1 /*- 2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* 28 * This file implements the ULE scheduler. ULE supports independent CPU 29 * run queues and fine grain locking. It has superior interactive 30 * performance under load even on uni-processor systems. 31 * 32 * etymology: 33 * ULE is the last three letters in schedule. It owes its name to a 34 * generic user created for a scheduling system by Paul Mikesell at 35 * Isilon Systems and a general lack of creativity on the part of the author. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_hwpmc_hooks.h" 42 #include "opt_kdtrace.h" 43 #include "opt_sched.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/kdb.h> 48 #include <sys/kernel.h> 49 #include <sys/ktr.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/proc.h> 53 #include <sys/resource.h> 54 #include <sys/resourcevar.h> 55 #include <sys/sched.h> 56 #include <sys/smp.h> 57 #include <sys/sx.h> 58 #include <sys/sysctl.h> 59 #include <sys/sysproto.h> 60 #include <sys/turnstile.h> 61 #include <sys/umtx.h> 62 #include <sys/vmmeter.h> 63 #include <sys/cpuset.h> 64 #include <sys/sbuf.h> 65 #ifdef KTRACE 66 #include <sys/uio.h> 67 #include <sys/ktrace.h> 68 #endif 69 70 #ifdef HWPMC_HOOKS 71 #include <sys/pmckern.h> 72 #endif 73 74 #ifdef KDTRACE_HOOKS 75 #include <sys/dtrace_bsd.h> 76 int dtrace_vtime_active; 77 dtrace_vtime_switch_func_t dtrace_vtime_switch_func; 78 #endif 79 80 #include <machine/cpu.h> 81 #include <machine/smp.h> 82 83 #if defined(__sparc64__) || defined(__mips__) 84 #error "This architecture is not currently compatible with ULE" 85 #endif 86 87 #define KTR_ULE 0 88 89 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX))) 90 #define TDQ_NAME_LEN (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU))) 91 #define TDQ_LOADNAME_LEN (PCPU_NAME_LEN + sizeof(" load")) 92 93 /* 94 * Thread scheduler specific section. All fields are protected 95 * by the thread lock. 96 */ 97 struct td_sched { 98 struct runq *ts_runq; /* Run-queue we're queued on. */ 99 short ts_flags; /* TSF_* flags. */ 100 u_char ts_cpu; /* CPU that we have affinity for. */ 101 int ts_rltick; /* Real last tick, for affinity. */ 102 int ts_slice; /* Ticks of slice remaining. */ 103 u_int ts_slptime; /* Number of ticks we vol. slept */ 104 u_int ts_runtime; /* Number of ticks we were running */ 105 int ts_ltick; /* Last tick that we were running on */ 106 int ts_ftick; /* First tick that we were running on */ 107 int ts_ticks; /* Tick count */ 108 #ifdef KTR 109 char ts_name[TS_NAME_LEN]; 110 #endif 111 }; 112 /* flags kept in ts_flags */ 113 #define TSF_BOUND 0x0001 /* Thread can not migrate. */ 114 #define TSF_XFERABLE 0x0002 /* Thread was added as transferable. */ 115 116 static struct td_sched td_sched0; 117 118 #define THREAD_CAN_MIGRATE(td) ((td)->td_pinned == 0) 119 #define THREAD_CAN_SCHED(td, cpu) \ 120 CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask) 121 122 /* 123 * Cpu percentage computation macros and defines. 124 * 125 * SCHED_TICK_SECS: Number of seconds to average the cpu usage across. 126 * SCHED_TICK_TARG: Number of hz ticks to average the cpu usage across. 127 * SCHED_TICK_MAX: Maximum number of ticks before scaling back. 128 * SCHED_TICK_SHIFT: Shift factor to avoid rounding away results. 129 * SCHED_TICK_HZ: Compute the number of hz ticks for a given ticks count. 130 * SCHED_TICK_TOTAL: Gives the amount of time we've been recording ticks. 131 */ 132 #define SCHED_TICK_SECS 10 133 #define SCHED_TICK_TARG (hz * SCHED_TICK_SECS) 134 #define SCHED_TICK_MAX (SCHED_TICK_TARG + hz) 135 #define SCHED_TICK_SHIFT 10 136 #define SCHED_TICK_HZ(ts) ((ts)->ts_ticks >> SCHED_TICK_SHIFT) 137 #define SCHED_TICK_TOTAL(ts) (max((ts)->ts_ltick - (ts)->ts_ftick, hz)) 138 139 /* 140 * These macros determine priorities for non-interactive threads. They are 141 * assigned a priority based on their recent cpu utilization as expressed 142 * by the ratio of ticks to the tick total. NHALF priorities at the start 143 * and end of the MIN to MAX timeshare range are only reachable with negative 144 * or positive nice respectively. 145 * 146 * PRI_RANGE: Priority range for utilization dependent priorities. 147 * PRI_NRESV: Number of nice values. 148 * PRI_TICKS: Compute a priority in PRI_RANGE from the ticks count and total. 149 * PRI_NICE: Determines the part of the priority inherited from nice. 150 */ 151 #define SCHED_PRI_NRESV (PRIO_MAX - PRIO_MIN) 152 #define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2) 153 #define SCHED_PRI_MIN (PRI_MIN_TIMESHARE + SCHED_PRI_NHALF) 154 #define SCHED_PRI_MAX (PRI_MAX_TIMESHARE - SCHED_PRI_NHALF) 155 #define SCHED_PRI_RANGE (SCHED_PRI_MAX - SCHED_PRI_MIN) 156 #define SCHED_PRI_TICKS(ts) \ 157 (SCHED_TICK_HZ((ts)) / \ 158 (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE)) 159 #define SCHED_PRI_NICE(nice) (nice) 160 161 /* 162 * These determine the interactivity of a process. Interactivity differs from 163 * cpu utilization in that it expresses the voluntary time slept vs time ran 164 * while cpu utilization includes all time not running. This more accurately 165 * models the intent of the thread. 166 * 167 * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate 168 * before throttling back. 169 * SLP_RUN_FORK: Maximum slp+run time to inherit at fork time. 170 * INTERACT_MAX: Maximum interactivity value. Smaller is better. 171 * INTERACT_THRESH: Threshhold for placement on the current runq. 172 */ 173 #define SCHED_SLP_RUN_MAX ((hz * 5) << SCHED_TICK_SHIFT) 174 #define SCHED_SLP_RUN_FORK ((hz / 2) << SCHED_TICK_SHIFT) 175 #define SCHED_INTERACT_MAX (100) 176 #define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2) 177 #define SCHED_INTERACT_THRESH (30) 178 179 /* 180 * tickincr: Converts a stathz tick into a hz domain scaled by 181 * the shift factor. Without the shift the error rate 182 * due to rounding would be unacceptably high. 183 * realstathz: stathz is sometimes 0 and run off of hz. 184 * sched_slice: Runtime of each thread before rescheduling. 185 * preempt_thresh: Priority threshold for preemption and remote IPIs. 186 */ 187 static int sched_interact = SCHED_INTERACT_THRESH; 188 static int realstathz; 189 static int tickincr; 190 static int sched_slice = 1; 191 #ifdef PREEMPTION 192 #ifdef FULL_PREEMPTION 193 static int preempt_thresh = PRI_MAX_IDLE; 194 #else 195 static int preempt_thresh = PRI_MIN_KERN; 196 #endif 197 #else 198 static int preempt_thresh = 0; 199 #endif 200 static int static_boost = PRI_MIN_TIMESHARE; 201 static int sched_idlespins = 10000; 202 static int sched_idlespinthresh = 4; 203 204 /* 205 * tdq - per processor runqs and statistics. All fields are protected by the 206 * tdq_lock. The load and lowpri may be accessed without to avoid excess 207 * locking in sched_pickcpu(); 208 */ 209 struct tdq { 210 /* Ordered to improve efficiency of cpu_search() and switch(). */ 211 struct mtx tdq_lock; /* run queue lock. */ 212 struct cpu_group *tdq_cg; /* Pointer to cpu topology. */ 213 volatile int tdq_load; /* Aggregate load. */ 214 int tdq_sysload; /* For loadavg, !ITHD load. */ 215 int tdq_transferable; /* Transferable thread count. */ 216 short tdq_switchcnt; /* Switches this tick. */ 217 short tdq_oldswitchcnt; /* Switches last tick. */ 218 u_char tdq_lowpri; /* Lowest priority thread. */ 219 u_char tdq_ipipending; /* IPI pending. */ 220 u_char tdq_idx; /* Current insert index. */ 221 u_char tdq_ridx; /* Current removal index. */ 222 struct runq tdq_realtime; /* real-time run queue. */ 223 struct runq tdq_timeshare; /* timeshare run queue. */ 224 struct runq tdq_idle; /* Queue of IDLE threads. */ 225 char tdq_name[TDQ_NAME_LEN]; 226 #ifdef KTR 227 char tdq_loadname[TDQ_LOADNAME_LEN]; 228 #endif 229 } __aligned(64); 230 231 /* Idle thread states and config. */ 232 #define TDQ_RUNNING 1 233 #define TDQ_IDLE 2 234 235 #ifdef SMP 236 struct cpu_group *cpu_top; /* CPU topology */ 237 238 #define SCHED_AFFINITY_DEFAULT (max(1, hz / 1000)) 239 #define SCHED_AFFINITY(ts, t) ((ts)->ts_rltick > ticks - ((t) * affinity)) 240 241 /* 242 * Run-time tunables. 243 */ 244 static int rebalance = 1; 245 static int balance_interval = 128; /* Default set in sched_initticks(). */ 246 static int affinity; 247 static int steal_htt = 1; 248 static int steal_idle = 1; 249 static int steal_thresh = 2; 250 251 /* 252 * One thread queue per processor. 253 */ 254 static struct tdq tdq_cpu[MAXCPU]; 255 static struct tdq *balance_tdq; 256 static int balance_ticks; 257 258 #define TDQ_SELF() (&tdq_cpu[PCPU_GET(cpuid)]) 259 #define TDQ_CPU(x) (&tdq_cpu[(x)]) 260 #define TDQ_ID(x) ((int)((x) - tdq_cpu)) 261 #else /* !SMP */ 262 static struct tdq tdq_cpu; 263 264 #define TDQ_ID(x) (0) 265 #define TDQ_SELF() (&tdq_cpu) 266 #define TDQ_CPU(x) (&tdq_cpu) 267 #endif 268 269 #define TDQ_LOCK_ASSERT(t, type) mtx_assert(TDQ_LOCKPTR((t)), (type)) 270 #define TDQ_LOCK(t) mtx_lock_spin(TDQ_LOCKPTR((t))) 271 #define TDQ_LOCK_FLAGS(t, f) mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f)) 272 #define TDQ_UNLOCK(t) mtx_unlock_spin(TDQ_LOCKPTR((t))) 273 #define TDQ_LOCKPTR(t) (&(t)->tdq_lock) 274 275 static void sched_priority(struct thread *); 276 static void sched_thread_priority(struct thread *, u_char); 277 static int sched_interact_score(struct thread *); 278 static void sched_interact_update(struct thread *); 279 static void sched_interact_fork(struct thread *); 280 static void sched_pctcpu_update(struct td_sched *); 281 282 /* Operations on per processor queues */ 283 static struct thread *tdq_choose(struct tdq *); 284 static void tdq_setup(struct tdq *); 285 static void tdq_load_add(struct tdq *, struct thread *); 286 static void tdq_load_rem(struct tdq *, struct thread *); 287 static __inline void tdq_runq_add(struct tdq *, struct thread *, int); 288 static __inline void tdq_runq_rem(struct tdq *, struct thread *); 289 static inline int sched_shouldpreempt(int, int, int); 290 void tdq_print(int cpu); 291 static void runq_print(struct runq *rq); 292 static void tdq_add(struct tdq *, struct thread *, int); 293 #ifdef SMP 294 static int tdq_move(struct tdq *, struct tdq *); 295 static int tdq_idled(struct tdq *); 296 static void tdq_notify(struct tdq *, struct thread *); 297 static struct thread *tdq_steal(struct tdq *, int); 298 static struct thread *runq_steal(struct runq *, int); 299 static int sched_pickcpu(struct thread *, int); 300 static void sched_balance(void); 301 static int sched_balance_pair(struct tdq *, struct tdq *); 302 static inline struct tdq *sched_setcpu(struct thread *, int, int); 303 static inline struct mtx *thread_block_switch(struct thread *); 304 static inline void thread_unblock_switch(struct thread *, struct mtx *); 305 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int); 306 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS); 307 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 308 struct cpu_group *cg, int indent); 309 #endif 310 311 static void sched_setup(void *dummy); 312 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL); 313 314 static void sched_initticks(void *dummy); 315 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, 316 NULL); 317 318 /* 319 * Print the threads waiting on a run-queue. 