1 /*- 2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* 28 * This file implements the ULE scheduler. ULE supports independent CPU 29 * run queues and fine grain locking. It has superior interactive 30 * performance under load even on uni-processor systems. 31 * 32 * etymology: 33 * ULE is the last three letters in schedule. It owes its name to a 34 * generic user created for a scheduling system by Paul Mikesell at 35 * Isilon Systems and a general lack of creativity on the part of the author. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_hwpmc_hooks.h" 42 #include "opt_kdtrace.h" 43 #include "opt_sched.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/kdb.h> 48 #include <sys/kernel.h> 49 #include <sys/ktr.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/proc.h> 53 #include <sys/resource.h> 54 #include <sys/resourcevar.h> 55 #include <sys/sched.h> 56 #include <sys/smp.h> 57 #include <sys/sx.h> 58 #include <sys/sysctl.h> 59 #include <sys/sysproto.h> 60 #include <sys/turnstile.h> 61 #include <sys/umtx.h> 62 #include <sys/vmmeter.h> 63 #include <sys/cpuset.h> 64 #include <sys/sbuf.h> 65 #ifdef KTRACE 66 #include <sys/uio.h> 67 #include <sys/ktrace.h> 68 #endif 69 70 #ifdef HWPMC_HOOKS 71 #include <sys/pmckern.h> 72 #endif 73 74 #ifdef KDTRACE_HOOKS 75 #include <sys/dtrace_bsd.h> 76 int dtrace_vtime_active; 77 dtrace_vtime_switch_func_t dtrace_vtime_switch_func; 78 #endif 79 80 #include <machine/cpu.h> 81 #include <machine/smp.h> 82 83 #if defined(__sparc64__) || defined(__mips__) 84 #error "This architecture is not currently compatible with ULE" 85 #endif 86 87 #define KTR_ULE 0 88 89 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX))) 90 #define TDQ_NAME_LEN (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU))) 91 #define TDQ_LOADNAME_LEN (PCPU_NAME_LEN + sizeof(" load")) 92 93 /* 94 * Thread scheduler specific section. All fields are protected 95 * by the thread lock. 96 */ 97 struct td_sched { 98 struct runq *ts_runq; /* Run-queue we're queued on. */ 99 short ts_flags; /* TSF_* flags. */ 100 u_char ts_cpu; /* CPU that we have affinity for. */ 101 int ts_rltick; /* Real last tick, for affinity. */ 102 int ts_slice; /* Ticks of slice remaining. */ 103 u_int ts_slptime; /* Number of ticks we vol. slept */ 104 u_int ts_runtime; /* Number of ticks we were running */ 105 int ts_ltick; /* Last tick that we were running on */ 106 int ts_ftick; /* First tick that we were running on */ 107 int ts_ticks; /* Tick count */ 108 #ifdef KTR 109 char ts_name[TS_NAME_LEN]; 110 #endif 111 }; 112 /* flags kept in ts_flags */ 113 #define TSF_BOUND 0x0001 /* Thread can not migrate. */ 114 #define TSF_XFERABLE 0x0002 /* Thread was added as transferable. */ 115 116 static struct td_sched td_sched0; 117 118 #define THREAD_CAN_MIGRATE(td) ((td)->td_pinned == 0) 119 #define THREAD_CAN_SCHED(td, cpu) \ 120 CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask) 121 122 /* 123 * Cpu percentage computation macros and defines. 124 * 125 * SCHED_TICK_SECS: Number of seconds to average the cpu usage across. 126 * SCHED_TICK_TARG: Number of hz ticks to average the cpu usage across. 127 * SCHED_TICK_MAX: Maximum number of ticks before scaling back. 128 * SCHED_TICK_SHIFT: Shift factor to avoid rounding away results. 129 * SCHED_TICK_HZ: Compute the number of hz ticks for a given ticks count. 130 * SCHED_TICK_TOTAL: Gives the amount of time we've been recording ticks. 131 */ 132 #define SCHED_TICK_SECS 10 133 #define SCHED_TICK_TARG (hz * SCHED_TICK_SECS) 134 #define SCHED_TICK_MAX (SCHED_TICK_TARG + hz) 135 #define SCHED_TICK_SHIFT 10 136 #define SCHED_TICK_HZ(ts) ((ts)->ts_ticks >> SCHED_TICK_SHIFT) 137 #define SCHED_TICK_TOTAL(ts) (max((ts)->ts_ltick - (ts)->ts_ftick, hz)) 138 139 /* 140 * These macros determine priorities for non-interactive threads. They are 141 * assigned a priority based on their recent cpu utilization as expressed 142 * by the ratio of ticks to the tick total. NHALF priorities at the start 143 * and end of the MIN to MAX timeshare range are only reachable with negative 144 * or positive nice respectively. 145 * 146 * PRI_RANGE: Priority range for utilization dependent priorities. 147 * PRI_NRESV: Number of nice values. 148 * PRI_TICKS: Compute a priority in PRI_RANGE from the ticks count and total. 149 * PRI_NICE: Determines the part of the priority inherited from nice. 150 */ 151 #define SCHED_PRI_NRESV (PRIO_MAX - PRIO_MIN) 152 #define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2) 153 #define SCHED_PRI_MIN (PRI_MIN_TIMESHARE + SCHED_PRI_NHALF) 154 #define SCHED_PRI_MAX (PRI_MAX_TIMESHARE - SCHED_PRI_NHALF) 155 #define SCHED_PRI_RANGE (SCHED_PRI_MAX - SCHED_PRI_MIN) 156 #define SCHED_PRI_TICKS(ts) \ 157 (SCHED_TICK_HZ((ts)) / \ 158 (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE)) 159 #define SCHED_PRI_NICE(nice) (nice) 160 161 /* 162 * These determine the interactivity of a process. Interactivity differs from 163 * cpu utilization in that it expresses the voluntary time slept vs time ran 164 * while cpu utilization includes all time not running. This more accurately 165 * models the intent of the thread. 166 * 167 * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate 168 * before throttling back. 169 * SLP_RUN_FORK: Maximum slp+run time to inherit at fork time. 170 * INTERACT_MAX: Maximum interactivity value. Smaller is better. 171 * INTERACT_THRESH: Threshhold for placement on the current runq. 172 */ 173 #define SCHED_SLP_RUN_MAX ((hz * 5) << SCHED_TICK_SHIFT) 174 #define SCHED_SLP_RUN_FORK ((hz / 2) << SCHED_TICK_SHIFT) 175 #define SCHED_INTERACT_MAX (100) 176 #define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2) 177 #define SCHED_INTERACT_THRESH (30) 178 179 /* 180 * tickincr: Converts a stathz tick into a hz domain scaled by 181 * the shift factor. Without the shift the error rate 182 * due to rounding would be unacceptably high. 183 * realstathz: stathz is sometimes 0 and run off of hz. 184 * sched_slice: Runtime of each thread before rescheduling. 185 * preempt_thresh: Priority threshold for preemption and remote IPIs. 186 */ 187 static int sched_interact = SCHED_INTERACT_THRESH; 188 static int realstathz; 189 static int tickincr; 190 static int sched_slice = 1; 191 #ifdef PREEMPTION 192 #ifdef FULL_PREEMPTION 193 static int preempt_thresh = PRI_MAX_IDLE; 194 #else 195 static int preempt_thresh = PRI_MIN_KERN; 196 #endif 197 #else 198 static int preempt_thresh = 0; 199 #endif 200 static int static_boost = PRI_MIN_TIMESHARE; 201 static int sched_idlespins = 10000; 202 static int sched_idlespinthresh = 4; 203 204 /* 205 * tdq - per processor runqs and statistics. All fields are protected by the 206 * tdq_lock. The load and lowpri may be accessed without to avoid excess 207 * locking in sched_pickcpu(); 208 */ 209 struct tdq { 210 /* Ordered to improve efficiency of cpu_search() and switch(). */ 211 struct mtx tdq_lock; /* run queue lock. */ 212 struct cpu_group *tdq_cg; /* Pointer to cpu topology. */ 213 volatile int tdq_load; /* Aggregate load. */ 214 int tdq_sysload; /* For loadavg, !ITHD load. */ 215 int tdq_transferable; /* Transferable thread count. */ 216 volatile int tdq_idlestate; /* State of the idle thread. */ 217 short tdq_switchcnt; /* Switches this tick. */ 218 short tdq_oldswitchcnt; /* Switches last tick. */ 219 u_char tdq_lowpri; /* Lowest priority thread. */ 220 u_char tdq_ipipending; /* IPI pending. */ 221 u_char tdq_idx; /* Current insert index. */ 222 u_char tdq_ridx; /* Current removal index. */ 223 struct runq tdq_realtime; /* real-time run queue. */ 224 struct runq tdq_timeshare; /* timeshare run queue. */ 225 struct runq tdq_idle; /* Queue of IDLE threads. */ 226 char tdq_name[TDQ_NAME_LEN]; 227 #ifdef KTR 228 char tdq_loadname[TDQ_LOADNAME_LEN]; 229 #endif 230 } __aligned(64); 231 232 /* Idle thread states and config. */ 233 #define TDQ_RUNNING 1 234 #define TDQ_IDLE 2 235 236 #ifdef SMP 237 struct cpu_group *cpu_top; /* CPU topology */ 238 239 #define SCHED_AFFINITY_DEFAULT (max(1, hz / 1000)) 240 #define SCHED_AFFINITY(ts, t) ((ts)->ts_rltick > ticks - ((t) * affinity)) 241 242 /* 243 * Run-time tunables. 244 */ 245 static int rebalance = 1; 246 static int balance_interval = 128; /* Default set in sched_initticks(). */ 247 static int affinity; 248 static int steal_htt = 1; 249 static int steal_idle = 1; 250 static int steal_thresh = 2; 251 252 /* 253 * One thread queue per processor. 254 */ 255 static struct tdq tdq_cpu[MAXCPU]; 256 static struct tdq *balance_tdq; 257 static int balance_ticks; 258 259 #define TDQ_SELF() (&tdq_cpu[PCPU_GET(cpuid)]) 260 #define TDQ_CPU(x) (&tdq_cpu[(x)]) 261 #define TDQ_ID(x) ((int)((x) - tdq_cpu)) 262 #else /* !SMP */ 263 static struct tdq tdq_cpu; 264 265 #define TDQ_ID(x) (0) 266 #define TDQ_SELF() (&tdq_cpu) 267 #define TDQ_CPU(x) (&tdq_cpu) 268 #endif 269 270 #define TDQ_LOCK_ASSERT(t, type) mtx_assert(TDQ_LOCKPTR((t)), (type)) 271 #define TDQ_LOCK(t) mtx_lock_spin(TDQ_LOCKPTR((t))) 272 #define TDQ_LOCK_FLAGS(t, f) mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f)) 273 #define TDQ_UNLOCK(t) mtx_unlock_spin(TDQ_LOCKPTR((t))) 274 #define TDQ_LOCKPTR(t) (&(t)->tdq_lock) 275 276 static void sched_priority(struct thread *); 277 static void sched_thread_priority(struct thread *, u_char); 278 static int sched_interact_score(struct thread *); 279 static void sched_interact_update(struct thread *); 280 static void sched_interact_fork(struct thread *); 281 static void sched_pctcpu_update(struct td_sched *); 282 283 /* Operations on per processor queues */ 284 static struct thread *tdq_choose(struct tdq *); 285 static void tdq_setup(struct tdq *); 286 static void tdq_load_add(struct tdq *, struct thread *); 287 static void tdq_load_rem(struct tdq *, struct thread *); 288 static __inline void tdq_runq_add(struct tdq *, struct thread *, int); 289 static __inline void tdq_runq_rem(struct tdq *, struct thread *); 290 static inline int sched_shouldpreempt(int, int, int); 291 void tdq_print(int cpu); 292 static void runq_print(struct runq *rq); 293 static void tdq_add(struct tdq *, struct thread *, int); 294 #ifdef SMP 295 static int tdq_move(struct tdq *, struct tdq *); 296 static int tdq_idled(struct tdq *); 297 static void tdq_notify(struct tdq *, struct thread *); 298 static struct thread *tdq_steal(struct tdq *, int); 299 static struct thread *runq_steal(struct runq *, int); 300 static int sched_pickcpu(struct thread *, int); 301 static void sched_balance(void); 302 static int sched_balance_pair(struct tdq *, struct tdq *); 303 static inline struct tdq *sched_setcpu(struct thread *, int, int); 304 static inline struct mtx *thread_block_switch(struct thread *); 305 static inline void thread_unblock_switch(struct thread *, struct mtx *); 306 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int); 307 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS); 308 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 309 struct cpu_group *cg, int indent); 310 #endif 311 312 static void sched_setup(void *dummy); 313 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL); 314 315 static void sched_initticks(void *dummy); 316 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, 317 NULL); 318 319 /* 320 * Print the threads waiting on a run-queue. 