xref: /freebsd/sys/kern/sched_ule.c (revision f1e8dc4a3b3a1e7653be2620a7b2891b07162ed5)
1 /*-
2  * Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/ktr.h>
33 #include <sys/lock.h>
34 #include <sys/mutex.h>
35 #include <sys/proc.h>
36 #include <sys/sched.h>
37 #include <sys/smp.h>
38 #include <sys/sx.h>
39 #include <sys/sysctl.h>
40 #include <sys/sysproto.h>
41 #include <sys/vmmeter.h>
42 #ifdef DDB
43 #include <ddb/ddb.h>
44 #endif
45 #ifdef KTRACE
46 #include <sys/uio.h>
47 #include <sys/ktrace.h>
48 #endif
49 
50 #include <machine/cpu.h>
51 
52 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
53 /* XXX This is bogus compatability crap for ps */
54 static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
55 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
56 
57 static void sched_setup(void *dummy);
58 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
59 
60 #define	SCHED_STRICT_RESCHED 1
61 
62 /*
63  * These datastructures are allocated within their parent datastructure but
64  * are scheduler specific.
65  */
66 
67 struct ke_sched {
68 	int		ske_slice;
69 	struct runq	*ske_runq;
70 	/* The following variables are only used for pctcpu calculation */
71 	int		ske_ltick;	/* Last tick that we were running on */
72 	int		ske_ftick;	/* First tick that we were running on */
73 	int		ske_ticks;	/* Tick count */
74 	u_char		ske_cpu;
75 };
76 #define	ke_slice	ke_sched->ske_slice
77 #define	ke_runq		ke_sched->ske_runq
78 #define	ke_ltick	ke_sched->ske_ltick
79 #define	ke_ftick	ke_sched->ske_ftick
80 #define	ke_ticks	ke_sched->ske_ticks
81 #define	ke_cpu		ke_sched->ske_cpu
82 
83 struct kg_sched {
84 	int	skg_slptime;		/* Number of ticks we vol. slept */
85 	int	skg_runtime;		/* Number of ticks we were running */
86 };
87 #define	kg_slptime	kg_sched->skg_slptime
88 #define	kg_runtime	kg_sched->skg_runtime
89 
90 struct td_sched {
91 	int	std_slptime;
92 	int	std_schedflag;
93 };
94 #define	td_slptime	td_sched->std_slptime
95 #define	td_schedflag	td_sched->std_schedflag
96 
97 #define	TD_SCHED_BLOAD	0x0001		/*
98 					 * thread was counted as being in short
99 					 * term sleep.
100 					 */
101 struct td_sched td_sched;
102 struct ke_sched ke_sched;
103 struct kg_sched kg_sched;
104 
105 struct ke_sched *kse0_sched = &ke_sched;
106 struct kg_sched *ksegrp0_sched = &kg_sched;
107 struct p_sched *proc0_sched = NULL;
108 struct td_sched *thread0_sched = &td_sched;
109 
110 /*
111  * This priority range has 20 priorities on either end that are reachable
112  * only through nice values.
113  */
114 #define	SCHED_PRI_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
115 #define	SCHED_PRI_NRESV	40
116 #define	SCHED_PRI_BASE	(SCHED_PRI_NRESV / 2)
117 #define	SCHED_PRI_DYN	(SCHED_PRI_RANGE - SCHED_PRI_NRESV)
118 #define	SCHED_PRI_DYN_HALF	(SCHED_PRI_DYN / 2)
119 
120 /*
121  * These determine how sleep time effects the priority of a process.
122  *
123  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
124  *		before throttling back.
125  * SLP_RUN_THORTTLE:	Divisor for reducing slp/run time.
126  * SLP_RATIO:	Compute a bounded ratio of slp time vs run time.
