1 /*- 2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* 28 * This file implements the ULE scheduler. ULE supports independent CPU 29 * run queues and fine grain locking. It has superior interactive 30 * performance under load even on uni-processor systems. 31 * 32 * etymology: 33 * ULE is the last three letters in schedule. It owes its name to a 34 * generic user created for a scheduling system by Paul Mikesell at 35 * Isilon Systems and a general lack of creativity on the part of the author. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_hwpmc_hooks.h" 42 #include "opt_kdtrace.h" 43 #include "opt_sched.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/kdb.h> 48 #include <sys/kernel.h> 49 #include <sys/ktr.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/proc.h> 53 #include <sys/resource.h> 54 #include <sys/resourcevar.h> 55 #include <sys/sched.h> 56 #include <sys/sdt.h> 57 #include <sys/smp.h> 58 #include <sys/sx.h> 59 #include <sys/sysctl.h> 60 #include <sys/sysproto.h> 61 #include <sys/turnstile.h> 62 #include <sys/umtx.h> 63 #include <sys/vmmeter.h> 64 #include <sys/cpuset.h> 65 #include <sys/sbuf.h> 66 67 #ifdef HWPMC_HOOKS 68 #include <sys/pmckern.h> 69 #endif 70 71 #ifdef KDTRACE_HOOKS 72 #include <sys/dtrace_bsd.h> 73 int dtrace_vtime_active; 74 dtrace_vtime_switch_func_t dtrace_vtime_switch_func; 75 #endif 76 77 #include <machine/cpu.h> 78 #include <machine/smp.h> 79 80 #if defined(__powerpc__) && defined(BOOKE_E500) 81 #error "This architecture is not currently compatible with ULE" 82 #endif 83 84 #define KTR_ULE 0 85 86 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX))) 87 #define TDQ_NAME_LEN (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU))) 88 #define TDQ_LOADNAME_LEN (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load")) 89 90 /* 91 * Thread scheduler specific section. All fields are protected 92 * by the thread lock. 93 */ 94 struct td_sched { 95 struct runq *ts_runq; /* Run-queue we're queued on. */ 96 short ts_flags; /* TSF_* flags. */ 97 u_char ts_cpu; /* CPU that we have affinity for. */ 98 int ts_rltick; /* Real last tick, for affinity. */ 99 int ts_slice; /* Ticks of slice remaining. */ 100 u_int ts_slptime; /* Number of ticks we vol. slept */ 101 u_int ts_runtime; /* Number of ticks we were running */ 102 int ts_ltick; /* Last tick that we were running on */ 103 int ts_ftick; /* First tick that we were running on */ 104 int ts_ticks; /* Tick count */ 105 #ifdef KTR 106 char ts_name[TS_NAME_LEN]; 107 #endif 108 }; 109 /* flags kept in ts_flags */ 110 #define TSF_BOUND 0x0001 /* Thread can not migrate. */ 111 #define TSF_XFERABLE 0x0002 /* Thread was added as transferable. */ 112 113 static struct td_sched td_sched0; 114 115 #define THREAD_CAN_MIGRATE(td) ((td)->td_pinned == 0) 116 #define THREAD_CAN_SCHED(td, cpu) \ 117 CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask) 118 119 /* 120 * Priority ranges used for interactive and non-interactive timeshare 121 * threads. The timeshare priorities are split up into four ranges. 122 * The first range handles interactive threads. The last three ranges 123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer 124 * ranges supporting nice values. 125 */ 126 #define PRI_TIMESHARE_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1) 127 #define PRI_INTERACT_RANGE ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2) 128 #define PRI_BATCH_RANGE (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE) 129 130 #define PRI_MIN_INTERACT PRI_MIN_TIMESHARE 131 #define PRI_MAX_INTERACT (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1) 132 #define PRI_MIN_BATCH (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE) 133 #define PRI_MAX_BATCH PRI_MAX_TIMESHARE 134 135 /* 136 * Cpu percentage computation macros and defines. 137 * 138 * SCHED_TICK_SECS: Number of seconds to average the cpu usage across. 139 * SCHED_TICK_TARG: Number of hz ticks to average the cpu usage across. 140 * SCHED_TICK_MAX: Maximum number of ticks before scaling back. 141 * SCHED_TICK_SHIFT: Shift factor to avoid rounding away results. 142 * SCHED_TICK_HZ: Compute the number of hz ticks for a given ticks count. 143 * SCHED_TICK_TOTAL: Gives the amount of time we've been recording ticks. 144 */ 145 #define SCHED_TICK_SECS 10 146 #define SCHED_TICK_TARG (hz * SCHED_TICK_SECS) 147 #define SCHED_TICK_MAX (SCHED_TICK_TARG + hz) 148 #define SCHED_TICK_SHIFT 10 149 #define SCHED_TICK_HZ(ts) ((ts)->ts_ticks >> SCHED_TICK_SHIFT) 150 #define SCHED_TICK_TOTAL(ts) (max((ts)->ts_ltick - (ts)->ts_ftick, hz)) 151 152 /* 153 * These macros determine priorities for non-interactive threads. They are 154 * assigned a priority based on their recent cpu utilization as expressed 155 * by the ratio of ticks to the tick total. NHALF priorities at the start 156 * and end of the MIN to MAX timeshare range are only reachable with negative 157 * or positive nice respectively. 158 * 159 * PRI_RANGE: Priority range for utilization dependent priorities. 160 * PRI_NRESV: Number of nice values. 161 * PRI_TICKS: Compute a priority in PRI_RANGE from the ticks count and total. 162 * PRI_NICE: Determines the part of the priority inherited from nice. 163 */ 164 #define SCHED_PRI_NRESV (PRIO_MAX - PRIO_MIN) 165 #define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2) 166 #define SCHED_PRI_MIN (PRI_MIN_BATCH + SCHED_PRI_NHALF) 167 #define SCHED_PRI_MAX (PRI_MAX_BATCH - SCHED_PRI_NHALF) 168 #define SCHED_PRI_RANGE (SCHED_PRI_MAX - SCHED_PRI_MIN + 1) 169 #define SCHED_PRI_TICKS(ts) \ 170 (SCHED_TICK_HZ((ts)) / \ 171 (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE)) 172 #define SCHED_PRI_NICE(nice) (nice) 173 174 /* 175 * These determine the interactivity of a process. Interactivity differs from 176 * cpu utilization in that it expresses the voluntary time slept vs time ran 177 * while cpu utilization includes all time not running. This more accurately 178 * models the intent of the thread. 179 * 180 * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate 181 * before throttling back. 182 * SLP_RUN_FORK: Maximum slp+run time to inherit at fork time. 183 * INTERACT_MAX: Maximum interactivity value. Smaller is better. 184 * INTERACT_THRESH: Threshold for placement on the current runq. 185 */ 186 #define SCHED_SLP_RUN_MAX ((hz * 5) << SCHED_TICK_SHIFT) 187 #define SCHED_SLP_RUN_FORK ((hz / 2) << SCHED_TICK_SHIFT) 188 #define SCHED_INTERACT_MAX (100) 189 #define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2) 190 #define SCHED_INTERACT_THRESH (30) 191 192 /* Flags kept in td_flags. */ 193 #define TDF_SLICEEND TDF_SCHED2 /* Thread time slice is over. */ 194 195 /* 196 * tickincr: Converts a stathz tick into a hz domain scaled by 197 * the shift factor. Without the shift the error rate 198 * due to rounding would be unacceptably high. 199 * realstathz: stathz is sometimes 0 and run off of hz. 200 * sched_slice: Runtime of each thread before rescheduling. 201 * preempt_thresh: Priority threshold for preemption and remote IPIs. 202 */ 203 static int sched_interact = SCHED_INTERACT_THRESH; 204 static int realstathz = 127; 205 static int tickincr = 8 << SCHED_TICK_SHIFT;; 206 static int sched_slice = 12; 207 #ifdef PREEMPTION 208 #ifdef FULL_PREEMPTION 209 static int preempt_thresh = PRI_MAX_IDLE; 210 #else 211 static int preempt_thresh = PRI_MIN_KERN; 212 #endif 213 #else 214 static int preempt_thresh = 0; 215 #endif 216 static int static_boost = PRI_MIN_BATCH; 217 static int sched_idlespins = 10000; 218 static int sched_idlespinthresh = -1; 219 220 /* 221 * tdq - per processor runqs and statistics. All fields are protected by the 222 * tdq_lock. The load and lowpri may be accessed without to avoid excess 223 * locking in sched_pickcpu(); 224 */ 225 struct tdq { 226 /* Ordered to improve efficiency of cpu_search() and switch(). */ 227 struct mtx tdq_lock; /* run queue lock. */ 228 struct cpu_group *tdq_cg; /* Pointer to cpu topology. */ 229 volatile int tdq_load; /* Aggregate load. */ 230 volatile int tdq_cpu_idle; /* cpu_idle() is active. */ 231 int tdq_sysload; /* For loadavg, !ITHD load. */ 232 int tdq_transferable; /* Transferable thread count. */ 233 short tdq_switchcnt; /* Switches this tick. */ 234 short tdq_oldswitchcnt; /* Switches last tick. */ 235 u_char tdq_lowpri; /* Lowest priority thread. */ 236 u_char tdq_ipipending; /* IPI pending. */ 237 u_char tdq_idx; /* Current insert index. */ 238 u_char tdq_ridx; /* Current removal index. */ 239 struct runq tdq_realtime; /* real-time run queue. */ 240 struct runq tdq_timeshare; /* timeshare run queue. */ 241 struct runq tdq_idle; /* Queue of IDLE threads. */ 242 char tdq_name[TDQ_NAME_LEN]; 243 #ifdef KTR 244 char tdq_loadname[TDQ_LOADNAME_LEN]; 245 #endif 246 } __aligned(64); 247 248 /* Idle thread states and config. */ 249 #define TDQ_RUNNING 1 250 #define TDQ_IDLE 2 251 252 #ifdef SMP 253 struct cpu_group *cpu_top; /* CPU topology */ 254 255 #define SCHED_AFFINITY_DEFAULT (max(1, hz / 1000)) 256 #define SCHED_AFFINITY(ts, t) ((ts)->ts_rltick > ticks - ((t) * affinity)) 257 258 /* 259 * Run-time tunables. 260 */ 261 static int rebalance = 1; 262 static int balance_interval = 128; /* Default set in sched_initticks(). */ 263 static int affinity; 264 static int steal_idle = 1; 265 static int steal_thresh = 2; 266 267 /* 268 * One thread queue per processor. 