321 */ 322 static void 323 runq_print(struct runq *rq) 324 { 325 struct rqhead *rqh; 326 struct thread *td; 327 int pri; 328 int j; 329 int i; 330 331 for (i = 0; i < RQB_LEN; i++) { 332 printf("\t\trunq bits %d 0x%zx\n", 333 i, rq->rq_status.rqb_bits[i]); 334 for (j = 0; j < RQB_BPW; j++) 335 if (rq->rq_status.rqb_bits[i] & (1ul << j)) { 336 pri = j + (i << RQB_L2BPW); 337 rqh = &rq->rq_queues[pri]; 338 TAILQ_FOREACH(td, rqh, td_runq) { 339 printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n", 340 td, td->td_name, td->td_priority, 341 td->td_rqindex, pri); 342 } 343 } 344 } 345 } 346 347 /* 348 * Print the status of a per-cpu thread queue. Should be a ddb show cmd. 349 */ 350 void 351 tdq_print(int cpu) 352 { 353 struct tdq *tdq; 354 355 tdq = TDQ_CPU(cpu); 356 357 printf("tdq %d:\n", TDQ_ID(tdq)); 358 printf("\tlock %p\n", TDQ_LOCKPTR(tdq)); 359 printf("\tLock name: %s\n", tdq->tdq_name); 360 printf("\tload: %d\n", tdq->tdq_load); 361 printf("\tswitch cnt: %d\n", tdq->tdq_switchcnt); 362 printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt); 363 printf("\tidle state: %d\n", tdq->tdq_idlestate); 364 printf("\ttimeshare idx: %d\n", tdq->tdq_idx); 365 printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx); 366 printf("\tload transferable: %d\n", tdq->tdq_transferable); 367 printf("\tlowest priority: %d\n", tdq->tdq_lowpri); 368 printf("\trealtime runq:\n"); 369 runq_print(&tdq->tdq_realtime); 370 printf("\ttimeshare runq:\n"); 371 runq_print(&tdq->tdq_timeshare); 372 printf("\tidle runq:\n"); 373 runq_print(&tdq->tdq_idle); 374 } 375 376 static inline int 377 sched_shouldpreempt(int pri, int cpri, int remote) 378 { 379 /* 380 * If the new priority is not better than the current priority there is 381 * nothing to do. 382 */ 383 if (pri >= cpri) 384 return (0); 385 /* 386 * Always preempt idle. 387 */ 388 if (cpri >= PRI_MIN_IDLE) 389 return (1); 390 /* 391 * If preemption is disabled don't preempt others. 392 */ 393 if (preempt_thresh == 0) 394 return (0); 395 /* 396 * Preempt if we exceed the threshold. 397 */ 398 if (pri <= preempt_thresh) 399 return (1); 400 /* 401 * If we're realtime or better and there is timeshare or worse running 402 * preempt only remote processors. 403 */ 404 if (remote && pri <= PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME) 405 return (1); 406 return (0); 407 } 408 409 #define TS_RQ_PPQ (((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS) 410 /* 411 * Add a thread to the actual run-queue. Keeps transferable counts up to 412 * date with what is actually on the run-queue. Selects the correct 413 * queue position for timeshare threads. 414 */ 415 static __inline void 416 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags) 417 { 418 struct td_sched *ts; 419 u_char pri; 420 421 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 422 THREAD_LOCK_ASSERT(td, MA_OWNED); 423 424 pri = td->td_priority; 425 ts = td->td_sched; 426 TD_SET_RUNQ(td); 427 if (THREAD_CAN_MIGRATE(td)) { 428 tdq->tdq_transferable++; 429 ts->ts_flags |= TSF_XFERABLE; 430 } 431 if (pri <= PRI_MAX_REALTIME) { 432 ts->ts_runq = &tdq->tdq_realtime; 433 } else if (pri <= PRI_MAX_TIMESHARE) { 434 ts->ts_runq = &tdq->tdq_timeshare; 435 KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE, 436 ("Invalid priority %d on timeshare runq", pri)); 437 /* 438 * This queue contains only priorities between MIN and MAX 439 * realtime. Use the whole queue to represent these values. 440 */ 441 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) { 442 pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ; 443 pri = (pri + tdq->tdq_idx) % RQ_NQS; 444 /* 445 * This effectively shortens the queue by one so we 446 * can have a one slot difference between idx and 447 * ridx while we wait for threads to drain. 448 */ 449 if (tdq->tdq_ridx != tdq->tdq_idx && 450 pri == tdq->tdq_ridx) 451 pri = (unsigned char)(pri - 1) % RQ_NQS; 452 } else 453 pri = tdq->tdq_ridx; 454 runq_add_pri(ts->ts_runq, td, pri, flags); 455 return; 456 } else 457 ts->ts_runq = &tdq->tdq_idle; 458 runq_add(ts->ts_runq, td, flags); 459 } 460 461 /* 462 * Remove a thread from a run-queue. This typically happens when a thread 463 * is selected to run. Running threads are not on the queue and the 464 * transferable count does not reflect them. 465 */ 466 static __inline void 467 tdq_runq_rem(struct tdq *tdq, struct thread *td) 468 { 469 struct td_sched *ts; 470 471 ts = td->td_sched; 472 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 473 KASSERT(ts->ts_runq != NULL, 474 ("tdq_runq_remove: thread %p null ts_runq", td)); 475 if (ts->ts_flags & TSF_XFERABLE) { 476 tdq->tdq_transferable--; 477 ts->ts_flags &= ~TSF_XFERABLE; 478 } 479 if (ts->ts_runq == &tdq->tdq_timeshare) { 480 if (tdq->tdq_idx != tdq->tdq_ridx) 481 runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx); 482 else 483 runq_remove_idx(ts->ts_runq, td, NULL); 484 } else 485 runq_remove(ts->ts_runq, td); 486 } 487 488 /* 489 * Load is maintained for all threads RUNNING and ON_RUNQ. Add the load 490 * for this thread to the referenced thread queue. 491 */ 492 static void 493 tdq_load_add(struct tdq *tdq, struct thread *td) 494 { 495 496 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 497 THREAD_LOCK_ASSERT(td, MA_OWNED); 498 499 tdq->tdq_load++; 500 if ((td->td_proc->p_flag & P_NOLOAD) == 0) 501 tdq->tdq_sysload++; 502 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 503 } 504 505 /* 506 * Remove the load from a thread that is transitioning to a sleep state or 507 * exiting. 508 */ 509 static void 510 tdq_load_rem(struct tdq *tdq, struct thread *td) 511 { 512 513 THREAD_LOCK_ASSERT(td, MA_OWNED); 514 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 515 KASSERT(tdq->tdq_load != 0, 516 ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq))); 517 518 tdq->tdq_load--; 519 if ((td->td_proc->p_flag & P_NOLOAD) == 0) 520 tdq->tdq_sysload--; 521 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 522 } 523 524 /* 525 * Set lowpri to its exact value by searching the run-queue and 526 * evaluating curthread. curthread may be passed as an optimization. 527 */ 528 static void 529 tdq_setlowpri(struct tdq *tdq, struct thread *ctd) 530 { 531 struct thread *td; 532 533 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 534 if (ctd == NULL) 535 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread; 536 td = tdq_choose(tdq); 537 if (td == NULL || td->td_priority > ctd->td_priority) 538 tdq->tdq_lowpri = ctd->td_priority; 539 else 540 tdq->tdq_lowpri = td->td_priority; 541 } 542 543 #ifdef SMP 544 struct cpu_search { 545 cpumask_t cs_mask; /* Mask of valid cpus. */ 546 u_int cs_load; 547 u_int cs_cpu; 548 int cs_limit; /* Min priority for low min load for high. */ 549 }; 550 551 #define CPU_SEARCH_LOWEST 0x1 552 #define CPU_SEARCH_HIGHEST 0x2 553 #define CPU_SEARCH_BOTH (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST) 554 555 #define CPUMASK_FOREACH(cpu, mask) \ 556 for ((cpu) = 0; (cpu) < sizeof((mask)) * 8; (cpu)++) \ 557 if ((mask) & 1 << (cpu)) 558 559 static __inline int cpu_search(struct cpu_group *cg, struct cpu_search *low, 560 struct cpu_search *high, const int match); 561 int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low); 562 int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high); 563 int cpu_search_both(struct cpu_group *cg, struct cpu_search *low, 564 struct cpu_search *high); 565 566 /* 567 * This routine compares according to the match argument and should be 568 * reduced in actual instantiations via constant propagation and dead code 569 * elimination. 570 */ 571 static __inline int 572 cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high, 573 const int match) 574 { 575 struct tdq *tdq; 576 577 tdq = TDQ_CPU(cpu); 578 if (match & CPU_SEARCH_LOWEST) 579 if (low->cs_mask & (1 << cpu) && 580 tdq->tdq_load < low->cs_load && 581 tdq->tdq_lowpri > low->cs_limit) { 582 low->cs_cpu = cpu; 583 low->cs_load = tdq->tdq_load; 584 } 585 if (match & CPU_SEARCH_HIGHEST) 586 if (high->cs_mask & (1 << cpu) && 587 tdq->tdq_load >= high->cs_limit && 588 tdq->tdq_load > high->cs_load && 589 tdq->tdq_transferable) { 590 high->cs_cpu = cpu; 591 high->cs_load = tdq->tdq_load; 592 } 593 return (tdq->tdq_load); 594 } 595 596 /* 597 * Search the tree of cpu_groups for the lowest or highest loaded cpu 598 * according to the match argument. This routine actually compares the 599 * load on all paths through the tree and finds the least loaded cpu on 600 * the least loaded path, which may differ from the least loaded cpu in 601 * the system. This balances work among caches and busses. 