xref: /freebsd/sys/kern/sched_ule.c (revision ff256d9c47cdc1f4e4529f1a6df1a29ba2496680)
1 /*-
2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * This file implements the ULE scheduler.  ULE supports independent CPU
29  * run queues and fine grain locking.  It has superior interactive
30  * performance under load even on uni-processor systems.
31  *
32  * etymology:
33  *   ULE is the last three letters in schedule.  It owes its name to a
34  * generic user created for a scheduling system by Paul Mikesell at
35  * Isilon Systems and a general lack of creativity on the part of the author.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_sched.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resource.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/smp.h>
56 #include <sys/sx.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysproto.h>
59 #include <sys/turnstile.h>
60 #include <sys/umtx.h>
61 #include <sys/vmmeter.h>
62 #include <sys/cpuset.h>
63 #ifdef KTRACE
64 #include <sys/uio.h>
65 #include <sys/ktrace.h>
66 #endif
67 
68 #ifdef HWPMC_HOOKS
69 #include <sys/pmckern.h>
70 #endif
71 
72 #include <machine/cpu.h>
73 #include <machine/smp.h>
74 
75 #if !defined(__i386__) && !defined(__amd64__) && !defined(__powerpc__) && !defined(__arm__)
76 #error "This architecture is not currently compatible with ULE"
77 #endif
78 
79 #define	KTR_ULE	0
80 
81 /*
82  * Thread scheduler specific section.  All fields are protected
83  * by the thread lock.
84  */
85 struct td_sched {
86 	TAILQ_ENTRY(td_sched) ts_procq;	/* Run queue. */
87 	struct thread	*ts_thread;	/* Active associated thread. */
88 	struct runq	*ts_runq;	/* Run-queue we're queued on. */
89 	short		ts_flags;	/* TSF_* flags. */
90 	u_char		ts_rqindex;	/* Run queue index. */
91 	u_char		ts_cpu;		/* CPU that we have affinity for. */
92 	int		ts_slice;	/* Ticks of slice remaining. */
93 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
94 	u_int		ts_runtime;	/* Number of ticks we were running */
95 	/* The following variables are only used for pctcpu calculation */
96 	int		ts_ltick;	/* Last tick that we were running on */
97 	int		ts_ftick;	/* First tick that we were running on */
98 	int		ts_ticks;	/* Tick count */
99 	int		ts_rltick;	/* Real last tick, for affinity. */
100 };
101 /* flags kept in ts_flags */
102 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
103 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
104 
105 static struct td_sched td_sched0;
106 
107 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
108 #define	THREAD_CAN_SCHED(td, cpu)	\
109     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
110 
111 /*
112  * Cpu percentage computation macros and defines.
113  *
114  * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
115  * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
116  * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
117  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
118  * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
119  * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
120  */
121 #define	SCHED_TICK_SECS		10
122 #define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
123 #define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
124 #define	SCHED_TICK_SHIFT	10
125 #define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
126 #define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
127 
128 /*
129  * These macros determine priorities for non-interactive threads.  They are
130  * assigned a priority based on their recent cpu utilization as expressed
131  * by the ratio of ticks to the tick total.  NHALF priorities at the start
132  * and end of the MIN to MAX timeshare range are only reachable with negative
133  * or positive nice respectively.
134  *
135  * PRI_RANGE:	Priority range for utilization dependent priorities.
136  * PRI_NRESV:	Number of nice values.
137  * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
138  * PRI_NICE:	Determines the part of the priority inherited from nice.
139  */
140 #define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
141 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
142 #define	SCHED_PRI_MIN		(PRI_MIN_TIMESHARE + SCHED_PRI_NHALF)
143 #define	SCHED_PRI_MAX		(PRI_MAX_TIMESHARE - SCHED_PRI_NHALF)
144 #define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN)
145 #define	SCHED_PRI_TICKS(ts)						\
146     (SCHED_TICK_HZ((ts)) /						\
147     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
148 #define	SCHED_PRI_NICE(nice)	(nice)
149 
150 /*
151  * These determine the interactivity of a process.  Interactivity differs from
152  * cpu utilization in that it expresses the voluntary time slept vs time ran
153  * while cpu utilization includes all time not running.  This more accurately
154  * models the intent of the thread.
155  *
156  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
157  *		before throttling back.
158  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
159  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
160  * INTERACT_THRESH:	Threshhold for placement on the current runq.
161  */
162 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
163 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
164 #define	SCHED_INTERACT_MAX	(100)
165 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
166 #define	SCHED_INTERACT_THRESH	(30)
167 
168 /*
169  * tickincr:		Converts a stathz tick into a hz domain scaled by
170  *			the shift factor.  Without the shift the error rate
171  *			due to rounding would be unacceptably high.
172  * realstathz:		stathz is sometimes 0 and run off of hz.
173  * sched_slice:		Runtime of each thread before rescheduling.
174  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
175  */
176 static int sched_interact = SCHED_INTERACT_THRESH;
177 static int realstathz;
178 static int tickincr;
179 static int sched_slice;
180 #ifdef PREEMPTION
181 #ifdef FULL_PREEMPTION
182 static int preempt_thresh = PRI_MAX_IDLE;
183 #else
184 static int preempt_thresh = PRI_MIN_KERN;
185 #endif
186 #else
187 static int preempt_thresh = 0;
188 #endif
189 
190 /*
191  * tdq - per processor runqs and statistics.  All fields are protected by the
192  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
193  * locking in sched_pickcpu();
194  */
195 struct tdq {
196 	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
197 	struct mtx	tdq_lock;		/* run queue lock. */
198 	struct runq	tdq_realtime;		/* real-time run queue. */
199 	struct runq	tdq_timeshare;		/* timeshare run queue. */
200 	struct runq	tdq_idle;		/* Queue of IDLE threads. */
201 	int		tdq_load;		/* Aggregate load. */
202 	int		tdq_sysload;		/* For loadavg, !ITHD load. */
203 	u_char		tdq_idx;		/* Current insert index. */
204 	u_char		tdq_ridx;		/* Current removal index. */
205 	u_char		tdq_lowpri;		/* Lowest priority thread. */
206 	u_char		tdq_ipipending;		/* IPI pending. */
207 	int		tdq_transferable;	/* Transferable thread count. */
208 	char		tdq_name[sizeof("sched lock") + 6];
209 } __aligned(64);
210 
211 
212 #ifdef SMP
213 struct cpu_group *cpu_top;
214 
215 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
216 #define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
217 
218 /*
219  * Run-time tunables.
220  */
221 static int rebalance = 1;
222 static int balance_interval = 128;	/* Default set in sched_initticks(). */
223 static int affinity;
224 static int steal_htt = 1;
225 static int steal_idle = 1;
226 static int steal_thresh = 2;
227 
228 /*
229  * One thread queue per processor.
230  */
231 static struct tdq	tdq_cpu[MAXCPU];
232 static struct tdq	*balance_tdq;
233 static int balance_ticks;
234 
235 #define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
236 #define	TDQ_CPU(x)	(&tdq_cpu[(x)])
237 #define	TDQ_ID(x)	((int)((x) - tdq_cpu))
238 #else	/* !SMP */
239 static struct tdq	tdq_cpu;
240 
241 #define	TDQ_ID(x)	(0)
242 #define	TDQ_SELF()	(&tdq_cpu)
243 #define	TDQ_CPU(x)	(&tdq_cpu)
244 #endif
245 
246 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
247 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
248 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
249 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
250 #define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
251 
252 static void sched_priority(struct thread *);
253 static void sched_thread_priority(struct thread *, u_char);
254 static int sched_interact_score(struct thread *);
255 static void sched_interact_update(struct thread *);
256 static void sched_interact_fork(struct thread *);
257 static void sched_pctcpu_update(struct td_sched *);
258 
259 /* Operations on per processor queues */
260 static struct td_sched * tdq_choose(struct tdq *);
261 static void tdq_setup(struct tdq *);
262 static void tdq_load_add(struct tdq *, struct td_sched *);
263 static void tdq_load_rem(struct tdq *, struct td_sched *);
264 static __inline void tdq_runq_add(struct tdq *, struct td_sched *, int);
265 static __inline void tdq_runq_rem(struct tdq *, struct td_sched *);
266 static inline int sched_shouldpreempt(int, int, int);
267 void tdq_print(int cpu);
268 static void runq_print(struct runq *rq);
269 static void tdq_add(struct tdq *, struct thread *, int);
270 #ifdef SMP
271 static int tdq_move(struct tdq *, struct tdq *);
272 static int tdq_idled(struct tdq *);
273 static void tdq_notify(struct tdq *, struct td_sched *);
274 static struct td_sched *tdq_steal(struct tdq *, int);
275 static struct td_sched *runq_steal(struct runq *, int);
276 static int sched_pickcpu(struct td_sched *, int);
277 static void sched_balance(void);
278 static int sched_balance_pair(struct tdq *, struct tdq *);
279 static inline struct tdq *sched_setcpu(struct td_sched *, int, int);
280 static inline struct mtx *thread_block_switch(struct thread *);
281 static inline void thread_unblock_switch(struct thread *, struct mtx *);
282 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
283 #endif
284 
285 static void sched_setup(void *dummy);
286 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
287 
288 static void sched_initticks(void *dummy);
289 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, NULL)
290 
291 /*
292  * Print the threads waiting on a run-queue.
293  */
294 static void
295 runq_print(struct runq *rq)
296 {
297 	struct rqhead *rqh;
298 	struct td_sched *ts;
299 	int pri;
300 	int j;
301 	int i;
302 
303 	for (i = 0; i < RQB_LEN; i++) {
304 		printf("\t\trunq bits %d 0x%zx\n",
305 		    i, rq->rq_status.rqb_bits[i]);
306 		for (j = 0; j < RQB_BPW; j++)
307 			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
308 				pri = j + (i << RQB_L2BPW);
309 				rqh = &rq->rq_queues[pri];
310 				TAILQ_FOREACH(ts, rqh, ts_procq) {
311 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
312 					    ts->ts_thread, ts->ts_thread->td_name, ts->ts_thread->td_priority, ts->ts_rqindex, pri);
313 				}
314 			}
315 	}
316 }
317 
318 /*
319  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
320  */
321 void
322 tdq_print(int cpu)
323 {
324 	struct tdq *tdq;
325 
326 	tdq = TDQ_CPU(cpu);
327 
328 	printf("tdq %d:\n", TDQ_ID(tdq));
329 	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
330 	printf("\tLock name:      %s\n", tdq->tdq_name);
331 	printf("\tload:           %d\n", tdq->tdq_load);
332 	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
333 	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
334 	printf("\trealtime runq:\n");
335 	runq_print(&tdq->tdq_realtime);
336 	printf("\ttimeshare runq:\n");
337 	runq_print(&tdq->tdq_timeshare);
338 	printf("\tidle runq:\n");
339 	runq_print(&tdq->tdq_idle);
340 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
341 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
342 }
343 
344 static inline int
345 sched_shouldpreempt(int pri, int cpri, int remote)
346 {
347 	/*
348 	 * If the new priority is not better than the current priority there is
349 	 * nothing to do.