127  * SLP_TOPRI:	Convert a number of ticks slept and ticks ran into a priority
128  */
129 #define	SCHED_SLP_RUN_MAX	((hz * 30) * 1024)
130 #define	SCHED_SLP_RUN_THROTTLE	(10)
131 static __inline int
132 sched_slp_ratio(int b, int s)
133 {
134 	b /= SCHED_PRI_DYN_HALF;
135 	if (b == 0)
136 		return (0);
137 	s /= b;
138 	return (s);
139 }
140 #define	SCHED_SLP_TOPRI(slp, run)					\
141     ((((slp) > (run))?							\
142     sched_slp_ratio((slp), (run)):					\
143     SCHED_PRI_DYN_HALF + (SCHED_PRI_DYN_HALF - sched_slp_ratio((run), (slp))))+ \
144     SCHED_PRI_NRESV / 2)
145 /*
146  * These parameters and macros determine the size of the time slice that is
147  * granted to each thread.
148  *
149  * SLICE_MIN:	Minimum time slice granted, in units of ticks.
150  * SLICE_MAX:	Maximum time slice granted.
151  * SLICE_RANGE:	Range of available time slices scaled by hz.
152  * SLICE_SCALE:	The number slices granted per unit of pri or slp.
153  * PRI_TOSLICE:	Compute a slice size that is proportional to the priority.
154  * SLP_TOSLICE:	Compute a slice size that is inversely proportional to the
155  *		amount of time slept. (smaller slices for interactive ksegs)
156  * PRI_COMP:	This determines what fraction of the actual slice comes from
157  *		the slice size computed from the priority.
158  * SLP_COMP:	This determines what component of the actual slice comes from
159  *		the slize size computed from the sleep time.
160  */
161 #define	SCHED_SLICE_MIN		(hz / 100)
162 #define	SCHED_SLICE_MAX		(hz / 4)
163 #define	SCHED_SLICE_RANGE	(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
164 #define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
165 #define	SCHED_PRI_TOSLICE(pri)						\
166     (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((pri), SCHED_PRI_RANGE))
167 #define	SCHED_SLP_TOSLICE(slp)						\
168     (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((slp), SCHED_PRI_DYN))
169 #define	SCHED_SLP_COMP(slice)	(((slice) / 5) * 3)	/* 60% */
170 #define	SCHED_PRI_COMP(slice)	(((slice) / 5) * 2)	/* 40% */
171 
172 /*
173  * This macro determines whether or not the kse belongs on the current or
174  * next run queue.
175  *
176  * XXX nice value should effect how interactive a kg is.
177  */
178 #define	SCHED_CURR(kg)	(((kg)->kg_slptime > (kg)->kg_runtime &&	\
179 	sched_slp_ratio((kg)->kg_slptime, (kg)->kg_runtime) > 4) ||	\
180 	(kg)->kg_pri_class != PRI_TIMESHARE)
181 
182 /*
183  * Cpu percentage computation macros and defines.
184  *
185  * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
186  * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
187  */
188 
189 #define	SCHED_CPU_TIME	60
190 #define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
191 
192 /*
193  * kseq - pair of runqs per processor
194  */
195 
196 struct kseq {
197 	struct runq	ksq_runqs[2];
198 	struct runq	*ksq_curr;
199 	struct runq	*ksq_next;
200 	int		ksq_load;	/* Total runnable */
201 #ifdef SMP
202 	unsigned int	ksq_rslices;	/* Slices on run queue */
203 	unsigned int	ksq_bload;	/* Threads waiting on IO */
204 #endif
205 };
206 
207 /*
208  * One kse queue per processor.