320 */ 321 static void 322 runq_print(struct runq *rq) 323 { 324 struct rqhead *rqh; 325 struct thread *td; 326 int pri; 327 int j; 328 int i; 329 330 for (i = 0; i < RQB_LEN; i++) { 331 printf("\t\trunq bits %d 0x%zx\n", 332 i, rq->rq_status.rqb_bits[i]); 333 for (j = 0; j < RQB_BPW; j++) 334 if (rq->rq_status.rqb_bits[i] & (1ul << j)) { 335 pri = j + (i << RQB_L2BPW); 336 rqh = &rq->rq_queues[pri]; 337 TAILQ_FOREACH(td, rqh, td_runq) { 338 printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n", 339 td, td->td_name, td->td_priority, 340 td->td_rqindex, pri); 341 } 342 } 343 } 344 } 345 346 /* 347 * Print the status of a per-cpu thread queue. Should be a ddb show cmd. 348 */ 349 void 350 tdq_print(int cpu) 351 { 352 struct tdq *tdq; 353 354 tdq = TDQ_CPU(cpu); 355 356 printf("tdq %d:\n", TDQ_ID(tdq)); 357 printf("\tlock %p\n", TDQ_LOCKPTR(tdq)); 358 printf("\tLock name: %s\n", tdq->tdq_name); 359 printf("\tload: %d\n", tdq->tdq_load); 360 printf("\tswitch cnt: %d\n", tdq->tdq_switchcnt); 361 printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt); 362 printf("\ttimeshare idx: %d\n", tdq->tdq_idx); 363 printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx); 364 printf("\tload transferable: %d\n", tdq->tdq_transferable); 365 printf("\tlowest priority: %d\n", tdq->tdq_lowpri); 366 printf("\trealtime runq:\n"); 367 runq_print(&tdq->tdq_realtime); 368 printf("\ttimeshare runq:\n"); 369 runq_print(&tdq->tdq_timeshare); 370 printf("\tidle runq:\n"); 371 runq_print(&tdq->tdq_idle); 372 } 373 374 static inline int 375 sched_shouldpreempt(int pri, int cpri, int remote) 376 { 377 /* 378 * If the new priority is not better than the current priority there is 379 * nothing to do. 380 */ 381 if (pri >= cpri) 382 return (0); 383 /* 384 * Always preempt idle. 385 */ 386 if (cpri >= PRI_MIN_IDLE) 387 return (1); 388 /* 389 * If preemption is disabled don't preempt others. 390 */ 391 if (preempt_thresh == 0) 392 return (0); 393 /* 394 * Preempt if we exceed the threshold. 395 */ 396 if (pri <= preempt_thresh) 397 return (1); 398 /* 399 * If we're realtime or better and there is timeshare or worse running 400 * preempt only remote processors. 401 */ 402 if (remote && pri <= PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME) 403 return (1); 404 return (0); 405 } 406 407 #define TS_RQ_PPQ (((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS) 408 /* 409 * Add a thread to the actual run-queue. Keeps transferable counts up to 410 * date with what is actually on the run-queue. Selects the correct 411 * queue position for timeshare threads. 412 */ 413 static __inline void 414 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags) 415 { 416 struct td_sched *ts; 417 u_char pri; 418 419 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 420 THREAD_LOCK_ASSERT(td, MA_OWNED); 421 422 pri = td->td_priority; 423 ts = td->td_sched; 424 TD_SET_RUNQ(td); 425 if (THREAD_CAN_MIGRATE(td)) { 426 tdq->tdq_transferable++; 427 ts->ts_flags |= TSF_XFERABLE; 428 } 429 if (pri <= PRI_MAX_REALTIME) { 430 ts->ts_runq = &tdq->tdq_realtime; 431 } else if (pri <= PRI_MAX_TIMESHARE) { 432 ts->ts_runq = &tdq->tdq_timeshare; 433 KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE, 434 ("Invalid priority %d on timeshare runq", pri)); 435 /* 436 * This queue contains only priorities between MIN and MAX 437 * realtime. Use the whole queue to represent these values. 438 */ 439 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) { 440 pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ; 441 pri = (pri + tdq->tdq_idx) % RQ_NQS; 442 /* 443 * This effectively shortens the queue by one so we 444 * can have a one slot difference between idx and 445 * ridx while we wait for threads to drain. 446 */ 447 if (tdq->tdq_ridx != tdq->tdq_idx && 448 pri == tdq->tdq_ridx) 449 pri = (unsigned char)(pri - 1) % RQ_NQS; 450 } else 451 pri = tdq->tdq_ridx; 452 runq_add_pri(ts->ts_runq, td, pri, flags); 453 return; 454 } else 455 ts->ts_runq = &tdq->tdq_idle; 456 runq_add(ts->ts_runq, td, flags); 457 } 458 459 /* 460 * Remove a thread from a run-queue. This typically happens when a thread 461 * is selected to run. Running threads are not on the queue and the 462 * transferable count does not reflect them. 463 */ 464 static __inline void 465 tdq_runq_rem(struct tdq *tdq, struct thread *td) 466 { 467 struct td_sched *ts; 468 469 ts = td->td_sched; 470 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 471 KASSERT(ts->ts_runq != NULL, 472 ("tdq_runq_remove: thread %p null ts_runq", td)); 473 if (ts->ts_flags & TSF_XFERABLE) { 474 tdq->tdq_transferable--; 475 ts->ts_flags &= ~TSF_XFERABLE; 476 } 477 if (ts->ts_runq == &tdq->tdq_timeshare) { 478 if (tdq->tdq_idx != tdq->tdq_ridx) 479 runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx); 480 else 481 runq_remove_idx(ts->ts_runq, td, NULL); 482 } else 483 runq_remove(ts->ts_runq, td); 484 } 485 486 /* 487 * Load is maintained for all threads RUNNING and ON_RUNQ. Add the load 488 * for this thread to the referenced thread queue. 489 */ 490 static void 491 tdq_load_add(struct tdq *tdq, struct thread *td) 492 { 493 494 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 495 THREAD_LOCK_ASSERT(td, MA_OWNED); 496 497 tdq->tdq_load++; 498 if ((td->td_proc->p_flag & P_NOLOAD) == 0) 499 tdq->tdq_sysload++; 500 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 501 } 502 503 /* 504 * Remove the load from a thread that is transitioning to a sleep state or 505 * exiting. 506 */ 507 static void 508 tdq_load_rem(struct tdq *tdq, struct thread *td) 509 { 510 511 THREAD_LOCK_ASSERT(td, MA_OWNED); 512 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 513 KASSERT(tdq->tdq_load != 0, 514 ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq))); 515 516 tdq->tdq_load--; 517 if ((td->td_proc->p_flag & P_NOLOAD) == 0) 518 tdq->tdq_sysload--; 519 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 520 } 521 522 /* 523 * Set lowpri to its exact value by searching the run-queue and 524 * evaluating curthread. curthread may be passed as an optimization. 525 */ 526 static void 527 tdq_setlowpri(struct tdq *tdq, struct thread *ctd) 528 { 529 struct thread *td; 530 531 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 532 if (ctd == NULL) 533 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread; 534 td = tdq_choose(tdq); 535 if (td == NULL || td->td_priority > ctd->td_priority) 536 tdq->tdq_lowpri = ctd->td_priority; 537 else 538 tdq->tdq_lowpri = td->td_priority; 539 } 540 541 #ifdef SMP 542 struct cpu_search { 543 cpuset_t cs_mask; 544 u_int cs_load; 545 u_int cs_cpu; 546 int cs_limit; /* Min priority for low min load for high. */ 547 }; 548 549 #define CPU_SEARCH_LOWEST 0x1 550 #define CPU_SEARCH_HIGHEST 0x2 551 #define CPU_SEARCH_BOTH (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST) 552 553 #define CPUSET_FOREACH(cpu, mask) \ 554 for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++) \ 555 if ((mask) & 1 << (cpu)) 556 557 static __inline int cpu_search(struct cpu_group *cg, struct cpu_search *low, 558 struct cpu_search *high, const int match); 559 int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low); 560 int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high); 561 int cpu_search_both(struct cpu_group *cg, struct cpu_search *low, 562 struct cpu_search *high); 563 564 /* 565 * This routine compares according to the match argument and should be 566 * reduced in actual instantiations via constant propagation and dead code 567 * elimination. 568 */ 569 static __inline int 570 cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high, 571 const int match) 572 { 573 struct tdq *tdq; 574 575 tdq = TDQ_CPU(cpu); 576 if (match & CPU_SEARCH_LOWEST) 577 if (CPU_ISSET(cpu, &low->cs_mask) && 578 tdq->tdq_load < low->cs_load && 579 tdq->tdq_lowpri > low->cs_limit) { 580 low->cs_cpu = cpu; 581 low->cs_load = tdq->tdq_load; 582 } 583 if (match & CPU_SEARCH_HIGHEST) 584 if (CPU_ISSET(cpu, &high->cs_mask) && 585 tdq->tdq_load >= high->cs_limit && 586 tdq->tdq_load > high->cs_load && 587 tdq->tdq_transferable) { 588 high->cs_cpu = cpu; 589 high->cs_load = tdq->tdq_load; 590 } 591 return (tdq->tdq_load); 592 } 593 594 /* 595 * Search the tree of cpu_groups for the lowest or highest loaded cpu 596 * according to the match argument. This routine actually compares the 597 * load on all paths through the tree and finds the least loaded cpu on 598 * the least loaded path, which may differ from the least loaded cpu in 599 * the system. This balances work among caches and busses. 