xref: /freebsd/sys/kern/sched_ule.c (revision cec50dea12481dc578c0805c887ab2097e1c06c5)
1 /*-
2  * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <opt_sched.h>
31 
32 #define kse td_sched
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kdb.h>
37 #include <sys/kernel.h>
38 #include <sys/ktr.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/resource.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sched.h>
45 #include <sys/smp.h>
46 #include <sys/sx.h>
47 #include <sys/sysctl.h>
48 #include <sys/sysproto.h>
49 #include <sys/vmmeter.h>
50 #ifdef KTRACE
51 #include <sys/uio.h>
52 #include <sys/ktrace.h>
53 #endif
54 
55 #include <machine/cpu.h>
56 #include <machine/smp.h>
57 
58 #define KTR_ULE	KTR_NFS
59 
60 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
61 /* XXX This is bogus compatability crap for ps */
62 static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
63 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
64 
65 static void sched_setup(void *dummy);
66 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
67 
68 static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
69 
70 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0,
71     "Scheduler name");
72 
73 static int slice_min = 1;
74 SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
75 
76 static int slice_max = 10;
77 SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
78 
79 int realstathz;
80 int tickincr = 1;
81 
82 #ifdef PREEMPTION
83 static void
84 printf_caddr_t(void *data)
85 {
86 	printf("%s", (char *)data);
87 }
88 static char preempt_warning[] =
89     "WARNING: Kernel PREEMPTION is unstable under SCHED_ULE.\n";
90 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
91     preempt_warning)
92 #endif
93 
94 /*
95  * The schedulable entity that can be given a context to run.
96  * A process may have several of these. Probably one per processor
97  * but posibly a few more. In this universe they are grouped
98  * with a KSEG that contains the priority and niceness
99  * for the group.
100  */
101 struct kse {
102 	TAILQ_ENTRY(kse) ke_kglist;	/* (*) Queue of threads in ke_ksegrp. */
103 	TAILQ_ENTRY(kse) ke_kgrlist;	/* (*) Queue of threads in this state.*/
104 	TAILQ_ENTRY(kse) ke_procq;	/* (j/z) Run queue. */
105 	int		ke_flags;	/* (j) KEF_* flags. */
106 	struct thread	*ke_thread;	/* (*) Active associated thread. */
107 	fixpt_t		ke_pctcpu;	/* (j) %cpu during p_swtime. */
108 	u_char		ke_oncpu;	/* (j) Which cpu we are on. */
109 	char		ke_rqindex;	/* (j) Run queue index. */
110 	enum {
111 		KES_THREAD = 0x0,	/* slaved to thread state */
112 		KES_ONRUNQ
113 	} ke_state;			/* (j) thread sched specific status. */
114 	int		ke_slptime;
115 	int		ke_slice;
116 	struct runq	*ke_runq;
117 	u_char		ke_cpu;		/* CPU that we have affinity for. */
118 	/* The following variables are only used for pctcpu calculation */
119 	int		ke_ltick;	/* Last tick that we were running on */
120 	int		ke_ftick;	/* First tick that we were running on */
121 	int		ke_ticks;	/* Tick count */
122 
123 };
124 
125 
126 #define td_kse td_sched
127 #define	td_slptime		td_kse->ke_slptime
128 #define ke_proc			ke_thread->td_proc
129 #define ke_ksegrp		ke_thread->td_ksegrp
130 
131 /* flags kept in ke_flags */
132 #define	KEF_SCHED0	0x00001	/* For scheduler-specific use. */
133 #define	KEF_SCHED1	0x00002	/* For scheduler-specific use. */
134 #define	KEF_SCHED2	0x00004	/* For scheduler-specific use. */
135 #define	KEF_SCHED3	0x00008	/* For scheduler-specific use. */
136 #define	KEF_DIDRUN	0x02000	/* Thread actually ran. */
137 #define	KEF_EXIT	0x04000	/* Thread is being killed. */
138 
139 /*
140  * These datastructures are allocated within their parent datastructure but
141  * are scheduler specific.
142  */
143 
144 #define	ke_assign	ke_procq.tqe_next
145 
146 #define	KEF_ASSIGNED	KEF_SCHED0	/* Thread is being migrated. */
147 #define	KEF_BOUND	KEF_SCHED1	/* Thread can not migrate. */
148 #define	KEF_XFERABLE	KEF_SCHED2	/* Thread was added as transferable. */
149 #define	KEF_HOLD	KEF_SCHED3	/* Thread is temporarily bound. */
150 
151 struct kg_sched {
152 	struct thread	*skg_last_assigned; /* (j) Last thread assigned to */
153 					   /* the system scheduler */
154 	int	skg_slptime;		/* Number of ticks we vol. slept */
155 	int	skg_runtime;		/* Number of ticks we were running */
156 	int	skg_avail_opennings;	/* (j) Num unfilled slots in group.*/
157 	int	skg_concurrency;	/* (j) Num threads requested in group.*/
158 	int	skg_runq_threads;	/* (j) Num KSEs on runq. */
159 };
160 #define kg_last_assigned	kg_sched->skg_last_assigned
161 #define kg_avail_opennings	kg_sched->skg_avail_opennings
162 #define kg_concurrency		kg_sched->skg_concurrency
163 #define kg_runq_threads		kg_sched->skg_runq_threads
164 #define kg_runtime		kg_sched->skg_runtime
165 #define kg_slptime		kg_sched->skg_slptime
166 
167 
168 static struct kse kse0;
169 static struct kg_sched kg_sched0;
170 
171 /*
172  * The priority is primarily determined by the interactivity score.  Thus, we
173  * give lower(better) priorities to kse groups that use less CPU.  The nice
174  * value is then directly added to this to allow nice to have some effect
175  * on latency.
176  *
177  * PRI_RANGE:	Total priority range for timeshare threads.
178  * PRI_NRESV:	Number of nice values.
179  * PRI_BASE:	The start of the dynamic range.
180  */
181 #define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
182 #define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
183 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
184 #define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
185 #define	SCHED_PRI_INTERACT(score)					\
186     ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
187 
188 /*
189  * These determine the interactivity of a process.
190  *
191  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
192  *		before throttling back.
193  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
194  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
195  * INTERACT_THRESH:	Threshhold for placement on the current runq.
196  */
197 #define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
198 #define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
199 #define	SCHED_INTERACT_MAX	(100)
200 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
201 #define	SCHED_INTERACT_THRESH	(30)
202 
203 /*
204  * These parameters and macros determine the size of the time slice that is
205  * granted to each thread.
206  *
207  * SLICE_MIN:	Minimum time slice granted, in units of ticks.
208  * SLICE_MAX:	Maximum time slice granted.
209  * SLICE_RANGE:	Range of available time slices scaled by hz.
210  * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
211  * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
212  * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
213  */
214 #define	SCHED_SLICE_MIN			(slice_min)
215 #define	SCHED_SLICE_MAX			(slice_max)
216 #define	SCHED_SLICE_INTERACTIVE		(slice_max)
217 #define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
218 #define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
219 #define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
220 #define	SCHED_SLICE_NICE(nice)						\
221     (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
222 
223 /*
224  * This macro determines whether or not the thread belongs on the current or
225  * next run queue.
226  */
227 #define	SCHED_INTERACTIVE(kg)						\
228     (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
229 #define	SCHED_CURR(kg, ke)						\
230     (ke->ke_thread->td_priority < kg->kg_user_pri ||			\
231     SCHED_INTERACTIVE(kg))
232 
233 /*
234  * Cpu percentage computation macros and defines.
235  *
236  * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
237  * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
238  */
239 
240 #define	SCHED_CPU_TIME	10
241 #define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
242 
243 /*
244  * kseq - per processor runqs and statistics.
