xref: /freebsd/sys/kern/sched_ule.c (revision 9a41df2a0e6408e9b329bbd8b9e37c2b44461a1b)
1 /*-
2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * This file implements the ULE scheduler.  ULE supports independent CPU
29  * run queues and fine grain locking.  It has superior interactive
30  * performance under load even on uni-processor systems.
31  *
32  * etymology:
33  *   ULE is the last three letters in schedule.  It owes its name to a
34  * generic user created for a scheduling system by Paul Mikesell at
35  * Isilon Systems and a general lack of creativity on the part of the author.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_kdtrace.h"
43 #include "opt_sched.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resource.h>
54 #include <sys/resourcevar.h>
55 #include <sys/sched.h>
56 #include <sys/sdt.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/turnstile.h>
62 #include <sys/umtx.h>
63 #include <sys/vmmeter.h>
64 #include <sys/cpuset.h>
65 #include <sys/sbuf.h>
66 
67 #ifdef HWPMC_HOOKS
68 #include <sys/pmckern.h>
69 #endif
70 
71 #ifdef KDTRACE_HOOKS
72 #include <sys/dtrace_bsd.h>
73 int				dtrace_vtime_active;
74 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75 #endif
76 
77 #include <machine/cpu.h>
78 #include <machine/smp.h>
79 
80 #if defined(__powerpc__) && defined(BOOKE_E500)
81 #error "This architecture is not currently compatible with ULE"
82 #endif
83 
84 #define	KTR_ULE	0
85 
86 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87 #define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
88 #define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
89 
90 /*
91  * Thread scheduler specific section.  All fields are protected
92  * by the thread lock.
93  */
94 struct td_sched {
95 	struct runq	*ts_runq;	/* Run-queue we're queued on. */
96 	short		ts_flags;	/* TSF_* flags. */
97 	u_char		ts_cpu;		/* CPU that we have affinity for. */
98 	int		ts_rltick;	/* Real last tick, for affinity. */
99 	int		ts_slice;	/* Ticks of slice remaining. */
100 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
101 	u_int		ts_runtime;	/* Number of ticks we were running */
102 	int		ts_ltick;	/* Last tick that we were running on */
103 	int		ts_ftick;	/* First tick that we were running on */
104 	int		ts_ticks;	/* Tick count */
105 #ifdef KTR
106 	char		ts_name[TS_NAME_LEN];
107 #endif
108 };
109 /* flags kept in ts_flags */
110 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112 
113 static struct td_sched td_sched0;
114 
115 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116 #define	THREAD_CAN_SCHED(td, cpu)	\
117     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118 
119 /*
120  * Priority ranges used for interactive and non-interactive timeshare
121  * threads.  The timeshare priorities are split up into four ranges.
122  * The first range handles interactive threads.  The last three ranges
123  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124  * ranges supporting nice values.
125  */
126 #define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127 #define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128 #define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129 
130 #define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131 #define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132 #define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133 #define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134 
135 /*
136  * Cpu percentage computation macros and defines.
137  *
138  * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139  * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140  * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142  * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143  * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144  */
145 #define	SCHED_TICK_SECS		10
146 #define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147 #define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148 #define	SCHED_TICK_SHIFT	10
149 #define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150 #define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151 
152 /*
153  * These macros determine priorities for non-interactive threads.  They are
154  * assigned a priority based on their recent cpu utilization as expressed
155  * by the ratio of ticks to the tick total.  NHALF priorities at the start
156  * and end of the MIN to MAX timeshare range are only reachable with negative
157  * or positive nice respectively.
158  *
159  * PRI_RANGE:	Priority range for utilization dependent priorities.
160  * PRI_NRESV:	Number of nice values.
161  * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162  * PRI_NICE:	Determines the part of the priority inherited from nice.
163  */
164 #define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166 #define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167 #define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168 #define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169 #define	SCHED_PRI_TICKS(ts)						\
170     (SCHED_TICK_HZ((ts)) /						\
171     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172 #define	SCHED_PRI_NICE(nice)	(nice)
173 
174 /*
175  * These determine the interactivity of a process.  Interactivity differs from
176  * cpu utilization in that it expresses the voluntary time slept vs time ran
177  * while cpu utilization includes all time not running.  This more accurately
178  * models the intent of the thread.
179  *
180  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181  *		before throttling back.
182  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184  * INTERACT_THRESH:	Threshold for placement on the current runq.
185  */
186 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188 #define	SCHED_INTERACT_MAX	(100)
189 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190 #define	SCHED_INTERACT_THRESH	(30)
191 
192 /* Flags kept in td_flags. */
193 #define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
194 
195 /*
196  * tickincr:		Converts a stathz tick into a hz domain scaled by
197  *			the shift factor.  Without the shift the error rate
198  *			due to rounding would be unacceptably high.
199  * realstathz:		stathz is sometimes 0 and run off of hz.
200  * sched_slice:		Runtime of each thread before rescheduling.
201  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
202  */
203 static int sched_interact = SCHED_INTERACT_THRESH;
204 static int realstathz = 127;
205 static int tickincr = 8 << SCHED_TICK_SHIFT;;
206 static int sched_slice = 12;
207 #ifdef PREEMPTION
208 #ifdef FULL_PREEMPTION
209 static int preempt_thresh = PRI_MAX_IDLE;
210 #else
211 static int preempt_thresh = PRI_MIN_KERN;
212 #endif
213 #else
214 static int preempt_thresh = 0;
215 #endif
216 static int static_boost = PRI_MIN_BATCH;
217 static int sched_idlespins = 10000;
218 static int sched_idlespinthresh = -1;
219 
220 /*
221  * tdq - per processor runqs and statistics.  All fields are protected by the
222  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
223  * locking in sched_pickcpu();
224  */
225 struct tdq {
226 	/* Ordered to improve efficiency of cpu_search() and switch(). */
227 	struct mtx	tdq_lock;		/* run queue lock. */
228 	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
229 	volatile int	tdq_load;		/* Aggregate load. */
230 	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
231 	int		tdq_sysload;		/* For loadavg, !ITHD load. */
232 	int		tdq_transferable;	/* Transferable thread count. */
233 	short		tdq_switchcnt;		/* Switches this tick. */
234 	short		tdq_oldswitchcnt;	/* Switches last tick. */
235 	u_char		tdq_lowpri;		/* Lowest priority thread. */
236 	u_char		tdq_ipipending;		/* IPI pending. */
237 	u_char		tdq_idx;		/* Current insert index. */
238 	u_char		tdq_ridx;		/* Current removal index. */
239 	struct runq	tdq_realtime;		/* real-time run queue. */
240 	struct runq	tdq_timeshare;		/* timeshare run queue. */
241 	struct runq	tdq_idle;		/* Queue of IDLE threads. */
242 	char		tdq_name[TDQ_NAME_LEN];
243 #ifdef KTR
244 	char		tdq_loadname[TDQ_LOADNAME_LEN];
245 #endif
246 } __aligned(64);
247 
248 /* Idle thread states and config. */
249 #define	TDQ_RUNNING	1
250 #define	TDQ_IDLE	2
251 
252 #ifdef SMP
253 struct cpu_group *cpu_top;		/* CPU topology */
254 
255 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
256 #define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
257 
258 /*
259  * Run-time tunables.
260  */
261 static int rebalance = 1;
262 static int balance_interval = 128;	/* Default set in sched_initticks(). */
263 static int affinity;
264 static int steal_idle = 1;
265 static int steal_thresh = 2;
266 
267 /*
268  * One thread queue per processor.
269  */
270 static struct tdq	tdq_cpu[MAXCPU];
271 static struct tdq	*balance_tdq;
272 static int balance_ticks;
273 static DPCPU_DEFINE(uint32_t, randomval);
274 
275 #define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
276 #define	TDQ_CPU(x)	(&tdq_cpu[(x)])
277 #define	TDQ_ID(x)	((int)((x) - tdq_cpu))
278 #else	/* !SMP */
279 static struct tdq	tdq_cpu;
280 
281 #define	TDQ_ID(x)	(0)
282 #define	TDQ_SELF()	(&tdq_cpu)
283 #define	TDQ_CPU(x)	(&tdq_cpu)
284 #endif
285 
286 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
287 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
288 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
289 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
290 #define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
291 
292 static void sched_priority(struct thread *);
293 static void sched_thread_priority(struct thread *, u_char);
294 static int sched_interact_score(struct thread *);
295 static void sched_interact_update(struct thread *);
296 static void sched_interact_fork(struct thread *);
297 static void sched_pctcpu_update(struct td_sched *, int);
298 
299 /* Operations on per processor queues */
300 static struct thread *tdq_choose(struct tdq *);
301 static void tdq_setup(struct tdq *);
302 static void tdq_load_add(struct tdq *, struct thread *);
303 static void tdq_load_rem(struct tdq *, struct thread *);
304 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
305 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
306 static inline int sched_shouldpreempt(int, int, int);
307 void tdq_print(int cpu);
308 static void runq_print(struct runq *rq);
309 static void tdq_add(struct tdq *, struct thread *, int);
310 #ifdef SMP
311 static int tdq_move(struct tdq *, struct tdq *);
312 static int tdq_idled(struct tdq *);
313 static void tdq_notify(struct tdq *, struct thread *);
314 static struct thread *tdq_steal(struct tdq *, int);
315 static struct thread *runq_steal(struct runq *, int);
316 static int sched_pickcpu(struct thread *, int);
317 static void sched_balance(void);
318 static int sched_balance_pair(struct tdq *, struct tdq *);
319 static inline struct tdq *sched_setcpu(struct thread *, int, int);
320 static inline void thread_unblock_switch(struct thread *, struct mtx *);
321 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
322 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
323 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
324     struct cpu_group *cg, int indent);
325 #endif
326 
327 static void sched_setup(void *dummy);
328 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
329 
330 static void sched_initticks(void *dummy);
331 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
332     NULL);
333 
334 SDT_PROVIDER_DEFINE(sched);
335 
336 SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *",
337     "struct proc *", "uint8_t");
338 SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *",
339     "struct proc *", "void *");
340 SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *",
341     "struct proc *", "void *", "int");
342 SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *",
343     "struct proc *", "uint8_t", "struct thread *");
344 SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
345 SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
346     "struct proc *");
347 SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
348 SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
349 SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
350     "struct proc *");
351 
352 /*
353  * Print the threads waiting on a run-queue.