602 * 603 * This inline is instantiated in three forms below using constants for the 604 * match argument. It is reduced to the minimum set for each case. It is 605 * also recursive to the depth of the tree. 606 */ 607 static __inline int 608 cpu_search(struct cpu_group *cg, struct cpu_search *low, 609 struct cpu_search *high, const int match) 610 { 611 int total; 612 613 total = 0; 614 if (cg->cg_children) { 615 struct cpu_search lgroup; 616 struct cpu_search hgroup; 617 struct cpu_group *child; 618 u_int lload; 619 int hload; 620 int load; 621 int i; 622 623 lload = -1; 624 hload = -1; 625 for (i = 0; i < cg->cg_children; i++) { 626 child = &cg->cg_child[i]; 627 if (match & CPU_SEARCH_LOWEST) { 628 lgroup = *low; 629 lgroup.cs_load = -1; 630 } 631 if (match & CPU_SEARCH_HIGHEST) { 632 hgroup = *high; 633 lgroup.cs_load = 0; 634 } 635 switch (match) { 636 case CPU_SEARCH_LOWEST: 637 load = cpu_search_lowest(child, &lgroup); 638 break; 639 case CPU_SEARCH_HIGHEST: 640 load = cpu_search_highest(child, &hgroup); 641 break; 642 case CPU_SEARCH_BOTH: 643 load = cpu_search_both(child, &lgroup, &hgroup); 644 break; 645 } 646 total += load; 647 if (match & CPU_SEARCH_LOWEST) 648 if (load < lload || low->cs_cpu == -1) { 649 *low = lgroup; 650 lload = load; 651 } 652 if (match & CPU_SEARCH_HIGHEST) 653 if (load > hload || high->cs_cpu == -1) { 654 hload = load; 655 *high = hgroup; 656 } 657 } 658 } else { 659 int cpu; 660 661 CPUMASK_FOREACH(cpu, cg->cg_mask) 662 total += cpu_compare(cpu, low, high, match); 663 } 664 return (total); 665 } 666 667 /* 668 * cpu_search instantiations must pass constants to maintain the inline 669 * optimization. 670 */ 671 int 672 cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low) 673 { 674 return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST); 675 } 676 677 int 678 cpu_search_highest(struct cpu_group *cg, struct cpu_search *high) 679 { 680 return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST); 681 } 682 683 int 684 cpu_search_both(struct cpu_group *cg, struct cpu_search *low, 685 struct cpu_search *high) 686 { 687 return cpu_search(cg, low, high, CPU_SEARCH_BOTH); 688 } 689 690 /* 691 * Find the cpu with the least load via the least loaded path that has a 692 * lowpri greater than pri pri. A pri of -1 indicates any priority is 693 * acceptable. 694 */ 695 static inline int 696 sched_lowest(struct cpu_group *cg, cpumask_t mask, int pri) 697 { 698 struct cpu_search low; 699 700 low.cs_cpu = -1; 701 low.cs_load = -1; 702 low.cs_mask = mask; 703 low.cs_limit = pri; 704 cpu_search_lowest(cg, &low); 705 return low.cs_cpu; 706 } 707 708 /* 709 * Find the cpu with the highest load via the highest loaded path. 710 */ 711 static inline int 712 sched_highest(struct cpu_group *cg, cpumask_t mask, int minload) 713 { 714 struct cpu_search high; 715 716 high.cs_cpu = -1; 717 high.cs_load = 0; 718 high.cs_mask = mask; 719 high.cs_limit = minload; 720 cpu_search_highest(cg, &high); 721 return high.cs_cpu; 722 } 723 724 /* 725 * Simultaneously find the highest and lowest loaded cpu reachable via 726 * cg. 727 */ 728 static inline void 729 sched_both(struct cpu_group *cg, cpumask_t mask, int *lowcpu, int *highcpu) 730 { 731 struct cpu_search high; 732 struct cpu_search low; 733 734 low.cs_cpu = -1; 735 low.cs_limit = -1; 736 low.cs_load = -1; 737 low.cs_mask = mask; 738 high.cs_load = 0; 739 high.cs_cpu = -1; 740 high.cs_limit = -1; 741 high.cs_mask = mask; 742 cpu_search_both(cg, &low, &high); 743 *lowcpu = low.cs_cpu; 744 *highcpu = high.cs_cpu; 745 return; 746 } 747 748 static void 749 sched_balance_group(struct cpu_group *cg) 750 { 751 cpumask_t mask; 752 int high; 753 int low; 754 int i; 755 756 mask = -1; 757 for (;;) { 758 sched_both(cg, mask, &low, &high); 759 if (low == high || low == -1 || high == -1) 760 break; 761 if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) 762 break; 763 /* 764 * If we failed to move any threads determine which cpu 765 * to kick out of the set and try again. 766 */ 767 if (TDQ_CPU(high)->tdq_transferable == 0) 768 mask &= ~(1 << high); 769 else 770 mask &= ~(1 << low); 771 } 772 773 for (i = 0; i < cg->cg_children; i++) 774 sched_balance_group(&cg->cg_child[i]); 775 } 776 777 static void 778 sched_balance() 779 { 780 struct tdq *tdq; 781 782 /* 783 * Select a random time between .5 * balance_interval and 784 * 1.5 * balance_interval. 785 */ 786 balance_ticks = max(balance_interval / 2, 1); 787 balance_ticks += random() % balance_interval; 788 if (smp_started == 0 || rebalance == 0) 789 return; 790 tdq = TDQ_SELF(); 791 TDQ_UNLOCK(tdq); 792 sched_balance_group(cpu_top); 793 TDQ_LOCK(tdq); 794 } 795 796 /* 797 * Lock two thread queues using their address to maintain lock order. 798 */ 799 static void 800 tdq_lock_pair(struct tdq *one, struct tdq *two) 801 { 802 if (one < two) { 803 TDQ_LOCK(one); 804 TDQ_LOCK_FLAGS(two, MTX_DUPOK); 805 } else { 806 TDQ_LOCK(two); 807 TDQ_LOCK_FLAGS(one, MTX_DUPOK); 808 } 809 } 810 811 /* 812 * Unlock two thread queues. Order is not important here. 813 */ 814 static void 815 tdq_unlock_pair(struct tdq *one, struct tdq *two) 816 { 817 TDQ_UNLOCK(one); 818 TDQ_UNLOCK(two); 819 } 820 821 /* 822 * Transfer load between two imbalanced thread queues. 823 */ 824 static int 825 sched_balance_pair(struct tdq *high, struct tdq *low) 826 { 827 int transferable; 828 int high_load; 829 int low_load; 830 int moved; 831 int move; 832 int diff; 833 int i; 834 835 tdq_lock_pair(high, low); 836 transferable = high->tdq_transferable; 837 high_load = high->tdq_load; 838 low_load = low->tdq_load; 839 moved = 0; 840 /* 841 * Determine what the imbalance is and then adjust that to how many 842 * threads we actually have to give up (transferable). 843 */ 844 if (transferable != 0) { 845 diff = high_load - low_load; 846 move = diff / 2; 847 if (diff & 0x1) 848 move++; 849 move = min(move, transferable); 850 for (i = 0; i < move; i++) 851 moved += tdq_move(high, low); 852 /* 853 * IPI the target cpu to force it to reschedule with the new 854 * workload. 855 */ 856 ipi_selected(1 << TDQ_ID(low), IPI_PREEMPT); 857 } 858 tdq_unlock_pair(high, low); 859 return (moved); 860 } 861 862 /* 863 * Move a thread from one thread queue to another. 864 */ 865 static int 866 tdq_move(struct tdq *from, struct tdq *to) 867 { 868 struct td_sched *ts; 869 struct thread *td; 870 struct tdq *tdq; 871 int cpu; 872 873 TDQ_LOCK_ASSERT(from, MA_OWNED); 874 TDQ_LOCK_ASSERT(to, MA_OWNED); 875 876 tdq = from; 877 cpu = TDQ_ID(to); 878 td = tdq_steal(tdq, cpu); 879 if (td == NULL) 880 return (0); 881 ts = td->td_sched; 882 /* 883 * Although the run queue is locked the thread may be blocked. Lock 884 * it to clear this and acquire the run-queue lock. 885 */ 886 thread_lock(td); 887 /* Drop recursive lock on from acquired via thread_lock(). */ 888 TDQ_UNLOCK(from); 889 sched_rem(td); 890 ts->ts_cpu = cpu; 891 td->td_lock = TDQ_LOCKPTR(to); 892 tdq_add(to, td, SRQ_YIELDING); 893 return (1); 894 } 895 896 /* 897 * This tdq has idled. Try to steal a thread from another cpu and switch 898 * to it. 899 */ 900 static int 901 tdq_idled(struct tdq *tdq) 902 { 903 struct cpu_group *cg; 904 struct tdq *steal; 905 cpumask_t mask; 906 int thresh; 907 int cpu; 908 909 if (smp_started == 0 || steal_idle == 0) 910 return (1); 911 mask = -1; 912 mask &= ~PCPU_GET(cpumask); 913 /* We don't want to be preempted while we're iterating. */ 914 spinlock_enter(); 915 for (cg = tdq->tdq_cg; cg != NULL; ) { 916 if ((cg->cg_flags & (CG_FLAG_HTT | CG_FLAG_THREAD)) == 0) 917 thresh = steal_thresh; 918 else 919 thresh = 1; 920 cpu = sched_highest(cg, mask, thresh); 921 if (cpu == -1) { 922 cg = cg->cg_parent; 923 continue; 924 } 925 steal = TDQ_CPU(cpu); 926 mask &= ~(1 << cpu); 927 tdq_lock_pair(tdq, steal); 928 if (steal->tdq_load < thresh || steal->tdq_transferable == 0) { 929 tdq_unlock_pair(tdq, steal); 930 continue; 931 } 932 /* 933 * If a thread was added while interrupts were disabled don't 934 * steal one here. If we fail to acquire one due to affinity 935 * restrictions loop again with this cpu removed from the 936 * set. 937 */ 938 if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) { 939 tdq_unlock_pair(tdq, steal); 940 continue; 941 } 942 spinlock_exit(); 943 TDQ_UNLOCK(steal); 944 mi_switch(SW_VOL | SWT_IDLE, NULL); 945 thread_unlock(curthread); 946 947 return (0); 948 } 949 spinlock_exit(); 950 return (1); 951 } 952 953 /* 954 * Notify a remote cpu of new work. Sends an IPI if criteria are met. 955 */ 956 static void 957 tdq_notify(struct tdq *tdq, struct thread *td) 958 { 959 struct thread *ctd; 960 int pri; 961 int cpu; 962 963 if (tdq->tdq_ipipending) 964 return; 965 cpu = td->td_sched->ts_cpu; 966 pri = td->td_priority; 967 ctd = pcpu_find(cpu)->pc_curthread; 968 if (!sched_shouldpreempt(pri, ctd->td_priority, 1)) 969 return; 970 if (TD_IS_IDLETHREAD(ctd)) { 971 /* 972 * If the idle thread is still 'running' it's probably 973 * waiting on us to release the tdq spinlock already. No 974 * need to ipi. 975 */ 976 if (tdq->tdq_idlestate == TDQ_RUNNING) 977 return; 978 /* 979 * If the MD code has an idle wakeup routine try that before 980 * falling back to IPI. 981 */ 982 if (cpu_idle_wakeup(cpu)) 983 return; 984 } 985 tdq->tdq_ipipending = 1; 986 ipi_selected(1 << cpu, IPI_PREEMPT); 987 } 988 989 /* 990 * Steals load from a timeshare queue. Honors the rotating queue head 991 * index. 992 */ 993 static struct thread * 994 runq_steal_from(struct runq *rq, int cpu, u_char start) 995 { 996 struct rqbits *rqb; 997 struct rqhead *rqh; 998 struct thread *td; 999 int first; 1000 int bit; 1001 int pri; 1002 int i; 1003 1004 rqb = &rq->rq_status; 1005 bit = start & (RQB_BPW -1); 1006 pri = 0; 1007 first = 0; 1008 again: 1009 for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) { 1010 if (rqb->rqb_bits[i] == 0) 1011 continue; 1012 if (bit != 0) { 1013 for (pri = bit; pri < RQB_BPW; pri++) 1014 if (rqb->rqb_bits[i] & (1ul << pri)) 1015 break; 1016 if (pri >= RQB_BPW) 1017 continue; 1018 } else 1019 pri = RQB_FFS(rqb->rqb_bits[i]); 1020 pri += (i << RQB_L2BPW); 1021 rqh = &rq->rq_queues[pri]; 1022 TAILQ_FOREACH(td, rqh, td_runq) { 1023 if (first && THREAD_CAN_MIGRATE(td) && 1024 THREAD_CAN_SCHED(td, cpu)) 1025 return (td); 1026 first = 1; 1027 } 1028 } 1029 if (start != 0) { 1030 start = 0; 1031 goto again; 1032 } 1033 1034 return (NULL); 1035 } 1036 1037 /* 1038 * Steals load from a standard linear queue. 