245  */
246 struct kseq {
247 	struct runq	ksq_idle;		/* Queue of IDLE threads. */
248 	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
249 	struct runq	*ksq_next;		/* Next timeshare queue. */
250 	struct runq	*ksq_curr;		/* Current queue. */
251 	int		ksq_load_timeshare;	/* Load for timeshare. */
252 	int		ksq_load;		/* Aggregate load. */
253 	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
254 	short		ksq_nicemin;		/* Least nice. */
255 #ifdef SMP
256 	int			ksq_transferable;
257 	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
258 	struct kseq_group	*ksq_group;	/* Our processor group. */
259 	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
260 #else
261 	int		ksq_sysload;		/* For loadavg, !ITHD load. */
262 #endif
263 };
264 
265 #ifdef SMP
266 /*
267  * kseq groups are groups of processors which can cheaply share threads.  When
268  * one processor in the group goes idle it will check the runqs of the other
269  * processors in its group prior to halting and waiting for an interrupt.
270  * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
271  * In a numa environment we'd want an idle bitmap per group and a two tiered
272  * load balancer.
273  */
274 struct kseq_group {
275 	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
276 	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
277 	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
278 	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
279 	int	ksg_load;		/* Total load of this group. */
280 	int	ksg_transferable;	/* Transferable load of this group. */
281 	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
282 };
283 #endif
284 
285 /*
286  * One kse queue per processor.
287  */
288 #ifdef SMP
289 static cpumask_t kseq_idle;
290 static int ksg_maxid;
291 static struct kseq	kseq_cpu[MAXCPU];
292 static struct kseq_group kseq_groups[MAXCPU];
293 static int bal_tick;
294 static int gbal_tick;
295 
296 #define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
297 #define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
298 #define	KSEQ_ID(x)	((x) - kseq_cpu)
299 #define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
300 #else	/* !SMP */
301 static struct kseq	kseq_cpu;
302 
303 #define	KSEQ_SELF()	(&kseq_cpu)
304 #define	KSEQ_CPU(x)	(&kseq_cpu)
305 #endif
306 
307 static void	slot_fill(struct ksegrp *kg);
308 static struct kse *sched_choose(void);		/* XXX Should be thread * */
309 static void sched_add_internal(struct thread *td, int preemptive);
310 static void sched_slice(struct kse *ke);
311 static void sched_priority(struct ksegrp *kg);
312 static int sched_interact_score(struct ksegrp *kg);
313 static void sched_interact_update(struct ksegrp *kg);
314 static void sched_interact_fork(struct ksegrp *kg);
315 static void sched_pctcpu_update(struct kse *ke);
316 
317 /* Operations on per processor queues */
318 static struct kse * kseq_choose(struct kseq *kseq);
319 static void kseq_setup(struct kseq *kseq);
320 static void kseq_load_add(struct kseq *kseq, struct kse *ke);
321 static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
322 static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
323 static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
324 static void kseq_nice_add(struct kseq *kseq, int nice);
325 static void kseq_nice_rem(struct kseq *kseq, int nice);
326 void kseq_print(int cpu);
327 #ifdef SMP
328 static int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
329 static struct kse *runq_steal(struct runq *rq);
330 static void sched_balance(void);
331 static void sched_balance_groups(void);
332 static void sched_balance_group(struct kseq_group *ksg);
333 static void sched_balance_pair(struct kseq *high, struct kseq *low);
334 static void kseq_move(struct kseq *from, int cpu);
335 static int kseq_idled(struct kseq *kseq);
336 static void kseq_notify(struct kse *ke, int cpu);
337 static void kseq_assign(struct kseq *);
338 static struct kse *kseq_steal(struct kseq *kseq, int stealidle);
339 /*
340  * On P4 Xeons the round-robin interrupt delivery is broken.  As a result of
341  * this, we can't pin interrupts to the cpu that they were delivered to,
342  * otherwise all ithreads only run on CPU 0.
343  */
344 #ifdef __i386__
345 #define	KSE_CAN_MIGRATE(ke, class)					\
346     ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
347 #else /* !__i386__ */
348 #define	KSE_CAN_MIGRATE(ke, class)					\
349     ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
350     ((ke)->ke_flags & KEF_BOUND) == 0)
351 #endif /* !__i386__ */
352 #endif
353 
354 void
355 kseq_print(int cpu)
356 {
357 	struct kseq *kseq;
358 	int i;
359 
360 	kseq = KSEQ_CPU(cpu);
361 
362 	printf("kseq:\n");
363 	printf("\tload:           %d\n", kseq->ksq_load);
364 	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
365 #ifdef SMP
366 	printf("\tload transferable: %d\n", kseq->ksq_transferable);
367 #endif
368 	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
369 	printf("\tnice counts:\n");
370 	for (i = 0; i < SCHED_PRI_NRESV; i++)
371 		if (kseq->ksq_nice[i])
372 			printf("\t\t%d = %d\n",
373 			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
374 }
375 
376 static __inline void
377 kseq_runq_add(struct kseq *kseq, struct kse *ke)
378 {
379 #ifdef SMP
380 	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
381 		kseq->ksq_transferable++;
382 		kseq->ksq_group->ksg_transferable++;
383 		ke->ke_flags |= KEF_XFERABLE;
384 	}
385 #endif
386 	runq_add(ke->ke_runq, ke);
387 }
388 
389 static __inline void
390 kseq_runq_rem(struct kseq *kseq, struct kse *ke)
391 {
392 #ifdef SMP
393 	if (ke->ke_flags & KEF_XFERABLE) {
394 		kseq->ksq_transferable--;
395 		kseq->ksq_group->ksg_transferable--;
396 		ke->ke_flags &= ~KEF_XFERABLE;
397 	}
398 #endif
399 	runq_remove(ke->ke_runq, ke);
400 }
401 
402 static void
403 kseq_load_add(struct kseq *kseq, struct kse *ke)
404 {
405 	int class;
406 	mtx_assert(&sched_lock, MA_OWNED);
407 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
408 	if (class == PRI_TIMESHARE)
409 		kseq->ksq_load_timeshare++;
410 	kseq->ksq_load++;
411 	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
412 #ifdef SMP
413 		kseq->ksq_group->ksg_load++;
414 #else
415 		kseq->ksq_sysload++;
416 #endif
417 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
418 		CTR6(KTR_ULE,
419 		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
420 		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
421 		    ke->ke_proc->p_nice, kseq->ksq_nicemin);
422 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
423 		kseq_nice_add(kseq, ke->ke_proc->p_nice);
424 }
425 
426 static void
427 kseq_load_rem(struct kseq *kseq, struct kse *ke)
428 {
429 	int class;
430 	mtx_assert(&sched_lock, MA_OWNED);
431 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
432 	if (class == PRI_TIMESHARE)
433 		kseq->ksq_load_timeshare--;
434 	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
435 #ifdef SMP
436 		kseq->ksq_group->ksg_load--;
437 #else
438 		kseq->ksq_sysload--;
439 #endif
440 	kseq->ksq_load--;
441 	ke->ke_runq = NULL;
442 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
443 		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
444 }
445 
446 static void
447 kseq_nice_add(struct kseq *kseq, int nice)
448 {
449 	mtx_assert(&sched_lock, MA_OWNED);
450 	/* Normalize to zero. */
451 	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
452 	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
453 		kseq->ksq_nicemin = nice;
454 }
455 
456 static void
457 kseq_nice_rem(struct kseq *kseq, int nice)
458 {
459 	int n;
460 
461 	mtx_assert(&sched_lock, MA_OWNED);
462 	/* Normalize to zero. */
463 	n = nice + SCHED_PRI_NHALF;
464 	kseq->ksq_nice[n]--;
465 	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
466 
467 	/*
468 	 * If this wasn't the smallest nice value or there are more in
469 	 * this bucket we can just return.  Otherwise we have to recalculate
470 	 * the smallest nice.
471 	 */
472 	if (nice != kseq->ksq_nicemin ||
473 	    kseq->ksq_nice[n] != 0 ||
474 	    kseq->ksq_load_timeshare == 0)
475 		return;
476 
477 	for (; n < SCHED_PRI_NRESV; n++)
478 		if (kseq->ksq_nice[n]) {
479 			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
480 			return;
481 		}
482 }
483 
484 #ifdef SMP
485 /*
486  * sched_balance is a simple CPU load balancing algorithm.  It operates by
487  * finding the least loaded and most loaded cpu and equalizing their load
488  * by migrating some processes.
489  *
490  * Dealing only with two CPUs at a time has two advantages.  Firstly, most
491  * installations will only have 2 cpus.  Secondly, load balancing too much at
492  * once can have an unpleasant effect on the system.  The scheduler rarely has
493  * enough information to make perfect decisions.  So this algorithm chooses
494  * algorithm simplicity and more gradual effects on load in larger systems.