354  */
355 static void
356 runq_print(struct runq *rq)
357 {
358 	struct rqhead *rqh;
359 	struct thread *td;
360 	int pri;
361 	int j;
362 	int i;
363 
364 	for (i = 0; i < RQB_LEN; i++) {
365 		printf("\t\trunq bits %d 0x%zx\n",
366 		    i, rq->rq_status.rqb_bits[i]);
367 		for (j = 0; j < RQB_BPW; j++)
368 			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
369 				pri = j + (i << RQB_L2BPW);
370 				rqh = &rq->rq_queues[pri];
371 				TAILQ_FOREACH(td, rqh, td_runq) {
372 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
373 					    td, td->td_name, td->td_priority,
374 					    td->td_rqindex, pri);
375 				}
376 			}
377 	}
378 }
379 
380 /*
381  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
382  */
383 void
384 tdq_print(int cpu)
385 {
386 	struct tdq *tdq;
387 
388 	tdq = TDQ_CPU(cpu);
389 
390 	printf("tdq %d:\n", TDQ_ID(tdq));
391 	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
392 	printf("\tLock name:      %s\n", tdq->tdq_name);
393 	printf("\tload:           %d\n", tdq->tdq_load);
394 	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
395 	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
396 	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
397 	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
398 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
399 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
400 	printf("\trealtime runq:\n");
401 	runq_print(&tdq->tdq_realtime);
402 	printf("\ttimeshare runq:\n");
403 	runq_print(&tdq->tdq_timeshare);
404 	printf("\tidle runq:\n");
405 	runq_print(&tdq->tdq_idle);
406 }
407 
408 static inline int
409 sched_shouldpreempt(int pri, int cpri, int remote)
410 {
411 	/*
412 	 * If the new priority is not better than the current priority there is
413 	 * nothing to do.
414 	 */
415 	if (pri >= cpri)
416 		return (0);
417 	/*
418 	 * Always preempt idle.
419 	 */
420 	if (cpri >= PRI_MIN_IDLE)
421 		return (1);
422 	/*
423 	 * If preemption is disabled don't preempt others.
424 	 */
425 	if (preempt_thresh == 0)
426 		return (0);
427 	/*
428 	 * Preempt if we exceed the threshold.
429 	 */
430 	if (pri <= preempt_thresh)
431 		return (1);
432 	/*
433 	 * If we're interactive or better and there is non-interactive
434 	 * or worse running preempt only remote processors.
435 	 */
436 	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
437 		return (1);
438 	return (0);
439 }
440 
441 /*
442  * Add a thread to the actual run-queue.  Keeps transferable counts up to
443  * date with what is actually on the run-queue.  Selects the correct
444  * queue position for timeshare threads.
445  */
446 static __inline void
447 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
448 {
449 	struct td_sched *ts;
450 	u_char pri;
451 
452 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
453 	THREAD_LOCK_ASSERT(td, MA_OWNED);
454 
455 	pri = td->td_priority;
456 	ts = td->td_sched;
457 	TD_SET_RUNQ(td);
458 	if (THREAD_CAN_MIGRATE(td)) {
459 		tdq->tdq_transferable++;
460 		ts->ts_flags |= TSF_XFERABLE;
461 	}
462 	if (pri < PRI_MIN_BATCH) {
463 		ts->ts_runq = &tdq->tdq_realtime;
464 	} else if (pri <= PRI_MAX_BATCH) {
465 		ts->ts_runq = &tdq->tdq_timeshare;
466 		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
467 			("Invalid priority %d on timeshare runq", pri));
468 		/*
469 		 * This queue contains only priorities between MIN and MAX
470 		 * realtime.  Use the whole queue to represent these values.
471 		 */
472 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
473 			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
474 			pri = (pri + tdq->tdq_idx) % RQ_NQS;
475 			/*
476 			 * This effectively shortens the queue by one so we
477 			 * can have a one slot difference between idx and
478 			 * ridx while we wait for threads to drain.
479 			 */
480 			if (tdq->tdq_ridx != tdq->tdq_idx &&
481 			    pri == tdq->tdq_ridx)
482 				pri = (unsigned char)(pri - 1) % RQ_NQS;
483 		} else
484 			pri = tdq->tdq_ridx;
485 		runq_add_pri(ts->ts_runq, td, pri, flags);
486 		return;
487 	} else
488 		ts->ts_runq = &tdq->tdq_idle;
489 	runq_add(ts->ts_runq, td, flags);
490 }
491 
492 /*
493  * Remove a thread from a run-queue.  This typically happens when a thread
494  * is selected to run.  Running threads are not on the queue and the
495  * transferable count does not reflect them.
496  */
497 static __inline void
498 tdq_runq_rem(struct tdq *tdq, struct thread *td)
499 {
500 	struct td_sched *ts;
501 
502 	ts = td->td_sched;
503 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
504 	KASSERT(ts->ts_runq != NULL,
505 	    ("tdq_runq_remove: thread %p null ts_runq", td));
506 	if (ts->ts_flags & TSF_XFERABLE) {
507 		tdq->tdq_transferable--;
508 		ts->ts_flags &= ~TSF_XFERABLE;
509 	}
510 	if (ts->ts_runq == &tdq->tdq_timeshare) {
511 		if (tdq->tdq_idx != tdq->tdq_ridx)
512 			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
513 		else
514 			runq_remove_idx(ts->ts_runq, td, NULL);
515 	} else
516 		runq_remove(ts->ts_runq, td);
517 }
518 
519 /*
520  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
521  * for this thread to the referenced thread queue.
522  */
523 static void
524 tdq_load_add(struct tdq *tdq, struct thread *td)
525 {
526 
527 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
528 	THREAD_LOCK_ASSERT(td, MA_OWNED);
529 
530 	tdq->tdq_load++;
531 	if ((td->td_flags & TDF_NOLOAD) == 0)
532 		tdq->tdq_sysload++;
533 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
534 	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
535 }
536 
537 /*
538  * Remove the load from a thread that is transitioning to a sleep state or
539  * exiting.
540  */
541 static void
542 tdq_load_rem(struct tdq *tdq, struct thread *td)
543 {
544 
545 	THREAD_LOCK_ASSERT(td, MA_OWNED);
546 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
547 	KASSERT(tdq->tdq_load != 0,
548 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
549 
550 	tdq->tdq_load--;
551 	if ((td->td_flags & TDF_NOLOAD) == 0)
552 		tdq->tdq_sysload--;
553 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
554 	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
555 }
556 
557 /*
558  * Set lowpri to its exact value by searching the run-queue and
559  * evaluating curthread.  curthread may be passed as an optimization.
560  */
561 static void
562 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
563 {
564 	struct thread *td;
565 
566 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
567 	if (ctd == NULL)
568 		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
569 	td = tdq_choose(tdq);
570 	if (td == NULL || td->td_priority > ctd->td_priority)
571 		tdq->tdq_lowpri = ctd->td_priority;
572 	else
573 		tdq->tdq_lowpri = td->td_priority;
574 }
575 
576 #ifdef SMP
577 struct cpu_search {
578 	cpuset_t cs_mask;
579 	u_int	cs_prefer;
580 	int	cs_pri;		/* Min priority for low. */
581 	int	cs_limit;	/* Max load for low, min load for high. */
582 	int	cs_cpu;
583 	int	cs_load;
584 };
585 
586 #define	CPU_SEARCH_LOWEST	0x1
587 #define	CPU_SEARCH_HIGHEST	0x2
588 #define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
589 
590 #define	CPUSET_FOREACH(cpu, mask)				\
591 	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
592 		if (CPU_ISSET(cpu, &mask))
593 
594 static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
595     struct cpu_search *high, const int match);
596 int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
597 int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
598 int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
599     struct cpu_search *high);
600 
601 /*
602  * Search the tree of cpu_groups for the lowest or highest loaded cpu
603  * according to the match argument.  This routine actually compares the
604  * load on all paths through the tree and finds the least loaded cpu on
605  * the least loaded path, which may differ from the least loaded cpu in
606  * the system.  This balances work among caches and busses.
607  *
608  * This inline is instantiated in three forms below using constants for the
609  * match argument.  It is reduced to the minimum set for each case.  It is
610  * also recursive to the depth of the tree.
611  */
612 static __inline int
613 cpu_search(const struct cpu_group *cg, struct cpu_search *low,
614     struct cpu_search *high, const int match)
615 {
616 	struct cpu_search lgroup;
617 	struct cpu_search hgroup;
618 	cpuset_t cpumask;
619 	struct cpu_group *child;
620 	struct tdq *tdq;
621 	int cpu, i, hload, lload, load, total, rnd, *rndptr;
622 
623 	total = 0;
624 	cpumask = cg->cg_mask;
625 	if (match & CPU_SEARCH_LOWEST) {
626 		lload = INT_MAX;
627 		lgroup = *low;
628 	}
629 	if (match & CPU_SEARCH_HIGHEST) {
630 		hload = INT_MIN;
631 		hgroup = *high;
632 	}
633 
634 	/* Iterate through the child CPU groups and then remaining CPUs. */
635 	for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) {
636 		if (i == 0) {
637 			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
638 				cpu--;
639 			if (cpu < 0)
640 				break;
641 			child = NULL;
642 		} else
643 			child = &cg->cg_child[i - 1];
644 
645 		if (match & CPU_SEARCH_LOWEST)
646 			lgroup.cs_cpu = -1;
647 		if (match & CPU_SEARCH_HIGHEST)
648 			hgroup.cs_cpu = -1;
649 		if (child) {			/* Handle child CPU group. */
650 			CPU_NAND(&cpumask, &child->cg_mask);
651 			switch (match) {
652 			case CPU_SEARCH_LOWEST:
653 				load = cpu_search_lowest(child, &lgroup);
654 				break;
655 			case CPU_SEARCH_HIGHEST:
656 				load = cpu_search_highest(child, &hgroup);
657 				break;
658 			case CPU_SEARCH_BOTH:
659 				load = cpu_search_both(child, &lgroup, &hgroup);
660 				break;
661 			}
662 		} else {			/* Handle child CPU. */
663 			tdq = TDQ_CPU(cpu);
664 			load = tdq->tdq_load * 256;
665 			rndptr = DPCPU_PTR(randomval);
666 			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
667 			if (match & CPU_SEARCH_LOWEST) {
668 				if (cpu == low->cs_prefer)
669 					load -= 64;
670 				/* If that CPU is allowed and get data. */
671 				if (tdq->tdq_lowpri > lgroup.cs_pri &&
672 				    tdq->tdq_load <= lgroup.cs_limit &&
673 				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
674 					lgroup.cs_cpu = cpu;
675 					lgroup.cs_load = load - rnd;
676 				}
677 			}
678 			if (match & CPU_SEARCH_HIGHEST)
679 				if (tdq->tdq_load >= hgroup.cs_limit &&
680 				    tdq->tdq_transferable &&
681 				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
682 					hgroup.cs_cpu = cpu;
683 					hgroup.cs_load = load - rnd;
684 				}
685 		}
686 		total += load;
687 
688 		/* We have info about child item. Compare it. */
689 		if (match & CPU_SEARCH_LOWEST) {
690 			if (lgroup.cs_cpu >= 0 &&
691 			    (load < lload ||
692 			     (load == lload && lgroup.cs_load < low->cs_load))) {
693 				lload = load;
694 				low->cs_cpu = lgroup.cs_cpu;
695 				low->cs_load = lgroup.cs_load;
696 			}
697 		}
698 		if (match & CPU_SEARCH_HIGHEST)
699 			if (hgroup.cs_cpu >= 0 &&
700 			    (load > hload ||
701 			     (load == hload && hgroup.cs_load > high->cs_load))) {
702 				hload = load;
703 				high->cs_cpu = hgroup.cs_cpu;
704 				high->cs_load = hgroup.cs_load;
705 			}
706 		if (child) {
707 			i--;
708 			if (i == 0 && CPU_EMPTY(&cpumask))
709 				break;
710 		} else
711 			cpu--;
712 	}
713 	return (total);
714 }
715 
716 /*
717  * cpu_search instantiations must pass constants to maintain the inline
718  * optimization.