1039 */ 1040 static struct thread * 1041 runq_steal(struct runq *rq, int cpu) 1042 { 1043 struct rqhead *rqh; 1044 struct rqbits *rqb; 1045 struct thread *td; 1046 int word; 1047 int bit; 1048 1049 rqb = &rq->rq_status; 1050 for (word = 0; word < RQB_LEN; word++) { 1051 if (rqb->rqb_bits[word] == 0) 1052 continue; 1053 for (bit = 0; bit < RQB_BPW; bit++) { 1054 if ((rqb->rqb_bits[word] & (1ul << bit)) == 0) 1055 continue; 1056 rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)]; 1057 TAILQ_FOREACH(td, rqh, td_runq) 1058 if (THREAD_CAN_MIGRATE(td) && 1059 THREAD_CAN_SCHED(td, cpu)) 1060 return (td); 1061 } 1062 } 1063 return (NULL); 1064 } 1065 1066 /* 1067 * Attempt to steal a thread in priority order from a thread queue. 1068 */ 1069 static struct thread * 1070 tdq_steal(struct tdq *tdq, int cpu) 1071 { 1072 struct thread *td; 1073 1074 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1075 if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL) 1076 return (td); 1077 if ((td = runq_steal_from(&tdq->tdq_timeshare, 1078 cpu, tdq->tdq_ridx)) != NULL) 1079 return (td); 1080 return (runq_steal(&tdq->tdq_idle, cpu)); 1081 } 1082 1083 /* 1084 * Sets the thread lock and ts_cpu to match the requested cpu. Unlocks the 1085 * current lock and returns with the assigned queue locked. 1086 */ 1087 static inline struct tdq * 1088 sched_setcpu(struct thread *td, int cpu, int flags) 1089 { 1090 1091 struct tdq *tdq; 1092 1093 THREAD_LOCK_ASSERT(td, MA_OWNED); 1094 tdq = TDQ_CPU(cpu); 1095 td->td_sched->ts_cpu = cpu; 1096 /* 1097 * If the lock matches just return the queue. 1098 */ 1099 if (td->td_lock == TDQ_LOCKPTR(tdq)) 1100 return (tdq); 1101 #ifdef notyet 1102 /* 1103 * If the thread isn't running its lockptr is a 1104 * turnstile or a sleepqueue. We can just lock_set without 1105 * blocking. 1106 */ 1107 if (TD_CAN_RUN(td)) { 1108 TDQ_LOCK(tdq); 1109 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 1110 return (tdq); 1111 } 1112 #endif 1113 /* 1114 * The hard case, migration, we need to block the thread first to 1115 * prevent order reversals with other cpus locks. 1116 */ 1117 thread_lock_block(td); 1118 TDQ_LOCK(tdq); 1119 thread_lock_unblock(td, TDQ_LOCKPTR(tdq)); 1120 return (tdq); 1121 } 1122 1123 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding"); 1124 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity"); 1125 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity"); 1126 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load"); 1127 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu"); 1128 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration"); 1129 1130 static int 1131 sched_pickcpu(struct thread *td, int flags) 1132 { 1133 struct cpu_group *cg; 1134 struct td_sched *ts; 1135 struct tdq *tdq; 1136 cpumask_t mask; 1137 int self; 1138 int pri; 1139 int cpu; 1140 1141 self = PCPU_GET(cpuid); 1142 ts = td->td_sched; 1143 if (smp_started == 0) 1144 return (self); 1145 /* 1146 * Don't migrate a running thread from sched_switch(). 1147 */ 1148 if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td)) 1149 return (ts->ts_cpu); 1150 /* 1151 * Prefer to run interrupt threads on the processors that generate 1152 * the interrupt. 1153 */ 1154 if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) && 1155 curthread->td_intr_nesting_level && ts->ts_cpu != self) { 1156 SCHED_STAT_INC(pickcpu_intrbind); 1157 ts->ts_cpu = self; 1158 } 1159 /* 1160 * If the thread can run on the last cpu and the affinity has not 1161 * expired or it is idle run it there. 1162 */ 1163 pri = td->td_priority; 1164 tdq = TDQ_CPU(ts->ts_cpu); 1165 if (THREAD_CAN_SCHED(td, ts->ts_cpu)) { 1166 if (tdq->tdq_lowpri > PRI_MIN_IDLE) { 1167 SCHED_STAT_INC(pickcpu_idle_affinity); 1168 return (ts->ts_cpu); 1169 } 1170 if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri) { 1171 SCHED_STAT_INC(pickcpu_affinity); 1172 return (ts->ts_cpu); 1173 } 1174 } 1175 /* 1176 * Search for the highest level in the tree that still has affinity. 1177 */ 1178 cg = NULL; 1179 for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent) 1180 if (SCHED_AFFINITY(ts, cg->cg_level)) 1181 break; 1182 cpu = -1; 1183 mask = td->td_cpuset->cs_mask.__bits[0]; 1184 if (cg) 1185 cpu = sched_lowest(cg, mask, pri); 1186 if (cpu == -1) 1187 cpu = sched_lowest(cpu_top, mask, -1); 1188 /* 1189 * Compare the lowest loaded cpu to current cpu. 1190 */ 1191 if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri && 1192 TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) { 1193 SCHED_STAT_INC(pickcpu_local); 1194 cpu = self; 1195 } else 1196 SCHED_STAT_INC(pickcpu_lowest); 1197 if (cpu != ts->ts_cpu) 1198 SCHED_STAT_INC(pickcpu_migration); 1199 KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu.")); 1200 return (cpu); 1201 } 1202 #endif 1203 1204 /* 1205 * Pick the highest priority task we have and return it. 1206 */ 1207 static struct thread * 1208 tdq_choose(struct tdq *tdq) 1209 { 1210 struct thread *td; 1211 1212 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1213 td = runq_choose(&tdq->tdq_realtime); 1214 if (td != NULL) 1215 return (td); 1216 td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx); 1217 if (td != NULL) { 1218 KASSERT(td->td_priority >= PRI_MIN_TIMESHARE, 1219 ("tdq_choose: Invalid priority on timeshare queue %d", 1220 td->td_priority)); 1221 return (td); 1222 } 1223 td = runq_choose(&tdq->tdq_idle); 1224 if (td != NULL) { 1225 KASSERT(td->td_priority >= PRI_MIN_IDLE, 1226 ("tdq_choose: Invalid priority on idle queue %d", 1227 td->td_priority)); 1228 return (td); 1229 } 1230 1231 return (NULL); 1232 } 1233 1234 /* 1235 * Initialize a thread queue. 1236 */ 1237 static void 1238 tdq_setup(struct tdq *tdq) 1239 { 1240 1241 if (bootverbose) 1242 printf("ULE: setup cpu %d\n", TDQ_ID(tdq)); 1243 runq_init(&tdq->tdq_realtime); 1244 runq_init(&tdq->tdq_timeshare); 1245 runq_init(&tdq->tdq_idle); 1246 snprintf(tdq->tdq_name, sizeof(tdq->tdq_name), 1247 "sched lock %d", (int)TDQ_ID(tdq)); 1248 mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", 1249 MTX_SPIN | MTX_RECURSE); 1250 #ifdef KTR 1251 snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname), 1252 "CPU %d load", (int)TDQ_ID(tdq)); 1253 #endif 1254 } 1255 1256 #ifdef SMP 1257 static void 1258 sched_setup_smp(void) 1259 { 1260 struct tdq *tdq; 1261 int i; 1262 1263 cpu_top = smp_topo(); 1264 for (i = 0; i < MAXCPU; i++) { 1265 if (CPU_ABSENT(i)) 1266 continue; 1267 tdq = TDQ_CPU(i); 1268 tdq_setup(tdq); 1269 tdq->tdq_cg = smp_topo_find(cpu_top, i); 1270 if (tdq->tdq_cg == NULL) 1271 panic("Can't find cpu group for %d\n", i); 1272 } 1273 balance_tdq = TDQ_SELF(); 1274 sched_balance(); 1275 } 1276 #endif 1277 1278 /* 1279 * Setup the thread queues and initialize the topology based on MD 1280 * information. 1281 */ 1282 static void 1283 sched_setup(void *dummy) 1284 { 1285 struct tdq *tdq; 1286 1287 tdq = TDQ_SELF(); 1288 #ifdef SMP 1289 sched_setup_smp(); 1290 #else 1291 tdq_setup(tdq); 1292 #endif 1293 /* 1294 * To avoid divide-by-zero, we set realstathz a dummy value 1295 * in case which sched_clock() called before sched_initticks(). 1296 */ 1297 realstathz = hz; 1298 sched_slice = (realstathz/10); /* ~100ms */ 1299 tickincr = 1 << SCHED_TICK_SHIFT; 1300 1301 /* Add thread0's load since it's running. */ 1302 TDQ_LOCK(tdq); 1303 thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF()); 1304 tdq_load_add(tdq, &thread0); 1305 tdq->tdq_lowpri = thread0.td_priority; 1306 TDQ_UNLOCK(tdq); 1307 } 1308 1309 /* 1310 * This routine determines the tickincr after stathz and hz are setup. 1311 */ 1312 /* ARGSUSED */ 1313 static void 1314 sched_initticks(void *dummy) 1315 { 1316 int incr; 1317 1318 realstathz = stathz ? stathz : hz; 1319 sched_slice = (realstathz/10); /* ~100ms */ 1320 1321 /* 1322 * tickincr is shifted out by 10 to avoid rounding errors due to 1323 * hz not being evenly divisible by stathz on all platforms. 1324 */ 1325 incr = (hz << SCHED_TICK_SHIFT) / realstathz; 1326 /* 1327 * This does not work for values of stathz that are more than 1328 * 1 << SCHED_TICK_SHIFT * hz. In practice this does not happen. 1329 */ 1330 if (incr == 0) 1331 incr = 1; 1332 tickincr = incr; 1333 #ifdef SMP 1334 /* 1335 * Set the default balance interval now that we know 1336 * what realstathz is. 1337 */ 1338 balance_interval = realstathz; 1339 /* 1340 * Set steal thresh to log2(mp_ncpu) but no greater than 4. This 1341 * prevents excess thrashing on large machines and excess idle on 1342 * smaller machines. 1343 */ 1344 steal_thresh = min(ffs(mp_ncpus) - 1, 3); 1345 affinity = SCHED_AFFINITY_DEFAULT; 1346 #endif 1347 } 1348 1349 1350 /* 1351 * This is the core of the interactivity algorithm. Determines a score based 1352 * on past behavior. It is the ratio of sleep time to run time scaled to 1353 * a [0, 100] integer. This is the voluntary sleep time of a process, which 1354 * differs from the cpu usage because it does not account for time spent 1355 * waiting on a run-queue. Would be prettier if we had floating point. 1356 */ 1357 static int 1358 sched_interact_score(struct thread *td) 1359 { 1360 struct td_sched *ts; 1361 int div; 1362 1363 ts = td->td_sched; 1364 /* 1365 * The score is only needed if this is likely to be an interactive 1366 * task. Don't go through the expense of computing it if there's 1367 * no chance. 