495  *
496  * It could be improved by considering the priorities and slices assigned to
497  * each task prior to balancing them.  There are many pathological cases with
498  * any approach and so the semi random algorithm below may work as well as any.
499  *
500  */
501 static void
502 sched_balance(void)
503 {
504 	struct kseq_group *high;
505 	struct kseq_group *low;
506 	struct kseq_group *ksg;
507 	int cnt;
508 	int i;
509 
510 	if (smp_started == 0)
511 		goto out;
512 	low = high = NULL;
513 	i = random() % (ksg_maxid + 1);
514 	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
515 		ksg = KSEQ_GROUP(i);
516 		/*
517 		 * Find the CPU with the highest load that has some
518 		 * threads to transfer.
519 		 */
520 		if ((high == NULL || ksg->ksg_load > high->ksg_load)
521 		    && ksg->ksg_transferable)
522 			high = ksg;
523 		if (low == NULL || ksg->ksg_load < low->ksg_load)
524 			low = ksg;
525 		if (++i > ksg_maxid)
526 			i = 0;
527 	}
528 	if (low != NULL && high != NULL && high != low)
529 		sched_balance_pair(LIST_FIRST(&high->ksg_members),
530 		    LIST_FIRST(&low->ksg_members));
531 out:
532 	bal_tick = ticks + (random() % (hz * 2));
533 }
534 
535 static void
536 sched_balance_groups(void)
537 {
538 	int i;
539 
540 	mtx_assert(&sched_lock, MA_OWNED);
541 	if (smp_started)
542 		for (i = 0; i <= ksg_maxid; i++)
543 			sched_balance_group(KSEQ_GROUP(i));
544 	gbal_tick = ticks + (random() % (hz * 2));
545 }
546 
547 static void
548 sched_balance_group(struct kseq_group *ksg)
549 {
550 	struct kseq *kseq;
551 	struct kseq *high;
552 	struct kseq *low;
553 	int load;
554 
555 	if (ksg->ksg_transferable == 0)
556 		return;
557 	low = NULL;
558 	high = NULL;
559 	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
560 		load = kseq->ksq_load;
561 		if (high == NULL || load > high->ksq_load)
562 			high = kseq;
563 		if (low == NULL || load < low->ksq_load)
564 			low = kseq;
565 	}
566 	if (high != NULL && low != NULL && high != low)
567 		sched_balance_pair(high, low);
568 }
569 
570 static void
571 sched_balance_pair(struct kseq *high, struct kseq *low)
572 {
573 	int transferable;
574 	int high_load;
575 	int low_load;
576 	int move;
577 	int diff;
578 	int i;
579 
580 	/*
581 	 * If we're transfering within a group we have to use this specific
582 	 * kseq's transferable count, otherwise we can steal from other members
583 	 * of the group.
584 	 */
585 	if (high->ksq_group == low->ksq_group) {
586 		transferable = high->ksq_transferable;
587 		high_load = high->ksq_load;
588 		low_load = low->ksq_load;
589 	} else {
590 		transferable = high->ksq_group->ksg_transferable;
591 		high_load = high->ksq_group->ksg_load;
592 		low_load = low->ksq_group->ksg_load;
593 	}
594 	if (transferable == 0)
595 		return;
596 	/*
597 	 * Determine what the imbalance is and then adjust that to how many
598 	 * kses we actually have to give up (transferable).
599 	 */
600 	diff = high_load - low_load;
601 	move = diff / 2;
602 	if (diff & 0x1)
603 		move++;
604 	move = min(move, transferable);
605 	for (i = 0; i < move; i++)
606 		kseq_move(high, KSEQ_ID(low));
607 	return;
608 }
609 
610 static void
611 kseq_move(struct kseq *from, int cpu)
612 {
613 	struct kseq *kseq;
614 	struct kseq *to;
615 	struct kse *ke;
616 
617 	kseq = from;
618 	to = KSEQ_CPU(cpu);
619 	ke = kseq_steal(kseq, 1);
620 	if (ke == NULL) {
621 		struct kseq_group *ksg;
622 
623 		ksg = kseq->ksq_group;
624 		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
625 			if (kseq == from || kseq->ksq_transferable == 0)
626 				continue;
627 			ke = kseq_steal(kseq, 1);
628 			break;
629 		}
630 		if (ke == NULL)
631 			panic("kseq_move: No KSEs available with a "
632 			    "transferable count of %d\n",
633 			    ksg->ksg_transferable);
634 	}
635 	if (kseq == to)
636 		return;
637 	ke->ke_state = KES_THREAD;
638 	kseq_runq_rem(kseq, ke);
639 	kseq_load_rem(kseq, ke);
640 	kseq_notify(ke, cpu);
641 }
642 
643 static int
644 kseq_idled(struct kseq *kseq)
645 {
646 	struct kseq_group *ksg;
647 	struct kseq *steal;
648 	struct kse *ke;
649 
650 	ksg = kseq->ksq_group;
651 	/*
652 	 * If we're in a cpu group, try and steal kses from another cpu in
653 	 * the group before idling.
654 	 */
655 	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
656 		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
657 			if (steal == kseq || steal->ksq_transferable == 0)
658 				continue;
659 			ke = kseq_steal(steal, 0);
660 			if (ke == NULL)
661 				continue;
662 			ke->ke_state = KES_THREAD;
663 			kseq_runq_rem(steal, ke);
664 			kseq_load_rem(steal, ke);
665 			ke->ke_cpu = PCPU_GET(cpuid);
666 			sched_add_internal(ke->ke_thread, 0);
667 			return (0);
668 		}
669 	}
670 	/*
671 	 * We only set the idled bit when all of the cpus in the group are
672 	 * idle.  Otherwise we could get into a situation where a KSE bounces
673 	 * back and forth between two idle cores on seperate physical CPUs.
674 	 */
675 	ksg->ksg_idlemask |= PCPU_GET(cpumask);
676 	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
677 		return (1);
678 	atomic_set_int(&kseq_idle, ksg->ksg_mask);
679 	return (1);
680 }
681 
682 static void
683 kseq_assign(struct kseq *kseq)
684 {
685 	struct kse *nke;
686 	struct kse *ke;
687 
688 	do {
689 		*(volatile struct kse **)&ke = kseq->ksq_assigned;
690 	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
691 	for (; ke != NULL; ke = nke) {
692 		nke = ke->ke_assign;
693 		ke->ke_flags &= ~KEF_ASSIGNED;
694 		sched_add_internal(ke->ke_thread, 0);
695 	}
696 }
697 
698 static void
699 kseq_notify(struct kse *ke, int cpu)
700 {
701 	struct kseq *kseq;
702 	struct thread *td;
703 	struct pcpu *pcpu;
704 	int prio;
705 
706 	ke->ke_cpu = cpu;
707 	ke->ke_flags |= KEF_ASSIGNED;
708 	prio = ke->ke_thread->td_priority;
709 
710 	kseq = KSEQ_CPU(cpu);
711 
712 	/*
713 	 * Place a KSE on another cpu's queue and force a resched.
714 	 */
715 	do {
716 		*(volatile struct kse **)&ke->ke_assign = kseq->ksq_assigned;
717 	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
718 	/*
719 	 * Without sched_lock we could lose a race where we set NEEDRESCHED
720 	 * on a thread that is switched out before the IPI is delivered.  This
721 	 * would lead us to miss the resched.  This will be a problem once
722 	 * sched_lock is pushed down.