719  */
720 int
721 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
722 {
723 	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
724 }
725 
726 int
727 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
728 {
729 	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
730 }
731 
732 int
733 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
734     struct cpu_search *high)
735 {
736 	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
737 }
738 
739 /*
740  * Find the cpu with the least load via the least loaded path that has a
741  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
742  * acceptable.
743  */
744 static inline int
745 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
746     int prefer)
747 {
748 	struct cpu_search low;
749 
750 	low.cs_cpu = -1;
751 	low.cs_prefer = prefer;
752 	low.cs_mask = mask;
753 	low.cs_pri = pri;
754 	low.cs_limit = maxload;
755 	cpu_search_lowest(cg, &low);
756 	return low.cs_cpu;
757 }
758 
759 /*
760  * Find the cpu with the highest load via the highest loaded path.
761  */
762 static inline int
763 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
764 {
765 	struct cpu_search high;
766 
767 	high.cs_cpu = -1;
768 	high.cs_mask = mask;
769 	high.cs_limit = minload;
770 	cpu_search_highest(cg, &high);
771 	return high.cs_cpu;
772 }
773 
774 /*
775  * Simultaneously find the highest and lowest loaded cpu reachable via
776  * cg.
777  */
778 static inline void
779 sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
780 {
781 	struct cpu_search high;
782 	struct cpu_search low;
783 
784 	low.cs_cpu = -1;
785 	low.cs_prefer = -1;
786 	low.cs_pri = -1;
787 	low.cs_limit = INT_MAX;
788 	low.cs_mask = mask;
789 	high.cs_cpu = -1;
790 	high.cs_limit = -1;
791 	high.cs_mask = mask;
792 	cpu_search_both(cg, &low, &high);
793 	*lowcpu = low.cs_cpu;
794 	*highcpu = high.cs_cpu;
795 	return;
796 }
797 
798 static void
799 sched_balance_group(struct cpu_group *cg)
800 {
801 	cpuset_t hmask, lmask;
802 	int high, low, anylow;
803 
804 	CPU_FILL(&hmask);
805 	for (;;) {
806 		high = sched_highest(cg, hmask, 1);
807 		/* Stop if there is no more CPU with transferrable threads. */
808 		if (high == -1)
809 			break;
810 		CPU_CLR(high, &hmask);
811 		CPU_COPY(&hmask, &lmask);
812 		/* Stop if there is no more CPU left for low. */
813 		if (CPU_EMPTY(&lmask))
814 			break;
815 		anylow = 1;
816 nextlow:
817 		low = sched_lowest(cg, lmask, -1,
818 		    TDQ_CPU(high)->tdq_load - 1, high);
819 		/* Stop if we looked well and found no less loaded CPU. */
820 		if (anylow && low == -1)
821 			break;
822 		/* Go to next high if we found no less loaded CPU. */
823 		if (low == -1)
824 			continue;
825 		/* Transfer thread from high to low. */
826 		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
827 			/* CPU that got thread can no longer be a donor. */
828 			CPU_CLR(low, &hmask);
829 		} else {
830 			/*
831 			 * If failed, then there is no threads on high
832 			 * that can run on this low. Drop low from low
833 			 * mask and look for different one.
834 			 */
835 			CPU_CLR(low, &lmask);
836 			anylow = 0;
837 			goto nextlow;
838 		}
839 	}
840 }
841 
842 static void
843 sched_balance(void)
844 {
845 	struct tdq *tdq;
846 
847 	/*
848 	 * Select a random time between .5 * balance_interval and
849 	 * 1.5 * balance_interval.
850 	 */
851 	balance_ticks = max(balance_interval / 2, 1);
852 	balance_ticks += random() % balance_interval;
853 	if (smp_started == 0 || rebalance == 0)
854 		return;
855 	tdq = TDQ_SELF();
856 	TDQ_UNLOCK(tdq);
857 	sched_balance_group(cpu_top);
858 	TDQ_LOCK(tdq);
859 }
860 
861 /*
862  * Lock two thread queues using their address to maintain lock order.
863  */
864 static void
865 tdq_lock_pair(struct tdq *one, struct tdq *two)
866 {
867 	if (one < two) {
868 		TDQ_LOCK(one);
869 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
870 	} else {
871 		TDQ_LOCK(two);
872 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
873 	}
874 }
875 
876 /*
877  * Unlock two thread queues.  Order is not important here.
878  */
879 static void
880 tdq_unlock_pair(struct tdq *one, struct tdq *two)
881 {
882 	TDQ_UNLOCK(one);
883 	TDQ_UNLOCK(two);
884 }
885 
886 /*
887  * Transfer load between two imbalanced thread queues.
888  */
889 static int
890 sched_balance_pair(struct tdq *high, struct tdq *low)
891 {
892 	int moved;
893 	int cpu;
894 
895 	tdq_lock_pair(high, low);
896 	moved = 0;
897 	/*
898 	 * Determine what the imbalance is and then adjust that to how many
899 	 * threads we actually have to give up (transferable).
900 	 */
901 	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
902 	    (moved = tdq_move(high, low)) > 0) {
903 		/*
904 		 * In case the target isn't the current cpu IPI it to force a
905 		 * reschedule with the new workload.
906 		 */
907 		cpu = TDQ_ID(low);
908 		sched_pin();
909 		if (cpu != PCPU_GET(cpuid))
910 			ipi_cpu(cpu, IPI_PREEMPT);
911 		sched_unpin();
912 	}
913 	tdq_unlock_pair(high, low);
914 	return (moved);
915 }
916 
917 /*
918  * Move a thread from one thread queue to another.
919  */
920 static int
921 tdq_move(struct tdq *from, struct tdq *to)
922 {
923 	struct td_sched *ts;
924 	struct thread *td;
925 	struct tdq *tdq;
926 	int cpu;
927 
928 	TDQ_LOCK_ASSERT(from, MA_OWNED);
929 	TDQ_LOCK_ASSERT(to, MA_OWNED);
930 
931 	tdq = from;
932 	cpu = TDQ_ID(to);
933 	td = tdq_steal(tdq, cpu);
934 	if (td == NULL)
935 		return (0);
936 	ts = td->td_sched;
937 	/*
938 	 * Although the run queue is locked the thread may be blocked.  Lock
939 	 * it to clear this and acquire the run-queue lock.
940 	 */
941 	thread_lock(td);
942 	/* Drop recursive lock on from acquired via thread_lock(). */
943 	TDQ_UNLOCK(from);
944 	sched_rem(td);
945 	ts->ts_cpu = cpu;
946 	td->td_lock = TDQ_LOCKPTR(to);
947 	tdq_add(to, td, SRQ_YIELDING);
948 	return (1);
949 }
950 
951 /*
952  * This tdq has idled.  Try to steal a thread from another cpu and switch
953  * to it.
954  */
955 static int
956 tdq_idled(struct tdq *tdq)
957 {
958 	struct cpu_group *cg;
959 	struct tdq *steal;
960 	cpuset_t mask;
961 	int thresh;
962 	int cpu;
963 
964 	if (smp_started == 0 || steal_idle == 0)
965 		return (1);
966 	CPU_FILL(&mask);
967 	CPU_CLR(PCPU_GET(cpuid), &mask);
968 	/* We don't want to be preempted while we're iterating. */
969 	spinlock_enter();
970 	for (cg = tdq->tdq_cg; cg != NULL; ) {
971 		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
972 			thresh = steal_thresh;
973 		else
974 			thresh = 1;
975 		cpu = sched_highest(cg, mask, thresh);
976 		if (cpu == -1) {
977 			cg = cg->cg_parent;
978 			continue;
979 		}
980 		steal = TDQ_CPU(cpu);
981 		CPU_CLR(cpu, &mask);
982 		tdq_lock_pair(tdq, steal);
983 		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
984 			tdq_unlock_pair(tdq, steal);
985 			continue;
986 		}
987 		/*
988 		 * If a thread was added while interrupts were disabled don't
989 		 * steal one here.  If we fail to acquire one due to affinity
990 		 * restrictions loop again with this cpu removed from the
991 		 * set.
992 		 */
993 		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
994 			tdq_unlock_pair(tdq, steal);
995 			continue;
996 		}
997 		spinlock_exit();
998 		TDQ_UNLOCK(steal);
999 		mi_switch(SW_VOL | SWT_IDLE, NULL);
1000 		thread_unlock(curthread);
1001 
1002 		return (0);
1003 	}
1004 	spinlock_exit();
1005 	return (1);
1006 }
1007 
1008 /*
1009  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1010  */
1011 static void
1012 tdq_notify(struct tdq *tdq, struct thread *td)
1013 {
1014 	struct thread *ctd;
1015 	int pri;
1016 	int cpu;
1017 
1018 	if (tdq->tdq_ipipending)
1019 		return;
1020 	cpu = td->td_sched->ts_cpu;
1021 	pri = td->td_priority;
1022 	ctd = pcpu_find(cpu)->pc_curthread;
1023 	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1024 		return;
1025 	if (TD_IS_IDLETHREAD(ctd)) {
1026 		/*
1027 		 * If the MD code has an idle wakeup routine try that before
1028 		 * falling back to IPI.
1029 		 */
1030 		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1031 			return;
1032 	}
1033 	tdq->tdq_ipipending = 1;
1034 	ipi_cpu(cpu, IPI_PREEMPT);
1035 }
1036 
1037 /*
1038  * Steals load from a timeshare queue.  Honors the rotating queue head
1039  * index.
1040  */
1041 static struct thread *
1042 runq_steal_from(struct runq *rq, int cpu, u_char start)
1043 {
1044 	struct rqbits *rqb;
1045 	struct rqhead *rqh;
1046 	struct thread *td, *first;
1047 	int bit;
1048 	int pri;
1049 	int i;
1050 
1051 	rqb = &rq->rq_status;
1052 	bit = start & (RQB_BPW -1);
1053 	pri = 0;
1054 	first = NULL;
1055 again:
1056 	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1057 		if (rqb->rqb_bits[i] == 0)
1058 			continue;
1059 		if (bit != 0) {
1060 			for (pri = bit; pri < RQB_BPW; pri++)
1061 				if (rqb->rqb_bits[i] & (1ul << pri))
1062 					break;
1063 			if (pri >= RQB_BPW)
1064 				continue;
1065 		} else
1066 			pri = RQB_FFS(rqb->rqb_bits[i]);
1067 		pri += (i << RQB_L2BPW);
1068 		rqh = &rq->rq_queues[pri];
1069 		TAILQ_FOREACH(td, rqh, td_runq) {
1070 			if (first && THREAD_CAN_MIGRATE(td) &&
1071 			    THREAD_CAN_SCHED(td, cpu))
1072 				return (td);
1073 			first = td;
1074 		}
1075 	}
1076 	if (start != 0) {
1077 		start = 0;
1078 		goto again;
1079 	}
1080 
1081 	if (first && THREAD_CAN_MIGRATE(first) &&
1082 	    THREAD_CAN_SCHED(first, cpu))
1083 		return (first);
1084 	return (NULL);
1085 }
1086 
1087 /*
1088  * Steals load from a standard linear queue.