209  */
210 #ifdef SMP
211 struct kseq	kseq_cpu[MAXCPU];
212 #define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
213 #define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
214 #else
215 struct kseq	kseq_cpu;
216 #define	KSEQ_SELF()	(&kseq_cpu)
217 #define	KSEQ_CPU(x)	(&kseq_cpu)
218 #endif
219 
220 static int sched_slice(struct ksegrp *kg);
221 static int sched_priority(struct ksegrp *kg);
222 void sched_pctcpu_update(struct kse *ke);
223 int sched_pickcpu(void);
224 
225 /* Operations on per processor queues */
226 static struct kse * kseq_choose(struct kseq *kseq);
227 static void kseq_setup(struct kseq *kseq);
228 static __inline void kseq_add(struct kseq *kseq, struct kse *ke);
229 static __inline void kseq_rem(struct kseq *kseq, struct kse *ke);
230 #ifdef SMP
231 static __inline void kseq_sleep(struct kseq *kseq, struct kse *ke);
232 static __inline void kseq_wakeup(struct kseq *kseq, struct kse *ke);
233 struct kseq * kseq_load_highest(void);
234 #endif
235 
236 static __inline void
237 kseq_add(struct kseq *kseq, struct kse *ke)
238 {
239 	runq_add(ke->ke_runq, ke);
240 	kseq->ksq_load++;
241 #ifdef SMP
242 	kseq->ksq_rslices += ke->ke_slice;
243 #endif
244 }
245 static __inline void
246 kseq_rem(struct kseq *kseq, struct kse *ke)
247 {
248 	kseq->ksq_load--;
249 	runq_remove(ke->ke_runq, ke);
250 #ifdef SMP
251 	kseq->ksq_rslices -= ke->ke_slice;
252 #endif
253 }
254 
255 #ifdef SMP
256 static __inline void
257 kseq_sleep(struct kseq *kseq, struct kse *ke)
258 {
259 	kseq->ksq_bload++;
260 }
261 
262 static __inline void
263 kseq_wakeup(struct kseq *kseq, struct kse *ke)
264 {
265 	kseq->ksq_bload--;
266 }
267 
268 struct kseq *
269 kseq_load_highest(void)
270 {
271 	struct kseq *kseq;
272 	int load;
273 	int cpu;
274 	int i;
275 
276 	cpu = 0;
277 	load = 0;
278 
279 	for (i = 0; i < mp_maxid; i++) {
280 		if (CPU_ABSENT(i))
281 			continue;
282 		kseq = KSEQ_CPU(i);
283 		if (kseq->ksq_load > load) {
284 			load = kseq->ksq_load;
285 			cpu = i;
286 		}
287 	}
288 	if (load)
289 		return (KSEQ_CPU(cpu));
290 
291 	return (NULL);
292 }
293 #endif
294 
295 struct kse *
296 kseq_choose(struct kseq *kseq)
297 {
298 	struct kse *ke;
299 	struct runq *swap;
300 
301 	if ((ke = runq_choose(kseq->ksq_curr)) == NULL) {
302 		swap = kseq->ksq_curr;
303 		kseq->ksq_curr = kseq->ksq_next;
304 		kseq->ksq_next = swap;
305 		ke = runq_choose(kseq->ksq_curr);
306 	}
307 
308 	return (ke);
309 }
310 
311 
312 static void
313 kseq_setup(struct kseq *kseq)
314 {
315 	kseq->ksq_curr = &kseq->ksq_runqs[0];
316 	kseq->ksq_next = &kseq->ksq_runqs[1];
317 	runq_init(kseq->ksq_curr);
318 	runq_init(kseq->ksq_next);
319 	kseq->ksq_load = 0;
320 #ifdef SMP
321 	kseq->ksq_rslices = 0;
322 	kseq->ksq_bload = 0;
323 #endif
324 }
325 
326 static void
327 sched_setup(void *dummy)
328 {
329 	int i;
330 
331 	mtx_lock_spin(&sched_lock);
332 	/* init kseqs */
333 	for (i = 0; i < MAXCPU; i++)
334 		kseq_setup(KSEQ_CPU(i));
335 	mtx_unlock_spin(&sched_lock);
336 }
337 
338 /*
339  * Scale the scheduling priority according to the "interactivity" of this
340  * process.
341  */
342 static int
343 sched_priority(struct ksegrp *kg)
344 {
345 	int pri;
346 
347 	if (kg->kg_pri_class != PRI_TIMESHARE)
348 		return (kg->kg_user_pri);
349 
350 	pri = SCHED_SLP_TOPRI(kg->kg_slptime, kg->kg_runtime);
351 	CTR2(KTR_RUNQ, "sched_priority: slptime: %d\tpri: %d",
352 	    kg->kg_slptime, pri);
353 
354 	pri += PRI_MIN_TIMESHARE;
355 	pri += kg->kg_nice;
356 
357 	if (pri > PRI_MAX_TIMESHARE)
358 		pri = PRI_MAX_TIMESHARE;
359 	else if (pri < PRI_MIN_TIMESHARE)
360 		pri = PRI_MIN_TIMESHARE;
361 
362 	kg->kg_user_pri = pri;
363 
364 	return (kg->kg_user_pri);
365 }
366 
367 /*
368  * Calculate a time slice based on the process priority.
