xref: /freebsd/sys/kern/sched_ule.c (revision e0c27215058b5786c78fcfb3963eebe61a989511)
1 /*-
2  * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/ktr.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/proc.h>
37 #include <sys/resource.h>
38 #include <sys/sched.h>
39 #include <sys/smp.h>
40 #include <sys/sx.h>
41 #include <sys/sysctl.h>
42 #include <sys/sysproto.h>
43 #include <sys/vmmeter.h>
44 #ifdef DDB
45 #include <ddb/ddb.h>
46 #endif
47 #ifdef KTRACE
48 #include <sys/uio.h>
49 #include <sys/ktrace.h>
50 #endif
51 
52 #include <machine/cpu.h>
53 
54 #define KTR_ULE         KTR_NFS
55 
56 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
57 /* XXX This is bogus compatability crap for ps */
58 static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
59 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
60 
61 static void sched_setup(void *dummy);
62 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
63 
64 static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
65 
66 static int sched_strict;
67 SYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
68 
69 static int slice_min = 1;
70 SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
71 
72 static int slice_max = 10;
73 SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
74 
75 int realstathz;
76 int tickincr = 1;
77 
78 #ifdef SMP
79 /* Callout to handle load balancing SMP systems. */
80 static struct callout kseq_lb_callout;
81 #endif
82 
83 /*
84  * These datastructures are allocated within their parent datastructure but
85  * are scheduler specific.
86  */
87 
88 struct ke_sched {
89 	int		ske_slice;
90 	struct runq	*ske_runq;
91 	/* The following variables are only used for pctcpu calculation */
92 	int		ske_ltick;	/* Last tick that we were running on */
93 	int		ske_ftick;	/* First tick that we were running on */
94 	int		ske_ticks;	/* Tick count */
95 	/* CPU that we have affinity for. */
96 	u_char		ske_cpu;
97 };
98 #define	ke_slice	ke_sched->ske_slice
99 #define	ke_runq		ke_sched->ske_runq
100 #define	ke_ltick	ke_sched->ske_ltick
101 #define	ke_ftick	ke_sched->ske_ftick
102 #define	ke_ticks	ke_sched->ske_ticks
103 #define	ke_cpu		ke_sched->ske_cpu
104 
105 struct kg_sched {
106 	int	skg_slptime;		/* Number of ticks we vol. slept */
107 	int	skg_runtime;		/* Number of ticks we were running */
108 };
109 #define	kg_slptime	kg_sched->skg_slptime
110 #define	kg_runtime	kg_sched->skg_runtime
111 
112 struct td_sched {
113 	int	std_slptime;
114 };
115 #define	td_slptime	td_sched->std_slptime
116 
117 struct td_sched td_sched;
118 struct ke_sched ke_sched;
119 struct kg_sched kg_sched;
120 
121 struct ke_sched *kse0_sched = &ke_sched;
122 struct kg_sched *ksegrp0_sched = &kg_sched;
123 struct p_sched *proc0_sched = NULL;
124 struct td_sched *thread0_sched = &td_sched;
125 
126 /*
127  * The priority is primarily determined by the interactivity score.  Thus, we
128  * give lower(better) priorities to kse groups that use less CPU.  The nice
129  * value is then directly added to this to allow nice to have some effect
130  * on latency.
131  *
132  * PRI_RANGE:	Total priority range for timeshare threads.
133  * PRI_NRESV:	Number of nice values.
134  * PRI_BASE:	The start of the dynamic range.
135  */
136 #define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
137 #define	SCHED_PRI_NRESV		PRIO_TOTAL
138 #define	SCHED_PRI_NHALF		(PRIO_TOTAL / 2)
139 #define	SCHED_PRI_NTHRESH	(SCHED_PRI_NHALF - 1)
140 #define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
141 #define	SCHED_PRI_INTERACT(score)					\
142     ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
143 
144 /*
145  * These determine the interactivity of a process.
146  *
147  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
148  *		before throttling back.
149  * SLP_RUN_THROTTLE:	Divisor for reducing slp/run time at fork time.
150  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
151  * INTERACT_THRESH:	Threshhold for placement on the current runq.
152  */
153 #define	SCHED_SLP_RUN_MAX	((hz * 2) << 10)
154 #define	SCHED_SLP_RUN_THROTTLE	(100)
155 #define	SCHED_INTERACT_MAX	(100)
156 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
157 #define	SCHED_INTERACT_THRESH	(20)
158 
159 /*
160  * These parameters and macros determine the size of the time slice that is
161  * granted to each thread.
162  *
163  * SLICE_MIN:	Minimum time slice granted, in units of ticks.
164  * SLICE_MAX:	Maximum time slice granted.
165  * SLICE_RANGE:	Range of available time slices scaled by hz.
166  * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
167  * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
168  */
169 #define	SCHED_SLICE_MIN			(slice_min)
170 #define	SCHED_SLICE_MAX			(slice_max)
171 #define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
172 #define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
173 #define	SCHED_SLICE_NICE(nice)						\
174     (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_PRI_NTHRESH))
175 
176 /*
177  * This macro determines whether or not the kse belongs on the current or
178  * next run queue.
179  *
180  * XXX nice value should effect how interactive a kg is.
181  */
182 #define	SCHED_INTERACTIVE(kg)						\
183     (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
184 #define	SCHED_CURR(kg, ke)						\
185     (ke->ke_thread->td_priority < PRI_MIN_TIMESHARE || SCHED_INTERACTIVE(kg))
186 
187 /*
188  * Cpu percentage computation macros and defines.