1089  */
1090 static struct thread *
1091 runq_steal(struct runq *rq, int cpu)
1092 {
1093 	struct rqhead *rqh;
1094 	struct rqbits *rqb;
1095 	struct thread *td;
1096 	int word;
1097 	int bit;
1098 
1099 	rqb = &rq->rq_status;
1100 	for (word = 0; word < RQB_LEN; word++) {
1101 		if (rqb->rqb_bits[word] == 0)
1102 			continue;
1103 		for (bit = 0; bit < RQB_BPW; bit++) {
1104 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1105 				continue;
1106 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1107 			TAILQ_FOREACH(td, rqh, td_runq)
1108 				if (THREAD_CAN_MIGRATE(td) &&
1109 				    THREAD_CAN_SCHED(td, cpu))
1110 					return (td);
1111 		}
1112 	}
1113 	return (NULL);
1114 }
1115 
1116 /*
1117  * Attempt to steal a thread in priority order from a thread queue.
1118  */
1119 static struct thread *
1120 tdq_steal(struct tdq *tdq, int cpu)
1121 {
1122 	struct thread *td;
1123 
1124 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1125 	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1126 		return (td);
1127 	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1128 	    cpu, tdq->tdq_ridx)) != NULL)
1129 		return (td);
1130 	return (runq_steal(&tdq->tdq_idle, cpu));
1131 }
1132 
1133 /*
1134  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1135  * current lock and returns with the assigned queue locked.
1136  */
1137 static inline struct tdq *
1138 sched_setcpu(struct thread *td, int cpu, int flags)
1139 {
1140 
1141 	struct tdq *tdq;
1142 
1143 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1144 	tdq = TDQ_CPU(cpu);
1145 	td->td_sched->ts_cpu = cpu;
1146 	/*
1147 	 * If the lock matches just return the queue.
1148 	 */
1149 	if (td->td_lock == TDQ_LOCKPTR(tdq))
1150 		return (tdq);
1151 #ifdef notyet
1152 	/*
1153 	 * If the thread isn't running its lockptr is a
1154 	 * turnstile or a sleepqueue.  We can just lock_set without
1155 	 * blocking.
1156 	 */
1157 	if (TD_CAN_RUN(td)) {
1158 		TDQ_LOCK(tdq);
1159 		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1160 		return (tdq);
1161 	}
1162 #endif
1163 	/*
1164 	 * The hard case, migration, we need to block the thread first to
1165 	 * prevent order reversals with other cpus locks.
1166 	 */
1167 	spinlock_enter();
1168 	thread_lock_block(td);
1169 	TDQ_LOCK(tdq);
1170 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1171 	spinlock_exit();
1172 	return (tdq);
1173 }
1174 
1175 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1176 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1177 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1178 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1179 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1180 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1181 
1182 static int
1183 sched_pickcpu(struct thread *td, int flags)
1184 {
1185 	struct cpu_group *cg, *ccg;
1186 	struct td_sched *ts;
1187 	struct tdq *tdq;
1188 	cpuset_t mask;
1189 	int cpu, pri, self;
1190 
1191 	self = PCPU_GET(cpuid);
1192 	ts = td->td_sched;
1193 	if (smp_started == 0)
1194 		return (self);
1195 	/*
1196 	 * Don't migrate a running thread from sched_switch().
1197 	 */
1198 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1199 		return (ts->ts_cpu);
1200 	/*
1201 	 * Prefer to run interrupt threads on the processors that generate
1202 	 * the interrupt.
1203 	 */
1204 	pri = td->td_priority;
1205 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1206 	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1207 		SCHED_STAT_INC(pickcpu_intrbind);
1208 		ts->ts_cpu = self;
1209 		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1210 			SCHED_STAT_INC(pickcpu_affinity);
1211 			return (ts->ts_cpu);
1212 		}
1213 	}
1214 	/*
1215 	 * If the thread can run on the last cpu and the affinity has not
1216 	 * expired or it is idle run it there.
1217 	 */
1218 	tdq = TDQ_CPU(ts->ts_cpu);
1219 	cg = tdq->tdq_cg;
1220 	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1221 	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1222 	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1223 		if (cg->cg_flags & CG_FLAG_THREAD) {
1224 			CPUSET_FOREACH(cpu, cg->cg_mask) {
1225 				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1226 					break;
1227 			}
1228 		} else
1229 			cpu = INT_MAX;
1230 		if (cpu > mp_maxid) {
1231 			SCHED_STAT_INC(pickcpu_idle_affinity);
1232 			return (ts->ts_cpu);
1233 		}
1234 	}
1235 	/*
1236 	 * Search for the last level cache CPU group in the tree.
1237 	 * Skip caches with expired affinity time and SMT groups.
1238 	 * Affinity to higher level caches will be handled less aggressively.
1239 	 */
1240 	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1241 		if (cg->cg_flags & CG_FLAG_THREAD)
1242 			continue;
1243 		if (!SCHED_AFFINITY(ts, cg->cg_level))
1244 			continue;
1245 		ccg = cg;
1246 	}
1247 	if (ccg != NULL)
1248 		cg = ccg;
1249 	cpu = -1;
1250 	/* Search the group for the less loaded idle CPU we can run now. */
1251 	mask = td->td_cpuset->cs_mask;
1252 	if (cg != NULL && cg != cpu_top &&
1253 	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1254 		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1255 		    INT_MAX, ts->ts_cpu);
1256 	/* Search globally for the less loaded CPU we can run now. */
1257 	if (cpu == -1)
1258 		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1259 	/* Search globally for the less loaded CPU. */
1260 	if (cpu == -1)
1261 		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1262 	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1263 	/*
1264 	 * Compare the lowest loaded cpu to current cpu.
1265 	 */
1266 	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1267 	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1268 	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1269 		SCHED_STAT_INC(pickcpu_local);
1270 		cpu = self;
1271 	} else
1272 		SCHED_STAT_INC(pickcpu_lowest);
1273 	if (cpu != ts->ts_cpu)
1274 		SCHED_STAT_INC(pickcpu_migration);
1275 	return (cpu);
1276 }
1277 #endif
1278 
1279 /*
1280  * Pick the highest priority task we have and return it.
1281  */
1282 static struct thread *
1283 tdq_choose(struct tdq *tdq)
1284 {
1285 	struct thread *td;
1286 
1287 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1288 	td = runq_choose(&tdq->tdq_realtime);
1289 	if (td != NULL)
1290 		return (td);
1291 	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1292 	if (td != NULL) {
1293 		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1294 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1295 		    td->td_priority));
1296 		return (td);
1297 	}
1298 	td = runq_choose(&tdq->tdq_idle);
1299 	if (td != NULL) {
1300 		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1301 		    ("tdq_choose: Invalid priority on idle queue %d",
1302 		    td->td_priority));
1303 		return (td);
1304 	}
1305 
1306 	return (NULL);
1307 }
1308 
1309 /*
1310  * Initialize a thread queue.
1311  */
1312 static void
1313 tdq_setup(struct tdq *tdq)
1314 {
1315 
1316 	if (bootverbose)
1317 		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1318 	runq_init(&tdq->tdq_realtime);
1319 	runq_init(&tdq->tdq_timeshare);
1320 	runq_init(&tdq->tdq_idle);
1321 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1322 	    "sched lock %d", (int)TDQ_ID(tdq));
1323 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1324 	    MTX_SPIN | MTX_RECURSE);
1325 #ifdef KTR
1326 	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1327 	    "CPU %d load", (int)TDQ_ID(tdq));
1328 #endif
1329 }
1330 
1331 #ifdef SMP
1332 static void
1333 sched_setup_smp(void)
1334 {
1335 	struct tdq *tdq;
1336 	int i;
1337 
1338 	cpu_top = smp_topo();
1339 	CPU_FOREACH(i) {
1340 		tdq = TDQ_CPU(i);
1341 		tdq_setup(tdq);
1342 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1343 		if (tdq->tdq_cg == NULL)
1344 			panic("Can't find cpu group for %d\n", i);
1345 	}
1346 	balance_tdq = TDQ_SELF();
1347 	sched_balance();
1348 }
1349 #endif
1350 
1351 /*
1352  * Setup the thread queues and initialize the topology based on MD
1353  * information.
1354  */
1355 static void
1356 sched_setup(void *dummy)
1357 {
1358 	struct tdq *tdq;
1359 
1360 	tdq = TDQ_SELF();
1361 #ifdef SMP
1362 	sched_setup_smp();
1363 #else
1364 	tdq_setup(tdq);
1365 #endif
1366 
1367 	/* Add thread0's load since it's running. */
1368 	TDQ_LOCK(tdq);
1369 	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1370 	tdq_load_add(tdq, &thread0);
1371 	tdq->tdq_lowpri = thread0.td_priority;
1372 	TDQ_UNLOCK(tdq);
1373 }
1374 
1375 /*
1376  * This routine determines time constants after stathz and hz are setup.
1377  */
1378 /* ARGSUSED */
1379 static void
1380 sched_initticks(void *dummy)
1381 {
1382 	int incr;
1383 
1384 	realstathz = stathz ? stathz : hz;
1385 	sched_slice = realstathz / 10;	/* ~100ms */
1386 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1387 	    realstathz);
1388 
1389 	/*
1390 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1391 	 * hz not being evenly divisible by stathz on all platforms.
1392 	 */
1393 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1394 	/*
1395 	 * This does not work for values of stathz that are more than
1396 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1397 	 */
1398 	if (incr == 0)
1399 		incr = 1;
1400 	tickincr = incr;
1401 #ifdef SMP
1402 	/*
1403 	 * Set the default balance interval now that we know
1404 	 * what realstathz is.
1405 	 */
1406 	balance_interval = realstathz;
1407 	affinity = SCHED_AFFINITY_DEFAULT;
1408 #endif
1409 	if (sched_idlespinthresh < 0)
1410 		sched_idlespinthresh = imax(16, 2 * hz / realstathz);
1411 }
1412 
1413 
1414 /*
1415  * This is the core of the interactivity algorithm.  Determines a score based
1416  * on past behavior.  It is the ratio of sleep time to run time scaled to
1417  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1418  * differs from the cpu usage because it does not account for time spent
1419  * waiting on a run-queue.  Would be prettier if we had floating point.
1420  */
1421 static int
1422 sched_interact_score(struct thread *td)
1423 {
1424 	struct td_sched *ts;
1425 	int div;
1426 
1427 	ts = td->td_sched;
1428 	/*
1429 	 * The score is only needed if this is likely to be an interactive
1430 	 * task.  Don't go through the expense of computing it if there's
1431 	 * no chance.
