xref: /freebsd/sys/kern/subr_blist.c (revision 1b6c76a2fe091c74f08427e6c870851025a9cf67)
1 
2 /*
3  * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
4  *
5  *	(c)Copyright 1998, Matthew Dillon.  Terms for use and redistribution
6  *	are covered by the BSD Copyright as found in /usr/src/COPYRIGHT.
7  *
8  *	This module implements a general bitmap allocator/deallocator.  The
9  *	allocator eats around 2 bits per 'block'.  The module does not
10  *	try to interpret the meaning of a 'block' other then to return
11  *	SWAPBLK_NONE on an allocation failure.
12  *
13  *	A radix tree is used to maintain the bitmap.  Two radix constants are
14  *	involved:  One for the bitmaps contained in the leaf nodes (typically
15  *	32), and one for the meta nodes (typically 16).  Both meta and leaf
16  *	nodes have a hint field.  This field gives us a hint as to the largest
17  *	free contiguous range of blocks under the node.  It may contain a
18  *	value that is too high, but will never contain a value that is too
19  *	low.  When the radix tree is searched, allocation failures in subtrees
20  *	update the hint.
21  *
22  *	The radix tree also implements two collapsed states for meta nodes:
23  *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
24  *	in either of these two states, all information contained underneath
25  *	the node is considered stale.  These states are used to optimize
26  *	allocation and freeing operations.
27  *
28  * 	The hinting greatly increases code efficiency for allocations while
29  *	the general radix structure optimizes both allocations and frees.  The
30  *	radix tree should be able to operate well no matter how much
31  *	fragmentation there is and no matter how large a bitmap is used.
32  *
33  *	Unlike the rlist code, the blist code wires all necessary memory at
34  *	creation time.  Neither allocations nor frees require interaction with
35  *	the memory subsystem.  In contrast, the rlist code may allocate memory
36  *	on an rlist_free() call.  The non-blocking features of the blist code
37  *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
38  *	rlist code uses a little less overall memory then the blist code (but
39  *	due to swap interleaving not all that much less), but the blist code
40  *	scales much, much better.
41  *
42  *	LAYOUT: The radix tree is layed out recursively using a
43  *	linear array.  Each meta node is immediately followed (layed out
44  *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
45  *	is a recursive structure but one that can be easily scanned through
46  *	a very simple 'skip' calculation.  In order to support large radixes,
47  *	portions of the tree may reside outside our memory allocation.  We
48  *	handle this with an early-termination optimization (when bighint is
49  *	set to -1) on the scan.  The memory allocation is only large enough
50  *	to cover the number of blocks requested at creation time even if it
51  *	must be encompassed in larger root-node radix.
52  *
53  *	NOTE: the allocator cannot currently allocate more then
54  *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
55  *	large' if you try.  This is an area that could use improvement.  The
56  *	radix is large enough that this restriction does not effect the swap
57  *	system, though.  Currently only the allocation code is effected by
58  *	this algorithmic unfeature.  The freeing code can handle arbitrary
59  *	ranges.
60  *
61  *	This code can be compiled stand-alone for debugging.