189  *
190  * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
191  * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
192  */
193 
194 #define	SCHED_CPU_TIME	10
195 #define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
196 
197 /*
198  * kseq - per processor runqs and statistics.
199  */
200 
201 #define	KSEQ_NCLASS	(PRI_IDLE + 1)	/* Number of run classes. */
202 
203 struct kseq {
204 	struct runq	ksq_idle;		/* Queue of IDLE threads. */
205 	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
206 	struct runq	*ksq_next;		/* Next timeshare queue. */
207 	struct runq	*ksq_curr;		/* Current queue. */
208 	int		ksq_loads[KSEQ_NCLASS];	/* Load for each class */
209 	int		ksq_load;		/* Aggregate load. */
210 	short		ksq_nice[PRIO_TOTAL + 1]; /* KSEs in each nice bin. */
211 	short		ksq_nicemin;		/* Least nice. */
212 #ifdef SMP
213 	int		ksq_cpus;	/* Count of CPUs in this kseq. */
214 	unsigned int	ksq_rslices;	/* Slices on run queue */
215 #endif
216 };
217 
218 /*
219  * One kse queue per processor.
220  */
221 #ifdef SMP
222 struct kseq	kseq_cpu[MAXCPU];
223 struct kseq	*kseq_idmap[MAXCPU];
224 #define	KSEQ_SELF()	(kseq_idmap[PCPU_GET(cpuid)])
225 #define	KSEQ_CPU(x)	(kseq_idmap[(x)])
226 #else
227 struct kseq	kseq_cpu;
228 #define	KSEQ_SELF()	(&kseq_cpu)
229 #define	KSEQ_CPU(x)	(&kseq_cpu)
230 #endif
231 
232 static void sched_slice(struct kse *ke);
233 static void sched_priority(struct ksegrp *kg);
234 static int sched_interact_score(struct ksegrp *kg);
235 static void sched_interact_update(struct ksegrp *kg);
236 void sched_pctcpu_update(struct kse *ke);
237 int sched_pickcpu(void);
238 
239 /* Operations on per processor queues */
240 static struct kse * kseq_choose(struct kseq *kseq, int steal);
241 static void kseq_setup(struct kseq *kseq);
242 static void kseq_add(struct kseq *kseq, struct kse *ke);
243 static void kseq_rem(struct kseq *kseq, struct kse *ke);
244 static void kseq_nice_add(struct kseq *kseq, int nice);
245 static void kseq_nice_rem(struct kseq *kseq, int nice);
246 void kseq_print(int cpu);
247 #ifdef SMP
248 struct kseq * kseq_load_highest(void);
249 void kseq_balance(void *arg);
250 void kseq_move(struct kseq *from, int cpu);
251 #endif
252 
253 void
254 kseq_print(int cpu)
255 {
256 	struct kseq *kseq;
257 	int i;
258 
259 	kseq = KSEQ_CPU(cpu);
260 
261 	printf("kseq:\n");
262 	printf("\tload:           %d\n", kseq->ksq_load);
263 	printf("\tload ITHD:      %d\n", kseq->ksq_loads[PRI_ITHD]);
264 	printf("\tload REALTIME:  %d\n", kseq->ksq_loads[PRI_REALTIME]);
265 	printf("\tload TIMESHARE: %d\n", kseq->ksq_loads[PRI_TIMESHARE]);
266 	printf("\tload IDLE:      %d\n", kseq->ksq_loads[PRI_IDLE]);
267 	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
268 	printf("\tnice counts:\n");
269 	for (i = 0; i < PRIO_TOTAL + 1; i++)
270 		if (kseq->ksq_nice[i])
271 			printf("\t\t%d = %d\n",
272 			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
273 }
274 
275 static void
276 kseq_add(struct kseq *kseq, struct kse *ke)
277 {
278 	mtx_assert(&sched_lock, MA_OWNED);
279 	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]++;
280 	kseq->ksq_load++;
281 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
282 	CTR6(KTR_ULE, "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
283 	    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
284 	    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
285 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
286 		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
287 #ifdef SMP
288 	kseq->ksq_rslices += ke->ke_slice;
289 #endif
290 }
291 
292 static void
293 kseq_rem(struct kseq *kseq, struct kse *ke)
294 {
295 	mtx_assert(&sched_lock, MA_OWNED);
296 	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]--;
297 	kseq->ksq_load--;
298 	ke->ke_runq = NULL;
299 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
300 		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
301 #ifdef SMP
302 	kseq->ksq_rslices -= ke->ke_slice;
303 #endif
304 }
305 
306 static void
307 kseq_nice_add(struct kseq *kseq, int nice)
308 {
309 	mtx_assert(&sched_lock, MA_OWNED);
310 	/* Normalize to zero. */
311 	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
312 	if (nice < kseq->ksq_nicemin || kseq->ksq_loads[PRI_TIMESHARE] == 1)
313 		kseq->ksq_nicemin = nice;
314 }
315 
316 static void
317 kseq_nice_rem(struct kseq *kseq, int nice)
318 {
319 	int n;
320 
321 	mtx_assert(&sched_lock, MA_OWNED);
322 	/* Normalize to zero. */
323 	n = nice + SCHED_PRI_NHALF;
324 	kseq->ksq_nice[n]--;
325 	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
326 
327 	/*
328 	 * If this wasn't the smallest nice value or there are more in
329 	 * this bucket we can just return.  Otherwise we have to recalculate
330 	 * the smallest nice.