1432 	 */
1433 	if (sched_interact <= SCHED_INTERACT_HALF &&
1434 		ts->ts_runtime >= ts->ts_slptime)
1435 			return (SCHED_INTERACT_HALF);
1436 
1437 	if (ts->ts_runtime > ts->ts_slptime) {
1438 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1439 		return (SCHED_INTERACT_HALF +
1440 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1441 	}
1442 	if (ts->ts_slptime > ts->ts_runtime) {
1443 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1444 		return (ts->ts_runtime / div);
1445 	}
1446 	/* runtime == slptime */
1447 	if (ts->ts_runtime)
1448 		return (SCHED_INTERACT_HALF);
1449 
1450 	/*
1451 	 * This can happen if slptime and runtime are 0.
1452 	 */
1453 	return (0);
1454 
1455 }
1456 
1457 /*
1458  * Scale the scheduling priority according to the "interactivity" of this
1459  * process.
1460  */
1461 static void
1462 sched_priority(struct thread *td)
1463 {
1464 	int score;
1465 	int pri;
1466 
1467 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1468 		return;
1469 	/*
1470 	 * If the score is interactive we place the thread in the realtime
1471 	 * queue with a priority that is less than kernel and interrupt
1472 	 * priorities.  These threads are not subject to nice restrictions.
1473 	 *
1474 	 * Scores greater than this are placed on the normal timeshare queue
1475 	 * where the priority is partially decided by the most recent cpu
1476 	 * utilization and the rest is decided by nice value.
1477 	 *
1478 	 * The nice value of the process has a linear effect on the calculated
1479 	 * score.  Negative nice values make it easier for a thread to be
1480 	 * considered interactive.
1481 	 */
1482 	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1483 	if (score < sched_interact) {
1484 		pri = PRI_MIN_INTERACT;
1485 		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1486 		    sched_interact) * score;
1487 		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1488 		    ("sched_priority: invalid interactive priority %d score %d",
1489 		    pri, score));
1490 	} else {
1491 		pri = SCHED_PRI_MIN;
1492 		if (td->td_sched->ts_ticks)
1493 			pri += min(SCHED_PRI_TICKS(td->td_sched),
1494 			    SCHED_PRI_RANGE);
1495 		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1496 		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1497 		    ("sched_priority: invalid priority %d: nice %d, "
1498 		    "ticks %d ftick %d ltick %d tick pri %d",
1499 		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1500 		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1501 		    SCHED_PRI_TICKS(td->td_sched)));
1502 	}
1503 	sched_user_prio(td, pri);
1504 
1505 	return;
1506 }
1507 
1508 /*
1509  * This routine enforces a maximum limit on the amount of scheduling history
1510  * kept.  It is called after either the slptime or runtime is adjusted.  This
1511  * function is ugly due to integer math.
1512  */
1513 static void
1514 sched_interact_update(struct thread *td)
1515 {
1516 	struct td_sched *ts;
1517 	u_int sum;
1518 
1519 	ts = td->td_sched;
1520 	sum = ts->ts_runtime + ts->ts_slptime;
1521 	if (sum < SCHED_SLP_RUN_MAX)
1522 		return;
1523 	/*
1524 	 * This only happens from two places:
1525 	 * 1) We have added an unusual amount of run time from fork_exit.
1526 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1527 	 */
1528 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1529 		if (ts->ts_runtime > ts->ts_slptime) {
1530 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1531 			ts->ts_slptime = 1;
1532 		} else {
1533 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1534 			ts->ts_runtime = 1;
1535 		}
1536 		return;
1537 	}
1538 	/*
1539 	 * If we have exceeded by more than 1/5th then the algorithm below
1540 	 * will not bring us back into range.  Dividing by two here forces
1541 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1542 	 */
1543 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1544 		ts->ts_runtime /= 2;
1545 		ts->ts_slptime /= 2;
1546 		return;
1547 	}
1548 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1549 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1550 }
1551 
1552 /*
1553  * Scale back the interactivity history when a child thread is created.  The
1554  * history is inherited from the parent but the thread may behave totally
1555  * differently.  For example, a shell spawning a compiler process.  We want
1556  * to learn that the compiler is behaving badly very quickly.
1557  */
1558 static void
1559 sched_interact_fork(struct thread *td)
1560 {
1561 	int ratio;
1562 	int sum;
1563 
1564 	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1565 	if (sum > SCHED_SLP_RUN_FORK) {
1566 		ratio = sum / SCHED_SLP_RUN_FORK;
1567 		td->td_sched->ts_runtime /= ratio;
1568 		td->td_sched->ts_slptime /= ratio;
1569 	}
1570 }
1571 
1572 /*
1573  * Called from proc0_init() to setup the scheduler fields.
1574  */
1575 void
1576 schedinit(void)
1577 {
1578 
1579 	/*
1580 	 * Set up the scheduler specific parts of proc0.
1581 	 */
1582 	proc0.p_sched = NULL; /* XXX */
1583 	thread0.td_sched = &td_sched0;
1584 	td_sched0.ts_ltick = ticks;
1585 	td_sched0.ts_ftick = ticks;
1586 	td_sched0.ts_slice = sched_slice;
1587 }
1588 
1589 /*
1590  * This is only somewhat accurate since given many processes of the same
1591  * priority they will switch when their slices run out, which will be
1592  * at most sched_slice stathz ticks.
1593  */
1594 int
1595 sched_rr_interval(void)
1596 {
1597 
1598 	/* Convert sched_slice from stathz to hz. */
1599 	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1600 }
1601 
1602 /*
1603  * Update the percent cpu tracking information when it is requested or
1604  * the total history exceeds the maximum.  We keep a sliding history of
1605  * tick counts that slowly decays.  This is less precise than the 4BSD
1606  * mechanism since it happens with less regular and frequent events.
1607  */
1608 static void
1609 sched_pctcpu_update(struct td_sched *ts, int run)
1610 {
1611 	int t = ticks;
1612 
1613 	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1614 		ts->ts_ticks = 0;
1615 		ts->ts_ftick = t - SCHED_TICK_TARG;
1616 	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1617 		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1618 		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1619 		ts->ts_ftick = t - SCHED_TICK_TARG;
1620 	}
1621 	if (run)
1622 		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1623 	ts->ts_ltick = t;
1624 }
1625 
1626 /*
1627  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1628  * if necessary.  This is the back-end for several priority related
1629  * functions.
1630  */
1631 static void
1632 sched_thread_priority(struct thread *td, u_char prio)
1633 {
1634 	struct td_sched *ts;
1635 	struct tdq *tdq;
1636 	int oldpri;
1637 
1638 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1639 	    "prio:%d", td->td_priority, "new prio:%d", prio,
1640 	    KTR_ATTR_LINKED, sched_tdname(curthread));
1641 	SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
1642 	if (td != curthread && prio < td->td_priority) {
1643 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1644 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1645 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1646 		SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio,
1647 		    curthread);
1648 	}
1649 	ts = td->td_sched;
1650 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1651 	if (td->td_priority == prio)
1652 		return;
1653 	/*
1654 	 * If the priority has been elevated due to priority
1655 	 * propagation, we may have to move ourselves to a new
1656 	 * queue.  This could be optimized to not re-add in some
1657 	 * cases.
1658 	 */
1659 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1660 		sched_rem(td);
1661 		td->td_priority = prio;
1662 		sched_add(td, SRQ_BORROWING);
1663 		return;
1664 	}
1665 	/*
1666 	 * If the thread is currently running we may have to adjust the lowpri
1667 	 * information so other cpus are aware of our current priority.
1668 	 */
1669 	if (TD_IS_RUNNING(td)) {
1670 		tdq = TDQ_CPU(ts->ts_cpu);
1671 		oldpri = td->td_priority;
1672 		td->td_priority = prio;
1673 		if (prio < tdq->tdq_lowpri)
1674 			tdq->tdq_lowpri = prio;
1675 		else if (tdq->tdq_lowpri == oldpri)
1676 			tdq_setlowpri(tdq, td);
1677 		return;
1678 	}
1679 	td->td_priority = prio;
1680 }
1681 
1682 /*
1683  * Update a thread's priority when it is lent another thread's
1684  * priority.
1685  */
1686 void
1687 sched_lend_prio(struct thread *td, u_char prio)
1688 {
1689 
1690 	td->td_flags |= TDF_BORROWING;
1691 	sched_thread_priority(td, prio);
1692 }
1693 
1694 /*
1695  * Restore a thread's priority when priority propagation is
1696  * over.  The prio argument is the minimum priority the thread
1697  * needs to have to satisfy other possible priority lending
1698  * requests.  If the thread's regular priority is less
1699  * important than prio, the thread will keep a priority boost
1700  * of prio.
1701  */
1702 void
1703 sched_unlend_prio(struct thread *td, u_char prio)
1704 {
1705 	u_char base_pri;
1706 
1707 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1708 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1709 		base_pri = td->td_user_pri;
1710 	else
1711 		base_pri = td->td_base_pri;
1712 	if (prio >= base_pri) {
1713 		td->td_flags &= ~TDF_BORROWING;
1714 		sched_thread_priority(td, base_pri);
1715 	} else
1716 		sched_lend_prio(td, prio);
1717 }
1718 
1719 /*
1720  * Standard entry for setting the priority to an absolute value.
1721  */
1722 void
1723 sched_prio(struct thread *td, u_char prio)
1724 {
1725 	u_char oldprio;
1726 
1727 	/* First, update the base priority. */
1728 	td->td_base_pri = prio;
1729 
1730 	/*
1731 	 * If the thread is borrowing another thread's priority, don't
1732 	 * ever lower the priority.
1733 	 */
1734 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1735 		return;
1736 
1737 	/* Change the real priority. */
1738 	oldprio = td->td_priority;
1739 	sched_thread_priority(td, prio);
1740 
1741 	/*
1742 	 * If the thread is on a turnstile, then let the turnstile update
1743 	 * its state.
1744 	 */
1745 	if (TD_ON_LOCK(td) && oldprio != prio)
1746 		turnstile_adjust(td, oldprio);
1747 }
1748 
1749 /*
1750  * Set the base user priority, does not effect current running priority.
1751  */
1752 void
1753 sched_user_prio(struct thread *td, u_char prio)
1754 {
1755 
1756 	td->td_base_user_pri = prio;
1757 	if (td->td_lend_user_pri <= prio)
1758 		return;
1759 	td->td_user_pri = prio;
1760 }
1761 
1762 void
1763 sched_lend_user_prio(struct thread *td, u_char prio)
1764 {
1765 
1766 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1767 	td->td_lend_user_pri = prio;
1768 	td->td_user_pri = min(prio, td->td_base_user_pri);
1769 	if (td->td_priority > td->td_user_pri)
1770 		sched_prio(td, td->td_user_pri);
1771 	else if (td->td_priority != td->td_user_pri)
1772 		td->td_flags |= TDF_NEEDRESCHED;
1773 }
1774 
1775 /*
1776  * Handle migration from sched_switch().  This happens only for
1777  * cpu binding.
