xref: /freebsd/sys/kern/sched_ule.c (revision 9162f64b58d01ec01481d60b6cdc06ffd8e8c7fc)
1 /*-
2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * This file implements the ULE scheduler.  ULE supports independent CPU
29  * run queues and fine grain locking.  It has superior interactive
30  * performance under load even on uni-processor systems.
31  *
32  * etymology:
33  *   ULE is the last three letters in schedule.  It owes its name to a
34  * generic user created for a scheduling system by Paul Mikesell at
35  * Isilon Systems and a general lack of creativity on the part of the author.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_kdtrace.h"
43 #include "opt_sched.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resource.h>
54 #include <sys/resourcevar.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/turnstile.h>
61 #include <sys/umtx.h>
62 #include <sys/vmmeter.h>
63 #include <sys/cpuset.h>
64 #include <sys/sbuf.h>
65 #ifdef KTRACE
66 #include <sys/uio.h>
67 #include <sys/ktrace.h>
68 #endif
69 
70 #ifdef HWPMC_HOOKS
71 #include <sys/pmckern.h>
72 #endif
73 
74 #ifdef KDTRACE_HOOKS
75 #include <sys/dtrace_bsd.h>
76 int				dtrace_vtime_active;
77 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
78 #endif
79 
80 #include <machine/cpu.h>
81 #include <machine/smp.h>
82 
83 #if defined(__sparc64__) || defined(__mips__)
84 #error "This architecture is not currently compatible with ULE"
85 #endif
86 
87 #define	KTR_ULE	0
88 
89 /*
90  * Thread scheduler specific section.  All fields are protected
91  * by the thread lock.
92  */
93 struct td_sched {
94 	struct runq	*ts_runq;	/* Run-queue we're queued on. */
95 	short		ts_flags;	/* TSF_* flags. */
96 	u_char		ts_cpu;		/* CPU that we have affinity for. */
97 	int		ts_rltick;	/* Real last tick, for affinity. */
98 	int		ts_slice;	/* Ticks of slice remaining. */
99 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
100 	u_int		ts_runtime;	/* Number of ticks we were running */
101 	int		ts_ltick;	/* Last tick that we were running on */
102 	int		ts_ftick;	/* First tick that we were running on */
103 	int		ts_ticks;	/* Tick count */
104 };
105 /* flags kept in ts_flags */
106 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
107 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
108 
109 static struct td_sched td_sched0;
110 
111 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
112 #define	THREAD_CAN_SCHED(td, cpu)	\
113     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
114 
115 /*
116  * Cpu percentage computation macros and defines.
117  *
118  * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
119  * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
120  * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
121  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
122  * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
123  * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
124  */
125 #define	SCHED_TICK_SECS		10
126 #define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
127 #define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
128 #define	SCHED_TICK_SHIFT	10
129 #define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
130 #define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
131 
132 /*
133  * These macros determine priorities for non-interactive threads.  They are
134  * assigned a priority based on their recent cpu utilization as expressed
135  * by the ratio of ticks to the tick total.  NHALF priorities at the start
136  * and end of the MIN to MAX timeshare range are only reachable with negative
137  * or positive nice respectively.
138  *
139  * PRI_RANGE:	Priority range for utilization dependent priorities.
140  * PRI_NRESV:	Number of nice values.
141  * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
142  * PRI_NICE:	Determines the part of the priority inherited from nice.
143  */
144 #define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
145 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
146 #define	SCHED_PRI_MIN		(PRI_MIN_TIMESHARE + SCHED_PRI_NHALF)
147 #define	SCHED_PRI_MAX		(PRI_MAX_TIMESHARE - SCHED_PRI_NHALF)
148 #define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN)
149 #define	SCHED_PRI_TICKS(ts)						\
150     (SCHED_TICK_HZ((ts)) /						\
151     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
152 #define	SCHED_PRI_NICE(nice)	(nice)
153 
154 /*
155  * These determine the interactivity of a process.  Interactivity differs from
156  * cpu utilization in that it expresses the voluntary time slept vs time ran
157  * while cpu utilization includes all time not running.  This more accurately
158  * models the intent of the thread.
159  *
160  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
161  *		before throttling back.
162  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
163  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
164  * INTERACT_THRESH:	Threshhold for placement on the current runq.
165  */
166 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
167 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
168 #define	SCHED_INTERACT_MAX	(100)
169 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
170 #define	SCHED_INTERACT_THRESH	(30)
171 
172 /*
173  * tickincr:		Converts a stathz tick into a hz domain scaled by
174  *			the shift factor.  Without the shift the error rate
175  *			due to rounding would be unacceptably high.
176  * realstathz:		stathz is sometimes 0 and run off of hz.
177  * sched_slice:		Runtime of each thread before rescheduling.
178  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
179  */
180 static int sched_interact = SCHED_INTERACT_THRESH;
181 static int realstathz;
182 static int tickincr;
183 static int sched_slice = 1;
184 #ifdef PREEMPTION
185 #ifdef FULL_PREEMPTION
186 static int preempt_thresh = PRI_MAX_IDLE;
187 #else
188 static int preempt_thresh = PRI_MIN_KERN;
189 #endif
190 #else
191 static int preempt_thresh = 0;
192 #endif
193 static int static_boost = PRI_MIN_TIMESHARE;
194 static int sched_idlespins = 10000;
195 static int sched_idlespinthresh = 4;
196 
197 /*
198  * tdq - per processor runqs and statistics.  All fields are protected by the
199  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
200  * locking in sched_pickcpu();
201  */
202 struct tdq {
203 	/* Ordered to improve efficiency of cpu_search() and switch(). */
204 	struct mtx	tdq_lock;		/* run queue lock. */
205 	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
206 	volatile int	tdq_load;		/* Aggregate load. */
207 	int		tdq_sysload;		/* For loadavg, !ITHD load. */
208 	int		tdq_transferable;	/* Transferable thread count. */
209 	volatile int	tdq_idlestate;		/* State of the idle thread. */
210 	short		tdq_switchcnt;		/* Switches this tick. */
211 	short		tdq_oldswitchcnt;	/* Switches last tick. */
212 	u_char		tdq_lowpri;		/* Lowest priority thread. */
213 	u_char		tdq_ipipending;		/* IPI pending. */
214 	u_char		tdq_idx;		/* Current insert index. */
215 	u_char		tdq_ridx;		/* Current removal index. */
216 	struct runq	tdq_realtime;		/* real-time run queue. */
217 	struct runq	tdq_timeshare;		/* timeshare run queue. */
218 	struct runq	tdq_idle;		/* Queue of IDLE threads. */
219 	char		tdq_name[sizeof("sched lock") + 6];
220 } __aligned(64);
221 
222 /* Idle thread states and config. */
223 #define	TDQ_RUNNING	1
224 #define	TDQ_IDLE	2
225 
226 #ifdef SMP
227 struct cpu_group *cpu_top;		/* CPU topology */
228 
229 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
230 #define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
231 
232 /*
233  * Run-time tunables.