331 	 */
332 	if (nice != kseq->ksq_nicemin ||
333 	    kseq->ksq_nice[n] != 0 ||
334 	    kseq->ksq_loads[PRI_TIMESHARE] == 0)
335 		return;
336 
337 	for (; n < SCHED_PRI_NRESV + 1; n++)
338 		if (kseq->ksq_nice[n]) {
339 			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
340 			return;
341 		}
342 }
343 
344 #ifdef SMP
345 /*
346  * kseq_balance is a simple CPU load balancing algorithm.  It operates by
347  * finding the least loaded and most loaded cpu and equalizing their load
348  * by migrating some processes.
349  *
350  * Dealing only with two CPUs at a time has two advantages.  Firstly, most
351  * installations will only have 2 cpus.  Secondly, load balancing too much at
352  * once can have an unpleasant effect on the system.  The scheduler rarely has
353  * enough information to make perfect decisions.  So this algorithm chooses
354  * algorithm simplicity and more gradual effects on load in larger systems.
355  *
356  * It could be improved by considering the priorities and slices assigned to
357  * each task prior to balancing them.  There are many pathological cases with
358  * any approach and so the semi random algorithm below may work as well as any.
359  *
360  */
361 void
362 kseq_balance(void *arg)
363 {
364 	struct kseq *kseq;
365 	int high_load;
366 	int low_load;
367 	int high_cpu;
368 	int low_cpu;
369 	int move;
370 	int diff;
371 	int i;
372 
373 	high_cpu = 0;
374 	low_cpu = 0;
375 	high_load = 0;
376 	low_load = -1;
377 
378 	mtx_lock_spin(&sched_lock);
379 	if (smp_started == 0)
380 		goto out;
381 
382 	for (i = 0; i < mp_maxid; i++) {
383 		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
384 			continue;
385 		kseq = KSEQ_CPU(i);
386 		if (kseq->ksq_load > high_load) {
387 			high_load = kseq->ksq_load;
388 			high_cpu = i;
389 		}
390 		if (low_load == -1 || kseq->ksq_load < low_load) {
391 			low_load = kseq->ksq_load;
392 			low_cpu = i;
393 		}
394 	}
395 
396 	kseq = KSEQ_CPU(high_cpu);
397 
398 	/*
399 	 * Nothing to do.
400 	 */
401 	if (high_load < kseq->ksq_cpus + 1)
402 		goto out;
403 
404 	high_load -= kseq->ksq_cpus;
405 
406 	if (low_load >= high_load)
407 		goto out;
408 
409 	diff = high_load - low_load;
410 	move = diff / 2;
411 	if (diff & 0x1)
412 		move++;
413 
414 	for (i = 0; i < move; i++)
415 		kseq_move(kseq, low_cpu);
416 
417 out:
418 	mtx_unlock_spin(&sched_lock);
419 	callout_reset(&kseq_lb_callout, hz, kseq_balance, NULL);
420 
421 	return;
422 }
423 
424 struct kseq *
425 kseq_load_highest(void)
426 {
427 	struct kseq *kseq;
428 	int load;
429 	int cpu;
430 	int i;
431 
432 	mtx_assert(&sched_lock, MA_OWNED);
433 	cpu = 0;
434 	load = 0;
435 
436 	for (i = 0; i < mp_maxid; i++) {
437 		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
438 			continue;
439 		kseq = KSEQ_CPU(i);
440 		if (kseq->ksq_load > load) {
441 			load = kseq->ksq_load;
442 			cpu = i;
443 		}
444 	}
445 	kseq = KSEQ_CPU(cpu);
446 
447 	if (load > kseq->ksq_cpus)
448 		return (kseq);
449 
450 	return (NULL);
451 }
452 
453 void
454 kseq_move(struct kseq *from, int cpu)
455 {
456 	struct kse *ke;
457 
458 	ke = kseq_choose(from, 1);
459 	runq_remove(ke->ke_runq, ke);
460 	ke->ke_state = KES_THREAD;
461 	kseq_rem(from, ke);
462 
463 	ke->ke_cpu = cpu;
464 	sched_add(ke);
465 }
466 #endif
467 
468 /*
469  * Pick the highest priority task we have and return it.   If steal is 1 we
470  * will return kses that have been denied slices due to their nice being too
471  * low.  In the future we should prohibit stealing interrupt threads as well.
472  */
473 
474 struct kse *
475 kseq_choose(struct kseq *kseq, int steal)
476 {
477 	struct kse *ke;
478 	struct runq *swap;
479 
480 	mtx_assert(&sched_lock, MA_OWNED);
481 	swap = NULL;
482 
483 	for (;;) {
484 		ke = runq_choose(kseq->ksq_curr);
485 		if (ke == NULL) {
486 			/*
487 			 * We already swaped once and didn't get anywhere.
488 			 */
489 			if (swap)
490 				break;
491 			swap = kseq->ksq_curr;
492 			kseq->ksq_curr = kseq->ksq_next;
493 			kseq->ksq_next = swap;
494 			continue;
495 		}
496 		/*
497 		 * If we encounter a slice of 0 the kse is in a
498 		 * TIMESHARE kse group and its nice was too far out
499 		 * of the range that receives slices.