1778  */
1779 static struct mtx *
1780 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1781 {
1782 	struct tdq *tdn;
1783 
1784 	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1785 #ifdef SMP
1786 	tdq_load_rem(tdq, td);
1787 	/*
1788 	 * Do the lock dance required to avoid LOR.  We grab an extra
1789 	 * spinlock nesting to prevent preemption while we're
1790 	 * not holding either run-queue lock.
1791 	 */
1792 	spinlock_enter();
1793 	thread_lock_block(td);	/* This releases the lock on tdq. */
1794 
1795 	/*
1796 	 * Acquire both run-queue locks before placing the thread on the new
1797 	 * run-queue to avoid deadlocks created by placing a thread with a
1798 	 * blocked lock on the run-queue of a remote processor.  The deadlock
1799 	 * occurs when a third processor attempts to lock the two queues in
1800 	 * question while the target processor is spinning with its own
1801 	 * run-queue lock held while waiting for the blocked lock to clear.
1802 	 */
1803 	tdq_lock_pair(tdn, tdq);
1804 	tdq_add(tdn, td, flags);
1805 	tdq_notify(tdn, td);
1806 	TDQ_UNLOCK(tdn);
1807 	spinlock_exit();
1808 #endif
1809 	return (TDQ_LOCKPTR(tdn));
1810 }
1811 
1812 /*
1813  * Variadic version of thread_lock_unblock() that does not assume td_lock
1814  * is blocked.
1815  */
1816 static inline void
1817 thread_unblock_switch(struct thread *td, struct mtx *mtx)
1818 {
1819 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1820 	    (uintptr_t)mtx);
1821 }
1822 
1823 /*
1824  * Switch threads.  This function has to handle threads coming in while
1825  * blocked for some reason, running, or idle.  It also must deal with
1826  * migrating a thread from one queue to another as running threads may
1827  * be assigned elsewhere via binding.
1828  */
1829 void
1830 sched_switch(struct thread *td, struct thread *newtd, int flags)
1831 {
1832 	struct tdq *tdq;
1833 	struct td_sched *ts;
1834 	struct mtx *mtx;
1835 	int srqflag;
1836 	int cpuid, preempted;
1837 
1838 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1839 	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1840 
1841 	cpuid = PCPU_GET(cpuid);
1842 	tdq = TDQ_CPU(cpuid);
1843 	ts = td->td_sched;
1844 	mtx = td->td_lock;
1845 	sched_pctcpu_update(ts, 1);
1846 	ts->ts_rltick = ticks;
1847 	td->td_lastcpu = td->td_oncpu;
1848 	td->td_oncpu = NOCPU;
1849 	preempted = !(td->td_flags & TDF_SLICEEND);
1850 	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1851 	td->td_owepreempt = 0;
1852 	tdq->tdq_switchcnt++;
1853 	/*
1854 	 * The lock pointer in an idle thread should never change.  Reset it
1855 	 * to CAN_RUN as well.
1856 	 */
1857 	if (TD_IS_IDLETHREAD(td)) {
1858 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1859 		TD_SET_CAN_RUN(td);
1860 	} else if (TD_IS_RUNNING(td)) {
1861 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1862 		srqflag = preempted ?
1863 		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1864 		    SRQ_OURSELF|SRQ_YIELDING;
1865 #ifdef SMP
1866 		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1867 			ts->ts_cpu = sched_pickcpu(td, 0);
1868 #endif
1869 		if (ts->ts_cpu == cpuid)
1870 			tdq_runq_add(tdq, td, srqflag);
1871 		else {
1872 			KASSERT(THREAD_CAN_MIGRATE(td) ||
1873 			    (ts->ts_flags & TSF_BOUND) != 0,
1874 			    ("Thread %p shouldn't migrate", td));
1875 			mtx = sched_switch_migrate(tdq, td, srqflag);
1876 		}
1877 	} else {
1878 		/* This thread must be going to sleep. */
1879 		TDQ_LOCK(tdq);
1880 		mtx = thread_lock_block(td);
1881 		tdq_load_rem(tdq, td);
1882 	}
1883 	/*
1884 	 * We enter here with the thread blocked and assigned to the
1885 	 * appropriate cpu run-queue or sleep-queue and with the current
1886 	 * thread-queue locked.
1887 	 */
1888 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1889 	newtd = choosethread();
1890 	/*
1891 	 * Call the MD code to switch contexts if necessary.
1892 	 */
1893 	if (td != newtd) {
1894 #ifdef	HWPMC_HOOKS
1895 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1896 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1897 #endif
1898 		SDT_PROBE2(sched, , , off_cpu, td, td->td_proc);
1899 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1900 		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1901 		sched_pctcpu_update(newtd->td_sched, 0);
1902 
1903 #ifdef KDTRACE_HOOKS
1904 		/*
1905 		 * If DTrace has set the active vtime enum to anything
1906 		 * other than INACTIVE (0), then it should have set the
1907 		 * function to call.
1908 		 */
1909 		if (dtrace_vtime_active)
1910 			(*dtrace_vtime_switch_func)(newtd);
1911 #endif
1912 
1913 		cpu_switch(td, newtd, mtx);
1914 		/*
1915 		 * We may return from cpu_switch on a different cpu.  However,
1916 		 * we always return with td_lock pointing to the current cpu's
1917 		 * run queue lock.
1918 		 */
1919 		cpuid = PCPU_GET(cpuid);
1920 		tdq = TDQ_CPU(cpuid);
1921 		lock_profile_obtain_lock_success(
1922 		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1923 
1924 		SDT_PROBE0(sched, , , on_cpu);
1925 #ifdef	HWPMC_HOOKS
1926 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1927 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1928 #endif
1929 	} else {
1930 		thread_unblock_switch(td, mtx);
1931 		SDT_PROBE0(sched, , , remain_cpu);
1932 	}
1933 	/*
1934 	 * Assert that all went well and return.
1935 	 */
1936 	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1937 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1938 	td->td_oncpu = cpuid;
1939 }
1940 
1941 /*
1942  * Adjust thread priorities as a result of a nice request.
1943  */
1944 void
1945 sched_nice(struct proc *p, int nice)
1946 {
1947 	struct thread *td;
1948 
1949 	PROC_LOCK_ASSERT(p, MA_OWNED);
1950 
1951 	p->p_nice = nice;
1952 	FOREACH_THREAD_IN_PROC(p, td) {
1953 		thread_lock(td);
1954 		sched_priority(td);
1955 		sched_prio(td, td->td_base_user_pri);
1956 		thread_unlock(td);
1957 	}
1958 }
1959 
1960 /*
1961  * Record the sleep time for the interactivity scorer.
1962  */
1963 void
1964 sched_sleep(struct thread *td, int prio)
1965 {
1966 
1967 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1968 
1969 	td->td_slptick = ticks;
1970 	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1971 		td->td_flags |= TDF_CANSWAP;
1972 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1973 		return;
1974 	if (static_boost == 1 && prio)
1975 		sched_prio(td, prio);
1976 	else if (static_boost && td->td_priority > static_boost)
1977 		sched_prio(td, static_boost);
1978 }
1979 
1980 /*
1981  * Schedule a thread to resume execution and record how long it voluntarily
1982  * slept.  We also update the pctcpu, interactivity, and priority.
1983  */
1984 void
1985 sched_wakeup(struct thread *td)
1986 {
1987 	struct td_sched *ts;
1988 	int slptick;
1989 
1990 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1991 	ts = td->td_sched;
1992 	td->td_flags &= ~TDF_CANSWAP;
1993 	/*
1994 	 * If we slept for more than a tick update our interactivity and
1995 	 * priority.
1996 	 */
1997 	slptick = td->td_slptick;
1998 	td->td_slptick = 0;
1999 	if (slptick && slptick != ticks) {
2000 		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2001 		sched_interact_update(td);
2002 		sched_pctcpu_update(ts, 0);
2003 	}
2004 	/* Reset the slice value after we sleep. */
2005 	ts->ts_slice = sched_slice;
2006 	sched_add(td, SRQ_BORING);
2007 }
2008 
2009 /*
2010  * Penalize the parent for creating a new child and initialize the child's
2011  * priority.
2012  */
2013 void
2014 sched_fork(struct thread *td, struct thread *child)
2015 {
2016 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2017 	sched_pctcpu_update(td->td_sched, 1);
2018 	sched_fork_thread(td, child);
2019 	/*
2020 	 * Penalize the parent and child for forking.
2021 	 */
2022 	sched_interact_fork(child);
2023 	sched_priority(child);
2024 	td->td_sched->ts_runtime += tickincr;
2025 	sched_interact_update(td);
2026 	sched_priority(td);
2027 }
2028 
2029 /*
2030  * Fork a new thread, may be within the same process.
2031  */
2032 void
2033 sched_fork_thread(struct thread *td, struct thread *child)
2034 {
2035 	struct td_sched *ts;
2036 	struct td_sched *ts2;
2037 
2038 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2039 	/*
2040 	 * Initialize child.
2041 	 */
2042 	ts = td->td_sched;
2043 	ts2 = child->td_sched;
2044 	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2045 	child->td_cpuset = cpuset_ref(td->td_cpuset);
2046 	ts2->ts_cpu = ts->ts_cpu;
2047 	ts2->ts_flags = 0;
2048 	/*
2049 	 * Grab our parents cpu estimation information.
2050 	 */
2051 	ts2->ts_ticks = ts->ts_ticks;
2052 	ts2->ts_ltick = ts->ts_ltick;
2053 	ts2->ts_ftick = ts->ts_ftick;
2054 	/*
2055 	 * Do not inherit any borrowed priority from the parent.
2056 	 */
2057 	child->td_priority = child->td_base_pri;
2058 	/*
2059 	 * And update interactivity score.
2060 	 */
2061 	ts2->ts_slptime = ts->ts_slptime;
2062 	ts2->ts_runtime = ts->ts_runtime;
2063 	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2064 #ifdef KTR
2065 	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2066 #endif
2067 }
2068 
2069 /*
2070  * Adjust the priority class of a thread.
2071  */
2072 void
2073 sched_class(struct thread *td, int class)
2074 {
2075 
2076 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2077 	if (td->td_pri_class == class)
2078 		return;
2079 	td->td_pri_class = class;
2080 }
2081 
2082 /*
2083  * Return some of the child's priority and interactivity to the parent.
2084  */
2085 void
2086 sched_exit(struct proc *p, struct thread *child)
2087 {
2088 	struct thread *td;
2089 
2090 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2091 	    "prio:%d", child->td_priority);
2092 	PROC_LOCK_ASSERT(p, MA_OWNED);
2093 	td = FIRST_THREAD_IN_PROC(p);
2094 	sched_exit_thread(td, child);
2095 }
2096 
2097 /*
2098  * Penalize another thread for the time spent on this one.  This helps to
2099  * worsen the priority and interactivity of processes which schedule batch
2100  * jobs such as make.  This has little effect on the make process itself but
2101  * causes new processes spawned by it to receive worse scores immediately.