600 * 601 * This inline is instantiated in three forms below using constants for the 602 * match argument. It is reduced to the minimum set for each case. It is 603 * also recursive to the depth of the tree. 604 */ 605 static __inline int 606 cpu_search(struct cpu_group *cg, struct cpu_search *low, 607 struct cpu_search *high, const int match) 608 { 609 int total; 610 611 total = 0; 612 if (cg->cg_children) { 613 struct cpu_search lgroup; 614 struct cpu_search hgroup; 615 struct cpu_group *child; 616 u_int lload; 617 int hload; 618 int load; 619 int i; 620 621 lload = -1; 622 hload = -1; 623 for (i = 0; i < cg->cg_children; i++) { 624 child = &cg->cg_child[i]; 625 if (match & CPU_SEARCH_LOWEST) { 626 lgroup = *low; 627 lgroup.cs_load = -1; 628 } 629 if (match & CPU_SEARCH_HIGHEST) { 630 hgroup = *high; 631 lgroup.cs_load = 0; 632 } 633 switch (match) { 634 case CPU_SEARCH_LOWEST: 635 load = cpu_search_lowest(child, &lgroup); 636 break; 637 case CPU_SEARCH_HIGHEST: 638 load = cpu_search_highest(child, &hgroup); 639 break; 640 case CPU_SEARCH_BOTH: 641 load = cpu_search_both(child, &lgroup, &hgroup); 642 break; 643 } 644 total += load; 645 if (match & CPU_SEARCH_LOWEST) 646 if (load < lload || low->cs_cpu == -1) { 647 *low = lgroup; 648 lload = load; 649 } 650 if (match & CPU_SEARCH_HIGHEST) 651 if (load > hload || high->cs_cpu == -1) { 652 hload = load; 653 *high = hgroup; 654 } 655 } 656 } else { 657 int cpu; 658 659 CPUSET_FOREACH(cpu, cg->cg_mask) 660 total += cpu_compare(cpu, low, high, match); 661 } 662 return (total); 663 } 664 665 /* 666 * cpu_search instantiations must pass constants to maintain the inline 667 * optimization. 668 */ 669 int 670 cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low) 671 { 672 return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST); 673 } 674 675 int 676 cpu_search_highest(struct cpu_group *cg, struct cpu_search *high) 677 { 678 return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST); 679 } 680 681 int 682 cpu_search_both(struct cpu_group *cg, struct cpu_search *low, 683 struct cpu_search *high) 684 { 685 return cpu_search(cg, low, high, CPU_SEARCH_BOTH); 686 } 687 688 /* 689 * Find the cpu with the least load via the least loaded path that has a 690 * lowpri greater than pri pri. A pri of -1 indicates any priority is 691 * acceptable. 692 */ 693 static inline int 694 sched_lowest(struct cpu_group *cg, cpuset_t mask, int pri) 695 { 696 struct cpu_search low; 697 698 low.cs_cpu = -1; 699 low.cs_load = -1; 700 low.cs_mask = mask; 701 low.cs_limit = pri; 702 cpu_search_lowest(cg, &low); 703 return low.cs_cpu; 704 } 705 706 /* 707 * Find the cpu with the highest load via the highest loaded path. 708 */ 709 static inline int 710 sched_highest(struct cpu_group *cg, cpuset_t mask, int minload) 711 { 712 struct cpu_search high; 713 714 high.cs_cpu = -1; 715 high.cs_load = 0; 716 high.cs_mask = mask; 717 high.cs_limit = minload; 718 cpu_search_highest(cg, &high); 719 return high.cs_cpu; 720 } 721 722 /* 723 * Simultaneously find the highest and lowest loaded cpu reachable via 724 * cg. 725 */ 726 static inline void 727 sched_both(struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu) 728 { 729 struct cpu_search high; 730 struct cpu_search low; 731 732 low.cs_cpu = -1; 733 low.cs_limit = -1; 734 low.cs_load = -1; 735 low.cs_mask = mask; 736 high.cs_load = 0; 737 high.cs_cpu = -1; 738 high.cs_limit = -1; 739 high.cs_mask = mask; 740 cpu_search_both(cg, &low, &high); 741 *lowcpu = low.cs_cpu; 742 *highcpu = high.cs_cpu; 743 return; 744 } 745 746 static void 747 sched_balance_group(struct cpu_group *cg) 748 { 749 cpuset_t mask; 750 int high; 751 int low; 752 int i; 753 754 CPU_FILL(&mask); 755 for (;;) { 756 sched_both(cg, mask, &low, &high); 757 if (low == high || low == -1 || high == -1) 758 break; 759 if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) 760 break; 761 /* 762 * If we failed to move any threads determine which cpu 763 * to kick out of the set and try again. 764 */ 765 if (TDQ_CPU(high)->tdq_transferable == 0) 766 CPU_CLR(high, &mask); 767 else 768 CPU_CLR(low, &mask); 769 } 770 771 for (i = 0; i < cg->cg_children; i++) 772 sched_balance_group(&cg->cg_child[i]); 773 } 774 775 static void 776 sched_balance() 777 { 778 struct tdq *tdq; 779 780 /* 781 * Select a random time between .5 * balance_interval and 782 * 1.5 * balance_interval. 783 */ 784 balance_ticks = max(balance_interval / 2, 1); 785 balance_ticks += random() % balance_interval; 786 if (smp_started == 0 || rebalance == 0) 787 return; 788 tdq = TDQ_SELF(); 789 TDQ_UNLOCK(tdq); 790 sched_balance_group(cpu_top); 791 TDQ_LOCK(tdq); 792 } 793 794 /* 795 * Lock two thread queues using their address to maintain lock order. 796 */ 797 static void 798 tdq_lock_pair(struct tdq *one, struct tdq *two) 799 { 800 if (one < two) { 801 TDQ_LOCK(one); 802 TDQ_LOCK_FLAGS(two, MTX_DUPOK); 803 } else { 804 TDQ_LOCK(two); 805 TDQ_LOCK_FLAGS(one, MTX_DUPOK); 806 } 807 } 808 809 /* 810 * Unlock two thread queues. Order is not important here. 811 */ 812 static void 813 tdq_unlock_pair(struct tdq *one, struct tdq *two) 814 { 815 TDQ_UNLOCK(one); 816 TDQ_UNLOCK(two); 817 } 818 819 /* 820 * Transfer load between two imbalanced thread queues. 821 */ 822 static int 823 sched_balance_pair(struct tdq *high, struct tdq *low) 824 { 825 int transferable; 826 int high_load; 827 int low_load; 828 int moved; 829 int move; 830 int diff; 831 int i; 832 833 tdq_lock_pair(high, low); 834 transferable = high->tdq_transferable; 835 high_load = high->tdq_load; 836 low_load = low->tdq_load; 837 moved = 0; 838 /* 839 * Determine what the imbalance is and then adjust that to how many 840 * threads we actually have to give up (transferable). 841 */ 842 if (transferable != 0) { 843 diff = high_load - low_load; 844 move = diff / 2; 845 if (diff & 0x1) 846 move++; 847 move = min(move, transferable); 848 for (i = 0; i < move; i++) 849 moved += tdq_move(high, low); 850 /* 851 * IPI the target cpu to force it to reschedule with the new 852 * workload. 853 */ 854 ipi_selected(1 << TDQ_ID(low), IPI_PREEMPT); 855 } 856 tdq_unlock_pair(high, low); 857 return (moved); 858 } 859 860 /* 861 * Move a thread from one thread queue to another. 862 */ 863 static int 864 tdq_move(struct tdq *from, struct tdq *to) 865 { 866 struct td_sched *ts; 867 struct thread *td; 868 struct tdq *tdq; 869 int cpu; 870 871 TDQ_LOCK_ASSERT(from, MA_OWNED); 872 TDQ_LOCK_ASSERT(to, MA_OWNED); 873 874 tdq = from; 875 cpu = TDQ_ID(to); 876 td = tdq_steal(tdq, cpu); 877 if (td == NULL) 878 return (0); 879 ts = td->td_sched; 880 /* 881 * Although the run queue is locked the thread may be blocked. Lock 882 * it to clear this and acquire the run-queue lock. 883 */ 884 thread_lock(td); 885 /* Drop recursive lock on from acquired via thread_lock(). */ 886 TDQ_UNLOCK(from); 887 sched_rem(td); 888 ts->ts_cpu = cpu; 889 td->td_lock = TDQ_LOCKPTR(to); 890 tdq_add(to, td, SRQ_YIELDING); 891 return (1); 892 } 893 894 /* 895 * This tdq has idled. Try to steal a thread from another cpu and switch 896 * to it. 897 */ 898 static int 899 tdq_idled(struct tdq *tdq) 900 { 901 struct cpu_group *cg; 902 struct tdq *steal; 903 cpuset_t mask; 904 int thresh; 905 int cpu; 906 907 if (smp_started == 0 || steal_idle == 0) 908 return (1); 909 CPU_FILL(&mask); 910 CPU_CLR(PCPU_GET(cpuid), &mask); 911 /* We don't want to be preempted while we're iterating. */ 912 spinlock_enter(); 913 for (cg = tdq->tdq_cg; cg != NULL; ) { 914 if ((cg->cg_flags & CG_FLAG_THREAD) == 0) 915 thresh = steal_thresh; 916 else 917 thresh = 1; 918 cpu = sched_highest(cg, mask, thresh); 919 if (cpu == -1) { 920 cg = cg->cg_parent; 921 continue; 922 } 923 steal = TDQ_CPU(cpu); 924 CPU_CLR(cpu, &mask); 925 tdq_lock_pair(tdq, steal); 926 if (steal->tdq_load < thresh || steal->tdq_transferable == 0) { 927 tdq_unlock_pair(tdq, steal); 928 continue; 929 } 930 /* 931 * If a thread was added while interrupts were disabled don't 932 * steal one here. If we fail to acquire one due to affinity 933 * restrictions loop again with this cpu removed from the 934 * set. 935 */ 936 if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) { 937 tdq_unlock_pair(tdq, steal); 938 continue; 939 } 940 spinlock_exit(); 941 TDQ_UNLOCK(steal); 942 mi_switch(SW_VOL | SWT_IDLE, NULL); 943 thread_unlock(curthread); 944 945 return (0); 946 } 947 spinlock_exit(); 948 return (1); 949 } 950 951 /* 952 * Notify a remote cpu of new work. Sends an IPI if criteria are met. 953 */ 954 static void 955 tdq_notify(struct tdq *tdq, struct thread *td) 956 { 957 struct thread *ctd; 958 int pri; 959 int cpu; 960 961 if (tdq->tdq_ipipending) 962 return; 963 cpu = td->td_sched->ts_cpu; 964 pri = td->td_priority; 965 ctd = pcpu_find(cpu)->pc_curthread; 966 if (!sched_shouldpreempt(pri, ctd->td_priority, 1)) 967 return; 968 if (TD_IS_IDLETHREAD(ctd)) { 969 /* 970 * If the MD code has an idle wakeup routine try that before 971 * falling back to IPI. 972 */ 973 if (cpu_idle_wakeup(cpu)) 974 return; 975 } 976 tdq->tdq_ipipending = 1; 977 ipi_selected(1 << cpu, IPI_PREEMPT); 978 } 979 980 /* 981 * Steals load from a timeshare queue. Honors the rotating queue head 982 * index. 983 */ 984 static struct thread * 985 runq_steal_from(struct runq *rq, int cpu, u_char start) 986 { 987 struct rqbits *rqb; 988 struct rqhead *rqh; 989 struct thread *td; 990 int first; 991 int bit; 992 int pri; 993 int i; 994 995 rqb = &rq->rq_status; 996 bit = start & (RQB_BPW -1); 997 pri = 0; 998 first = 0; 999 again: 1000 for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) { 1001 if (rqb->rqb_bits[i] == 0) 1002 continue; 1003 if (bit != 0) { 1004 for (pri = bit; pri < RQB_BPW; pri++) 1005 if (rqb->rqb_bits[i] & (1ul << pri)) 1006 break; 1007 if (pri >= RQB_BPW) 1008 continue; 1009 } else 1010 pri = RQB_FFS(rqb->rqb_bits[i]); 1011 pri += (i << RQB_L2BPW); 1012 rqh = &rq->rq_queues[pri]; 1013 TAILQ_FOREACH(td, rqh, td_runq) { 1014 if (first && THREAD_CAN_MIGRATE(td) && 1015 THREAD_CAN_SCHED(td, cpu)) 1016 return (td); 1017 first = 1; 1018 } 1019 } 1020 if (start != 0) { 1021 start = 0; 1022 goto again; 1023 } 1024 1025 return (NULL); 1026 } 1027 1028 /* 1029 * Steals load from a standard linear queue. 