500 		 */
501 		if (ke->ke_slice == 0 && steal == 0) {
502 			runq_remove(ke->ke_runq, ke);
503 			sched_slice(ke);
504 			ke->ke_runq = kseq->ksq_next;
505 			runq_add(ke->ke_runq, ke);
506 			continue;
507 		}
508 		return (ke);
509 	}
510 
511 	return (runq_choose(&kseq->ksq_idle));
512 }
513 
514 static void
515 kseq_setup(struct kseq *kseq)
516 {
517 	runq_init(&kseq->ksq_timeshare[0]);
518 	runq_init(&kseq->ksq_timeshare[1]);
519 	runq_init(&kseq->ksq_idle);
520 
521 	kseq->ksq_curr = &kseq->ksq_timeshare[0];
522 	kseq->ksq_next = &kseq->ksq_timeshare[1];
523 
524 	kseq->ksq_loads[PRI_ITHD] = 0;
525 	kseq->ksq_loads[PRI_REALTIME] = 0;
526 	kseq->ksq_loads[PRI_TIMESHARE] = 0;
527 	kseq->ksq_loads[PRI_IDLE] = 0;
528 	kseq->ksq_load = 0;
529 #ifdef SMP
530 	kseq->ksq_rslices = 0;
531 #endif
532 }
533 
534 static void
535 sched_setup(void *dummy)
536 {
537 #ifdef SMP
538 	int i;
539 #endif
540 
541 	slice_min = (hz/100);	/* 10ms */
542 	slice_max = (hz/7);	/* ~140ms */
543 
544 #ifdef SMP
545 	/* init kseqs */
546 	/* Create the idmap. */
547 #ifdef ULE_HTT_EXPERIMENTAL
548 	if (smp_topology == NULL) {
549 #else
550 	if (1) {
551 #endif
552 		for (i = 0; i < MAXCPU; i++) {
553 			kseq_setup(&kseq_cpu[i]);
554 			kseq_idmap[i] = &kseq_cpu[i];
555 			kseq_cpu[i].ksq_cpus = 1;
556 		}
557 	} else {
558 		int j;
559 
560 		for (i = 0; i < smp_topology->ct_count; i++) {
561 			struct cpu_group *cg;
562 
563 			cg = &smp_topology->ct_group[i];
564 			kseq_setup(&kseq_cpu[i]);
565 
566 			for (j = 0; j < MAXCPU; j++)
567 				if ((cg->cg_mask & (1 << j)) != 0)
568 					kseq_idmap[j] = &kseq_cpu[i];
569 			kseq_cpu[i].ksq_cpus = cg->cg_count;
570 		}
571 	}
572 	callout_init(&kseq_lb_callout, 1);
573 	kseq_balance(NULL);
574 #else
575 	kseq_setup(KSEQ_SELF());
576 #endif
577 	mtx_lock_spin(&sched_lock);
578 	kseq_add(KSEQ_SELF(), &kse0);
579 	mtx_unlock_spin(&sched_lock);
580 }
581 
582 /*
583  * Scale the scheduling priority according to the "interactivity" of this
584  * process.
585  */
586 static void
587 sched_priority(struct ksegrp *kg)
588 {
589 	int pri;
590 
591 	if (kg->kg_pri_class != PRI_TIMESHARE)
592 		return;
593 
594 	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
595 	pri += SCHED_PRI_BASE;
596 	pri += kg->kg_nice;
597 
598 	if (pri > PRI_MAX_TIMESHARE)
599 		pri = PRI_MAX_TIMESHARE;
600 	else if (pri < PRI_MIN_TIMESHARE)
601 		pri = PRI_MIN_TIMESHARE;
602 
603 	kg->kg_user_pri = pri;
604 
605 	return;
606 }
607 
608 /*
609  * Calculate a time slice based on the properties of the kseg and the runq
610  * that we're on.  This is only for PRI_TIMESHARE ksegrps.
611  */
612 static void
613 sched_slice(struct kse *ke)
614 {
615 	struct kseq *kseq;
616 	struct ksegrp *kg;
617 
618 	kg = ke->ke_ksegrp;
619 	kseq = KSEQ_CPU(ke->ke_cpu);
620 
621 	/*
622 	 * Rationale:
623 	 * KSEs in interactive ksegs get the minimum slice so that we
624 	 * quickly notice if it abuses its advantage.
625 	 *
626 	 * KSEs in non-interactive ksegs are assigned a slice that is
627 	 * based on the ksegs nice value relative to the least nice kseg
628 	 * on the run queue for this cpu.
629 	 *
630 	 * If the KSE is less nice than all others it gets the maximum
631 	 * slice and other KSEs will adjust their slice relative to
632 	 * this when they first expire.
633 	 *
634 	 * There is 20 point window that starts relative to the least
635 	 * nice kse on the run queue.  Slice size is determined by
636 	 * the kse distance from the last nice ksegrp.
637 	 *
638 	 * If you are outside of the window you will get no slice and
639 	 * you will be reevaluated each time you are selected on the
640 	 * run queue.
641 	 *
642 	 */
643 
644 	if (!SCHED_INTERACTIVE(kg)) {
645 		int nice;
646 
647 		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
648 		if (kseq->ksq_loads[PRI_TIMESHARE] == 0 ||
649 		    kg->kg_nice < kseq->ksq_nicemin)
650 			ke->ke_slice = SCHED_SLICE_MAX;
651 		else if (nice <= SCHED_PRI_NTHRESH)
652 			ke->ke_slice = SCHED_SLICE_NICE(nice);
653 		else
654 			ke->ke_slice = 0;
655 	} else
656 		ke->ke_slice = SCHED_SLICE_MIN;
657 
658 	CTR6(KTR_ULE,
659 	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
660 	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
661 	    kseq->ksq_loads[PRI_TIMESHARE], SCHED_INTERACTIVE(kg));
662 
663 	/*
664 	 * Check to see if we need to scale back the slp and run time
665 	 * in the kg.  This will cause us to forget old interactivity
666 	 * while maintaining the current ratio.