350 	 */
351 	if (pri >= cpri)
352 		return (0);
353 	/*
354 	 * Always preempt idle.
355 	 */
356 	if (cpri >= PRI_MIN_IDLE)
357 		return (1);
358 	/*
359 	 * If preemption is disabled don't preempt others.
360 	 */
361 	if (preempt_thresh == 0)
362 		return (0);
363 	/*
364 	 * Preempt if we exceed the threshold.
365 	 */
366 	if (pri <= preempt_thresh)
367 		return (1);
368 	/*
369 	 * If we're realtime or better and there is timeshare or worse running
370 	 * preempt only remote processors.
371 	 */
372 	if (remote && pri <= PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME)
373 		return (1);
374 	return (0);
375 }
376 
377 #define	TS_RQ_PPQ	(((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS)
378 /*
379  * Add a thread to the actual run-queue.  Keeps transferable counts up to
380  * date with what is actually on the run-queue.  Selects the correct
381  * queue position for timeshare threads.
382  */
383 static __inline void
384 tdq_runq_add(struct tdq *tdq, struct td_sched *ts, int flags)
385 {
386 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
387 	THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
388 	if (THREAD_CAN_MIGRATE(ts->ts_thread)) {
389 		tdq->tdq_transferable++;
390 		ts->ts_flags |= TSF_XFERABLE;
391 	}
392 	if (ts->ts_runq == &tdq->tdq_timeshare) {
393 		u_char pri;
394 
395 		pri = ts->ts_thread->td_priority;
396 		KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE,
397 			("Invalid priority %d on timeshare runq", pri));
398 		/*
399 		 * This queue contains only priorities between MIN and MAX
400 		 * realtime.  Use the whole queue to represent these values.
401 		 */
402 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
403 			pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ;
404 			pri = (pri + tdq->tdq_idx) % RQ_NQS;
405 			/*
406 			 * This effectively shortens the queue by one so we
407 			 * can have a one slot difference between idx and
408 			 * ridx while we wait for threads to drain.
409 			 */
410 			if (tdq->tdq_ridx != tdq->tdq_idx &&
411 			    pri == tdq->tdq_ridx)
412 				pri = (unsigned char)(pri - 1) % RQ_NQS;
413 		} else
414 			pri = tdq->tdq_ridx;
415 		runq_add_pri(ts->ts_runq, ts, pri, flags);
416 	} else
417 		runq_add(ts->ts_runq, ts, flags);
418 }
419 
420 /*
421  * Remove a thread from a run-queue.  This typically happens when a thread
422  * is selected to run.  Running threads are not on the queue and the
423  * transferable count does not reflect them.
424  */
425 static __inline void
426 tdq_runq_rem(struct tdq *tdq, struct td_sched *ts)
427 {
428 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
429 	KASSERT(ts->ts_runq != NULL,
430 	    ("tdq_runq_remove: thread %p null ts_runq", ts->ts_thread));
431 	if (ts->ts_flags & TSF_XFERABLE) {
432 		tdq->tdq_transferable--;
433 		ts->ts_flags &= ~TSF_XFERABLE;
434 	}
435 	if (ts->ts_runq == &tdq->tdq_timeshare) {
436 		if (tdq->tdq_idx != tdq->tdq_ridx)
437 			runq_remove_idx(ts->ts_runq, ts, &tdq->tdq_ridx);
438 		else
439 			runq_remove_idx(ts->ts_runq, ts, NULL);
440 		/*
441 		 * For timeshare threads we update the priority here so
442 		 * the priority reflects the time we've been sleeping.
443 		 */
444 		ts->ts_ltick = ticks;
445 		sched_pctcpu_update(ts);
446 		sched_priority(ts->ts_thread);
447 	} else
448 		runq_remove(ts->ts_runq, ts);
449 }
450 
451 /*
452  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
453  * for this thread to the referenced thread queue.
454  */
455 static void
456 tdq_load_add(struct tdq *tdq, struct td_sched *ts)
457 {
458 	int class;
459 
460 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
461 	THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
462 	class = PRI_BASE(ts->ts_thread->td_pri_class);
463 	tdq->tdq_load++;
464 	CTR2(KTR_SCHED, "cpu %d load: %d", TDQ_ID(tdq), tdq->tdq_load);
465 	if (class != PRI_ITHD &&
466 	    (ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0)
467 		tdq->tdq_sysload++;
468 }
469 
470 /*
471  * Remove the load from a thread that is transitioning to a sleep state or
472  * exiting.
473  */
474 static void
475 tdq_load_rem(struct tdq *tdq, struct td_sched *ts)
476 {
477 	int class;
478 
479 	THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
480 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
481 	class = PRI_BASE(ts->ts_thread->td_pri_class);
482 	if (class != PRI_ITHD &&
483 	    (ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0)
484 		tdq->tdq_sysload--;
485 	KASSERT(tdq->tdq_load != 0,
486 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
487 	tdq->tdq_load--;
488 	CTR1(KTR_SCHED, "load: %d", tdq->tdq_load);
489 	ts->ts_runq = NULL;
490 }
491 
492 /*
493  * Set lowpri to its exact value by searching the run-queue and
494  * evaluating curthread.  curthread may be passed as an optimization.
495  */
496 static void
497 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
498 {
499 	struct td_sched *ts;
500 	struct thread *td;
501 
502 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
503 	if (ctd == NULL)
504 		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
505 	ts = tdq_choose(tdq);
506 	if (ts)
507 		td = ts->ts_thread;
508 	if (ts == NULL || td->td_priority > ctd->td_priority)
509 		tdq->tdq_lowpri = ctd->td_priority;
510 	else
511 		tdq->tdq_lowpri = td->td_priority;
512 }
513 
514 #ifdef SMP
515 struct cpu_search {
516 	cpumask_t cs_mask;	/* Mask of valid cpus. */
517 	u_int	cs_load;
518 	u_int	cs_cpu;
519 	int	cs_limit;	/* Min priority for low min load for high. */
520 };
521 
522 #define	CPU_SEARCH_LOWEST	0x1
523 #define	CPU_SEARCH_HIGHEST	0x2
524 #define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
525 
526 #define	CPUMASK_FOREACH(cpu, mask)				\
527 	for ((cpu) = 0; (cpu) < sizeof((mask)) * 8; (cpu)++)	\
528 		if ((mask) & 1 << (cpu))
529 
530 __inline int cpu_search(struct cpu_group *cg, struct cpu_search *low,
531     struct cpu_search *high, const int match);
532 int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low);
533 int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high);
534 int cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
535     struct cpu_search *high);
536 
537 /*
538  * This routine compares according to the match argument and should be
539  * reduced in actual instantiations via constant propagation and dead code
540  * elimination.
541  */
542 static __inline int
543 cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high,
544     const int match)
545 {
546 	struct tdq *tdq;
547 
548 	tdq = TDQ_CPU(cpu);
549 	if (match & CPU_SEARCH_LOWEST)
550 		if (low->cs_mask & (1 << cpu) &&
551 		    tdq->tdq_load < low->cs_load &&
552 		    tdq->tdq_lowpri > low->cs_limit) {
553 			low->cs_cpu = cpu;
554 			low->cs_load = tdq->tdq_load;
555 		}
556 	if (match & CPU_SEARCH_HIGHEST)
557 		if (high->cs_mask & (1 << cpu) &&
558 		    tdq->tdq_load >= high->cs_limit &&
559 		    tdq->tdq_load > high->cs_load &&
560 		    tdq->tdq_transferable) {
561 			high->cs_cpu = cpu;
562 			high->cs_load = tdq->tdq_load;
563 		}
564 	return (tdq->tdq_load);
565 }
566 
567 /*
568  * Search the tree of cpu_groups for the lowest or highest loaded cpu
569  * according to the match argument.  This routine actually compares the
570  * load on all paths through the tree and finds the least loaded cpu on
571  * the least loaded path, which may differ from the least loaded cpu in
572  * the system.  This balances work among caches and busses.
573  *
574  * This inline is instantiated in three forms below using constants for the
575  * match argument.  It is reduced to the minimum set for each case.  It is
576  * also recursive to the depth of the tree.
577  */
578 static inline int
579 cpu_search(struct cpu_group *cg, struct cpu_search *low,
580     struct cpu_search *high, const int match)
581 {
582 	int total;
583 
584 	total = 0;
585 	if (cg->cg_children) {
586 		struct cpu_search lgroup;
587 		struct cpu_search hgroup;
588 		struct cpu_group *child;
589 		u_int lload;
590 		int hload;
591 		int load;
592 		int i;
593 
594 		lload = -1;
595 		hload = -1;
596 		for (i = 0; i < cg->cg_children; i++) {
597 			child = &cg->cg_child[i];
598 			if (match & CPU_SEARCH_LOWEST) {
599 				lgroup = *low;
600 				lgroup.cs_load = -1;
601 			}
602 			if (match & CPU_SEARCH_HIGHEST) {
603 				hgroup = *high;
604 				lgroup.cs_load = 0;
605 			}
606 			switch (match) {
607 			case CPU_SEARCH_LOWEST:
608 				load = cpu_search_lowest(child, &lgroup);
609 				break;
610 			case CPU_SEARCH_HIGHEST:
611 				load = cpu_search_highest(child, &hgroup);
612 				break;
613 			case CPU_SEARCH_BOTH:
614 				load = cpu_search_both(child, &lgroup, &hgroup);
615 				break;
616 			}
617 			total += load;
618 			if (match & CPU_SEARCH_LOWEST)
619 				if (load < lload || low->cs_cpu == -1) {
620 					*low = lgroup;
621 					lload = load;
622 				}
623 			if (match & CPU_SEARCH_HIGHEST)
624 				if (load > hload || high->cs_cpu == -1) {
625 					hload = load;
626 					*high = hgroup;
627 				}
628 		}
629 	} else {
630 		int cpu;
631 
632 		CPUMASK_FOREACH(cpu, cg->cg_mask)
633 			total += cpu_compare(cpu, low, high, match);
634 	}
635 	return (total);
636 }
637 
638 /*
639  * cpu_search instantiations must pass constants to maintain the inline
640  * optimization.