723 	 */
724 	pcpu = pcpu_find(cpu);
725 	td = pcpu->pc_curthread;
726 	if (ke->ke_thread->td_priority < td->td_priority ||
727 	    td == pcpu->pc_idlethread) {
728 		td->td_flags |= TDF_NEEDRESCHED;
729 		ipi_selected(1 << cpu, IPI_AST);
730 	}
731 }
732 
733 static struct kse *
734 runq_steal(struct runq *rq)
735 {
736 	struct rqhead *rqh;
737 	struct rqbits *rqb;
738 	struct kse *ke;
739 	int word;
740 	int bit;
741 
742 	mtx_assert(&sched_lock, MA_OWNED);
743 	rqb = &rq->rq_status;
744 	for (word = 0; word < RQB_LEN; word++) {
745 		if (rqb->rqb_bits[word] == 0)
746 			continue;
747 		for (bit = 0; bit < RQB_BPW; bit++) {
748 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
749 				continue;
750 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
751 			TAILQ_FOREACH(ke, rqh, ke_procq) {
752 				if (KSE_CAN_MIGRATE(ke,
753 				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
754 					return (ke);
755 			}
756 		}
757 	}
758 	return (NULL);
759 }
760 
761 static struct kse *
762 kseq_steal(struct kseq *kseq, int stealidle)
763 {
764 	struct kse *ke;
765 
766 	/*
767 	 * Steal from next first to try to get a non-interactive task that
768 	 * may not have run for a while.
769 	 */
770 	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
771 		return (ke);
772 	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
773 		return (ke);
774 	if (stealidle)
775 		return (runq_steal(&kseq->ksq_idle));
776 	return (NULL);
777 }
778 
779 int
780 kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
781 {
782 	struct kseq_group *ksg;
783 	int cpu;
784 
785 	if (smp_started == 0)
786 		return (0);
787 	cpu = 0;
788 	/*
789 	 * If our load exceeds a certain threshold we should attempt to
790 	 * reassign this thread.  The first candidate is the cpu that
791 	 * originally ran the thread.  If it is idle, assign it there,
792 	 * otherwise, pick an idle cpu.
793 	 *
794 	 * The threshold at which we start to reassign kses has a large impact
795 	 * on the overall performance of the system.  Tuned too high and
796 	 * some CPUs may idle.  Too low and there will be excess migration
797 	 * and context switches.
798 	 */
799 	ksg = kseq->ksq_group;
800 	if (ksg->ksg_load > ksg->ksg_cpus && kseq_idle) {
801 		ksg = KSEQ_CPU(ke->ke_cpu)->ksq_group;
802 		if (kseq_idle & ksg->ksg_mask) {
803 			cpu = ffs(ksg->ksg_idlemask);
804 			if (cpu)
805 				goto migrate;
806 		}
807 		/*
808 		 * Multiple cpus could find this bit simultaneously
809 		 * but the race shouldn't be terrible.
810 		 */
811 		cpu = ffs(kseq_idle);
812 		if (cpu)
813 			goto migrate;
814 	}
815 	/*
816 	 * If another cpu in this group has idled, assign a thread over
817 	 * to them after checking to see if there are idled groups.
818 	 */
819 	ksg = kseq->ksq_group;
820 	if (ksg->ksg_idlemask) {
821 		cpu = ffs(ksg->ksg_idlemask);
822 		if (cpu)
823 			goto migrate;
824 	}
825 	/*
826 	 * No new CPU was found.
827 	 */
828 	return (0);
829 migrate:
830 	/*
831 	 * Now that we've found an idle CPU, migrate the thread.
832 	 */
833 	cpu--;
834 	ke->ke_runq = NULL;
835 	kseq_notify(ke, cpu);
836 
837 	return (1);
838 }
839 
840 #endif	/* SMP */
841 
842 /*
843  * Pick the highest priority task we have and return it.
844  */
845 
846 static struct kse *
847 kseq_choose(struct kseq *kseq)
848 {
849 	struct kse *ke;
850 	struct runq *swap;
851 
852 	mtx_assert(&sched_lock, MA_OWNED);
853 	swap = NULL;
854 
855 	for (;;) {
856 		ke = runq_choose(kseq->ksq_curr);
857 		if (ke == NULL) {
858 			/*
859 			 * We already swapped once and didn't get anywhere.
860 			 */
861 			if (swap)
862 				break;
863 			swap = kseq->ksq_curr;
864 			kseq->ksq_curr = kseq->ksq_next;
865 			kseq->ksq_next = swap;
866 			continue;
867 		}
868 		/*
869 		 * If we encounter a slice of 0 the kse is in a
870 		 * TIMESHARE kse group and its nice was too far out
871 		 * of the range that receives slices.
872 		 */
873 		if (ke->ke_slice == 0) {
874 			runq_remove(ke->ke_runq, ke);
875 			sched_slice(ke);
876 			ke->ke_runq = kseq->ksq_next;
877 			runq_add(ke->ke_runq, ke);
878 			continue;
879 		}
880 		return (ke);
881 	}
882 
883 	return (runq_choose(&kseq->ksq_idle));
884 }
885 
886 static void
887 kseq_setup(struct kseq *kseq)
888 {
889 	runq_init(&kseq->ksq_timeshare[0]);
890 	runq_init(&kseq->ksq_timeshare[1]);
891 	runq_init(&kseq->ksq_idle);
892 	kseq->ksq_curr = &kseq->ksq_timeshare[0];
893 	kseq->ksq_next = &kseq->ksq_timeshare[1];
894 	kseq->ksq_load = 0;
895 	kseq->ksq_load_timeshare = 0;
896 }
897 
898 static void
899 sched_setup(void *dummy)
900 {
901 #ifdef SMP
902 	int balance_groups;
903 	int i;
904 #endif
905 
906 	slice_min = (hz/100);	/* 10ms */
907 	slice_max = (hz/7);	/* ~140ms */
908 
909 #ifdef SMP
910 	balance_groups = 0;
911 	/*
912 	 * Initialize the kseqs.
913 	 */
914 	for (i = 0; i < MAXCPU; i++) {
915 		struct kseq *ksq;
916 
917 		ksq = &kseq_cpu[i];
918 		ksq->ksq_assigned = NULL;
919 		kseq_setup(&kseq_cpu[i]);
920 	}
921 	if (smp_topology == NULL) {
922 		struct kseq_group *ksg;
923 		struct kseq *ksq;
924 
925 		for (i = 0; i < MAXCPU; i++) {
926 			ksq = &kseq_cpu[i];
927 			ksg = &kseq_groups[i];
928 			/*
929 			 * Setup a kseq group with one member.
930 			 */
931 			ksq->ksq_transferable = 0;
932 			ksq->ksq_group = ksg;
933 			ksg->ksg_cpus = 1;
934 			ksg->ksg_idlemask = 0;
935 			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
936 			ksg->ksg_load = 0;
937 			ksg->ksg_transferable = 0;
938 			LIST_INIT(&ksg->ksg_members);
939 			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
940 		}
941 	} else {
942 		struct kseq_group *ksg;
943 		struct cpu_group *cg;
944 		int j;
945 
946 		for (i = 0; i < smp_topology->ct_count; i++) {
947 			cg = &smp_topology->ct_group[i];
948 			ksg = &kseq_groups[i];
949 			/*
950 			 * Initialize the group.
951 			 */
952 			ksg->ksg_idlemask = 0;
953 			ksg->ksg_load = 0;
954 			ksg->ksg_transferable = 0;
955 			ksg->ksg_cpus = cg->cg_count;
956 			ksg->ksg_cpumask = cg->cg_mask;
957 			LIST_INIT(&ksg->ksg_members);
958 			/*
959 			 * Find all of the group members and add them.
960 			 */
961 			for (j = 0; j < MAXCPU; j++) {
962 				if ((cg->cg_mask & (1 << j)) != 0) {
963 					if (ksg->ksg_mask == 0)
964 						ksg->ksg_mask = 1 << j;
965 					kseq_cpu[j].ksq_transferable = 0;
966 					kseq_cpu[j].ksq_group = ksg;
967 					LIST_INSERT_HEAD(&ksg->ksg_members,
968 					    &kseq_cpu[j], ksq_siblings);
969 				}
970 			}
971 			if (ksg->ksg_cpus > 1)
972 				balance_groups = 1;
973 		}
974 		ksg_maxid = smp_topology->ct_count - 1;
975 	}
976 	/*
977 	 * Stagger the group and global load balancer so they do not
978 	 * interfere with each other.