234  */
235 static int rebalance = 1;
236 static int balance_interval = 128;	/* Default set in sched_initticks(). */
237 static int affinity;
238 static int steal_htt = 1;
239 static int steal_idle = 1;
240 static int steal_thresh = 2;
241 
242 /*
243  * One thread queue per processor.
244  */
245 static struct tdq	tdq_cpu[MAXCPU];
246 static struct tdq	*balance_tdq;
247 static int balance_ticks;
248 
249 #define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
250 #define	TDQ_CPU(x)	(&tdq_cpu[(x)])
251 #define	TDQ_ID(x)	((int)((x) - tdq_cpu))
252 #else	/* !SMP */
253 static struct tdq	tdq_cpu;
254 
255 #define	TDQ_ID(x)	(0)
256 #define	TDQ_SELF()	(&tdq_cpu)
257 #define	TDQ_CPU(x)	(&tdq_cpu)
258 #endif
259 
260 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
261 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
262 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
263 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
264 #define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
265 
266 static void sched_priority(struct thread *);
267 static void sched_thread_priority(struct thread *, u_char);
268 static int sched_interact_score(struct thread *);
269 static void sched_interact_update(struct thread *);
270 static void sched_interact_fork(struct thread *);
271 static void sched_pctcpu_update(struct td_sched *);
272 
273 /* Operations on per processor queues */
274 static struct thread *tdq_choose(struct tdq *);
275 static void tdq_setup(struct tdq *);
276 static void tdq_load_add(struct tdq *, struct thread *);
277 static void tdq_load_rem(struct tdq *, struct thread *);
278 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
279 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
280 static inline int sched_shouldpreempt(int, int, int);
281 void tdq_print(int cpu);
282 static void runq_print(struct runq *rq);
283 static void tdq_add(struct tdq *, struct thread *, int);
284 #ifdef SMP
285 static int tdq_move(struct tdq *, struct tdq *);
286 static int tdq_idled(struct tdq *);
287 static void tdq_notify(struct tdq *, struct thread *);
288 static struct thread *tdq_steal(struct tdq *, int);
289 static struct thread *runq_steal(struct runq *, int);
290 static int sched_pickcpu(struct thread *, int);
291 static void sched_balance(void);
292 static int sched_balance_pair(struct tdq *, struct tdq *);
293 static inline struct tdq *sched_setcpu(struct thread *, int, int);
294 static inline struct mtx *thread_block_switch(struct thread *);
295 static inline void thread_unblock_switch(struct thread *, struct mtx *);
296 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
297 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
298 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
299     struct cpu_group *cg, int indent);
300 #endif
301 
302 static void sched_setup(void *dummy);
303 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
304 
305 static void sched_initticks(void *dummy);
306 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
307     NULL);
308 
309 /*
310  * Print the threads waiting on a run-queue.
311  */
312 static void
313 runq_print(struct runq *rq)
314 {
315 	struct rqhead *rqh;
316 	struct thread *td;
317 	int pri;
318 	int j;
319 	int i;
320 
321 	for (i = 0; i < RQB_LEN; i++) {
322 		printf("\t\trunq bits %d 0x%zx\n",
323 		    i, rq->rq_status.rqb_bits[i]);
324 		for (j = 0; j < RQB_BPW; j++)
325 			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
326 				pri = j + (i << RQB_L2BPW);
327 				rqh = &rq->rq_queues[pri];
328 				TAILQ_FOREACH(td, rqh, td_runq) {
329 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
330 					    td, td->td_name, td->td_priority,
331 					    td->td_rqindex, pri);
332 				}
333 			}
334 	}
335 }
336 
337 /*
338  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
339  */
340 void
341 tdq_print(int cpu)
342 {
343 	struct tdq *tdq;
344 
345 	tdq = TDQ_CPU(cpu);
346 
347 	printf("tdq %d:\n", TDQ_ID(tdq));
348 	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
349 	printf("\tLock name:      %s\n", tdq->tdq_name);
350 	printf("\tload:           %d\n", tdq->tdq_load);
351 	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
352 	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
353 	printf("\tidle state:     %d\n", tdq->tdq_idlestate);
354 	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
355 	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
356 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
357 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
358 	printf("\trealtime runq:\n");
359 	runq_print(&tdq->tdq_realtime);
360 	printf("\ttimeshare runq:\n");
361 	runq_print(&tdq->tdq_timeshare);
362 	printf("\tidle runq:\n");
363 	runq_print(&tdq->tdq_idle);
364 }
365 
366 static inline int
367 sched_shouldpreempt(int pri, int cpri, int remote)
368 {
369 	/*
370 	 * If the new priority is not better than the current priority there is
371 	 * nothing to do.
372 	 */
373 	if (pri >= cpri)
374 		return (0);
375 	/*
376 	 * Always preempt idle.
377 	 */
378 	if (cpri >= PRI_MIN_IDLE)
379 		return (1);
380 	/*
381 	 * If preemption is disabled don't preempt others.
382 	 */
383 	if (preempt_thresh == 0)
384 		return (0);
385 	/*
386 	 * Preempt if we exceed the threshold.
387 	 */
388 	if (pri <= preempt_thresh)
389 		return (1);
390 	/*
391 	 * If we're realtime or better and there is timeshare or worse running
392 	 * preempt only remote processors.
393 	 */
394 	if (remote && pri <= PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME)
395 		return (1);
396 	return (0);
397 }
398 
399 #define	TS_RQ_PPQ	(((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS)
400 /*
401  * Add a thread to the actual run-queue.  Keeps transferable counts up to
402  * date with what is actually on the run-queue.  Selects the correct
403  * queue position for timeshare threads.