1030 */ 1031 static struct thread * 1032 runq_steal(struct runq *rq, int cpu) 1033 { 1034 struct rqhead *rqh; 1035 struct rqbits *rqb; 1036 struct thread *td; 1037 int word; 1038 int bit; 1039 1040 rqb = &rq->rq_status; 1041 for (word = 0; word < RQB_LEN; word++) { 1042 if (rqb->rqb_bits[word] == 0) 1043 continue; 1044 for (bit = 0; bit < RQB_BPW; bit++) { 1045 if ((rqb->rqb_bits[word] & (1ul << bit)) == 0) 1046 continue; 1047 rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)]; 1048 TAILQ_FOREACH(td, rqh, td_runq) 1049 if (THREAD_CAN_MIGRATE(td) && 1050 THREAD_CAN_SCHED(td, cpu)) 1051 return (td); 1052 } 1053 } 1054 return (NULL); 1055 } 1056 1057 /* 1058 * Attempt to steal a thread in priority order from a thread queue. 1059 */ 1060 static struct thread * 1061 tdq_steal(struct tdq *tdq, int cpu) 1062 { 1063 struct thread *td; 1064 1065 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1066 if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL) 1067 return (td); 1068 if ((td = runq_steal_from(&tdq->tdq_timeshare, 1069 cpu, tdq->tdq_ridx)) != NULL) 1070 return (td); 1071 return (runq_steal(&tdq->tdq_idle, cpu)); 1072 } 1073 1074 /* 1075 * Sets the thread lock and ts_cpu to match the requested cpu. Unlocks the 1076 * current lock and returns with the assigned queue locked. 1077 */ 1078 static inline struct tdq * 1079 sched_setcpu(struct thread *td, int cpu, int flags) 1080 { 1081 1082 struct tdq *tdq; 1083 1084 THREAD_LOCK_ASSERT(td, MA_OWNED); 1085 tdq = TDQ_CPU(cpu); 1086 td->td_sched->ts_cpu = cpu; 1087 /* 1088 * If the lock matches just return the queue. 1089 */ 1090 if (td->td_lock == TDQ_LOCKPTR(tdq)) 1091 return (tdq); 1092 #ifdef notyet 1093 /* 1094 * If the thread isn't running its lockptr is a 1095 * turnstile or a sleepqueue. We can just lock_set without 1096 * blocking. 1097 */ 1098 if (TD_CAN_RUN(td)) { 1099 TDQ_LOCK(tdq); 1100 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 1101 return (tdq); 1102 } 1103 #endif 1104 /* 1105 * The hard case, migration, we need to block the thread first to 1106 * prevent order reversals with other cpus locks. 1107 */ 1108 thread_lock_block(td); 1109 TDQ_LOCK(tdq); 1110 thread_lock_unblock(td, TDQ_LOCKPTR(tdq)); 1111 return (tdq); 1112 } 1113 1114 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding"); 1115 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity"); 1116 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity"); 1117 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load"); 1118 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu"); 1119 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration"); 1120 1121 static int 1122 sched_pickcpu(struct thread *td, int flags) 1123 { 1124 struct cpu_group *cg; 1125 struct td_sched *ts; 1126 struct tdq *tdq; 1127 cpuset_t mask; 1128 int self; 1129 int pri; 1130 int cpu; 1131 1132 self = PCPU_GET(cpuid); 1133 ts = td->td_sched; 1134 if (smp_started == 0) 1135 return (self); 1136 /* 1137 * Don't migrate a running thread from sched_switch(). 1138 */ 1139 if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td)) 1140 return (ts->ts_cpu); 1141 /* 1142 * Prefer to run interrupt threads on the processors that generate 1143 * the interrupt. 1144 */ 1145 if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) && 1146 curthread->td_intr_nesting_level && ts->ts_cpu != self) { 1147 SCHED_STAT_INC(pickcpu_intrbind); 1148 ts->ts_cpu = self; 1149 } 1150 /* 1151 * If the thread can run on the last cpu and the affinity has not 1152 * expired or it is idle run it there. 1153 */ 1154 pri = td->td_priority; 1155 tdq = TDQ_CPU(ts->ts_cpu); 1156 if (THREAD_CAN_SCHED(td, ts->ts_cpu)) { 1157 if (tdq->tdq_lowpri > PRI_MIN_IDLE) { 1158 SCHED_STAT_INC(pickcpu_idle_affinity); 1159 return (ts->ts_cpu); 1160 } 1161 if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri) { 1162 SCHED_STAT_INC(pickcpu_affinity); 1163 return (ts->ts_cpu); 1164 } 1165 } 1166 /* 1167 * Search for the highest level in the tree that still has affinity. 1168 */ 1169 cg = NULL; 1170 for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent) 1171 if (SCHED_AFFINITY(ts, cg->cg_level)) 1172 break; 1173 cpu = -1; 1174 mask = td->td_cpuset->cs_mask; 1175 if (cg) 1176 cpu = sched_lowest(cg, mask, pri); 1177 if (cpu == -1) 1178 cpu = sched_lowest(cpu_top, mask, -1); 1179 /* 1180 * Compare the lowest loaded cpu to current cpu. 1181 */ 1182 if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri && 1183 TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) { 1184 SCHED_STAT_INC(pickcpu_local); 1185 cpu = self; 1186 } else 1187 SCHED_STAT_INC(pickcpu_lowest); 1188 if (cpu != ts->ts_cpu) 1189 SCHED_STAT_INC(pickcpu_migration); 1190 KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu.")); 1191 return (cpu); 1192 } 1193 #endif 1194 1195 /* 1196 * Pick the highest priority task we have and return it. 1197 */ 1198 static struct thread * 1199 tdq_choose(struct tdq *tdq) 1200 { 1201 struct thread *td; 1202 1203 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1204 td = runq_choose(&tdq->tdq_realtime); 1205 if (td != NULL) 1206 return (td); 1207 td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx); 1208 if (td != NULL) { 1209 KASSERT(td->td_priority >= PRI_MIN_TIMESHARE, 1210 ("tdq_choose: Invalid priority on timeshare queue %d", 1211 td->td_priority)); 1212 return (td); 1213 } 1214 td = runq_choose(&tdq->tdq_idle); 1215 if (td != NULL) { 1216 KASSERT(td->td_priority >= PRI_MIN_IDLE, 1217 ("tdq_choose: Invalid priority on idle queue %d", 1218 td->td_priority)); 1219 return (td); 1220 } 1221 1222 return (NULL); 1223 } 1224 1225 /* 1226 * Initialize a thread queue. 1227 */ 1228 static void 1229 tdq_setup(struct tdq *tdq) 1230 { 1231 1232 if (bootverbose) 1233 printf("ULE: setup cpu %d\n", TDQ_ID(tdq)); 1234 runq_init(&tdq->tdq_realtime); 1235 runq_init(&tdq->tdq_timeshare); 1236 runq_init(&tdq->tdq_idle); 1237 snprintf(tdq->tdq_name, sizeof(tdq->tdq_name), 1238 "sched lock %d", (int)TDQ_ID(tdq)); 1239 mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", 1240 MTX_SPIN | MTX_RECURSE); 1241 #ifdef KTR 1242 snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname), 1243 "CPU %d load", (int)TDQ_ID(tdq)); 1244 #endif 1245 } 1246 1247 #ifdef SMP 1248 static void 1249 sched_setup_smp(void) 1250 { 1251 struct tdq *tdq; 1252 int i; 1253 1254 cpu_top = smp_topo(); 1255 for (i = 0; i < MAXCPU; i++) { 1256 if (CPU_ABSENT(i)) 1257 continue; 1258 tdq = TDQ_CPU(i); 1259 tdq_setup(tdq); 1260 tdq->tdq_cg = smp_topo_find(cpu_top, i); 1261 if (tdq->tdq_cg == NULL) 1262 panic("Can't find cpu group for %d\n", i); 1263 } 1264 balance_tdq = TDQ_SELF(); 1265 sched_balance(); 1266 } 1267 #endif 1268 1269 /* 1270 * Setup the thread queues and initialize the topology based on MD 1271 * information. 1272 */ 1273 static void 1274 sched_setup(void *dummy) 1275 { 1276 struct tdq *tdq; 1277 1278 tdq = TDQ_SELF(); 1279 #ifdef SMP 1280 sched_setup_smp(); 1281 #else 1282 tdq_setup(tdq); 1283 #endif 1284 /* 1285 * To avoid divide-by-zero, we set realstathz a dummy value 1286 * in case which sched_clock() called before sched_initticks(). 1287 */ 1288 realstathz = hz; 1289 sched_slice = (realstathz/10); /* ~100ms */ 1290 tickincr = 1 << SCHED_TICK_SHIFT; 1291 1292 /* Add thread0's load since it's running. */ 1293 TDQ_LOCK(tdq); 1294 thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF()); 1295 tdq_load_add(tdq, &thread0); 1296 tdq->tdq_lowpri = thread0.td_priority; 1297 TDQ_UNLOCK(tdq); 1298 } 1299 1300 /* 1301 * This routine determines the tickincr after stathz and hz are setup. 1302 */ 1303 /* ARGSUSED */ 1304 static void 1305 sched_initticks(void *dummy) 1306 { 1307 int incr; 1308 1309 realstathz = stathz ? stathz : hz; 1310 sched_slice = (realstathz/10); /* ~100ms */ 1311 1312 /* 1313 * tickincr is shifted out by 10 to avoid rounding errors due to 1314 * hz not being evenly divisible by stathz on all platforms. 1315 */ 1316 incr = (hz << SCHED_TICK_SHIFT) / realstathz; 1317 /* 1318 * This does not work for values of stathz that are more than 1319 * 1 << SCHED_TICK_SHIFT * hz. In practice this does not happen. 1320 */ 1321 if (incr == 0) 1322 incr = 1; 1323 tickincr = incr; 1324 #ifdef SMP 1325 /* 1326 * Set the default balance interval now that we know 1327 * what realstathz is. 1328 */ 1329 balance_interval = realstathz; 1330 /* 1331 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4. 1332 * This prevents excess thrashing on large machines and excess idle 1333 * on smaller machines. 1334 */ 1335 steal_thresh = min(fls(mp_ncpus) - 1, 3); 1336 affinity = SCHED_AFFINITY_DEFAULT; 1337 #endif 1338 } 1339 1340 1341 /* 1342 * This is the core of the interactivity algorithm. Determines a score based 1343 * on past behavior. It is the ratio of sleep time to run time scaled to 1344 * a [0, 100] integer. This is the voluntary sleep time of a process, which 1345 * differs from the cpu usage because it does not account for time spent 1346 * waiting on a run-queue. Would be prettier if we had floating point. 1347 */ 1348 static int 1349 sched_interact_score(struct thread *td) 1350 { 1351 struct td_sched *ts; 1352 int div; 1353 1354 ts = td->td_sched; 1355 /* 1356 * The score is only needed if this is likely to be an interactive 1357 * task. Don't go through the expense of computing it if there's 1358 * no chance. 1359 */ 1360 if (sched_interact <= SCHED_INTERACT_HALF && 1361 ts->ts_runtime >= ts->ts_slptime) 1362 return (SCHED_INTERACT_HALF); 1363 1364 if (ts->ts_runtime > ts->ts_slptime) { 1365 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF); 1366 return (SCHED_INTERACT_HALF + 1367 (SCHED_INTERACT_HALF - (ts->ts_slptime / div))); 1368 } 1369 if (ts->ts_slptime > ts->ts_runtime) { 1370 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF); 1371 return (ts->ts_runtime / div); 1372 } 1373 /* runtime == slptime */ 1374 if (ts->ts_runtime) 1375 return (SCHED_INTERACT_HALF); 1376 1377 /* 1378 * This can happen if slptime and runtime are 0. 