62  *
63  * $FreeBSD$
64  */
65 
66 #ifdef _KERNEL
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/kernel.h>
72 #include <sys/blist.h>
73 #include <sys/malloc.h>
74 #include <sys/mutex.h>
75 #include <vm/vm.h>
76 #include <vm/vm_object.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_extern.h>
79 #include <vm/vm_page.h>
80 
81 #else
82 
83 #ifndef BLIST_NO_DEBUG
84 #define BLIST_DEBUG
85 #endif
86 
87 #define SWAPBLK_NONE ((daddr_t)-1)
88 
89 #include <sys/types.h>
90 #include <stdio.h>
91 #include <string.h>
92 #include <stdlib.h>
93 #include <stdarg.h>
94 
95 #define malloc(a,b,c)	malloc(a)
96 #define free(a,b)	free(a)
97 
98 typedef unsigned int u_daddr_t;
99 
100 #include <sys/blist.h>
101 
102 void panic(const char *ctl, ...);
103 
104 #endif
105 
106 /*
107  * static support functions
108  */
109 
110 static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
111 static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
112 				daddr_t count, daddr_t radix, int skip);
113 static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
114 static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
115 					daddr_t radix, int skip, daddr_t blk);
116 static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
117 				daddr_t skip, blist_t dest, daddr_t count);
118 static daddr_t	blst_radix_init(blmeta_t *scan, daddr_t radix,
119 						int skip, daddr_t count);
120 #ifndef _KERNEL
121 static void	blst_radix_print(blmeta_t *scan, daddr_t blk,
122 					daddr_t radix, int skip, int tab);
123 #endif
124 
125 #ifdef _KERNEL
126 static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
127 #endif
128 
129 /*
130  * blist_create() - create a blist capable of handling up to the specified
131  *		    number of blocks
132  *
133  *	blocks must be greater then 0
134  *
135  *	The smallest blist consists of a single leaf node capable of
136  *	managing BLIST_BMAP_RADIX blocks.
137  */
138 
139 blist_t
140 blist_create(daddr_t blocks)
141 {
142 	blist_t bl;
143 	int radix;
144 	int skip = 0;
145 
146 	/*
147 	 * Calculate radix and skip field used for scanning.
148 	 */
149 	radix = BLIST_BMAP_RADIX;
150 
151 	while (radix < blocks) {
152 		radix <<= BLIST_META_RADIX_SHIFT;
153 		skip = (skip + 1) << BLIST_META_RADIX_SHIFT;
154 	}
155 
156 	bl = malloc(sizeof(struct blist), M_SWAP, M_WAITOK | M_ZERO);
157 
158 	bl->bl_blocks = blocks;
159 	bl->bl_radix = radix;
160 	bl->bl_skip = skip;
161 	bl->bl_rootblks = 1 +
162 	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
163 	bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, M_WAITOK);
164 
165 #if defined(BLIST_DEBUG)
166 	printf(
167 		"BLIST representing %d blocks (%d MB of swap)"
168 		", requiring %dK of ram\n",
169 		bl->bl_blocks,
170 		bl->bl_blocks * 4 / 1024,
171 		(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
172 	);
173 	printf("BLIST raw radix tree contains %d records\n", bl->bl_rootblks);
174 #endif
175 	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
176 
177 	return(bl);
178 }
179 
180 void
181 blist_destroy(blist_t bl)
182 {
183 	free(bl->bl_root, M_SWAP);
184 	free(bl, M_SWAP);
185 }
186 
187 /*
188  * blist_alloc() - reserve space in the block bitmap.  Return the base
189  *		     of a contiguous region or SWAPBLK_NONE if space could
190  *		     not be allocated.
191  */
192 
193 daddr_t
194 blist_alloc(blist_t bl, daddr_t count)
195 {
196 	daddr_t blk = SWAPBLK_NONE;
197 
198 	if (bl) {
199 		if (bl->bl_radix == BLIST_BMAP_RADIX)
200 			blk = blst_leaf_alloc(bl->bl_root, 0, count);
201 		else
202 			blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
203 		if (blk != SWAPBLK_NONE)
204 			bl->bl_free -= count;
205 	}
206 	return(blk);
207 }
208 
209 /*
210  * blist_free() -	free up space in the block bitmap.  Return the base
211  *		     	of a contiguous region.  Panic if an inconsistancy is
212  *			found.
213  */
214 
215 void
216 blist_free(blist_t bl, daddr_t blkno, daddr_t count)
217 {
218 	if (bl) {
219 		if (bl->bl_radix == BLIST_BMAP_RADIX)
220 			blst_leaf_free(bl->bl_root, blkno, count);
221 		else
222 			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
223 		bl->bl_free += count;
224 	}
225 }
226 
227 /*
228  * blist_resize() -	resize an existing radix tree to handle the
229  *			specified number of blocks.  This will reallocate
230  *			the tree and transfer the previous bitmap to the new
231  *			one.  When extending the tree you can specify whether
232  *			the new blocks are to left allocated or freed.