404  */
405 static __inline void
406 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
407 {
408 	struct td_sched *ts;
409 	u_char pri;
410 
411 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
412 	THREAD_LOCK_ASSERT(td, MA_OWNED);
413 
414 	pri = td->td_priority;
415 	ts = td->td_sched;
416 	TD_SET_RUNQ(td);
417 	if (THREAD_CAN_MIGRATE(td)) {
418 		tdq->tdq_transferable++;
419 		ts->ts_flags |= TSF_XFERABLE;
420 	}
421 	if (pri <= PRI_MAX_REALTIME) {
422 		ts->ts_runq = &tdq->tdq_realtime;
423 	} else if (pri <= PRI_MAX_TIMESHARE) {
424 		ts->ts_runq = &tdq->tdq_timeshare;
425 		KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE,
426 			("Invalid priority %d on timeshare runq", pri));
427 		/*
428 		 * This queue contains only priorities between MIN and MAX
429 		 * realtime.  Use the whole queue to represent these values.
430 		 */
431 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
432 			pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ;
433 			pri = (pri + tdq->tdq_idx) % RQ_NQS;
434 			/*
435 			 * This effectively shortens the queue by one so we
436 			 * can have a one slot difference between idx and
437 			 * ridx while we wait for threads to drain.
438 			 */
439 			if (tdq->tdq_ridx != tdq->tdq_idx &&
440 			    pri == tdq->tdq_ridx)
441 				pri = (unsigned char)(pri - 1) % RQ_NQS;
442 		} else
443 			pri = tdq->tdq_ridx;
444 		runq_add_pri(ts->ts_runq, td, pri, flags);
445 		return;
446 	} else
447 		ts->ts_runq = &tdq->tdq_idle;
448 	runq_add(ts->ts_runq, td, flags);
449 }
450 
451 /*
452  * Remove a thread from a run-queue.  This typically happens when a thread
453  * is selected to run.  Running threads are not on the queue and the
454  * transferable count does not reflect them.
455  */
456 static __inline void
457 tdq_runq_rem(struct tdq *tdq, struct thread *td)
458 {
459 	struct td_sched *ts;
460 
461 	ts = td->td_sched;
462 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
463 	KASSERT(ts->ts_runq != NULL,
464 	    ("tdq_runq_remove: thread %p null ts_runq", td));
465 	if (ts->ts_flags & TSF_XFERABLE) {
466 		tdq->tdq_transferable--;
467 		ts->ts_flags &= ~TSF_XFERABLE;
468 	}
469 	if (ts->ts_runq == &tdq->tdq_timeshare) {
470 		if (tdq->tdq_idx != tdq->tdq_ridx)
471 			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
472 		else
473 			runq_remove_idx(ts->ts_runq, td, NULL);
474 	} else
475 		runq_remove(ts->ts_runq, td);
476 }
477 
478 /*
479  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
480  * for this thread to the referenced thread queue.
481  */
482 static void
483 tdq_load_add(struct tdq *tdq, struct thread *td)
484 {
485 
486 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
487 	THREAD_LOCK_ASSERT(td, MA_OWNED);
488 
489 	tdq->tdq_load++;
490 	if ((td->td_proc->p_flag & P_NOLOAD) == 0)
491 		tdq->tdq_sysload++;
492 	CTR2(KTR_SCHED, "cpu %d load: %d", TDQ_ID(tdq), tdq->tdq_load);
493 }
494 
495 /*
496  * Remove the load from a thread that is transitioning to a sleep state or
497  * exiting.
498  */
499 static void
500 tdq_load_rem(struct tdq *tdq, struct thread *td)
501 {
502 
503 	THREAD_LOCK_ASSERT(td, MA_OWNED);
504 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
505 	KASSERT(tdq->tdq_load != 0,
506 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
507 
508 	tdq->tdq_load--;
509 	if ((td->td_proc->p_flag & P_NOLOAD) == 0)
510 		tdq->tdq_sysload--;
511 	CTR1(KTR_SCHED, "load: %d", tdq->tdq_load);
512 }
513 
514 /*
515  * Set lowpri to its exact value by searching the run-queue and
516  * evaluating curthread.  curthread may be passed as an optimization.
517  */
518 static void
519 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
520 {
521 	struct thread *td;
522 
523 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
524 	if (ctd == NULL)
525 		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
526 	td = tdq_choose(tdq);
527 	if (td == NULL || td->td_priority > ctd->td_priority)
528 		tdq->tdq_lowpri = ctd->td_priority;
529 	else
530 		tdq->tdq_lowpri = td->td_priority;
531 }
532 
533 #ifdef SMP
534 struct cpu_search {
535 	cpumask_t cs_mask;	/* Mask of valid cpus. */
536 	u_int	cs_load;
537 	u_int	cs_cpu;
538 	int	cs_limit;	/* Min priority for low min load for high. */
539 };
540 
541 #define	CPU_SEARCH_LOWEST	0x1
542 #define	CPU_SEARCH_HIGHEST	0x2
543 #define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
544 
545 #define	CPUMASK_FOREACH(cpu, mask)				\
546 	for ((cpu) = 0; (cpu) < sizeof((mask)) * 8; (cpu)++)	\
547 		if ((mask) & 1 << (cpu))
548 
549 static __inline int cpu_search(struct cpu_group *cg, struct cpu_search *low,
550     struct cpu_search *high, const int match);
551 int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low);
552 int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high);
553 int cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
554     struct cpu_search *high);
555 
556 /*
557  * This routine compares according to the match argument and should be
558  * reduced in actual instantiations via constant propagation and dead code
559  * elimination.
