xref: /freebsd/sys/kern/sched_ule.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * This file implements the ULE scheduler.  ULE supports independent CPU
29  * run queues and fine grain locking.  It has superior interactive
30  * performance under load even on uni-processor systems.
31  *
32  * etymology:
33  *   ULE is the last three letters in schedule.  It owes its name to a
34  * generic user created for a scheduling system by Paul Mikesell at
35  * Isilon Systems and a general lack of creativity on the part of the author.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_kdtrace.h"
43 #include "opt_sched.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resource.h>
54 #include <sys/resourcevar.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/turnstile.h>
61 #include <sys/umtx.h>
62 #include <sys/vmmeter.h>
63 #include <sys/cpuset.h>
64 #include <sys/sbuf.h>
65 
66 #ifdef HWPMC_HOOKS
67 #include <sys/pmckern.h>
68 #endif
69 
70 #ifdef KDTRACE_HOOKS
71 #include <sys/dtrace_bsd.h>
72 int				dtrace_vtime_active;
73 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
74 #endif
75 
76 #include <machine/cpu.h>
77 #include <machine/smp.h>
78 
79 #if defined(__sparc64__)
80 #error "This architecture is not currently compatible with ULE"
81 #endif
82 
83 #define	KTR_ULE	0
84 
85 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
86 #define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
87 #define	TDQ_LOADNAME_LEN	(PCPU_NAME_LEN + sizeof(" load"))
88 
89 /*
90  * Thread scheduler specific section.  All fields are protected
91  * by the thread lock.
92  */
93 struct td_sched {
94 	struct runq	*ts_runq;	/* Run-queue we're queued on. */
95 	short		ts_flags;	/* TSF_* flags. */
96 	u_char		ts_cpu;		/* CPU that we have affinity for. */
97 	int		ts_rltick;	/* Real last tick, for affinity. */
98 	int		ts_slice;	/* Ticks of slice remaining. */
99 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
100 	u_int		ts_runtime;	/* Number of ticks we were running */
101 	int		ts_ltick;	/* Last tick that we were running on */
102 	int		ts_incrtick;	/* Last tick that we incremented on */
103 	int		ts_ftick;	/* First tick that we were running on */
104 	int		ts_ticks;	/* Tick count */
105 #ifdef KTR
106 	char		ts_name[TS_NAME_LEN];
107 #endif
108 };
109 /* flags kept in ts_flags */
110 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112 
113 static struct td_sched td_sched0;
114 
115 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116 #define	THREAD_CAN_SCHED(td, cpu)	\
117     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118 
119 /*
120  * Cpu percentage computation macros and defines.
121  *
122  * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
123  * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
124  * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
125  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
126  * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
127  * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
128  */
129 #define	SCHED_TICK_SECS		10
130 #define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
131 #define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
132 #define	SCHED_TICK_SHIFT	10
133 #define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
134 #define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
135 
136 /*
137  * These macros determine priorities for non-interactive threads.  They are
138  * assigned a priority based on their recent cpu utilization as expressed
139  * by the ratio of ticks to the tick total.  NHALF priorities at the start
140  * and end of the MIN to MAX timeshare range are only reachable with negative
141  * or positive nice respectively.
142  *
143  * PRI_RANGE:	Priority range for utilization dependent priorities.
144  * PRI_NRESV:	Number of nice values.
145  * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
146  * PRI_NICE:	Determines the part of the priority inherited from nice.
147  */
148 #define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
149 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
150 #define	SCHED_PRI_MIN		(PRI_MIN_TIMESHARE + SCHED_PRI_NHALF)
151 #define	SCHED_PRI_MAX		(PRI_MAX_TIMESHARE - SCHED_PRI_NHALF)
152 #define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN)
153 #define	SCHED_PRI_TICKS(ts)						\
154     (SCHED_TICK_HZ((ts)) /						\
155     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
156 #define	SCHED_PRI_NICE(nice)	(nice)
157 
158 /*
159  * These determine the interactivity of a process.  Interactivity differs from
160  * cpu utilization in that it expresses the voluntary time slept vs time ran
161  * while cpu utilization includes all time not running.  This more accurately
162  * models the intent of the thread.
163  *
164  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
165  *		before throttling back.
166  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
167  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
168  * INTERACT_THRESH:	Threshold for placement on the current runq.
169  */
170 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
171 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
172 #define	SCHED_INTERACT_MAX	(100)
173 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
174 #define	SCHED_INTERACT_THRESH	(30)
175 
176 /*
177  * tickincr:		Converts a stathz tick into a hz domain scaled by
178  *			the shift factor.  Without the shift the error rate
179  *			due to rounding would be unacceptably high.
180  * realstathz:		stathz is sometimes 0 and run off of hz.
181  * sched_slice:		Runtime of each thread before rescheduling.
182  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
183  */
184 static int sched_interact = SCHED_INTERACT_THRESH;
185 static int realstathz;
186 static int tickincr;
187 static int sched_slice = 1;
188 #ifdef PREEMPTION
189 #ifdef FULL_PREEMPTION
190 static int preempt_thresh = PRI_MAX_IDLE;
191 #else
192 static int preempt_thresh = PRI_MIN_KERN;
193 #endif
194 #else
195 static int preempt_thresh = 0;
196 #endif
197 static int static_boost = PRI_MIN_TIMESHARE;
198 static int sched_idlespins = 10000;
199 static int sched_idlespinthresh = 16;
200 
201 /*
202  * tdq - per processor runqs and statistics.  All fields are protected by the
203  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
204  * locking in sched_pickcpu();
205  */
206 struct tdq {
207 	/* Ordered to improve efficiency of cpu_search() and switch(). */
208 	struct mtx	tdq_lock;		/* run queue lock. */
209 	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
210 	volatile int	tdq_load;		/* Aggregate load. */
211 	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
212 	int		tdq_sysload;		/* For loadavg, !ITHD load. */
213 	int		tdq_transferable;	/* Transferable thread count. */
214 	short		tdq_switchcnt;		/* Switches this tick. */
215 	short		tdq_oldswitchcnt;	/* Switches last tick. */
216 	u_char		tdq_lowpri;		/* Lowest priority thread. */
217 	u_char		tdq_ipipending;		/* IPI pending. */
218 	u_char		tdq_idx;		/* Current insert index. */
219 	u_char		tdq_ridx;		/* Current removal index. */
220 	struct runq	tdq_realtime;		/* real-time run queue. */
221 	struct runq	tdq_timeshare;		/* timeshare run queue. */
222 	struct runq	tdq_idle;		/* Queue of IDLE threads. */
223 	char		tdq_name[TDQ_NAME_LEN];
224 #ifdef KTR
225 	char		tdq_loadname[TDQ_LOADNAME_LEN];
226 #endif
227 } __aligned(64);
228 
229 /* Idle thread states and config. */
230 #define	TDQ_RUNNING	1
231 #define	TDQ_IDLE	2
232 
233 #ifdef SMP
234 struct cpu_group *cpu_top;		/* CPU topology */
235 
236 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
237 #define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
238 
239 /*
240  * Run-time tunables.
241  */
242 static int rebalance = 1;
243 static int balance_interval = 128;	/* Default set in sched_initticks(). */
244 static int affinity;
245 static int steal_htt = 1;
246 static int steal_idle = 1;
247 static int steal_thresh = 2;
248 
249 /*
250  * One thread queue per processor.
251  */
252 static struct tdq	tdq_cpu[MAXCPU];
253 static struct tdq	*balance_tdq;
254 static int balance_ticks;
255 
256 #define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
257 #define	TDQ_CPU(x)	(&tdq_cpu[(x)])
258 #define	TDQ_ID(x)	((int)((x) - tdq_cpu))
259 #else	/* !SMP */
260 static struct tdq	tdq_cpu;
261 
262 #define	TDQ_ID(x)	(0)
263 #define	TDQ_SELF()	(&tdq_cpu)
264 #define	TDQ_CPU(x)	(&tdq_cpu)
265 #endif
266 
267 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
268 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
269 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
270 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
271 #define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
272 
273 static void sched_priority(struct thread *);
274 static void sched_thread_priority(struct thread *, u_char);
275 static int sched_interact_score(struct thread *);
276 static void sched_interact_update(struct thread *);
277 static void sched_interact_fork(struct thread *);
278 static void sched_pctcpu_update(struct td_sched *);
279 
280 /* Operations on per processor queues */
281 static struct thread *tdq_choose(struct tdq *);
282 static void tdq_setup(struct tdq *);
283 static void tdq_load_add(struct tdq *, struct thread *);
284 static void tdq_load_rem(struct tdq *, struct thread *);
285 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
286 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
287 static inline int sched_shouldpreempt(int, int, int);
288 void tdq_print(int cpu);
289 static void runq_print(struct runq *rq);
290 static void tdq_add(struct tdq *, struct thread *, int);
291 #ifdef SMP
292 static int tdq_move(struct tdq *, struct tdq *);
293 static int tdq_idled(struct tdq *);
294 static void tdq_notify(struct tdq *, struct thread *);
295 static struct thread *tdq_steal(struct tdq *, int);
296 static struct thread *runq_steal(struct runq *, int);
297 static int sched_pickcpu(struct thread *, int);
298 static void sched_balance(void);
299 static int sched_balance_pair(struct tdq *, struct tdq *);
300 static inline struct tdq *sched_setcpu(struct thread *, int, int);
301 static inline void thread_unblock_switch(struct thread *, struct mtx *);
302 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
303 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
304 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
305     struct cpu_group *cg, int indent);
306 #endif
307 
308 static void sched_setup(void *dummy);
309 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
310 
311 static void sched_initticks(void *dummy);
312 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
313     NULL);
314 
315 /*
316  * Print the threads waiting on a run-queue.
317  */
318 static void
319 runq_print(struct runq *rq)
320 {
321 	struct rqhead *rqh;
322 	struct thread *td;
323 	int pri;
324 	int j;
325 	int i;
326 
327 	for (i = 0; i < RQB_LEN; i++) {
328 		printf("\t\trunq bits %d 0x%zx\n",
329 		    i, rq->rq_status.rqb_bits[i]);
330 		for (j = 0; j < RQB_BPW; j++)
331 			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
332 				pri = j + (i << RQB_L2BPW);
333 				rqh = &rq->rq_queues[pri];
334 				TAILQ_FOREACH(td, rqh, td_runq) {
335 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
336 					    td, td->td_name, td->td_priority,
337 					    td->td_rqindex, pri);
338 				}
339 			}
340 	}
341 }
342 
343 /*
344  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
345  */
346 void
347 tdq_print(int cpu)
348 {
349 	struct tdq *tdq;
350 
351 	tdq = TDQ_CPU(cpu);
352 
353 	printf("tdq %d:\n", TDQ_ID(tdq));
354 	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
355 	printf("\tLock name:      %s\n", tdq->tdq_name);
356 	printf("\tload:           %d\n", tdq->tdq_load);
357 	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
358 	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
359 	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
360 	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
361 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
362 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
363 	printf("\trealtime runq:\n");
364 	runq_print(&tdq->tdq_realtime);
365 	printf("\ttimeshare runq:\n");
366 	runq_print(&tdq->tdq_timeshare);
367 	printf("\tidle runq:\n");
368 	runq_print(&tdq->tdq_idle);
369 }
370 
371 static inline int
372 sched_shouldpreempt(int pri, int cpri, int remote)
373 {
374 	/*
375 	 * If the new priority is not better than the current priority there is
376 	 * nothing to do.