369  */
370 static int
371 sched_slice(struct ksegrp *kg)
372 {
373 	int pslice;
374 	int sslice;
375 	int slice;
376 	int pri;
377 
378 	pri = kg->kg_user_pri;
379 	pri -= PRI_MIN_TIMESHARE;
380 	pslice = SCHED_PRI_TOSLICE(pri);
381 	sslice = SCHED_PRI_TOSLICE(SCHED_SLP_TOPRI(kg->kg_slptime, kg->kg_runtime));
382 /*
383 SCHED_SLP_TOSLICE(SCHED_SLP_RATIO(
384 	    kg->kg_slptime, kg->kg_runtime));
385 */
386 	slice = SCHED_SLP_COMP(sslice) + SCHED_PRI_COMP(pslice);
387 
388 	CTR4(KTR_RUNQ,
389 	    "sched_slice: pri: %d\tsslice: %d\tpslice: %d\tslice: %d",
390 	    pri, sslice, pslice, slice);
391 
392 	if (slice < SCHED_SLICE_MIN)
393 		slice = SCHED_SLICE_MIN;
394 	else if (slice > SCHED_SLICE_MAX)
395 		slice = SCHED_SLICE_MAX;
396 
397 	/*
398 	 * Every time we grant a new slice check to see if we need to scale
399 	 * back the slp and run time in the kg.  This will cause us to forget
400 	 * old interactivity while maintaining the current ratio.
401 	 */
402 	if ((kg->kg_runtime + kg->kg_slptime) >  SCHED_SLP_RUN_MAX) {
403 		kg->kg_runtime /= SCHED_SLP_RUN_THROTTLE;
404 		kg->kg_slptime /= SCHED_SLP_RUN_THROTTLE;
405 	}
406 
407 	return (slice);
408 }
409 
410 int
411 sched_rr_interval(void)
412 {
413 	return (SCHED_SLICE_MAX);
414 }
415 
416 void
417 sched_pctcpu_update(struct kse *ke)
418 {
419 	/*
420 	 * Adjust counters and watermark for pctcpu calc.
421 	 */
422 	ke->ke_ticks = (ke->ke_ticks / (ke->ke_ltick - ke->ke_ftick)) *
423 		    SCHED_CPU_TICKS;
424 	ke->ke_ltick = ticks;
425 	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
426 }
427 
428 #ifdef SMP
429 /* XXX Should be changed to kseq_load_lowest() */
430 int
431 sched_pickcpu(void)
432 {
433 	struct kseq *kseq;
434 	int load;
435 	int cpu;
436 	int i;
437 
438 	if (!smp_started)
439 		return (0);
440 
441 	load = 0;
442 	cpu = 0;
443 
444 	for (i = 0; i < mp_maxid; i++) {
445 		if (CPU_ABSENT(i))
446 			continue;
447 		kseq = KSEQ_CPU(i);
448 		if (kseq->ksq_load < load) {
449 			cpu = i;
450 			load = kseq->ksq_load;
451 		}
452 	}
453 
454 	CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
455 	return (cpu);
456 }
457 #else
458 int
459 sched_pickcpu(void)
460 {
461 	return (0);
462 }
463 #endif
464 
465 void
466 sched_prio(struct thread *td, u_char prio)
467 {
468 	struct kse *ke;
469 	struct runq *rq;
470 
471 	mtx_assert(&sched_lock, MA_OWNED);
472 	ke = td->td_kse;
473 	td->td_priority = prio;
474 
475 	if (TD_ON_RUNQ(td)) {
476 		rq = ke->ke_runq;
477 
478 		runq_remove(rq, ke);
479 		runq_add(rq, ke);
480 	}
481 }
482 
483 void
484 sched_switchout(struct thread *td)
485 {
486 	struct kse *ke;
487 
488 	mtx_assert(&sched_lock, MA_OWNED);
489 
490 	ke = td->td_kse;
491 
492 	td->td_last_kse = ke;
493         td->td_lastcpu = ke->ke_oncpu;
494 	ke->ke_oncpu = NOCPU;
495         td->td_flags &= ~TDF_NEEDRESCHED;
496 
497 	if (TD_IS_RUNNING(td)) {
498 		setrunqueue(td);
499 		return;
500 	} else
501 		td->td_kse->ke_runq = NULL;
502 
503 	/*
504 	 * We will not be on the run queue. So we must be
505 	 * sleeping or similar.