269 */ 270 static struct tdq tdq_cpu[MAXCPU]; 271 static struct tdq *balance_tdq; 272 static int balance_ticks; 273 static DPCPU_DEFINE(uint32_t, randomval); 274 275 #define TDQ_SELF() (&tdq_cpu[PCPU_GET(cpuid)]) 276 #define TDQ_CPU(x) (&tdq_cpu[(x)]) 277 #define TDQ_ID(x) ((int)((x) - tdq_cpu)) 278 #else /* !SMP */ 279 static struct tdq tdq_cpu; 280 281 #define TDQ_ID(x) (0) 282 #define TDQ_SELF() (&tdq_cpu) 283 #define TDQ_CPU(x) (&tdq_cpu) 284 #endif 285 286 #define TDQ_LOCK_ASSERT(t, type) mtx_assert(TDQ_LOCKPTR((t)), (type)) 287 #define TDQ_LOCK(t) mtx_lock_spin(TDQ_LOCKPTR((t))) 288 #define TDQ_LOCK_FLAGS(t, f) mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f)) 289 #define TDQ_UNLOCK(t) mtx_unlock_spin(TDQ_LOCKPTR((t))) 290 #define TDQ_LOCKPTR(t) (&(t)->tdq_lock) 291 292 static void sched_priority(struct thread *); 293 static void sched_thread_priority(struct thread *, u_char); 294 static int sched_interact_score(struct thread *); 295 static void sched_interact_update(struct thread *); 296 static void sched_interact_fork(struct thread *); 297 static void sched_pctcpu_update(struct td_sched *, int); 298 299 /* Operations on per processor queues */ 300 static struct thread *tdq_choose(struct tdq *); 301 static void tdq_setup(struct tdq *); 302 static void tdq_load_add(struct tdq *, struct thread *); 303 static void tdq_load_rem(struct tdq *, struct thread *); 304 static __inline void tdq_runq_add(struct tdq *, struct thread *, int); 305 static __inline void tdq_runq_rem(struct tdq *, struct thread *); 306 static inline int sched_shouldpreempt(int, int, int); 307 void tdq_print(int cpu); 308 static void runq_print(struct runq *rq); 309 static void tdq_add(struct tdq *, struct thread *, int); 310 #ifdef SMP 311 static int tdq_move(struct tdq *, struct tdq *); 312 static int tdq_idled(struct tdq *); 313 static void tdq_notify(struct tdq *, struct thread *); 314 static struct thread *tdq_steal(struct tdq *, int); 315 static struct thread *runq_steal(struct runq *, int); 316 static int sched_pickcpu(struct thread *, int); 317 static void sched_balance(void); 318 static int sched_balance_pair(struct tdq *, struct tdq *); 319 static inline struct tdq *sched_setcpu(struct thread *, int, int); 320 static inline void thread_unblock_switch(struct thread *, struct mtx *); 321 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int); 322 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS); 323 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 324 struct cpu_group *cg, int indent); 325 #endif 326 327 static void sched_setup(void *dummy); 328 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL); 329 330 static void sched_initticks(void *dummy); 331 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, 332 NULL); 333 334 SDT_PROVIDER_DEFINE(sched); 335 336 SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *", 337 "struct proc *", "uint8_t"); 338 SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *", 339 "struct proc *", "void *"); 340 SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *", 341 "struct proc *", "void *", "int"); 342 SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *", 343 "struct proc *", "uint8_t", "struct thread *"); 344 SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int"); 345 SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *", 346 "struct proc *"); 347 SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu); 348 SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu); 349 SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *", 350 "struct proc *"); 351 352 /* 353 * Print the threads waiting on a run-queue. 354 */ 355 static void 356 runq_print(struct runq *rq) 357 { 358 struct rqhead *rqh; 359 struct thread *td; 360 int pri; 361 int j; 362 int i; 363 364 for (i = 0; i < RQB_LEN; i++) { 365 printf("\t\trunq bits %d 0x%zx\n", 366 i, rq->rq_status.rqb_bits[i]); 367 for (j = 0; j < RQB_BPW; j++) 368 if (rq->rq_status.rqb_bits[i] & (1ul << j)) { 369 pri = j + (i << RQB_L2BPW); 370 rqh = &rq->rq_queues[pri]; 371 TAILQ_FOREACH(td, rqh, td_runq) { 372 printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n", 373 td, td->td_name, td->td_priority, 374 td->td_rqindex, pri); 375 } 376 } 377 } 378 } 379 380 /* 381 * Print the status of a per-cpu thread queue. Should be a ddb show cmd. 382 */ 383 void 384 tdq_print(int cpu) 385 { 386 struct tdq *tdq; 387 388 tdq = TDQ_CPU(cpu); 389 390 printf("tdq %d:\n", TDQ_ID(tdq)); 391 printf("\tlock %p\n", TDQ_LOCKPTR(tdq)); 392 printf("\tLock name: %s\n", tdq->tdq_name); 393 printf("\tload: %d\n", tdq->tdq_load); 394 printf("\tswitch cnt: %d\n", tdq->tdq_switchcnt); 395 printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt); 396 printf("\ttimeshare idx: %d\n", tdq->tdq_idx); 397 printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx); 398 printf("\tload transferable: %d\n", tdq->tdq_transferable); 399 printf("\tlowest priority: %d\n", tdq->tdq_lowpri); 400 printf("\trealtime runq:\n"); 401 runq_print(&tdq->tdq_realtime); 402 printf("\ttimeshare runq:\n"); 403 runq_print(&tdq->tdq_timeshare); 404 printf("\tidle runq:\n"); 405 runq_print(&tdq->tdq_idle); 406 } 407 408 static inline int 409 sched_shouldpreempt(int pri, int cpri, int remote) 410 { 411 /* 412 * If the new priority is not better than the current priority there is 413 * nothing to do. 414 */ 415 if (pri >= cpri) 416 return (0); 417 /* 418 * Always preempt idle. 419 */ 420 if (cpri >= PRI_MIN_IDLE) 421 return (1); 422 /* 423 * If preemption is disabled don't preempt others. 424 */ 425 if (preempt_thresh == 0) 426 return (0); 427 /* 428 * Preempt if we exceed the threshold. 429 */ 430 if (pri <= preempt_thresh) 431 return (1); 432 /* 433 * If we're interactive or better and there is non-interactive 434 * or worse running preempt only remote processors. 435 */ 436 if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT) 437 return (1); 438 return (0); 439 } 440 441 /* 442 * Add a thread to the actual run-queue. Keeps transferable counts up to 443 * date with what is actually on the run-queue. Selects the correct 444 * queue position for timeshare threads. 445 */ 446 static __inline void 447 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags) 448 { 449 struct td_sched *ts; 450 u_char pri; 451 452 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 453 THREAD_LOCK_ASSERT(td, MA_OWNED); 454 455 pri = td->td_priority; 456 ts = td->td_sched; 457 TD_SET_RUNQ(td); 458 if (THREAD_CAN_MIGRATE(td)) { 459 tdq->tdq_transferable++; 460 ts->ts_flags |= TSF_XFERABLE; 461 } 462 if (pri < PRI_MIN_BATCH) { 463 ts->ts_runq = &tdq->tdq_realtime; 464 } else if (pri <= PRI_MAX_BATCH) { 465 ts->ts_runq = &tdq->tdq_timeshare; 466 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH, 467 ("Invalid priority %d on timeshare runq", pri)); 468 /* 469 * This queue contains only priorities between MIN and MAX 470 * realtime. Use the whole queue to represent these values. 471 */ 472 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) { 473 pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE; 474 pri = (pri + tdq->tdq_idx) % RQ_NQS; 475 /* 476 * This effectively shortens the queue by one so we 477 * can have a one slot difference between idx and 478 * ridx while we wait for threads to drain. 479 */ 480 if (tdq->tdq_ridx != tdq->tdq_idx && 481 pri == tdq->tdq_ridx) 482 pri = (unsigned char)(pri - 1) % RQ_NQS; 483 } else 484 pri = tdq->tdq_ridx; 485 runq_add_pri(ts->ts_runq, td, pri, flags); 486 return; 487 } else 488 ts->ts_runq = &tdq->tdq_idle; 489 runq_add(ts->ts_runq, td, flags); 490 } 491 492 /* 493 * Remove a thread from a run-queue. This typically happens when a thread 494 * is selected to run. Running threads are not on the queue and the 495 * transferable count does not reflect them. 496 */ 497 static __inline void 498 tdq_runq_rem(struct tdq *tdq, struct thread *td) 499 { 500 struct td_sched *ts; 501 502 ts = td->td_sched; 503 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 504 KASSERT(ts->ts_runq != NULL, 505 ("tdq_runq_remove: thread %p null ts_runq", td)); 506 if (ts->ts_flags & TSF_XFERABLE) { 507 tdq->tdq_transferable--; 508 ts->ts_flags &= ~TSF_XFERABLE; 509 } 510 if (ts->ts_runq == &tdq->tdq_timeshare) { 511 if (tdq->tdq_idx != tdq->tdq_ridx) 512 runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx); 513 else 514 runq_remove_idx(ts->ts_runq, td, NULL); 515 } else 516 runq_remove(ts->ts_runq, td); 517 } 518 519 /* 520 * Load is maintained for all threads RUNNING and ON_RUNQ. Add the load 521 * for this thread to the referenced thread queue. 522 */ 523 static void 524 tdq_load_add(struct tdq *tdq, struct thread *td) 525 { 526 527 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 528 THREAD_LOCK_ASSERT(td, MA_OWNED); 529 530 tdq->tdq_load++; 531 if ((td->td_flags & TDF_NOLOAD) == 0) 532 tdq->tdq_sysload++; 533 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 534 SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load); 535 } 536 537 /* 538 * Remove the load from a thread that is transitioning to a sleep state or 539 * exiting. 540 */ 541 static void 542 tdq_load_rem(struct tdq *tdq, struct thread *td) 543 { 544 545 THREAD_LOCK_ASSERT(td, MA_OWNED); 546 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 547 KASSERT(tdq->tdq_load != 0, 548 ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq))); 549 550 tdq->tdq_load--; 551 if ((td->td_flags & TDF_NOLOAD) == 0) 552 tdq->tdq_sysload--; 553 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 554 SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load); 555 } 556 557 /* 558 * Set lowpri to its exact value by searching the run-queue and 559 * evaluating curthread. curthread may be passed as an optimization. 560 */ 561 static void 562 tdq_setlowpri(struct tdq *tdq, struct thread *ctd) 563 { 564 struct thread *td; 565 566 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 567 if (ctd == NULL) 568 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread; 569 td = tdq_choose(tdq); 570 if (td == NULL || td->td_priority > ctd->td_priority) 571 tdq->tdq_lowpri = ctd->td_priority; 572 else 573 tdq->tdq_lowpri = td->td_priority; 574 } 575 576 #ifdef SMP 577 struct cpu_search { 578 cpuset_t cs_mask; 579 u_int cs_prefer; 580 int cs_pri; /* Min priority for low. */ 581 int cs_limit; /* Max load for low, min load for high. */ 582 int cs_cpu; 583 int cs_load; 584 }; 585 586 #define CPU_SEARCH_LOWEST 0x1 587 #define CPU_SEARCH_HIGHEST 0x2 588 #define CPU_SEARCH_BOTH (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST) 589 590 #define CPUSET_FOREACH(cpu, mask) \ 591 for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++) \ 592 if (CPU_ISSET(cpu, &mask)) 593 594 static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low, 595 struct cpu_search *high, const int match); 596 int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low); 597 int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high); 598 int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low, 599 struct cpu_search *high); 600 601 /* 602 * Search the tree of cpu_groups for the lowest or highest loaded cpu 603 * according to the match argument. This routine actually compares the 604 * load on all paths through the tree and finds the least loaded cpu on 605 * the least loaded path, which may differ from the least loaded cpu in 606 * the system. This balances work among caches and busses. 