377 	 */
378 	if (pri >= cpri)
379 		return (0);
380 	/*
381 	 * Always preempt idle.
382 	 */
383 	if (cpri >= PRI_MIN_IDLE)
384 		return (1);
385 	/*
386 	 * If preemption is disabled don't preempt others.
387 	 */
388 	if (preempt_thresh == 0)
389 		return (0);
390 	/*
391 	 * Preempt if we exceed the threshold.
392 	 */
393 	if (pri <= preempt_thresh)
394 		return (1);
395 	/*
396 	 * If we're realtime or better and there is timeshare or worse running
397 	 * preempt only remote processors.
398 	 */
399 	if (remote && pri <= PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME)
400 		return (1);
401 	return (0);
402 }
403 
404 #define	TS_RQ_PPQ	(((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS)
405 /*
406  * Add a thread to the actual run-queue.  Keeps transferable counts up to
407  * date with what is actually on the run-queue.  Selects the correct
408  * queue position for timeshare threads.
409  */
410 static __inline void
411 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
412 {
413 	struct td_sched *ts;
414 	u_char pri;
415 
416 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
417 	THREAD_LOCK_ASSERT(td, MA_OWNED);
418 
419 	pri = td->td_priority;
420 	ts = td->td_sched;
421 	TD_SET_RUNQ(td);
422 	if (THREAD_CAN_MIGRATE(td)) {
423 		tdq->tdq_transferable++;
424 		ts->ts_flags |= TSF_XFERABLE;
425 	}
426 	if (pri <= PRI_MAX_REALTIME) {
427 		ts->ts_runq = &tdq->tdq_realtime;
428 	} else if (pri <= PRI_MAX_TIMESHARE) {
429 		ts->ts_runq = &tdq->tdq_timeshare;
430 		KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE,
431 			("Invalid priority %d on timeshare runq", pri));
432 		/*
433 		 * This queue contains only priorities between MIN and MAX
434 		 * realtime.  Use the whole queue to represent these values.
435 		 */
436 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
437 			pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ;
438 			pri = (pri + tdq->tdq_idx) % RQ_NQS;
439 			/*
440 			 * This effectively shortens the queue by one so we
441 			 * can have a one slot difference between idx and
442 			 * ridx while we wait for threads to drain.
443 			 */
444 			if (tdq->tdq_ridx != tdq->tdq_idx &&
445 			    pri == tdq->tdq_ridx)
446 				pri = (unsigned char)(pri - 1) % RQ_NQS;
447 		} else
448 			pri = tdq->tdq_ridx;
449 		runq_add_pri(ts->ts_runq, td, pri, flags);
450 		return;
451 	} else
452 		ts->ts_runq = &tdq->tdq_idle;
453 	runq_add(ts->ts_runq, td, flags);
454 }
455 
456 /*
457  * Remove a thread from a run-queue.  This typically happens when a thread
458  * is selected to run.  Running threads are not on the queue and the
459  * transferable count does not reflect them.
460  */
461 static __inline void
462 tdq_runq_rem(struct tdq *tdq, struct thread *td)
463 {
464 	struct td_sched *ts;
465 
466 	ts = td->td_sched;
467 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
468 	KASSERT(ts->ts_runq != NULL,
469 	    ("tdq_runq_remove: thread %p null ts_runq", td));
470 	if (ts->ts_flags & TSF_XFERABLE) {
471 		tdq->tdq_transferable--;
472 		ts->ts_flags &= ~TSF_XFERABLE;
473 	}
474 	if (ts->ts_runq == &tdq->tdq_timeshare) {
475 		if (tdq->tdq_idx != tdq->tdq_ridx)
476 			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
477 		else
478 			runq_remove_idx(ts->ts_runq, td, NULL);
479 	} else
480 		runq_remove(ts->ts_runq, td);
481 }
482 
483 /*
484  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
485  * for this thread to the referenced thread queue.
486  */
487 static void
488 tdq_load_add(struct tdq *tdq, struct thread *td)
489 {
490 
491 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
492 	THREAD_LOCK_ASSERT(td, MA_OWNED);
493 
494 	tdq->tdq_load++;
495 	if ((td->td_flags & TDF_NOLOAD) == 0)
496 		tdq->tdq_sysload++;
497 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
498 }
499 
500 /*
501  * Remove the load from a thread that is transitioning to a sleep state or
502  * exiting.
503  */
504 static void
505 tdq_load_rem(struct tdq *tdq, struct thread *td)
506 {
507 
508 	THREAD_LOCK_ASSERT(td, MA_OWNED);
509 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
510 	KASSERT(tdq->tdq_load != 0,
511 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
512 
513 	tdq->tdq_load--;
514 	if ((td->td_flags & TDF_NOLOAD) == 0)
515 		tdq->tdq_sysload--;
516 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
517 }
518 
519 /*
520  * Set lowpri to its exact value by searching the run-queue and
521  * evaluating curthread.  curthread may be passed as an optimization.
522  */
523 static void
524 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
525 {
526 	struct thread *td;
527 
528 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
529 	if (ctd == NULL)
530 		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
531 	td = tdq_choose(tdq);
532 	if (td == NULL || td->td_priority > ctd->td_priority)
533 		tdq->tdq_lowpri = ctd->td_priority;
534 	else
535 		tdq->tdq_lowpri = td->td_priority;
536 }
537 
538 #ifdef SMP
539 struct cpu_search {
540 	cpuset_t cs_mask;
541 	u_int	cs_load;
542 	u_int	cs_cpu;
543 	int	cs_limit;	/* Min priority for low min load for high. */
544 };
545 
546 #define	CPU_SEARCH_LOWEST	0x1
547 #define	CPU_SEARCH_HIGHEST	0x2
548 #define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
549 
550 #define	CPUSET_FOREACH(cpu, mask)				\
551 	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
552 		if ((mask) & 1 << (cpu))
553 
554 static __inline int cpu_search(struct cpu_group *cg, struct cpu_search *low,
555     struct cpu_search *high, const int match);
556 int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low);
557 int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high);
558 int cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
559     struct cpu_search *high);
560 
561 /*
562  * This routine compares according to the match argument and should be
563  * reduced in actual instantiations via constant propagation and dead code
564  * elimination.
565  */
566 static __inline int
567 cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high,
568     const int match)
569 {
570 	struct tdq *tdq;
571 
572 	tdq = TDQ_CPU(cpu);
573 	if (match & CPU_SEARCH_LOWEST)
574 		if (CPU_ISSET(cpu, &low->cs_mask) &&
575 		    tdq->tdq_load < low->cs_load &&
576 		    tdq->tdq_lowpri > low->cs_limit) {
577 			low->cs_cpu = cpu;
578 			low->cs_load = tdq->tdq_load;
579 		}
580 	if (match & CPU_SEARCH_HIGHEST)
581 		if (CPU_ISSET(cpu, &high->cs_mask) &&
582 		    tdq->tdq_load >= high->cs_limit &&
583 		    tdq->tdq_load > high->cs_load &&
584 		    tdq->tdq_transferable) {
585 			high->cs_cpu = cpu;
586 			high->cs_load = tdq->tdq_load;
587 		}
588 	return (tdq->tdq_load);
589 }
590 
591 /*
592  * Search the tree of cpu_groups for the lowest or highest loaded cpu
593  * according to the match argument.  This routine actually compares the
594  * load on all paths through the tree and finds the least loaded cpu on
595  * the least loaded path, which may differ from the least loaded cpu in
596  * the system.  This balances work among caches and busses.
597  *
598  * This inline is instantiated in three forms below using constants for the
599  * match argument.  It is reduced to the minimum set for each case.  It is
600  * also recursive to the depth of the tree.
601  */
602 static __inline int
603 cpu_search(struct cpu_group *cg, struct cpu_search *low,
604     struct cpu_search *high, const int match)
605 {
606 	int total;
607 
608 	total = 0;
609 	if (cg->cg_children) {
610 		struct cpu_search lgroup;
611 		struct cpu_search hgroup;
612 		struct cpu_group *child;
613 		u_int lload;
614 		int hload;
615 		int load;
616 		int i;
617 
618 		lload = -1;
619 		hload = -1;
620 		for (i = 0; i < cg->cg_children; i++) {
621 			child = &cg->cg_child[i];
622 			if (match & CPU_SEARCH_LOWEST) {
623 				lgroup = *low;
624 				lgroup.cs_load = -1;
625 			}
626 			if (match & CPU_SEARCH_HIGHEST) {
627 				hgroup = *high;
628 				lgroup.cs_load = 0;
629 			}
630 			switch (match) {
631 			case CPU_SEARCH_LOWEST:
632 				load = cpu_search_lowest(child, &lgroup);
633 				break;
634 			case CPU_SEARCH_HIGHEST:
635 				load = cpu_search_highest(child, &hgroup);
636 				break;
637 			case CPU_SEARCH_BOTH:
638 				load = cpu_search_both(child, &lgroup, &hgroup);
639 				break;
640 			}
641 			total += load;
642 			if (match & CPU_SEARCH_LOWEST)
643 				if (load < lload || low->cs_cpu == -1) {
644 					*low = lgroup;
645 					lload = load;
646 				}
647 			if (match & CPU_SEARCH_HIGHEST)
648 				if (load > hload || high->cs_cpu == -1) {
649 					hload = load;
650 					*high = hgroup;
651 				}
652 		}
653 	} else {
654 		int cpu;
655 
656 		CPUSET_FOREACH(cpu, cg->cg_mask)
657 			total += cpu_compare(cpu, low, high, match);
658 	}
659 	return (total);
660 }
661 
662 /*
663  * cpu_search instantiations must pass constants to maintain the inline
664  * optimization.
665  */
666 int
667 cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low)
668 {
669 	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
670 }
671 
672 int
673 cpu_search_highest(struct cpu_group *cg, struct cpu_search *high)
674 {
675 	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
676 }
677 
678 int
679 cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
680     struct cpu_search *high)
681 {
682 	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
683 }
684 
685 /*
686  * Find the cpu with the least load via the least loaded path that has a
687  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
688  * acceptable.