979 	 */
980 	bal_tick = ticks + hz;
981 	if (balance_groups)
982 		gbal_tick = ticks + (hz / 2);
983 #else
984 	kseq_setup(KSEQ_SELF());
985 #endif
986 	mtx_lock_spin(&sched_lock);
987 	kseq_load_add(KSEQ_SELF(), &kse0);
988 	mtx_unlock_spin(&sched_lock);
989 }
990 
991 /*
992  * Scale the scheduling priority according to the "interactivity" of this
993  * process.
994  */
995 static void
996 sched_priority(struct ksegrp *kg)
997 {
998 	int pri;
999 
1000 	if (kg->kg_pri_class != PRI_TIMESHARE)
1001 		return;
1002 
1003 	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
1004 	pri += SCHED_PRI_BASE;
1005 	pri += kg->kg_proc->p_nice;
1006 
1007 	if (pri > PRI_MAX_TIMESHARE)
1008 		pri = PRI_MAX_TIMESHARE;
1009 	else if (pri < PRI_MIN_TIMESHARE)
1010 		pri = PRI_MIN_TIMESHARE;
1011 
1012 	kg->kg_user_pri = pri;
1013 
1014 	return;
1015 }
1016 
1017 /*
1018  * Calculate a time slice based on the properties of the kseg and the runq
1019  * that we're on.  This is only for PRI_TIMESHARE ksegrps.
1020  */
1021 static void
1022 sched_slice(struct kse *ke)
1023 {
1024 	struct kseq *kseq;
1025 	struct ksegrp *kg;
1026 
1027 	kg = ke->ke_ksegrp;
1028 	kseq = KSEQ_CPU(ke->ke_cpu);
1029 
1030 	/*
1031 	 * Rationale:
1032 	 * KSEs in interactive ksegs get a minimal slice so that we
1033 	 * quickly notice if it abuses its advantage.
1034 	 *
1035 	 * KSEs in non-interactive ksegs are assigned a slice that is
1036 	 * based on the ksegs nice value relative to the least nice kseg
1037 	 * on the run queue for this cpu.
1038 	 *
1039 	 * If the KSE is less nice than all others it gets the maximum
1040 	 * slice and other KSEs will adjust their slice relative to
1041 	 * this when they first expire.
1042 	 *
1043 	 * There is 20 point window that starts relative to the least
1044 	 * nice kse on the run queue.  Slice size is determined by
1045 	 * the kse distance from the last nice ksegrp.
1046 	 *
1047 	 * If the kse is outside of the window it will get no slice
1048 	 * and will be reevaluated each time it is selected on the
1049 	 * run queue.  The exception to this is nice 0 ksegs when
1050 	 * a nice -20 is running.  They are always granted a minimum
1051 	 * slice.
1052 	 */
1053 	if (!SCHED_INTERACTIVE(kg)) {
1054 		int nice;
1055 
1056 		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
1057 		if (kseq->ksq_load_timeshare == 0 ||
1058 		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
1059 			ke->ke_slice = SCHED_SLICE_MAX;
1060 		else if (nice <= SCHED_SLICE_NTHRESH)
1061 			ke->ke_slice = SCHED_SLICE_NICE(nice);
1062 		else if (kg->kg_proc->p_nice == 0)
1063 			ke->ke_slice = SCHED_SLICE_MIN;
1064 		else
1065 			ke->ke_slice = 0;
1066 	} else
1067 		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
1068 
1069 	CTR6(KTR_ULE,
1070 	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
1071 	    ke, ke->ke_slice, kg->kg_proc->p_nice, kseq->ksq_nicemin,
1072 	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
1073 
1074 	return;
1075 }
1076 
1077 /*
1078  * This routine enforces a maximum limit on the amount of scheduling history
1079  * kept.  It is called after either the slptime or runtime is adjusted.
1080  * This routine will not operate correctly when slp or run times have been
1081  * adjusted to more than double their maximum.
1082  */
1083 static void
1084 sched_interact_update(struct ksegrp *kg)
1085 {
1086 	int sum;
1087 
1088 	sum = kg->kg_runtime + kg->kg_slptime;
1089 	if (sum < SCHED_SLP_RUN_MAX)
1090 		return;
1091 	/*
1092 	 * If we have exceeded by more than 1/5th then the algorithm below
1093 	 * will not bring us back into range.  Dividing by two here forces
1094 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1095 	 */
1096 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1097 		kg->kg_runtime /= 2;
1098 		kg->kg_slptime /= 2;
1099 		return;
1100 	}
1101 	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1102 	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1103 }
1104 
1105 static void
1106 sched_interact_fork(struct ksegrp *kg)
1107 {
1108 	int ratio;
1109 	int sum;
1110 
1111 	sum = kg->kg_runtime + kg->kg_slptime;
1112 	if (sum > SCHED_SLP_RUN_FORK) {
1113 		ratio = sum / SCHED_SLP_RUN_FORK;
1114 		kg->kg_runtime /= ratio;
1115 		kg->kg_slptime /= ratio;
1116 	}
1117 }
1118 
1119 static int
1120 sched_interact_score(struct ksegrp *kg)
1121 {
1122 	int div;
1123 
1124 	if (kg->kg_runtime > kg->kg_slptime) {
1125 		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1126 		return (SCHED_INTERACT_HALF +
1127 		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1128 	} if (kg->kg_slptime > kg->kg_runtime) {
1129 		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1130 		return (kg->kg_runtime / div);
1131 	}
1132 
1133 	/*
1134 	 * This can happen if slptime and runtime are 0.
1135 	 */
1136 	return (0);
1137 
1138 }
1139 
1140 /*
1141  * Very early in the boot some setup of scheduler-specific
1142  * parts of proc0 and of soem scheduler resources needs to be done.
1143  * Called from:
1144  *  proc0_init()
1145  */
1146 void
1147 schedinit(void)
1148 {
1149 	/*
1150 	 * Set up the scheduler specific parts of proc0.
1151 	 */
1152 	ksegrp0.kg_sched = &kg_sched0;
1153 	proc0.p_sched = NULL; /* XXX */
1154 	thread0.td_kse = &kse0;
1155 	kse0.ke_thread = &thread0;
1156 	kse0.ke_oncpu = NOCPU; /* wrong.. can we use PCPU(cpuid) yet? */
1157 	kse0.ke_state = KES_THREAD;
1158 	kg_sched0.skg_concurrency = 1;
1159 	kg_sched0.skg_avail_opennings = 0; /* we are already running */
1160 }
1161 
1162 /*
1163  * This is only somewhat accurate since given many processes of the same
1164  * priority they will switch when their slices run out, which will be
1165  * at most SCHED_SLICE_MAX.
1166  */
1167 int
1168 sched_rr_interval(void)
1169 {
1170 	return (SCHED_SLICE_MAX);
1171 }
1172 
1173 static void
1174 sched_pctcpu_update(struct kse *ke)
1175 {
1176 	/*
1177 	 * Adjust counters and watermark for pctcpu calc.
1178 	 */
1179 	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1180 		/*
1181 		 * Shift the tick count out so that the divide doesn't
1182 		 * round away our results.
1183 		 */
1184 		ke->ke_ticks <<= 10;
1185 		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1186 			    SCHED_CPU_TICKS;
1187 		ke->ke_ticks >>= 10;
1188 	} else
1189 		ke->ke_ticks = 0;
1190 	ke->ke_ltick = ticks;
1191 	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1192 }
1193 
1194 void
1195 sched_prio(struct thread *td, u_char prio)
1196 {
1197 	struct kse *ke;
1198 
1199 	ke = td->td_kse;
1200 	mtx_assert(&sched_lock, MA_OWNED);
1201 	if (TD_ON_RUNQ(td)) {
1202 		/*
1203 		 * If the priority has been elevated due to priority
1204 		 * propagation, we may have to move ourselves to a new
1205 		 * queue.  We still call adjustrunqueue below in case kse
1206 		 * needs to fix things up.
1207 		 */
1208 		if (prio < td->td_priority && ke &&
1209 		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1210 		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1211 			runq_remove(ke->ke_runq, ke);
1212 			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1213 			runq_add(ke->ke_runq, ke);
1214 		}
1215 		/*
1216 		 * Hold this kse on this cpu so that sched_prio() doesn't
1217 		 * cause excessive migration.  We only want migration to
1218 		 * happen as the result of a wakeup.