2102  */
2103 void
2104 sched_exit_thread(struct thread *td, struct thread *child)
2105 {
2106 
2107 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2108 	    "prio:%d", child->td_priority);
2109 	/*
2110 	 * Give the child's runtime to the parent without returning the
2111 	 * sleep time as a penalty to the parent.  This causes shells that
2112 	 * launch expensive things to mark their children as expensive.
2113 	 */
2114 	thread_lock(td);
2115 	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2116 	sched_interact_update(td);
2117 	sched_priority(td);
2118 	thread_unlock(td);
2119 }
2120 
2121 void
2122 sched_preempt(struct thread *td)
2123 {
2124 	struct tdq *tdq;
2125 
2126 	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2127 
2128 	thread_lock(td);
2129 	tdq = TDQ_SELF();
2130 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2131 	tdq->tdq_ipipending = 0;
2132 	if (td->td_priority > tdq->tdq_lowpri) {
2133 		int flags;
2134 
2135 		flags = SW_INVOL | SW_PREEMPT;
2136 		if (td->td_critnest > 1)
2137 			td->td_owepreempt = 1;
2138 		else if (TD_IS_IDLETHREAD(td))
2139 			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2140 		else
2141 			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2142 	}
2143 	thread_unlock(td);
2144 }
2145 
2146 /*
2147  * Fix priorities on return to user-space.  Priorities may be elevated due
2148  * to static priorities in msleep() or similar.
2149  */
2150 void
2151 sched_userret(struct thread *td)
2152 {
2153 	/*
2154 	 * XXX we cheat slightly on the locking here to avoid locking in
2155 	 * the usual case.  Setting td_priority here is essentially an
2156 	 * incomplete workaround for not setting it properly elsewhere.
2157 	 * Now that some interrupt handlers are threads, not setting it
2158 	 * properly elsewhere can clobber it in the window between setting
2159 	 * it here and returning to user mode, so don't waste time setting
2160 	 * it perfectly here.
2161 	 */
2162 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2163 	    ("thread with borrowed priority returning to userland"));
2164 	if (td->td_priority != td->td_user_pri) {
2165 		thread_lock(td);
2166 		td->td_priority = td->td_user_pri;
2167 		td->td_base_pri = td->td_user_pri;
2168 		tdq_setlowpri(TDQ_SELF(), td);
2169 		thread_unlock(td);
2170         }
2171 }
2172 
2173 /*
2174  * Handle a stathz tick.  This is really only relevant for timeshare
2175  * threads.
2176  */
2177 void
2178 sched_clock(struct thread *td)
2179 {
2180 	struct tdq *tdq;
2181 	struct td_sched *ts;
2182 
2183 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2184 	tdq = TDQ_SELF();
2185 #ifdef SMP
2186 	/*
2187 	 * We run the long term load balancer infrequently on the first cpu.
2188 	 */
2189 	if (balance_tdq == tdq) {
2190 		if (balance_ticks && --balance_ticks == 0)
2191 			sched_balance();
2192 	}
2193 #endif
2194 	/*
2195 	 * Save the old switch count so we have a record of the last ticks
2196 	 * activity.   Initialize the new switch count based on our load.
2197 	 * If there is some activity seed it to reflect that.
2198 	 */
2199 	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2200 	tdq->tdq_switchcnt = tdq->tdq_load;
2201 	/*
2202 	 * Advance the insert index once for each tick to ensure that all
2203 	 * threads get a chance to run.
2204 	 */
2205 	if (tdq->tdq_idx == tdq->tdq_ridx) {
2206 		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2207 		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2208 			tdq->tdq_ridx = tdq->tdq_idx;
2209 	}
2210 	ts = td->td_sched;
2211 	sched_pctcpu_update(ts, 1);
2212 	if (td->td_pri_class & PRI_FIFO_BIT)
2213 		return;
2214 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2215 		/*
2216 		 * We used a tick; charge it to the thread so
2217 		 * that we can compute our interactivity.
2218 		 */
2219 		td->td_sched->ts_runtime += tickincr;
2220 		sched_interact_update(td);
2221 		sched_priority(td);
2222 	}
2223 
2224 	/*
2225 	 * Force a context switch if the current thread has used up a full
2226 	 * time slice (default is 100ms).
2227 	 */
2228 	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
2229 		ts->ts_slice = sched_slice;
2230 		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2231 	}
2232 }
2233 
2234 /*
2235  * Called once per hz tick.
2236  */
2237 void
2238 sched_tick(int cnt)
2239 {
2240 
2241 }
2242 
2243 /*
2244  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2245  * cooperative idle threads.
2246  */
2247 int
2248 sched_runnable(void)
2249 {
2250 	struct tdq *tdq;
2251 	int load;
2252 
2253 	load = 1;
2254 
2255 	tdq = TDQ_SELF();
2256 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2257 		if (tdq->tdq_load > 0)
2258 			goto out;
2259 	} else
2260 		if (tdq->tdq_load - 1 > 0)
2261 			goto out;
2262 	load = 0;
2263 out:
2264 	return (load);
2265 }
2266 
2267 /*
2268  * Choose the highest priority thread to run.  The thread is removed from
2269  * the run-queue while running however the load remains.  For SMP we set
2270  * the tdq in the global idle bitmask if it idles here.
2271  */
2272 struct thread *
2273 sched_choose(void)
2274 {
2275 	struct thread *td;
2276 	struct tdq *tdq;
2277 
2278 	tdq = TDQ_SELF();
2279 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2280 	td = tdq_choose(tdq);
2281 	if (td) {
2282 		tdq_runq_rem(tdq, td);
2283 		tdq->tdq_lowpri = td->td_priority;
2284 		return (td);
2285 	}
2286 	tdq->tdq_lowpri = PRI_MAX_IDLE;
2287 	return (PCPU_GET(idlethread));
2288 }
2289 
2290 /*
2291  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2292  * we always request it once we exit a critical section.
2293  */
2294 static inline void
2295 sched_setpreempt(struct thread *td)
2296 {
2297 	struct thread *ctd;
2298 	int cpri;
2299 	int pri;
2300 
2301 	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2302 
2303 	ctd = curthread;
2304 	pri = td->td_priority;
2305 	cpri = ctd->td_priority;
2306 	if (pri < cpri)
2307 		ctd->td_flags |= TDF_NEEDRESCHED;
2308 	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2309 		return;
2310 	if (!sched_shouldpreempt(pri, cpri, 0))
2311 		return;
2312 	ctd->td_owepreempt = 1;
2313 }
2314 
2315 /*
2316  * Add a thread to a thread queue.  Select the appropriate runq and add the
2317  * thread to it.  This is the internal function called when the tdq is
2318  * predetermined.
2319  */
2320 void
2321 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2322 {
2323 
2324 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2325 	KASSERT((td->td_inhibitors == 0),
2326 	    ("sched_add: trying to run inhibited thread"));
2327 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2328 	    ("sched_add: bad thread state"));
2329 	KASSERT(td->td_flags & TDF_INMEM,
2330 	    ("sched_add: thread swapped out"));
2331 
2332 	if (td->td_priority < tdq->tdq_lowpri)
2333 		tdq->tdq_lowpri = td->td_priority;
2334 	tdq_runq_add(tdq, td, flags);
2335 	tdq_load_add(tdq, td);
2336 }
2337 
2338 /*
2339  * Select the target thread queue and add a thread to it.  Request
2340  * preemption or IPI a remote processor if required.
2341  */
2342 void
2343 sched_add(struct thread *td, int flags)
2344 {
2345 	struct tdq *tdq;
2346 #ifdef SMP
2347 	int cpu;
2348 #endif
2349 
2350 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2351 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2352 	    sched_tdname(curthread));
2353 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2354 	    KTR_ATTR_LINKED, sched_tdname(td));
2355 	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2356 	    flags & SRQ_PREEMPTED);
2357 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2358 	/*
2359 	 * Recalculate the priority before we select the target cpu or
2360 	 * run-queue.
2361 	 */
2362 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2363 		sched_priority(td);
2364 #ifdef SMP
2365 	/*
2366 	 * Pick the destination cpu and if it isn't ours transfer to the
2367 	 * target cpu.
2368 	 */
2369 	cpu = sched_pickcpu(td, flags);
2370 	tdq = sched_setcpu(td, cpu, flags);
2371 	tdq_add(tdq, td, flags);
2372 	if (cpu != PCPU_GET(cpuid)) {
2373 		tdq_notify(tdq, td);
2374 		return;
2375 	}
2376 #else
2377 	tdq = TDQ_SELF();
2378 	TDQ_LOCK(tdq);
2379 	/*
2380 	 * Now that the thread is moving to the run-queue, set the lock
2381 	 * to the scheduler's lock.
2382 	 */
2383 	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2384 	tdq_add(tdq, td, flags);
2385 #endif
2386 	if (!(flags & SRQ_YIELDING))
2387 		sched_setpreempt(td);
2388 }
2389 
2390 /*
2391  * Remove a thread from a run-queue without running it.  This is used
2392  * when we're stealing a thread from a remote queue.  Otherwise all threads
2393  * exit by calling sched_exit_thread() and sched_throw() themselves.
2394  */
2395 void
2396 sched_rem(struct thread *td)
2397 {
2398 	struct tdq *tdq;
2399 
2400 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2401 	    "prio:%d", td->td_priority);
2402 	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2403 	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2404 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2405 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2406 	KASSERT(TD_ON_RUNQ(td),
2407 	    ("sched_rem: thread not on run queue"));
2408 	tdq_runq_rem(tdq, td);
2409 	tdq_load_rem(tdq, td);
2410 	TD_SET_CAN_RUN(td);
2411 	if (td->td_priority == tdq->tdq_lowpri)
2412 		tdq_setlowpri(tdq, NULL);
2413 }
2414 
2415 /*
2416  * Fetch cpu utilization information.  Updates on demand.
2417  */
2418 fixpt_t
2419 sched_pctcpu(struct thread *td)
2420 {
2421 	fixpt_t pctcpu;
2422 	struct td_sched *ts;
2423 
2424 	pctcpu = 0;
2425 	ts = td->td_sched;
2426 	if (ts == NULL)
2427 		return (0);
2428 
2429 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2430 	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2431 	if (ts->ts_ticks) {
2432 		int rtick;
2433 
2434 		/* How many rtick per second ? */
2435 		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2436 		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2437 	}
2438 
2439 	return (pctcpu);
2440 }
2441 
2442 /*
2443  * Enforce affinity settings for a thread.  Called after adjustments to
2444  * cpumask.
2445  */
2446 void
2447 sched_affinity(struct thread *td)
2448 {
2449 #ifdef SMP
2450 	struct td_sched *ts;
2451 
2452 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2453 	ts = td->td_sched;
2454 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2455 		return;
2456 	if (TD_ON_RUNQ(td)) {
2457 		sched_rem(td);
2458 		sched_add(td, SRQ_BORING);
2459 		return;
2460 	}
2461 	if (!TD_IS_RUNNING(td))
2462 		return;
2463 	/*
2464 	 * Force a switch before returning to userspace.  If the
2465 	 * target thread is not running locally send an ipi to force
2466 	 * the issue.