506 	 */
507 	if (td->td_proc->p_flag & P_THREADED)
508 		kse_reassign(ke);
509 }
510 
511 void
512 sched_switchin(struct thread *td)
513 {
514 	/* struct kse *ke = td->td_kse; */
515 	mtx_assert(&sched_lock, MA_OWNED);
516 
517 	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
518 #if SCHED_STRICT_RESCHED
519 	if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
520 	    td->td_priority != td->td_ksegrp->kg_user_pri)
521 		curthread->td_flags |= TDF_NEEDRESCHED;
522 #endif
523 }
524 
525 void
526 sched_nice(struct ksegrp *kg, int nice)
527 {
528 	struct thread *td;
529 
530 	kg->kg_nice = nice;
531 	sched_priority(kg);
532 	FOREACH_THREAD_IN_GROUP(kg, td) {
533 		td->td_flags |= TDF_NEEDRESCHED;
534 	}
535 }
536 
537 void
538 sched_sleep(struct thread *td, u_char prio)
539 {
540 	mtx_assert(&sched_lock, MA_OWNED);
541 
542 	td->td_slptime = ticks;
543 	td->td_priority = prio;
544 
545 	/*
546 	 * If this is an interactive task clear its queue so it moves back
547 	 * on to curr when it wakes up.  Otherwise let it stay on the queue
548 	 * that it was assigned to.
549 	 */
550 	if (SCHED_CURR(td->td_kse->ke_ksegrp))
551 		td->td_kse->ke_runq = NULL;
552 #ifdef SMP
553 	if (td->td_priority < PZERO) {
554 		kseq_sleep(KSEQ_CPU(td->td_kse->ke_cpu), td->td_kse);
555 		td->td_schedflag |= TD_SCHED_BLOAD;
556 	}
557 #endif
558 }
559 
560 void
561 sched_wakeup(struct thread *td)
562 {
563 	mtx_assert(&sched_lock, MA_OWNED);
564 
565 	/*
566 	 * Let the kseg know how long we slept for.  This is because process
567 	 * interactivity behavior is modeled in the kseg.
568 	 */
569 	if (td->td_slptime) {
570 		struct ksegrp *kg;
571 
572 		kg = td->td_ksegrp;
573 		kg->kg_slptime += (ticks - td->td_slptime) * 1024;
574 		sched_priority(kg);
575 		td->td_slptime = 0;
576 	}
577 #ifdef SMP
578 	if (td->td_priority < PZERO && td->td_schedflag & TD_SCHED_BLOAD) {
579 		kseq_wakeup(KSEQ_CPU(td->td_kse->ke_cpu), td->td_kse);
580 		td->td_schedflag &= ~TD_SCHED_BLOAD;
581 	}
582 #endif
583 	setrunqueue(td);
584 #if SCHED_STRICT_RESCHED
585         if (td->td_priority < curthread->td_priority)
586                 curthread->td_flags |= TDF_NEEDRESCHED;
587 #endif
588 }
589 
590 /*
591  * Penalize the parent for creating a new child and initialize the child's
592  * priority.
593  */
594 void
595 sched_fork(struct ksegrp *kg, struct ksegrp *child)
596 {
597 	struct kse *ckse;
598 	struct kse *pkse;
599 
600 	mtx_assert(&sched_lock, MA_OWNED);
601 	ckse = FIRST_KSE_IN_KSEGRP(child);
602 	pkse = FIRST_KSE_IN_KSEGRP(kg);
603 
604 	/* XXX Need something better here */
605 	if (kg->kg_slptime > kg->kg_runtime) {
606 		child->kg_slptime = SCHED_PRI_DYN;
607 		child->kg_runtime = kg->kg_slptime / SCHED_PRI_DYN;
608 	} else {
609 		child->kg_runtime = SCHED_PRI_DYN;
610 		child->kg_slptime = kg->kg_runtime / SCHED_PRI_DYN;
611 	}
612 #if 0
613 	child->kg_slptime = kg->kg_slptime;
614 	child->kg_runtime = kg->kg_runtime;
615 #endif
616 	child->kg_user_pri = kg->kg_user_pri;
617 
618 #if 0
619 	if (pkse->ke_cpu != PCPU_GET(cpuid)) {
620 		printf("pkse->ke_cpu = %d\n", pkse->ke_cpu);
621 		printf("cpuid = %d", PCPU_GET(cpuid));
622 		Debugger("stop");
623 	}
624 #endif
625 
626 	ckse->ke_slice = pkse->ke_slice;
627 	ckse->ke_cpu = pkse->ke_cpu; /* sched_pickcpu(); */
628 	ckse->ke_runq = NULL;
629 	/*
630 	 * Claim that we've been running for one second for statistical
631 	 * purposes.