641  */
642 int
643 cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low)
644 {
645 	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
646 }
647 
648 int
649 cpu_search_highest(struct cpu_group *cg, struct cpu_search *high)
650 {
651 	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
652 }
653 
654 int
655 cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
656     struct cpu_search *high)
657 {
658 	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
659 }
660 
661 /*
662  * Find the cpu with the least load via the least loaded path that has a
663  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
664  * acceptable.
665  */
666 static inline int
667 sched_lowest(struct cpu_group *cg, cpumask_t mask, int pri)
668 {
669 	struct cpu_search low;
670 
671 	low.cs_cpu = -1;
672 	low.cs_load = -1;
673 	low.cs_mask = mask;
674 	low.cs_limit = pri;
675 	cpu_search_lowest(cg, &low);
676 	return low.cs_cpu;
677 }
678 
679 /*
680  * Find the cpu with the highest load via the highest loaded path.
681  */
682 static inline int
683 sched_highest(struct cpu_group *cg, cpumask_t mask, int minload)
684 {
685 	struct cpu_search high;
686 
687 	high.cs_cpu = -1;
688 	high.cs_load = 0;
689 	high.cs_mask = mask;
690 	high.cs_limit = minload;
691 	cpu_search_highest(cg, &high);
692 	return high.cs_cpu;
693 }
694 
695 /*
696  * Simultaneously find the highest and lowest loaded cpu reachable via
697  * cg.
698  */
699 static inline void
700 sched_both(struct cpu_group *cg, cpumask_t mask, int *lowcpu, int *highcpu)
701 {
702 	struct cpu_search high;
703 	struct cpu_search low;
704 
705 	low.cs_cpu = -1;
706 	low.cs_limit = -1;
707 	low.cs_load = -1;
708 	low.cs_mask = mask;
709 	high.cs_load = 0;
710 	high.cs_cpu = -1;
711 	high.cs_limit = -1;
712 	high.cs_mask = mask;
713 	cpu_search_both(cg, &low, &high);
714 	*lowcpu = low.cs_cpu;
715 	*highcpu = high.cs_cpu;
716 	return;
717 }
718 
719 static void
720 sched_balance_group(struct cpu_group *cg)
721 {
722 	cpumask_t mask;
723 	int high;
724 	int low;
725 	int i;
726 
727 	mask = -1;
728 	for (;;) {
729 		sched_both(cg, mask, &low, &high);
730 		if (low == high || low == -1 || high == -1)
731 			break;
732 		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low)))
733 			break;
734 		/*
735 		 * If we failed to move any threads determine which cpu
736 		 * to kick out of the set and try again.
737 	 	 */
738 		if (TDQ_CPU(high)->tdq_transferable == 0)
739 			mask &= ~(1 << high);
740 		else
741 			mask &= ~(1 << low);
742 	}
743 
744 	for (i = 0; i < cg->cg_children; i++)
745 		sched_balance_group(&cg->cg_child[i]);
746 }
747 
748 static void
749 sched_balance()
750 {
751 	struct tdq *tdq;
752 
753 	/*
754 	 * Select a random time between .5 * balance_interval and
755 	 * 1.5 * balance_interval.
756 	 */
757 	balance_ticks = max(balance_interval / 2, 1);
758 	balance_ticks += random() % balance_interval;
759 	if (smp_started == 0 || rebalance == 0)
760 		return;
761 	tdq = TDQ_SELF();
762 	TDQ_UNLOCK(tdq);
763 	sched_balance_group(cpu_top);
764 	TDQ_LOCK(tdq);
765 }
766 
767 /*
768  * Lock two thread queues using their address to maintain lock order.
769  */
770 static void
771 tdq_lock_pair(struct tdq *one, struct tdq *two)
772 {
773 	if (one < two) {
774 		TDQ_LOCK(one);
775 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
776 	} else {
777 		TDQ_LOCK(two);
778 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
779 	}
780 }
781 
782 /*
783  * Unlock two thread queues.  Order is not important here.
784  */
785 static void
786 tdq_unlock_pair(struct tdq *one, struct tdq *two)
787 {
788 	TDQ_UNLOCK(one);
789 	TDQ_UNLOCK(two);
790 }
791 
792 /*
793  * Transfer load between two imbalanced thread queues.
794  */
795 static int
796 sched_balance_pair(struct tdq *high, struct tdq *low)
797 {
798 	int transferable;
799 	int high_load;
800 	int low_load;
801 	int moved;
802 	int move;
803 	int diff;
804 	int i;
805 
806 	tdq_lock_pair(high, low);
807 	transferable = high->tdq_transferable;
808 	high_load = high->tdq_load;
809 	low_load = low->tdq_load;
810 	moved = 0;
811 	/*
812 	 * Determine what the imbalance is and then adjust that to how many
813 	 * threads we actually have to give up (transferable).
814 	 */
815 	if (transferable != 0) {
816 		diff = high_load - low_load;
817 		move = diff / 2;
818 		if (diff & 0x1)
819 			move++;
820 		move = min(move, transferable);
821 		for (i = 0; i < move; i++)
822 			moved += tdq_move(high, low);
823 		/*
824 		 * IPI the target cpu to force it to reschedule with the new
825 		 * workload.
826 		 */
827 		ipi_selected(1 << TDQ_ID(low), IPI_PREEMPT);
828 	}
829 	tdq_unlock_pair(high, low);
830 	return (moved);
831 }
832 
833 /*
834  * Move a thread from one thread queue to another.
835  */
836 static int
837 tdq_move(struct tdq *from, struct tdq *to)
838 {
839 	struct td_sched *ts;
840 	struct thread *td;
841 	struct tdq *tdq;
842 	int cpu;
843 
844 	TDQ_LOCK_ASSERT(from, MA_OWNED);
845 	TDQ_LOCK_ASSERT(to, MA_OWNED);
846 
847 	tdq = from;
848 	cpu = TDQ_ID(to);
849 	ts = tdq_steal(tdq, cpu);
850 	if (ts == NULL)
851 		return (0);
852 	td = ts->ts_thread;
853 	/*
854 	 * Although the run queue is locked the thread may be blocked.  Lock
855 	 * it to clear this and acquire the run-queue lock.
856 	 */
857 	thread_lock(td);
858 	/* Drop recursive lock on from acquired via thread_lock(). */
859 	TDQ_UNLOCK(from);
860 	sched_rem(td);
861 	ts->ts_cpu = cpu;
862 	td->td_lock = TDQ_LOCKPTR(to);
863 	tdq_add(to, td, SRQ_YIELDING);
864 	return (1);
865 }
866 
867 /*
868  * This tdq has idled.  Try to steal a thread from another cpu and switch
869  * to it.
870  */
871 static int
872 tdq_idled(struct tdq *tdq)
873 {
874 	struct cpu_group *cg;
875 	struct tdq *steal;
876 	cpumask_t mask;
877 	int thresh;
878 	int cpu;
879 
880 	if (smp_started == 0 || steal_idle == 0)
881 		return (1);
882 	mask = -1;
883 	mask &= ~PCPU_GET(cpumask);
884 	/* We don't want to be preempted while we're iterating. */
885 	spinlock_enter();
886 	for (cg = tdq->tdq_cg; cg != NULL; ) {
887 		if ((cg->cg_flags & (CG_FLAG_HTT | CG_FLAG_THREAD)) == 0)
888 			thresh = steal_thresh;
889 		else
890 			thresh = 1;
891 		cpu = sched_highest(cg, mask, thresh);
892 		if (cpu == -1) {
893 			cg = cg->cg_parent;
894 			continue;
895 		}
896 		steal = TDQ_CPU(cpu);
897 		mask &= ~(1 << cpu);
898 		tdq_lock_pair(tdq, steal);
899 		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
900 			tdq_unlock_pair(tdq, steal);
901 			continue;
902 		}
903 		/*
904 		 * If a thread was added while interrupts were disabled don't
905 		 * steal one here.  If we fail to acquire one due to affinity
906 		 * restrictions loop again with this cpu removed from the
907 		 * set.
908 		 */
909 		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
910 			tdq_unlock_pair(tdq, steal);
911 			continue;
912 		}
913 		spinlock_exit();
914 		TDQ_UNLOCK(steal);
915 		mi_switch(SW_VOL, NULL);
916 		thread_unlock(curthread);
917 
918 		return (0);
919 	}
920 	spinlock_exit();
921 	return (1);
922 }
923 
924 /*
925  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
926  */
927 static void
928 tdq_notify(struct tdq *tdq, struct td_sched *ts)
929 {
930 	int cpri;
931 	int pri;
932 	int cpu;
933 
934 	if (tdq->tdq_ipipending)
935 		return;
936 	cpu = ts->ts_cpu;
937 	pri = ts->ts_thread->td_priority;
938 	cpri = pcpu_find(cpu)->pc_curthread->td_priority;
939 	if (!sched_shouldpreempt(pri, cpri, 1))
940 		return;
941 	tdq->tdq_ipipending = 1;
942 	ipi_selected(1 << cpu, IPI_PREEMPT);
943 }
944 
945 /*
946  * Steals load from a timeshare queue.  Honors the rotating queue head
947  * index.
948  */
949 static struct td_sched *
950 runq_steal_from(struct runq *rq, int cpu, u_char start)
951 {
952 	struct td_sched *ts;
953 	struct rqbits *rqb;
954 	struct rqhead *rqh;
955 	int first;
956 	int bit;
957 	int pri;
958 	int i;
959 
960 	rqb = &rq->rq_status;
961 	bit = start & (RQB_BPW -1);
962 	pri = 0;
963 	first = 0;
964 again:
965 	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
966 		if (rqb->rqb_bits[i] == 0)
967 			continue;
968 		if (bit != 0) {
969 			for (pri = bit; pri < RQB_BPW; pri++)
970 				if (rqb->rqb_bits[i] & (1ul << pri))
971 					break;
972 			if (pri >= RQB_BPW)
973 				continue;
974 		} else
975 			pri = RQB_FFS(rqb->rqb_bits[i]);
976 		pri += (i << RQB_L2BPW);
977 		rqh = &rq->rq_queues[pri];
978 		TAILQ_FOREACH(ts, rqh, ts_procq) {
979 			if (first && THREAD_CAN_MIGRATE(ts->ts_thread) &&
980 			    THREAD_CAN_SCHED(ts->ts_thread, cpu))
981 				return (ts);
982 			first = 1;
983 		}
984 	}
985 	if (start != 0) {
986 		start = 0;
987 		goto again;
988 	}
989 
990 	return (NULL);
991 }
992 
993 /*
994  * Steals load from a standard linear queue.