1379 */ 1380 return (0); 1381 1382 } 1383 1384 /* 1385 * Scale the scheduling priority according to the "interactivity" of this 1386 * process. 1387 */ 1388 static void 1389 sched_priority(struct thread *td) 1390 { 1391 int score; 1392 int pri; 1393 1394 if (td->td_pri_class != PRI_TIMESHARE) 1395 return; 1396 /* 1397 * If the score is interactive we place the thread in the realtime 1398 * queue with a priority that is less than kernel and interrupt 1399 * priorities. These threads are not subject to nice restrictions. 1400 * 1401 * Scores greater than this are placed on the normal timeshare queue 1402 * where the priority is partially decided by the most recent cpu 1403 * utilization and the rest is decided by nice value. 1404 * 1405 * The nice value of the process has a linear effect on the calculated 1406 * score. Negative nice values make it easier for a thread to be 1407 * considered interactive. 1408 */ 1409 score = imax(0, sched_interact_score(td) + td->td_proc->p_nice); 1410 if (score < sched_interact) { 1411 pri = PRI_MIN_REALTIME; 1412 pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact) 1413 * score; 1414 KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME, 1415 ("sched_priority: invalid interactive priority %d score %d", 1416 pri, score)); 1417 } else { 1418 pri = SCHED_PRI_MIN; 1419 if (td->td_sched->ts_ticks) 1420 pri += SCHED_PRI_TICKS(td->td_sched); 1421 pri += SCHED_PRI_NICE(td->td_proc->p_nice); 1422 KASSERT(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE, 1423 ("sched_priority: invalid priority %d: nice %d, " 1424 "ticks %d ftick %d ltick %d tick pri %d", 1425 pri, td->td_proc->p_nice, td->td_sched->ts_ticks, 1426 td->td_sched->ts_ftick, td->td_sched->ts_ltick, 1427 SCHED_PRI_TICKS(td->td_sched))); 1428 } 1429 sched_user_prio(td, pri); 1430 1431 return; 1432 } 1433 1434 /* 1435 * This routine enforces a maximum limit on the amount of scheduling history 1436 * kept. It is called after either the slptime or runtime is adjusted. This 1437 * function is ugly due to integer math. 1438 */ 1439 static void 1440 sched_interact_update(struct thread *td) 1441 { 1442 struct td_sched *ts; 1443 u_int sum; 1444 1445 ts = td->td_sched; 1446 sum = ts->ts_runtime + ts->ts_slptime; 1447 if (sum < SCHED_SLP_RUN_MAX) 1448 return; 1449 /* 1450 * This only happens from two places: 1451 * 1) We have added an unusual amount of run time from fork_exit. 1452 * 2) We have added an unusual amount of sleep time from sched_sleep(). 1453 */ 1454 if (sum > SCHED_SLP_RUN_MAX * 2) { 1455 if (ts->ts_runtime > ts->ts_slptime) { 1456 ts->ts_runtime = SCHED_SLP_RUN_MAX; 1457 ts->ts_slptime = 1; 1458 } else { 1459 ts->ts_slptime = SCHED_SLP_RUN_MAX; 1460 ts->ts_runtime = 1; 1461 } 1462 return; 1463 } 1464 /* 1465 * If we have exceeded by more than 1/5th then the algorithm below 1466 * will not bring us back into range. Dividing by two here forces 1467 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX] 1468 */ 1469 if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) { 1470 ts->ts_runtime /= 2; 1471 ts->ts_slptime /= 2; 1472 return; 1473 } 1474 ts->ts_runtime = (ts->ts_runtime / 5) * 4; 1475 ts->ts_slptime = (ts->ts_slptime / 5) * 4; 1476 } 1477 1478 /* 1479 * Scale back the interactivity history when a child thread is created. The 1480 * history is inherited from the parent but the thread may behave totally 1481 * differently. For example, a shell spawning a compiler process. We want 1482 * to learn that the compiler is behaving badly very quickly. 1483 */ 1484 static void 1485 sched_interact_fork(struct thread *td) 1486 { 1487 int ratio; 1488 int sum; 1489 1490 sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime; 1491 if (sum > SCHED_SLP_RUN_FORK) { 1492 ratio = sum / SCHED_SLP_RUN_FORK; 1493 td->td_sched->ts_runtime /= ratio; 1494 td->td_sched->ts_slptime /= ratio; 1495 } 1496 } 1497 1498 /* 1499 * Called from proc0_init() to setup the scheduler fields. 1500 */ 1501 void 1502 schedinit(void) 1503 { 1504 1505 /* 1506 * Set up the scheduler specific parts of proc0. 1507 */ 1508 proc0.p_sched = NULL; /* XXX */ 1509 thread0.td_sched = &td_sched0; 1510 td_sched0.ts_ltick = ticks; 1511 td_sched0.ts_ftick = ticks; 1512 td_sched0.ts_slice = sched_slice; 1513 } 1514 1515 /* 1516 * This is only somewhat accurate since given many processes of the same 1517 * priority they will switch when their slices run out, which will be 1518 * at most sched_slice stathz ticks. 1519 */ 1520 int 1521 sched_rr_interval(void) 1522 { 1523 1524 /* Convert sched_slice to hz */ 1525 return (hz/(realstathz/sched_slice)); 1526 } 1527 1528 /* 1529 * Update the percent cpu tracking information when it is requested or 1530 * the total history exceeds the maximum. We keep a sliding history of 1531 * tick counts that slowly decays. This is less precise than the 4BSD 1532 * mechanism since it happens with less regular and frequent events. 1533 */ 1534 static void 1535 sched_pctcpu_update(struct td_sched *ts) 1536 { 1537 1538 if (ts->ts_ticks == 0) 1539 return; 1540 if (ticks - (hz / 10) < ts->ts_ltick && 1541 SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX) 1542 return; 1543 /* 1544 * Adjust counters and watermark for pctcpu calc. 1545 */ 1546 if (ts->ts_ltick > ticks - SCHED_TICK_TARG) 1547 ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) * 1548 SCHED_TICK_TARG; 1549 else 1550 ts->ts_ticks = 0; 1551 ts->ts_ltick = ticks; 1552 ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG; 1553 } 1554 1555 /* 1556 * Adjust the priority of a thread. Move it to the appropriate run-queue 1557 * if necessary. This is the back-end for several priority related 1558 * functions. 1559 */ 1560 static void 1561 sched_thread_priority(struct thread *td, u_char prio) 1562 { 1563 struct td_sched *ts; 1564 struct tdq *tdq; 1565 int oldpri; 1566 1567 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio", 1568 "prio:%d", td->td_priority, "new prio:%d", prio, 1569 KTR_ATTR_LINKED, sched_tdname(curthread)); 1570 if (td != curthread && prio > td->td_priority) { 1571 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread), 1572 "lend prio", "prio:%d", td->td_priority, "new prio:%d", 1573 prio, KTR_ATTR_LINKED, sched_tdname(td)); 1574 } 1575 ts = td->td_sched; 1576 THREAD_LOCK_ASSERT(td, MA_OWNED); 1577 if (td->td_priority == prio) 1578 return; 1579 /* 1580 * If the priority has been elevated due to priority 1581 * propagation, we may have to move ourselves to a new 1582 * queue. This could be optimized to not re-add in some 1583 * cases. 1584 */ 1585 if (TD_ON_RUNQ(td) && prio < td->td_priority) { 1586 sched_rem(td); 1587 td->td_priority = prio; 1588 sched_add(td, SRQ_BORROWING); 1589 return; 1590 } 1591 /* 1592 * If the thread is currently running we may have to adjust the lowpri 1593 * information so other cpus are aware of our current priority. 1594 */ 1595 if (TD_IS_RUNNING(td)) { 1596 tdq = TDQ_CPU(ts->ts_cpu); 1597 oldpri = td->td_priority; 1598 td->td_priority = prio; 1599 if (prio < tdq->tdq_lowpri) 1600 tdq->tdq_lowpri = prio; 1601 else if (tdq->tdq_lowpri == oldpri) 1602 tdq_setlowpri(tdq, td); 1603 return; 1604 } 1605 td->td_priority = prio; 1606 } 1607 1608 /* 1609 * Update a thread's priority when it is lent another thread's 1610 * priority. 1611 */ 1612 void 1613 sched_lend_prio(struct thread *td, u_char prio) 1614 { 1615 1616 td->td_flags |= TDF_BORROWING; 1617 sched_thread_priority(td, prio); 1618 } 1619 1620 /* 1621 * Restore a thread's priority when priority propagation is 1622 * over. The prio argument is the minimum priority the thread 1623 * needs to have to satisfy other possible priority lending 1624 * requests. If the thread's regular priority is less 1625 * important than prio, the thread will keep a priority boost 1626 * of prio. 1627 */ 1628 void 1629 sched_unlend_prio(struct thread *td, u_char prio) 1630 { 1631 u_char base_pri; 1632 1633 if (td->td_base_pri >= PRI_MIN_TIMESHARE && 1634 td->td_base_pri <= PRI_MAX_TIMESHARE) 1635 base_pri = td->td_user_pri; 1636 else 1637 base_pri = td->td_base_pri; 1638 if (prio >= base_pri) { 1639 td->td_flags &= ~TDF_BORROWING; 1640 sched_thread_priority(td, base_pri); 1641 } else 1642 sched_lend_prio(td, prio); 1643 } 1644 1645 /* 1646 * Standard entry for setting the priority to an absolute value. 1647 */ 1648 void 1649 sched_prio(struct thread *td, u_char prio) 1650 { 1651 u_char oldprio; 1652 1653 /* First, update the base priority. */ 1654 td->td_base_pri = prio; 1655 1656 /* 1657 * If the thread is borrowing another thread's priority, don't 1658 * ever lower the priority. 1659 */ 1660 if (td->td_flags & TDF_BORROWING && td->td_priority < prio) 1661 return; 1662 1663 /* Change the real priority. */ 1664 oldprio = td->td_priority; 1665 sched_thread_priority(td, prio); 1666 1667 /* 1668 * If the thread is on a turnstile, then let the turnstile update 1669 * its state. 1670 */ 1671 if (TD_ON_LOCK(td) && oldprio != prio) 1672 turnstile_adjust(td, oldprio); 1673 } 1674 1675 /* 1676 * Set the base user priority, does not effect current running priority. 1677 */ 1678 void 1679 sched_user_prio(struct thread *td, u_char prio) 1680 { 1681 u_char oldprio; 1682 1683 td->td_base_user_pri = prio; 1684 if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio) 1685 return; 1686 oldprio = td->td_user_pri; 1687 td->td_user_pri = prio; 1688 } 1689 1690 void 1691 sched_lend_user_prio(struct thread *td, u_char prio) 1692 { 1693 u_char oldprio; 1694 1695 THREAD_LOCK_ASSERT(td, MA_OWNED); 1696 td->td_flags |= TDF_UBORROWING; 1697 oldprio = td->td_user_pri; 1698 td->td_user_pri = prio; 1699 } 1700 1701 void 1702 sched_unlend_user_prio(struct thread *td, u_char prio) 1703 { 1704 u_char base_pri; 1705 1706 THREAD_LOCK_ASSERT(td, MA_OWNED); 1707 base_pri = td->td_base_user_pri; 1708 if (prio >= base_pri) { 1709 td->td_flags &= ~TDF_UBORROWING; 1710 sched_user_prio(td, base_pri); 1711 } else { 1712 sched_lend_user_prio(td, prio); 1713 } 1714 } 1715 1716 /* 1717 * Block a thread for switching. Similar to thread_block() but does not 1718 * bump the spin count. 