607 * 608 * This inline is instantiated in three forms below using constants for the 609 * match argument. It is reduced to the minimum set for each case. It is 610 * also recursive to the depth of the tree. 611 */ 612 static __inline int 613 cpu_search(const struct cpu_group *cg, struct cpu_search *low, 614 struct cpu_search *high, const int match) 615 { 616 struct cpu_search lgroup; 617 struct cpu_search hgroup; 618 cpuset_t cpumask; 619 struct cpu_group *child; 620 struct tdq *tdq; 621 int cpu, i, hload, lload, load, total, rnd, *rndptr; 622 623 total = 0; 624 cpumask = cg->cg_mask; 625 if (match & CPU_SEARCH_LOWEST) { 626 lload = INT_MAX; 627 lgroup = *low; 628 } 629 if (match & CPU_SEARCH_HIGHEST) { 630 hload = INT_MIN; 631 hgroup = *high; 632 } 633 634 /* Iterate through the child CPU groups and then remaining CPUs. */ 635 for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) { 636 if (i == 0) { 637 while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask)) 638 cpu--; 639 if (cpu < 0) 640 break; 641 child = NULL; 642 } else 643 child = &cg->cg_child[i - 1]; 644 645 if (match & CPU_SEARCH_LOWEST) 646 lgroup.cs_cpu = -1; 647 if (match & CPU_SEARCH_HIGHEST) 648 hgroup.cs_cpu = -1; 649 if (child) { /* Handle child CPU group. */ 650 CPU_NAND(&cpumask, &child->cg_mask); 651 switch (match) { 652 case CPU_SEARCH_LOWEST: 653 load = cpu_search_lowest(child, &lgroup); 654 break; 655 case CPU_SEARCH_HIGHEST: 656 load = cpu_search_highest(child, &hgroup); 657 break; 658 case CPU_SEARCH_BOTH: 659 load = cpu_search_both(child, &lgroup, &hgroup); 660 break; 661 } 662 } else { /* Handle child CPU. */ 663 tdq = TDQ_CPU(cpu); 664 load = tdq->tdq_load * 256; 665 rndptr = DPCPU_PTR(randomval); 666 rnd = (*rndptr = *rndptr * 69069 + 5) >> 26; 667 if (match & CPU_SEARCH_LOWEST) { 668 if (cpu == low->cs_prefer) 669 load -= 64; 670 /* If that CPU is allowed and get data. */ 671 if (tdq->tdq_lowpri > lgroup.cs_pri && 672 tdq->tdq_load <= lgroup.cs_limit && 673 CPU_ISSET(cpu, &lgroup.cs_mask)) { 674 lgroup.cs_cpu = cpu; 675 lgroup.cs_load = load - rnd; 676 } 677 } 678 if (match & CPU_SEARCH_HIGHEST) 679 if (tdq->tdq_load >= hgroup.cs_limit && 680 tdq->tdq_transferable && 681 CPU_ISSET(cpu, &hgroup.cs_mask)) { 682 hgroup.cs_cpu = cpu; 683 hgroup.cs_load = load - rnd; 684 } 685 } 686 total += load; 687 688 /* We have info about child item. Compare it. */ 689 if (match & CPU_SEARCH_LOWEST) { 690 if (lgroup.cs_cpu >= 0 && 691 (load < lload || 692 (load == lload && lgroup.cs_load < low->cs_load))) { 693 lload = load; 694 low->cs_cpu = lgroup.cs_cpu; 695 low->cs_load = lgroup.cs_load; 696 } 697 } 698 if (match & CPU_SEARCH_HIGHEST) 699 if (hgroup.cs_cpu >= 0 && 700 (load > hload || 701 (load == hload && hgroup.cs_load > high->cs_load))) { 702 hload = load; 703 high->cs_cpu = hgroup.cs_cpu; 704 high->cs_load = hgroup.cs_load; 705 } 706 if (child) { 707 i--; 708 if (i == 0 && CPU_EMPTY(&cpumask)) 709 break; 710 } else 711 cpu--; 712 } 713 return (total); 714 } 715 716 /* 717 * cpu_search instantiations must pass constants to maintain the inline 718 * optimization. 719 */ 720 int 721 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low) 722 { 723 return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST); 724 } 725 726 int 727 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high) 728 { 729 return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST); 730 } 731 732 int 733 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low, 734 struct cpu_search *high) 735 { 736 return cpu_search(cg, low, high, CPU_SEARCH_BOTH); 737 } 738 739 /* 740 * Find the cpu with the least load via the least loaded path that has a 741 * lowpri greater than pri pri. A pri of -1 indicates any priority is 742 * acceptable. 743 */ 744 static inline int 745 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload, 746 int prefer) 747 { 748 struct cpu_search low; 749 750 low.cs_cpu = -1; 751 low.cs_prefer = prefer; 752 low.cs_mask = mask; 753 low.cs_pri = pri; 754 low.cs_limit = maxload; 755 cpu_search_lowest(cg, &low); 756 return low.cs_cpu; 757 } 758 759 /* 760 * Find the cpu with the highest load via the highest loaded path. 761 */ 762 static inline int 763 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload) 764 { 765 struct cpu_search high; 766 767 high.cs_cpu = -1; 768 high.cs_mask = mask; 769 high.cs_limit = minload; 770 cpu_search_highest(cg, &high); 771 return high.cs_cpu; 772 } 773 774 /* 775 * Simultaneously find the highest and lowest loaded cpu reachable via 776 * cg. 777 */ 778 static inline void 779 sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu) 780 { 781 struct cpu_search high; 782 struct cpu_search low; 783 784 low.cs_cpu = -1; 785 low.cs_prefer = -1; 786 low.cs_pri = -1; 787 low.cs_limit = INT_MAX; 788 low.cs_mask = mask; 789 high.cs_cpu = -1; 790 high.cs_limit = -1; 791 high.cs_mask = mask; 792 cpu_search_both(cg, &low, &high); 793 *lowcpu = low.cs_cpu; 794 *highcpu = high.cs_cpu; 795 return; 796 } 797 798 static void 799 sched_balance_group(struct cpu_group *cg) 800 { 801 cpuset_t hmask, lmask; 802 int high, low, anylow; 803 804 CPU_FILL(&hmask); 805 for (;;) { 806 high = sched_highest(cg, hmask, 1); 807 /* Stop if there is no more CPU with transferrable threads. */ 808 if (high == -1) 809 break; 810 CPU_CLR(high, &hmask); 811 CPU_COPY(&hmask, &lmask); 812 /* Stop if there is no more CPU left for low. */ 813 if (CPU_EMPTY(&lmask)) 814 break; 815 anylow = 1; 816 nextlow: 817 low = sched_lowest(cg, lmask, -1, 818 TDQ_CPU(high)->tdq_load - 1, high); 819 /* Stop if we looked well and found no less loaded CPU. */ 820 if (anylow && low == -1) 821 break; 822 /* Go to next high if we found no less loaded CPU. */ 823 if (low == -1) 824 continue; 825 /* Transfer thread from high to low. */ 826 if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) { 827 /* CPU that got thread can no longer be a donor. */ 828 CPU_CLR(low, &hmask); 829 } else { 830 /* 831 * If failed, then there is no threads on high 832 * that can run on this low. Drop low from low 833 * mask and look for different one. 834 */ 835 CPU_CLR(low, &lmask); 836 anylow = 0; 837 goto nextlow; 838 } 839 } 840 } 841 842 static void 843 sched_balance(void) 844 { 845 struct tdq *tdq; 846 847 /* 848 * Select a random time between .5 * balance_interval and 849 * 1.5 * balance_interval. 850 */ 851 balance_ticks = max(balance_interval / 2, 1); 852 balance_ticks += random() % balance_interval; 853 if (smp_started == 0 || rebalance == 0) 854 return; 855 tdq = TDQ_SELF(); 856 TDQ_UNLOCK(tdq); 857 sched_balance_group(cpu_top); 858 TDQ_LOCK(tdq); 859 } 860 861 /* 862 * Lock two thread queues using their address to maintain lock order. 863 */ 864 static void 865 tdq_lock_pair(struct tdq *one, struct tdq *two) 866 { 867 if (one < two) { 868 TDQ_LOCK(one); 869 TDQ_LOCK_FLAGS(two, MTX_DUPOK); 870 } else { 871 TDQ_LOCK(two); 872 TDQ_LOCK_FLAGS(one, MTX_DUPOK); 873 } 874 } 875 876 /* 877 * Unlock two thread queues. Order is not important here. 878 */ 879 static void 880 tdq_unlock_pair(struct tdq *one, struct tdq *two) 881 { 882 TDQ_UNLOCK(one); 883 TDQ_UNLOCK(two); 884 } 885 886 /* 887 * Transfer load between two imbalanced thread queues. 888 */ 889 static int 890 sched_balance_pair(struct tdq *high, struct tdq *low) 891 { 892 int moved; 893 int cpu; 894 895 tdq_lock_pair(high, low); 896 moved = 0; 897 /* 898 * Determine what the imbalance is and then adjust that to how many 899 * threads we actually have to give up (transferable). 900 */ 901 if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load && 902 (moved = tdq_move(high, low)) > 0) { 903 /* 904 * In case the target isn't the current cpu IPI it to force a 905 * reschedule with the new workload. 906 */ 907 cpu = TDQ_ID(low); 908 sched_pin(); 909 if (cpu != PCPU_GET(cpuid)) 910 ipi_cpu(cpu, IPI_PREEMPT); 911 sched_unpin(); 912 } 913 tdq_unlock_pair(high, low); 914 return (moved); 915 } 916 917 /* 918 * Move a thread from one thread queue to another. 919 */ 920 static int 921 tdq_move(struct tdq *from, struct tdq *to) 922 { 923 struct td_sched *ts; 924 struct thread *td; 925 struct tdq *tdq; 926 int cpu; 927 928 TDQ_LOCK_ASSERT(from, MA_OWNED); 929 TDQ_LOCK_ASSERT(to, MA_OWNED); 930 931 tdq = from; 932 cpu = TDQ_ID(to); 933 td = tdq_steal(tdq, cpu); 934 if (td == NULL) 935 return (0); 936 ts = td->td_sched; 937 /* 938 * Although the run queue is locked the thread may be blocked. Lock 939 * it to clear this and acquire the run-queue lock. 940 */ 941 thread_lock(td); 942 /* Drop recursive lock on from acquired via thread_lock(). */ 943 TDQ_UNLOCK(from); 944 sched_rem(td); 945 ts->ts_cpu = cpu; 946 td->td_lock = TDQ_LOCKPTR(to); 947 tdq_add(to, td, SRQ_YIELDING); 948 return (1); 949 } 950 951 /* 952 * This tdq has idled. Try to steal a thread from another cpu and switch 953 * to it. 954 */ 955 static int 956 tdq_idled(struct tdq *tdq) 957 { 958 struct cpu_group *cg; 959 struct tdq *steal; 960 cpuset_t mask; 961 int thresh; 962 int cpu; 963 964 if (smp_started == 0 || steal_idle == 0) 965 return (1); 966 CPU_FILL(&mask); 967 CPU_CLR(PCPU_GET(cpuid), &mask); 968 /* We don't want to be preempted while we're iterating. */ 969 spinlock_enter(); 970 for (cg = tdq->tdq_cg; cg != NULL; ) { 971 if ((cg->cg_flags & CG_FLAG_THREAD) == 0) 972 thresh = steal_thresh; 973 else 974 thresh = 1; 975 cpu = sched_highest(cg, mask, thresh); 976 if (cpu == -1) { 977 cg = cg->cg_parent; 978 continue; 979 } 980 steal = TDQ_CPU(cpu); 981 CPU_CLR(cpu, &mask); 982 tdq_lock_pair(tdq, steal); 983 if (steal->tdq_load < thresh || steal->tdq_transferable == 0) { 984 tdq_unlock_pair(tdq, steal); 985 continue; 986 } 987 /* 988 * If a thread was added while interrupts were disabled don't 989 * steal one here. If we fail to acquire one due to affinity 990 * restrictions loop again with this cpu removed from the 991 * set. 992 */ 993 if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) { 994 tdq_unlock_pair(tdq, steal); 995 continue; 996 } 997 spinlock_exit(); 998 TDQ_UNLOCK(steal); 999 mi_switch(SW_VOL | SWT_IDLE, NULL); 1000 thread_unlock(curthread); 1001 1002 return (0); 1003 } 1004 spinlock_exit(); 1005 return (1); 1006 } 1007 1008 /* 1009 * Notify a remote cpu of new work. Sends an IPI if criteria are met. 1010 */ 1011 static void 1012 tdq_notify(struct tdq *tdq, struct thread *td) 1013 { 1014 struct thread *ctd; 1015 int pri; 1016 int cpu; 1017 1018 if (tdq->tdq_ipipending) 1019 return; 1020 cpu = td->td_sched->ts_cpu; 1021 pri = td->td_priority; 1022 ctd = pcpu_find(cpu)->pc_curthread; 1023 if (!sched_shouldpreempt(pri, ctd->td_priority, 1)) 1024 return; 1025 if (TD_IS_IDLETHREAD(ctd)) { 1026 /* 1027 * If the MD code has an idle wakeup routine try that before 1028 * falling back to IPI. 1029 */ 1030 if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu)) 1031 return; 1032 } 1033 tdq->tdq_ipipending = 1; 1034 ipi_cpu(cpu, IPI_PREEMPT); 1035 } 1036 1037 /* 1038 * Steals load from a timeshare queue. Honors the rotating queue head 1039 * index. 