560  */
561 static __inline int
562 cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high,
563     const int match)
564 {
565 	struct tdq *tdq;
566 
567 	tdq = TDQ_CPU(cpu);
568 	if (match & CPU_SEARCH_LOWEST)
569 		if (low->cs_mask & (1 << cpu) &&
570 		    tdq->tdq_load < low->cs_load &&
571 		    tdq->tdq_lowpri > low->cs_limit) {
572 			low->cs_cpu = cpu;
573 			low->cs_load = tdq->tdq_load;
574 		}
575 	if (match & CPU_SEARCH_HIGHEST)
576 		if (high->cs_mask & (1 << cpu) &&
577 		    tdq->tdq_load >= high->cs_limit &&
578 		    tdq->tdq_load > high->cs_load &&
579 		    tdq->tdq_transferable) {
580 			high->cs_cpu = cpu;
581 			high->cs_load = tdq->tdq_load;
582 		}
583 	return (tdq->tdq_load);
584 }
585 
586 /*
587  * Search the tree of cpu_groups for the lowest or highest loaded cpu
588  * according to the match argument.  This routine actually compares the
589  * load on all paths through the tree and finds the least loaded cpu on
590  * the least loaded path, which may differ from the least loaded cpu in
591  * the system.  This balances work among caches and busses.
592  *
593  * This inline is instantiated in three forms below using constants for the
594  * match argument.  It is reduced to the minimum set for each case.  It is
595  * also recursive to the depth of the tree.
596  */
597 static __inline int
598 cpu_search(struct cpu_group *cg, struct cpu_search *low,
599     struct cpu_search *high, const int match)
600 {
601 	int total;
602 
603 	total = 0;
604 	if (cg->cg_children) {
605 		struct cpu_search lgroup;
606 		struct cpu_search hgroup;
607 		struct cpu_group *child;
608 		u_int lload;
609 		int hload;
610 		int load;
611 		int i;
612 
613 		lload = -1;
614 		hload = -1;
615 		for (i = 0; i < cg->cg_children; i++) {
616 			child = &cg->cg_child[i];
617 			if (match & CPU_SEARCH_LOWEST) {
618 				lgroup = *low;
619 				lgroup.cs_load = -1;
620 			}
621 			if (match & CPU_SEARCH_HIGHEST) {
622 				hgroup = *high;
623 				lgroup.cs_load = 0;
624 			}
625 			switch (match) {
626 			case CPU_SEARCH_LOWEST:
627 				load = cpu_search_lowest(child, &lgroup);
628 				break;
629 			case CPU_SEARCH_HIGHEST:
630 				load = cpu_search_highest(child, &hgroup);
631 				break;
632 			case CPU_SEARCH_BOTH:
633 				load = cpu_search_both(child, &lgroup, &hgroup);
634 				break;
635 			}
636 			total += load;
637 			if (match & CPU_SEARCH_LOWEST)
638 				if (load < lload || low->cs_cpu == -1) {
639 					*low = lgroup;
640 					lload = load;
641 				}
642 			if (match & CPU_SEARCH_HIGHEST)
643 				if (load > hload || high->cs_cpu == -1) {
644 					hload = load;
645 					*high = hgroup;
646 				}
647 		}
648 	} else {
649 		int cpu;
650 
651 		CPUMASK_FOREACH(cpu, cg->cg_mask)
652 			total += cpu_compare(cpu, low, high, match);
653 	}
654 	return (total);
655 }
656 
657 /*
658  * cpu_search instantiations must pass constants to maintain the inline
659  * optimization.
660  */
661 int
662 cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low)
663 {
664 	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
665 }
666 
667 int
668 cpu_search_highest(struct cpu_group *cg, struct cpu_search *high)
669 {
670 	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
671 }
672 
673 int
674 cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
675     struct cpu_search *high)
676 {
677 	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
678 }
679 
680 /*
681  * Find the cpu with the least load via the least loaded path that has a
682  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
683  * acceptable.
684  */
685 static inline int
686 sched_lowest(struct cpu_group *cg, cpumask_t mask, int pri)
687 {
688 	struct cpu_search low;
689 
690 	low.cs_cpu = -1;
691 	low.cs_load = -1;
692 	low.cs_mask = mask;
693 	low.cs_limit = pri;
694 	cpu_search_lowest(cg, &low);
695 	return low.cs_cpu;
696 }
697 
698 /*
699  * Find the cpu with the highest load via the highest loaded path.
700  */
701 static inline int
702 sched_highest(struct cpu_group *cg, cpumask_t mask, int minload)
703 {
704 	struct cpu_search high;
705 
706 	high.cs_cpu = -1;
707 	high.cs_load = 0;
708 	high.cs_mask = mask;
709 	high.cs_limit = minload;
710 	cpu_search_highest(cg, &high);
711 	return high.cs_cpu;
712 }
713 
714 /*
715  * Simultaneously find the highest and lowest loaded cpu reachable via
716  * cg.
717  */
718 static inline void
719 sched_both(struct cpu_group *cg, cpumask_t mask, int *lowcpu, int *highcpu)
720 {
721 	struct cpu_search high;
722 	struct cpu_search low;
723 
724 	low.cs_cpu = -1;
725 	low.cs_limit = -1;
726 	low.cs_load = -1;
727 	low.cs_mask = mask;
728 	high.cs_load = 0;
729 	high.cs_cpu = -1;
730 	high.cs_limit = -1;
731 	high.cs_mask = mask;
732 	cpu_search_both(cg, &low, &high);
733 	*lowcpu = low.cs_cpu;
734 	*highcpu = high.cs_cpu;
735 	return;
736 }
737 
738 static void
739 sched_balance_group(struct cpu_group *cg)
740 {
741 	cpumask_t mask;
742 	int high;
743 	int low;
744 	int i;
745 
746 	mask = -1;
747 	for (;;) {
748 		sched_both(cg, mask, &low, &high);
749 		if (low == high || low == -1 || high == -1)
750 			break;
751 		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low)))
752 			break;
753 		/*
754 		 * If we failed to move any threads determine which cpu
755 		 * to kick out of the set and try again.
756 	 	 */
757 		if (TDQ_CPU(high)->tdq_transferable == 0)
758 			mask &= ~(1 << high);
759 		else
760 			mask &= ~(1 << low);
761 	}
762 
763 	for (i = 0; i < cg->cg_children; i++)
764 		sched_balance_group(&cg->cg_child[i]);
765 }
766 
767 static void
768 sched_balance()
769 {
770 	struct tdq *tdq;
771 
772 	/*
773 	 * Select a random time between .5 * balance_interval and
774 	 * 1.5 * balance_interval.