689  */
690 static inline int
691 sched_lowest(struct cpu_group *cg, cpuset_t mask, int pri)
692 {
693 	struct cpu_search low;
694 
695 	low.cs_cpu = -1;
696 	low.cs_load = -1;
697 	low.cs_mask = mask;
698 	low.cs_limit = pri;
699 	cpu_search_lowest(cg, &low);
700 	return low.cs_cpu;
701 }
702 
703 /*
704  * Find the cpu with the highest load via the highest loaded path.
705  */
706 static inline int
707 sched_highest(struct cpu_group *cg, cpuset_t mask, int minload)
708 {
709 	struct cpu_search high;
710 
711 	high.cs_cpu = -1;
712 	high.cs_load = 0;
713 	high.cs_mask = mask;
714 	high.cs_limit = minload;
715 	cpu_search_highest(cg, &high);
716 	return high.cs_cpu;
717 }
718 
719 /*
720  * Simultaneously find the highest and lowest loaded cpu reachable via
721  * cg.
722  */
723 static inline void
724 sched_both(struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
725 {
726 	struct cpu_search high;
727 	struct cpu_search low;
728 
729 	low.cs_cpu = -1;
730 	low.cs_limit = -1;
731 	low.cs_load = -1;
732 	low.cs_mask = mask;
733 	high.cs_load = 0;
734 	high.cs_cpu = -1;
735 	high.cs_limit = -1;
736 	high.cs_mask = mask;
737 	cpu_search_both(cg, &low, &high);
738 	*lowcpu = low.cs_cpu;
739 	*highcpu = high.cs_cpu;
740 	return;
741 }
742 
743 static void
744 sched_balance_group(struct cpu_group *cg)
745 {
746 	cpuset_t mask;
747 	int high;
748 	int low;
749 	int i;
750 
751 	CPU_FILL(&mask);
752 	for (;;) {
753 		sched_both(cg, mask, &low, &high);
754 		if (low == high || low == -1 || high == -1)
755 			break;
756 		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low)))
757 			break;
758 		/*
759 		 * If we failed to move any threads determine which cpu
760 		 * to kick out of the set and try again.
761 	 	 */
762 		if (TDQ_CPU(high)->tdq_transferable == 0)
763 			CPU_CLR(high, &mask);
764 		else
765 			CPU_CLR(low, &mask);
766 	}
767 
768 	for (i = 0; i < cg->cg_children; i++)
769 		sched_balance_group(&cg->cg_child[i]);
770 }
771 
772 static void
773 sched_balance(void)
774 {
775 	struct tdq *tdq;
776 
777 	/*
778 	 * Select a random time between .5 * balance_interval and
779 	 * 1.5 * balance_interval.
780 	 */
781 	balance_ticks = max(balance_interval / 2, 1);
782 	balance_ticks += random() % balance_interval;
783 	if (smp_started == 0 || rebalance == 0)
784 		return;
785 	tdq = TDQ_SELF();
786 	TDQ_UNLOCK(tdq);
787 	sched_balance_group(cpu_top);
788 	TDQ_LOCK(tdq);
789 }
790 
791 /*
792  * Lock two thread queues using their address to maintain lock order.
793  */
794 static void
795 tdq_lock_pair(struct tdq *one, struct tdq *two)
796 {
797 	if (one < two) {
798 		TDQ_LOCK(one);
799 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
800 	} else {
801 		TDQ_LOCK(two);
802 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
803 	}
804 }
805 
806 /*
807  * Unlock two thread queues.  Order is not important here.
808  */
809 static void
810 tdq_unlock_pair(struct tdq *one, struct tdq *two)
811 {
812 	TDQ_UNLOCK(one);
813 	TDQ_UNLOCK(two);
814 }
815 
816 /*
817  * Transfer load between two imbalanced thread queues.
818  */
819 static int
820 sched_balance_pair(struct tdq *high, struct tdq *low)
821 {
822 	int transferable;
823 	int high_load;
824 	int low_load;
825 	int moved;
826 	int move;
827 	int diff;
828 	int i;
829 
830 	tdq_lock_pair(high, low);
831 	transferable = high->tdq_transferable;
832 	high_load = high->tdq_load;
833 	low_load = low->tdq_load;
834 	moved = 0;
835 	/*
836 	 * Determine what the imbalance is and then adjust that to how many
837 	 * threads we actually have to give up (transferable).
838 	 */
839 	if (transferable != 0) {
840 		diff = high_load - low_load;
841 		move = diff / 2;
842 		if (diff & 0x1)
843 			move++;
844 		move = min(move, transferable);
845 		for (i = 0; i < move; i++)
846 			moved += tdq_move(high, low);
847 		/*
848 		 * IPI the target cpu to force it to reschedule with the new
849 		 * workload.
850 		 */
851 		ipi_cpu(TDQ_ID(low), IPI_PREEMPT);
852 	}
853 	tdq_unlock_pair(high, low);
854 	return (moved);
855 }
856 
857 /*
858  * Move a thread from one thread queue to another.
859  */
860 static int
861 tdq_move(struct tdq *from, struct tdq *to)
862 {
863 	struct td_sched *ts;
864 	struct thread *td;
865 	struct tdq *tdq;
866 	int cpu;
867 
868 	TDQ_LOCK_ASSERT(from, MA_OWNED);
869 	TDQ_LOCK_ASSERT(to, MA_OWNED);
870 
871 	tdq = from;
872 	cpu = TDQ_ID(to);
873 	td = tdq_steal(tdq, cpu);
874 	if (td == NULL)
875 		return (0);
876 	ts = td->td_sched;
877 	/*
878 	 * Although the run queue is locked the thread may be blocked.  Lock
879 	 * it to clear this and acquire the run-queue lock.
880 	 */
881 	thread_lock(td);
882 	/* Drop recursive lock on from acquired via thread_lock(). */
883 	TDQ_UNLOCK(from);
884 	sched_rem(td);
885 	ts->ts_cpu = cpu;
886 	td->td_lock = TDQ_LOCKPTR(to);
887 	tdq_add(to, td, SRQ_YIELDING);
888 	return (1);
889 }
890 
891 /*
892  * This tdq has idled.  Try to steal a thread from another cpu and switch
893  * to it.
894  */
895 static int
896 tdq_idled(struct tdq *tdq)
897 {
898 	struct cpu_group *cg;
899 	struct tdq *steal;
900 	cpuset_t mask;
901 	int thresh;
902 	int cpu;
903 
904 	if (smp_started == 0 || steal_idle == 0)
905 		return (1);
906 	CPU_FILL(&mask);
907 	CPU_CLR(PCPU_GET(cpuid), &mask);
908 	/* We don't want to be preempted while we're iterating. */
909 	spinlock_enter();
910 	for (cg = tdq->tdq_cg; cg != NULL; ) {
911 		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
912 			thresh = steal_thresh;
913 		else
914 			thresh = 1;
915 		cpu = sched_highest(cg, mask, thresh);
916 		if (cpu == -1) {
917 			cg = cg->cg_parent;
918 			continue;
919 		}
920 		steal = TDQ_CPU(cpu);
921 		CPU_CLR(cpu, &mask);
922 		tdq_lock_pair(tdq, steal);
923 		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
924 			tdq_unlock_pair(tdq, steal);
925 			continue;
926 		}
927 		/*
928 		 * If a thread was added while interrupts were disabled don't
929 		 * steal one here.  If we fail to acquire one due to affinity
930 		 * restrictions loop again with this cpu removed from the
931 		 * set.
932 		 */
933 		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
934 			tdq_unlock_pair(tdq, steal);
935 			continue;
936 		}
937 		spinlock_exit();
938 		TDQ_UNLOCK(steal);
939 		mi_switch(SW_VOL | SWT_IDLE, NULL);
940 		thread_unlock(curthread);
941 
942 		return (0);
943 	}
944 	spinlock_exit();
945 	return (1);
946 }
947 
948 /*
949  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
950  */
951 static void
952 tdq_notify(struct tdq *tdq, struct thread *td)
953 {
954 	struct thread *ctd;
955 	int pri;
956 	int cpu;
957 
958 	if (tdq->tdq_ipipending)
959 		return;
960 	cpu = td->td_sched->ts_cpu;
961 	pri = td->td_priority;
962 	ctd = pcpu_find(cpu)->pc_curthread;
963 	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
964 		return;
965 	if (TD_IS_IDLETHREAD(ctd)) {
966 		/*
967 		 * If the MD code has an idle wakeup routine try that before
968 		 * falling back to IPI.
969 		 */
970 		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
971 			return;
972 	}
973 	tdq->tdq_ipipending = 1;
974 	ipi_cpu(cpu, IPI_PREEMPT);
975 }
976 
977 /*
978  * Steals load from a timeshare queue.  Honors the rotating queue head
979  * index.
980  */
981 static struct thread *
982 runq_steal_from(struct runq *rq, int cpu, u_char start)
983 {
984 	struct rqbits *rqb;
985 	struct rqhead *rqh;
986 	struct thread *td;
987 	int first;
988 	int bit;
989 	int pri;
990 	int i;
991 
992 	rqb = &rq->rq_status;
993 	bit = start & (RQB_BPW -1);
994 	pri = 0;
995 	first = 0;
996 again:
997 	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
998 		if (rqb->rqb_bits[i] == 0)
999 			continue;
1000 		if (bit != 0) {
1001 			for (pri = bit; pri < RQB_BPW; pri++)
1002 				if (rqb->rqb_bits[i] & (1ul << pri))
1003 					break;
1004 			if (pri >= RQB_BPW)
1005 				continue;
1006 		} else
1007 			pri = RQB_FFS(rqb->rqb_bits[i]);
1008 		pri += (i << RQB_L2BPW);
1009 		rqh = &rq->rq_queues[pri];
1010 		TAILQ_FOREACH(td, rqh, td_runq) {
1011 			if (first && THREAD_CAN_MIGRATE(td) &&
1012 			    THREAD_CAN_SCHED(td, cpu))
1013 				return (td);
1014 			first = 1;
1015 		}
1016 	}
1017 	if (start != 0) {
1018 		start = 0;
1019 		goto again;
1020 	}
1021 
1022 	return (NULL);
1023 }
1024 
1025 /*
1026  * Steals load from a standard linear queue.
1027  */
1028 static struct thread *
1029 runq_steal(struct runq *rq, int cpu)
1030 {
1031 	struct rqhead *rqh;
1032 	struct rqbits *rqb;
1033 	struct thread *td;
1034 	int word;
1035 	int bit;
1036 
1037 	rqb = &rq->rq_status;
1038 	for (word = 0; word < RQB_LEN; word++) {
1039 		if (rqb->rqb_bits[word] == 0)
1040 			continue;
1041 		for (bit = 0; bit < RQB_BPW; bit++) {
1042 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1043 				continue;
1044 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1045 			TAILQ_FOREACH(td, rqh, td_runq)
1046 				if (THREAD_CAN_MIGRATE(td) &&
1047 				    THREAD_CAN_SCHED(td, cpu))
1048 					return (td);
1049 		}
1050 	}
1051 	return (NULL);
1052 }
1053 
1054 /*
1055  * Attempt to steal a thread in priority order from a thread queue.