667 	 */
668 	sched_interact_update(kg);
669 
670 	return;
671 }
672 
673 static void
674 sched_interact_update(struct ksegrp *kg)
675 {
676 	/* XXX Fixme, use a linear algorithm and not a while loop. */
677 	while ((kg->kg_runtime + kg->kg_slptime) >  SCHED_SLP_RUN_MAX) {
678 		kg->kg_runtime = (kg->kg_runtime / 5) * 4;
679 		kg->kg_slptime = (kg->kg_slptime / 5) * 4;
680 	}
681 }
682 
683 static int
684 sched_interact_score(struct ksegrp *kg)
685 {
686 	int div;
687 
688 	if (kg->kg_runtime > kg->kg_slptime) {
689 		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
690 		return (SCHED_INTERACT_HALF +
691 		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
692 	} if (kg->kg_slptime > kg->kg_runtime) {
693 		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
694 		return (kg->kg_runtime / div);
695 	}
696 
697 	/*
698 	 * This can happen if slptime and runtime are 0.
699 	 */
700 	return (0);
701 
702 }
703 
704 /*
705  * This is only somewhat accurate since given many processes of the same
706  * priority they will switch when their slices run out, which will be
707  * at most SCHED_SLICE_MAX.
708  */
709 int
710 sched_rr_interval(void)
711 {
712 	return (SCHED_SLICE_MAX);
713 }
714 
715 void
716 sched_pctcpu_update(struct kse *ke)
717 {
718 	/*
719 	 * Adjust counters and watermark for pctcpu calc.
720 	 */
721 
722 	/*
723 	 * Shift the tick count out so that the divide doesn't round away
724 	 * our results.
725 	 */
726 	ke->ke_ticks <<= 10;
727 	ke->ke_ticks = (ke->ke_ticks / (ke->ke_ltick - ke->ke_ftick)) *
728 		    SCHED_CPU_TICKS;
729 	ke->ke_ticks >>= 10;
730 	ke->ke_ltick = ticks;
731 	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
732 }
733 
734 #ifdef SMP
735 /* XXX Should be changed to kseq_load_lowest() */
736 int
737 sched_pickcpu(void)
738 {
739 	struct kseq *kseq;
740 	int load;
741 	int cpu;
742 	int i;
743 
744 	mtx_assert(&sched_lock, MA_OWNED);
745 	if (!smp_started)
746 		return (0);
747 
748 	load = 0;
749 	cpu = 0;
750 
751 	for (i = 0; i < mp_maxid; i++) {
752 		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
753 			continue;
754 		kseq = KSEQ_CPU(i);
755 		if (kseq->ksq_load < load) {
756 			cpu = i;
757 			load = kseq->ksq_load;
758 		}
759 	}
760 
761 	CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
762 	return (cpu);
763 }
764 #else
765 int
766 sched_pickcpu(void)
767 {
768 	return (0);
769 }
770 #endif
771 
772 void
773 sched_prio(struct thread *td, u_char prio)
774 {
775 	struct kse *ke;
776 	struct runq *rq;
777 
778 	mtx_assert(&sched_lock, MA_OWNED);
779 	ke = td->td_kse;
780 	td->td_priority = prio;
781 
782 	if (TD_ON_RUNQ(td)) {
783 		rq = ke->ke_runq;
784 
785 		runq_remove(rq, ke);
786 		runq_add(rq, ke);
787 	}
788 }
789 
790 void
791 sched_switchout(struct thread *td)
792 {
793 	struct kse *ke;
794 
795 	mtx_assert(&sched_lock, MA_OWNED);
796 
797 	ke = td->td_kse;
798 
799 	td->td_last_kse = ke;
800         td->td_lastcpu = td->td_oncpu;
801 	td->td_oncpu = NOCPU;
802         td->td_flags &= ~TDF_NEEDRESCHED;
803 
804 	if (TD_IS_RUNNING(td)) {
805 		/*
806 		 * This queue is always correct except for idle threads which
807 		 * have a higher priority due to priority propagation.
808 		 */
809 		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE &&
810 		    ke->ke_thread->td_priority > PRI_MIN_IDLE)
811 			ke->ke_runq = KSEQ_SELF()->ksq_curr;
812 		runq_add(ke->ke_runq, ke);
813 		/* setrunqueue(td); */
814 		return;
815 	}
816 	if (ke->ke_runq)
817 		kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
818 	/*
819 	 * We will not be on the run queue. So we must be
820 	 * sleeping or similar.
821 	 */
822 	if (td->td_proc->p_flag & P_SA)
823 		kse_reassign(ke);
824 }
825 
826 void
827 sched_switchin(struct thread *td)
828 {
829 	/* struct kse *ke = td->td_kse; */
830 	mtx_assert(&sched_lock, MA_OWNED);
831 
832 	td->td_oncpu = PCPU_GET(cpuid);
833 }
834 
835 void
836 sched_nice(struct ksegrp *kg, int nice)
837 {
838 	struct kse *ke;
839 	struct thread *td;
840 	struct kseq *kseq;
841 
842 	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
843 	mtx_assert(&sched_lock, MA_OWNED);
844 	/*
845 	 * We need to adjust the nice counts for running KSEs.