632 	 */
633 	ckse->ke_ticks = 0;
634 	ckse->ke_ltick = ticks;
635 	ckse->ke_ftick = ticks - hz;
636 }
637 
638 /*
639  * Return some of the child's priority and interactivity to the parent.
640  */
641 void
642 sched_exit(struct ksegrp *kg, struct ksegrp *child)
643 {
644 	/* XXX Need something better here */
645 	mtx_assert(&sched_lock, MA_OWNED);
646 	kg->kg_slptime = child->kg_slptime;
647 	kg->kg_runtime = child->kg_runtime;
648 	sched_priority(kg);
649 }
650 
651 void
652 sched_clock(struct thread *td)
653 {
654 	struct kse *ke;
655 #if SCHED_STRICT_RESCHED
656 	struct kse *nke;
657 	struct kseq *kseq;
658 #endif
659 	struct ksegrp *kg;
660 
661 
662 	ke = td->td_kse;
663 	kg = td->td_ksegrp;
664 
665 	mtx_assert(&sched_lock, MA_OWNED);
666 	KASSERT((td != NULL), ("schedclock: null thread pointer"));
667 
668 	/* Adjust ticks for pctcpu */
669 	ke->ke_ticks += 10000;
670 	ke->ke_ltick = ticks;
671 	/* Go up to one second beyond our max and then trim back down */
672 	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
673 		sched_pctcpu_update(ke);
674 
675 	if (td->td_kse->ke_flags & KEF_IDLEKSE)
676 		return;
677 
678 	/*
679 	 * Check for a higher priority task on the run queue.  This can happen
680 	 * on SMP if another processor woke up a process on our runq.
681 	 */
682 #if SCHED_STRICT_RESCHED
683 	kseq = KSEQ_SELF();
684 	nke = runq_choose(kseq->ksq_curr);
685 
686 	if (nke && nke->ke_thread &&
687 	    nke->ke_thread->td_priority < td->td_priority)
688 		td->td_flags |= TDF_NEEDRESCHED;
689 #endif
690 	/*
691 	 * We used a tick charge it to the ksegrp so that we can compute our
692 	 * "interactivity".
693 	 */
694 	kg->kg_runtime += 1024;
695 
696 	/*
697 	 * We used up one time slice.
698 	 */
699 	ke->ke_slice--;
700 	/*
701 	 * We're out of time, recompute priorities and requeue
702 	 */
703 	if (ke->ke_slice == 0) {
704 		td->td_priority = sched_priority(kg);
705 		ke->ke_slice = sched_slice(kg);
706 		td->td_flags |= TDF_NEEDRESCHED;
707 		ke->ke_runq = NULL;
708 	}
709 }
710 
711 int
712 sched_runnable(void)
713 {
714 	struct kseq *kseq;
715 
716 	kseq = KSEQ_SELF();
717 
718 	if (kseq->ksq_load)
719 		return (1);
720 #ifdef SMP
721 	/*
722 	 * For SMP we may steal other processor's KSEs.  Just search until we
723 	 * verify that at least on other cpu has a runnable task.