1219 		 */
1220 		ke->ke_flags |= KEF_HOLD;
1221 		adjustrunqueue(td, prio);
1222 	} else
1223 		td->td_priority = prio;
1224 }
1225 
1226 void
1227 sched_switch(struct thread *td, struct thread *newtd, int flags)
1228 {
1229 	struct kse *ke;
1230 
1231 	mtx_assert(&sched_lock, MA_OWNED);
1232 
1233 	ke = td->td_kse;
1234 
1235 	td->td_lastcpu = td->td_oncpu;
1236 	td->td_oncpu = NOCPU;
1237 	td->td_flags &= ~TDF_NEEDRESCHED;
1238 	td->td_pflags &= ~TDP_OWEPREEMPT;
1239 
1240 	/*
1241 	 * If we bring in a thread,
1242 	 * then account for it as if it had been added to the run queue and then chosen.
1243 	 */
1244 	if (newtd) {
1245 		newtd->td_ksegrp->kg_avail_opennings--;
1246 		newtd->td_kse->ke_flags |= KEF_DIDRUN;
1247         	TD_SET_RUNNING(newtd);
1248 	}
1249 	/*
1250 	 * If the KSE has been assigned it may be in the process of switching
1251 	 * to the new cpu.  This is the case in sched_bind().
1252 	 */
1253 	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1254 		if (td == PCPU_GET(idlethread)) {
1255 			TD_SET_CAN_RUN(td);
1256 		} else {
1257 			/* We are ending our run so make our slot available again */
1258 			td->td_ksegrp->kg_avail_opennings++;
1259 			if (TD_IS_RUNNING(td)) {
1260 				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1261 				/*
1262 				 * Don't allow the thread to migrate
1263 				 * from a preemption.
1264 				 */
1265 				ke->ke_flags |= KEF_HOLD;
1266 				setrunqueue(td, SRQ_OURSELF|SRQ_YIELDING);
1267 			} else {
1268 				if (ke->ke_runq) {
1269 					kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1270 				} else if ((td->td_flags & TDF_IDLETD) == 0)
1271 					kdb_backtrace();
1272 				/*
1273 				 * We will not be on the run queue.
1274 				 * So we must be sleeping or similar.
1275 				 */
1276 				if (td->td_proc->p_flag & P_HADTHREADS)
1277 					slot_fill(td->td_ksegrp);
1278 			}
1279 		}
1280 	}
1281 	if (newtd != NULL)
1282 		kseq_load_add(KSEQ_SELF(), newtd->td_kse);
1283 	else
1284 		newtd = choosethread();
1285 	if (td != newtd)
1286 		cpu_switch(td, newtd);
1287 	sched_lock.mtx_lock = (uintptr_t)td;
1288 
1289 	td->td_oncpu = PCPU_GET(cpuid);
1290 }
1291 
1292 void
1293 sched_nice(struct proc *p, int nice)
1294 {
1295 	struct ksegrp *kg;
1296 	struct kse *ke;
1297 	struct thread *td;
1298 	struct kseq *kseq;
1299 
1300 	PROC_LOCK_ASSERT(p, MA_OWNED);
1301 	mtx_assert(&sched_lock, MA_OWNED);
1302 	/*
1303 	 * We need to adjust the nice counts for running KSEs.
1304 	 */
1305 	FOREACH_KSEGRP_IN_PROC(p, kg) {
1306 		if (kg->kg_pri_class == PRI_TIMESHARE) {
1307 			FOREACH_THREAD_IN_GROUP(kg, td) {
1308 				ke = td->td_kse;
1309 				if (ke->ke_runq == NULL)
1310 					continue;
1311 				kseq = KSEQ_CPU(ke->ke_cpu);
1312 				kseq_nice_rem(kseq, p->p_nice);
1313 				kseq_nice_add(kseq, nice);
1314 			}
1315 		}
1316 	}
1317 	p->p_nice = nice;
1318 	FOREACH_KSEGRP_IN_PROC(p, kg) {
1319 		sched_priority(kg);
1320 		FOREACH_THREAD_IN_GROUP(kg, td)
1321 			td->td_flags |= TDF_NEEDRESCHED;
1322 	}
1323 }
1324 
1325 void
1326 sched_sleep(struct thread *td)
1327 {
1328 	mtx_assert(&sched_lock, MA_OWNED);
1329 
1330 	td->td_slptime = ticks;
1331 	td->td_base_pri = td->td_priority;
1332 
1333 	CTR2(KTR_ULE, "sleep thread %p (tick: %d)",
1334 	    td, td->td_slptime);
1335 }
1336 
1337 void
1338 sched_wakeup(struct thread *td)
1339 {
1340 	mtx_assert(&sched_lock, MA_OWNED);
1341 
1342 	/*
1343 	 * Let the kseg know how long we slept for.  This is because process
1344 	 * interactivity behavior is modeled in the kseg.
1345 	 */
1346 	if (td->td_slptime) {
1347 		struct ksegrp *kg;
1348 		int hzticks;
1349 
1350 		kg = td->td_ksegrp;
1351 		hzticks = (ticks - td->td_slptime) << 10;
1352 		if (hzticks >= SCHED_SLP_RUN_MAX) {
1353 			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1354 			kg->kg_runtime = 1;
1355 		} else {
1356 			kg->kg_slptime += hzticks;
1357 			sched_interact_update(kg);
1358 		}
1359 		sched_priority(kg);
1360 		sched_slice(td->td_kse);
1361 		CTR2(KTR_ULE, "wakeup thread %p (%d ticks)", td, hzticks);
1362 		td->td_slptime = 0;
1363 	}
1364 	setrunqueue(td, SRQ_BORING);
1365 }
1366 
1367 /*
1368  * Penalize the parent for creating a new child and initialize the child's
1369  * priority.
1370  */
1371 void
1372 sched_fork(struct thread *td, struct thread *childtd)
1373 {
1374 
1375 	mtx_assert(&sched_lock, MA_OWNED);
1376 
1377 	sched_fork_ksegrp(td, childtd->td_ksegrp);
1378 	sched_fork_thread(td, childtd);
1379 }
1380 
1381 void
1382 sched_fork_ksegrp(struct thread *td, struct ksegrp *child)
1383 {
1384 	struct ksegrp *kg = td->td_ksegrp;
1385 	mtx_assert(&sched_lock, MA_OWNED);
1386 
1387 	child->kg_slptime = kg->kg_slptime;
1388 	child->kg_runtime = kg->kg_runtime;
1389 	child->kg_user_pri = kg->kg_user_pri;
1390 	sched_interact_fork(child);
1391 	kg->kg_runtime += tickincr << 10;
1392 	sched_interact_update(kg);
1393 
1394 	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1395 	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1396 	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1397 }
1398 
1399 void
1400 sched_fork_thread(struct thread *td, struct thread *child)
1401 {
1402 	struct kse *ke;
1403 	struct kse *ke2;
1404 
1405 	sched_newthread(child);
1406 	ke = td->td_kse;
1407 	ke2 = child->td_kse;
1408 	ke2->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1409 	ke2->ke_cpu = ke->ke_cpu;
1410 	ke2->ke_runq = NULL;
1411 
1412 	/* Grab our parents cpu estimation information. */
1413 	ke2->ke_ticks = ke->ke_ticks;
1414 	ke2->ke_ltick = ke->ke_ltick;
1415 	ke2->ke_ftick = ke->ke_ftick;
1416 }
1417 
1418 void
1419 sched_class(struct ksegrp *kg, int class)
1420 {
1421 	struct kseq *kseq;
1422 	struct kse *ke;
1423 	struct thread *td;
1424 	int nclass;
1425 	int oclass;
1426 
1427 	mtx_assert(&sched_lock, MA_OWNED);
1428 	if (kg->kg_pri_class == class)
1429 		return;
1430 
1431 	nclass = PRI_BASE(class);
1432 	oclass = PRI_BASE(kg->kg_pri_class);
1433 	FOREACH_THREAD_IN_GROUP(kg, td) {
1434 		ke = td->td_kse;
1435 		if (ke->ke_state != KES_ONRUNQ &&
1436 		    ke->ke_state != KES_THREAD)
1437 			continue;
1438 		kseq = KSEQ_CPU(ke->ke_cpu);
1439 
1440 #ifdef SMP
1441 		/*
1442 		 * On SMP if we're on the RUNQ we must adjust the transferable
1443 		 * count because could be changing to or from an interrupt
1444 		 * class.