1040 */ 1041 static struct thread * 1042 runq_steal_from(struct runq *rq, int cpu, u_char start) 1043 { 1044 struct rqbits *rqb; 1045 struct rqhead *rqh; 1046 struct thread *td, *first; 1047 int bit; 1048 int pri; 1049 int i; 1050 1051 rqb = &rq->rq_status; 1052 bit = start & (RQB_BPW -1); 1053 pri = 0; 1054 first = NULL; 1055 again: 1056 for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) { 1057 if (rqb->rqb_bits[i] == 0) 1058 continue; 1059 if (bit != 0) { 1060 for (pri = bit; pri < RQB_BPW; pri++) 1061 if (rqb->rqb_bits[i] & (1ul << pri)) 1062 break; 1063 if (pri >= RQB_BPW) 1064 continue; 1065 } else 1066 pri = RQB_FFS(rqb->rqb_bits[i]); 1067 pri += (i << RQB_L2BPW); 1068 rqh = &rq->rq_queues[pri]; 1069 TAILQ_FOREACH(td, rqh, td_runq) { 1070 if (first && THREAD_CAN_MIGRATE(td) && 1071 THREAD_CAN_SCHED(td, cpu)) 1072 return (td); 1073 first = td; 1074 } 1075 } 1076 if (start != 0) { 1077 start = 0; 1078 goto again; 1079 } 1080 1081 if (first && THREAD_CAN_MIGRATE(first) && 1082 THREAD_CAN_SCHED(first, cpu)) 1083 return (first); 1084 return (NULL); 1085 } 1086 1087 /* 1088 * Steals load from a standard linear queue. 1089 */ 1090 static struct thread * 1091 runq_steal(struct runq *rq, int cpu) 1092 { 1093 struct rqhead *rqh; 1094 struct rqbits *rqb; 1095 struct thread *td; 1096 int word; 1097 int bit; 1098 1099 rqb = &rq->rq_status; 1100 for (word = 0; word < RQB_LEN; word++) { 1101 if (rqb->rqb_bits[word] == 0) 1102 continue; 1103 for (bit = 0; bit < RQB_BPW; bit++) { 1104 if ((rqb->rqb_bits[word] & (1ul << bit)) == 0) 1105 continue; 1106 rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)]; 1107 TAILQ_FOREACH(td, rqh, td_runq) 1108 if (THREAD_CAN_MIGRATE(td) && 1109 THREAD_CAN_SCHED(td, cpu)) 1110 return (td); 1111 } 1112 } 1113 return (NULL); 1114 } 1115 1116 /* 1117 * Attempt to steal a thread in priority order from a thread queue. 1118 */ 1119 static struct thread * 1120 tdq_steal(struct tdq *tdq, int cpu) 1121 { 1122 struct thread *td; 1123 1124 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1125 if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL) 1126 return (td); 1127 if ((td = runq_steal_from(&tdq->tdq_timeshare, 1128 cpu, tdq->tdq_ridx)) != NULL) 1129 return (td); 1130 return (runq_steal(&tdq->tdq_idle, cpu)); 1131 } 1132 1133 /* 1134 * Sets the thread lock and ts_cpu to match the requested cpu. Unlocks the 1135 * current lock and returns with the assigned queue locked. 1136 */ 1137 static inline struct tdq * 1138 sched_setcpu(struct thread *td, int cpu, int flags) 1139 { 1140 1141 struct tdq *tdq; 1142 1143 THREAD_LOCK_ASSERT(td, MA_OWNED); 1144 tdq = TDQ_CPU(cpu); 1145 td->td_sched->ts_cpu = cpu; 1146 /* 1147 * If the lock matches just return the queue. 1148 */ 1149 if (td->td_lock == TDQ_LOCKPTR(tdq)) 1150 return (tdq); 1151 #ifdef notyet 1152 /* 1153 * If the thread isn't running its lockptr is a 1154 * turnstile or a sleepqueue. We can just lock_set without 1155 * blocking. 1156 */ 1157 if (TD_CAN_RUN(td)) { 1158 TDQ_LOCK(tdq); 1159 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 1160 return (tdq); 1161 } 1162 #endif 1163 /* 1164 * The hard case, migration, we need to block the thread first to 1165 * prevent order reversals with other cpus locks. 1166 */ 1167 spinlock_enter(); 1168 thread_lock_block(td); 1169 TDQ_LOCK(tdq); 1170 thread_lock_unblock(td, TDQ_LOCKPTR(tdq)); 1171 spinlock_exit(); 1172 return (tdq); 1173 } 1174 1175 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding"); 1176 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity"); 1177 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity"); 1178 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load"); 1179 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu"); 1180 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration"); 1181 1182 static int 1183 sched_pickcpu(struct thread *td, int flags) 1184 { 1185 struct cpu_group *cg, *ccg; 1186 struct td_sched *ts; 1187 struct tdq *tdq; 1188 cpuset_t mask; 1189 int cpu, pri, self; 1190 1191 self = PCPU_GET(cpuid); 1192 ts = td->td_sched; 1193 if (smp_started == 0) 1194 return (self); 1195 /* 1196 * Don't migrate a running thread from sched_switch(). 1197 */ 1198 if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td)) 1199 return (ts->ts_cpu); 1200 /* 1201 * Prefer to run interrupt threads on the processors that generate 1202 * the interrupt. 1203 */ 1204 pri = td->td_priority; 1205 if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) && 1206 curthread->td_intr_nesting_level && ts->ts_cpu != self) { 1207 SCHED_STAT_INC(pickcpu_intrbind); 1208 ts->ts_cpu = self; 1209 if (TDQ_CPU(self)->tdq_lowpri > pri) { 1210 SCHED_STAT_INC(pickcpu_affinity); 1211 return (ts->ts_cpu); 1212 } 1213 } 1214 /* 1215 * If the thread can run on the last cpu and the affinity has not 1216 * expired or it is idle run it there. 1217 */ 1218 tdq = TDQ_CPU(ts->ts_cpu); 1219 cg = tdq->tdq_cg; 1220 if (THREAD_CAN_SCHED(td, ts->ts_cpu) && 1221 tdq->tdq_lowpri >= PRI_MIN_IDLE && 1222 SCHED_AFFINITY(ts, CG_SHARE_L2)) { 1223 if (cg->cg_flags & CG_FLAG_THREAD) { 1224 CPUSET_FOREACH(cpu, cg->cg_mask) { 1225 if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) 1226 break; 1227 } 1228 } else 1229 cpu = INT_MAX; 1230 if (cpu > mp_maxid) { 1231 SCHED_STAT_INC(pickcpu_idle_affinity); 1232 return (ts->ts_cpu); 1233 } 1234 } 1235 /* 1236 * Search for the last level cache CPU group in the tree. 1237 * Skip caches with expired affinity time and SMT groups. 1238 * Affinity to higher level caches will be handled less aggressively. 1239 */ 1240 for (ccg = NULL; cg != NULL; cg = cg->cg_parent) { 1241 if (cg->cg_flags & CG_FLAG_THREAD) 1242 continue; 1243 if (!SCHED_AFFINITY(ts, cg->cg_level)) 1244 continue; 1245 ccg = cg; 1246 } 1247 if (ccg != NULL) 1248 cg = ccg; 1249 cpu = -1; 1250 /* Search the group for the less loaded idle CPU we can run now. */ 1251 mask = td->td_cpuset->cs_mask; 1252 if (cg != NULL && cg != cpu_top && 1253 CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0) 1254 cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE), 1255 INT_MAX, ts->ts_cpu); 1256 /* Search globally for the less loaded CPU we can run now. */ 1257 if (cpu == -1) 1258 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu); 1259 /* Search globally for the less loaded CPU. */ 1260 if (cpu == -1) 1261 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu); 1262 KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu.")); 1263 /* 1264 * Compare the lowest loaded cpu to current cpu. 1265 */ 1266 if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri && 1267 TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE && 1268 TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) { 1269 SCHED_STAT_INC(pickcpu_local); 1270 cpu = self; 1271 } else 1272 SCHED_STAT_INC(pickcpu_lowest); 1273 if (cpu != ts->ts_cpu) 1274 SCHED_STAT_INC(pickcpu_migration); 1275 return (cpu); 1276 } 1277 #endif 1278 1279 /* 1280 * Pick the highest priority task we have and return it. 1281 */ 1282 static struct thread * 1283 tdq_choose(struct tdq *tdq) 1284 { 1285 struct thread *td; 1286 1287 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1288 td = runq_choose(&tdq->tdq_realtime); 1289 if (td != NULL) 1290 return (td); 1291 td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx); 1292 if (td != NULL) { 1293 KASSERT(td->td_priority >= PRI_MIN_BATCH, 1294 ("tdq_choose: Invalid priority on timeshare queue %d", 1295 td->td_priority)); 1296 return (td); 1297 } 1298 td = runq_choose(&tdq->tdq_idle); 1299 if (td != NULL) { 1300 KASSERT(td->td_priority >= PRI_MIN_IDLE, 1301 ("tdq_choose: Invalid priority on idle queue %d", 1302 td->td_priority)); 1303 return (td); 1304 } 1305 1306 return (NULL); 1307 } 1308 1309 /* 1310 * Initialize a thread queue. 1311 */ 1312 static void 1313 tdq_setup(struct tdq *tdq) 1314 { 1315 1316 if (bootverbose) 1317 printf("ULE: setup cpu %d\n", TDQ_ID(tdq)); 1318 runq_init(&tdq->tdq_realtime); 1319 runq_init(&tdq->tdq_timeshare); 1320 runq_init(&tdq->tdq_idle); 1321 snprintf(tdq->tdq_name, sizeof(tdq->tdq_name), 1322 "sched lock %d", (int)TDQ_ID(tdq)); 1323 mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", 1324 MTX_SPIN | MTX_RECURSE); 1325 #ifdef KTR 1326 snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname), 1327 "CPU %d load", (int)TDQ_ID(tdq)); 1328 #endif 1329 } 1330 1331 #ifdef SMP 1332 static void 1333 sched_setup_smp(void) 1334 { 1335 struct tdq *tdq; 1336 int i; 1337 1338 cpu_top = smp_topo(); 1339 CPU_FOREACH(i) { 1340 tdq = TDQ_CPU(i); 1341 tdq_setup(tdq); 1342 tdq->tdq_cg = smp_topo_find(cpu_top, i); 1343 if (tdq->tdq_cg == NULL) 1344 panic("Can't find cpu group for %d\n", i); 1345 } 1346 balance_tdq = TDQ_SELF(); 1347 sched_balance(); 1348 } 1349 #endif 1350 1351 /* 1352 * Setup the thread queues and initialize the topology based on MD 1353 * information. 1354 */ 1355 static void 1356 sched_setup(void *dummy) 1357 { 1358 struct tdq *tdq; 1359 1360 tdq = TDQ_SELF(); 1361 #ifdef SMP 1362 sched_setup_smp(); 1363 #else 1364 tdq_setup(tdq); 1365 #endif 1366 1367 /* Add thread0's load since it's running. */ 1368 TDQ_LOCK(tdq); 1369 thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF()); 1370 tdq_load_add(tdq, &thread0); 1371 tdq->tdq_lowpri = thread0.td_priority; 1372 TDQ_UNLOCK(tdq); 1373 } 1374 1375 /* 1376 * This routine determines time constants after stathz and hz are setup. 1377 */ 1378 /* ARGSUSED */ 1379 static void 1380 sched_initticks(void *dummy) 1381 { 1382 int incr; 1383 1384 realstathz = stathz ? stathz : hz; 1385 sched_slice = realstathz / 10; /* ~100ms */ 1386 hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) / 1387 realstathz); 1388 1389 /* 1390 * tickincr is shifted out by 10 to avoid rounding errors due to 1391 * hz not being evenly divisible by stathz on all platforms. 1392 */ 1393 incr = (hz << SCHED_TICK_SHIFT) / realstathz; 1394 /* 1395 * This does not work for values of stathz that are more than 1396 * 1 << SCHED_TICK_SHIFT * hz. In practice this does not happen. 