1056  */
1057 static struct thread *
1058 tdq_steal(struct tdq *tdq, int cpu)
1059 {
1060 	struct thread *td;
1061 
1062 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1063 	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1064 		return (td);
1065 	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1066 	    cpu, tdq->tdq_ridx)) != NULL)
1067 		return (td);
1068 	return (runq_steal(&tdq->tdq_idle, cpu));
1069 }
1070 
1071 /*
1072  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1073  * current lock and returns with the assigned queue locked.
1074  */
1075 static inline struct tdq *
1076 sched_setcpu(struct thread *td, int cpu, int flags)
1077 {
1078 
1079 	struct tdq *tdq;
1080 
1081 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1082 	tdq = TDQ_CPU(cpu);
1083 	td->td_sched->ts_cpu = cpu;
1084 	/*
1085 	 * If the lock matches just return the queue.
1086 	 */
1087 	if (td->td_lock == TDQ_LOCKPTR(tdq))
1088 		return (tdq);
1089 #ifdef notyet
1090 	/*
1091 	 * If the thread isn't running its lockptr is a
1092 	 * turnstile or a sleepqueue.  We can just lock_set without
1093 	 * blocking.
1094 	 */
1095 	if (TD_CAN_RUN(td)) {
1096 		TDQ_LOCK(tdq);
1097 		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1098 		return (tdq);
1099 	}
1100 #endif
1101 	/*
1102 	 * The hard case, migration, we need to block the thread first to
1103 	 * prevent order reversals with other cpus locks.
1104 	 */
1105 	spinlock_enter();
1106 	thread_lock_block(td);
1107 	TDQ_LOCK(tdq);
1108 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1109 	spinlock_exit();
1110 	return (tdq);
1111 }
1112 
1113 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1114 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1115 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1116 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1117 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1118 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1119 
1120 static int
1121 sched_pickcpu(struct thread *td, int flags)
1122 {
1123 	struct cpu_group *cg;
1124 	struct td_sched *ts;
1125 	struct tdq *tdq;
1126 	cpuset_t mask;
1127 	int self;
1128 	int pri;
1129 	int cpu;
1130 
1131 	self = PCPU_GET(cpuid);
1132 	ts = td->td_sched;
1133 	if (smp_started == 0)
1134 		return (self);
1135 	/*
1136 	 * Don't migrate a running thread from sched_switch().
1137 	 */
1138 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1139 		return (ts->ts_cpu);
1140 	/*
1141 	 * Prefer to run interrupt threads on the processors that generate
1142 	 * the interrupt.
1143 	 */
1144 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1145 	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1146 		SCHED_STAT_INC(pickcpu_intrbind);
1147 		ts->ts_cpu = self;
1148 	}
1149 	/*
1150 	 * If the thread can run on the last cpu and the affinity has not
1151 	 * expired or it is idle run it there.
1152 	 */
1153 	pri = td->td_priority;
1154 	tdq = TDQ_CPU(ts->ts_cpu);
1155 	if (THREAD_CAN_SCHED(td, ts->ts_cpu)) {
1156 		if (tdq->tdq_lowpri > PRI_MIN_IDLE) {
1157 			SCHED_STAT_INC(pickcpu_idle_affinity);
1158 			return (ts->ts_cpu);
1159 		}
1160 		if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri) {
1161 			SCHED_STAT_INC(pickcpu_affinity);
1162 			return (ts->ts_cpu);
1163 		}
1164 	}
1165 	/*
1166 	 * Search for the highest level in the tree that still has affinity.
1167 	 */
1168 	cg = NULL;
1169 	for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent)
1170 		if (SCHED_AFFINITY(ts, cg->cg_level))
1171 			break;
1172 	cpu = -1;
1173 	mask = td->td_cpuset->cs_mask;
1174 	if (cg)
1175 		cpu = sched_lowest(cg, mask, pri);
1176 	if (cpu == -1)
1177 		cpu = sched_lowest(cpu_top, mask, -1);
1178 	/*
1179 	 * Compare the lowest loaded cpu to current cpu.
1180 	 */
1181 	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1182 	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) {
1183 		SCHED_STAT_INC(pickcpu_local);
1184 		cpu = self;
1185 	} else
1186 		SCHED_STAT_INC(pickcpu_lowest);
1187 	if (cpu != ts->ts_cpu)
1188 		SCHED_STAT_INC(pickcpu_migration);
1189 	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1190 	return (cpu);
1191 }
1192 #endif
1193 
1194 /*
1195  * Pick the highest priority task we have and return it.
1196  */
1197 static struct thread *
1198 tdq_choose(struct tdq *tdq)
1199 {
1200 	struct thread *td;
1201 
1202 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1203 	td = runq_choose(&tdq->tdq_realtime);
1204 	if (td != NULL)
1205 		return (td);
1206 	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1207 	if (td != NULL) {
1208 		KASSERT(td->td_priority >= PRI_MIN_TIMESHARE,
1209 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1210 		    td->td_priority));
1211 		return (td);
1212 	}
1213 	td = runq_choose(&tdq->tdq_idle);
1214 	if (td != NULL) {
1215 		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1216 		    ("tdq_choose: Invalid priority on idle queue %d",
1217 		    td->td_priority));
1218 		return (td);
1219 	}
1220 
1221 	return (NULL);
1222 }
1223 
1224 /*
1225  * Initialize a thread queue.
1226  */
1227 static void
1228 tdq_setup(struct tdq *tdq)
1229 {
1230 
1231 	if (bootverbose)
1232 		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1233 	runq_init(&tdq->tdq_realtime);
1234 	runq_init(&tdq->tdq_timeshare);
1235 	runq_init(&tdq->tdq_idle);
1236 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1237 	    "sched lock %d", (int)TDQ_ID(tdq));
1238 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1239 	    MTX_SPIN | MTX_RECURSE);
1240 #ifdef KTR
1241 	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1242 	    "CPU %d load", (int)TDQ_ID(tdq));
1243 #endif
1244 }
1245 
1246 #ifdef SMP
1247 static void
1248 sched_setup_smp(void)
1249 {
1250 	struct tdq *tdq;
1251 	int i;
1252 
1253 	cpu_top = smp_topo();
1254 	CPU_FOREACH(i) {
1255 		tdq = TDQ_CPU(i);
1256 		tdq_setup(tdq);
1257 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1258 		if (tdq->tdq_cg == NULL)
1259 			panic("Can't find cpu group for %d\n", i);
1260 	}
1261 	balance_tdq = TDQ_SELF();
1262 	sched_balance();
1263 }
1264 #endif
1265 
1266 /*
1267  * Setup the thread queues and initialize the topology based on MD
1268  * information.
1269  */
1270 static void
1271 sched_setup(void *dummy)
1272 {
1273 	struct tdq *tdq;
1274 
1275 	tdq = TDQ_SELF();
1276 #ifdef SMP
1277 	sched_setup_smp();
1278 #else
1279 	tdq_setup(tdq);
1280 #endif
1281 	/*
1282 	 * To avoid divide-by-zero, we set realstathz a dummy value
1283 	 * in case which sched_clock() called before sched_initticks().
1284 	 */
1285 	realstathz = hz;
1286 	sched_slice = (realstathz/10);	/* ~100ms */
1287 	tickincr = 1 << SCHED_TICK_SHIFT;
1288 
1289 	/* Add thread0's load since it's running. */
1290 	TDQ_LOCK(tdq);
1291 	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1292 	tdq_load_add(tdq, &thread0);
1293 	tdq->tdq_lowpri = thread0.td_priority;
1294 	TDQ_UNLOCK(tdq);
1295 }
1296 
1297 /*
1298  * This routine determines the tickincr after stathz and hz are setup.
1299  */
1300 /* ARGSUSED */
1301 static void
1302 sched_initticks(void *dummy)
1303 {
1304 	int incr;
1305 
1306 	realstathz = stathz ? stathz : hz;
1307 	sched_slice = (realstathz/10);	/* ~100ms */
1308 
1309 	/*
1310 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1311 	 * hz not being evenly divisible by stathz on all platforms.
1312 	 */
1313 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1314 	/*
1315 	 * This does not work for values of stathz that are more than
1316 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1317 	 */
1318 	if (incr == 0)
1319 		incr = 1;
1320 	tickincr = incr;
1321 #ifdef SMP
1322 	/*
1323 	 * Set the default balance interval now that we know
1324 	 * what realstathz is.
1325 	 */
1326 	balance_interval = realstathz;
1327 	/*
1328 	 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4.
1329 	 * This prevents excess thrashing on large machines and excess idle
1330 	 * on smaller machines.
1331 	 */
1332 	steal_thresh = min(fls(mp_ncpus) - 1, 3);
1333 	affinity = SCHED_AFFINITY_DEFAULT;
1334 #endif
1335 }
1336 
1337 
1338 /*
1339  * This is the core of the interactivity algorithm.  Determines a score based
1340  * on past behavior.  It is the ratio of sleep time to run time scaled to
1341  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1342  * differs from the cpu usage because it does not account for time spent
1343  * waiting on a run-queue.  Would be prettier if we had floating point.
1344  */
1345 static int
1346 sched_interact_score(struct thread *td)
1347 {
1348 	struct td_sched *ts;
1349 	int div;
1350 
1351 	ts = td->td_sched;
1352 	/*
1353 	 * The score is only needed if this is likely to be an interactive
1354 	 * task.  Don't go through the expense of computing it if there's
1355 	 * no chance.
1356 	 */
1357 	if (sched_interact <= SCHED_INTERACT_HALF &&
1358 		ts->ts_runtime >= ts->ts_slptime)
1359 			return (SCHED_INTERACT_HALF);
1360 
1361 	if (ts->ts_runtime > ts->ts_slptime) {
1362 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1363 		return (SCHED_INTERACT_HALF +
1364 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1365 	}
1366 	if (ts->ts_slptime > ts->ts_runtime) {
1367 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1368 		return (ts->ts_runtime / div);
1369 	}
1370 	/* runtime == slptime */
1371 	if (ts->ts_runtime)
1372 		return (SCHED_INTERACT_HALF);
1373 
1374 	/*
1375 	 * This can happen if slptime and runtime are 0.
1376 	 */
1377 	return (0);
1378 
1379 }
1380 
1381 /*
1382  * Scale the scheduling priority according to the "interactivity" of this
1383  * process.
1384  */
1385 static void
1386 sched_priority(struct thread *td)
1387 {
1388 	int score;
1389 	int pri;
1390 
1391 	if (td->td_pri_class != PRI_TIMESHARE)
1392 		return;
1393 	/*
1394 	 * If the score is interactive we place the thread in the realtime
1395 	 * queue with a priority that is less than kernel and interrupt
1396 	 * priorities.  These threads are not subject to nice restrictions.