1445 		 */
1446 		if (ke->ke_state == KES_ONRUNQ) {
1447 			if (KSE_CAN_MIGRATE(ke, oclass)) {
1448 				kseq->ksq_transferable--;
1449 				kseq->ksq_group->ksg_transferable--;
1450 			}
1451 			if (KSE_CAN_MIGRATE(ke, nclass)) {
1452 				kseq->ksq_transferable++;
1453 				kseq->ksq_group->ksg_transferable++;
1454 			}
1455 		}
1456 #endif
1457 		if (oclass == PRI_TIMESHARE) {
1458 			kseq->ksq_load_timeshare--;
1459 			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1460 		}
1461 		if (nclass == PRI_TIMESHARE) {
1462 			kseq->ksq_load_timeshare++;
1463 			kseq_nice_add(kseq, kg->kg_proc->p_nice);
1464 		}
1465 	}
1466 
1467 	kg->kg_pri_class = class;
1468 }
1469 
1470 /*
1471  * Return some of the child's priority and interactivity to the parent.
1472  * Avoid using sched_exit_thread to avoid having to decide which
1473  * thread in the parent gets the honour since it isn't used.
1474  */
1475 void
1476 sched_exit(struct proc *p, struct thread *childtd)
1477 {
1478 	mtx_assert(&sched_lock, MA_OWNED);
1479 	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), childtd);
1480 	kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse);
1481 }
1482 
1483 void
1484 sched_exit_ksegrp(struct ksegrp *kg, struct thread *td)
1485 {
1486 	/* kg->kg_slptime += td->td_ksegrp->kg_slptime; */
1487 	kg->kg_runtime += td->td_ksegrp->kg_runtime;
1488 	sched_interact_update(kg);
1489 }
1490 
1491 void
1492 sched_exit_thread(struct thread *td, struct thread *childtd)
1493 {
1494 	kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse);
1495 }
1496 
1497 void
1498 sched_clock(struct thread *td)
1499 {
1500 	struct kseq *kseq;
1501 	struct ksegrp *kg;
1502 	struct kse *ke;
1503 
1504 	mtx_assert(&sched_lock, MA_OWNED);
1505 	kseq = KSEQ_SELF();
1506 #ifdef SMP
1507 	if (ticks == bal_tick)
1508 		sched_balance();
1509 	if (ticks == gbal_tick)
1510 		sched_balance_groups();
1511 	/*
1512 	 * We could have been assigned a non real-time thread without an
1513 	 * IPI.
1514 	 */
1515 	if (kseq->ksq_assigned)
1516 		kseq_assign(kseq);	/* Potentially sets NEEDRESCHED */
1517 #endif
1518 	/*
1519 	 * sched_setup() apparently happens prior to stathz being set.  We
1520 	 * need to resolve the timers earlier in the boot so we can avoid
1521 	 * calculating this here.
1522 	 */
1523 	if (realstathz == 0) {
1524 		realstathz = stathz ? stathz : hz;
1525 		tickincr = hz / realstathz;
1526 		/*
1527 		 * XXX This does not work for values of stathz that are much
1528 		 * larger than hz.
1529 		 */
1530 		if (tickincr == 0)
1531 			tickincr = 1;
1532 	}
1533 
1534 	ke = td->td_kse;
1535 	kg = ke->ke_ksegrp;
1536 
1537 	/* Adjust ticks for pctcpu */
1538 	ke->ke_ticks++;
1539 	ke->ke_ltick = ticks;
1540 
1541 	/* Go up to one second beyond our max and then trim back down */
1542 	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1543 		sched_pctcpu_update(ke);
1544 
1545 	if (td->td_flags & TDF_IDLETD)
1546 		return;
1547 
1548 	CTR4(KTR_ULE, "Tick thread %p (slice: %d, slptime: %d, runtime: %d)",
1549 	    td, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1550 	/*
1551 	 * We only do slicing code for TIMESHARE ksegrps.
1552 	 */
1553 	if (kg->kg_pri_class != PRI_TIMESHARE)
1554 		return;
1555 	/*
1556 	 * We used a tick charge it to the ksegrp so that we can compute our
1557 	 * interactivity.
1558 	 */
1559 	kg->kg_runtime += tickincr << 10;
1560 	sched_interact_update(kg);
1561 
1562 	/*
1563 	 * We used up one time slice.
1564 	 */
1565 	if (--ke->ke_slice > 0)
1566 		return;
1567 	/*
1568 	 * We're out of time, recompute priorities and requeue.
1569 	 */
1570 	kseq_load_rem(kseq, ke);
1571 	sched_priority(kg);
1572 	sched_slice(ke);
1573 	if (SCHED_CURR(kg, ke))
1574 		ke->ke_runq = kseq->ksq_curr;
1575 	else
1576 		ke->ke_runq = kseq->ksq_next;
1577 	kseq_load_add(kseq, ke);
1578 	td->td_flags |= TDF_NEEDRESCHED;
1579 }
1580 
1581 int
1582 sched_runnable(void)
1583 {
1584 	struct kseq *kseq;
1585 	int load;
1586 
1587 	load = 1;
1588 
1589 	kseq = KSEQ_SELF();
1590 #ifdef SMP
1591 	if (kseq->ksq_assigned) {
1592 		mtx_lock_spin(&sched_lock);
1593 		kseq_assign(kseq);
1594 		mtx_unlock_spin(&sched_lock);
1595 	}
1596 #endif
1597 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1598 		if (kseq->ksq_load > 0)
1599 			goto out;
1600 	} else
1601 		if (kseq->ksq_load - 1 > 0)
1602 			goto out;
1603 	load = 0;
1604 out:
1605 	return (load);
1606 }
1607 
1608 void
1609 sched_userret(struct thread *td)
1610 {
1611 	struct ksegrp *kg;
1612 
1613 	kg = td->td_ksegrp;
1614 
1615 	if (td->td_priority != kg->kg_user_pri) {
1616 		mtx_lock_spin(&sched_lock);
1617 		td->td_priority = kg->kg_user_pri;
1618 		mtx_unlock_spin(&sched_lock);
1619 	}
1620 }
1621 
1622 struct kse *
1623 sched_choose(void)
1624 {
1625 	struct kseq *kseq;
1626 	struct kse *ke;
1627 
1628 	mtx_assert(&sched_lock, MA_OWNED);
1629 	kseq = KSEQ_SELF();
1630 #ifdef SMP
1631 restart:
1632 	if (kseq->ksq_assigned)
1633 		kseq_assign(kseq);
1634 #endif
1635 	ke = kseq_choose(kseq);
1636 	if (ke) {
1637 #ifdef SMP
1638 		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1639 			if (kseq_idled(kseq) == 0)
1640 				goto restart;
1641 #endif
1642 		kseq_runq_rem(kseq, ke);
1643 		ke->ke_state = KES_THREAD;
1644 
1645 		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1646 			CTR4(KTR_ULE, "Run thread %p from %p (slice: %d, pri: %d)",
1647 			    ke->ke_thread, ke->ke_runq, ke->ke_slice,
1648 			    ke->ke_thread->td_priority);
1649 		}
1650 		return (ke);
1651 	}
1652 #ifdef SMP
1653 	if (kseq_idled(kseq) == 0)
1654 		goto restart;
1655 #endif
1656 	return (NULL);
1657 }
1658 
1659 void
1660 sched_add(struct thread *td, int flags)
1661 {
1662 
1663 	/* let jeff work out how to map the flags better */
1664 	/* I'm open to suggestions */
1665 	if (flags & SRQ_YIELDING)
1666 		/*
1667 		 * Preempting during switching can be bad JUJU
1668 		 * especially for KSE processes
1669 		 */
1670 		sched_add_internal(td, 0);
1671 	else
1672 		sched_add_internal(td, 1);
1673 }
1674 
1675 static void
1676 sched_add_internal(struct thread *td, int preemptive)
1677 {
1678 	struct kseq *kseq;
1679 	struct ksegrp *kg;
1680 	struct kse *ke;
1681 #ifdef SMP
1682 	int canmigrate;
1683 #endif
1684 	int class;
1685 
1686 	mtx_assert(&sched_lock, MA_OWNED);
1687 	ke = td->td_kse;
1688 	kg = td->td_ksegrp;
1689 	if (ke->ke_flags & KEF_ASSIGNED)
1690 		return;
1691 	kseq = KSEQ_SELF();
1692 	KASSERT(ke->ke_state != KES_ONRUNQ,
1693 	    ("sched_add: kse %p (%s) already in run queue", ke,
1694 	    ke->ke_proc->p_comm));
1695 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1696 	    ("sched_add: process swapped out"));
1697 	KASSERT(ke->ke_runq == NULL,
1698 	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1699 
1700 	class = PRI_BASE(kg->kg_pri_class);
1701 	switch (class) {
1702 	case PRI_ITHD:
1703 	case PRI_REALTIME:
1704 		ke->ke_runq = kseq->ksq_curr;
1705 		ke->ke_slice = SCHED_SLICE_MAX;
1706 		ke->ke_cpu = PCPU_GET(cpuid);
1707 		break;
1708 	case PRI_TIMESHARE:
1709 		if (SCHED_CURR(kg, ke))
1710 			ke->ke_runq = kseq->ksq_curr;
1711 		else
1712 			ke->ke_runq = kseq->ksq_next;
1713 		break;
1714 	case PRI_IDLE:
1715 		/*
1716 		 * This is for priority prop.