775 	 */
776 	balance_ticks = max(balance_interval / 2, 1);
777 	balance_ticks += random() % balance_interval;
778 	if (smp_started == 0 || rebalance == 0)
779 		return;
780 	tdq = TDQ_SELF();
781 	TDQ_UNLOCK(tdq);
782 	sched_balance_group(cpu_top);
783 	TDQ_LOCK(tdq);
784 }
785 
786 /*
787  * Lock two thread queues using their address to maintain lock order.
788  */
789 static void
790 tdq_lock_pair(struct tdq *one, struct tdq *two)
791 {
792 	if (one < two) {
793 		TDQ_LOCK(one);
794 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
795 	} else {
796 		TDQ_LOCK(two);
797 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
798 	}
799 }
800 
801 /*
802  * Unlock two thread queues.  Order is not important here.
803  */
804 static void
805 tdq_unlock_pair(struct tdq *one, struct tdq *two)
806 {
807 	TDQ_UNLOCK(one);
808 	TDQ_UNLOCK(two);
809 }
810 
811 /*
812  * Transfer load between two imbalanced thread queues.
813  */
814 static int
815 sched_balance_pair(struct tdq *high, struct tdq *low)
816 {
817 	int transferable;
818 	int high_load;
819 	int low_load;
820 	int moved;
821 	int move;
822 	int diff;
823 	int i;
824 
825 	tdq_lock_pair(high, low);
826 	transferable = high->tdq_transferable;
827 	high_load = high->tdq_load;
828 	low_load = low->tdq_load;
829 	moved = 0;
830 	/*
831 	 * Determine what the imbalance is and then adjust that to how many
832 	 * threads we actually have to give up (transferable).
833 	 */
834 	if (transferable != 0) {
835 		diff = high_load - low_load;
836 		move = diff / 2;
837 		if (diff & 0x1)
838 			move++;
839 		move = min(move, transferable);
840 		for (i = 0; i < move; i++)
841 			moved += tdq_move(high, low);
842 		/*
843 		 * IPI the target cpu to force it to reschedule with the new
844 		 * workload.
845 		 */
846 		ipi_selected(1 << TDQ_ID(low), IPI_PREEMPT);
847 	}
848 	tdq_unlock_pair(high, low);
849 	return (moved);
850 }
851 
852 /*
853  * Move a thread from one thread queue to another.
854  */
855 static int
856 tdq_move(struct tdq *from, struct tdq *to)
857 {
858 	struct td_sched *ts;
859 	struct thread *td;
860 	struct tdq *tdq;
861 	int cpu;
862 
863 	TDQ_LOCK_ASSERT(from, MA_OWNED);
864 	TDQ_LOCK_ASSERT(to, MA_OWNED);
865 
866 	tdq = from;
867 	cpu = TDQ_ID(to);
868 	td = tdq_steal(tdq, cpu);
869 	if (td == NULL)
870 		return (0);
871 	ts = td->td_sched;
872 	/*
873 	 * Although the run queue is locked the thread may be blocked.  Lock
874 	 * it to clear this and acquire the run-queue lock.
875 	 */
876 	thread_lock(td);
877 	/* Drop recursive lock on from acquired via thread_lock(). */
878 	TDQ_UNLOCK(from);
879 	sched_rem(td);
880 	ts->ts_cpu = cpu;
881 	td->td_lock = TDQ_LOCKPTR(to);
882 	tdq_add(to, td, SRQ_YIELDING);
883 	return (1);
884 }
885 
886 /*
887  * This tdq has idled.  Try to steal a thread from another cpu and switch
888  * to it.
889  */
890 static int
891 tdq_idled(struct tdq *tdq)
892 {
893 	struct cpu_group *cg;
894 	struct tdq *steal;
895 	cpumask_t mask;
896 	int thresh;
897 	int cpu;
898 
899 	if (smp_started == 0 || steal_idle == 0)
900 		return (1);
901 	mask = -1;
902 	mask &= ~PCPU_GET(cpumask);
903 	/* We don't want to be preempted while we're iterating. */
904 	spinlock_enter();
905 	for (cg = tdq->tdq_cg; cg != NULL; ) {
906 		if ((cg->cg_flags & (CG_FLAG_HTT | CG_FLAG_THREAD)) == 0)
907 			thresh = steal_thresh;
908 		else
909 			thresh = 1;
910 		cpu = sched_highest(cg, mask, thresh);
911 		if (cpu == -1) {
912 			cg = cg->cg_parent;
913 			continue;
914 		}
915 		steal = TDQ_CPU(cpu);
916 		mask &= ~(1 << cpu);
917 		tdq_lock_pair(tdq, steal);
918 		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
919 			tdq_unlock_pair(tdq, steal);
920 			continue;
921 		}
922 		/*
923 		 * If a thread was added while interrupts were disabled don't
924 		 * steal one here.  If we fail to acquire one due to affinity
925 		 * restrictions loop again with this cpu removed from the
926 		 * set.
927 		 */
928 		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
929 			tdq_unlock_pair(tdq, steal);
930 			continue;
931 		}
932 		spinlock_exit();
933 		TDQ_UNLOCK(steal);
934 		mi_switch(SW_VOL | SWT_IDLE, NULL);
935 		thread_unlock(curthread);
936 
937 		return (0);
938 	}
939 	spinlock_exit();
940 	return (1);
941 }
942 
943 /*
944  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
945  */
946 static void
947 tdq_notify(struct tdq *tdq, struct thread *td)
948 {
949 	struct thread *ctd;
950 	int pri;
951 	int cpu;
952 
953 	if (tdq->tdq_ipipending)
954 		return;
955 	cpu = td->td_sched->ts_cpu;
956 	pri = td->td_priority;
957 	ctd = pcpu_find(cpu)->pc_curthread;
958 	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
959 		return;
960 	if (TD_IS_IDLETHREAD(ctd)) {
961 		/*
962 		 * If the idle thread is still 'running' it's probably
963 		 * waiting on us to release the tdq spinlock already.  No
964 		 * need to ipi.
965 		 */
966 		if (tdq->tdq_idlestate == TDQ_RUNNING)
967 			return;
968 		/*
969 		 * If the MD code has an idle wakeup routine try that before
970 		 * falling back to IPI.
971 		 */
972 		if (cpu_idle_wakeup(cpu))
973 			return;
974 	}
975 	tdq->tdq_ipipending = 1;
976 	ipi_selected(1 << cpu, IPI_PREEMPT);
977 }
978 
979 /*
980  * Steals load from a timeshare queue.  Honors the rotating queue head
981  * index.