1368 */ 1369 if (sched_interact <= SCHED_INTERACT_HALF && 1370 ts->ts_runtime >= ts->ts_slptime) 1371 return (SCHED_INTERACT_HALF); 1372 1373 if (ts->ts_runtime > ts->ts_slptime) { 1374 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF); 1375 return (SCHED_INTERACT_HALF + 1376 (SCHED_INTERACT_HALF - (ts->ts_slptime / div))); 1377 } 1378 if (ts->ts_slptime > ts->ts_runtime) { 1379 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF); 1380 return (ts->ts_runtime / div); 1381 } 1382 /* runtime == slptime */ 1383 if (ts->ts_runtime) 1384 return (SCHED_INTERACT_HALF); 1385 1386 /* 1387 * This can happen if slptime and runtime are 0. 1388 */ 1389 return (0); 1390 1391 } 1392 1393 /* 1394 * Scale the scheduling priority according to the "interactivity" of this 1395 * process. 1396 */ 1397 static void 1398 sched_priority(struct thread *td) 1399 { 1400 int score; 1401 int pri; 1402 1403 if (td->td_pri_class != PRI_TIMESHARE) 1404 return; 1405 /* 1406 * If the score is interactive we place the thread in the realtime 1407 * queue with a priority that is less than kernel and interrupt 1408 * priorities. These threads are not subject to nice restrictions. 1409 * 1410 * Scores greater than this are placed on the normal timeshare queue 1411 * where the priority is partially decided by the most recent cpu 1412 * utilization and the rest is decided by nice value. 1413 * 1414 * The nice value of the process has a linear effect on the calculated 1415 * score. Negative nice values make it easier for a thread to be 1416 * considered interactive. 1417 */ 1418 score = imax(0, sched_interact_score(td) - td->td_proc->p_nice); 1419 if (score < sched_interact) { 1420 pri = PRI_MIN_REALTIME; 1421 pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact) 1422 * score; 1423 KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME, 1424 ("sched_priority: invalid interactive priority %d score %d", 1425 pri, score)); 1426 } else { 1427 pri = SCHED_PRI_MIN; 1428 if (td->td_sched->ts_ticks) 1429 pri += SCHED_PRI_TICKS(td->td_sched); 1430 pri += SCHED_PRI_NICE(td->td_proc->p_nice); 1431 KASSERT(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE, 1432 ("sched_priority: invalid priority %d: nice %d, " 1433 "ticks %d ftick %d ltick %d tick pri %d", 1434 pri, td->td_proc->p_nice, td->td_sched->ts_ticks, 1435 td->td_sched->ts_ftick, td->td_sched->ts_ltick, 1436 SCHED_PRI_TICKS(td->td_sched))); 1437 } 1438 sched_user_prio(td, pri); 1439 1440 return; 1441 } 1442 1443 /* 1444 * This routine enforces a maximum limit on the amount of scheduling history 1445 * kept. It is called after either the slptime or runtime is adjusted. This 1446 * function is ugly due to integer math. 1447 */ 1448 static void 1449 sched_interact_update(struct thread *td) 1450 { 1451 struct td_sched *ts; 1452 u_int sum; 1453 1454 ts = td->td_sched; 1455 sum = ts->ts_runtime + ts->ts_slptime; 1456 if (sum < SCHED_SLP_RUN_MAX) 1457 return; 1458 /* 1459 * This only happens from two places: 1460 * 1) We have added an unusual amount of run time from fork_exit. 1461 * 2) We have added an unusual amount of sleep time from sched_sleep(). 1462 */ 1463 if (sum > SCHED_SLP_RUN_MAX * 2) { 1464 if (ts->ts_runtime > ts->ts_slptime) { 1465 ts->ts_runtime = SCHED_SLP_RUN_MAX; 1466 ts->ts_slptime = 1; 1467 } else { 1468 ts->ts_slptime = SCHED_SLP_RUN_MAX; 1469 ts->ts_runtime = 1; 1470 } 1471 return; 1472 } 1473 /* 1474 * If we have exceeded by more than 1/5th then the algorithm below 1475 * will not bring us back into range. Dividing by two here forces 1476 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX] 1477 */ 1478 if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) { 1479 ts->ts_runtime /= 2; 1480 ts->ts_slptime /= 2; 1481 return; 1482 } 1483 ts->ts_runtime = (ts->ts_runtime / 5) * 4; 1484 ts->ts_slptime = (ts->ts_slptime / 5) * 4; 1485 } 1486 1487 /* 1488 * Scale back the interactivity history when a child thread is created. The 1489 * history is inherited from the parent but the thread may behave totally 1490 * differently. For example, a shell spawning a compiler process. We want 1491 * to learn that the compiler is behaving badly very quickly. 1492 */ 1493 static void 1494 sched_interact_fork(struct thread *td) 1495 { 1496 int ratio; 1497 int sum; 1498 1499 sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime; 1500 if (sum > SCHED_SLP_RUN_FORK) { 1501 ratio = sum / SCHED_SLP_RUN_FORK; 1502 td->td_sched->ts_runtime /= ratio; 1503 td->td_sched->ts_slptime /= ratio; 1504 } 1505 } 1506 1507 /* 1508 * Called from proc0_init() to setup the scheduler fields. 1509 */ 1510 void 1511 schedinit(void) 1512 { 1513 1514 /* 1515 * Set up the scheduler specific parts of proc0. 1516 */ 1517 proc0.p_sched = NULL; /* XXX */ 1518 thread0.td_sched = &td_sched0; 1519 td_sched0.ts_ltick = ticks; 1520 td_sched0.ts_ftick = ticks; 1521 td_sched0.ts_slice = sched_slice; 1522 } 1523 1524 /* 1525 * This is only somewhat accurate since given many processes of the same 1526 * priority they will switch when their slices run out, which will be 1527 * at most sched_slice stathz ticks. 1528 */ 1529 int 1530 sched_rr_interval(void) 1531 { 1532 1533 /* Convert sched_slice to hz */ 1534 return (hz/(realstathz/sched_slice)); 1535 } 1536 1537 /* 1538 * Update the percent cpu tracking information when it is requested or 1539 * the total history exceeds the maximum. We keep a sliding history of 1540 * tick counts that slowly decays. This is less precise than the 4BSD 1541 * mechanism since it happens with less regular and frequent events. 1542 */ 1543 static void 1544 sched_pctcpu_update(struct td_sched *ts) 1545 { 1546 1547 if (ts->ts_ticks == 0) 1548 return; 1549 if (ticks - (hz / 10) < ts->ts_ltick && 1550 SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX) 1551 return; 1552 /* 1553 * Adjust counters and watermark for pctcpu calc. 1554 */ 1555 if (ts->ts_ltick > ticks - SCHED_TICK_TARG) 1556 ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) * 1557 SCHED_TICK_TARG; 1558 else 1559 ts->ts_ticks = 0; 1560 ts->ts_ltick = ticks; 1561 ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG; 1562 } 1563 1564 /* 1565 * Adjust the priority of a thread. Move it to the appropriate run-queue 1566 * if necessary. This is the back-end for several priority related 1567 * functions. 1568 */ 1569 static void 1570 sched_thread_priority(struct thread *td, u_char prio) 1571 { 1572 struct td_sched *ts; 1573 struct tdq *tdq; 1574 int oldpri; 1575 1576 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio", 1577 "prio:%d", td->td_priority, "new prio:%d", prio, 1578 KTR_ATTR_LINKED, sched_tdname(curthread)); 1579 if (td != curthread && prio > td->td_priority) { 1580 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread), 1581 "lend prio", "prio:%d", td->td_priority, "new prio:%d", 1582 prio, KTR_ATTR_LINKED, sched_tdname(td)); 1583 } 1584 ts = td->td_sched; 1585 THREAD_LOCK_ASSERT(td, MA_OWNED); 1586 if (td->td_priority == prio) 1587 return; 1588 /* 1589 * If the priority has been elevated due to priority 1590 * propagation, we may have to move ourselves to a new 1591 * queue. This could be optimized to not re-add in some 1592 * cases. 1593 */ 1594 if (TD_ON_RUNQ(td) && prio < td->td_priority) { 1595 sched_rem(td); 1596 td->td_priority = prio; 1597 sched_add(td, SRQ_BORROWING); 1598 return; 1599 } 1600 /* 1601 * If the thread is currently running we may have to adjust the lowpri 1602 * information so other cpus are aware of our current priority. 1603 */ 1604 if (TD_IS_RUNNING(td)) { 1605 tdq = TDQ_CPU(ts->ts_cpu); 1606 oldpri = td->td_priority; 1607 td->td_priority = prio; 1608 if (prio < tdq->tdq_lowpri) 1609 tdq->tdq_lowpri = prio; 1610 else if (tdq->tdq_lowpri == oldpri) 1611 tdq_setlowpri(tdq, td); 1612 return; 1613 } 1614 td->td_priority = prio; 1615 } 1616 1617 /* 1618 * Update a thread's priority when it is lent another thread's 1619 * priority. 1620 */ 1621 void 1622 sched_lend_prio(struct thread *td, u_char prio) 1623 { 1624 1625 td->td_flags |= TDF_BORROWING; 1626 sched_thread_priority(td, prio); 1627 } 1628 1629 /* 1630 * Restore a thread's priority when priority propagation is 1631 * over. The prio argument is the minimum priority the thread 1632 * needs to have to satisfy other possible priority lending 1633 * requests. If the thread's regular priority is less 1634 * important than prio, the thread will keep a priority boost 1635 * of prio. 1636 */ 1637 void 1638 sched_unlend_prio(struct thread *td, u_char prio) 1639 { 1640 u_char base_pri; 1641 1642 if (td->td_base_pri >= PRI_MIN_TIMESHARE && 1643 td->td_base_pri <= PRI_MAX_TIMESHARE) 1644 base_pri = td->td_user_pri; 1645 else 1646 base_pri = td->td_base_pri; 1647 if (prio >= base_pri) { 1648 td->td_flags &= ~TDF_BORROWING; 1649 sched_thread_priority(td, base_pri); 1650 } else 1651 sched_lend_prio(td, prio); 1652 } 1653 1654 /* 1655 * Standard entry for setting the priority to an absolute value. 1656 */ 1657 void 1658 sched_prio(struct thread *td, u_char prio) 1659 { 1660 u_char oldprio; 1661 1662 /* First, update the base priority. */ 1663 td->td_base_pri = prio; 1664 1665 /* 1666 * If the thread is borrowing another thread's priority, don't 1667 * ever lower the priority. 1668 */ 1669 if (td->td_flags & TDF_BORROWING && td->td_priority < prio) 1670 return; 1671 1672 /* Change the real priority. */ 1673 oldprio = td->td_priority; 1674 sched_thread_priority(td, prio); 1675 1676 /* 1677 * If the thread is on a turnstile, then let the turnstile update 1678 * its state. 1679 */ 1680 if (TD_ON_LOCK(td) && oldprio != prio) 1681 turnstile_adjust(td, oldprio); 1682 } 1683 1684 /* 1685 * Set the base user priority, does not effect current running priority. 1686 */ 1687 void 1688 sched_user_prio(struct thread *td, u_char prio) 1689 { 1690 u_char oldprio; 1691 1692 td->td_base_user_pri = prio; 1693 if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio) 1694 return; 1695 oldprio = td->td_user_pri; 1696 td->td_user_pri = prio; 1697 } 1698 1699 void 1700 sched_lend_user_prio(struct thread *td, u_char prio) 1701 { 1702 u_char oldprio; 1703 1704 THREAD_LOCK_ASSERT(td, MA_OWNED); 1705 td->td_flags |= TDF_UBORROWING; 1706 oldprio = td->td_user_pri; 1707 td->td_user_pri = prio; 1708 } 1709 1710 void 1711 sched_unlend_user_prio(struct thread *td, u_char prio) 1712 { 1713 u_char base_pri; 1714 1715 THREAD_LOCK_ASSERT(td, MA_OWNED); 1716 base_pri = td->td_base_user_pri; 1717 if (prio >= base_pri) { 1718 td->td_flags &= ~TDF_UBORROWING; 1719 sched_user_prio(td, base_pri); 1720 } else { 1721 sched_lend_user_prio(td, prio); 1722 } 1723 } 1724 1725 /* 1726 * Block a thread for switching. Similar to thread_block() but does not 1727 * bump the spin count. 