1397 	 *
1398 	 * Scores greater than this are placed on the normal timeshare queue
1399 	 * where the priority is partially decided by the most recent cpu
1400 	 * utilization and the rest is decided by nice value.
1401 	 *
1402 	 * The nice value of the process has a linear effect on the calculated
1403 	 * score.  Negative nice values make it easier for a thread to be
1404 	 * considered interactive.
1405 	 */
1406 	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1407 	if (score < sched_interact) {
1408 		pri = PRI_MIN_REALTIME;
1409 		pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact)
1410 		    * score;
1411 		KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME,
1412 		    ("sched_priority: invalid interactive priority %d score %d",
1413 		    pri, score));
1414 	} else {
1415 		pri = SCHED_PRI_MIN;
1416 		if (td->td_sched->ts_ticks)
1417 			pri += SCHED_PRI_TICKS(td->td_sched);
1418 		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1419 		KASSERT(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE,
1420 		    ("sched_priority: invalid priority %d: nice %d, "
1421 		    "ticks %d ftick %d ltick %d tick pri %d",
1422 		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1423 		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1424 		    SCHED_PRI_TICKS(td->td_sched)));
1425 	}
1426 	sched_user_prio(td, pri);
1427 
1428 	return;
1429 }
1430 
1431 /*
1432  * This routine enforces a maximum limit on the amount of scheduling history
1433  * kept.  It is called after either the slptime or runtime is adjusted.  This
1434  * function is ugly due to integer math.
1435  */
1436 static void
1437 sched_interact_update(struct thread *td)
1438 {
1439 	struct td_sched *ts;
1440 	u_int sum;
1441 
1442 	ts = td->td_sched;
1443 	sum = ts->ts_runtime + ts->ts_slptime;
1444 	if (sum < SCHED_SLP_RUN_MAX)
1445 		return;
1446 	/*
1447 	 * This only happens from two places:
1448 	 * 1) We have added an unusual amount of run time from fork_exit.
1449 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1450 	 */
1451 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1452 		if (ts->ts_runtime > ts->ts_slptime) {
1453 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1454 			ts->ts_slptime = 1;
1455 		} else {
1456 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1457 			ts->ts_runtime = 1;
1458 		}
1459 		return;
1460 	}
1461 	/*
1462 	 * If we have exceeded by more than 1/5th then the algorithm below
1463 	 * will not bring us back into range.  Dividing by two here forces
1464 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1465 	 */
1466 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1467 		ts->ts_runtime /= 2;
1468 		ts->ts_slptime /= 2;
1469 		return;
1470 	}
1471 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1472 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1473 }
1474 
1475 /*
1476  * Scale back the interactivity history when a child thread is created.  The
1477  * history is inherited from the parent but the thread may behave totally
1478  * differently.  For example, a shell spawning a compiler process.  We want
1479  * to learn that the compiler is behaving badly very quickly.
1480  */
1481 static void
1482 sched_interact_fork(struct thread *td)
1483 {
1484 	int ratio;
1485 	int sum;
1486 
1487 	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1488 	if (sum > SCHED_SLP_RUN_FORK) {
1489 		ratio = sum / SCHED_SLP_RUN_FORK;
1490 		td->td_sched->ts_runtime /= ratio;
1491 		td->td_sched->ts_slptime /= ratio;
1492 	}
1493 }
1494 
1495 /*
1496  * Called from proc0_init() to setup the scheduler fields.
1497  */
1498 void
1499 schedinit(void)
1500 {
1501 
1502 	/*
1503 	 * Set up the scheduler specific parts of proc0.
1504 	 */
1505 	proc0.p_sched = NULL; /* XXX */
1506 	thread0.td_sched = &td_sched0;
1507 	td_sched0.ts_ltick = ticks;
1508 	td_sched0.ts_ftick = ticks;
1509 	td_sched0.ts_slice = sched_slice;
1510 }
1511 
1512 /*
1513  * This is only somewhat accurate since given many processes of the same
1514  * priority they will switch when their slices run out, which will be
1515  * at most sched_slice stathz ticks.
1516  */
1517 int
1518 sched_rr_interval(void)
1519 {
1520 
1521 	/* Convert sched_slice to hz */
1522 	return (hz/(realstathz/sched_slice));
1523 }
1524 
1525 /*
1526  * Update the percent cpu tracking information when it is requested or
1527  * the total history exceeds the maximum.  We keep a sliding history of
1528  * tick counts that slowly decays.  This is less precise than the 4BSD
1529  * mechanism since it happens with less regular and frequent events.
1530  */
1531 static void
1532 sched_pctcpu_update(struct td_sched *ts)
1533 {
1534 
1535 	if (ts->ts_ticks == 0)
1536 		return;
1537 	if (ticks - (hz / 10) < ts->ts_ltick &&
1538 	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
1539 		return;
1540 	/*
1541 	 * Adjust counters and watermark for pctcpu calc.
1542 	 */
1543 	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
1544 		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
1545 			    SCHED_TICK_TARG;
1546 	else
1547 		ts->ts_ticks = 0;
1548 	ts->ts_ltick = ticks;
1549 	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
1550 }
1551 
1552 /*
1553  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1554  * if necessary.  This is the back-end for several priority related
1555  * functions.
1556  */
1557 static void
1558 sched_thread_priority(struct thread *td, u_char prio)
1559 {
1560 	struct td_sched *ts;
1561 	struct tdq *tdq;
1562 	int oldpri;
1563 
1564 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1565 	    "prio:%d", td->td_priority, "new prio:%d", prio,
1566 	    KTR_ATTR_LINKED, sched_tdname(curthread));
1567 	if (td != curthread && prio > td->td_priority) {
1568 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1569 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1570 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1571 	}
1572 	ts = td->td_sched;
1573 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1574 	if (td->td_priority == prio)
1575 		return;
1576 	/*
1577 	 * If the priority has been elevated due to priority
1578 	 * propagation, we may have to move ourselves to a new
1579 	 * queue.  This could be optimized to not re-add in some
1580 	 * cases.
1581 	 */
1582 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1583 		sched_rem(td);
1584 		td->td_priority = prio;
1585 		sched_add(td, SRQ_BORROWING);
1586 		return;
1587 	}
1588 	/*
1589 	 * If the thread is currently running we may have to adjust the lowpri
1590 	 * information so other cpus are aware of our current priority.
1591 	 */
1592 	if (TD_IS_RUNNING(td)) {
1593 		tdq = TDQ_CPU(ts->ts_cpu);
1594 		oldpri = td->td_priority;
1595 		td->td_priority = prio;
1596 		if (prio < tdq->tdq_lowpri)
1597 			tdq->tdq_lowpri = prio;
1598 		else if (tdq->tdq_lowpri == oldpri)
1599 			tdq_setlowpri(tdq, td);
1600 		return;
1601 	}
1602 	td->td_priority = prio;
1603 }
1604 
1605 /*
1606  * Update a thread's priority when it is lent another thread's
1607  * priority.
1608  */
1609 void
1610 sched_lend_prio(struct thread *td, u_char prio)
1611 {
1612 
1613 	td->td_flags |= TDF_BORROWING;
1614 	sched_thread_priority(td, prio);
1615 }
1616 
1617 /*
1618  * Restore a thread's priority when priority propagation is
1619  * over.  The prio argument is the minimum priority the thread
1620  * needs to have to satisfy other possible priority lending
1621  * requests.  If the thread's regular priority is less
1622  * important than prio, the thread will keep a priority boost
1623  * of prio.
1624  */
1625 void
1626 sched_unlend_prio(struct thread *td, u_char prio)
1627 {
1628 	u_char base_pri;
1629 
1630 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1631 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1632 		base_pri = td->td_user_pri;
1633 	else
1634 		base_pri = td->td_base_pri;
1635 	if (prio >= base_pri) {
1636 		td->td_flags &= ~TDF_BORROWING;
1637 		sched_thread_priority(td, base_pri);
1638 	} else
1639 		sched_lend_prio(td, prio);
1640 }
1641 
1642 /*
1643  * Standard entry for setting the priority to an absolute value.
1644  */
1645 void
1646 sched_prio(struct thread *td, u_char prio)
1647 {
1648 	u_char oldprio;
1649 
1650 	/* First, update the base priority. */
1651 	td->td_base_pri = prio;
1652 
1653 	/*
1654 	 * If the thread is borrowing another thread's priority, don't
1655 	 * ever lower the priority.
1656 	 */
1657 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1658 		return;
1659 
1660 	/* Change the real priority. */
1661 	oldprio = td->td_priority;
1662 	sched_thread_priority(td, prio);
1663 
1664 	/*
1665 	 * If the thread is on a turnstile, then let the turnstile update
1666 	 * its state.
1667 	 */
1668 	if (TD_ON_LOCK(td) && oldprio != prio)
1669 		turnstile_adjust(td, oldprio);
1670 }
1671 
1672 /*
1673  * Set the base user priority, does not effect current running priority.
1674  */
1675 void
1676 sched_user_prio(struct thread *td, u_char prio)
1677 {
1678 	u_char oldprio;
1679 
1680 	td->td_base_user_pri = prio;
1681 	if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
1682                 return;
1683 	oldprio = td->td_user_pri;
1684 	td->td_user_pri = prio;
1685 }
1686 
1687 void
1688 sched_lend_user_prio(struct thread *td, u_char prio)
1689 {
1690 	u_char oldprio;
1691 
1692 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1693 	td->td_flags |= TDF_UBORROWING;
1694 	oldprio = td->td_user_pri;
1695 	td->td_user_pri = prio;
1696 }
1697 
1698 void
1699 sched_unlend_user_prio(struct thread *td, u_char prio)
1700 {
1701 	u_char base_pri;
1702 
1703 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1704 	base_pri = td->td_base_user_pri;
1705 	if (prio >= base_pri) {
1706 		td->td_flags &= ~TDF_UBORROWING;
1707 		sched_user_prio(td, base_pri);
1708 	} else {
1709 		sched_lend_user_prio(td, prio);
1710 	}
1711 }
1712 
1713 /*
1714  * Handle migration from sched_switch().  This happens only for
1715  * cpu binding.
1716  */
1717 static struct mtx *
1718 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1719 {
1720 	struct tdq *tdn;
1721 
1722 	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1723 #ifdef SMP
1724 	tdq_load_rem(tdq, td);
1725 	/*
1726 	 * Do the lock dance required to avoid LOR.  We grab an extra
1727 	 * spinlock nesting to prevent preemption while we're
1728 	 * not holding either run-queue lock.