995  */
996 static struct td_sched *
997 runq_steal(struct runq *rq, int cpu)
998 {
999 	struct rqhead *rqh;
1000 	struct rqbits *rqb;
1001 	struct td_sched *ts;
1002 	int word;
1003 	int bit;
1004 
1005 	rqb = &rq->rq_status;
1006 	for (word = 0; word < RQB_LEN; word++) {
1007 		if (rqb->rqb_bits[word] == 0)
1008 			continue;
1009 		for (bit = 0; bit < RQB_BPW; bit++) {
1010 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1011 				continue;
1012 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1013 			TAILQ_FOREACH(ts, rqh, ts_procq)
1014 				if (THREAD_CAN_MIGRATE(ts->ts_thread) &&
1015 				    THREAD_CAN_SCHED(ts->ts_thread, cpu))
1016 					return (ts);
1017 		}
1018 	}
1019 	return (NULL);
1020 }
1021 
1022 /*
1023  * Attempt to steal a thread in priority order from a thread queue.
1024  */
1025 static struct td_sched *
1026 tdq_steal(struct tdq *tdq, int cpu)
1027 {
1028 	struct td_sched *ts;
1029 
1030 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1031 	if ((ts = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1032 		return (ts);
1033 	if ((ts = runq_steal_from(&tdq->tdq_timeshare, cpu, tdq->tdq_ridx))
1034 	    != NULL)
1035 		return (ts);
1036 	return (runq_steal(&tdq->tdq_idle, cpu));
1037 }
1038 
1039 /*
1040  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1041  * current lock and returns with the assigned queue locked.
1042  */
1043 static inline struct tdq *
1044 sched_setcpu(struct td_sched *ts, int cpu, int flags)
1045 {
1046 	struct thread *td;
1047 	struct tdq *tdq;
1048 
1049 	THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
1050 
1051 	tdq = TDQ_CPU(cpu);
1052 	td = ts->ts_thread;
1053 	ts->ts_cpu = cpu;
1054 
1055 	/* If the lock matches just return the queue. */
1056 	if (td->td_lock == TDQ_LOCKPTR(tdq))
1057 		return (tdq);
1058 #ifdef notyet
1059 	/*
1060 	 * If the thread isn't running its lockptr is a
1061 	 * turnstile or a sleepqueue.  We can just lock_set without
1062 	 * blocking.
1063 	 */
1064 	if (TD_CAN_RUN(td)) {
1065 		TDQ_LOCK(tdq);
1066 		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1067 		return (tdq);
1068 	}
1069 #endif
1070 	/*
1071 	 * The hard case, migration, we need to block the thread first to
1072 	 * prevent order reversals with other cpus locks.
1073 	 */
1074 	thread_lock_block(td);
1075 	TDQ_LOCK(tdq);
1076 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1077 	return (tdq);
1078 }
1079 
1080 static int
1081 sched_pickcpu(struct td_sched *ts, int flags)
1082 {
1083 	struct cpu_group *cg;
1084 	struct thread *td;
1085 	struct tdq *tdq;
1086 	cpumask_t mask;
1087 	int self;
1088 	int pri;
1089 	int cpu;
1090 
1091 	self = PCPU_GET(cpuid);
1092 	td = ts->ts_thread;
1093 	if (smp_started == 0)
1094 		return (self);
1095 	/*
1096 	 * Don't migrate a running thread from sched_switch().
1097 	 */
1098 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1099 		return (ts->ts_cpu);
1100 	/*
1101 	 * Prefer to run interrupt threads on the processors that generate
1102 	 * the interrupt.
1103 	 */
1104 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1105 	    curthread->td_intr_nesting_level)
1106 		ts->ts_cpu = self;
1107 	/*
1108 	 * If the thread can run on the last cpu and the affinity has not
1109 	 * expired or it is idle run it there.
1110 	 */
1111 	pri = td->td_priority;
1112 	tdq = TDQ_CPU(ts->ts_cpu);
1113 	if (THREAD_CAN_SCHED(td, ts->ts_cpu)) {
1114 		if (tdq->tdq_lowpri > PRI_MIN_IDLE)
1115 			return (ts->ts_cpu);
1116 		if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri)
1117 			return (ts->ts_cpu);
1118 	}
1119 	/*
1120 	 * Search for the highest level in the tree that still has affinity.
1121 	 */
1122 	cg = NULL;
1123 	for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent)
1124 		if (SCHED_AFFINITY(ts, cg->cg_level))
1125 			break;
1126 	cpu = -1;
1127 	mask = td->td_cpuset->cs_mask.__bits[0];
1128 	if (cg)
1129 		cpu = sched_lowest(cg, mask, pri);
1130 	if (cpu == -1)
1131 		cpu = sched_lowest(cpu_top, mask, -1);
1132 	/*
1133 	 * Compare the lowest loaded cpu to current cpu.
1134 	 */
1135 	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1136 	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1137 		cpu = self;
1138 	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1139 	return (cpu);
1140 }
1141 #endif
1142 
1143 /*
1144  * Pick the highest priority task we have and return it.
1145  */
1146 static struct td_sched *
1147 tdq_choose(struct tdq *tdq)
1148 {
1149 	struct td_sched *ts;
1150 
1151 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1152 	ts = runq_choose(&tdq->tdq_realtime);
1153 	if (ts != NULL)
1154 		return (ts);
1155 	ts = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1156 	if (ts != NULL) {
1157 		KASSERT(ts->ts_thread->td_priority >= PRI_MIN_TIMESHARE,
1158 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1159 		    ts->ts_thread->td_priority));
1160 		return (ts);
1161 	}
1162 
1163 	ts = runq_choose(&tdq->tdq_idle);
1164 	if (ts != NULL) {
1165 		KASSERT(ts->ts_thread->td_priority >= PRI_MIN_IDLE,
1166 		    ("tdq_choose: Invalid priority on idle queue %d",
1167 		    ts->ts_thread->td_priority));
1168 		return (ts);
1169 	}
1170 
1171 	return (NULL);
1172 }
1173 
1174 /*
1175  * Initialize a thread queue.
1176  */
1177 static void
1178 tdq_setup(struct tdq *tdq)
1179 {
1180 
1181 	if (bootverbose)
1182 		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1183 	runq_init(&tdq->tdq_realtime);
1184 	runq_init(&tdq->tdq_timeshare);
1185 	runq_init(&tdq->tdq_idle);
1186 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1187 	    "sched lock %d", (int)TDQ_ID(tdq));
1188 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1189 	    MTX_SPIN | MTX_RECURSE);
1190 }
1191 
1192 #ifdef SMP
1193 static void
1194 sched_setup_smp(void)
1195 {
1196 	struct tdq *tdq;
1197 	int i;
1198 
1199 	cpu_top = smp_topo();
1200 	for (i = 0; i < MAXCPU; i++) {
1201 		if (CPU_ABSENT(i))
1202 			continue;
1203 		tdq = TDQ_CPU(i);
1204 		tdq_setup(tdq);
1205 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1206 		if (tdq->tdq_cg == NULL)
1207 			panic("Can't find cpu group for %d\n", i);
1208 	}
1209 	balance_tdq = TDQ_SELF();
1210 	sched_balance();
1211 }
1212 #endif
1213 
1214 /*
1215  * Setup the thread queues and initialize the topology based on MD
1216  * information.
1217  */
1218 static void
1219 sched_setup(void *dummy)
1220 {
1221 	struct tdq *tdq;
1222 
1223 	tdq = TDQ_SELF();
1224 #ifdef SMP
1225 	sched_setup_smp();
1226 #else
1227 	tdq_setup(tdq);
1228 #endif
1229 	/*
1230 	 * To avoid divide-by-zero, we set realstathz a dummy value
1231 	 * in case which sched_clock() called before sched_initticks().
1232 	 */
1233 	realstathz = hz;
1234 	sched_slice = (realstathz/10);	/* ~100ms */
1235 	tickincr = 1 << SCHED_TICK_SHIFT;
1236 
1237 	/* Add thread0's load since it's running. */
1238 	TDQ_LOCK(tdq);
1239 	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1240 	tdq_load_add(tdq, &td_sched0);
1241 	tdq->tdq_lowpri = thread0.td_priority;
1242 	TDQ_UNLOCK(tdq);
1243 }
1244 
1245 /*
1246  * This routine determines the tickincr after stathz and hz are setup.
1247  */
1248 /* ARGSUSED */
1249 static void
1250 sched_initticks(void *dummy)
1251 {
1252 	int incr;
1253 
1254 	realstathz = stathz ? stathz : hz;
1255 	sched_slice = (realstathz/10);	/* ~100ms */
1256 
1257 	/*
1258 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1259 	 * hz not being evenly divisible by stathz on all platforms.
1260 	 */
1261 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1262 	/*
1263 	 * This does not work for values of stathz that are more than
1264 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1265 	 */
1266 	if (incr == 0)
1267 		incr = 1;
1268 	tickincr = incr;
1269 #ifdef SMP
1270 	/*
1271 	 * Set the default balance interval now that we know
1272 	 * what realstathz is.
1273 	 */
1274 	balance_interval = realstathz;
1275 	/*
1276 	 * Set steal thresh to log2(mp_ncpu) but no greater than 4.  This
1277 	 * prevents excess thrashing on large machines and excess idle on
1278 	 * smaller machines.
1279 	 */
1280 	steal_thresh = min(ffs(mp_ncpus) - 1, 3);
1281 	affinity = SCHED_AFFINITY_DEFAULT;
1282 #endif
1283 }
1284 
1285 
1286 /*
1287  * This is the core of the interactivity algorithm.  Determines a score based
1288  * on past behavior.  It is the ratio of sleep time to run time scaled to
1289  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1290  * differs from the cpu usage because it does not account for time spent
1291  * waiting on a run-queue.  Would be prettier if we had floating point.
1292  */
1293 static int
1294 sched_interact_score(struct thread *td)
1295 {
1296 	struct td_sched *ts;
1297 	int div;
1298 
1299 	ts = td->td_sched;
1300 	/*
1301 	 * The score is only needed if this is likely to be an interactive
1302 	 * task.  Don't go through the expense of computing it if there's
1303 	 * no chance.