1728 */ 1729 static inline struct mtx * 1730 thread_block_switch(struct thread *td) 1731 { 1732 struct mtx *lock; 1733 1734 THREAD_LOCK_ASSERT(td, MA_OWNED); 1735 lock = td->td_lock; 1736 td->td_lock = &blocked_lock; 1737 mtx_unlock_spin(lock); 1738 1739 return (lock); 1740 } 1741 1742 /* 1743 * Handle migration from sched_switch(). This happens only for 1744 * cpu binding. 1745 */ 1746 static struct mtx * 1747 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags) 1748 { 1749 struct tdq *tdn; 1750 1751 tdn = TDQ_CPU(td->td_sched->ts_cpu); 1752 #ifdef SMP 1753 tdq_load_rem(tdq, td); 1754 /* 1755 * Do the lock dance required to avoid LOR. We grab an extra 1756 * spinlock nesting to prevent preemption while we're 1757 * not holding either run-queue lock. 1758 */ 1759 spinlock_enter(); 1760 thread_block_switch(td); /* This releases the lock on tdq. */ 1761 TDQ_LOCK(tdn); 1762 tdq_add(tdn, td, flags); 1763 tdq_notify(tdn, td); 1764 /* 1765 * After we unlock tdn the new cpu still can't switch into this 1766 * thread until we've unblocked it in cpu_switch(). The lock 1767 * pointers may match in the case of HTT cores. Don't unlock here 1768 * or we can deadlock when the other CPU runs the IPI handler. 1769 */ 1770 if (TDQ_LOCKPTR(tdn) != TDQ_LOCKPTR(tdq)) { 1771 TDQ_UNLOCK(tdn); 1772 TDQ_LOCK(tdq); 1773 } 1774 spinlock_exit(); 1775 #endif 1776 return (TDQ_LOCKPTR(tdn)); 1777 } 1778 1779 /* 1780 * Release a thread that was blocked with thread_block_switch(). 1781 */ 1782 static inline void 1783 thread_unblock_switch(struct thread *td, struct mtx *mtx) 1784 { 1785 atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock, 1786 (uintptr_t)mtx); 1787 } 1788 1789 /* 1790 * Switch threads. This function has to handle threads coming in while 1791 * blocked for some reason, running, or idle. It also must deal with 1792 * migrating a thread from one queue to another as running threads may 1793 * be assigned elsewhere via binding. 1794 */ 1795 void 1796 sched_switch(struct thread *td, struct thread *newtd, int flags) 1797 { 1798 struct tdq *tdq; 1799 struct td_sched *ts; 1800 struct mtx *mtx; 1801 int srqflag; 1802 int cpuid; 1803 1804 THREAD_LOCK_ASSERT(td, MA_OWNED); 1805 KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument")); 1806 1807 cpuid = PCPU_GET(cpuid); 1808 tdq = TDQ_CPU(cpuid); 1809 ts = td->td_sched; 1810 mtx = td->td_lock; 1811 ts->ts_rltick = ticks; 1812 td->td_lastcpu = td->td_oncpu; 1813 td->td_oncpu = NOCPU; 1814 td->td_flags &= ~TDF_NEEDRESCHED; 1815 td->td_owepreempt = 0; 1816 tdq->tdq_switchcnt++; 1817 /* 1818 * The lock pointer in an idle thread should never change. Reset it 1819 * to CAN_RUN as well. 1820 */ 1821 if (TD_IS_IDLETHREAD(td)) { 1822 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1823 TD_SET_CAN_RUN(td); 1824 } else if (TD_IS_RUNNING(td)) { 1825 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1826 srqflag = (flags & SW_PREEMPT) ? 1827 SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED : 1828 SRQ_OURSELF|SRQ_YIELDING; 1829 if (ts->ts_cpu == cpuid) 1830 tdq_runq_add(tdq, td, srqflag); 1831 else 1832 mtx = sched_switch_migrate(tdq, td, srqflag); 1833 } else { 1834 /* This thread must be going to sleep. */ 1835 TDQ_LOCK(tdq); 1836 mtx = thread_block_switch(td); 1837 tdq_load_rem(tdq, td); 1838 } 1839 /* 1840 * We enter here with the thread blocked and assigned to the 1841 * appropriate cpu run-queue or sleep-queue and with the current 1842 * thread-queue locked. 1843 */ 1844 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 1845 newtd = choosethread(); 1846 /* 1847 * Call the MD code to switch contexts if necessary. 1848 */ 1849 if (td != newtd) { 1850 #ifdef HWPMC_HOOKS 1851 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1852 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 1853 #endif 1854 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 1855 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 1856 1857 #ifdef KDTRACE_HOOKS 1858 /* 1859 * If DTrace has set the active vtime enum to anything 1860 * other than INACTIVE (0), then it should have set the 1861 * function to call. 1862 */ 1863 if (dtrace_vtime_active) 1864 (*dtrace_vtime_switch_func)(newtd); 1865 #endif 1866 1867 cpu_switch(td, newtd, mtx); 1868 /* 1869 * We may return from cpu_switch on a different cpu. However, 1870 * we always return with td_lock pointing to the current cpu's 1871 * run queue lock. 1872 */ 1873 cpuid = PCPU_GET(cpuid); 1874 tdq = TDQ_CPU(cpuid); 1875 lock_profile_obtain_lock_success( 1876 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 1877 #ifdef HWPMC_HOOKS 1878 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1879 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN); 1880 #endif 1881 } else 1882 thread_unblock_switch(td, mtx); 1883 /* 1884 * Assert that all went well and return. 1885 */ 1886 TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED); 1887 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1888 td->td_oncpu = cpuid; 1889 } 1890 1891 /* 1892 * Adjust thread priorities as a result of a nice request. 1893 */ 1894 void 1895 sched_nice(struct proc *p, int nice) 1896 { 1897 struct thread *td; 1898 1899 PROC_LOCK_ASSERT(p, MA_OWNED); 1900 1901 p->p_nice = nice; 1902 FOREACH_THREAD_IN_PROC(p, td) { 1903 thread_lock(td); 1904 sched_priority(td); 1905 sched_prio(td, td->td_base_user_pri); 1906 thread_unlock(td); 1907 } 1908 } 1909 1910 /* 1911 * Record the sleep time for the interactivity scorer. 1912 */ 1913 void 1914 sched_sleep(struct thread *td, int prio) 1915 { 1916 1917 THREAD_LOCK_ASSERT(td, MA_OWNED); 1918 1919 td->td_slptick = ticks; 1920 if (TD_IS_SUSPENDED(td) || prio <= PSOCK) 1921 td->td_flags |= TDF_CANSWAP; 1922 if (static_boost == 1 && prio) 1923 sched_prio(td, prio); 1924 else if (static_boost && td->td_priority > static_boost) 1925 sched_prio(td, static_boost); 1926 } 1927 1928 /* 1929 * Schedule a thread to resume execution and record how long it voluntarily 1930 * slept. We also update the pctcpu, interactivity, and priority. 1931 */ 1932 void 1933 sched_wakeup(struct thread *td) 1934 { 1935 struct td_sched *ts; 1936 int slptick; 1937 1938 THREAD_LOCK_ASSERT(td, MA_OWNED); 1939 ts = td->td_sched; 1940 td->td_flags &= ~TDF_CANSWAP; 1941 /* 1942 * If we slept for more than a tick update our interactivity and 1943 * priority. 1944 */ 1945 slptick = td->td_slptick; 1946 td->td_slptick = 0; 1947 if (slptick && slptick != ticks) { 1948 u_int hzticks; 1949 1950 hzticks = (ticks - slptick) << SCHED_TICK_SHIFT; 1951 ts->ts_slptime += hzticks; 1952 sched_interact_update(td); 1953 sched_pctcpu_update(ts); 1954 } 1955 /* Reset the slice value after we sleep. */ 1956 ts->ts_slice = sched_slice; 1957 sched_add(td, SRQ_BORING); 1958 } 1959 1960 /* 1961 * Penalize the parent for creating a new child and initialize the child's 1962 * priority. 1963 */ 1964 void 1965 sched_fork(struct thread *td, struct thread *child) 1966 { 1967 THREAD_LOCK_ASSERT(td, MA_OWNED); 1968 sched_fork_thread(td, child); 1969 /* 1970 * Penalize the parent and child for forking. 1971 */ 1972 sched_interact_fork(child); 1973 sched_priority(child); 1974 td->td_sched->ts_runtime += tickincr; 1975 sched_interact_update(td); 1976 sched_priority(td); 1977 } 1978 1979 /* 1980 * Fork a new thread, may be within the same process. 1981 */ 1982 void 1983 sched_fork_thread(struct thread *td, struct thread *child) 1984 { 1985 struct td_sched *ts; 1986 struct td_sched *ts2; 1987 1988 THREAD_LOCK_ASSERT(td, MA_OWNED); 1989 /* 1990 * Initialize child. 1991 */ 1992 ts = td->td_sched; 1993 ts2 = child->td_sched; 1994 child->td_lock = TDQ_LOCKPTR(TDQ_SELF()); 1995 child->td_cpuset = cpuset_ref(td->td_cpuset); 1996 ts2->ts_cpu = ts->ts_cpu; 1997 ts2->ts_flags = 0; 1998 /* 1999 * Grab our parents cpu estimation information and priority. 2000 */ 2001 ts2->ts_ticks = ts->ts_ticks; 2002 ts2->ts_ltick = ts->ts_ltick; 2003 ts2->ts_ftick = ts->ts_ftick; 2004 child->td_user_pri = td->td_user_pri; 2005 child->td_base_user_pri = td->td_base_user_pri; 2006 /* 2007 * And update interactivity score. 2008 */ 2009 ts2->ts_slptime = ts->ts_slptime; 2010 ts2->ts_runtime = ts->ts_runtime; 2011 ts2->ts_slice = 1; /* Attempt to quickly learn interactivity. */ 2012 #ifdef KTR 2013 bzero(ts2->ts_name, sizeof(ts2->ts_name)); 2014 #endif 2015 } 2016 2017 /* 2018 * Adjust the priority class of a thread. 2019 */ 2020 void 2021 sched_class(struct thread *td, int class) 2022 { 2023 2024 THREAD_LOCK_ASSERT(td, MA_OWNED); 2025 if (td->td_pri_class == class) 2026 return; 2027 td->td_pri_class = class; 2028 } 2029 2030 /* 2031 * Return some of the child's priority and interactivity to the parent. 2032 */ 2033 void 2034 sched_exit(struct proc *p, struct thread *child) 2035 { 2036 struct thread *td; 2037 2038 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit", 2039 "prio:td", child->td_priority); 2040 PROC_LOCK_ASSERT(p, MA_OWNED); 2041 td = FIRST_THREAD_IN_PROC(p); 2042 sched_exit_thread(td, child); 2043 } 2044 2045 /* 2046 * Penalize another thread for the time spent on this one. This helps to 2047 * worsen the priority and interactivity of processes which schedule batch 2048 * jobs such as make. This has little effect on the make process itself but 2049 * causes new processes spawned by it to receive worse scores immediately. 2050 */ 2051 void 2052 sched_exit_thread(struct thread *td, struct thread *child) 2053 { 2054 2055 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit", 2056 "prio:td", child->td_priority); 2057 /* 2058 * Give the child's runtime to the parent without returning the 2059 * sleep time as a penalty to the parent. This causes shells that 2060 * launch expensive things to mark their children as expensive. 