1729 	 */
1730 	spinlock_enter();
1731 	thread_lock_block(td);	/* This releases the lock on tdq. */
1732 
1733 	/*
1734 	 * Acquire both run-queue locks before placing the thread on the new
1735 	 * run-queue to avoid deadlocks created by placing a thread with a
1736 	 * blocked lock on the run-queue of a remote processor.  The deadlock
1737 	 * occurs when a third processor attempts to lock the two queues in
1738 	 * question while the target processor is spinning with its own
1739 	 * run-queue lock held while waiting for the blocked lock to clear.
1740 	 */
1741 	tdq_lock_pair(tdn, tdq);
1742 	tdq_add(tdn, td, flags);
1743 	tdq_notify(tdn, td);
1744 	TDQ_UNLOCK(tdn);
1745 	spinlock_exit();
1746 #endif
1747 	return (TDQ_LOCKPTR(tdn));
1748 }
1749 
1750 /*
1751  * Variadic version of thread_lock_unblock() that does not assume td_lock
1752  * is blocked.
1753  */
1754 static inline void
1755 thread_unblock_switch(struct thread *td, struct mtx *mtx)
1756 {
1757 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1758 	    (uintptr_t)mtx);
1759 }
1760 
1761 /*
1762  * Switch threads.  This function has to handle threads coming in while
1763  * blocked for some reason, running, or idle.  It also must deal with
1764  * migrating a thread from one queue to another as running threads may
1765  * be assigned elsewhere via binding.
1766  */
1767 void
1768 sched_switch(struct thread *td, struct thread *newtd, int flags)
1769 {
1770 	struct tdq *tdq;
1771 	struct td_sched *ts;
1772 	struct mtx *mtx;
1773 	int srqflag;
1774 	int cpuid;
1775 
1776 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1777 	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1778 
1779 	cpuid = PCPU_GET(cpuid);
1780 	tdq = TDQ_CPU(cpuid);
1781 	ts = td->td_sched;
1782 	mtx = td->td_lock;
1783 	ts->ts_rltick = ticks;
1784 	td->td_lastcpu = td->td_oncpu;
1785 	td->td_oncpu = NOCPU;
1786 	td->td_flags &= ~TDF_NEEDRESCHED;
1787 	td->td_owepreempt = 0;
1788 	tdq->tdq_switchcnt++;
1789 	/*
1790 	 * The lock pointer in an idle thread should never change.  Reset it
1791 	 * to CAN_RUN as well.
1792 	 */
1793 	if (TD_IS_IDLETHREAD(td)) {
1794 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1795 		TD_SET_CAN_RUN(td);
1796 	} else if (TD_IS_RUNNING(td)) {
1797 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1798 		srqflag = (flags & SW_PREEMPT) ?
1799 		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1800 		    SRQ_OURSELF|SRQ_YIELDING;
1801 #ifdef SMP
1802 		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1803 			ts->ts_cpu = sched_pickcpu(td, 0);
1804 #endif
1805 		if (ts->ts_cpu == cpuid)
1806 			tdq_runq_add(tdq, td, srqflag);
1807 		else {
1808 			KASSERT(THREAD_CAN_MIGRATE(td) ||
1809 			    (ts->ts_flags & TSF_BOUND) != 0,
1810 			    ("Thread %p shouldn't migrate", td));
1811 			mtx = sched_switch_migrate(tdq, td, srqflag);
1812 		}
1813 	} else {
1814 		/* This thread must be going to sleep. */
1815 		TDQ_LOCK(tdq);
1816 		mtx = thread_lock_block(td);
1817 		tdq_load_rem(tdq, td);
1818 	}
1819 	/*
1820 	 * We enter here with the thread blocked and assigned to the
1821 	 * appropriate cpu run-queue or sleep-queue and with the current
1822 	 * thread-queue locked.
1823 	 */
1824 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1825 	newtd = choosethread();
1826 	/*
1827 	 * Call the MD code to switch contexts if necessary.
1828 	 */
1829 	if (td != newtd) {
1830 #ifdef	HWPMC_HOOKS
1831 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1832 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1833 #endif
1834 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1835 		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1836 
1837 #ifdef KDTRACE_HOOKS
1838 		/*
1839 		 * If DTrace has set the active vtime enum to anything
1840 		 * other than INACTIVE (0), then it should have set the
1841 		 * function to call.
1842 		 */
1843 		if (dtrace_vtime_active)
1844 			(*dtrace_vtime_switch_func)(newtd);
1845 #endif
1846 
1847 		cpu_switch(td, newtd, mtx);
1848 		/*
1849 		 * We may return from cpu_switch on a different cpu.  However,
1850 		 * we always return with td_lock pointing to the current cpu's
1851 		 * run queue lock.
1852 		 */
1853 		cpuid = PCPU_GET(cpuid);
1854 		tdq = TDQ_CPU(cpuid);
1855 		lock_profile_obtain_lock_success(
1856 		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1857 #ifdef	HWPMC_HOOKS
1858 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1859 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1860 #endif
1861 	} else
1862 		thread_unblock_switch(td, mtx);
1863 	/*
1864 	 * Assert that all went well and return.
1865 	 */
1866 	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1867 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1868 	td->td_oncpu = cpuid;
1869 }
1870 
1871 /*
1872  * Adjust thread priorities as a result of a nice request.
1873  */
1874 void
1875 sched_nice(struct proc *p, int nice)
1876 {
1877 	struct thread *td;
1878 
1879 	PROC_LOCK_ASSERT(p, MA_OWNED);
1880 
1881 	p->p_nice = nice;
1882 	FOREACH_THREAD_IN_PROC(p, td) {
1883 		thread_lock(td);
1884 		sched_priority(td);
1885 		sched_prio(td, td->td_base_user_pri);
1886 		thread_unlock(td);
1887 	}
1888 }
1889 
1890 /*
1891  * Record the sleep time for the interactivity scorer.
1892  */
1893 void
1894 sched_sleep(struct thread *td, int prio)
1895 {
1896 
1897 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1898 
1899 	td->td_slptick = ticks;
1900 	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1901 		td->td_flags |= TDF_CANSWAP;
1902 	if (static_boost == 1 && prio)
1903 		sched_prio(td, prio);
1904 	else if (static_boost && td->td_priority > static_boost)
1905 		sched_prio(td, static_boost);
1906 }
1907 
1908 /*
1909  * Schedule a thread to resume execution and record how long it voluntarily
1910  * slept.  We also update the pctcpu, interactivity, and priority.
1911  */
1912 void
1913 sched_wakeup(struct thread *td)
1914 {
1915 	struct td_sched *ts;
1916 	int slptick;
1917 
1918 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1919 	ts = td->td_sched;
1920 	td->td_flags &= ~TDF_CANSWAP;
1921 	/*
1922 	 * If we slept for more than a tick update our interactivity and
1923 	 * priority.
1924 	 */
1925 	slptick = td->td_slptick;
1926 	td->td_slptick = 0;
1927 	if (slptick && slptick != ticks) {
1928 		u_int hzticks;
1929 
1930 		hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
1931 		ts->ts_slptime += hzticks;
1932 		sched_interact_update(td);
1933 		sched_pctcpu_update(ts);
1934 	}
1935 	/* Reset the slice value after we sleep. */
1936 	ts->ts_slice = sched_slice;
1937 	sched_add(td, SRQ_BORING);
1938 }
1939 
1940 /*
1941  * Penalize the parent for creating a new child and initialize the child's
1942  * priority.
1943  */
1944 void
1945 sched_fork(struct thread *td, struct thread *child)
1946 {
1947 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1948 	sched_fork_thread(td, child);
1949 	/*
1950 	 * Penalize the parent and child for forking.
1951 	 */
1952 	sched_interact_fork(child);
1953 	sched_priority(child);
1954 	td->td_sched->ts_runtime += tickincr;
1955 	sched_interact_update(td);
1956 	sched_priority(td);
1957 }
1958 
1959 /*
1960  * Fork a new thread, may be within the same process.
1961  */
1962 void
1963 sched_fork_thread(struct thread *td, struct thread *child)
1964 {
1965 	struct td_sched *ts;
1966 	struct td_sched *ts2;
1967 
1968 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1969 	/*
1970 	 * Initialize child.
1971 	 */
1972 	ts = td->td_sched;
1973 	ts2 = child->td_sched;
1974 	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1975 	child->td_cpuset = cpuset_ref(td->td_cpuset);
1976 	ts2->ts_cpu = ts->ts_cpu;
1977 	ts2->ts_flags = 0;
1978 	/*
1979 	 * Grab our parents cpu estimation information and priority.
1980 	 */
1981 	ts2->ts_ticks = ts->ts_ticks;
1982 	ts2->ts_ltick = ts->ts_ltick;
1983 	ts2->ts_incrtick = ts->ts_incrtick;
1984 	ts2->ts_ftick = ts->ts_ftick;
1985 	child->td_user_pri = td->td_user_pri;
1986 	child->td_base_user_pri = td->td_base_user_pri;
1987 	/*
1988 	 * And update interactivity score.
1989 	 */
1990 	ts2->ts_slptime = ts->ts_slptime;
1991 	ts2->ts_runtime = ts->ts_runtime;
1992 	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
1993 #ifdef KTR
1994 	bzero(ts2->ts_name, sizeof(ts2->ts_name));
1995 #endif
1996 }
1997 
1998 /*
1999  * Adjust the priority class of a thread.
2000  */
2001 void
2002 sched_class(struct thread *td, int class)
2003 {
2004 
2005 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2006 	if (td->td_pri_class == class)
2007 		return;
2008 	td->td_pri_class = class;
2009 }
2010 
2011 /*
2012  * Return some of the child's priority and interactivity to the parent.
2013  */
2014 void
2015 sched_exit(struct proc *p, struct thread *child)
2016 {
2017 	struct thread *td;
2018 
2019 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2020 	    "prio:td", child->td_priority);
2021 	PROC_LOCK_ASSERT(p, MA_OWNED);
2022 	td = FIRST_THREAD_IN_PROC(p);
2023 	sched_exit_thread(td, child);
2024 }
2025 
2026 /*
2027  * Penalize another thread for the time spent on this one.  This helps to
2028  * worsen the priority and interactivity of processes which schedule batch
2029  * jobs such as make.  This has little effect on the make process itself but
2030  * causes new processes spawned by it to receive worse scores immediately.
2031  */
2032 void
2033 sched_exit_thread(struct thread *td, struct thread *child)
2034 {
2035 
2036 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2037 	    "prio:td", child->td_priority);
2038 	/*
2039 	 * Give the child's runtime to the parent without returning the
2040 	 * sleep time as a penalty to the parent.  This causes shells that
2041 	 * launch expensive things to mark their children as expensive.