233  */
234 
235 void
236 blist_resize(blist_t *pbl, daddr_t count, int freenew)
237 {
238     blist_t newbl = blist_create(count);
239     blist_t save = *pbl;
240 
241     *pbl = newbl;
242     if (count > save->bl_blocks)
243 	    count = save->bl_blocks;
244     blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
245 
246     /*
247      * If resizing upwards, should we free the new space or not?
248      */
249     if (freenew && count < newbl->bl_blocks) {
250 	    blist_free(newbl, count, newbl->bl_blocks - count);
251     }
252     blist_destroy(save);
253 }
254 
255 #ifdef BLIST_DEBUG
256 
257 /*
258  * blist_print()    - dump radix tree
259  */
260 
261 void
262 blist_print(blist_t bl)
263 {
264 	printf("BLIST {\n");
265 	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
266 	printf("}\n");
267 }
268 
269 #endif
270 
271 /************************************************************************
272  *			  ALLOCATION SUPPORT FUNCTIONS			*
273  ************************************************************************
274  *
275  *	These support functions do all the actual work.  They may seem
276  *	rather longish, but that's because I've commented them up.  The
277  *	actual code is straight forward.
278  *
279  */
280 
281 /*
282  * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
283  *
284  *	This is the core of the allocator and is optimized for the 1 block
285  *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
286  *	somewhat slower.  The 1 block allocation case is log2 and extremely
287  *	quick.
288  */
289 
290 static daddr_t
291 blst_leaf_alloc(
292 	blmeta_t *scan,
293 	daddr_t blk,
294 	int count
295 ) {
296 	u_daddr_t orig = scan->u.bmu_bitmap;
297 
298 	if (orig == 0) {
299 		/*
300 		 * Optimize bitmap all-allocated case.  Also, count = 1
301 		 * case assumes at least 1 bit is free in the bitmap, so
302 		 * we have to take care of this case here.
303 		 */
304 		scan->bm_bighint = 0;
305 		return(SWAPBLK_NONE);
306 	}
307 	if (count == 1) {
308 		/*
309 		 * Optimized code to allocate one bit out of the bitmap
310 		 */
311 		u_daddr_t mask;
312 		int j = BLIST_BMAP_RADIX/2;
313 		int r = 0;
314 
315 		mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX/2);
316 
317 		while (j) {
318 			if ((orig & mask) == 0) {
319 			    r += j;
320 			    orig >>= j;
321 			}
322 			j >>= 1;
323 			mask >>= j;
324 		}
325 		scan->u.bmu_bitmap &= ~(1 << r);
326 		return(blk + r);
327 	}
328 	if (count <= BLIST_BMAP_RADIX) {
329 		/*
330 		 * non-optimized code to allocate N bits out of the bitmap.
331 		 * The more bits, the faster the code runs.  It will run
332 		 * the slowest allocating 2 bits, but since there aren't any
333 		 * memory ops in the core loop (or shouldn't be, anyway),
334 		 * you probably won't notice the difference.
335 		 */
336 		int j;
337 		int n = BLIST_BMAP_RADIX - count;
338 		u_daddr_t mask;
339 
340 		mask = (u_daddr_t)-1 >> n;
341 
342 		for (j = 0; j <= n; ++j) {
343 			if ((orig & mask) == mask) {
344 				scan->u.bmu_bitmap &= ~mask;
345 				return(blk + j);
346 			}
347 			mask = (mask << 1);
348 		}
349 	}
350 	/*
351 	 * We couldn't allocate count in this subtree, update bighint.
352 	 */
353 	scan->bm_bighint = count - 1;
354 	return(SWAPBLK_NONE);
355 }
356 
357 /*
358  * blist_meta_alloc() -	allocate at a meta in the radix tree.
359  *
360  *	Attempt to allocate at a meta node.  If we can't, we update
361  *	bighint and return a failure.  Updating bighint optimize future
362  *	calls that hit this node.  We have to check for our collapse cases
363  *	and we have a few optimizations strewn in as well.