1719 */ 1720 static inline struct mtx * 1721 thread_block_switch(struct thread *td) 1722 { 1723 struct mtx *lock; 1724 1725 THREAD_LOCK_ASSERT(td, MA_OWNED); 1726 lock = td->td_lock; 1727 td->td_lock = &blocked_lock; 1728 mtx_unlock_spin(lock); 1729 1730 return (lock); 1731 } 1732 1733 /* 1734 * Handle migration from sched_switch(). This happens only for 1735 * cpu binding. 1736 */ 1737 static struct mtx * 1738 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags) 1739 { 1740 struct tdq *tdn; 1741 1742 tdn = TDQ_CPU(td->td_sched->ts_cpu); 1743 #ifdef SMP 1744 tdq_load_rem(tdq, td); 1745 /* 1746 * Do the lock dance required to avoid LOR. We grab an extra 1747 * spinlock nesting to prevent preemption while we're 1748 * not holding either run-queue lock. 1749 */ 1750 spinlock_enter(); 1751 thread_block_switch(td); /* This releases the lock on tdq. */ 1752 1753 /* 1754 * Acquire both run-queue locks before placing the thread on the new 1755 * run-queue to avoid deadlocks created by placing a thread with a 1756 * blocked lock on the run-queue of a remote processor. The deadlock 1757 * occurs when a third processor attempts to lock the two queues in 1758 * question while the target processor is spinning with its own 1759 * run-queue lock held while waiting for the blocked lock to clear. 1760 */ 1761 tdq_lock_pair(tdn, tdq); 1762 tdq_add(tdn, td, flags); 1763 tdq_notify(tdn, td); 1764 TDQ_UNLOCK(tdn); 1765 spinlock_exit(); 1766 #endif 1767 return (TDQ_LOCKPTR(tdn)); 1768 } 1769 1770 /* 1771 * Release a thread that was blocked with thread_block_switch(). 1772 */ 1773 static inline void 1774 thread_unblock_switch(struct thread *td, struct mtx *mtx) 1775 { 1776 atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock, 1777 (uintptr_t)mtx); 1778 } 1779 1780 /* 1781 * Switch threads. This function has to handle threads coming in while 1782 * blocked for some reason, running, or idle. It also must deal with 1783 * migrating a thread from one queue to another as running threads may 1784 * be assigned elsewhere via binding. 1785 */ 1786 void 1787 sched_switch(struct thread *td, struct thread *newtd, int flags) 1788 { 1789 struct tdq *tdq; 1790 struct td_sched *ts; 1791 struct mtx *mtx; 1792 int srqflag; 1793 int cpuid; 1794 1795 THREAD_LOCK_ASSERT(td, MA_OWNED); 1796 KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument")); 1797 1798 cpuid = PCPU_GET(cpuid); 1799 tdq = TDQ_CPU(cpuid); 1800 ts = td->td_sched; 1801 mtx = td->td_lock; 1802 ts->ts_rltick = ticks; 1803 td->td_lastcpu = td->td_oncpu; 1804 td->td_oncpu = NOCPU; 1805 td->td_flags &= ~TDF_NEEDRESCHED; 1806 td->td_owepreempt = 0; 1807 tdq->tdq_switchcnt++; 1808 /* 1809 * The lock pointer in an idle thread should never change. Reset it 1810 * to CAN_RUN as well. 1811 */ 1812 if (TD_IS_IDLETHREAD(td)) { 1813 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1814 TD_SET_CAN_RUN(td); 1815 } else if (TD_IS_RUNNING(td)) { 1816 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1817 srqflag = (flags & SW_PREEMPT) ? 1818 SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED : 1819 SRQ_OURSELF|SRQ_YIELDING; 1820 if (ts->ts_cpu == cpuid) 1821 tdq_runq_add(tdq, td, srqflag); 1822 else 1823 mtx = sched_switch_migrate(tdq, td, srqflag); 1824 } else { 1825 /* This thread must be going to sleep. */ 1826 TDQ_LOCK(tdq); 1827 mtx = thread_block_switch(td); 1828 tdq_load_rem(tdq, td); 1829 } 1830 /* 1831 * We enter here with the thread blocked and assigned to the 1832 * appropriate cpu run-queue or sleep-queue and with the current 1833 * thread-queue locked. 1834 */ 1835 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 1836 newtd = choosethread(); 1837 /* 1838 * Call the MD code to switch contexts if necessary. 1839 */ 1840 if (td != newtd) { 1841 #ifdef HWPMC_HOOKS 1842 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1843 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 1844 #endif 1845 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 1846 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 1847 1848 #ifdef KDTRACE_HOOKS 1849 /* 1850 * If DTrace has set the active vtime enum to anything 1851 * other than INACTIVE (0), then it should have set the 1852 * function to call. 1853 */ 1854 if (dtrace_vtime_active) 1855 (*dtrace_vtime_switch_func)(newtd); 1856 #endif 1857 1858 cpu_switch(td, newtd, mtx); 1859 /* 1860 * We may return from cpu_switch on a different cpu. However, 1861 * we always return with td_lock pointing to the current cpu's 1862 * run queue lock. 1863 */ 1864 cpuid = PCPU_GET(cpuid); 1865 tdq = TDQ_CPU(cpuid); 1866 lock_profile_obtain_lock_success( 1867 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 1868 #ifdef HWPMC_HOOKS 1869 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1870 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN); 1871 #endif 1872 } else 1873 thread_unblock_switch(td, mtx); 1874 /* 1875 * Assert that all went well and return. 1876 */ 1877 TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED); 1878 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1879 td->td_oncpu = cpuid; 1880 } 1881 1882 /* 1883 * Adjust thread priorities as a result of a nice request. 1884 */ 1885 void 1886 sched_nice(struct proc *p, int nice) 1887 { 1888 struct thread *td; 1889 1890 PROC_LOCK_ASSERT(p, MA_OWNED); 1891 1892 p->p_nice = nice; 1893 FOREACH_THREAD_IN_PROC(p, td) { 1894 thread_lock(td); 1895 sched_priority(td); 1896 sched_prio(td, td->td_base_user_pri); 1897 thread_unlock(td); 1898 } 1899 } 1900 1901 /* 1902 * Record the sleep time for the interactivity scorer. 1903 */ 1904 void 1905 sched_sleep(struct thread *td, int prio) 1906 { 1907 1908 THREAD_LOCK_ASSERT(td, MA_OWNED); 1909 1910 td->td_slptick = ticks; 1911 if (TD_IS_SUSPENDED(td) || prio <= PSOCK) 1912 td->td_flags |= TDF_CANSWAP; 1913 if (static_boost == 1 && prio) 1914 sched_prio(td, prio); 1915 else if (static_boost && td->td_priority > static_boost) 1916 sched_prio(td, static_boost); 1917 } 1918 1919 /* 1920 * Schedule a thread to resume execution and record how long it voluntarily 1921 * slept. We also update the pctcpu, interactivity, and priority. 1922 */ 1923 void 1924 sched_wakeup(struct thread *td) 1925 { 1926 struct td_sched *ts; 1927 int slptick; 1928 1929 THREAD_LOCK_ASSERT(td, MA_OWNED); 1930 ts = td->td_sched; 1931 td->td_flags &= ~TDF_CANSWAP; 1932 /* 1933 * If we slept for more than a tick update our interactivity and 1934 * priority. 1935 */ 1936 slptick = td->td_slptick; 1937 td->td_slptick = 0; 1938 if (slptick && slptick != ticks) { 1939 u_int hzticks; 1940 1941 hzticks = (ticks - slptick) << SCHED_TICK_SHIFT; 1942 ts->ts_slptime += hzticks; 1943 sched_interact_update(td); 1944 sched_pctcpu_update(ts); 1945 } 1946 /* Reset the slice value after we sleep. */ 1947 ts->ts_slice = sched_slice; 1948 sched_add(td, SRQ_BORING); 1949 } 1950 1951 /* 1952 * Penalize the parent for creating a new child and initialize the child's 1953 * priority. 1954 */ 1955 void 1956 sched_fork(struct thread *td, struct thread *child) 1957 { 1958 THREAD_LOCK_ASSERT(td, MA_OWNED); 1959 sched_fork_thread(td, child); 1960 /* 1961 * Penalize the parent and child for forking. 1962 */ 1963 sched_interact_fork(child); 1964 sched_priority(child); 1965 td->td_sched->ts_runtime += tickincr; 1966 sched_interact_update(td); 1967 sched_priority(td); 1968 } 1969 1970 /* 1971 * Fork a new thread, may be within the same process. 1972 */ 1973 void 1974 sched_fork_thread(struct thread *td, struct thread *child) 1975 { 1976 struct td_sched *ts; 1977 struct td_sched *ts2; 1978 1979 THREAD_LOCK_ASSERT(td, MA_OWNED); 1980 /* 1981 * Initialize child. 1982 */ 1983 ts = td->td_sched; 1984 ts2 = child->td_sched; 1985 child->td_lock = TDQ_LOCKPTR(TDQ_SELF()); 1986 child->td_cpuset = cpuset_ref(td->td_cpuset); 1987 ts2->ts_cpu = ts->ts_cpu; 1988 ts2->ts_flags = 0; 1989 /* 1990 * Grab our parents cpu estimation information and priority. 1991 */ 1992 ts2->ts_ticks = ts->ts_ticks; 1993 ts2->ts_ltick = ts->ts_ltick; 1994 ts2->ts_ftick = ts->ts_ftick; 1995 child->td_user_pri = td->td_user_pri; 1996 child->td_base_user_pri = td->td_base_user_pri; 1997 /* 1998 * And update interactivity score. 1999 */ 2000 ts2->ts_slptime = ts->ts_slptime; 2001 ts2->ts_runtime = ts->ts_runtime; 2002 ts2->ts_slice = 1; /* Attempt to quickly learn interactivity. */ 2003 #ifdef KTR 2004 bzero(ts2->ts_name, sizeof(ts2->ts_name)); 2005 #endif 2006 } 2007 2008 /* 2009 * Adjust the priority class of a thread. 2010 */ 2011 void 2012 sched_class(struct thread *td, int class) 2013 { 2014 2015 THREAD_LOCK_ASSERT(td, MA_OWNED); 2016 if (td->td_pri_class == class) 2017 return; 2018 td->td_pri_class = class; 2019 } 2020 2021 /* 2022 * Return some of the child's priority and interactivity to the parent. 2023 */ 2024 void 2025 sched_exit(struct proc *p, struct thread *child) 2026 { 2027 struct thread *td; 2028 2029 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit", 2030 "prio:td", child->td_priority); 2031 PROC_LOCK_ASSERT(p, MA_OWNED); 2032 td = FIRST_THREAD_IN_PROC(p); 2033 sched_exit_thread(td, child); 2034 } 2035 2036 /* 2037 * Penalize another thread for the time spent on this one. This helps to 2038 * worsen the priority and interactivity of processes which schedule batch 2039 * jobs such as make. This has little effect on the make process itself but 2040 * causes new processes spawned by it to receive worse scores immediately. 2041 */ 2042 void 2043 sched_exit_thread(struct thread *td, struct thread *child) 2044 { 2045 2046 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit", 2047 "prio:td", child->td_priority); 2048 /* 2049 * Give the child's runtime to the parent without returning the 2050 * sleep time as a penalty to the parent. This causes shells that 2051 * launch expensive things to mark their children as expensive. 