1304 	 */
1305 	if (sched_interact <= SCHED_INTERACT_HALF &&
1306 		ts->ts_runtime >= ts->ts_slptime)
1307 			return (SCHED_INTERACT_HALF);
1308 
1309 	if (ts->ts_runtime > ts->ts_slptime) {
1310 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1311 		return (SCHED_INTERACT_HALF +
1312 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1313 	}
1314 	if (ts->ts_slptime > ts->ts_runtime) {
1315 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1316 		return (ts->ts_runtime / div);
1317 	}
1318 	/* runtime == slptime */
1319 	if (ts->ts_runtime)
1320 		return (SCHED_INTERACT_HALF);
1321 
1322 	/*
1323 	 * This can happen if slptime and runtime are 0.
1324 	 */
1325 	return (0);
1326 
1327 }
1328 
1329 /*
1330  * Scale the scheduling priority according to the "interactivity" of this
1331  * process.
1332  */
1333 static void
1334 sched_priority(struct thread *td)
1335 {
1336 	int score;
1337 	int pri;
1338 
1339 	if (td->td_pri_class != PRI_TIMESHARE)
1340 		return;
1341 	/*
1342 	 * If the score is interactive we place the thread in the realtime
1343 	 * queue with a priority that is less than kernel and interrupt
1344 	 * priorities.  These threads are not subject to nice restrictions.
1345 	 *
1346 	 * Scores greater than this are placed on the normal timeshare queue
1347 	 * where the priority is partially decided by the most recent cpu
1348 	 * utilization and the rest is decided by nice value.
1349 	 *
1350 	 * The nice value of the process has a linear effect on the calculated
1351 	 * score.  Negative nice values make it easier for a thread to be
1352 	 * considered interactive.
1353 	 */
1354 	score = imax(0, sched_interact_score(td) - td->td_proc->p_nice);
1355 	if (score < sched_interact) {
1356 		pri = PRI_MIN_REALTIME;
1357 		pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact)
1358 		    * score;
1359 		KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME,
1360 		    ("sched_priority: invalid interactive priority %d score %d",
1361 		    pri, score));
1362 	} else {
1363 		pri = SCHED_PRI_MIN;
1364 		if (td->td_sched->ts_ticks)
1365 			pri += SCHED_PRI_TICKS(td->td_sched);
1366 		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1367 		KASSERT(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE,
1368 		    ("sched_priority: invalid priority %d: nice %d, "
1369 		    "ticks %d ftick %d ltick %d tick pri %d",
1370 		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1371 		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1372 		    SCHED_PRI_TICKS(td->td_sched)));
1373 	}
1374 	sched_user_prio(td, pri);
1375 
1376 	return;
1377 }
1378 
1379 /*
1380  * This routine enforces a maximum limit on the amount of scheduling history
1381  * kept.  It is called after either the slptime or runtime is adjusted.  This
1382  * function is ugly due to integer math.
1383  */
1384 static void
1385 sched_interact_update(struct thread *td)
1386 {
1387 	struct td_sched *ts;
1388 	u_int sum;
1389 
1390 	ts = td->td_sched;
1391 	sum = ts->ts_runtime + ts->ts_slptime;
1392 	if (sum < SCHED_SLP_RUN_MAX)
1393 		return;
1394 	/*
1395 	 * This only happens from two places:
1396 	 * 1) We have added an unusual amount of run time from fork_exit.
1397 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1398 	 */
1399 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1400 		if (ts->ts_runtime > ts->ts_slptime) {
1401 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1402 			ts->ts_slptime = 1;
1403 		} else {
1404 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1405 			ts->ts_runtime = 1;
1406 		}
1407 		return;
1408 	}
1409 	/*
1410 	 * If we have exceeded by more than 1/5th then the algorithm below
1411 	 * will not bring us back into range.  Dividing by two here forces
1412 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1413 	 */
1414 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1415 		ts->ts_runtime /= 2;
1416 		ts->ts_slptime /= 2;
1417 		return;
1418 	}
1419 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1420 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1421 }
1422 
1423 /*
1424  * Scale back the interactivity history when a child thread is created.  The
1425  * history is inherited from the parent but the thread may behave totally
1426  * differently.  For example, a shell spawning a compiler process.  We want
1427  * to learn that the compiler is behaving badly very quickly.
1428  */
1429 static void
1430 sched_interact_fork(struct thread *td)
1431 {
1432 	int ratio;
1433 	int sum;
1434 
1435 	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1436 	if (sum > SCHED_SLP_RUN_FORK) {
1437 		ratio = sum / SCHED_SLP_RUN_FORK;
1438 		td->td_sched->ts_runtime /= ratio;
1439 		td->td_sched->ts_slptime /= ratio;
1440 	}
1441 }
1442 
1443 /*
1444  * Called from proc0_init() to setup the scheduler fields.
1445  */
1446 void
1447 schedinit(void)
1448 {
1449 
1450 	/*
1451 	 * Set up the scheduler specific parts of proc0.
1452 	 */
1453 	proc0.p_sched = NULL; /* XXX */
1454 	thread0.td_sched = &td_sched0;
1455 	td_sched0.ts_ltick = ticks;
1456 	td_sched0.ts_ftick = ticks;
1457 	td_sched0.ts_thread = &thread0;
1458 }
1459 
1460 /*
1461  * This is only somewhat accurate since given many processes of the same
1462  * priority they will switch when their slices run out, which will be
1463  * at most sched_slice stathz ticks.
1464  */
1465 int
1466 sched_rr_interval(void)
1467 {
1468 
1469 	/* Convert sched_slice to hz */
1470 	return (hz/(realstathz/sched_slice));
1471 }
1472 
1473 /*
1474  * Update the percent cpu tracking information when it is requested or
1475  * the total history exceeds the maximum.  We keep a sliding history of
1476  * tick counts that slowly decays.  This is less precise than the 4BSD
1477  * mechanism since it happens with less regular and frequent events.
1478  */
1479 static void
1480 sched_pctcpu_update(struct td_sched *ts)
1481 {
1482 
1483 	if (ts->ts_ticks == 0)
1484 		return;
1485 	if (ticks - (hz / 10) < ts->ts_ltick &&
1486 	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
1487 		return;
1488 	/*
1489 	 * Adjust counters and watermark for pctcpu calc.
1490 	 */
1491 	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
1492 		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
1493 			    SCHED_TICK_TARG;
1494 	else
1495 		ts->ts_ticks = 0;
1496 	ts->ts_ltick = ticks;
1497 	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
1498 }
1499 
1500 /*
1501  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1502  * if necessary.  This is the back-end for several priority related
1503  * functions.
1504  */
1505 static void
1506 sched_thread_priority(struct thread *td, u_char prio)
1507 {
1508 	struct td_sched *ts;
1509 
1510 	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
1511 	    td, td->td_name, td->td_priority, prio, curthread,
1512 	    curthread->td_name);
1513 	ts = td->td_sched;
1514 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1515 	if (td->td_priority == prio)
1516 		return;
1517 
1518 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1519 		/*
1520 		 * If the priority has been elevated due to priority
1521 		 * propagation, we may have to move ourselves to a new
1522 		 * queue.  This could be optimized to not re-add in some
1523 		 * cases.
1524 		 */
1525 		sched_rem(td);
1526 		td->td_priority = prio;
1527 		sched_add(td, SRQ_BORROWING);
1528 	} else if (TD_IS_RUNNING(td)) {
1529 		struct tdq *tdq;
1530 		int oldpri;
1531 
1532 		tdq = TDQ_CPU(ts->ts_cpu);
1533 		oldpri = td->td_priority;
1534 		td->td_priority = prio;
1535 		if (prio < tdq->tdq_lowpri)
1536 			tdq->tdq_lowpri = prio;
1537 		else if (tdq->tdq_lowpri == oldpri)
1538 			tdq_setlowpri(tdq, td);
1539 	} else
1540 		td->td_priority = prio;
1541 }
1542 
1543 /*
1544  * Update a thread's priority when it is lent another thread's
1545  * priority.
1546  */
1547 void
1548 sched_lend_prio(struct thread *td, u_char prio)
1549 {
1550 
1551 	td->td_flags |= TDF_BORROWING;
1552 	sched_thread_priority(td, prio);
1553 }
1554 
1555 /*
1556  * Restore a thread's priority when priority propagation is
1557  * over.  The prio argument is the minimum priority the thread
1558  * needs to have to satisfy other possible priority lending
1559  * requests.  If the thread's regular priority is less
1560  * important than prio, the thread will keep a priority boost
1561  * of prio.
1562  */
1563 void
1564 sched_unlend_prio(struct thread *td, u_char prio)
1565 {
1566 	u_char base_pri;
1567 
1568 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1569 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1570 		base_pri = td->td_user_pri;
1571 	else
1572 		base_pri = td->td_base_pri;
1573 	if (prio >= base_pri) {
1574 		td->td_flags &= ~TDF_BORROWING;
1575 		sched_thread_priority(td, base_pri);
1576 	} else
1577 		sched_lend_prio(td, prio);
1578 }
1579 
1580 /*
1581  * Standard entry for setting the priority to an absolute value.
1582  */
1583 void
1584 sched_prio(struct thread *td, u_char prio)
1585 {
1586 	u_char oldprio;
1587 
1588 	/* First, update the base priority. */
1589 	td->td_base_pri = prio;
1590 
1591 	/*
1592 	 * If the thread is borrowing another thread's priority, don't
1593 	 * ever lower the priority.
1594 	 */
1595 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1596 		return;
1597 
1598 	/* Change the real priority. */
1599 	oldprio = td->td_priority;
1600 	sched_thread_priority(td, prio);
1601 
1602 	/*
1603 	 * If the thread is on a turnstile, then let the turnstile update
1604 	 * its state.
1605 	 */
1606 	if (TD_ON_LOCK(td) && oldprio != prio)
1607 		turnstile_adjust(td, oldprio);
1608 }
1609 
1610 /*
1611  * Set the base user priority, does not effect current running priority.