724 	 */
725 	if (smp_started) {
726 		int i;
727 
728 #if 0
729 		if (kseq->ksq_bload)
730 			return (0);
731 #endif
732 
733 		for (i = 0; i < mp_maxid; i++) {
734 			if (CPU_ABSENT(i))
735 				continue;
736 			kseq = KSEQ_CPU(i);
737 			if (kseq->ksq_load)
738 				return (1);
739 		}
740 	}
741 #endif
742 	return (0);
743 }
744 
745 void
746 sched_userret(struct thread *td)
747 {
748 	struct ksegrp *kg;
749 
750 	kg = td->td_ksegrp;
751 
752 	if (td->td_priority != kg->kg_user_pri) {
753 		mtx_lock_spin(&sched_lock);
754 		td->td_priority = kg->kg_user_pri;
755 		mtx_unlock_spin(&sched_lock);
756 	}
757 }
758 
759 struct kse *
760 sched_choose(void)
761 {
762 	struct kseq *kseq;
763 	struct kse *ke;
764 
765 	kseq = KSEQ_SELF();
766 	ke = kseq_choose(kseq);
767 
768 	if (ke) {
769 		ke->ke_state = KES_THREAD;
770 		kseq_rem(kseq, ke);
771 	}
772 
773 #ifdef SMP
774 	if (ke == NULL && smp_started) {
775 #if 0
776 		if (kseq->ksq_bload)
777 			return (NULL);
778 #endif
779 		/*
780 		 * Find the cpu with the highest load and steal one proc.
781 		 */
782 		kseq = kseq_load_highest();
783 		if (kseq == NULL)
784 			return (NULL);
785 		ke = kseq_choose(kseq);
786 		kseq_rem(kseq, ke);
787 
788 		ke->ke_state = KES_THREAD;
789 		ke->ke_runq = NULL;
790 		ke->ke_cpu = PCPU_GET(cpuid);
791 	}
792 #endif
793 	return (ke);
794 }
795 
796 void
797 sched_add(struct kse *ke)
798 {
799 	struct kseq *kseq;
800 
801 	mtx_assert(&sched_lock, MA_OWNED);
802 	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
803 	KASSERT((ke->ke_thread->td_kse != NULL),
804 	    ("sched_add: No KSE on thread"));
805 	KASSERT(ke->ke_state != KES_ONRUNQ,
806 	    ("sched_add: kse %p (%s) already in run queue", ke,
807 	    ke->ke_proc->p_comm));
808 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
809 	    ("sched_add: process swapped out"));
810 
811 	kseq = KSEQ_CPU(ke->ke_cpu);
812 
813 	if (ke->ke_runq == NULL) {
814 		if (SCHED_CURR(ke->ke_ksegrp))
815 			ke->ke_runq = kseq->ksq_curr;
816 		else
817 			ke->ke_runq = kseq->ksq_next;
818 	}
819 	ke->ke_ksegrp->kg_runq_kses++;
820 	ke->ke_state = KES_ONRUNQ;
821 
822 	kseq_add(kseq, ke);
823 }
824 
825 void
826 sched_rem(struct kse *ke)
827 {
828 	mtx_assert(&sched_lock, MA_OWNED);
829 	/* KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue")); */
830 
831 	ke->ke_runq = NULL;
832 	ke->ke_state = KES_THREAD;
833 	ke->ke_ksegrp->kg_runq_kses--;
834 
835 	kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
836 }
837 
838 fixpt_t
839 sched_pctcpu(struct kse *ke)
840 {
841 	fixpt_t pctcpu;
842 	int realstathz;
843 
844 	pctcpu = 0;
845 	realstathz = stathz ? stathz : hz;
846 
847 	if (ke->ke_ticks) {
848 		int rtick;
849 
850 		/* Update to account for time potentially spent sleeping */
851 		ke->ke_ltick = ticks;
852 		sched_pctcpu_update(ke);
853 
854 		/* How many rtick per second ? */
855 		rtick = ke->ke_ticks / (SCHED_CPU_TIME * 10000);
856 		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
857 	}
858 
859 	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
860 
861 	return (pctcpu);
862 }
863 
864 int
865 sched_sizeof_kse(void)
866 {
867 	return (sizeof(struct kse) + sizeof(struct ke_sched));
868 }
869 
870 int
871 sched_sizeof_ksegrp(void)
872 {
873 	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
874 }
875 
876 int
877 sched_sizeof_proc(void)
878 {
879 	return (sizeof(struct proc));
880 }
881 
882 int
883 sched_sizeof_thread(void)
884 {
885 	return (sizeof(struct thread) + sizeof(struct td_sched));
886 }
887