2042 	 */
2043 	thread_lock(td);
2044 	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2045 	sched_interact_update(td);
2046 	sched_priority(td);
2047 	thread_unlock(td);
2048 }
2049 
2050 void
2051 sched_preempt(struct thread *td)
2052 {
2053 	struct tdq *tdq;
2054 
2055 	thread_lock(td);
2056 	tdq = TDQ_SELF();
2057 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2058 	tdq->tdq_ipipending = 0;
2059 	if (td->td_priority > tdq->tdq_lowpri) {
2060 		int flags;
2061 
2062 		flags = SW_INVOL | SW_PREEMPT;
2063 		if (td->td_critnest > 1)
2064 			td->td_owepreempt = 1;
2065 		else if (TD_IS_IDLETHREAD(td))
2066 			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2067 		else
2068 			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2069 	}
2070 	thread_unlock(td);
2071 }
2072 
2073 /*
2074  * Fix priorities on return to user-space.  Priorities may be elevated due
2075  * to static priorities in msleep() or similar.
2076  */
2077 void
2078 sched_userret(struct thread *td)
2079 {
2080 	/*
2081 	 * XXX we cheat slightly on the locking here to avoid locking in
2082 	 * the usual case.  Setting td_priority here is essentially an
2083 	 * incomplete workaround for not setting it properly elsewhere.
2084 	 * Now that some interrupt handlers are threads, not setting it
2085 	 * properly elsewhere can clobber it in the window between setting
2086 	 * it here and returning to user mode, so don't waste time setting
2087 	 * it perfectly here.
2088 	 */
2089 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2090 	    ("thread with borrowed priority returning to userland"));
2091 	if (td->td_priority != td->td_user_pri) {
2092 		thread_lock(td);
2093 		td->td_priority = td->td_user_pri;
2094 		td->td_base_pri = td->td_user_pri;
2095 		tdq_setlowpri(TDQ_SELF(), td);
2096 		thread_unlock(td);
2097         }
2098 }
2099 
2100 /*
2101  * Handle a stathz tick.  This is really only relevant for timeshare
2102  * threads.
2103  */
2104 void
2105 sched_clock(struct thread *td)
2106 {
2107 	struct tdq *tdq;
2108 	struct td_sched *ts;
2109 
2110 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2111 	tdq = TDQ_SELF();
2112 #ifdef SMP
2113 	/*
2114 	 * We run the long term load balancer infrequently on the first cpu.
2115 	 */
2116 	if (balance_tdq == tdq) {
2117 		if (balance_ticks && --balance_ticks == 0)
2118 			sched_balance();
2119 	}
2120 #endif
2121 	/*
2122 	 * Save the old switch count so we have a record of the last ticks
2123 	 * activity.   Initialize the new switch count based on our load.
2124 	 * If there is some activity seed it to reflect that.
2125 	 */
2126 	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2127 	tdq->tdq_switchcnt = tdq->tdq_load;
2128 	/*
2129 	 * Advance the insert index once for each tick to ensure that all
2130 	 * threads get a chance to run.
2131 	 */
2132 	if (tdq->tdq_idx == tdq->tdq_ridx) {
2133 		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2134 		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2135 			tdq->tdq_ridx = tdq->tdq_idx;
2136 	}
2137 	ts = td->td_sched;
2138 	if (td->td_pri_class & PRI_FIFO_BIT)
2139 		return;
2140 	if (td->td_pri_class == PRI_TIMESHARE) {
2141 		/*
2142 		 * We used a tick; charge it to the thread so
2143 		 * that we can compute our interactivity.
2144 		 */
2145 		td->td_sched->ts_runtime += tickincr;
2146 		sched_interact_update(td);
2147 		sched_priority(td);
2148 	}
2149 	/*
2150 	 * We used up one time slice.
2151 	 */
2152 	if (--ts->ts_slice > 0)
2153 		return;
2154 	/*
2155 	 * We're out of time, force a requeue at userret().
2156 	 */
2157 	ts->ts_slice = sched_slice;
2158 	td->td_flags |= TDF_NEEDRESCHED;
2159 }
2160 
2161 /*
2162  * Called once per hz tick.  Used for cpu utilization information.  This
2163  * is easier than trying to scale based on stathz.
2164  */
2165 void
2166 sched_tick(int cnt)
2167 {
2168 	struct td_sched *ts;
2169 
2170 	ts = curthread->td_sched;
2171 	/*
2172 	 * Ticks is updated asynchronously on a single cpu.  Check here to
2173 	 * avoid incrementing ts_ticks multiple times in a single tick.
2174 	 */
2175 	if (ts->ts_incrtick == ticks)
2176 		return;
2177 	/* Adjust ticks for pctcpu */
2178 	ts->ts_ticks += cnt << SCHED_TICK_SHIFT;
2179 	ts->ts_ltick = ticks;
2180 	ts->ts_incrtick = ticks;
2181 	/*
2182 	 * Update if we've exceeded our desired tick threshold by over one
2183 	 * second.
2184 	 */
2185 	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
2186 		sched_pctcpu_update(ts);
2187 }
2188 
2189 /*
2190  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2191  * cooperative idle threads.
2192  */
2193 int
2194 sched_runnable(void)
2195 {
2196 	struct tdq *tdq;
2197 	int load;
2198 
2199 	load = 1;
2200 
2201 	tdq = TDQ_SELF();
2202 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2203 		if (tdq->tdq_load > 0)
2204 			goto out;
2205 	} else
2206 		if (tdq->tdq_load - 1 > 0)
2207 			goto out;
2208 	load = 0;
2209 out:
2210 	return (load);
2211 }
2212 
2213 /*
2214  * Choose the highest priority thread to run.  The thread is removed from
2215  * the run-queue while running however the load remains.  For SMP we set
2216  * the tdq in the global idle bitmask if it idles here.
2217  */
2218 struct thread *
2219 sched_choose(void)
2220 {
2221 	struct thread *td;
2222 	struct tdq *tdq;
2223 
2224 	tdq = TDQ_SELF();
2225 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2226 	td = tdq_choose(tdq);
2227 	if (td) {
2228 		td->td_sched->ts_ltick = ticks;
2229 		tdq_runq_rem(tdq, td);
2230 		tdq->tdq_lowpri = td->td_priority;
2231 		return (td);
2232 	}
2233 	tdq->tdq_lowpri = PRI_MAX_IDLE;
2234 	return (PCPU_GET(idlethread));
2235 }
2236 
2237 /*
2238  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2239  * we always request it once we exit a critical section.
2240  */
2241 static inline void
2242 sched_setpreempt(struct thread *td)
2243 {
2244 	struct thread *ctd;
2245 	int cpri;
2246 	int pri;
2247 
2248 	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2249 
2250 	ctd = curthread;
2251 	pri = td->td_priority;
2252 	cpri = ctd->td_priority;
2253 	if (pri < cpri)
2254 		ctd->td_flags |= TDF_NEEDRESCHED;
2255 	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2256 		return;
2257 	if (!sched_shouldpreempt(pri, cpri, 0))
2258 		return;
2259 	ctd->td_owepreempt = 1;
2260 }
2261 
2262 /*
2263  * Add a thread to a thread queue.  Select the appropriate runq and add the
2264  * thread to it.  This is the internal function called when the tdq is
2265  * predetermined.
2266  */
2267 void
2268 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2269 {
2270 
2271 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2272 	KASSERT((td->td_inhibitors == 0),
2273 	    ("sched_add: trying to run inhibited thread"));
2274 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2275 	    ("sched_add: bad thread state"));
2276 	KASSERT(td->td_flags & TDF_INMEM,
2277 	    ("sched_add: thread swapped out"));
2278 
2279 	if (td->td_priority < tdq->tdq_lowpri)
2280 		tdq->tdq_lowpri = td->td_priority;
2281 	tdq_runq_add(tdq, td, flags);
2282 	tdq_load_add(tdq, td);
2283 }
2284 
2285 /*
2286  * Select the target thread queue and add a thread to it.  Request
2287  * preemption or IPI a remote processor if required.
2288  */
2289 void
2290 sched_add(struct thread *td, int flags)
2291 {
2292 	struct tdq *tdq;
2293 #ifdef SMP
2294 	int cpu;
2295 #endif
2296 
2297 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2298 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2299 	    sched_tdname(curthread));
2300 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2301 	    KTR_ATTR_LINKED, sched_tdname(td));
2302 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2303 	/*
2304 	 * Recalculate the priority before we select the target cpu or
2305 	 * run-queue.
2306 	 */
2307 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2308 		sched_priority(td);
2309 #ifdef SMP
2310 	/*
2311 	 * Pick the destination cpu and if it isn't ours transfer to the
2312 	 * target cpu.
2313 	 */
2314 	cpu = sched_pickcpu(td, flags);
2315 	tdq = sched_setcpu(td, cpu, flags);
2316 	tdq_add(tdq, td, flags);
2317 	if (cpu != PCPU_GET(cpuid)) {
2318 		tdq_notify(tdq, td);
2319 		return;
2320 	}
2321 #else
2322 	tdq = TDQ_SELF();
2323 	TDQ_LOCK(tdq);
2324 	/*
2325 	 * Now that the thread is moving to the run-queue, set the lock
2326 	 * to the scheduler's lock.
2327 	 */
2328 	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2329 	tdq_add(tdq, td, flags);
2330 #endif
2331 	if (!(flags & SRQ_YIELDING))
2332 		sched_setpreempt(td);
2333 }
2334 
2335 /*
2336  * Remove a thread from a run-queue without running it.  This is used
2337  * when we're stealing a thread from a remote queue.  Otherwise all threads
2338  * exit by calling sched_exit_thread() and sched_throw() themselves.
2339  */
2340 void
2341 sched_rem(struct thread *td)
2342 {
2343 	struct tdq *tdq;
2344 
2345 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2346 	    "prio:%d", td->td_priority);
2347 	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2348 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2349 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2350 	KASSERT(TD_ON_RUNQ(td),
2351 	    ("sched_rem: thread not on run queue"));
2352 	tdq_runq_rem(tdq, td);
2353 	tdq_load_rem(tdq, td);
2354 	TD_SET_CAN_RUN(td);
2355 	if (td->td_priority == tdq->tdq_lowpri)
2356 		tdq_setlowpri(tdq, NULL);
2357 }
2358 
2359 /*
2360  * Fetch cpu utilization information.  Updates on demand.
2361  */
2362 fixpt_t
2363 sched_pctcpu(struct thread *td)
2364 {
2365 	fixpt_t pctcpu;
2366 	struct td_sched *ts;
2367 
2368 	pctcpu = 0;
2369 	ts = td->td_sched;
2370 	if (ts == NULL)
2371 		return (0);
2372 
2373 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2374 	if (ts->ts_ticks) {
2375 		int rtick;
2376 
2377 		sched_pctcpu_update(ts);
2378 		/* How many rtick per second ? */
2379 		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2380 		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2381 	}
2382 
2383 	return (pctcpu);
2384 }
2385 
2386 /*
2387  * Enforce affinity settings for a thread.  Called after adjustments to
2388  * cpumask.