2467 	 */
2468 	td->td_flags |= TDF_NEEDRESCHED;
2469 	if (td != curthread)
2470 		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2471 #endif
2472 }
2473 
2474 /*
2475  * Bind a thread to a target cpu.
2476  */
2477 void
2478 sched_bind(struct thread *td, int cpu)
2479 {
2480 	struct td_sched *ts;
2481 
2482 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2483 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2484 	ts = td->td_sched;
2485 	if (ts->ts_flags & TSF_BOUND)
2486 		sched_unbind(td);
2487 	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2488 	ts->ts_flags |= TSF_BOUND;
2489 	sched_pin();
2490 	if (PCPU_GET(cpuid) == cpu)
2491 		return;
2492 	ts->ts_cpu = cpu;
2493 	/* When we return from mi_switch we'll be on the correct cpu. */
2494 	mi_switch(SW_VOL, NULL);
2495 }
2496 
2497 /*
2498  * Release a bound thread.
2499  */
2500 void
2501 sched_unbind(struct thread *td)
2502 {
2503 	struct td_sched *ts;
2504 
2505 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2506 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2507 	ts = td->td_sched;
2508 	if ((ts->ts_flags & TSF_BOUND) == 0)
2509 		return;
2510 	ts->ts_flags &= ~TSF_BOUND;
2511 	sched_unpin();
2512 }
2513 
2514 int
2515 sched_is_bound(struct thread *td)
2516 {
2517 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2518 	return (td->td_sched->ts_flags & TSF_BOUND);
2519 }
2520 
2521 /*
2522  * Basic yield call.
2523  */
2524 void
2525 sched_relinquish(struct thread *td)
2526 {
2527 	thread_lock(td);
2528 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2529 	thread_unlock(td);
2530 }
2531 
2532 /*
2533  * Return the total system load.
2534  */
2535 int
2536 sched_load(void)
2537 {
2538 #ifdef SMP
2539 	int total;
2540 	int i;
2541 
2542 	total = 0;
2543 	CPU_FOREACH(i)
2544 		total += TDQ_CPU(i)->tdq_sysload;
2545 	return (total);
2546 #else
2547 	return (TDQ_SELF()->tdq_sysload);
2548 #endif
2549 }
2550 
2551 int
2552 sched_sizeof_proc(void)
2553 {
2554 	return (sizeof(struct proc));
2555 }
2556 
2557 int
2558 sched_sizeof_thread(void)
2559 {
2560 	return (sizeof(struct thread) + sizeof(struct td_sched));
2561 }
2562 
2563 #ifdef SMP
2564 #define	TDQ_IDLESPIN(tdq)						\
2565     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2566 #else
2567 #define	TDQ_IDLESPIN(tdq)	1
2568 #endif
2569 
2570 /*
2571  * The actual idle process.
2572  */
2573 void
2574 sched_idletd(void *dummy)
2575 {
2576 	struct thread *td;
2577 	struct tdq *tdq;
2578 	int switchcnt;
2579 	int i;
2580 
2581 	mtx_assert(&Giant, MA_NOTOWNED);
2582 	td = curthread;
2583 	tdq = TDQ_SELF();
2584 	THREAD_NO_SLEEPING();
2585 	for (;;) {
2586 #ifdef SMP
2587 		if (tdq_idled(tdq) == 0)
2588 			continue;
2589 #endif
2590 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2591 		/*
2592 		 * If we're switching very frequently, spin while checking
2593 		 * for load rather than entering a low power state that
2594 		 * may require an IPI.  However, don't do any busy
2595 		 * loops while on SMT machines as this simply steals
2596 		 * cycles from cores doing useful work.
2597 		 */
2598 		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2599 			for (i = 0; i < sched_idlespins; i++) {
2600 				if (tdq->tdq_load)
2601 					break;
2602 				cpu_spinwait();
2603 			}
2604 		}
2605 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2606 		if (tdq->tdq_load == 0) {
2607 			tdq->tdq_cpu_idle = 1;
2608 			if (tdq->tdq_load == 0) {
2609 				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2610 				tdq->tdq_switchcnt++;
2611 			}
2612 			tdq->tdq_cpu_idle = 0;
2613 		}
2614 		if (tdq->tdq_load) {
2615 			thread_lock(td);
2616 			mi_switch(SW_VOL | SWT_IDLE, NULL);
2617 			thread_unlock(td);
2618 		}
2619 	}
2620 }
2621 
2622 /*
2623  * A CPU is entering for the first time or a thread is exiting.
2624  */
2625 void
2626 sched_throw(struct thread *td)
2627 {
2628 	struct thread *newtd;
2629 	struct tdq *tdq;
2630 
2631 	tdq = TDQ_SELF();
2632 	if (td == NULL) {
2633 		/* Correct spinlock nesting and acquire the correct lock. */
2634 		TDQ_LOCK(tdq);
2635 		spinlock_exit();
2636 		PCPU_SET(switchtime, cpu_ticks());
2637 		PCPU_SET(switchticks, ticks);
2638 	} else {
2639 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2640 		tdq_load_rem(tdq, td);
2641 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2642 	}
2643 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2644 	newtd = choosethread();
2645 	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2646 	cpu_throw(td, newtd);		/* doesn't return */
2647 }
2648 
2649 /*
2650  * This is called from fork_exit().  Just acquire the correct locks and
2651  * let fork do the rest of the work.
2652  */
2653 void
2654 sched_fork_exit(struct thread *td)
2655 {
2656 	struct td_sched *ts;
2657 	struct tdq *tdq;
2658 	int cpuid;
2659 
2660 	/*
2661 	 * Finish setting up thread glue so that it begins execution in a
2662 	 * non-nested critical section with the scheduler lock held.
2663 	 */
2664 	cpuid = PCPU_GET(cpuid);
2665 	tdq = TDQ_CPU(cpuid);
2666 	ts = td->td_sched;
2667 	if (TD_IS_IDLETHREAD(td))
2668 		td->td_lock = TDQ_LOCKPTR(tdq);
2669 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2670 	td->td_oncpu = cpuid;
2671 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2672 	lock_profile_obtain_lock_success(
2673 	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2674 }
2675 
2676 /*
2677  * Create on first use to catch odd startup conditons.
2678  */
2679 char *
2680 sched_tdname(struct thread *td)
2681 {
2682 #ifdef KTR
2683 	struct td_sched *ts;
2684 
2685 	ts = td->td_sched;
2686 	if (ts->ts_name[0] == '\0')
2687 		snprintf(ts->ts_name, sizeof(ts->ts_name),
2688 		    "%s tid %d", td->td_name, td->td_tid);
2689 	return (ts->ts_name);
2690 #else
2691 	return (td->td_name);
2692 #endif
2693 }
2694 
2695 #ifdef KTR
2696 void
2697 sched_clear_tdname(struct thread *td)
2698 {
2699 	struct td_sched *ts;
2700 
2701 	ts = td->td_sched;
2702 	ts->ts_name[0] = '\0';
2703 }
2704 #endif
2705 
2706 #ifdef SMP
2707 
2708 /*
2709  * Build the CPU topology dump string. Is recursively called to collect
2710  * the topology tree.
2711  */
2712 static int
2713 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2714     int indent)
2715 {
2716 	char cpusetbuf[CPUSETBUFSIZ];
2717 	int i, first;
2718 
2719 	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2720 	    "", 1 + indent / 2, cg->cg_level);
2721 	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2722 	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2723 	first = TRUE;
2724 	for (i = 0; i < MAXCPU; i++) {
2725 		if (CPU_ISSET(i, &cg->cg_mask)) {
2726 			if (!first)
2727 				sbuf_printf(sb, ", ");
2728 			else
2729 				first = FALSE;
2730 			sbuf_printf(sb, "%d", i);
2731 		}
2732 	}
2733 	sbuf_printf(sb, "</cpu>\n");
2734 
2735 	if (cg->cg_flags != 0) {
2736 		sbuf_printf(sb, "%*s <flags>", indent, "");
2737 		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2738 			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2739 		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2740 			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2741 		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2742 			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2743 		sbuf_printf(sb, "</flags>\n");
2744 	}
2745 
2746 	if (cg->cg_children > 0) {
2747 		sbuf_printf(sb, "%*s <children>\n", indent, "");
2748 		for (i = 0; i < cg->cg_children; i++)
2749 			sysctl_kern_sched_topology_spec_internal(sb,
2750 			    &cg->cg_child[i], indent+2);
2751 		sbuf_printf(sb, "%*s </children>\n", indent, "");
2752 	}
2753 	sbuf_printf(sb, "%*s</group>\n", indent, "");
2754 	return (0);
2755 }
2756 
2757 /*
2758  * Sysctl handler for retrieving topology dump. It's a wrapper for
2759  * the recursive sysctl_kern_smp_topology_spec_internal().
2760  */
2761 static int
2762 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2763 {
2764 	struct sbuf *topo;
2765 	int err;
2766 
2767 	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2768 
2769 	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2770 	if (topo == NULL)
2771 		return (ENOMEM);
2772 
2773 	sbuf_printf(topo, "<groups>\n");
2774 	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2775 	sbuf_printf(topo, "</groups>\n");
2776 
2777 	if (err == 0) {
2778 		sbuf_finish(topo);
2779 		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2780 	}
2781 	sbuf_delete(topo);
2782 	return (err);
2783 }
2784 
2785 #endif
2786 
2787 static int
2788 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
2789 {
2790 	int error, new_val, period;
2791 
2792 	period = 1000000 / realstathz;
2793 	new_val = period * sched_slice;
2794 	error = sysctl_handle_int(oidp, &new_val, 0, req);
2795 	if (error != 0 || req->newptr == NULL)
2796 		return (error);
2797 	if (new_val <= 0)
2798 		return (EINVAL);
2799 	sched_slice = imax(1, (new_val + period / 2) / period);
2800 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
2801 	    realstathz);
2802 	return (0);
2803 }
2804 
2805 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2806 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2807     "Scheduler name");
2808 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
2809     NULL, 0, sysctl_kern_quantum, "I",
2810     "Quantum for timeshare threads in microseconds");
2811 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2812     "Quantum for timeshare threads in stathz ticks");
2813 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2814     "Interactivity score threshold");
2815 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
2816     &preempt_thresh, 0,
2817     "Maximal (lowest) priority for preemption");
2818 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
2819     "Assign static kernel priorities to sleeping threads");
2820 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
2821     "Number of times idle thread will spin waiting for new work");
2822 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
2823     &sched_idlespinthresh, 0,
2824     "Threshold before we will permit idle thread spinning");
2825 #ifdef SMP
2826 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2827     "Number of hz ticks to keep thread affinity for");
2828 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2829     "Enables the long-term load balancer");
2830 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2831     &balance_interval, 0,
2832     "Average period in stathz ticks to run the long-term balancer");
2833 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2834     "Attempts to steal work from other cores before idling");
2835 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2836     "Minimum load on remote CPU before we'll steal");
2837 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2838     CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2839     "XML dump of detected CPU topology");
2840 #endif
2841 
2842 /* ps compat.  All cpu percentages from ULE are weighted. */
2843 static int ccpu = 0;
2844 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2845