846 	 */
847 	if (kg->kg_pri_class == PRI_TIMESHARE)
848 		FOREACH_KSE_IN_GROUP(kg, ke) {
849 			if (ke->ke_runq == NULL)
850 				continue;
851 			kseq = KSEQ_CPU(ke->ke_cpu);
852 			kseq_nice_rem(kseq, kg->kg_nice);
853 			kseq_nice_add(kseq, nice);
854 		}
855 	kg->kg_nice = nice;
856 	sched_priority(kg);
857 	FOREACH_THREAD_IN_GROUP(kg, td)
858 		td->td_flags |= TDF_NEEDRESCHED;
859 }
860 
861 void
862 sched_sleep(struct thread *td, u_char prio)
863 {
864 	mtx_assert(&sched_lock, MA_OWNED);
865 
866 	td->td_slptime = ticks;
867 	td->td_priority = prio;
868 
869 	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
870 	    td->td_kse, td->td_slptime);
871 }
872 
873 void
874 sched_wakeup(struct thread *td)
875 {
876 	mtx_assert(&sched_lock, MA_OWNED);
877 
878 	/*
879 	 * Let the kseg know how long we slept for.  This is because process
880 	 * interactivity behavior is modeled in the kseg.
881 	 */
882 	if (td->td_slptime) {
883 		struct ksegrp *kg;
884 		int hzticks;
885 
886 		kg = td->td_ksegrp;
887 		hzticks = ticks - td->td_slptime;
888 		kg->kg_slptime += hzticks << 10;
889 		sched_interact_update(kg);
890 		sched_priority(kg);
891 		if (td->td_kse)
892 			sched_slice(td->td_kse);
893 		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
894 		    td->td_kse, hzticks);
895 		td->td_slptime = 0;
896 	}
897 	setrunqueue(td);
898         if (td->td_priority < curthread->td_priority)
899                 curthread->td_flags |= TDF_NEEDRESCHED;
900 }
901 
902 /*
903  * Penalize the parent for creating a new child and initialize the child's
904  * priority.
905  */
906 void
907 sched_fork(struct proc *p, struct proc *p1)
908 {
909 
910 	mtx_assert(&sched_lock, MA_OWNED);
911 
912 	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
913 	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
914 	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
915 }
916 
917 void
918 sched_fork_kse(struct kse *ke, struct kse *child)
919 {
920 
921 	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
922 	child->ke_cpu = ke->ke_cpu; /* sched_pickcpu(); */
923 	child->ke_runq = NULL;
924 
925 	/*
926 	 * Claim that we've been running for one second for statistical
927 	 * purposes.
928 	 */
929 	child->ke_ticks = 0;
930 	child->ke_ltick = ticks;
931 	child->ke_ftick = ticks - hz;
932 }
933 
934 void
935 sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
936 {
937 
938 	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
939 	/* XXX Need something better here */
940 
941 	child->kg_slptime = kg->kg_slptime / SCHED_SLP_RUN_THROTTLE;
942 	child->kg_runtime = kg->kg_runtime / SCHED_SLP_RUN_THROTTLE;
943 	kg->kg_runtime += tickincr << 10;
944 	sched_interact_update(kg);
945 
946 	child->kg_user_pri = kg->kg_user_pri;
947 	child->kg_nice = kg->kg_nice;
948 }
949 
950 void
951 sched_fork_thread(struct thread *td, struct thread *child)
952 {
953 }
954 
955 void
956 sched_class(struct ksegrp *kg, int class)
957 {
958 	struct kseq *kseq;
959 	struct kse *ke;
960 
961 	mtx_assert(&sched_lock, MA_OWNED);
962 	if (kg->kg_pri_class == class)
963 		return;
964 
965 	FOREACH_KSE_IN_GROUP(kg, ke) {
966 		if (ke->ke_state != KES_ONRUNQ &&
967 		    ke->ke_state != KES_THREAD)
968 			continue;
969 		kseq = KSEQ_CPU(ke->ke_cpu);
970 
971 		kseq->ksq_loads[PRI_BASE(kg->kg_pri_class)]--;
972 		kseq->ksq_loads[PRI_BASE(class)]++;
973 
974 		if (kg->kg_pri_class == PRI_TIMESHARE)
975 			kseq_nice_rem(kseq, kg->kg_nice);
976 		else if (class == PRI_TIMESHARE)
977 			kseq_nice_add(kseq, kg->kg_nice);
978 	}
979 
980 	kg->kg_pri_class = class;
981 }
982 
983 /*
984  * Return some of the child's priority and interactivity to the parent.
985  */
986 void
987 sched_exit(struct proc *p, struct proc *child)
988 {
989 	/* XXX Need something better here */
990 	mtx_assert(&sched_lock, MA_OWNED);
991 	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
992 	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
993 }
994 
995 void
996 sched_exit_kse(struct kse *ke, struct kse *child)
997 {
998 	kseq_rem(KSEQ_CPU(child->ke_cpu), child);
999 }
1000 
1001 void
1002 sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1003 {
1004 	/* kg->kg_slptime += child->kg_slptime; */
1005 	kg->kg_runtime += child->kg_runtime;
1006 	sched_interact_update(kg);
1007 }
1008 
1009 void
1010 sched_exit_thread(struct thread *td, struct thread *child)
1011 {
1012 }
1013 
1014 void
1015 sched_clock(struct kse *ke)
1016 {
1017 	struct kseq *kseq;
1018 	struct ksegrp *kg;
1019 	struct thread *td;
1020 #if 0
1021 	struct kse *nke;
1022 #endif
1023 
1024 	/*
1025 	 * sched_setup() apparently happens prior to stathz being set.  We
1026 	 * need to resolve the timers earlier in the boot so we can avoid
1027 	 * calculating this here.