2052 */ 2053 thread_lock(td); 2054 td->td_sched->ts_runtime += child->td_sched->ts_runtime; 2055 sched_interact_update(td); 2056 sched_priority(td); 2057 thread_unlock(td); 2058 } 2059 2060 void 2061 sched_preempt(struct thread *td) 2062 { 2063 struct tdq *tdq; 2064 2065 thread_lock(td); 2066 tdq = TDQ_SELF(); 2067 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2068 tdq->tdq_ipipending = 0; 2069 if (td->td_priority > tdq->tdq_lowpri) { 2070 int flags; 2071 2072 flags = SW_INVOL | SW_PREEMPT; 2073 if (td->td_critnest > 1) 2074 td->td_owepreempt = 1; 2075 else if (TD_IS_IDLETHREAD(td)) 2076 mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL); 2077 else 2078 mi_switch(flags | SWT_REMOTEPREEMPT, NULL); 2079 } 2080 thread_unlock(td); 2081 } 2082 2083 /* 2084 * Fix priorities on return to user-space. Priorities may be elevated due 2085 * to static priorities in msleep() or similar. 2086 */ 2087 void 2088 sched_userret(struct thread *td) 2089 { 2090 /* 2091 * XXX we cheat slightly on the locking here to avoid locking in 2092 * the usual case. Setting td_priority here is essentially an 2093 * incomplete workaround for not setting it properly elsewhere. 2094 * Now that some interrupt handlers are threads, not setting it 2095 * properly elsewhere can clobber it in the window between setting 2096 * it here and returning to user mode, so don't waste time setting 2097 * it perfectly here. 2098 */ 2099 KASSERT((td->td_flags & TDF_BORROWING) == 0, 2100 ("thread with borrowed priority returning to userland")); 2101 if (td->td_priority != td->td_user_pri) { 2102 thread_lock(td); 2103 td->td_priority = td->td_user_pri; 2104 td->td_base_pri = td->td_user_pri; 2105 tdq_setlowpri(TDQ_SELF(), td); 2106 thread_unlock(td); 2107 } 2108 } 2109 2110 /* 2111 * Handle a stathz tick. This is really only relevant for timeshare 2112 * threads. 2113 */ 2114 void 2115 sched_clock(struct thread *td) 2116 { 2117 struct tdq *tdq; 2118 struct td_sched *ts; 2119 2120 THREAD_LOCK_ASSERT(td, MA_OWNED); 2121 tdq = TDQ_SELF(); 2122 #ifdef SMP 2123 /* 2124 * We run the long term load balancer infrequently on the first cpu. 2125 */ 2126 if (balance_tdq == tdq) { 2127 if (balance_ticks && --balance_ticks == 0) 2128 sched_balance(); 2129 } 2130 #endif 2131 /* 2132 * Save the old switch count so we have a record of the last ticks 2133 * activity. Initialize the new switch count based on our load. 2134 * If there is some activity seed it to reflect that. 2135 */ 2136 tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt; 2137 tdq->tdq_switchcnt = tdq->tdq_load; 2138 /* 2139 * Advance the insert index once for each tick to ensure that all 2140 * threads get a chance to run. 2141 */ 2142 if (tdq->tdq_idx == tdq->tdq_ridx) { 2143 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS; 2144 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx])) 2145 tdq->tdq_ridx = tdq->tdq_idx; 2146 } 2147 ts = td->td_sched; 2148 if (td->td_pri_class & PRI_FIFO_BIT) 2149 return; 2150 if (td->td_pri_class == PRI_TIMESHARE) { 2151 /* 2152 * We used a tick; charge it to the thread so 2153 * that we can compute our interactivity. 2154 */ 2155 td->td_sched->ts_runtime += tickincr; 2156 sched_interact_update(td); 2157 sched_priority(td); 2158 } 2159 /* 2160 * We used up one time slice. 2161 */ 2162 if (--ts->ts_slice > 0) 2163 return; 2164 /* 2165 * We're out of time, force a requeue at userret(). 2166 */ 2167 ts->ts_slice = sched_slice; 2168 td->td_flags |= TDF_NEEDRESCHED; 2169 } 2170 2171 /* 2172 * Called once per hz tick. Used for cpu utilization information. This 2173 * is easier than trying to scale based on stathz. 2174 */ 2175 void 2176 sched_tick(void) 2177 { 2178 struct td_sched *ts; 2179 2180 ts = curthread->td_sched; 2181 /* 2182 * Ticks is updated asynchronously on a single cpu. Check here to 2183 * avoid incrementing ts_ticks multiple times in a single tick. 2184 */ 2185 if (ts->ts_ltick == ticks) 2186 return; 2187 /* Adjust ticks for pctcpu */ 2188 ts->ts_ticks += 1 << SCHED_TICK_SHIFT; 2189 ts->ts_ltick = ticks; 2190 /* 2191 * Update if we've exceeded our desired tick threshhold by over one 2192 * second. 2193 */ 2194 if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick) 2195 sched_pctcpu_update(ts); 2196 } 2197 2198 /* 2199 * Return whether the current CPU has runnable tasks. Used for in-kernel 2200 * cooperative idle threads. 2201 */ 2202 int 2203 sched_runnable(void) 2204 { 2205 struct tdq *tdq; 2206 int load; 2207 2208 load = 1; 2209 2210 tdq = TDQ_SELF(); 2211 if ((curthread->td_flags & TDF_IDLETD) != 0) { 2212 if (tdq->tdq_load > 0) 2213 goto out; 2214 } else 2215 if (tdq->tdq_load - 1 > 0) 2216 goto out; 2217 load = 0; 2218 out: 2219 return (load); 2220 } 2221 2222 /* 2223 * Choose the highest priority thread to run. The thread is removed from 2224 * the run-queue while running however the load remains. For SMP we set 2225 * the tdq in the global idle bitmask if it idles here. 2226 */ 2227 struct thread * 2228 sched_choose(void) 2229 { 2230 struct thread *td; 2231 struct tdq *tdq; 2232 2233 tdq = TDQ_SELF(); 2234 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2235 td = tdq_choose(tdq); 2236 if (td) { 2237 td->td_sched->ts_ltick = ticks; 2238 tdq_runq_rem(tdq, td); 2239 tdq->tdq_lowpri = td->td_priority; 2240 return (td); 2241 } 2242 tdq->tdq_lowpri = PRI_MAX_IDLE; 2243 return (PCPU_GET(idlethread)); 2244 } 2245 2246 /* 2247 * Set owepreempt if necessary. Preemption never happens directly in ULE, 2248 * we always request it once we exit a critical section. 2249 */ 2250 static inline void 2251 sched_setpreempt(struct thread *td) 2252 { 2253 struct thread *ctd; 2254 int cpri; 2255 int pri; 2256 2257 THREAD_LOCK_ASSERT(curthread, MA_OWNED); 2258 2259 ctd = curthread; 2260 pri = td->td_priority; 2261 cpri = ctd->td_priority; 2262 if (pri < cpri) 2263 ctd->td_flags |= TDF_NEEDRESCHED; 2264 if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd)) 2265 return; 2266 if (!sched_shouldpreempt(pri, cpri, 0)) 2267 return; 2268 ctd->td_owepreempt = 1; 2269 } 2270 2271 /* 2272 * Add a thread to a thread queue. Select the appropriate runq and add the 2273 * thread to it. This is the internal function called when the tdq is 2274 * predetermined. 2275 */ 2276 void 2277 tdq_add(struct tdq *tdq, struct thread *td, int flags) 2278 { 2279 2280 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2281 KASSERT((td->td_inhibitors == 0), 2282 ("sched_add: trying to run inhibited thread")); 2283 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 2284 ("sched_add: bad thread state")); 2285 KASSERT(td->td_flags & TDF_INMEM, 2286 ("sched_add: thread swapped out")); 2287 2288 if (td->td_priority < tdq->tdq_lowpri) 2289 tdq->tdq_lowpri = td->td_priority; 2290 tdq_runq_add(tdq, td, flags); 2291 tdq_load_add(tdq, td); 2292 } 2293 2294 /* 2295 * Select the target thread queue and add a thread to it. Request 2296 * preemption or IPI a remote processor if required. 2297 */ 2298 void 2299 sched_add(struct thread *td, int flags) 2300 { 2301 struct tdq *tdq; 2302 #ifdef SMP 2303 int cpu; 2304 #endif 2305 2306 KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add", 2307 "prio:%d", td->td_priority, KTR_ATTR_LINKED, 2308 sched_tdname(curthread)); 2309 KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup", 2310 KTR_ATTR_LINKED, sched_tdname(td)); 2311 THREAD_LOCK_ASSERT(td, MA_OWNED); 2312 /* 2313 * Recalculate the priority before we select the target cpu or 2314 * run-queue. 2315 */ 2316 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 2317 sched_priority(td); 2318 #ifdef SMP 2319 /* 2320 * Pick the destination cpu and if it isn't ours transfer to the 2321 * target cpu. 2322 */ 2323 cpu = sched_pickcpu(td, flags); 2324 tdq = sched_setcpu(td, cpu, flags); 2325 tdq_add(tdq, td, flags); 2326 if (cpu != PCPU_GET(cpuid)) { 2327 tdq_notify(tdq, td); 2328 return; 2329 } 2330 #else 2331 tdq = TDQ_SELF(); 2332 TDQ_LOCK(tdq); 2333 /* 2334 * Now that the thread is moving to the run-queue, set the lock 2335 * to the scheduler's lock. 2336 */ 2337 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 2338 tdq_add(tdq, td, flags); 2339 #endif 2340 if (!(flags & SRQ_YIELDING)) 2341 sched_setpreempt(td); 2342 } 2343 2344 /* 2345 * Remove a thread from a run-queue without running it. This is used 2346 * when we're stealing a thread from a remote queue. Otherwise all threads 2347 * exit by calling sched_exit_thread() and sched_throw() themselves. 2348 */ 2349 void 2350 sched_rem(struct thread *td) 2351 { 2352 struct tdq *tdq; 2353 2354 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem", 2355 "prio:%d", td->td_priority); 2356 tdq = TDQ_CPU(td->td_sched->ts_cpu); 2357 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2358 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2359 KASSERT(TD_ON_RUNQ(td), 2360 ("sched_rem: thread not on run queue")); 2361 tdq_runq_rem(tdq, td); 2362 tdq_load_rem(tdq, td); 2363 TD_SET_CAN_RUN(td); 2364 if (td->td_priority == tdq->tdq_lowpri) 2365 tdq_setlowpri(tdq, NULL); 2366 } 2367 2368 /* 2369 * Fetch cpu utilization information. Updates on demand. 2370 */ 2371 fixpt_t 2372 sched_pctcpu(struct thread *td) 2373 { 2374 fixpt_t pctcpu; 2375 struct td_sched *ts; 2376 2377 pctcpu = 0; 2378 ts = td->td_sched; 2379 if (ts == NULL) 2380 return (0); 2381 2382 thread_lock(td); 2383 if (ts->ts_ticks) { 2384 int rtick; 2385 2386 sched_pctcpu_update(ts); 2387 /* How many rtick per second ? */ 2388 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz); 2389 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT; 2390 } 2391 thread_unlock(td); 2392 2393 return (pctcpu); 2394 } 2395 2396 /* 2397 * Enforce affinity settings for a thread. Called after adjustments to 2398 * cpumask. 