982  */
983 static struct thread *
984 runq_steal_from(struct runq *rq, int cpu, u_char start)
985 {
986 	struct rqbits *rqb;
987 	struct rqhead *rqh;
988 	struct thread *td;
989 	int first;
990 	int bit;
991 	int pri;
992 	int i;
993 
994 	rqb = &rq->rq_status;
995 	bit = start & (RQB_BPW -1);
996 	pri = 0;
997 	first = 0;
998 again:
999 	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1000 		if (rqb->rqb_bits[i] == 0)
1001 			continue;
1002 		if (bit != 0) {
1003 			for (pri = bit; pri < RQB_BPW; pri++)
1004 				if (rqb->rqb_bits[i] & (1ul << pri))
1005 					break;
1006 			if (pri >= RQB_BPW)
1007 				continue;
1008 		} else
1009 			pri = RQB_FFS(rqb->rqb_bits[i]);
1010 		pri += (i << RQB_L2BPW);
1011 		rqh = &rq->rq_queues[pri];
1012 		TAILQ_FOREACH(td, rqh, td_runq) {
1013 			if (first && THREAD_CAN_MIGRATE(td) &&
1014 			    THREAD_CAN_SCHED(td, cpu))
1015 				return (td);
1016 			first = 1;
1017 		}
1018 	}
1019 	if (start != 0) {
1020 		start = 0;
1021 		goto again;
1022 	}
1023 
1024 	return (NULL);
1025 }
1026 
1027 /*
1028  * Steals load from a standard linear queue.
1029  */
1030 static struct thread *
1031 runq_steal(struct runq *rq, int cpu)
1032 {
1033 	struct rqhead *rqh;
1034 	struct rqbits *rqb;
1035 	struct thread *td;
1036 	int word;
1037 	int bit;
1038 
1039 	rqb = &rq->rq_status;
1040 	for (word = 0; word < RQB_LEN; word++) {
1041 		if (rqb->rqb_bits[word] == 0)
1042 			continue;
1043 		for (bit = 0; bit < RQB_BPW; bit++) {
1044 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1045 				continue;
1046 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1047 			TAILQ_FOREACH(td, rqh, td_runq)
1048 				if (THREAD_CAN_MIGRATE(td) &&
1049 				    THREAD_CAN_SCHED(td, cpu))
1050 					return (td);
1051 		}
1052 	}
1053 	return (NULL);
1054 }
1055 
1056 /*
1057  * Attempt to steal a thread in priority order from a thread queue.
1058  */
1059 static struct thread *
1060 tdq_steal(struct tdq *tdq, int cpu)
1061 {
1062 	struct thread *td;
1063 
1064 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1065 	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1066 		return (td);
1067 	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1068 	    cpu, tdq->tdq_ridx)) != NULL)
1069 		return (td);
1070 	return (runq_steal(&tdq->tdq_idle, cpu));
1071 }
1072 
1073 /*
1074  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1075  * current lock and returns with the assigned queue locked.
1076  */
1077 static inline struct tdq *
1078 sched_setcpu(struct thread *td, int cpu, int flags)
1079 {
1080 
1081 	struct tdq *tdq;
1082 
1083 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1084 	tdq = TDQ_CPU(cpu);
1085 	td->td_sched->ts_cpu = cpu;
1086 	/*
1087 	 * If the lock matches just return the queue.
1088 	 */
1089 	if (td->td_lock == TDQ_LOCKPTR(tdq))
1090 		return (tdq);
1091 #ifdef notyet
1092 	/*
1093 	 * If the thread isn't running its lockptr is a
1094 	 * turnstile or a sleepqueue.  We can just lock_set without
1095 	 * blocking.
1096 	 */
1097 	if (TD_CAN_RUN(td)) {
1098 		TDQ_LOCK(tdq);
1099 		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1100 		return (tdq);
1101 	}
1102 #endif
1103 	/*
1104 	 * The hard case, migration, we need to block the thread first to
1105 	 * prevent order reversals with other cpus locks.
1106 	 */
1107 	thread_lock_block(td);
1108 	TDQ_LOCK(tdq);
1109 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1110 	return (tdq);
1111 }
1112 
1113 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1114 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1115 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1116 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1117 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1118 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1119 
1120 static int
1121 sched_pickcpu(struct thread *td, int flags)
1122 {
1123 	struct cpu_group *cg;
1124 	struct td_sched *ts;
1125 	struct tdq *tdq;
1126 	cpumask_t mask;
1127 	int self;
1128 	int pri;
1129 	int cpu;
1130 
1131 	self = PCPU_GET(cpuid);
1132 	ts = td->td_sched;
1133 	if (smp_started == 0)
1134 		return (self);
1135 	/*
1136 	 * Don't migrate a running thread from sched_switch().
1137 	 */
1138 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1139 		return (ts->ts_cpu);
1140 	/*
1141 	 * Prefer to run interrupt threads on the processors that generate
1142 	 * the interrupt.
1143 	 */
1144 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1145 	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1146 		SCHED_STAT_INC(pickcpu_intrbind);
1147 		ts->ts_cpu = self;
1148 	}
1149 	/*
1150 	 * If the thread can run on the last cpu and the affinity has not
1151 	 * expired or it is idle run it there.
1152 	 */
1153 	pri = td->td_priority;
1154 	tdq = TDQ_CPU(ts->ts_cpu);
1155 	if (THREAD_CAN_SCHED(td, ts->ts_cpu)) {
1156 		if (tdq->tdq_lowpri > PRI_MIN_IDLE) {
1157 			SCHED_STAT_INC(pickcpu_idle_affinity);
1158 			return (ts->ts_cpu);
1159 		}
1160 		if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri) {
1161 			SCHED_STAT_INC(pickcpu_affinity);
1162 			return (ts->ts_cpu);
1163 		}
1164 	}
1165 	/*
1166 	 * Search for the highest level in the tree that still has affinity.
