865 
866 	/*
867 	 * Meta node.  If allocating the entire object we can special
868 	 * case it.  However, we need to figure out how much memory
869 	 * is required to manage 'count' blocks, so we continue on anyway.
870 	 */
871 
872 	if (scan) {
873 		scan->bm_bighint = 0;
874 		scan->u.bmu_avail = 0;
875 	}
876 
877 	radix /= BLIST_META_RADIX;
878 	next_skip = ((u_int)skip / BLIST_META_RADIX);
879 
880 	for (i = 1; i <= skip; i += next_skip) {
881 		if (count >= radix) {
882 			/*
883 			 * Allocate the entire object
884 			 */
885 			memindex = i + blst_radix_init(
886 			    ((scan) ? &scan[i] : NULL),
887 			    radix,
888 			    next_skip - 1,
889 			    radix
890 			);
891 			count -= radix;
892 		} else if (count > 0) {
893 			/*
894 			 * Allocate a partial object
895 			 */
896 			memindex = i + blst_radix_init(
897 			    ((scan) ? &scan[i] : NULL),
898 			    radix,
899 			    next_skip - 1,
900 			    count
901 			);
902 			count = 0;
903 		} else {
904 			/*
905 			 * Add terminator and break out
906 			 */
907 			if (scan)
908 				scan[i].bm_bighint = (daddr_t)-1;
909 			break;
910 		}
911 	}
912 	if (memindex < i)
913 		memindex = i;
914 	return(memindex);
915 }
916 
917 #ifdef BLIST_DEBUG
918 
919 static void
920 blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
921 {
922 	int i;
923 	int next_skip;
924 	int lastState = 0;
925 
926 	if (radix == BLIST_BMAP_RADIX) {
927 		printf(
928 		    "%*.*s(%08llx,%lld): bitmap %08llx big=%lld\n",
929 		    tab, tab, "",
930 		    (long long)blk, (long long)radix,
931 		    (long long)scan->u.bmu_bitmap,
932 		    (long long)scan->bm_bighint
933 		);
934 		return;
935 	}
936 
937 	if (scan->u.bmu_avail == 0) {
938 		printf(
939 		    "%*.*s(%08llx,%lld) ALL ALLOCATED\n",
940 		    tab, tab, "",
941 		    (long long)blk,
942 		    (long long)radix
943 		);
944 		return;
945 	}
946 	if (scan->u.bmu_avail == radix) {
947 		printf(
948 		    "%*.*s(%08llx,%lld) ALL FREE\n",
949 		    tab, tab, "",
950 		    (long long)blk,
951 		    (long long)radix
952 		);
953 		return;
954 	}
955 
956 	printf(
957 	    "%*.*s(%08llx,%lld): subtree (%lld/%lld) big=%lld {\n",
958 	    tab, tab, "",
959 	    (long long)blk, (long long)radix,
960 	    (long long)scan->u.bmu_avail,
961 	    (long long)radix,
962 	    (long long)scan->bm_bighint
963 	);
964 
965 	radix /= BLIST_META_RADIX;
966 	next_skip = ((u_int)skip / BLIST_META_RADIX);
967 	tab += 4;
968 
969 	for (i = 1; i <= skip; i += next_skip) {
970 		if (scan[i].bm_bighint == (daddr_t)-1) {
971 			printf(
972 			    "%*.*s(%08llx,%lld): Terminator\n",
973 			    tab, tab, "",
974 			    (long long)blk, (long long)radix
975 			);
976 			lastState = 0;
977 			break;
978 		}
979 		blst_radix_print(
980 		    &scan[i],
981 		    blk,
982 		    radix,
983 		    next_skip - 1,
984 		    tab
985 		);
986 		blk += radix;
987 	}
988 	tab -= 4;
989 
990 	printf(
991 	    "%*.*s}\n",
992 	    tab, tab, ""
993 	);
994 }
995 
996 #endif
997 
998 #ifdef BLIST_DEBUG
999 
1000 int
1001 main(int ac, char **av)
1002 {
1003 	int size = 1024;
1004 	int i;
1005 	blist_t bl;
1006 
1007 	for (i = 1; i < ac; ++i) {
1008 		const char *ptr = av[i];
1009 		if (*ptr != '-') {
1010 			size = strtol(ptr, NULL, 0);
1011 			continue;
1012 		}
1013 		ptr += 2;
1014 		fprintf(stderr, "Bad option: %s\n", ptr - 2);
1015 		exit(1);
1016 	}
1017 	bl = blist_create(size);
1018 	blist_free(bl, 0, size);
1019 
1020 	for (;;) {
1021 		char buf[1024];
1022 		daddr_t da = 0;
1023 		daddr_t count = 0;
1024 
1025 
1026 		printf("%lld/%lld/%lld> ", (long long)bl->bl_free,
1027 		    (long long)size, (long long)bl->bl_radix);
1028 		fflush(stdout);
1029 		if (fgets(buf, sizeof(buf), stdin) == NULL)
1030 			break;
1031 		switch(buf[0]) {
1032 		case 'r':
1033 			if (sscanf(buf + 1, "%lld", &count) == 1) {
1034 				blist_resize(&bl, count, 1);
1035 			} else {
1036 				printf("?\n");
1037 			}
1038 		case 'p':
1039 			blist_print(bl);
1040 			break;
1041 		case 'a':
1042 			if (sscanf(buf + 1, "%lld", &count) == 1) {
1043 				daddr_t blk = blist_alloc(bl, count);
1044 				printf("    R=%08llx\n", (long long)blk);
1045 			} else {
1046 				printf("?\n");
1047 			}
1048 			break;
1049 		case 'f':
1050 			if (sscanf(buf + 1, "%llx %lld",
1051 			    (long long *)&da, (long long *)&count) == 2) {
1052 				blist_free(bl, da, count);
1053 			} else {
1054 				printf("?\n");
1055 			}
1056 			break;
1057 		case 'l':
1058 			if (sscanf(buf + 1, "%llx %lld",
1059 			    (long long *)&da, (long long *)&count) == 2) {
1060 				printf("    n=%d\n",
1061 				    blist_fill(bl, da, count));
1062 			} else {
1063 				printf("?\n");
1064 			}
1065 			break;
1066 		case '?':
1067 		case 'h':
1068 			puts(
1069 			    "p          -print\n"
1070 			    "a %d       -allocate\n"
1071 			    "f %x %d    -free\n"
1072 			    "l %x %d    -fill\n"
1073 			    "r %d       -resize\n"
1074 			    "h/?        -help"
1075 			);
1076 			break;
1077 		default:
1078 			printf("?\n");
1079 			break;
1080 		}
1081 	}
1082 	return(0);
1083 }
1084 
1085 void
1086 panic(const char *ctl, ...)
1087 {
1088 	va_list va;
1089 
1090 	va_start(va, ctl);
1091 	vfprintf(stderr, ctl, va);
1092 	fprintf(stderr, "\n");
1093 	va_end(va);
1094 	exit(1);
1095 }
1096 
1097 #endif
1098 
1099