2399 */ 2400 void 2401 sched_affinity(struct thread *td) 2402 { 2403 #ifdef SMP 2404 struct td_sched *ts; 2405 int cpu; 2406 2407 THREAD_LOCK_ASSERT(td, MA_OWNED); 2408 ts = td->td_sched; 2409 if (THREAD_CAN_SCHED(td, ts->ts_cpu)) 2410 return; 2411 if (TD_ON_RUNQ(td)) { 2412 sched_rem(td); 2413 sched_add(td, SRQ_BORING); 2414 return; 2415 } 2416 if (!TD_IS_RUNNING(td)) 2417 return; 2418 td->td_flags |= TDF_NEEDRESCHED; 2419 if (!THREAD_CAN_MIGRATE(td)) 2420 return; 2421 /* 2422 * Assign the new cpu and force a switch before returning to 2423 * userspace. If the target thread is not running locally send 2424 * an ipi to force the issue. 2425 */ 2426 cpu = ts->ts_cpu; 2427 ts->ts_cpu = sched_pickcpu(td, 0); 2428 if (cpu != PCPU_GET(cpuid)) 2429 ipi_selected(1 << cpu, IPI_PREEMPT); 2430 #endif 2431 } 2432 2433 /* 2434 * Bind a thread to a target cpu. 2435 */ 2436 void 2437 sched_bind(struct thread *td, int cpu) 2438 { 2439 struct td_sched *ts; 2440 2441 THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED); 2442 ts = td->td_sched; 2443 if (ts->ts_flags & TSF_BOUND) 2444 sched_unbind(td); 2445 ts->ts_flags |= TSF_BOUND; 2446 sched_pin(); 2447 if (PCPU_GET(cpuid) == cpu) 2448 return; 2449 ts->ts_cpu = cpu; 2450 /* When we return from mi_switch we'll be on the correct cpu. */ 2451 mi_switch(SW_VOL, NULL); 2452 } 2453 2454 /* 2455 * Release a bound thread. 2456 */ 2457 void 2458 sched_unbind(struct thread *td) 2459 { 2460 struct td_sched *ts; 2461 2462 THREAD_LOCK_ASSERT(td, MA_OWNED); 2463 ts = td->td_sched; 2464 if ((ts->ts_flags & TSF_BOUND) == 0) 2465 return; 2466 ts->ts_flags &= ~TSF_BOUND; 2467 sched_unpin(); 2468 } 2469 2470 int 2471 sched_is_bound(struct thread *td) 2472 { 2473 THREAD_LOCK_ASSERT(td, MA_OWNED); 2474 return (td->td_sched->ts_flags & TSF_BOUND); 2475 } 2476 2477 /* 2478 * Basic yield call. 2479 */ 2480 void 2481 sched_relinquish(struct thread *td) 2482 { 2483 thread_lock(td); 2484 mi_switch(SW_VOL | SWT_RELINQUISH, NULL); 2485 thread_unlock(td); 2486 } 2487 2488 /* 2489 * Return the total system load. 2490 */ 2491 int 2492 sched_load(void) 2493 { 2494 #ifdef SMP 2495 int total; 2496 int i; 2497 2498 total = 0; 2499 for (i = 0; i <= mp_maxid; i++) 2500 total += TDQ_CPU(i)->tdq_sysload; 2501 return (total); 2502 #else 2503 return (TDQ_SELF()->tdq_sysload); 2504 #endif 2505 } 2506 2507 int 2508 sched_sizeof_proc(void) 2509 { 2510 return (sizeof(struct proc)); 2511 } 2512 2513 int 2514 sched_sizeof_thread(void) 2515 { 2516 return (sizeof(struct thread) + sizeof(struct td_sched)); 2517 } 2518 2519 #ifdef SMP 2520 #define TDQ_IDLESPIN(tdq) \ 2521 ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0) 2522 #else 2523 #define TDQ_IDLESPIN(tdq) 1 2524 #endif 2525 2526 /* 2527 * The actual idle process. 2528 */ 2529 void 2530 sched_idletd(void *dummy) 2531 { 2532 struct thread *td; 2533 struct tdq *tdq; 2534 int switchcnt; 2535 int i; 2536 2537 mtx_assert(&Giant, MA_NOTOWNED); 2538 td = curthread; 2539 tdq = TDQ_SELF(); 2540 for (;;) { 2541 #ifdef SMP 2542 if (tdq_idled(tdq) == 0) 2543 continue; 2544 #endif 2545 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2546 /* 2547 * If we're switching very frequently, spin while checking 2548 * for load rather than entering a low power state that 2549 * may require an IPI. However, don't do any busy 2550 * loops while on SMT machines as this simply steals 2551 * cycles from cores doing useful work. 2552 */ 2553 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) { 2554 for (i = 0; i < sched_idlespins; i++) { 2555 if (tdq->tdq_load) 2556 break; 2557 cpu_spinwait(); 2558 } 2559 } 2560 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2561 if (tdq->tdq_load == 0) 2562 cpu_idle(switchcnt > 1); 2563 if (tdq->tdq_load) { 2564 thread_lock(td); 2565 mi_switch(SW_VOL | SWT_IDLE, NULL); 2566 thread_unlock(td); 2567 } 2568 } 2569 } 2570 2571 /* 2572 * A CPU is entering for the first time or a thread is exiting. 2573 */ 2574 void 2575 sched_throw(struct thread *td) 2576 { 2577 struct thread *newtd; 2578 struct tdq *tdq; 2579 2580 tdq = TDQ_SELF(); 2581 if (td == NULL) { 2582 /* Correct spinlock nesting and acquire the correct lock. */ 2583 TDQ_LOCK(tdq); 2584 spinlock_exit(); 2585 } else { 2586 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2587 tdq_load_rem(tdq, td); 2588 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 2589 } 2590 KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count")); 2591 newtd = choosethread(); 2592 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 2593 PCPU_SET(switchtime, cpu_ticks()); 2594 PCPU_SET(switchticks, ticks); 2595 cpu_throw(td, newtd); /* doesn't return */ 2596 } 2597 2598 /* 2599 * This is called from fork_exit(). Just acquire the correct locks and 2600 * let fork do the rest of the work. 2601 */ 2602 void 2603 sched_fork_exit(struct thread *td) 2604 { 2605 struct td_sched *ts; 2606 struct tdq *tdq; 2607 int cpuid; 2608 2609 /* 2610 * Finish setting up thread glue so that it begins execution in a 2611 * non-nested critical section with the scheduler lock held. 2612 */ 2613 cpuid = PCPU_GET(cpuid); 2614 tdq = TDQ_CPU(cpuid); 2615 ts = td->td_sched; 2616 if (TD_IS_IDLETHREAD(td)) 2617 td->td_lock = TDQ_LOCKPTR(tdq); 2618 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2619 td->td_oncpu = cpuid; 2620 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 2621 lock_profile_obtain_lock_success( 2622 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 2623 } 2624 2625 /* 2626 * Create on first use to catch odd startup conditons. 2627 */ 2628 char * 2629 sched_tdname(struct thread *td) 2630 { 2631 #ifdef KTR 2632 struct td_sched *ts; 2633 2634 ts = td->td_sched; 2635 if (ts->ts_name[0] == '\0') 2636 snprintf(ts->ts_name, sizeof(ts->ts_name), 2637 "%s tid %d", td->td_name, td->td_tid); 2638 return (ts->ts_name); 2639 #else 2640 return (td->td_name); 2641 #endif 2642 } 2643 2644 #ifdef SMP 2645 2646 /* 2647 * Build the CPU topology dump string. Is recursively called to collect 2648 * the topology tree. 2649 */ 2650 static int 2651 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg, 2652 int indent) 2653 { 2654 int i, first; 2655 2656 sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent, 2657 "", indent, cg->cg_level); 2658 sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"0x%x\">", indent, "", 2659 cg->cg_count, cg->cg_mask); 2660 first = TRUE; 2661 for (i = 0; i < MAXCPU; i++) { 2662 if ((cg->cg_mask & (1 << i)) != 0) { 2663 if (!first) 2664 sbuf_printf(sb, ", "); 2665 else 2666 first = FALSE; 2667 sbuf_printf(sb, "%d", i); 2668 } 2669 } 2670 sbuf_printf(sb, "</cpu>\n"); 2671 2672 sbuf_printf(sb, "%*s <flags>", indent, ""); 2673 if (cg->cg_flags != 0) { 2674 if ((cg->cg_flags & CG_FLAG_HTT) != 0) 2675 sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>\n"); 2676 if ((cg->cg_flags & CG_FLAG_SMT) != 0) 2677 sbuf_printf(sb, "<flag name=\"THREAD\">SMT group</flag>\n"); 2678 } 2679 sbuf_printf(sb, "</flags>\n"); 2680 2681 if (cg->cg_children > 0) { 2682 sbuf_printf(sb, "%*s <children>\n", indent, ""); 2683 for (i = 0; i < cg->cg_children; i++) 2684 sysctl_kern_sched_topology_spec_internal(sb, 2685 &cg->cg_child[i], indent+2); 2686 sbuf_printf(sb, "%*s </children>\n", indent, ""); 2687 } 2688 sbuf_printf(sb, "%*s</group>\n", indent, ""); 2689 return (0); 2690 } 2691 2692 /* 2693 * Sysctl handler for retrieving topology dump. It's a wrapper for 2694 * the recursive sysctl_kern_smp_topology_spec_internal(). 2695 */ 2696 static int 2697 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS) 2698 { 2699 struct sbuf *topo; 2700 int err; 2701 2702 KASSERT(cpu_top != NULL, ("cpu_top isn't initialized")); 2703 2704 topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND); 2705 if (topo == NULL) 2706 return (ENOMEM); 2707 2708 sbuf_printf(topo, "<groups>\n"); 2709 err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1); 2710 sbuf_printf(topo, "</groups>\n"); 2711 2712 if (err == 0) { 2713 sbuf_finish(topo); 2714 err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo)); 2715 } 2716 sbuf_delete(topo); 2717 return (err); 2718 } 2719 #endif 2720 2721 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler"); 2722 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0, 2723 "Scheduler name"); 2724 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0, 2725 "Slice size for timeshare threads"); 2726 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0, 2727 "Interactivity score threshold"); 2728 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh, 2729 0,"Min priority for preemption, lower priorities have greater precedence"); 2730 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 2731 0,"Controls whether static kernel priorities are assigned to sleeping threads."); 2732 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 2733 0,"Number of times idle will spin waiting for new work."); 2734 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh, 2735 0,"Threshold before we will permit idle spinning."); 2736 #ifdef SMP 2737 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0, 2738 "Number of hz ticks to keep thread affinity for"); 2739 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0, 2740 "Enables the long-term load balancer"); 2741 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW, 2742 &balance_interval, 0, 2743 "Average frequency in stathz ticks to run the long-term balancer"); 2744 SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0, 2745 "Steals work from another hyper-threaded core on idle"); 2746 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0, 2747 "Attempts to steal work from other cores before idling"); 2748 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0, 2749 "Minimum load on remote cpu before we'll steal"); 2750 2751 /* Retrieve SMP topology */ 2752 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING | 2753 CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A", 2754 "XML dump of detected CPU topology"); 2755 #endif 2756 2757 /* ps compat. All cpu percentages from ULE are weighted. */ 2758 static int ccpu = 0; 2759 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 2760