1167 	 */
1168 	cg = NULL;
1169 	for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent)
1170 		if (SCHED_AFFINITY(ts, cg->cg_level))
1171 			break;
1172 	cpu = -1;
1173 	mask = td->td_cpuset->cs_mask.__bits[0];
1174 	if (cg)
1175 		cpu = sched_lowest(cg, mask, pri);
1176 	if (cpu == -1)
1177 		cpu = sched_lowest(cpu_top, mask, -1);
1178 	/*
1179 	 * Compare the lowest loaded cpu to current cpu.
1180 	 */
1181 	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1182 	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) {
1183 		SCHED_STAT_INC(pickcpu_local);
1184 		cpu = self;
1185 	} else
1186 		SCHED_STAT_INC(pickcpu_lowest);
1187 	if (cpu != ts->ts_cpu)
1188 		SCHED_STAT_INC(pickcpu_migration);
1189 	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1190 	return (cpu);
1191 }
1192 #endif
1193 
1194 /*
1195  * Pick the highest priority task we have and return it.
1196  */
1197 static struct thread *
1198 tdq_choose(struct tdq *tdq)
1199 {
1200 	struct thread *td;
1201 
1202 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1203 	td = runq_choose(&tdq->tdq_realtime);
1204 	if (td != NULL)
1205 		return (td);
1206 	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1207 	if (td != NULL) {
1208 		KASSERT(td->td_priority >= PRI_MIN_TIMESHARE,
1209 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1210 		    td->td_priority));
1211 		return (td);
1212 	}
1213 	td = runq_choose(&tdq->tdq_idle);
1214 	if (td != NULL) {
1215 		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1216 		    ("tdq_choose: Invalid priority on idle queue %d",
1217 		    td->td_priority));
1218 		return (td);
1219 	}
1220 
1221 	return (NULL);
1222 }
1223 
1224 /*
1225  * Initialize a thread queue.
1226  */
1227 static void
1228 tdq_setup(struct tdq *tdq)
1229 {
1230 
1231 	if (bootverbose)
1232 		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1233 	runq_init(&tdq->tdq_realtime);
1234 	runq_init(&tdq->tdq_timeshare);
1235 	runq_init(&tdq->tdq_idle);
1236 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1237 	    "sched lock %d", (int)TDQ_ID(tdq));
1238 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1239 	    MTX_SPIN | MTX_RECURSE);
1240 }
1241 
1242 #ifdef SMP
1243 static void
1244 sched_setup_smp(void)
1245 {
1246 	struct tdq *tdq;
1247 	int i;
1248 
1249 	cpu_top = smp_topo();
1250 	for (i = 0; i < MAXCPU; i++) {
1251 		if (CPU_ABSENT(i))
1252 			continue;
1253 		tdq = TDQ_CPU(i);
1254 		tdq_setup(tdq);
1255 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1256 		if (tdq->tdq_cg == NULL)
1257 			panic("Can't find cpu group for %d\n", i);
1258 	}
1259 	balance_tdq = TDQ_SELF();
1260 	sched_balance();
1261 }
1262 #endif
1263 
1264 /*
1265  * Setup the thread queues and initialize the topology based on MD
1266  * information.
1267  */
1268 static void
1269 sched_setup(void *dummy)
1270 {
1271 	struct tdq *tdq;
1272 
1273 	tdq = TDQ_SELF();
1274 #ifdef SMP
1275 	sched_setup_smp();
1276 #else
1277 	tdq_setup(tdq);
1278 #endif
1279 	/*
1280 	 * To avoid divide-by-zero, we set realstathz a dummy value
1281 	 * in case which sched_clock() called before sched_initticks().
1282 	 */
1283 	realstathz = hz;
1284 	sched_slice = (realstathz/10);	/* ~100ms */
1285 	tickincr = 1 << SCHED_TICK_SHIFT;
1286 
1287 	/* Add thread0's load since it's running. */
1288 	TDQ_LOCK(tdq);
1289 	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1290 	tdq_load_add(tdq, &thread0);
1291 	tdq->tdq_lowpri = thread0.td_priority;
1292 	TDQ_UNLOCK(tdq);
1293 }
1294 
1295 /*
1296  * This routine determines the tickincr after stathz and hz are setup.
1297  */
1298 /* ARGSUSED */
1299 static void
1300 sched_initticks(void *dummy)
1301 {
1302 	int incr;
1303 
1304 	realstathz = stathz ? stathz : hz;
1305 	sched_slice = (realstathz/10);	/* ~100ms */
1306 
1307 	/*
1308 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1309 	 * hz not being evenly divisible by stathz on all platforms.
1310 	 */
1311 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1312 	/*
1313 	 * This does not work for values of stathz that are more than
1314 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1315 	 */
1316 	if (incr == 0)
1317 		incr = 1;
1318 	tickincr = incr;
1319 #ifdef SMP
1320 	/*
1321 	 * Set the default balance interval now that we know
1322 	 * what realstathz is.
1323 	 */
1324 	balance_interval = realstathz;
1325 	/*
1326 	 * Set steal thresh to log2(mp_ncpu) but no greater than 4.  This
1327 	 * prevents excess thrashing on large machines and excess idle on
1328 	 * smaller machines.
1329 	 */
1330 	steal_thresh = min(ffs(mp_ncpus) - 1, 3);
1331 	affinity = SCHED_AFFINITY_DEFAULT;
1332 #endif
1333 }
1334 
1335 
1336 /*
1337  * This is the core of the interactivity algorithm.  Determines a score based
1338  * on past behavior.  It is the ratio of sleep time to run time scaled to
1339  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1340  * differs from the cpu usage because it does not account for time spent
1341  * waiting on a run-queue.  Would be prettier if we had floating point.
1342  */
1343 static int
1344 sched_interact_score(struct thread *td)
1345 {
1346 	struct td_sched *ts;
1347 	int div;
1348 
1349 	ts = td->td_sched;
1350 	/*
1351 	 * The score is only needed if this is likely to be an interactive
1352 	 * task.  Don't go through the expense of computing it if there's
1353 	 * no chance.
1354 	 */
1355 	if (sched_interact <= SCHED_INTERACT_HALF &&
1356 		ts->ts_runtime >= ts->ts_slptime)
1357 			return (SCHED_INTERACT_HALF);
1358 
1359 	if (ts->ts_runtime > ts->ts_slptime) {
1360 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1361 		return (SCHED_INTERACT_HALF +
1362 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1363 	}
1364 	if (ts->ts_slptime > ts->ts_runtime) {
1365 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1366 		return (ts->ts_runtime / div);
1367 	}
1368 	/* runtime == slptime */
1369 	if (ts->ts_runtime)
1370 		return (SCHED_INTERACT_HALF);
1371 
1372 	/*
1373 	 * This can happen if slptime and runtime are 0.