1397 */ 1398 if (incr == 0) 1399 incr = 1; 1400 tickincr = incr; 1401 #ifdef SMP 1402 /* 1403 * Set the default balance interval now that we know 1404 * what realstathz is. 1405 */ 1406 balance_interval = realstathz; 1407 affinity = SCHED_AFFINITY_DEFAULT; 1408 #endif 1409 if (sched_idlespinthresh < 0) 1410 sched_idlespinthresh = imax(16, 2 * hz / realstathz); 1411 } 1412 1413 1414 /* 1415 * This is the core of the interactivity algorithm. Determines a score based 1416 * on past behavior. It is the ratio of sleep time to run time scaled to 1417 * a [0, 100] integer. This is the voluntary sleep time of a process, which 1418 * differs from the cpu usage because it does not account for time spent 1419 * waiting on a run-queue. Would be prettier if we had floating point. 1420 */ 1421 static int 1422 sched_interact_score(struct thread *td) 1423 { 1424 struct td_sched *ts; 1425 int div; 1426 1427 ts = td->td_sched; 1428 /* 1429 * The score is only needed if this is likely to be an interactive 1430 * task. Don't go through the expense of computing it if there's 1431 * no chance. 1432 */ 1433 if (sched_interact <= SCHED_INTERACT_HALF && 1434 ts->ts_runtime >= ts->ts_slptime) 1435 return (SCHED_INTERACT_HALF); 1436 1437 if (ts->ts_runtime > ts->ts_slptime) { 1438 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF); 1439 return (SCHED_INTERACT_HALF + 1440 (SCHED_INTERACT_HALF - (ts->ts_slptime / div))); 1441 } 1442 if (ts->ts_slptime > ts->ts_runtime) { 1443 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF); 1444 return (ts->ts_runtime / div); 1445 } 1446 /* runtime == slptime */ 1447 if (ts->ts_runtime) 1448 return (SCHED_INTERACT_HALF); 1449 1450 /* 1451 * This can happen if slptime and runtime are 0. 1452 */ 1453 return (0); 1454 1455 } 1456 1457 /* 1458 * Scale the scheduling priority according to the "interactivity" of this 1459 * process. 1460 */ 1461 static void 1462 sched_priority(struct thread *td) 1463 { 1464 int score; 1465 int pri; 1466 1467 if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE) 1468 return; 1469 /* 1470 * If the score is interactive we place the thread in the realtime 1471 * queue with a priority that is less than kernel and interrupt 1472 * priorities. These threads are not subject to nice restrictions. 1473 * 1474 * Scores greater than this are placed on the normal timeshare queue 1475 * where the priority is partially decided by the most recent cpu 1476 * utilization and the rest is decided by nice value. 1477 * 1478 * The nice value of the process has a linear effect on the calculated 1479 * score. Negative nice values make it easier for a thread to be 1480 * considered interactive. 1481 */ 1482 score = imax(0, sched_interact_score(td) + td->td_proc->p_nice); 1483 if (score < sched_interact) { 1484 pri = PRI_MIN_INTERACT; 1485 pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) / 1486 sched_interact) * score; 1487 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT, 1488 ("sched_priority: invalid interactive priority %d score %d", 1489 pri, score)); 1490 } else { 1491 pri = SCHED_PRI_MIN; 1492 if (td->td_sched->ts_ticks) 1493 pri += min(SCHED_PRI_TICKS(td->td_sched), 1494 SCHED_PRI_RANGE); 1495 pri += SCHED_PRI_NICE(td->td_proc->p_nice); 1496 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH, 1497 ("sched_priority: invalid priority %d: nice %d, " 1498 "ticks %d ftick %d ltick %d tick pri %d", 1499 pri, td->td_proc->p_nice, td->td_sched->ts_ticks, 1500 td->td_sched->ts_ftick, td->td_sched->ts_ltick, 1501 SCHED_PRI_TICKS(td->td_sched))); 1502 } 1503 sched_user_prio(td, pri); 1504 1505 return; 1506 } 1507 1508 /* 1509 * This routine enforces a maximum limit on the amount of scheduling history 1510 * kept. It is called after either the slptime or runtime is adjusted. This 1511 * function is ugly due to integer math. 1512 */ 1513 static void 1514 sched_interact_update(struct thread *td) 1515 { 1516 struct td_sched *ts; 1517 u_int sum; 1518 1519 ts = td->td_sched; 1520 sum = ts->ts_runtime + ts->ts_slptime; 1521 if (sum < SCHED_SLP_RUN_MAX) 1522 return; 1523 /* 1524 * This only happens from two places: 1525 * 1) We have added an unusual amount of run time from fork_exit. 1526 * 2) We have added an unusual amount of sleep time from sched_sleep(). 1527 */ 1528 if (sum > SCHED_SLP_RUN_MAX * 2) { 1529 if (ts->ts_runtime > ts->ts_slptime) { 1530 ts->ts_runtime = SCHED_SLP_RUN_MAX; 1531 ts->ts_slptime = 1; 1532 } else { 1533 ts->ts_slptime = SCHED_SLP_RUN_MAX; 1534 ts->ts_runtime = 1; 1535 } 1536 return; 1537 } 1538 /* 1539 * If we have exceeded by more than 1/5th then the algorithm below 1540 * will not bring us back into range. Dividing by two here forces 1541 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX] 1542 */ 1543 if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) { 1544 ts->ts_runtime /= 2; 1545 ts->ts_slptime /= 2; 1546 return; 1547 } 1548 ts->ts_runtime = (ts->ts_runtime / 5) * 4; 1549 ts->ts_slptime = (ts->ts_slptime / 5) * 4; 1550 } 1551 1552 /* 1553 * Scale back the interactivity history when a child thread is created. The 1554 * history is inherited from the parent but the thread may behave totally 1555 * differently. For example, a shell spawning a compiler process. We want 1556 * to learn that the compiler is behaving badly very quickly. 1557 */ 1558 static void 1559 sched_interact_fork(struct thread *td) 1560 { 1561 int ratio; 1562 int sum; 1563 1564 sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime; 1565 if (sum > SCHED_SLP_RUN_FORK) { 1566 ratio = sum / SCHED_SLP_RUN_FORK; 1567 td->td_sched->ts_runtime /= ratio; 1568 td->td_sched->ts_slptime /= ratio; 1569 } 1570 } 1571 1572 /* 1573 * Called from proc0_init() to setup the scheduler fields. 1574 */ 1575 void 1576 schedinit(void) 1577 { 1578 1579 /* 1580 * Set up the scheduler specific parts of proc0. 1581 */ 1582 proc0.p_sched = NULL; /* XXX */ 1583 thread0.td_sched = &td_sched0; 1584 td_sched0.ts_ltick = ticks; 1585 td_sched0.ts_ftick = ticks; 1586 td_sched0.ts_slice = sched_slice; 1587 } 1588 1589 /* 1590 * This is only somewhat accurate since given many processes of the same 1591 * priority they will switch when their slices run out, which will be 1592 * at most sched_slice stathz ticks. 1593 */ 1594 int 1595 sched_rr_interval(void) 1596 { 1597 1598 /* Convert sched_slice from stathz to hz. */ 1599 return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz)); 1600 } 1601 1602 /* 1603 * Update the percent cpu tracking information when it is requested or 1604 * the total history exceeds the maximum. We keep a sliding history of 1605 * tick counts that slowly decays. This is less precise than the 4BSD 1606 * mechanism since it happens with less regular and frequent events. 1607 */ 1608 static void 1609 sched_pctcpu_update(struct td_sched *ts, int run) 1610 { 1611 int t = ticks; 1612 1613 if (t - ts->ts_ltick >= SCHED_TICK_TARG) { 1614 ts->ts_ticks = 0; 1615 ts->ts_ftick = t - SCHED_TICK_TARG; 1616 } else if (t - ts->ts_ftick >= SCHED_TICK_MAX) { 1617 ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) * 1618 (ts->ts_ltick - (t - SCHED_TICK_TARG)); 1619 ts->ts_ftick = t - SCHED_TICK_TARG; 1620 } 1621 if (run) 1622 ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT; 1623 ts->ts_ltick = t; 1624 } 1625 1626 /* 1627 * Adjust the priority of a thread. Move it to the appropriate run-queue 1628 * if necessary. This is the back-end for several priority related 1629 * functions. 1630 */ 1631 static void 1632 sched_thread_priority(struct thread *td, u_char prio) 1633 { 1634 struct td_sched *ts; 1635 struct tdq *tdq; 1636 int oldpri; 1637 1638 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio", 1639 "prio:%d", td->td_priority, "new prio:%d", prio, 1640 KTR_ATTR_LINKED, sched_tdname(curthread)); 1641 SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio); 1642 if (td != curthread && prio < td->td_priority) { 1643 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread), 1644 "lend prio", "prio:%d", td->td_priority, "new prio:%d", 1645 prio, KTR_ATTR_LINKED, sched_tdname(td)); 1646 SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio, 1647 curthread); 1648 } 1649 ts = td->td_sched; 1650 THREAD_LOCK_ASSERT(td, MA_OWNED); 1651 if (td->td_priority == prio) 1652 return; 1653 /* 1654 * If the priority has been elevated due to priority 1655 * propagation, we may have to move ourselves to a new 1656 * queue. This could be optimized to not re-add in some 1657 * cases. 1658 */ 1659 if (TD_ON_RUNQ(td) && prio < td->td_priority) { 1660 sched_rem(td); 1661 td->td_priority = prio; 1662 sched_add(td, SRQ_BORROWING); 1663 return; 1664 } 1665 /* 1666 * If the thread is currently running we may have to adjust the lowpri 1667 * information so other cpus are aware of our current priority. 1668 */ 1669 if (TD_IS_RUNNING(td)) { 1670 tdq = TDQ_CPU(ts->ts_cpu); 1671 oldpri = td->td_priority; 1672 td->td_priority = prio; 1673 if (prio < tdq->tdq_lowpri) 1674 tdq->tdq_lowpri = prio; 1675 else if (tdq->tdq_lowpri == oldpri) 1676 tdq_setlowpri(tdq, td); 1677 return; 1678 } 1679 td->td_priority = prio; 1680 } 1681 1682 /* 1683 * Update a thread's priority when it is lent another thread's 1684 * priority. 1685 */ 1686 void 1687 sched_lend_prio(struct thread *td, u_char prio) 1688 { 1689 1690 td->td_flags |= TDF_BORROWING; 1691 sched_thread_priority(td, prio); 1692 } 1693 1694 /* 1695 * Restore a thread's priority when priority propagation is 1696 * over. The prio argument is the minimum priority the thread 1697 * needs to have to satisfy other possible priority lending 1698 * requests. If the thread's regular priority is less 1699 * important than prio, the thread will keep a priority boost 1700 * of prio. 1701 */ 1702 void 1703 sched_unlend_prio(struct thread *td, u_char prio) 1704 { 1705 u_char base_pri; 1706 1707 if (td->td_base_pri >= PRI_MIN_TIMESHARE && 1708 td->td_base_pri <= PRI_MAX_TIMESHARE) 1709 base_pri = td->td_user_pri; 1710 else 1711 base_pri = td->td_base_pri; 1712 if (prio >= base_pri) { 1713 td->td_flags &= ~TDF_BORROWING; 1714 sched_thread_priority(td, base_pri); 1715 } else 1716 sched_lend_prio(td, prio); 1717 } 1718 1719 /* 1720 * Standard entry for setting the priority to an absolute value. 1721 */ 1722 void 1723 sched_prio(struct thread *td, u_char prio) 1724 { 1725 u_char oldprio; 1726 1727 /* First, update the base priority. */ 1728 td->td_base_pri = prio; 1729 1730 /* 1731 * If the thread is borrowing another thread's priority, don't 1732 * ever lower the priority. 1733 */ 1734 if (td->td_flags & TDF_BORROWING && td->td_priority < prio) 1735 return; 1736 1737 /* Change the real priority. */ 1738 oldprio = td->td_priority; 1739 sched_thread_priority(td, prio); 1740 1741 /* 1742 * If the thread is on a turnstile, then let the turnstile update 1743 * its state. 