2061 */ 2062 thread_lock(td); 2063 td->td_sched->ts_runtime += child->td_sched->ts_runtime; 2064 sched_interact_update(td); 2065 sched_priority(td); 2066 thread_unlock(td); 2067 } 2068 2069 void 2070 sched_preempt(struct thread *td) 2071 { 2072 struct tdq *tdq; 2073 2074 thread_lock(td); 2075 tdq = TDQ_SELF(); 2076 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2077 tdq->tdq_ipipending = 0; 2078 if (td->td_priority > tdq->tdq_lowpri) { 2079 int flags; 2080 2081 flags = SW_INVOL | SW_PREEMPT; 2082 if (td->td_critnest > 1) 2083 td->td_owepreempt = 1; 2084 else if (TD_IS_IDLETHREAD(td)) 2085 mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL); 2086 else 2087 mi_switch(flags | SWT_REMOTEPREEMPT, NULL); 2088 } 2089 thread_unlock(td); 2090 } 2091 2092 /* 2093 * Fix priorities on return to user-space. Priorities may be elevated due 2094 * to static priorities in msleep() or similar. 2095 */ 2096 void 2097 sched_userret(struct thread *td) 2098 { 2099 /* 2100 * XXX we cheat slightly on the locking here to avoid locking in 2101 * the usual case. Setting td_priority here is essentially an 2102 * incomplete workaround for not setting it properly elsewhere. 2103 * Now that some interrupt handlers are threads, not setting it 2104 * properly elsewhere can clobber it in the window between setting 2105 * it here and returning to user mode, so don't waste time setting 2106 * it perfectly here. 2107 */ 2108 KASSERT((td->td_flags & TDF_BORROWING) == 0, 2109 ("thread with borrowed priority returning to userland")); 2110 if (td->td_priority != td->td_user_pri) { 2111 thread_lock(td); 2112 td->td_priority = td->td_user_pri; 2113 td->td_base_pri = td->td_user_pri; 2114 tdq_setlowpri(TDQ_SELF(), td); 2115 thread_unlock(td); 2116 } 2117 } 2118 2119 /* 2120 * Handle a stathz tick. This is really only relevant for timeshare 2121 * threads. 2122 */ 2123 void 2124 sched_clock(struct thread *td) 2125 { 2126 struct tdq *tdq; 2127 struct td_sched *ts; 2128 2129 THREAD_LOCK_ASSERT(td, MA_OWNED); 2130 tdq = TDQ_SELF(); 2131 #ifdef SMP 2132 /* 2133 * We run the long term load balancer infrequently on the first cpu. 2134 */ 2135 if (balance_tdq == tdq) { 2136 if (balance_ticks && --balance_ticks == 0) 2137 sched_balance(); 2138 } 2139 #endif 2140 /* 2141 * Save the old switch count so we have a record of the last ticks 2142 * activity. Initialize the new switch count based on our load. 2143 * If there is some activity seed it to reflect that. 2144 */ 2145 tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt; 2146 tdq->tdq_switchcnt = tdq->tdq_load; 2147 /* 2148 * Advance the insert index once for each tick to ensure that all 2149 * threads get a chance to run. 2150 */ 2151 if (tdq->tdq_idx == tdq->tdq_ridx) { 2152 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS; 2153 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx])) 2154 tdq->tdq_ridx = tdq->tdq_idx; 2155 } 2156 ts = td->td_sched; 2157 if (td->td_pri_class & PRI_FIFO_BIT) 2158 return; 2159 if (td->td_pri_class == PRI_TIMESHARE) { 2160 /* 2161 * We used a tick; charge it to the thread so 2162 * that we can compute our interactivity. 2163 */ 2164 td->td_sched->ts_runtime += tickincr; 2165 sched_interact_update(td); 2166 sched_priority(td); 2167 } 2168 /* 2169 * We used up one time slice. 2170 */ 2171 if (--ts->ts_slice > 0) 2172 return; 2173 /* 2174 * We're out of time, force a requeue at userret(). 2175 */ 2176 ts->ts_slice = sched_slice; 2177 td->td_flags |= TDF_NEEDRESCHED; 2178 } 2179 2180 /* 2181 * Called once per hz tick. Used for cpu utilization information. This 2182 * is easier than trying to scale based on stathz. 2183 */ 2184 void 2185 sched_tick(void) 2186 { 2187 struct td_sched *ts; 2188 2189 ts = curthread->td_sched; 2190 /* 2191 * Ticks is updated asynchronously on a single cpu. Check here to 2192 * avoid incrementing ts_ticks multiple times in a single tick. 2193 */ 2194 if (ts->ts_ltick == ticks) 2195 return; 2196 /* Adjust ticks for pctcpu */ 2197 ts->ts_ticks += 1 << SCHED_TICK_SHIFT; 2198 ts->ts_ltick = ticks; 2199 /* 2200 * Update if we've exceeded our desired tick threshhold by over one 2201 * second. 2202 */ 2203 if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick) 2204 sched_pctcpu_update(ts); 2205 } 2206 2207 /* 2208 * Return whether the current CPU has runnable tasks. Used for in-kernel 2209 * cooperative idle threads. 2210 */ 2211 int 2212 sched_runnable(void) 2213 { 2214 struct tdq *tdq; 2215 int load; 2216 2217 load = 1; 2218 2219 tdq = TDQ_SELF(); 2220 if ((curthread->td_flags & TDF_IDLETD) != 0) { 2221 if (tdq->tdq_load > 0) 2222 goto out; 2223 } else 2224 if (tdq->tdq_load - 1 > 0) 2225 goto out; 2226 load = 0; 2227 out: 2228 return (load); 2229 } 2230 2231 /* 2232 * Choose the highest priority thread to run. The thread is removed from 2233 * the run-queue while running however the load remains. For SMP we set 2234 * the tdq in the global idle bitmask if it idles here. 2235 */ 2236 struct thread * 2237 sched_choose(void) 2238 { 2239 struct thread *td; 2240 struct tdq *tdq; 2241 2242 tdq = TDQ_SELF(); 2243 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2244 td = tdq_choose(tdq); 2245 if (td) { 2246 td->td_sched->ts_ltick = ticks; 2247 tdq_runq_rem(tdq, td); 2248 tdq->tdq_lowpri = td->td_priority; 2249 return (td); 2250 } 2251 tdq->tdq_lowpri = PRI_MAX_IDLE; 2252 return (PCPU_GET(idlethread)); 2253 } 2254 2255 /* 2256 * Set owepreempt if necessary. Preemption never happens directly in ULE, 2257 * we always request it once we exit a critical section. 2258 */ 2259 static inline void 2260 sched_setpreempt(struct thread *td) 2261 { 2262 struct thread *ctd; 2263 int cpri; 2264 int pri; 2265 2266 THREAD_LOCK_ASSERT(curthread, MA_OWNED); 2267 2268 ctd = curthread; 2269 pri = td->td_priority; 2270 cpri = ctd->td_priority; 2271 if (pri < cpri) 2272 ctd->td_flags |= TDF_NEEDRESCHED; 2273 if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd)) 2274 return; 2275 if (!sched_shouldpreempt(pri, cpri, 0)) 2276 return; 2277 ctd->td_owepreempt = 1; 2278 } 2279 2280 /* 2281 * Add a thread to a thread queue. Select the appropriate runq and add the 2282 * thread to it. This is the internal function called when the tdq is 2283 * predetermined. 2284 */ 2285 void 2286 tdq_add(struct tdq *tdq, struct thread *td, int flags) 2287 { 2288 2289 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2290 KASSERT((td->td_inhibitors == 0), 2291 ("sched_add: trying to run inhibited thread")); 2292 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 2293 ("sched_add: bad thread state")); 2294 KASSERT(td->td_flags & TDF_INMEM, 2295 ("sched_add: thread swapped out")); 2296 2297 if (td->td_priority < tdq->tdq_lowpri) 2298 tdq->tdq_lowpri = td->td_priority; 2299 tdq_runq_add(tdq, td, flags); 2300 tdq_load_add(tdq, td); 2301 } 2302 2303 /* 2304 * Select the target thread queue and add a thread to it. Request 2305 * preemption or IPI a remote processor if required. 2306 */ 2307 void 2308 sched_add(struct thread *td, int flags) 2309 { 2310 struct tdq *tdq; 2311 #ifdef SMP 2312 int cpu; 2313 #endif 2314 2315 KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add", 2316 "prio:%d", td->td_priority, KTR_ATTR_LINKED, 2317 sched_tdname(curthread)); 2318 KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup", 2319 KTR_ATTR_LINKED, sched_tdname(td)); 2320 THREAD_LOCK_ASSERT(td, MA_OWNED); 2321 /* 2322 * Recalculate the priority before we select the target cpu or 2323 * run-queue. 2324 */ 2325 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 2326 sched_priority(td); 2327 #ifdef SMP 2328 /* 2329 * Pick the destination cpu and if it isn't ours transfer to the 2330 * target cpu. 2331 */ 2332 cpu = sched_pickcpu(td, flags); 2333 tdq = sched_setcpu(td, cpu, flags); 2334 tdq_add(tdq, td, flags); 2335 if (cpu != PCPU_GET(cpuid)) { 2336 tdq_notify(tdq, td); 2337 return; 2338 } 2339 #else 2340 tdq = TDQ_SELF(); 2341 TDQ_LOCK(tdq); 2342 /* 2343 * Now that the thread is moving to the run-queue, set the lock 2344 * to the scheduler's lock. 2345 */ 2346 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 2347 tdq_add(tdq, td, flags); 2348 #endif 2349 if (!(flags & SRQ_YIELDING)) 2350 sched_setpreempt(td); 2351 } 2352 2353 /* 2354 * Remove a thread from a run-queue without running it. This is used 2355 * when we're stealing a thread from a remote queue. Otherwise all threads 2356 * exit by calling sched_exit_thread() and sched_throw() themselves. 2357 */ 2358 void 2359 sched_rem(struct thread *td) 2360 { 2361 struct tdq *tdq; 2362 2363 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem", 2364 "prio:%d", td->td_priority); 2365 tdq = TDQ_CPU(td->td_sched->ts_cpu); 2366 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2367 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2368 KASSERT(TD_ON_RUNQ(td), 2369 ("sched_rem: thread not on run queue")); 2370 tdq_runq_rem(tdq, td); 2371 tdq_load_rem(tdq, td); 2372 TD_SET_CAN_RUN(td); 2373 if (td->td_priority == tdq->tdq_lowpri) 2374 tdq_setlowpri(tdq, NULL); 2375 } 2376 2377 /* 2378 * Fetch cpu utilization information. Updates on demand. 2379 */ 2380 fixpt_t 2381 sched_pctcpu(struct thread *td) 2382 { 2383 fixpt_t pctcpu; 2384 struct td_sched *ts; 2385 2386 pctcpu = 0; 2387 ts = td->td_sched; 2388 if (ts == NULL) 2389 return (0); 2390 2391 thread_lock(td); 2392 if (ts->ts_ticks) { 2393 int rtick; 2394 2395 sched_pctcpu_update(ts); 2396 /* How many rtick per second ? */ 2397 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz); 2398 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT; 2399 } 2400 thread_unlock(td); 2401 2402 return (pctcpu); 2403 } 2404 2405 /* 2406 * Enforce affinity settings for a thread. Called after adjustments to 2407 * cpumask. 