364  */
365 
366 static daddr_t
367 blst_meta_alloc(
368 	blmeta_t *scan,
369 	daddr_t blk,
370 	daddr_t count,
371 	daddr_t radix,
372 	int skip
373 ) {
374 	int i;
375 	int next_skip = (skip >> BLIST_META_RADIX_SHIFT);
376 
377 	if (scan->u.bmu_avail == 0)  {
378 		/*
379 		 * ALL-ALLOCATED special case
380 		 */
381 		scan->bm_bighint = count;
382 		return(SWAPBLK_NONE);
383 	}
384 
385 	if (scan->u.bmu_avail == radix) {
386 		radix >>= BLIST_META_RADIX_SHIFT;
387 
388 		/*
389 		 * ALL-FREE special case, initialize uninitialize
390 		 * sublevel.
391 		 */
392 		for (i = 1; i <= skip; i += next_skip) {
393 			if (scan[i].bm_bighint == (daddr_t)-1)
394 				break;
395 			if (next_skip == 1) {
396 				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
397 				scan[i].bm_bighint = BLIST_BMAP_RADIX;
398 			} else {
399 				scan[i].bm_bighint = radix;
400 				scan[i].u.bmu_avail = radix;
401 			}
402 		}
403 	} else {
404 		radix >>= BLIST_META_RADIX_SHIFT;
405 	}
406 
407 	for (i = 1; i <= skip; i += next_skip) {
408 		if (count <= scan[i].bm_bighint) {
409 			/*
410 			 * count fits in object
411 			 */
412 			daddr_t r;
413 			if (next_skip == 1) {
414 				r = blst_leaf_alloc(&scan[i], blk, count);
415 			} else {
416 				r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
417 			}
418 			if (r != SWAPBLK_NONE) {
419 				scan->u.bmu_avail -= count;
420 				if (scan->bm_bighint > scan->u.bmu_avail)
421 					scan->bm_bighint = scan->u.bmu_avail;
422 				return(r);
423 			}
424 		} else if (scan[i].bm_bighint == (daddr_t)-1) {
425 			/*
426 			 * Terminator
427 			 */
428 			break;
429 		} else if (count > radix) {
430 			/*
431 			 * count does not fit in object even if it were
432 			 * complete free.
433 			 */
434 			panic("blist_meta_alloc: allocation too large");
435 		}
436 		blk += radix;
437 	}
438 
439 	/*
440 	 * We couldn't allocate count in this subtree, update bighint.
441 	 */
442 	if (scan->bm_bighint >= count)
443 		scan->bm_bighint = count - 1;
444 	return(SWAPBLK_NONE);
445 }
446 
447 /*
448  * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
449  *
450  */
451 
452 static void
453 blst_leaf_free(
454 	blmeta_t *scan,
455 	daddr_t blk,
456 	int count
457 ) {
458 	/*
459 	 * free some data in this bitmap
460 	 *
461 	 * e.g.
462 	 *	0000111111111110000
463 	 *          \_________/\__/
464 	 *		v        n
465 	 */
466 	int n = blk & (BLIST_BMAP_RADIX - 1);
467 	u_daddr_t mask;
468 
469 	mask = ((u_daddr_t)-1 << n) &
470 	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
471 
472 	if (scan->u.bmu_bitmap & mask)
473 		panic("blst_radix_free: freeing free block");
474 	scan->u.bmu_bitmap |= mask;
475 
476 	/*
477 	 * We could probably do a better job here.  We are required to make
478 	 * bighint at least as large as the biggest contiguous block of
479 	 * data.  If we just shoehorn it, a little extra overhead will
480 	 * be incured on the next allocation (but only that one typically).
481 	 */
482 	scan->bm_bighint = BLIST_BMAP_RADIX;
483 }
484 
485 /*
486  * BLST_META_FREE() - free allocated blocks from radix tree meta info
487  *
488  *	This support routine frees a range of blocks from the bitmap.
489  *	The range must be entirely enclosed by this radix node.  If a
490  *	meta node, we break the range down recursively to free blocks
491  *	in subnodes (which means that this code can free an arbitrary
492  *	range whereas the allocation code cannot allocate an arbitrary
493  *	range).