1744 */ 1745 if (TD_ON_LOCK(td) && oldprio != prio) 1746 turnstile_adjust(td, oldprio); 1747 } 1748 1749 /* 1750 * Set the base user priority, does not effect current running priority. 1751 */ 1752 void 1753 sched_user_prio(struct thread *td, u_char prio) 1754 { 1755 1756 td->td_base_user_pri = prio; 1757 if (td->td_lend_user_pri <= prio) 1758 return; 1759 td->td_user_pri = prio; 1760 } 1761 1762 void 1763 sched_lend_user_prio(struct thread *td, u_char prio) 1764 { 1765 1766 THREAD_LOCK_ASSERT(td, MA_OWNED); 1767 td->td_lend_user_pri = prio; 1768 td->td_user_pri = min(prio, td->td_base_user_pri); 1769 if (td->td_priority > td->td_user_pri) 1770 sched_prio(td, td->td_user_pri); 1771 else if (td->td_priority != td->td_user_pri) 1772 td->td_flags |= TDF_NEEDRESCHED; 1773 } 1774 1775 /* 1776 * Handle migration from sched_switch(). This happens only for 1777 * cpu binding. 1778 */ 1779 static struct mtx * 1780 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags) 1781 { 1782 struct tdq *tdn; 1783 1784 tdn = TDQ_CPU(td->td_sched->ts_cpu); 1785 #ifdef SMP 1786 tdq_load_rem(tdq, td); 1787 /* 1788 * Do the lock dance required to avoid LOR. We grab an extra 1789 * spinlock nesting to prevent preemption while we're 1790 * not holding either run-queue lock. 1791 */ 1792 spinlock_enter(); 1793 thread_lock_block(td); /* This releases the lock on tdq. */ 1794 1795 /* 1796 * Acquire both run-queue locks before placing the thread on the new 1797 * run-queue to avoid deadlocks created by placing a thread with a 1798 * blocked lock on the run-queue of a remote processor. The deadlock 1799 * occurs when a third processor attempts to lock the two queues in 1800 * question while the target processor is spinning with its own 1801 * run-queue lock held while waiting for the blocked lock to clear. 1802 */ 1803 tdq_lock_pair(tdn, tdq); 1804 tdq_add(tdn, td, flags); 1805 tdq_notify(tdn, td); 1806 TDQ_UNLOCK(tdn); 1807 spinlock_exit(); 1808 #endif 1809 return (TDQ_LOCKPTR(tdn)); 1810 } 1811 1812 /* 1813 * Variadic version of thread_lock_unblock() that does not assume td_lock 1814 * is blocked. 1815 */ 1816 static inline void 1817 thread_unblock_switch(struct thread *td, struct mtx *mtx) 1818 { 1819 atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock, 1820 (uintptr_t)mtx); 1821 } 1822 1823 /* 1824 * Switch threads. This function has to handle threads coming in while 1825 * blocked for some reason, running, or idle. It also must deal with 1826 * migrating a thread from one queue to another as running threads may 1827 * be assigned elsewhere via binding. 1828 */ 1829 void 1830 sched_switch(struct thread *td, struct thread *newtd, int flags) 1831 { 1832 struct tdq *tdq; 1833 struct td_sched *ts; 1834 struct mtx *mtx; 1835 int srqflag; 1836 int cpuid, preempted; 1837 1838 THREAD_LOCK_ASSERT(td, MA_OWNED); 1839 KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument")); 1840 1841 cpuid = PCPU_GET(cpuid); 1842 tdq = TDQ_CPU(cpuid); 1843 ts = td->td_sched; 1844 mtx = td->td_lock; 1845 sched_pctcpu_update(ts, 1); 1846 ts->ts_rltick = ticks; 1847 td->td_lastcpu = td->td_oncpu; 1848 td->td_oncpu = NOCPU; 1849 preempted = !(td->td_flags & TDF_SLICEEND); 1850 td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND); 1851 td->td_owepreempt = 0; 1852 tdq->tdq_switchcnt++; 1853 /* 1854 * The lock pointer in an idle thread should never change. Reset it 1855 * to CAN_RUN as well. 1856 */ 1857 if (TD_IS_IDLETHREAD(td)) { 1858 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1859 TD_SET_CAN_RUN(td); 1860 } else if (TD_IS_RUNNING(td)) { 1861 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1862 srqflag = preempted ? 1863 SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED : 1864 SRQ_OURSELF|SRQ_YIELDING; 1865 #ifdef SMP 1866 if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu)) 1867 ts->ts_cpu = sched_pickcpu(td, 0); 1868 #endif 1869 if (ts->ts_cpu == cpuid) 1870 tdq_runq_add(tdq, td, srqflag); 1871 else { 1872 KASSERT(THREAD_CAN_MIGRATE(td) || 1873 (ts->ts_flags & TSF_BOUND) != 0, 1874 ("Thread %p shouldn't migrate", td)); 1875 mtx = sched_switch_migrate(tdq, td, srqflag); 1876 } 1877 } else { 1878 /* This thread must be going to sleep. */ 1879 TDQ_LOCK(tdq); 1880 mtx = thread_lock_block(td); 1881 tdq_load_rem(tdq, td); 1882 } 1883 /* 1884 * We enter here with the thread blocked and assigned to the 1885 * appropriate cpu run-queue or sleep-queue and with the current 1886 * thread-queue locked. 1887 */ 1888 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 1889 newtd = choosethread(); 1890 /* 1891 * Call the MD code to switch contexts if necessary. 1892 */ 1893 if (td != newtd) { 1894 #ifdef HWPMC_HOOKS 1895 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1896 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 1897 #endif 1898 SDT_PROBE2(sched, , , off_cpu, td, td->td_proc); 1899 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 1900 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 1901 sched_pctcpu_update(newtd->td_sched, 0); 1902 1903 #ifdef KDTRACE_HOOKS 1904 /* 1905 * If DTrace has set the active vtime enum to anything 1906 * other than INACTIVE (0), then it should have set the 1907 * function to call. 1908 */ 1909 if (dtrace_vtime_active) 1910 (*dtrace_vtime_switch_func)(newtd); 1911 #endif 1912 1913 cpu_switch(td, newtd, mtx); 1914 /* 1915 * We may return from cpu_switch on a different cpu. However, 1916 * we always return with td_lock pointing to the current cpu's 1917 * run queue lock. 1918 */ 1919 cpuid = PCPU_GET(cpuid); 1920 tdq = TDQ_CPU(cpuid); 1921 lock_profile_obtain_lock_success( 1922 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 1923 1924 SDT_PROBE0(sched, , , on_cpu); 1925 #ifdef HWPMC_HOOKS 1926 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1927 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN); 1928 #endif 1929 } else { 1930 thread_unblock_switch(td, mtx); 1931 SDT_PROBE0(sched, , , remain_cpu); 1932 } 1933 /* 1934 * Assert that all went well and return. 1935 */ 1936 TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED); 1937 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1938 td->td_oncpu = cpuid; 1939 } 1940 1941 /* 1942 * Adjust thread priorities as a result of a nice request. 1943 */ 1944 void 1945 sched_nice(struct proc *p, int nice) 1946 { 1947 struct thread *td; 1948 1949 PROC_LOCK_ASSERT(p, MA_OWNED); 1950 1951 p->p_nice = nice; 1952 FOREACH_THREAD_IN_PROC(p, td) { 1953 thread_lock(td); 1954 sched_priority(td); 1955 sched_prio(td, td->td_base_user_pri); 1956 thread_unlock(td); 1957 } 1958 } 1959 1960 /* 1961 * Record the sleep time for the interactivity scorer. 1962 */ 1963 void 1964 sched_sleep(struct thread *td, int prio) 1965 { 1966 1967 THREAD_LOCK_ASSERT(td, MA_OWNED); 1968 1969 td->td_slptick = ticks; 1970 if (TD_IS_SUSPENDED(td) || prio >= PSOCK) 1971 td->td_flags |= TDF_CANSWAP; 1972 if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE) 1973 return; 1974 if (static_boost == 1 && prio) 1975 sched_prio(td, prio); 1976 else if (static_boost && td->td_priority > static_boost) 1977 sched_prio(td, static_boost); 1978 } 1979 1980 /* 1981 * Schedule a thread to resume execution and record how long it voluntarily 1982 * slept. We also update the pctcpu, interactivity, and priority. 1983 */ 1984 void 1985 sched_wakeup(struct thread *td) 1986 { 1987 struct td_sched *ts; 1988 int slptick; 1989 1990 THREAD_LOCK_ASSERT(td, MA_OWNED); 1991 ts = td->td_sched; 1992 td->td_flags &= ~TDF_CANSWAP; 1993 /* 1994 * If we slept for more than a tick update our interactivity and 1995 * priority. 1996 */ 1997 slptick = td->td_slptick; 1998 td->td_slptick = 0; 1999 if (slptick && slptick != ticks) { 2000 ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT; 2001 sched_interact_update(td); 2002 sched_pctcpu_update(ts, 0); 2003 } 2004 /* Reset the slice value after we sleep. */ 2005 ts->ts_slice = sched_slice; 2006 sched_add(td, SRQ_BORING); 2007 } 2008 2009 /* 2010 * Penalize the parent for creating a new child and initialize the child's 2011 * priority. 2012 */ 2013 void 2014 sched_fork(struct thread *td, struct thread *child) 2015 { 2016 THREAD_LOCK_ASSERT(td, MA_OWNED); 2017 sched_pctcpu_update(td->td_sched, 1); 2018 sched_fork_thread(td, child); 2019 /* 2020 * Penalize the parent and child for forking. 2021 */ 2022 sched_interact_fork(child); 2023 sched_priority(child); 2024 td->td_sched->ts_runtime += tickincr; 2025 sched_interact_update(td); 2026 sched_priority(td); 2027 } 2028 2029 /* 2030 * Fork a new thread, may be within the same process. 2031 */ 2032 void 2033 sched_fork_thread(struct thread *td, struct thread *child) 2034 { 2035 struct td_sched *ts; 2036 struct td_sched *ts2; 2037 2038 THREAD_LOCK_ASSERT(td, MA_OWNED); 2039 /* 2040 * Initialize child. 2041 */ 2042 ts = td->td_sched; 2043 ts2 = child->td_sched; 2044 child->td_lock = TDQ_LOCKPTR(TDQ_SELF()); 2045 child->td_cpuset = cpuset_ref(td->td_cpuset); 2046 ts2->ts_cpu = ts->ts_cpu; 2047 ts2->ts_flags = 0; 2048 /* 2049 * Grab our parents cpu estimation information. 2050 */ 2051 ts2->ts_ticks = ts->ts_ticks; 2052 ts2->ts_ltick = ts->ts_ltick; 2053 ts2->ts_ftick = ts->ts_ftick; 2054 /* 2055 * Do not inherit any borrowed priority from the parent. 2056 */ 2057 child->td_priority = child->td_base_pri; 2058 /* 2059 * And update interactivity score. 2060 */ 2061 ts2->ts_slptime = ts->ts_slptime; 2062 ts2->ts_runtime = ts->ts_runtime; 2063 ts2->ts_slice = 1; /* Attempt to quickly learn interactivity. */ 2064 #ifdef KTR 2065 bzero(ts2->ts_name, sizeof(ts2->ts_name)); 2066 #endif 2067 } 2068 2069 /* 2070 * Adjust the priority class of a thread. 2071 */ 2072 void 2073 sched_class(struct thread *td, int class) 2074 { 2075 2076 THREAD_LOCK_ASSERT(td, MA_OWNED); 2077 if (td->td_pri_class == class) 2078 return; 2079 td->td_pri_class = class; 2080 } 2081 2082 /* 2083 * Return some of the child's priority and interactivity to the parent. 2084 */ 2085 void 2086 sched_exit(struct proc *p, struct thread *child) 2087 { 2088 struct thread *td; 2089 2090 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit", 2091 "prio:%d", child->td_priority); 2092 PROC_LOCK_ASSERT(p, MA_OWNED); 2093 td = FIRST_THREAD_IN_PROC(p); 2094 sched_exit_thread(td, child); 2095 } 2096 2097 /* 2098 * Penalize another thread for the time spent on this one. This helps to 2099 * worsen the priority and interactivity of processes which schedule batch 2100 * jobs such as make. This has little effect on the make process itself but 2101 * causes new processes spawned by it to receive worse scores immediately. 