1717 		 */
1718 		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1719 			ke->ke_runq = kseq->ksq_curr;
1720 		else
1721 			ke->ke_runq = &kseq->ksq_idle;
1722 		ke->ke_slice = SCHED_SLICE_MIN;
1723 		break;
1724 	default:
1725 		panic("Unknown pri class.");
1726 		break;
1727 	}
1728 #ifdef SMP
1729 	/*
1730 	 * Don't migrate running threads here.  Force the long term balancer
1731 	 * to do it.
1732 	 */
1733 	canmigrate = KSE_CAN_MIGRATE(ke, class);
1734 	if (ke->ke_flags & KEF_HOLD) {
1735 		ke->ke_flags &= ~KEF_HOLD;
1736 		canmigrate = 0;
1737 	}
1738 	/*
1739 	 * If this thread is pinned or bound, notify the target cpu.
1740 	 */
1741 	if (!canmigrate && ke->ke_cpu != PCPU_GET(cpuid) ) {
1742 		ke->ke_runq = NULL;
1743 		kseq_notify(ke, ke->ke_cpu);
1744 		return;
1745 	}
1746 	/*
1747 	 * If we had been idle, clear our bit in the group and potentially
1748 	 * the global bitmap.  If not, see if we should transfer this thread.
1749 	 */
1750 	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1751 	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1752 		/*
1753 		 * Check to see if our group is unidling, and if so, remove it
1754 		 * from the global idle mask.
1755 		 */
1756 		if (kseq->ksq_group->ksg_idlemask ==
1757 		    kseq->ksq_group->ksg_cpumask)
1758 			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1759 		/*
1760 		 * Now remove ourselves from the group specific idle mask.
1761 		 */
1762 		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1763 	} else if (kseq->ksq_load > 1 && canmigrate)
1764 		if (kseq_transfer(kseq, ke, class))
1765 			return;
1766 	ke->ke_cpu = PCPU_GET(cpuid);
1767 #endif
1768 	/*
1769 	 * XXX With preemption this is not necessary.
1770 	 */
1771 	if (td->td_priority < curthread->td_priority &&
1772 	    ke->ke_runq == kseq->ksq_curr)
1773 		curthread->td_flags |= TDF_NEEDRESCHED;
1774 	if (preemptive && maybe_preempt(td))
1775 		return;
1776 	td->td_ksegrp->kg_avail_opennings--;
1777 	ke->ke_ksegrp->kg_runq_threads++;
1778 	ke->ke_state = KES_ONRUNQ;
1779 
1780 	kseq_runq_add(kseq, ke);
1781 	kseq_load_add(kseq, ke);
1782 }
1783 
1784 void
1785 sched_rem(struct thread *td)
1786 {
1787 	struct kseq *kseq;
1788 	struct kse *ke;
1789 
1790 	ke = td->td_kse;
1791 	/*
1792 	 * It is safe to just return here because sched_rem() is only ever
1793 	 * used in places where we're immediately going to add the
1794 	 * kse back on again.  In that case it'll be added with the correct
1795 	 * thread and priority when the caller drops the sched_lock.
1796 	 */
1797 	if (ke->ke_flags & KEF_ASSIGNED)
1798 		return;
1799 	mtx_assert(&sched_lock, MA_OWNED);
1800 	KASSERT((ke->ke_state == KES_ONRUNQ),
1801 	    ("sched_rem: KSE not on run queue"));
1802 
1803 	ke->ke_state = KES_THREAD;
1804 	td->td_ksegrp->kg_avail_opennings++;
1805 	ke->ke_ksegrp->kg_runq_threads--;
1806 	kseq = KSEQ_CPU(ke->ke_cpu);
1807 	kseq_runq_rem(kseq, ke);
1808 	kseq_load_rem(kseq, ke);
1809 }
1810 
1811 fixpt_t
1812 sched_pctcpu(struct thread *td)
1813 {
1814 	fixpt_t pctcpu;
1815 	struct kse *ke;
1816 
1817 	pctcpu = 0;
1818 	ke = td->td_kse;
1819 	if (ke == NULL)
1820 		return (0);
1821 
1822 	mtx_lock_spin(&sched_lock);
1823 	if (ke->ke_ticks) {
1824 		int rtick;
1825 
1826 		/*
1827 		 * Don't update more frequently than twice a second.  Allowing
1828 		 * this causes the cpu usage to decay away too quickly due to
1829 		 * rounding errors.
1830 		 */
1831 		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1832 		    ke->ke_ltick < (ticks - (hz / 2)))
1833 			sched_pctcpu_update(ke);
1834 		/* How many rtick per second ? */
1835 		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1836 		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1837 	}
1838 
1839 	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1840 	mtx_unlock_spin(&sched_lock);
1841 
1842 	return (pctcpu);
1843 }
1844 
1845 void
1846 sched_bind(struct thread *td, int cpu)
1847 {
1848 	struct kse *ke;
1849 
1850 	mtx_assert(&sched_lock, MA_OWNED);
1851 	ke = td->td_kse;
1852 	ke->ke_flags |= KEF_BOUND;
1853 #ifdef SMP
1854 	if (PCPU_GET(cpuid) == cpu)
1855 		return;
1856 	/* sched_rem without the runq_remove */
1857 	ke->ke_state = KES_THREAD;
1858 	ke->ke_ksegrp->kg_runq_threads--;
1859 	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1860 	kseq_notify(ke, cpu);
1861 	/* When we return from mi_switch we'll be on the correct cpu. */
1862 	mi_switch(SW_VOL, NULL);
1863 #endif
1864 }
1865 
1866 void
1867 sched_unbind(struct thread *td)
1868 {
1869 	mtx_assert(&sched_lock, MA_OWNED);
1870 	td->td_kse->ke_flags &= ~KEF_BOUND;
1871 }
1872 
1873 int
1874 sched_load(void)
1875 {
1876 #ifdef SMP
1877 	int total;
1878 	int i;
1879 
1880 	total = 0;
1881 	for (i = 0; i <= ksg_maxid; i++)
1882 		total += KSEQ_GROUP(i)->ksg_load;
1883 	return (total);
1884 #else
1885 	return (KSEQ_SELF()->ksq_sysload);
1886 #endif
1887 }
1888 
1889 int
1890 sched_sizeof_ksegrp(void)
1891 {
1892 	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1893 }
1894 
1895 int
1896 sched_sizeof_proc(void)
1897 {
1898 	return (sizeof(struct proc));
1899 }
1900 
1901 int
1902 sched_sizeof_thread(void)
1903 {
1904 	return (sizeof(struct thread) + sizeof(struct td_sched));
1905 }
1906 #define KERN_SWITCH_INCLUDE 1
1907 #include "kern/kern_switch.c"
1908