1612  */
1613 void
1614 sched_user_prio(struct thread *td, u_char prio)
1615 {
1616 	u_char oldprio;
1617 
1618 	td->td_base_user_pri = prio;
1619 	if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
1620                 return;
1621 	oldprio = td->td_user_pri;
1622 	td->td_user_pri = prio;
1623 }
1624 
1625 void
1626 sched_lend_user_prio(struct thread *td, u_char prio)
1627 {
1628 	u_char oldprio;
1629 
1630 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1631 	td->td_flags |= TDF_UBORROWING;
1632 	oldprio = td->td_user_pri;
1633 	td->td_user_pri = prio;
1634 }
1635 
1636 void
1637 sched_unlend_user_prio(struct thread *td, u_char prio)
1638 {
1639 	u_char base_pri;
1640 
1641 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1642 	base_pri = td->td_base_user_pri;
1643 	if (prio >= base_pri) {
1644 		td->td_flags &= ~TDF_UBORROWING;
1645 		sched_user_prio(td, base_pri);
1646 	} else {
1647 		sched_lend_user_prio(td, prio);
1648 	}
1649 }
1650 
1651 /*
1652  * Add the thread passed as 'newtd' to the run queue before selecting
1653  * the next thread to run.  This is only used for KSE.
1654  */
1655 static void
1656 sched_switchin(struct tdq *tdq, struct thread *td)
1657 {
1658 #ifdef SMP
1659 	spinlock_enter();
1660 	TDQ_UNLOCK(tdq);
1661 	thread_lock(td);
1662 	spinlock_exit();
1663 	sched_setcpu(td->td_sched, TDQ_ID(tdq), SRQ_YIELDING);
1664 #else
1665 	td->td_lock = TDQ_LOCKPTR(tdq);
1666 #endif
1667 	tdq_add(tdq, td, SRQ_YIELDING);
1668 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1669 }
1670 
1671 /*
1672  * Block a thread for switching.  Similar to thread_block() but does not
1673  * bump the spin count.
1674  */
1675 static inline struct mtx *
1676 thread_block_switch(struct thread *td)
1677 {
1678 	struct mtx *lock;
1679 
1680 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1681 	lock = td->td_lock;
1682 	td->td_lock = &blocked_lock;
1683 	mtx_unlock_spin(lock);
1684 
1685 	return (lock);
1686 }
1687 
1688 /*
1689  * Handle migration from sched_switch().  This happens only for
1690  * cpu binding.
1691  */
1692 static struct mtx *
1693 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1694 {
1695 	struct tdq *tdn;
1696 
1697 	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1698 #ifdef SMP
1699 	/*
1700 	 * Do the lock dance required to avoid LOR.  We grab an extra
1701 	 * spinlock nesting to prevent preemption while we're
1702 	 * not holding either run-queue lock.
1703 	 */
1704 	spinlock_enter();
1705 	thread_block_switch(td);	/* This releases the lock on tdq. */
1706 	TDQ_LOCK(tdn);
1707 	tdq_add(tdn, td, flags);
1708 	tdq_notify(tdn, td->td_sched);
1709 	/*
1710 	 * After we unlock tdn the new cpu still can't switch into this
1711 	 * thread until we've unblocked it in cpu_switch().  The lock
1712 	 * pointers may match in the case of HTT cores.  Don't unlock here
1713 	 * or we can deadlock when the other CPU runs the IPI handler.
1714 	 */
1715 	if (TDQ_LOCKPTR(tdn) != TDQ_LOCKPTR(tdq)) {
1716 		TDQ_UNLOCK(tdn);
1717 		TDQ_LOCK(tdq);
1718 	}
1719 	spinlock_exit();
1720 #endif
1721 	return (TDQ_LOCKPTR(tdn));
1722 }
1723 
1724 /*
1725  * Release a thread that was blocked with thread_block_switch().
1726  */
1727 static inline void
1728 thread_unblock_switch(struct thread *td, struct mtx *mtx)
1729 {
1730 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1731 	    (uintptr_t)mtx);
1732 }
1733 
1734 /*
1735  * Switch threads.  This function has to handle threads coming in while
1736  * blocked for some reason, running, or idle.  It also must deal with
1737  * migrating a thread from one queue to another as running threads may
1738  * be assigned elsewhere via binding.
1739  */
1740 void
1741 sched_switch(struct thread *td, struct thread *newtd, int flags)
1742 {
1743 	struct tdq *tdq;
1744 	struct td_sched *ts;
1745 	struct mtx *mtx;
1746 	int srqflag;
1747 	int cpuid;
1748 
1749 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1750 
1751 	cpuid = PCPU_GET(cpuid);
1752 	tdq = TDQ_CPU(cpuid);
1753 	ts = td->td_sched;
1754 	mtx = td->td_lock;
1755 	ts->ts_rltick = ticks;
1756 	td->td_lastcpu = td->td_oncpu;
1757 	td->td_oncpu = NOCPU;
1758 	td->td_flags &= ~TDF_NEEDRESCHED;
1759 	td->td_owepreempt = 0;
1760 	/*
1761 	 * The lock pointer in an idle thread should never change.  Reset it
1762 	 * to CAN_RUN as well.
1763 	 */
1764 	if (TD_IS_IDLETHREAD(td)) {
1765 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1766 		TD_SET_CAN_RUN(td);
1767 	} else if (TD_IS_RUNNING(td)) {
1768 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1769 		tdq_load_rem(tdq, ts);
1770 		srqflag = (flags & SW_PREEMPT) ?
1771 		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1772 		    SRQ_OURSELF|SRQ_YIELDING;
1773 		if (ts->ts_cpu == cpuid)
1774 			tdq_add(tdq, td, srqflag);
1775 		else
1776 			mtx = sched_switch_migrate(tdq, td, srqflag);
1777 	} else {
1778 		/* This thread must be going to sleep. */
1779 		TDQ_LOCK(tdq);
1780 		mtx = thread_block_switch(td);
1781 		tdq_load_rem(tdq, ts);
1782 	}
1783 	/*
1784 	 * We enter here with the thread blocked and assigned to the
1785 	 * appropriate cpu run-queue or sleep-queue and with the current
1786 	 * thread-queue locked.
1787 	 */
1788 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1789 	/*
1790 	 * If KSE assigned a new thread just add it here and let choosethread
1791 	 * select the best one.
1792 	 */
1793 	if (newtd != NULL)
1794 		sched_switchin(tdq, newtd);
1795 	newtd = choosethread();
1796 	/*
1797 	 * Call the MD code to switch contexts if necessary.
1798 	 */
1799 	if (td != newtd) {
1800 #ifdef	HWPMC_HOOKS
1801 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1802 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1803 #endif
1804 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1805 		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1806 		cpu_switch(td, newtd, mtx);
1807 		/*
1808 		 * We may return from cpu_switch on a different cpu.  However,
1809 		 * we always return with td_lock pointing to the current cpu's
1810 		 * run queue lock.
1811 		 */
1812 		cpuid = PCPU_GET(cpuid);
1813 		tdq = TDQ_CPU(cpuid);
1814 		lock_profile_obtain_lock_success(
1815 		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1816 #ifdef	HWPMC_HOOKS
1817 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1818 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1819 #endif
1820 	} else
1821 		thread_unblock_switch(td, mtx);
1822 	/*
1823 	 * We should always get here with the lowest priority td possible.
1824 	 */
1825 	tdq->tdq_lowpri = td->td_priority;
1826 	/*
1827 	 * Assert that all went well and return.
1828 	 */
1829 	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1830 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1831 	td->td_oncpu = cpuid;
1832 }
1833 
1834 /*
1835  * Adjust thread priorities as a result of a nice request.
1836  */
1837 void
1838 sched_nice(struct proc *p, int nice)
1839 {
1840 	struct thread *td;
1841 
1842 	PROC_LOCK_ASSERT(p, MA_OWNED);
1843 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1844 
1845 	p->p_nice = nice;
1846 	FOREACH_THREAD_IN_PROC(p, td) {
1847 		thread_lock(td);
1848 		sched_priority(td);
1849 		sched_prio(td, td->td_base_user_pri);
1850 		thread_unlock(td);
1851 	}
1852 }
1853 
1854 /*
1855  * Record the sleep time for the interactivity scorer.
1856  */
1857 void
1858 sched_sleep(struct thread *td)
1859 {
1860 
1861 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1862 
1863 	td->td_slptick = ticks;
1864 }
1865 
1866 /*
1867  * Schedule a thread to resume execution and record how long it voluntarily
1868  * slept.  We also update the pctcpu, interactivity, and priority.
1869  */
1870 void
1871 sched_wakeup(struct thread *td)
1872 {
1873 	struct td_sched *ts;
1874 	int slptick;
1875 
1876 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1877 	ts = td->td_sched;
1878 	/*
1879 	 * If we slept for more than a tick update our interactivity and
1880 	 * priority.
1881 	 */
1882 	slptick = td->td_slptick;
1883 	td->td_slptick = 0;
1884 	if (slptick && slptick != ticks) {
1885 		u_int hzticks;
1886 
1887 		hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
1888 		ts->ts_slptime += hzticks;
1889 		sched_interact_update(td);
1890 		sched_pctcpu_update(ts);
1891 		sched_priority(td);
1892 	}
1893 	/* Reset the slice value after we sleep. */
1894 	ts->ts_slice = sched_slice;
1895 	sched_add(td, SRQ_BORING);
1896 }
1897 
1898 /*
1899  * Penalize the parent for creating a new child and initialize the child's
1900  * priority.
1901  */
1902 void
1903 sched_fork(struct thread *td, struct thread *child)
1904 {
1905 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1906 	sched_fork_thread(td, child);
1907 	/*
1908 	 * Penalize the parent and child for forking.
1909 	 */
1910 	sched_interact_fork(child);
1911 	sched_priority(child);
1912 	td->td_sched->ts_runtime += tickincr;
1913 	sched_interact_update(td);
1914 	sched_priority(td);
1915 }
1916 
1917 /*
1918  * Fork a new thread, may be within the same process.
1919  */
1920 void
1921 sched_fork_thread(struct thread *td, struct thread *child)
1922 {
1923 	struct td_sched *ts;
1924 	struct td_sched *ts2;
1925 
1926 	/*
1927 	 * Initialize child.
1928 	 */
1929 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1930 	sched_newthread(child);
1931 	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1932 	child->td_cpuset = cpuset_ref(td->td_cpuset);
1933 	ts = td->td_sched;
1934 	ts2 = child->td_sched;
1935 	ts2->ts_cpu = ts->ts_cpu;
1936 	ts2->ts_runq = NULL;
1937 	/*
1938 	 * Grab our parents cpu estimation information and priority.