2408 */ 2409 void 2410 sched_affinity(struct thread *td) 2411 { 2412 #ifdef SMP 2413 struct td_sched *ts; 2414 int cpu; 2415 2416 THREAD_LOCK_ASSERT(td, MA_OWNED); 2417 ts = td->td_sched; 2418 if (THREAD_CAN_SCHED(td, ts->ts_cpu)) 2419 return; 2420 if (!TD_IS_RUNNING(td)) 2421 return; 2422 td->td_flags |= TDF_NEEDRESCHED; 2423 if (!THREAD_CAN_MIGRATE(td)) 2424 return; 2425 /* 2426 * Assign the new cpu and force a switch before returning to 2427 * userspace. If the target thread is not running locally send 2428 * an ipi to force the issue. 2429 */ 2430 cpu = ts->ts_cpu; 2431 ts->ts_cpu = sched_pickcpu(td, 0); 2432 if (cpu != PCPU_GET(cpuid)) 2433 ipi_selected(1 << cpu, IPI_PREEMPT); 2434 #endif 2435 } 2436 2437 /* 2438 * Bind a thread to a target cpu. 2439 */ 2440 void 2441 sched_bind(struct thread *td, int cpu) 2442 { 2443 struct td_sched *ts; 2444 2445 THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED); 2446 ts = td->td_sched; 2447 if (ts->ts_flags & TSF_BOUND) 2448 sched_unbind(td); 2449 ts->ts_flags |= TSF_BOUND; 2450 sched_pin(); 2451 if (PCPU_GET(cpuid) == cpu) 2452 return; 2453 ts->ts_cpu = cpu; 2454 /* When we return from mi_switch we'll be on the correct cpu. */ 2455 mi_switch(SW_VOL, NULL); 2456 } 2457 2458 /* 2459 * Release a bound thread. 2460 */ 2461 void 2462 sched_unbind(struct thread *td) 2463 { 2464 struct td_sched *ts; 2465 2466 THREAD_LOCK_ASSERT(td, MA_OWNED); 2467 ts = td->td_sched; 2468 if ((ts->ts_flags & TSF_BOUND) == 0) 2469 return; 2470 ts->ts_flags &= ~TSF_BOUND; 2471 sched_unpin(); 2472 } 2473 2474 int 2475 sched_is_bound(struct thread *td) 2476 { 2477 THREAD_LOCK_ASSERT(td, MA_OWNED); 2478 return (td->td_sched->ts_flags & TSF_BOUND); 2479 } 2480 2481 /* 2482 * Basic yield call. 2483 */ 2484 void 2485 sched_relinquish(struct thread *td) 2486 { 2487 thread_lock(td); 2488 mi_switch(SW_VOL | SWT_RELINQUISH, NULL); 2489 thread_unlock(td); 2490 } 2491 2492 /* 2493 * Return the total system load. 2494 */ 2495 int 2496 sched_load(void) 2497 { 2498 #ifdef SMP 2499 int total; 2500 int i; 2501 2502 total = 0; 2503 for (i = 0; i <= mp_maxid; i++) 2504 total += TDQ_CPU(i)->tdq_sysload; 2505 return (total); 2506 #else 2507 return (TDQ_SELF()->tdq_sysload); 2508 #endif 2509 } 2510 2511 int 2512 sched_sizeof_proc(void) 2513 { 2514 return (sizeof(struct proc)); 2515 } 2516 2517 int 2518 sched_sizeof_thread(void) 2519 { 2520 return (sizeof(struct thread) + sizeof(struct td_sched)); 2521 } 2522 2523 /* 2524 * The actual idle process. 2525 */ 2526 void 2527 sched_idletd(void *dummy) 2528 { 2529 struct thread *td; 2530 struct tdq *tdq; 2531 int switchcnt; 2532 int i; 2533 2534 td = curthread; 2535 tdq = TDQ_SELF(); 2536 mtx_assert(&Giant, MA_NOTOWNED); 2537 /* ULE relies on preemption for idle interruption. */ 2538 for (;;) { 2539 tdq->tdq_idlestate = TDQ_RUNNING; 2540 #ifdef SMP 2541 if (tdq_idled(tdq) == 0) 2542 continue; 2543 #endif 2544 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2545 /* 2546 * If we're switching very frequently, spin while checking 2547 * for load rather than entering a low power state that 2548 * requires an IPI. 2549 */ 2550 if (switchcnt > sched_idlespinthresh) { 2551 for (i = 0; i < sched_idlespins; i++) { 2552 if (tdq->tdq_load) 2553 break; 2554 cpu_spinwait(); 2555 } 2556 } 2557 /* 2558 * We must set our state to IDLE before checking 2559 * tdq_load for the last time to avoid a race with 2560 * tdq_notify(). 2561 */ 2562 if (tdq->tdq_load == 0) { 2563 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2564 tdq->tdq_idlestate = TDQ_IDLE; 2565 if (tdq->tdq_load == 0) 2566 cpu_idle(switchcnt > 1); 2567 } 2568 if (tdq->tdq_load) { 2569 thread_lock(td); 2570 mi_switch(SW_VOL | SWT_IDLE, NULL); 2571 thread_unlock(td); 2572 } 2573 } 2574 } 2575 2576 /* 2577 * A CPU is entering for the first time or a thread is exiting. 2578 */ 2579 void 2580 sched_throw(struct thread *td) 2581 { 2582 struct thread *newtd; 2583 struct tdq *tdq; 2584 2585 tdq = TDQ_SELF(); 2586 if (td == NULL) { 2587 /* Correct spinlock nesting and acquire the correct lock. */ 2588 TDQ_LOCK(tdq); 2589 spinlock_exit(); 2590 } else { 2591 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2592 tdq_load_rem(tdq, td); 2593 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 2594 } 2595 KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count")); 2596 newtd = choosethread(); 2597 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 2598 PCPU_SET(switchtime, cpu_ticks()); 2599 PCPU_SET(switchticks, ticks); 2600 cpu_throw(td, newtd); /* doesn't return */ 2601 } 2602 2603 /* 2604 * This is called from fork_exit(). Just acquire the correct locks and 2605 * let fork do the rest of the work. 2606 */ 2607 void 2608 sched_fork_exit(struct thread *td) 2609 { 2610 struct td_sched *ts; 2611 struct tdq *tdq; 2612 int cpuid; 2613 2614 /* 2615 * Finish setting up thread glue so that it begins execution in a 2616 * non-nested critical section with the scheduler lock held. 2617 */ 2618 cpuid = PCPU_GET(cpuid); 2619 tdq = TDQ_CPU(cpuid); 2620 ts = td->td_sched; 2621 if (TD_IS_IDLETHREAD(td)) 2622 td->td_lock = TDQ_LOCKPTR(tdq); 2623 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2624 td->td_oncpu = cpuid; 2625 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 2626 lock_profile_obtain_lock_success( 2627 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 2628 } 2629 2630 /* 2631 * Create on first use to catch odd startup conditons. 2632 */ 2633 char * 2634 sched_tdname(struct thread *td) 2635 { 2636 #ifdef KTR 2637 struct td_sched *ts; 2638 2639 ts = td->td_sched; 2640 if (ts->ts_name[0] == '\0') 2641 snprintf(ts->ts_name, sizeof(ts->ts_name), 2642 "%s tid %d", td->td_name, td->td_tid); 2643 return (ts->ts_name); 2644 #else 2645 return (td->td_name); 2646 #endif 2647 } 2648 2649 #ifdef SMP 2650 2651 /* 2652 * Build the CPU topology dump string. Is recursively called to collect 2653 * the topology tree. 2654 */ 2655 static int 2656 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg, 2657 int indent) 2658 { 2659 int i, first; 2660 2661 sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent, 2662 "", indent, cg->cg_level); 2663 sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"0x%x\">", indent, "", 2664 cg->cg_count, cg->cg_mask); 2665 first = TRUE; 2666 for (i = 0; i < MAXCPU; i++) { 2667 if ((cg->cg_mask & (1 << i)) != 0) { 2668 if (!first) 2669 sbuf_printf(sb, ", "); 2670 else 2671 first = FALSE; 2672 sbuf_printf(sb, "%d", i); 2673 } 2674 } 2675 sbuf_printf(sb, "</cpu>\n"); 2676 2677 sbuf_printf(sb, "%*s <flags>", indent, ""); 2678 if (cg->cg_flags != 0) { 2679 if ((cg->cg_flags & CG_FLAG_HTT) != 0) 2680 sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>\n"); 2681 if ((cg->cg_flags & CG_FLAG_THREAD) != 0) 2682 sbuf_printf(sb, "<flag name=\"THREAD\">SMT group</flag>\n"); 2683 } 2684 sbuf_printf(sb, "</flags>\n"); 2685 2686 if (cg->cg_children > 0) { 2687 sbuf_printf(sb, "%*s <children>\n", indent, ""); 2688 for (i = 0; i < cg->cg_children; i++) 2689 sysctl_kern_sched_topology_spec_internal(sb, 2690 &cg->cg_child[i], indent+2); 2691 sbuf_printf(sb, "%*s </children>\n", indent, ""); 2692 } 2693 sbuf_printf(sb, "%*s</group>\n", indent, ""); 2694 return (0); 2695 } 2696 2697 /* 2698 * Sysctl handler for retrieving topology dump. It's a wrapper for 2699 * the recursive sysctl_kern_smp_topology_spec_internal(). 2700 */ 2701 static int 2702 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS) 2703 { 2704 struct sbuf *topo; 2705 int err; 2706 2707 KASSERT(cpu_top != NULL, ("cpu_top isn't initialized")); 2708 2709 topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND); 2710 if (topo == NULL) 2711 return (ENOMEM); 2712 2713 sbuf_printf(topo, "<groups>\n"); 2714 err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1); 2715 sbuf_printf(topo, "</groups>\n"); 2716 2717 if (err == 0) { 2718 sbuf_finish(topo); 2719 err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo)); 2720 } 2721 sbuf_delete(topo); 2722 return (err); 2723 } 2724 #endif 2725 2726 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler"); 2727 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0, 2728 "Scheduler name"); 2729 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0, 2730 "Slice size for timeshare threads"); 2731 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0, 2732 "Interactivity score threshold"); 2733 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh, 2734 0,"Min priority for preemption, lower priorities have greater precedence"); 2735 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 2736 0,"Controls whether static kernel priorities are assigned to sleeping threads."); 2737 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 2738 0,"Number of times idle will spin waiting for new work."); 2739 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh, 2740 0,"Threshold before we will permit idle spinning."); 2741 #ifdef SMP 2742 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0, 2743 "Number of hz ticks to keep thread affinity for"); 2744 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0, 2745 "Enables the long-term load balancer"); 2746 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW, 2747 &balance_interval, 0, 2748 "Average frequency in stathz ticks to run the long-term balancer"); 2749 SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0, 2750 "Steals work from another hyper-threaded core on idle"); 2751 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0, 2752 "Attempts to steal work from other cores before idling"); 2753 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0, 2754 "Minimum load on remote cpu before we'll steal"); 2755 2756 /* Retrieve SMP topology */ 2757 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING | 2758 CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A", 2759 "XML dump of detected CPU topology"); 2760 #endif 2761 2762 /* ps compat. All cpu percentages from ULE are weighted. */ 2763 static int ccpu = 0; 2764 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 2765