2389  */
2390 void
2391 sched_affinity(struct thread *td)
2392 {
2393 #ifdef SMP
2394 	struct td_sched *ts;
2395 
2396 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2397 	ts = td->td_sched;
2398 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2399 		return;
2400 	if (TD_ON_RUNQ(td)) {
2401 		sched_rem(td);
2402 		sched_add(td, SRQ_BORING);
2403 		return;
2404 	}
2405 	if (!TD_IS_RUNNING(td))
2406 		return;
2407 	/*
2408 	 * Force a switch before returning to userspace.  If the
2409 	 * target thread is not running locally send an ipi to force
2410 	 * the issue.
2411 	 */
2412 	td->td_flags |= TDF_NEEDRESCHED;
2413 	if (td != curthread)
2414 		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2415 #endif
2416 }
2417 
2418 /*
2419  * Bind a thread to a target cpu.
2420  */
2421 void
2422 sched_bind(struct thread *td, int cpu)
2423 {
2424 	struct td_sched *ts;
2425 
2426 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2427 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2428 	ts = td->td_sched;
2429 	if (ts->ts_flags & TSF_BOUND)
2430 		sched_unbind(td);
2431 	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2432 	ts->ts_flags |= TSF_BOUND;
2433 	sched_pin();
2434 	if (PCPU_GET(cpuid) == cpu)
2435 		return;
2436 	ts->ts_cpu = cpu;
2437 	/* When we return from mi_switch we'll be on the correct cpu. */
2438 	mi_switch(SW_VOL, NULL);
2439 }
2440 
2441 /*
2442  * Release a bound thread.
2443  */
2444 void
2445 sched_unbind(struct thread *td)
2446 {
2447 	struct td_sched *ts;
2448 
2449 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2450 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2451 	ts = td->td_sched;
2452 	if ((ts->ts_flags & TSF_BOUND) == 0)
2453 		return;
2454 	ts->ts_flags &= ~TSF_BOUND;
2455 	sched_unpin();
2456 }
2457 
2458 int
2459 sched_is_bound(struct thread *td)
2460 {
2461 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2462 	return (td->td_sched->ts_flags & TSF_BOUND);
2463 }
2464 
2465 /*
2466  * Basic yield call.
2467  */
2468 void
2469 sched_relinquish(struct thread *td)
2470 {
2471 	thread_lock(td);
2472 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2473 	thread_unlock(td);
2474 }
2475 
2476 /*
2477  * Return the total system load.
2478  */
2479 int
2480 sched_load(void)
2481 {
2482 #ifdef SMP
2483 	int total;
2484 	int i;
2485 
2486 	total = 0;
2487 	CPU_FOREACH(i)
2488 		total += TDQ_CPU(i)->tdq_sysload;
2489 	return (total);
2490 #else
2491 	return (TDQ_SELF()->tdq_sysload);
2492 #endif
2493 }
2494 
2495 int
2496 sched_sizeof_proc(void)
2497 {
2498 	return (sizeof(struct proc));
2499 }
2500 
2501 int
2502 sched_sizeof_thread(void)
2503 {
2504 	return (sizeof(struct thread) + sizeof(struct td_sched));
2505 }
2506 
2507 #ifdef SMP
2508 #define	TDQ_IDLESPIN(tdq)						\
2509     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2510 #else
2511 #define	TDQ_IDLESPIN(tdq)	1
2512 #endif
2513 
2514 /*
2515  * The actual idle process.
2516  */
2517 void
2518 sched_idletd(void *dummy)
2519 {
2520 	struct thread *td;
2521 	struct tdq *tdq;
2522 	int switchcnt;
2523 	int i;
2524 
2525 	mtx_assert(&Giant, MA_NOTOWNED);
2526 	td = curthread;
2527 	tdq = TDQ_SELF();
2528 	for (;;) {
2529 #ifdef SMP
2530 		if (tdq_idled(tdq) == 0)
2531 			continue;
2532 #endif
2533 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2534 		/*
2535 		 * If we're switching very frequently, spin while checking
2536 		 * for load rather than entering a low power state that
2537 		 * may require an IPI.  However, don't do any busy
2538 		 * loops while on SMT machines as this simply steals
2539 		 * cycles from cores doing useful work.
2540 		 */
2541 		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2542 			for (i = 0; i < sched_idlespins; i++) {
2543 				if (tdq->tdq_load)
2544 					break;
2545 				cpu_spinwait();
2546 			}
2547 		}
2548 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2549 		if (tdq->tdq_load == 0) {
2550 			tdq->tdq_cpu_idle = 1;
2551 			if (tdq->tdq_load == 0) {
2552 				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2553 				tdq->tdq_switchcnt++;
2554 			}
2555 			tdq->tdq_cpu_idle = 0;
2556 		}
2557 		if (tdq->tdq_load) {
2558 			thread_lock(td);
2559 			mi_switch(SW_VOL | SWT_IDLE, NULL);
2560 			thread_unlock(td);
2561 		}
2562 	}
2563 }
2564 
2565 /*
2566  * A CPU is entering for the first time or a thread is exiting.
2567  */
2568 void
2569 sched_throw(struct thread *td)
2570 {
2571 	struct thread *newtd;
2572 	struct tdq *tdq;
2573 
2574 	tdq = TDQ_SELF();
2575 	if (td == NULL) {
2576 		/* Correct spinlock nesting and acquire the correct lock. */
2577 		TDQ_LOCK(tdq);
2578 		spinlock_exit();
2579 	} else {
2580 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2581 		tdq_load_rem(tdq, td);
2582 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2583 	}
2584 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2585 	newtd = choosethread();
2586 	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2587 	PCPU_SET(switchtime, cpu_ticks());
2588 	PCPU_SET(switchticks, ticks);
2589 	cpu_throw(td, newtd);		/* doesn't return */
2590 }
2591 
2592 /*
2593  * This is called from fork_exit().  Just acquire the correct locks and
2594  * let fork do the rest of the work.
2595  */
2596 void
2597 sched_fork_exit(struct thread *td)
2598 {
2599 	struct td_sched *ts;
2600 	struct tdq *tdq;
2601 	int cpuid;
2602 
2603 	/*
2604 	 * Finish setting up thread glue so that it begins execution in a
2605 	 * non-nested critical section with the scheduler lock held.
2606 	 */
2607 	cpuid = PCPU_GET(cpuid);
2608 	tdq = TDQ_CPU(cpuid);
2609 	ts = td->td_sched;
2610 	if (TD_IS_IDLETHREAD(td))
2611 		td->td_lock = TDQ_LOCKPTR(tdq);
2612 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2613 	td->td_oncpu = cpuid;
2614 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2615 	lock_profile_obtain_lock_success(
2616 	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2617 }
2618 
2619 /*
2620  * Create on first use to catch odd startup conditons.
2621  */
2622 char *
2623 sched_tdname(struct thread *td)
2624 {
2625 #ifdef KTR
2626 	struct td_sched *ts;
2627 
2628 	ts = td->td_sched;
2629 	if (ts->ts_name[0] == '\0')
2630 		snprintf(ts->ts_name, sizeof(ts->ts_name),
2631 		    "%s tid %d", td->td_name, td->td_tid);
2632 	return (ts->ts_name);
2633 #else
2634 	return (td->td_name);
2635 #endif
2636 }
2637 
2638 #ifdef SMP
2639 
2640 /*
2641  * Build the CPU topology dump string. Is recursively called to collect
2642  * the topology tree.
2643  */
2644 static int
2645 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2646     int indent)
2647 {
2648 	int i, first;
2649 
2650 	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2651 	    "", 1 + indent / 2, cg->cg_level);
2652 	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"0x%x\">", indent, "",
2653 	    cg->cg_count, cg->cg_mask);
2654 	first = TRUE;
2655 	for (i = 0; i < MAXCPU; i++) {
2656 		if ((cg->cg_mask & (1 << i)) != 0) {
2657 			if (!first)
2658 				sbuf_printf(sb, ", ");
2659 			else
2660 				first = FALSE;
2661 			sbuf_printf(sb, "%d", i);
2662 		}
2663 	}
2664 	sbuf_printf(sb, "</cpu>\n");
2665 
2666 	if (cg->cg_flags != 0) {
2667 		sbuf_printf(sb, "%*s <flags>", indent, "");
2668 		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2669 			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2670 		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2671 			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2672 		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2673 			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2674 		sbuf_printf(sb, "</flags>\n");
2675 	}
2676 
2677 	if (cg->cg_children > 0) {
2678 		sbuf_printf(sb, "%*s <children>\n", indent, "");
2679 		for (i = 0; i < cg->cg_children; i++)
2680 			sysctl_kern_sched_topology_spec_internal(sb,
2681 			    &cg->cg_child[i], indent+2);
2682 		sbuf_printf(sb, "%*s </children>\n", indent, "");
2683 	}
2684 	sbuf_printf(sb, "%*s</group>\n", indent, "");
2685 	return (0);
2686 }
2687 
2688 /*
2689  * Sysctl handler for retrieving topology dump. It's a wrapper for
2690  * the recursive sysctl_kern_smp_topology_spec_internal().
2691  */
2692 static int
2693 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2694 {
2695 	struct sbuf *topo;
2696 	int err;
2697 
2698 	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2699 
2700 	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2701 	if (topo == NULL)
2702 		return (ENOMEM);
2703 
2704 	sbuf_printf(topo, "<groups>\n");
2705 	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2706 	sbuf_printf(topo, "</groups>\n");
2707 
2708 	if (err == 0) {
2709 		sbuf_finish(topo);
2710 		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2711 	}
2712 	sbuf_delete(topo);
2713 	return (err);
2714 }
2715 
2716 #endif
2717 
2718 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2719 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2720     "Scheduler name");
2721 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2722     "Slice size for timeshare threads");
2723 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2724      "Interactivity score threshold");
2725 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2726      0,"Min priority for preemption, lower priorities have greater precedence");
2727 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2728      0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2729 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2730      0,"Number of times idle will spin waiting for new work.");
2731 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2732      0,"Threshold before we will permit idle spinning.");
2733 #ifdef SMP
2734 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2735     "Number of hz ticks to keep thread affinity for");
2736 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2737     "Enables the long-term load balancer");
2738 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2739     &balance_interval, 0,
2740     "Average frequency in stathz ticks to run the long-term balancer");
2741 SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0,
2742     "Steals work from another hyper-threaded core on idle");
2743 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2744     "Attempts to steal work from other cores before idling");
2745 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2746     "Minimum load on remote cpu before we'll steal");
2747 
2748 /* Retrieve SMP topology */
2749 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2750     CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2751     "XML dump of detected CPU topology");
2752 
2753 #endif
2754 
2755 /* ps compat.  All cpu percentages from ULE are weighted. */
2756 static int ccpu = 0;
2757 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2758