1939 	 */
1940 	ts2->ts_ticks = ts->ts_ticks;
1941 	ts2->ts_ltick = ts->ts_ltick;
1942 	ts2->ts_ftick = ts->ts_ftick;
1943 	child->td_user_pri = td->td_user_pri;
1944 	child->td_base_user_pri = td->td_base_user_pri;
1945 	/*
1946 	 * And update interactivity score.
1947 	 */
1948 	ts2->ts_slptime = ts->ts_slptime;
1949 	ts2->ts_runtime = ts->ts_runtime;
1950 	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
1951 }
1952 
1953 /*
1954  * Adjust the priority class of a thread.
1955  */
1956 void
1957 sched_class(struct thread *td, int class)
1958 {
1959 
1960 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1961 	if (td->td_pri_class == class)
1962 		return;
1963 	/*
1964 	 * On SMP if we're on the RUNQ we must adjust the transferable
1965 	 * count because could be changing to or from an interrupt
1966 	 * class.
1967 	 */
1968 	if (TD_ON_RUNQ(td)) {
1969 		struct tdq *tdq;
1970 
1971 		tdq = TDQ_CPU(td->td_sched->ts_cpu);
1972 		if (THREAD_CAN_MIGRATE(td))
1973 			tdq->tdq_transferable--;
1974 		td->td_pri_class = class;
1975 		if (THREAD_CAN_MIGRATE(td))
1976 			tdq->tdq_transferable++;
1977 	}
1978 	td->td_pri_class = class;
1979 }
1980 
1981 /*
1982  * Return some of the child's priority and interactivity to the parent.
1983  */
1984 void
1985 sched_exit(struct proc *p, struct thread *child)
1986 {
1987 	struct thread *td;
1988 
1989 	CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
1990 	    child, child->td_name, child->td_priority);
1991 
1992 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1993 	td = FIRST_THREAD_IN_PROC(p);
1994 	sched_exit_thread(td, child);
1995 }
1996 
1997 /*
1998  * Penalize another thread for the time spent on this one.  This helps to
1999  * worsen the priority and interactivity of processes which schedule batch
2000  * jobs such as make.  This has little effect on the make process itself but
2001  * causes new processes spawned by it to receive worse scores immediately.
2002  */
2003 void
2004 sched_exit_thread(struct thread *td, struct thread *child)
2005 {
2006 
2007 	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
2008 	    child, child->td_name, child->td_priority);
2009 
2010 #ifdef KSE
2011 	/*
2012 	 * KSE forks and exits so often that this penalty causes short-lived
2013 	 * threads to always be non-interactive.  This causes mozilla to
2014 	 * crawl under load.
2015 	 */
2016 	if ((td->td_pflags & TDP_SA) && td->td_proc == child->td_proc)
2017 		return;
2018 #endif
2019 	/*
2020 	 * Give the child's runtime to the parent without returning the
2021 	 * sleep time as a penalty to the parent.  This causes shells that
2022 	 * launch expensive things to mark their children as expensive.
2023 	 */
2024 	thread_lock(td);
2025 	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2026 	sched_interact_update(td);
2027 	sched_priority(td);
2028 	thread_unlock(td);
2029 }
2030 
2031 void
2032 sched_preempt(struct thread *td)
2033 {
2034 	struct tdq *tdq;
2035 
2036 	thread_lock(td);
2037 	tdq = TDQ_SELF();
2038 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2039 	tdq->tdq_ipipending = 0;
2040 	if (td->td_priority > tdq->tdq_lowpri) {
2041 		if (td->td_critnest > 1)
2042 			td->td_owepreempt = 1;
2043 		else
2044 			mi_switch(SW_INVOL | SW_PREEMPT, NULL);
2045 	}
2046 	thread_unlock(td);
2047 }
2048 
2049 /*
2050  * Fix priorities on return to user-space.  Priorities may be elevated due
2051  * to static priorities in msleep() or similar.
2052  */
2053 void
2054 sched_userret(struct thread *td)
2055 {
2056 	/*
2057 	 * XXX we cheat slightly on the locking here to avoid locking in
2058 	 * the usual case.  Setting td_priority here is essentially an
2059 	 * incomplete workaround for not setting it properly elsewhere.
2060 	 * Now that some interrupt handlers are threads, not setting it
2061 	 * properly elsewhere can clobber it in the window between setting
2062 	 * it here and returning to user mode, so don't waste time setting
2063 	 * it perfectly here.
2064 	 */
2065 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2066 	    ("thread with borrowed priority returning to userland"));
2067 	if (td->td_priority != td->td_user_pri) {
2068 		thread_lock(td);
2069 		td->td_priority = td->td_user_pri;
2070 		td->td_base_pri = td->td_user_pri;
2071 		tdq_setlowpri(TDQ_SELF(), td);
2072 		thread_unlock(td);
2073         }
2074 }
2075 
2076 /*
2077  * Handle a stathz tick.  This is really only relevant for timeshare
2078  * threads.
2079  */
2080 void
2081 sched_clock(struct thread *td)
2082 {
2083 	struct tdq *tdq;
2084 	struct td_sched *ts;
2085 
2086 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2087 	tdq = TDQ_SELF();
2088 #ifdef SMP
2089 	/*
2090 	 * We run the long term load balancer infrequently on the first cpu.
2091 	 */
2092 	if (balance_tdq == tdq) {
2093 		if (balance_ticks && --balance_ticks == 0)
2094 			sched_balance();
2095 	}
2096 #endif
2097 	/*
2098 	 * Advance the insert index once for each tick to ensure that all
2099 	 * threads get a chance to run.
2100 	 */
2101 	if (tdq->tdq_idx == tdq->tdq_ridx) {
2102 		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2103 		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2104 			tdq->tdq_ridx = tdq->tdq_idx;
2105 	}
2106 	ts = td->td_sched;
2107 	if (td->td_pri_class & PRI_FIFO_BIT)
2108 		return;
2109 	if (td->td_pri_class == PRI_TIMESHARE) {
2110 		/*
2111 		 * We used a tick; charge it to the thread so
2112 		 * that we can compute our interactivity.
2113 		 */
2114 		td->td_sched->ts_runtime += tickincr;
2115 		sched_interact_update(td);
2116 	}
2117 	/*
2118 	 * We used up one time slice.
2119 	 */
2120 	if (--ts->ts_slice > 0)
2121 		return;
2122 	/*
2123 	 * We're out of time, recompute priorities and requeue.
2124 	 */
2125 	sched_priority(td);
2126 	td->td_flags |= TDF_NEEDRESCHED;
2127 }
2128 
2129 /*
2130  * Called once per hz tick.  Used for cpu utilization information.  This
2131  * is easier than trying to scale based on stathz.
2132  */
2133 void
2134 sched_tick(void)
2135 {
2136 	struct td_sched *ts;
2137 
2138 	ts = curthread->td_sched;
2139 	/* Adjust ticks for pctcpu */
2140 	ts->ts_ticks += 1 << SCHED_TICK_SHIFT;
2141 	ts->ts_ltick = ticks;
2142 	/*
2143 	 * Update if we've exceeded our desired tick threshhold by over one
2144 	 * second.
2145 	 */
2146 	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
2147 		sched_pctcpu_update(ts);
2148 }
2149 
2150 /*
2151  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2152  * cooperative idle threads.
2153  */
2154 int
2155 sched_runnable(void)
2156 {
2157 	struct tdq *tdq;
2158 	int load;
2159 
2160 	load = 1;
2161 
2162 	tdq = TDQ_SELF();
2163 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2164 		if (tdq->tdq_load > 0)
2165 			goto out;
2166 	} else
2167 		if (tdq->tdq_load - 1 > 0)
2168 			goto out;
2169 	load = 0;
2170 out:
2171 	return (load);
2172 }
2173 
2174 /*
2175  * Choose the highest priority thread to run.  The thread is removed from
2176  * the run-queue while running however the load remains.  For SMP we set
2177  * the tdq in the global idle bitmask if it idles here.
2178  */
2179 struct thread *
2180 sched_choose(void)
2181 {
2182 	struct td_sched *ts;
2183 	struct tdq *tdq;
2184 
2185 	tdq = TDQ_SELF();
2186 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2187 	ts = tdq_choose(tdq);
2188 	if (ts) {
2189 		tdq_runq_rem(tdq, ts);
2190 		return (ts->ts_thread);
2191 	}
2192 	return (PCPU_GET(idlethread));
2193 }
2194 
2195 /*
2196  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2197  * we always request it once we exit a critical section.
2198  */
2199 static inline void
2200 sched_setpreempt(struct thread *td)
2201 {
2202 	struct thread *ctd;
2203 	int cpri;
2204 	int pri;
2205 
2206 	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2207 
2208 	ctd = curthread;
2209 	pri = td->td_priority;
2210 	cpri = ctd->td_priority;
2211 	if (pri < cpri)
2212 		ctd->td_flags |= TDF_NEEDRESCHED;
2213 	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2214 		return;
2215 	if (!sched_shouldpreempt(pri, cpri, 0))
2216 		return;
2217 	ctd->td_owepreempt = 1;
2218 }
2219 
2220 /*
2221  * Add a thread to a thread queue.  Initializes priority, slice, runq, and
2222  * add it to the appropriate queue.  This is the internal function called
2223  * when the tdq is predetermined.
2224  */
2225 void
2226 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2227 {
2228 	struct td_sched *ts;
2229 	int class;
2230 
2231 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2232 	KASSERT((td->td_inhibitors == 0),
2233 	    ("sched_add: trying to run inhibited thread"));
2234 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2235 	    ("sched_add: bad thread state"));
2236 	KASSERT(td->td_flags & TDF_INMEM,
2237 	    ("sched_add: thread swapped out"));
2238 
2239 	ts = td->td_sched;
2240 	class = PRI_BASE(td->td_pri_class);
2241         TD_SET_RUNQ(td);
2242 	if (ts->ts_slice == 0)
2243 		ts->ts_slice = sched_slice;
2244 	/*
2245 	 * Pick the run queue based on priority.
2246 	 */
2247 	if (td->td_priority <= PRI_MAX_REALTIME)
2248 		ts->ts_runq = &tdq->tdq_realtime;
2249 	else if (td->td_priority <= PRI_MAX_TIMESHARE)
2250 		ts->ts_runq = &tdq->tdq_timeshare;
2251 	else
2252 		ts->ts_runq = &tdq->tdq_idle;
2253 	if (td->td_priority < tdq->tdq_lowpri)
2254 		tdq->tdq_lowpri = td->td_priority;
2255 	tdq_runq_add(tdq, ts, flags);
2256 	tdq_load_add(tdq, ts);
2257 }
2258 
2259 /*
2260  * Select the target thread queue and add a thread to it.  Request
2261  * preemption or IPI a remote processor if required.