2102 */ 2103 void 2104 sched_exit_thread(struct thread *td, struct thread *child) 2105 { 2106 2107 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit", 2108 "prio:%d", child->td_priority); 2109 /* 2110 * Give the child's runtime to the parent without returning the 2111 * sleep time as a penalty to the parent. This causes shells that 2112 * launch expensive things to mark their children as expensive. 2113 */ 2114 thread_lock(td); 2115 td->td_sched->ts_runtime += child->td_sched->ts_runtime; 2116 sched_interact_update(td); 2117 sched_priority(td); 2118 thread_unlock(td); 2119 } 2120 2121 void 2122 sched_preempt(struct thread *td) 2123 { 2124 struct tdq *tdq; 2125 2126 SDT_PROBE2(sched, , , surrender, td, td->td_proc); 2127 2128 thread_lock(td); 2129 tdq = TDQ_SELF(); 2130 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2131 tdq->tdq_ipipending = 0; 2132 if (td->td_priority > tdq->tdq_lowpri) { 2133 int flags; 2134 2135 flags = SW_INVOL | SW_PREEMPT; 2136 if (td->td_critnest > 1) 2137 td->td_owepreempt = 1; 2138 else if (TD_IS_IDLETHREAD(td)) 2139 mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL); 2140 else 2141 mi_switch(flags | SWT_REMOTEPREEMPT, NULL); 2142 } 2143 thread_unlock(td); 2144 } 2145 2146 /* 2147 * Fix priorities on return to user-space. Priorities may be elevated due 2148 * to static priorities in msleep() or similar. 2149 */ 2150 void 2151 sched_userret(struct thread *td) 2152 { 2153 /* 2154 * XXX we cheat slightly on the locking here to avoid locking in 2155 * the usual case. Setting td_priority here is essentially an 2156 * incomplete workaround for not setting it properly elsewhere. 2157 * Now that some interrupt handlers are threads, not setting it 2158 * properly elsewhere can clobber it in the window between setting 2159 * it here and returning to user mode, so don't waste time setting 2160 * it perfectly here. 2161 */ 2162 KASSERT((td->td_flags & TDF_BORROWING) == 0, 2163 ("thread with borrowed priority returning to userland")); 2164 if (td->td_priority != td->td_user_pri) { 2165 thread_lock(td); 2166 td->td_priority = td->td_user_pri; 2167 td->td_base_pri = td->td_user_pri; 2168 tdq_setlowpri(TDQ_SELF(), td); 2169 thread_unlock(td); 2170 } 2171 } 2172 2173 /* 2174 * Handle a stathz tick. This is really only relevant for timeshare 2175 * threads. 2176 */ 2177 void 2178 sched_clock(struct thread *td) 2179 { 2180 struct tdq *tdq; 2181 struct td_sched *ts; 2182 2183 THREAD_LOCK_ASSERT(td, MA_OWNED); 2184 tdq = TDQ_SELF(); 2185 #ifdef SMP 2186 /* 2187 * We run the long term load balancer infrequently on the first cpu. 2188 */ 2189 if (balance_tdq == tdq) { 2190 if (balance_ticks && --balance_ticks == 0) 2191 sched_balance(); 2192 } 2193 #endif 2194 /* 2195 * Save the old switch count so we have a record of the last ticks 2196 * activity. Initialize the new switch count based on our load. 2197 * If there is some activity seed it to reflect that. 2198 */ 2199 tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt; 2200 tdq->tdq_switchcnt = tdq->tdq_load; 2201 /* 2202 * Advance the insert index once for each tick to ensure that all 2203 * threads get a chance to run. 2204 */ 2205 if (tdq->tdq_idx == tdq->tdq_ridx) { 2206 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS; 2207 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx])) 2208 tdq->tdq_ridx = tdq->tdq_idx; 2209 } 2210 ts = td->td_sched; 2211 sched_pctcpu_update(ts, 1); 2212 if (td->td_pri_class & PRI_FIFO_BIT) 2213 return; 2214 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) { 2215 /* 2216 * We used a tick; charge it to the thread so 2217 * that we can compute our interactivity. 2218 */ 2219 td->td_sched->ts_runtime += tickincr; 2220 sched_interact_update(td); 2221 sched_priority(td); 2222 } 2223 2224 /* 2225 * Force a context switch if the current thread has used up a full 2226 * time slice (default is 100ms). 2227 */ 2228 if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) { 2229 ts->ts_slice = sched_slice; 2230 td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND; 2231 } 2232 } 2233 2234 /* 2235 * Called once per hz tick. 2236 */ 2237 void 2238 sched_tick(int cnt) 2239 { 2240 2241 } 2242 2243 /* 2244 * Return whether the current CPU has runnable tasks. Used for in-kernel 2245 * cooperative idle threads. 2246 */ 2247 int 2248 sched_runnable(void) 2249 { 2250 struct tdq *tdq; 2251 int load; 2252 2253 load = 1; 2254 2255 tdq = TDQ_SELF(); 2256 if ((curthread->td_flags & TDF_IDLETD) != 0) { 2257 if (tdq->tdq_load > 0) 2258 goto out; 2259 } else 2260 if (tdq->tdq_load - 1 > 0) 2261 goto out; 2262 load = 0; 2263 out: 2264 return (load); 2265 } 2266 2267 /* 2268 * Choose the highest priority thread to run. The thread is removed from 2269 * the run-queue while running however the load remains. For SMP we set 2270 * the tdq in the global idle bitmask if it idles here. 2271 */ 2272 struct thread * 2273 sched_choose(void) 2274 { 2275 struct thread *td; 2276 struct tdq *tdq; 2277 2278 tdq = TDQ_SELF(); 2279 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2280 td = tdq_choose(tdq); 2281 if (td) { 2282 tdq_runq_rem(tdq, td); 2283 tdq->tdq_lowpri = td->td_priority; 2284 return (td); 2285 } 2286 tdq->tdq_lowpri = PRI_MAX_IDLE; 2287 return (PCPU_GET(idlethread)); 2288 } 2289 2290 /* 2291 * Set owepreempt if necessary. Preemption never happens directly in ULE, 2292 * we always request it once we exit a critical section. 2293 */ 2294 static inline void 2295 sched_setpreempt(struct thread *td) 2296 { 2297 struct thread *ctd; 2298 int cpri; 2299 int pri; 2300 2301 THREAD_LOCK_ASSERT(curthread, MA_OWNED); 2302 2303 ctd = curthread; 2304 pri = td->td_priority; 2305 cpri = ctd->td_priority; 2306 if (pri < cpri) 2307 ctd->td_flags |= TDF_NEEDRESCHED; 2308 if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd)) 2309 return; 2310 if (!sched_shouldpreempt(pri, cpri, 0)) 2311 return; 2312 ctd->td_owepreempt = 1; 2313 } 2314 2315 /* 2316 * Add a thread to a thread queue. Select the appropriate runq and add the 2317 * thread to it. This is the internal function called when the tdq is 2318 * predetermined. 2319 */ 2320 void 2321 tdq_add(struct tdq *tdq, struct thread *td, int flags) 2322 { 2323 2324 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2325 KASSERT((td->td_inhibitors == 0), 2326 ("sched_add: trying to run inhibited thread")); 2327 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 2328 ("sched_add: bad thread state")); 2329 KASSERT(td->td_flags & TDF_INMEM, 2330 ("sched_add: thread swapped out")); 2331 2332 if (td->td_priority < tdq->tdq_lowpri) 2333 tdq->tdq_lowpri = td->td_priority; 2334 tdq_runq_add(tdq, td, flags); 2335 tdq_load_add(tdq, td); 2336 } 2337 2338 /* 2339 * Select the target thread queue and add a thread to it. Request 2340 * preemption or IPI a remote processor if required. 2341 */ 2342 void 2343 sched_add(struct thread *td, int flags) 2344 { 2345 struct tdq *tdq; 2346 #ifdef SMP 2347 int cpu; 2348 #endif 2349 2350 KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add", 2351 "prio:%d", td->td_priority, KTR_ATTR_LINKED, 2352 sched_tdname(curthread)); 2353 KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup", 2354 KTR_ATTR_LINKED, sched_tdname(td)); 2355 SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 2356 flags & SRQ_PREEMPTED); 2357 THREAD_LOCK_ASSERT(td, MA_OWNED); 2358 /* 2359 * Recalculate the priority before we select the target cpu or 2360 * run-queue. 2361 */ 2362 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 2363 sched_priority(td); 2364 #ifdef SMP 2365 /* 2366 * Pick the destination cpu and if it isn't ours transfer to the 2367 * target cpu. 2368 */ 2369 cpu = sched_pickcpu(td, flags); 2370 tdq = sched_setcpu(td, cpu, flags); 2371 tdq_add(tdq, td, flags); 2372 if (cpu != PCPU_GET(cpuid)) { 2373 tdq_notify(tdq, td); 2374 return; 2375 } 2376 #else 2377 tdq = TDQ_SELF(); 2378 TDQ_LOCK(tdq); 2379 /* 2380 * Now that the thread is moving to the run-queue, set the lock 2381 * to the scheduler's lock. 2382 */ 2383 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 2384 tdq_add(tdq, td, flags); 2385 #endif 2386 if (!(flags & SRQ_YIELDING)) 2387 sched_setpreempt(td); 2388 } 2389 2390 /* 2391 * Remove a thread from a run-queue without running it. This is used 2392 * when we're stealing a thread from a remote queue. Otherwise all threads 2393 * exit by calling sched_exit_thread() and sched_throw() themselves. 2394 */ 2395 void 2396 sched_rem(struct thread *td) 2397 { 2398 struct tdq *tdq; 2399 2400 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem", 2401 "prio:%d", td->td_priority); 2402 SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL); 2403 tdq = TDQ_CPU(td->td_sched->ts_cpu); 2404 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2405 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2406 KASSERT(TD_ON_RUNQ(td), 2407 ("sched_rem: thread not on run queue")); 2408 tdq_runq_rem(tdq, td); 2409 tdq_load_rem(tdq, td); 2410 TD_SET_CAN_RUN(td); 2411 if (td->td_priority == tdq->tdq_lowpri) 2412 tdq_setlowpri(tdq, NULL); 2413 } 2414 2415 /* 2416 * Fetch cpu utilization information. Updates on demand. 2417 */ 2418 fixpt_t 2419 sched_pctcpu(struct thread *td) 2420 { 2421 fixpt_t pctcpu; 2422 struct td_sched *ts; 2423 2424 pctcpu = 0; 2425 ts = td->td_sched; 2426 if (ts == NULL) 2427 return (0); 2428 2429 THREAD_LOCK_ASSERT(td, MA_OWNED); 2430 sched_pctcpu_update(ts, TD_IS_RUNNING(td)); 2431 if (ts->ts_ticks) { 2432 int rtick; 2433 2434 /* How many rtick per second ? */ 2435 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz); 2436 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT; 2437 } 2438 2439 return (pctcpu); 2440 } 2441 2442 /* 2443 * Enforce affinity settings for a thread. Called after adjustments to 2444 * cpumask. 2445 */ 2446 void 2447 sched_affinity(struct thread *td) 2448 { 2449 #ifdef SMP 2450 struct td_sched *ts; 2451 2452 THREAD_LOCK_ASSERT(td, MA_OWNED); 2453 ts = td->td_sched; 2454 if (THREAD_CAN_SCHED(td, ts->ts_cpu)) 2455 return; 2456 if (TD_ON_RUNQ(td)) { 2457 sched_rem(td); 2458 sched_add(td, SRQ_BORING); 2459 return; 2460 } 2461 if (!TD_IS_RUNNING(td)) 2462 return; 2463 /* 2464 * Force a switch before returning to userspace. If the 2465 * target thread is not running locally send an ipi to force 2466 * the issue. 