1028 	 */
1029 	if (realstathz == 0) {
1030 		realstathz = stathz ? stathz : hz;
1031 		tickincr = hz / realstathz;
1032 		/*
1033 		 * XXX This does not work for values of stathz that are much
1034 		 * larger than hz.
1035 		 */
1036 		if (tickincr == 0)
1037 			tickincr = 1;
1038 	}
1039 
1040 	td = ke->ke_thread;
1041 	kg = ke->ke_ksegrp;
1042 
1043 	mtx_assert(&sched_lock, MA_OWNED);
1044 	KASSERT((td != NULL), ("schedclock: null thread pointer"));
1045 
1046 	/* Adjust ticks for pctcpu */
1047 	ke->ke_ticks++;
1048 	ke->ke_ltick = ticks;
1049 
1050 	/* Go up to one second beyond our max and then trim back down */
1051 	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1052 		sched_pctcpu_update(ke);
1053 
1054 	if (td->td_flags & TDF_IDLETD)
1055 		return;
1056 
1057 	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1058 	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1059 
1060 	/*
1061 	 * We only do slicing code for TIMESHARE ksegrps.
1062 	 */
1063 	if (kg->kg_pri_class != PRI_TIMESHARE)
1064 		return;
1065 	/*
1066 	 * Check for a higher priority task on the run queue.  This can happen
1067 	 * on SMP if another processor woke up a process on our runq.
1068 	 */
1069 	kseq = KSEQ_SELF();
1070 #if 0
1071 	if (kseq->ksq_load > 1 && (nke = kseq_choose(kseq, 0)) != NULL) {
1072 		if (sched_strict &&
1073 		    nke->ke_thread->td_priority < td->td_priority)
1074 			td->td_flags |= TDF_NEEDRESCHED;
1075 		else if (nke->ke_thread->td_priority <
1076 		    td->td_priority SCHED_PRIO_SLOP)
1077 
1078 		if (nke->ke_thread->td_priority < td->td_priority)
1079 			td->td_flags |= TDF_NEEDRESCHED;
1080 	}
1081 #endif
1082 	/*
1083 	 * We used a tick charge it to the ksegrp so that we can compute our
1084 	 * interactivity.
1085 	 */
1086 	kg->kg_runtime += tickincr << 10;
1087 	sched_interact_update(kg);
1088 
1089 	/*
1090 	 * We used up one time slice.
1091 	 */
1092 	ke->ke_slice--;
1093 #ifdef SMP
1094 	kseq->ksq_rslices--;
1095 #endif
1096 
1097 	if (ke->ke_slice > 0)
1098 		return;
1099 	/*
1100 	 * We're out of time, recompute priorities and requeue.
1101 	 */
1102 	kseq_rem(kseq, ke);
1103 	sched_priority(kg);
1104 	sched_slice(ke);
1105 	if (SCHED_CURR(kg, ke))
1106 		ke->ke_runq = kseq->ksq_curr;
1107 	else
1108 		ke->ke_runq = kseq->ksq_next;
1109 	kseq_add(kseq, ke);
1110 	td->td_flags |= TDF_NEEDRESCHED;
1111 }
1112 
1113 int
1114 sched_runnable(void)
1115 {
1116 	struct kseq *kseq;
1117 	int load;
1118 
1119 	load = 1;
1120 
1121 	mtx_lock_spin(&sched_lock);
1122 	kseq = KSEQ_SELF();
1123 
1124 	if (kseq->ksq_load)
1125 		goto out;
1126 #ifdef SMP
1127 	/*
1128 	 * For SMP we may steal other processor's KSEs.  Just search until we
1129 	 * verify that at least on other cpu has a runnable task.
1130 	 */
1131 	if (smp_started) {
1132 		int i;
1133 
1134 		for (i = 0; i < mp_maxid; i++) {
1135 			if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
1136 				continue;
1137 			kseq = KSEQ_CPU(i);
1138 			if (kseq->ksq_load > kseq->ksq_cpus)
1139 				goto out;
1140 		}
1141 	}
1142 #endif
1143 	load = 0;
1144 out:
1145 	mtx_unlock_spin(&sched_lock);
1146 	return (load);
1147 }
1148 
1149 void
1150 sched_userret(struct thread *td)
1151 {
1152 	struct ksegrp *kg;
1153 	struct kseq *kseq;
1154 	struct kse *ke;
1155 
1156 	kg = td->td_ksegrp;
1157 
1158 	if (td->td_priority != kg->kg_user_pri) {
1159 		mtx_lock_spin(&sched_lock);
1160 		td->td_priority = kg->kg_user_pri;
1161 		kseq = KSEQ_SELF();
1162 		if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
1163 #ifdef SMP
1164 		    kseq->ksq_load > kseq->ksq_cpus &&
1165 #else
1166 		    kseq->ksq_load > 1 &&
1167 #endif
1168 		    (ke = kseq_choose(kseq, 0)) != NULL &&
1169 		    ke->ke_thread->td_priority < td->td_priority)
1170 			curthread->td_flags |= TDF_NEEDRESCHED;
1171 		mtx_unlock_spin(&sched_lock);
1172 	}
1173 }
1174 
1175 struct kse *
1176 sched_choose(void)
1177 {
1178 	struct kseq *kseq;
1179 	struct kse *ke;
1180 
1181 	mtx_assert(&sched_lock, MA_OWNED);
1182 #ifdef SMP
1183 retry:
1184 #endif
1185 	kseq = KSEQ_SELF();
1186 	ke = kseq_choose(kseq, 0);
1187 	if (ke) {
1188 		runq_remove(ke->ke_runq, ke);
1189 		ke->ke_state = KES_THREAD;
1190 
1191 		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1192 			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1193 			    ke, ke->ke_runq, ke->ke_slice,
1194 			    ke->ke_thread->td_priority);
1195 		}
1196 		return (ke);
1197 	}
1198 
1199 #ifdef SMP
1200 	if (smp_started) {
1201 		/*
1202 		 * Find the cpu with the highest load and steal one proc.