2262  */
2263 void
2264 sched_add(struct thread *td, int flags)
2265 {
2266 	struct td_sched *ts;
2267 	struct tdq *tdq;
2268 #ifdef SMP
2269 	int cpuid;
2270 	int cpu;
2271 #endif
2272 	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
2273 	    td, td->td_name, td->td_priority, curthread,
2274 	    curthread->td_name);
2275 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2276 	ts = td->td_sched;
2277 	/*
2278 	 * Recalculate the priority before we select the target cpu or
2279 	 * run-queue.
2280 	 */
2281 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2282 		sched_priority(td);
2283 #ifdef SMP
2284 	cpuid = PCPU_GET(cpuid);
2285 	/*
2286 	 * Pick the destination cpu and if it isn't ours transfer to the
2287 	 * target cpu.
2288 	 */
2289 	cpu = sched_pickcpu(ts, flags);
2290 	tdq = sched_setcpu(ts, cpu, flags);
2291 	tdq_add(tdq, td, flags);
2292 	if (cpu != cpuid) {
2293 		tdq_notify(tdq, ts);
2294 		return;
2295 	}
2296 #else
2297 	tdq = TDQ_SELF();
2298 	TDQ_LOCK(tdq);
2299 	/*
2300 	 * Now that the thread is moving to the run-queue, set the lock
2301 	 * to the scheduler's lock.
2302 	 */
2303 	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2304 	tdq_add(tdq, td, flags);
2305 #endif
2306 	if (!(flags & SRQ_YIELDING))
2307 		sched_setpreempt(td);
2308 }
2309 
2310 /*
2311  * Remove a thread from a run-queue without running it.  This is used
2312  * when we're stealing a thread from a remote queue.  Otherwise all threads
2313  * exit by calling sched_exit_thread() and sched_throw() themselves.
2314  */
2315 void
2316 sched_rem(struct thread *td)
2317 {
2318 	struct tdq *tdq;
2319 	struct td_sched *ts;
2320 
2321 	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
2322 	    td, td->td_name, td->td_priority, curthread,
2323 	    curthread->td_name);
2324 	ts = td->td_sched;
2325 	tdq = TDQ_CPU(ts->ts_cpu);
2326 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2327 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2328 	KASSERT(TD_ON_RUNQ(td),
2329 	    ("sched_rem: thread not on run queue"));
2330 	tdq_runq_rem(tdq, ts);
2331 	tdq_load_rem(tdq, ts);
2332 	TD_SET_CAN_RUN(td);
2333 	if (td->td_priority == tdq->tdq_lowpri)
2334 		tdq_setlowpri(tdq, NULL);
2335 }
2336 
2337 /*
2338  * Fetch cpu utilization information.  Updates on demand.
2339  */
2340 fixpt_t
2341 sched_pctcpu(struct thread *td)
2342 {
2343 	fixpt_t pctcpu;
2344 	struct td_sched *ts;
2345 
2346 	pctcpu = 0;
2347 	ts = td->td_sched;
2348 	if (ts == NULL)
2349 		return (0);
2350 
2351 	thread_lock(td);
2352 	if (ts->ts_ticks) {
2353 		int rtick;
2354 
2355 		sched_pctcpu_update(ts);
2356 		/* How many rtick per second ? */
2357 		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2358 		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2359 	}
2360 	thread_unlock(td);
2361 
2362 	return (pctcpu);
2363 }
2364 
2365 /*
2366  * Enforce affinity settings for a thread.  Called after adjustments to
2367  * cpumask.
2368  */
2369 void
2370 sched_affinity(struct thread *td)
2371 {
2372 #ifdef SMP
2373 	struct td_sched *ts;
2374 	int cpu;
2375 
2376 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2377 	ts = td->td_sched;
2378 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2379 		return;
2380 	if (!TD_IS_RUNNING(td))
2381 		return;
2382 	td->td_flags |= TDF_NEEDRESCHED;
2383 	if (!THREAD_CAN_MIGRATE(td))
2384 		return;
2385 	/*
2386 	 * Assign the new cpu and force a switch before returning to
2387 	 * userspace.  If the target thread is not running locally send
2388 	 * an ipi to force the issue.
2389 	 */
2390 	cpu = ts->ts_cpu;
2391 	ts->ts_cpu = sched_pickcpu(ts, 0);
2392 	if (cpu != PCPU_GET(cpuid))
2393 		ipi_selected(1 << cpu, IPI_PREEMPT);
2394 #endif
2395 }
2396 
2397 /*
2398  * Bind a thread to a target cpu.
2399  */
2400 void
2401 sched_bind(struct thread *td, int cpu)
2402 {
2403 	struct td_sched *ts;
2404 
2405 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2406 	ts = td->td_sched;
2407 	if (ts->ts_flags & TSF_BOUND)
2408 		sched_unbind(td);
2409 	ts->ts_flags |= TSF_BOUND;
2410 	sched_pin();
2411 	if (PCPU_GET(cpuid) == cpu)
2412 		return;
2413 	ts->ts_cpu = cpu;
2414 	/* When we return from mi_switch we'll be on the correct cpu. */
2415 	mi_switch(SW_VOL, NULL);
2416 }
2417 
2418 /*
2419  * Release a bound thread.
2420  */
2421 void
2422 sched_unbind(struct thread *td)
2423 {
2424 	struct td_sched *ts;
2425 
2426 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2427 	ts = td->td_sched;
2428 	if ((ts->ts_flags & TSF_BOUND) == 0)
2429 		return;
2430 	ts->ts_flags &= ~TSF_BOUND;
2431 	sched_unpin();
2432 }
2433 
2434 int
2435 sched_is_bound(struct thread *td)
2436 {
2437 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2438 	return (td->td_sched->ts_flags & TSF_BOUND);
2439 }
2440 
2441 /*
2442  * Basic yield call.
2443  */
2444 void
2445 sched_relinquish(struct thread *td)
2446 {
2447 	thread_lock(td);
2448 	SCHED_STAT_INC(switch_relinquish);
2449 	mi_switch(SW_VOL, NULL);
2450 	thread_unlock(td);
2451 }
2452 
2453 /*
2454  * Return the total system load.
2455  */
2456 int
2457 sched_load(void)
2458 {
2459 #ifdef SMP
2460 	int total;
2461 	int i;
2462 
2463 	total = 0;
2464 	for (i = 0; i <= mp_maxid; i++)
2465 		total += TDQ_CPU(i)->tdq_sysload;
2466 	return (total);
2467 #else
2468 	return (TDQ_SELF()->tdq_sysload);
2469 #endif
2470 }
2471 
2472 int
2473 sched_sizeof_proc(void)
2474 {
2475 	return (sizeof(struct proc));
2476 }
2477 
2478 int
2479 sched_sizeof_thread(void)
2480 {
2481 	return (sizeof(struct thread) + sizeof(struct td_sched));
2482 }
2483 
2484 /*
2485  * The actual idle process.
2486  */
2487 void
2488 sched_idletd(void *dummy)
2489 {
2490 	struct thread *td;
2491 	struct tdq *tdq;
2492 
2493 	td = curthread;
2494 	tdq = TDQ_SELF();
2495 	mtx_assert(&Giant, MA_NOTOWNED);
2496 	/* ULE relies on preemption for idle interruption. */
2497 	for (;;) {
2498 #ifdef SMP
2499 		if (tdq_idled(tdq))
2500 			cpu_idle();
2501 #else
2502 		cpu_idle();
2503 #endif
2504 	}
2505 }
2506 
2507 /*
2508  * A CPU is entering for the first time or a thread is exiting.
2509  */
2510 void
2511 sched_throw(struct thread *td)
2512 {
2513 	struct thread *newtd;
2514 	struct tdq *tdq;
2515 
2516 	tdq = TDQ_SELF();
2517 	if (td == NULL) {
2518 		/* Correct spinlock nesting and acquire the correct lock. */
2519 		TDQ_LOCK(tdq);
2520 		spinlock_exit();
2521 	} else {
2522 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2523 		tdq_load_rem(tdq, td->td_sched);
2524 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2525 	}
2526 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2527 	newtd = choosethread();
2528 	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2529 	PCPU_SET(switchtime, cpu_ticks());
2530 	PCPU_SET(switchticks, ticks);
2531 	cpu_throw(td, newtd);		/* doesn't return */
2532 }
2533 
2534 /*
2535  * This is called from fork_exit().  Just acquire the correct locks and
2536  * let fork do the rest of the work.
2537  */
2538 void
2539 sched_fork_exit(struct thread *td)
2540 {
2541 	struct td_sched *ts;
2542 	struct tdq *tdq;
2543 	int cpuid;
2544 
2545 	/*
2546 	 * Finish setting up thread glue so that it begins execution in a
2547 	 * non-nested critical section with the scheduler lock held.
2548 	 */
2549 	cpuid = PCPU_GET(cpuid);
2550 	tdq = TDQ_CPU(cpuid);
2551 	ts = td->td_sched;
2552 	if (TD_IS_IDLETHREAD(td))
2553 		td->td_lock = TDQ_LOCKPTR(tdq);
2554 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2555 	td->td_oncpu = cpuid;
2556 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2557 	lock_profile_obtain_lock_success(
2558 	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2559 	tdq->tdq_lowpri = td->td_priority;
2560 }
2561 
2562 static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0,
2563     "Scheduler");
2564 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2565     "Scheduler name");
2566 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2567     "Slice size for timeshare threads");
2568 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2569      "Interactivity score threshold");
2570 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2571      0,"Min priority for preemption, lower priorities have greater precedence");
2572 #ifdef SMP
2573 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2574     "Number of hz ticks to keep thread affinity for");
2575 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2576     "Enables the long-term load balancer");
2577 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2578     &balance_interval, 0,
2579     "Average frequency in stathz ticks to run the long-term balancer");
2580 SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0,
2581     "Steals work from another hyper-threaded core on idle");
2582 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2583     "Attempts to steal work from other cores before idling");
2584 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2585     "Minimum load on remote cpu before we'll steal");
2586 #endif
2587 
2588 /* ps compat.  All cpu percentages from ULE are weighted. */
2589 static int ccpu = 0;
2590 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2591 
2592 
2593 #define KERN_SWITCH_INCLUDE 1
2594 #include "kern/kern_switch.c"
2595