2467 */ 2468 td->td_flags |= TDF_NEEDRESCHED; 2469 if (td != curthread) 2470 ipi_cpu(ts->ts_cpu, IPI_PREEMPT); 2471 #endif 2472 } 2473 2474 /* 2475 * Bind a thread to a target cpu. 2476 */ 2477 void 2478 sched_bind(struct thread *td, int cpu) 2479 { 2480 struct td_sched *ts; 2481 2482 THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED); 2483 KASSERT(td == curthread, ("sched_bind: can only bind curthread")); 2484 ts = td->td_sched; 2485 if (ts->ts_flags & TSF_BOUND) 2486 sched_unbind(td); 2487 KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td)); 2488 ts->ts_flags |= TSF_BOUND; 2489 sched_pin(); 2490 if (PCPU_GET(cpuid) == cpu) 2491 return; 2492 ts->ts_cpu = cpu; 2493 /* When we return from mi_switch we'll be on the correct cpu. */ 2494 mi_switch(SW_VOL, NULL); 2495 } 2496 2497 /* 2498 * Release a bound thread. 2499 */ 2500 void 2501 sched_unbind(struct thread *td) 2502 { 2503 struct td_sched *ts; 2504 2505 THREAD_LOCK_ASSERT(td, MA_OWNED); 2506 KASSERT(td == curthread, ("sched_unbind: can only bind curthread")); 2507 ts = td->td_sched; 2508 if ((ts->ts_flags & TSF_BOUND) == 0) 2509 return; 2510 ts->ts_flags &= ~TSF_BOUND; 2511 sched_unpin(); 2512 } 2513 2514 int 2515 sched_is_bound(struct thread *td) 2516 { 2517 THREAD_LOCK_ASSERT(td, MA_OWNED); 2518 return (td->td_sched->ts_flags & TSF_BOUND); 2519 } 2520 2521 /* 2522 * Basic yield call. 2523 */ 2524 void 2525 sched_relinquish(struct thread *td) 2526 { 2527 thread_lock(td); 2528 mi_switch(SW_VOL | SWT_RELINQUISH, NULL); 2529 thread_unlock(td); 2530 } 2531 2532 /* 2533 * Return the total system load. 2534 */ 2535 int 2536 sched_load(void) 2537 { 2538 #ifdef SMP 2539 int total; 2540 int i; 2541 2542 total = 0; 2543 CPU_FOREACH(i) 2544 total += TDQ_CPU(i)->tdq_sysload; 2545 return (total); 2546 #else 2547 return (TDQ_SELF()->tdq_sysload); 2548 #endif 2549 } 2550 2551 int 2552 sched_sizeof_proc(void) 2553 { 2554 return (sizeof(struct proc)); 2555 } 2556 2557 int 2558 sched_sizeof_thread(void) 2559 { 2560 return (sizeof(struct thread) + sizeof(struct td_sched)); 2561 } 2562 2563 #ifdef SMP 2564 #define TDQ_IDLESPIN(tdq) \ 2565 ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0) 2566 #else 2567 #define TDQ_IDLESPIN(tdq) 1 2568 #endif 2569 2570 /* 2571 * The actual idle process. 2572 */ 2573 void 2574 sched_idletd(void *dummy) 2575 { 2576 struct thread *td; 2577 struct tdq *tdq; 2578 int switchcnt; 2579 int i; 2580 2581 mtx_assert(&Giant, MA_NOTOWNED); 2582 td = curthread; 2583 tdq = TDQ_SELF(); 2584 THREAD_NO_SLEEPING(); 2585 for (;;) { 2586 #ifdef SMP 2587 if (tdq_idled(tdq) == 0) 2588 continue; 2589 #endif 2590 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2591 /* 2592 * If we're switching very frequently, spin while checking 2593 * for load rather than entering a low power state that 2594 * may require an IPI. However, don't do any busy 2595 * loops while on SMT machines as this simply steals 2596 * cycles from cores doing useful work. 2597 */ 2598 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) { 2599 for (i = 0; i < sched_idlespins; i++) { 2600 if (tdq->tdq_load) 2601 break; 2602 cpu_spinwait(); 2603 } 2604 } 2605 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2606 if (tdq->tdq_load == 0) { 2607 tdq->tdq_cpu_idle = 1; 2608 if (tdq->tdq_load == 0) { 2609 cpu_idle(switchcnt > sched_idlespinthresh * 4); 2610 tdq->tdq_switchcnt++; 2611 } 2612 tdq->tdq_cpu_idle = 0; 2613 } 2614 if (tdq->tdq_load) { 2615 thread_lock(td); 2616 mi_switch(SW_VOL | SWT_IDLE, NULL); 2617 thread_unlock(td); 2618 } 2619 } 2620 } 2621 2622 /* 2623 * A CPU is entering for the first time or a thread is exiting. 2624 */ 2625 void 2626 sched_throw(struct thread *td) 2627 { 2628 struct thread *newtd; 2629 struct tdq *tdq; 2630 2631 tdq = TDQ_SELF(); 2632 if (td == NULL) { 2633 /* Correct spinlock nesting and acquire the correct lock. */ 2634 TDQ_LOCK(tdq); 2635 spinlock_exit(); 2636 PCPU_SET(switchtime, cpu_ticks()); 2637 PCPU_SET(switchticks, ticks); 2638 } else { 2639 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2640 tdq_load_rem(tdq, td); 2641 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 2642 } 2643 KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count")); 2644 newtd = choosethread(); 2645 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 2646 cpu_throw(td, newtd); /* doesn't return */ 2647 } 2648 2649 /* 2650 * This is called from fork_exit(). Just acquire the correct locks and 2651 * let fork do the rest of the work. 2652 */ 2653 void 2654 sched_fork_exit(struct thread *td) 2655 { 2656 struct td_sched *ts; 2657 struct tdq *tdq; 2658 int cpuid; 2659 2660 /* 2661 * Finish setting up thread glue so that it begins execution in a 2662 * non-nested critical section with the scheduler lock held. 2663 */ 2664 cpuid = PCPU_GET(cpuid); 2665 tdq = TDQ_CPU(cpuid); 2666 ts = td->td_sched; 2667 if (TD_IS_IDLETHREAD(td)) 2668 td->td_lock = TDQ_LOCKPTR(tdq); 2669 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2670 td->td_oncpu = cpuid; 2671 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 2672 lock_profile_obtain_lock_success( 2673 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 2674 } 2675 2676 /* 2677 * Create on first use to catch odd startup conditons. 2678 */ 2679 char * 2680 sched_tdname(struct thread *td) 2681 { 2682 #ifdef KTR 2683 struct td_sched *ts; 2684 2685 ts = td->td_sched; 2686 if (ts->ts_name[0] == '\0') 2687 snprintf(ts->ts_name, sizeof(ts->ts_name), 2688 "%s tid %d", td->td_name, td->td_tid); 2689 return (ts->ts_name); 2690 #else 2691 return (td->td_name); 2692 #endif 2693 } 2694 2695 #ifdef KTR 2696 void 2697 sched_clear_tdname(struct thread *td) 2698 { 2699 struct td_sched *ts; 2700 2701 ts = td->td_sched; 2702 ts->ts_name[0] = '\0'; 2703 } 2704 #endif 2705 2706 #ifdef SMP 2707 2708 /* 2709 * Build the CPU topology dump string. Is recursively called to collect 2710 * the topology tree. 2711 */ 2712 static int 2713 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg, 2714 int indent) 2715 { 2716 char cpusetbuf[CPUSETBUFSIZ]; 2717 int i, first; 2718 2719 sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent, 2720 "", 1 + indent / 2, cg->cg_level); 2721 sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "", 2722 cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask)); 2723 first = TRUE; 2724 for (i = 0; i < MAXCPU; i++) { 2725 if (CPU_ISSET(i, &cg->cg_mask)) { 2726 if (!first) 2727 sbuf_printf(sb, ", "); 2728 else 2729 first = FALSE; 2730 sbuf_printf(sb, "%d", i); 2731 } 2732 } 2733 sbuf_printf(sb, "</cpu>\n"); 2734 2735 if (cg->cg_flags != 0) { 2736 sbuf_printf(sb, "%*s <flags>", indent, ""); 2737 if ((cg->cg_flags & CG_FLAG_HTT) != 0) 2738 sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>"); 2739 if ((cg->cg_flags & CG_FLAG_THREAD) != 0) 2740 sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>"); 2741 if ((cg->cg_flags & CG_FLAG_SMT) != 0) 2742 sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>"); 2743 sbuf_printf(sb, "</flags>\n"); 2744 } 2745 2746 if (cg->cg_children > 0) { 2747 sbuf_printf(sb, "%*s <children>\n", indent, ""); 2748 for (i = 0; i < cg->cg_children; i++) 2749 sysctl_kern_sched_topology_spec_internal(sb, 2750 &cg->cg_child[i], indent+2); 2751 sbuf_printf(sb, "%*s </children>\n", indent, ""); 2752 } 2753 sbuf_printf(sb, "%*s</group>\n", indent, ""); 2754 return (0); 2755 } 2756 2757 /* 2758 * Sysctl handler for retrieving topology dump. It's a wrapper for 2759 * the recursive sysctl_kern_smp_topology_spec_internal(). 2760 */ 2761 static int 2762 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS) 2763 { 2764 struct sbuf *topo; 2765 int err; 2766 2767 KASSERT(cpu_top != NULL, ("cpu_top isn't initialized")); 2768 2769 topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND); 2770 if (topo == NULL) 2771 return (ENOMEM); 2772 2773 sbuf_printf(topo, "<groups>\n"); 2774 err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1); 2775 sbuf_printf(topo, "</groups>\n"); 2776 2777 if (err == 0) { 2778 sbuf_finish(topo); 2779 err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo)); 2780 } 2781 sbuf_delete(topo); 2782 return (err); 2783 } 2784 2785 #endif 2786 2787 static int 2788 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS) 2789 { 2790 int error, new_val, period; 2791 2792 period = 1000000 / realstathz; 2793 new_val = period * sched_slice; 2794 error = sysctl_handle_int(oidp, &new_val, 0, req); 2795 if (error != 0 || req->newptr == NULL) 2796 return (error); 2797 if (new_val <= 0) 2798 return (EINVAL); 2799 sched_slice = imax(1, (new_val + period / 2) / period); 2800 hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) / 2801 realstathz); 2802 return (0); 2803 } 2804 2805 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler"); 2806 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0, 2807 "Scheduler name"); 2808 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW, 2809 NULL, 0, sysctl_kern_quantum, "I", 2810 "Quantum for timeshare threads in microseconds"); 2811 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0, 2812 "Quantum for timeshare threads in stathz ticks"); 2813 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0, 2814 "Interactivity score threshold"); 2815 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, 2816 &preempt_thresh, 0, 2817 "Maximal (lowest) priority for preemption"); 2818 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0, 2819 "Assign static kernel priorities to sleeping threads"); 2820 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0, 2821 "Number of times idle thread will spin waiting for new work"); 2822 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, 2823 &sched_idlespinthresh, 0, 2824 "Threshold before we will permit idle thread spinning"); 2825 #ifdef SMP 2826 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0, 2827 "Number of hz ticks to keep thread affinity for"); 2828 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0, 2829 "Enables the long-term load balancer"); 2830 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW, 2831 &balance_interval, 0, 2832 "Average period in stathz ticks to run the long-term balancer"); 2833 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0, 2834 "Attempts to steal work from other cores before idling"); 2835 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0, 2836 "Minimum load on remote CPU before we'll steal"); 2837 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING | 2838 CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A", 2839 "XML dump of detected CPU topology"); 2840 #endif 2841 2842 /* ps compat. All cpu percentages from ULE are weighted. */ 2843 static int ccpu = 0; 2844 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 2845