494  */
495 
496 static void
497 blst_meta_free(
498 	blmeta_t *scan,
499 	daddr_t freeBlk,
500 	daddr_t count,
501 	daddr_t radix,
502 	int skip,
503 	daddr_t blk
504 ) {
505 	int i;
506 	int next_skip = (skip >> BLIST_META_RADIX_SHIFT);
507 
508 #if 0
509 	printf("FREE (%x,%d) FROM (%x,%d)\n",
510 	    freeBlk, count,
511 	    blk, radix
512 	);
513 #endif
514 
515 	if (scan->u.bmu_avail == 0) {
516 		/*
517 		 * ALL-ALLOCATED special case, with possible
518 		 * shortcut to ALL-FREE special case.
519 		 */
520 		scan->u.bmu_avail = count;
521 		scan->bm_bighint = count;
522 
523 		if (count != radix)  {
524 			for (i = 1; i <= skip; i += next_skip) {
525 				if (scan[i].bm_bighint == (daddr_t)-1)
526 					break;
527 				scan[i].bm_bighint = 0;
528 				if (next_skip == 1) {
529 					scan[i].u.bmu_bitmap = 0;
530 				} else {
531 					scan[i].u.bmu_avail = 0;
532 				}
533 			}
534 			/* fall through */
535 		}
536 	} else {
537 		scan->u.bmu_avail += count;
538 		/* scan->bm_bighint = radix; */
539 	}
540 
541 	/*
542 	 * ALL-FREE special case.
543 	 */
544 
545 	if (scan->u.bmu_avail == radix)
546 		return;
547 	if (scan->u.bmu_avail > radix)
548 		panic("blst_meta_free: freeing already free blocks (%d) %d/%d", count, scan->u.bmu_avail, radix);
549 
550 	/*
551 	 * Break the free down into its components
552 	 */
553 
554 	radix >>= BLIST_META_RADIX_SHIFT;
555 
556 	i = (freeBlk - blk) / radix;
557 	blk += i * radix;
558 	i = i * next_skip + 1;
559 
560 	while (i <= skip && blk < freeBlk + count) {
561 		daddr_t v;
562 
563 		v = blk + radix - freeBlk;
564 		if (v > count)
565 			v = count;
566 
567 		if (scan->bm_bighint == (daddr_t)-1)
568 			panic("blst_meta_free: freeing unexpected range");
569 
570 		if (next_skip == 1) {
571 			blst_leaf_free(&scan[i], freeBlk, v);
572 		} else {
573 			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
574 		}
575 		if (scan->bm_bighint < scan[i].bm_bighint)
576 		    scan->bm_bighint = scan[i].bm_bighint;
577 		count -= v;
578 		freeBlk += v;
579 		blk += radix;
580 		i += next_skip;
581 	}
582 }
583 
584 /*
585  * BLIST_RADIX_COPY() - copy one radix tree to another
586  *
587  *	Locates free space in the source tree and frees it in the destination
588  *	tree.  The space may not already be free in the destination.