1203 		 */
1204 		if ((kseq = kseq_load_highest()) == NULL)
1205 			return (NULL);
1206 
1207 		/*
1208 		 * Remove this kse from this kseq and runq and then requeue
1209 		 * on the current processor.  Then we will dequeue it
1210 		 * normally above.
1211 		 */
1212 		kseq_move(kseq, PCPU_GET(cpuid));
1213 		goto retry;
1214 	}
1215 #endif
1216 
1217 	return (NULL);
1218 }
1219 
1220 void
1221 sched_add(struct kse *ke)
1222 {
1223 	struct kseq *kseq;
1224 	struct ksegrp *kg;
1225 
1226 	mtx_assert(&sched_lock, MA_OWNED);
1227 	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
1228 	KASSERT((ke->ke_thread->td_kse != NULL),
1229 	    ("sched_add: No KSE on thread"));
1230 	KASSERT(ke->ke_state != KES_ONRUNQ,
1231 	    ("sched_add: kse %p (%s) already in run queue", ke,
1232 	    ke->ke_proc->p_comm));
1233 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1234 	    ("sched_add: process swapped out"));
1235 	KASSERT(ke->ke_runq == NULL,
1236 	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1237 
1238 	kg = ke->ke_ksegrp;
1239 
1240 	switch (PRI_BASE(kg->kg_pri_class)) {
1241 	case PRI_ITHD:
1242 	case PRI_REALTIME:
1243 		kseq = KSEQ_SELF();
1244 		ke->ke_runq = kseq->ksq_curr;
1245 		ke->ke_slice = SCHED_SLICE_MAX;
1246 		ke->ke_cpu = PCPU_GET(cpuid);
1247 		break;
1248 	case PRI_TIMESHARE:
1249 		kseq = KSEQ_CPU(ke->ke_cpu);
1250 		if (SCHED_CURR(kg, ke))
1251 			ke->ke_runq = kseq->ksq_curr;
1252 		else
1253 			ke->ke_runq = kseq->ksq_next;
1254 		break;
1255 	case PRI_IDLE:
1256 		kseq = KSEQ_CPU(ke->ke_cpu);
1257 		/*
1258 		 * This is for priority prop.
1259 		 */
1260 		if (ke->ke_thread->td_priority > PRI_MIN_IDLE)
1261 			ke->ke_runq = kseq->ksq_curr;
1262 		else
1263 			ke->ke_runq = &kseq->ksq_idle;
1264 		ke->ke_slice = SCHED_SLICE_MIN;
1265 		break;
1266 	default:
1267 		panic("Unknown pri class.\n");
1268 		break;
1269 	}
1270 
1271 	ke->ke_ksegrp->kg_runq_kses++;
1272 	ke->ke_state = KES_ONRUNQ;
1273 
1274 	runq_add(ke->ke_runq, ke);
1275 	kseq_add(kseq, ke);
1276 }
1277 
1278 void
1279 sched_rem(struct kse *ke)
1280 {
1281 	struct kseq *kseq;
1282 
1283 	mtx_assert(&sched_lock, MA_OWNED);
1284 	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
1285 
1286 	ke->ke_state = KES_THREAD;
1287 	ke->ke_ksegrp->kg_runq_kses--;
1288 	kseq = KSEQ_CPU(ke->ke_cpu);
1289 	runq_remove(ke->ke_runq, ke);
1290 	kseq_rem(kseq, ke);
1291 }
1292 
1293 fixpt_t
1294 sched_pctcpu(struct kse *ke)
1295 {
1296 	fixpt_t pctcpu;
1297 
1298 	pctcpu = 0;
1299 
1300 	mtx_lock_spin(&sched_lock);
1301 	if (ke->ke_ticks) {
1302 		int rtick;
1303 
1304 		/*
1305 		 * Don't update more frequently than twice a second.  Allowing
1306 		 * this causes the cpu usage to decay away too quickly due to
1307 		 * rounding errors.
1308 		 */
1309 		if (ke->ke_ltick < (ticks - (hz / 2)))
1310 			sched_pctcpu_update(ke);
1311 
1312 		/* How many rtick per second ? */
1313 		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1314 		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1315 	}
1316 
1317 	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1318 	mtx_unlock_spin(&sched_lock);
1319 
1320 	return (pctcpu);
1321 }
1322 
1323 int
1324 sched_sizeof_kse(void)
1325 {
1326 	return (sizeof(struct kse) + sizeof(struct ke_sched));
1327 }
1328 
1329 int
1330 sched_sizeof_ksegrp(void)
1331 {
1332 	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1333 }
1334 
1335 int
1336 sched_sizeof_proc(void)
1337 {
1338 	return (sizeof(struct proc));
1339 }
1340 
1341 int
1342 sched_sizeof_thread(void)
1343 {
1344 	return (sizeof(struct thread) + sizeof(struct td_sched));
1345 }
1346