589  */
590 
591 static void blst_copy(
592 	blmeta_t *scan,
593 	daddr_t blk,
594 	daddr_t radix,
595 	daddr_t skip,
596 	blist_t dest,
597 	daddr_t count
598 ) {
599 	int next_skip;
600 	int i;
601 
602 	/*
603 	 * Leaf node
604 	 */
605 
606 	if (radix == BLIST_BMAP_RADIX) {
607 		u_daddr_t v = scan->u.bmu_bitmap;
608 
609 		if (v == (u_daddr_t)-1) {
610 			blist_free(dest, blk, count);
611 		} else if (v != 0) {
612 			int i;
613 
614 			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
615 				if (v & (1 << i))
616 					blist_free(dest, blk + i, 1);
617 			}
618 		}
619 		return;
620 	}
621 
622 	/*
623 	 * Meta node
624 	 */
625 
626 	if (scan->u.bmu_avail == 0) {
627 		/*
628 		 * Source all allocated, leave dest allocated
629 		 */
630 		return;
631 	}
632 	if (scan->u.bmu_avail == radix) {
633 		/*
634 		 * Source all free, free entire dest
635 		 */
636 		if (count < radix)
637 			blist_free(dest, blk, count);
638 		else
639 			blist_free(dest, blk, radix);
640 		return;
641 	}
642 
643 
644 	radix >>= BLIST_META_RADIX_SHIFT;
645 	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
646 
647 	for (i = 1; count && i <= skip; i += next_skip) {
648 		if (scan[i].bm_bighint == (daddr_t)-1)
649 			break;
650 
651 		if (count >= radix) {
652 			blst_copy(
653 			    &scan[i],
654 			    blk,
655 			    radix,
656 			    next_skip - 1,
657 			    dest,
658 			    radix
659 			);
660 			count -= radix;
661 		} else {
662 			if (count) {
663 				blst_copy(
664 				    &scan[i],
665 				    blk,
666 				    radix,
667 				    next_skip - 1,
668 				    dest,
669 				    count
670 				);
671 			}
672 			count = 0;
673 		}
674 		blk += radix;
675 	}
676 }
677 
678 /*
679  * BLST_RADIX_INIT() - initialize radix tree
680  *
681  *	Initialize our meta structures and bitmaps and calculate the exact
682  *	amount of space required to manage 'count' blocks - this space may
683  *	be considerably less then the calculated radix due to the large
684  *	RADIX values we use.
685  */
686 
687 static daddr_t
688 blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
689 {
690 	int i;
691 	int next_skip;
692 	daddr_t memindex = 0;
693 
694 	/*
695 	 * Leaf node
696 	 */
697 
698 	if (radix == BLIST_BMAP_RADIX) {
699 		if (scan) {
700 			scan->bm_bighint = 0;
701 			scan->u.bmu_bitmap = 0;
702 		}
703 		return(memindex);
704 	}
705 
706 	/*
707 	 * Meta node.  If allocating the entire object we can special
708 	 * case it.  However, we need to figure out how much memory
709 	 * is required to manage 'count' blocks, so we continue on anyway.
710 	 */
711 
712 	if (scan) {
713 		scan->bm_bighint = 0;
714 		scan->u.bmu_avail = 0;
715 	}
716 
717 	radix >>= BLIST_META_RADIX_SHIFT;
718 	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
719 
720 	for (i = 1; i <= skip; i += next_skip) {
721 		if (count >= radix) {
722 			/*
723 			 * Allocate the entire object
724 			 */
725 			memindex = i + blst_radix_init(
726 			    ((scan) ? &scan[i] : NULL),
727 			    radix,
728 			    next_skip - 1,
729 			    radix
730 			);
731 			count -= radix;
732 		} else if (count > 0) {
733 			/*
734 			 * Allocate a partial object
735 			 */
736 			memindex = i + blst_radix_init(
737 			    ((scan) ? &scan[i] : NULL),
738 			    radix,
739 			    next_skip - 1,
740 			    count
741 			);
742 			count = 0;
743 		} else {
744 			/*
745 			 * Add terminator and break out
746 			 */
747 			if (scan)
748 				scan[i].bm_bighint = (daddr_t)-1;
749 			break;
750 		}
751 	}
752 	if (memindex < i)
753 		memindex = i;
754 	return(memindex);
755 }
756 
757 #ifdef BLIST_DEBUG
758 
759 static void
760 blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
761 {
762 	int i;
763 	int next_skip;
764 	int lastState = 0;
765 
766 	if (radix == BLIST_BMAP_RADIX) {
767 		printf(
768 		    "%*.*s(%04x,%d): bitmap %08x big=%d\n",
769 		    tab, tab, "",
770 		    blk, radix,
771 		    scan->u.bmu_bitmap,
772 		    scan->bm_bighint
773 		);
774 		return;
775 	}
776 
777 	if (scan->u.bmu_avail == 0) {
778 		printf(
779 		    "%*.*s(%04x,%d) ALL ALLOCATED\n",
780 		    tab, tab, "",
781 		    blk,
782 		    radix
783 		);
784 		return;
785 	}
786 	if (scan->u.bmu_avail == radix) {
787 		printf(
788 		    "%*.*s(%04x,%d) ALL FREE\n",
789 		    tab, tab, "",
790 		    blk,
791 		    radix
792 		);
793 		return;
794 	}
795 
796 	printf(
797 	    "%*.*s(%04x,%d): subtree (%d/%d) big=%d {\n",
798 	    tab, tab, "",
799 	    blk, radix,
800 	    scan->u.bmu_avail,
801 	    radix,
802 	    scan->bm_bighint
803 	);
804 
805 	radix >>= BLIST_META_RADIX_SHIFT;
806 	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
807 	tab += 4;
808 
809 	for (i = 1; i <= skip; i += next_skip) {
810 		if (scan[i].bm_bighint == (daddr_t)-1) {
811 			printf(
812 			    "%*.*s(%04x,%d): Terminator\n",
813 			    tab, tab, "",
814 			    blk, radix
815 			);
816 			lastState = 0;
817 			break;
818 		}
819 		blst_radix_print(
820 		    &scan[i],
821 		    blk,
822 		    radix,
823 		    next_skip - 1,
824 		    tab
825 		);
826 		blk += radix;
827 	}
828 	tab -= 4;
829 
830 	printf(
831 	    "%*.*s}\n",
832 	    tab, tab, ""
833 	);
834 }
835 
836 #endif
837 
838 #ifdef BLIST_DEBUG
839 
840 int
841 main(int ac, char **av)
842 {
843 	int size = 1024;
844 	int i;
845 	blist_t bl;
846 
847 	for (i = 1; i < ac; ++i) {
848 		const char *ptr = av[i];
849 		if (*ptr != '-') {
850 			size = strtol(ptr, NULL, 0);
851 			continue;
852 		}
853 		ptr += 2;
854 		fprintf(stderr, "Bad option: %s\n", ptr - 2);
855 		exit(1);
856 	}
857 	bl = blist_create(size);
858 	blist_free(bl, 0, size);
859 
860 	for (;;) {
861 		char buf[1024];
862 		daddr_t da = 0;
863 		daddr_t count = 0;
864 
865 
866 		printf("%d/%d/%d> ", bl->bl_free, size, bl->bl_radix);
867 		fflush(stdout);
868 		if (fgets(buf, sizeof(buf), stdin) == NULL)
869 			break;
870 		switch(buf[0]) {
871 		case 'r':
872 			if (sscanf(buf + 1, "%d", &count) == 1) {
873 				blist_resize(&bl, count, 1);
874 			} else {
875 				printf("?\n");
876 			}
877 		case 'p':
878 			blist_print(bl);
879 			break;
880 		case 'a':
881 			if (sscanf(buf + 1, "%d", &count) == 1) {
882 				daddr_t blk = blist_alloc(bl, count);
883 				printf("    R=%04x\n", blk);
884 			} else {
885 				printf("?\n");
886 			}
887 			break;
888 		case 'f':
889 			if (sscanf(buf + 1, "%x %d", &da, &count) == 2) {
890 				blist_free(bl, da, count);
891 			} else {
892 				printf("?\n");
893 			}
894 			break;
895 		case '?':
896 		case 'h':
897 			puts(
898 			    "p          -print\n"
899 			    "a %d       -allocate\n"
900 			    "f %x %d    -free\n"
901 			    "r %d       -resize\n"
902 			    "h/?        -help"
903 			);
904 			break;
905 		default:
906 			printf("?\n");
907 			break;
908 		}
909 	}
910 	return(0);
911 }
912 
913 void
914 panic(const char *ctl, ...)
915 {
916 	va_list va;
917 
918 	va_start(va, ctl);
919 	vfprintf(stderr, ctl, va);
920 	fprintf(stderr, "\n");
921 	va_end(va);
922 	exit(1);
923 }
924 
925 #endif
926 
927