1374 	 */
1375 	return (0);
1376 
1377 }
1378 
1379 /*
1380  * Scale the scheduling priority according to the "interactivity" of this
1381  * process.
1382  */
1383 static void
1384 sched_priority(struct thread *td)
1385 {
1386 	int score;
1387 	int pri;
1388 
1389 	if (td->td_pri_class != PRI_TIMESHARE)
1390 		return;
1391 	/*
1392 	 * If the score is interactive we place the thread in the realtime
1393 	 * queue with a priority that is less than kernel and interrupt
1394 	 * priorities.  These threads are not subject to nice restrictions.
1395 	 *
1396 	 * Scores greater than this are placed on the normal timeshare queue
1397 	 * where the priority is partially decided by the most recent cpu
1398 	 * utilization and the rest is decided by nice value.
1399 	 *
1400 	 * The nice value of the process has a linear effect on the calculated
1401 	 * score.  Negative nice values make it easier for a thread to be
1402 	 * considered interactive.
1403 	 */
1404 	score = imax(0, sched_interact_score(td) - td->td_proc->p_nice);
1405 	if (score < sched_interact) {
1406 		pri = PRI_MIN_REALTIME;
1407 		pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact)
1408 		    * score;
1409 		KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME,
1410 		    ("sched_priority: invalid interactive priority %d score %d",
1411 		    pri, score));
1412 	} else {
1413 		pri = SCHED_PRI_MIN;
1414 		if (td->td_sched->ts_ticks)
1415 			pri += SCHED_PRI_TICKS(td->td_sched);
1416 		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1417 		KASSERT(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE,
1418 		    ("sched_priority: invalid priority %d: nice %d, "
1419 		    "ticks %d ftick %d ltick %d tick pri %d",
1420 		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1421 		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1422 		    SCHED_PRI_TICKS(td->td_sched)));
1423 	}
1424 	sched_user_prio(td, pri);
1425 
1426 	return;
1427 }
1428 
1429 /*
1430  * This routine enforces a maximum limit on the amount of scheduling history
1431  * kept.  It is called after either the slptime or runtime is adjusted.  This
1432  * function is ugly due to integer math.
1433  */
1434 static void
1435 sched_interact_update(struct thread *td)
1436 {
1437 	struct td_sched *ts;
1438 	u_int sum;
1439 
1440 	ts = td->td_sched;
1441 	sum = ts->ts_runtime + ts->ts_slptime;
1442 	if (sum < SCHED_SLP_RUN_MAX)
1443 		return;
1444 	/*
1445 	 * This only happens from two places:
1446 	 * 1) We have added an unusual amount of run time from fork_exit.
1447 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1448 	 */
1449 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1450 		if (ts->ts_runtime > ts->ts_slptime) {
1451 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1452 			ts->ts_slptime = 1;
1453 		} else {
1454 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1455 			ts->ts_runtime = 1;
1456 		}
1457 		return;
1458 	}
1459 	/*
1460 	 * If we have exceeded by more than 1/5th then the algorithm below
1461 	 * will not bring us back into range.  Dividing by two here forces
1462 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1463 	 */
1464 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1465 		ts->ts_runtime /= 2;
1466 		ts->ts_slptime /= 2;
1467 		return;
1468 	}
1469 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1470 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1471 }
1472 
1473 /*
1474  * Scale back the interactivity history when a child thread is created.  The
1475  * history is inherited from the parent but the thread may behave totally
1476  * differently.  For example, a shell spawning a compiler process.  We want
1477  * to learn that the compiler is behaving badly very quickly.
1478  */
1479 static void
1480 sched_interact_fork(struct thread *td)
1481 {
1482 	int ratio;
1483 	int sum;
1484 
1485 	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1486 	if (sum > SCHED_SLP_RUN_FORK) {
1487 		ratio = sum / SCHED_SLP_RUN_FORK;
1488 		td->td_sched->ts_runtime /= ratio;
1489 		td->td_sched->ts_slptime /= ratio;
1490 	}
1491 }
1492 
1493 /*
1494  * Called from proc0_init() to setup the scheduler fields.
1495  */
1496 void
1497 schedinit(void)
1498 {
1499 
1500 	/*
1501 	 * Set up the scheduler specific parts of proc0.
1502 	 */
1503 	proc0.p_sched = NULL; /* XXX */
1504 	thread0.td_sched = &td_sched0;
1505 	td_sched0.ts_ltick = ticks;
1506 	td_sched0.ts_ftick = ticks;
1507 	td_sched0.ts_slice = sched_slice;
1508 }
1509 
1510 /*
1511  * This is only somewhat accurate since given many processes of the same
1512  * priority they will switch when their slices run out, which will be
1513  * at most sched_slice stathz ticks.
1514  */
1515 int
1516 sched_rr_interval(void)
1517 {
1518 
1519 	/* Convert sched_slice to hz */
1520 	return (hz/(realstathz/sched_slice));
1521 }
1522 
1523 /*
1524  * Update the percent cpu tracking information when it is requested or
1525  * the total history exceeds the maximum.  We keep a sliding history of
1526  * tick counts that slowly decays.  This is less precise than the 4BSD
1527  * mechanism since it happens with less regular and frequent events.
1528  */
1529 static void
1530 sched_pctcpu_update(struct td_sched *ts)
1531 {
1532 
1533 	if (ts->ts_ticks == 0)
1534 		return;
1535 	if (ticks - (hz / 10) < ts->ts_ltick &&
1536 	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
1537 		return;
1538 	/*
1539 	 * Adjust counters and watermark for pctcpu calc.
1540 	 */
1541 	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
1542 		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
1543 			    SCHED_TICK_TARG;
1544 	else
1545 		ts->ts_ticks = 0;
1546 	ts->ts_ltick = ticks;
1547 	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
1548 }
1549 
1550 /*
1551  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1552  * if necessary.  This is the back-end for several priority related
1553  * functions.
1554  */
1555 static void
1556 sched_thread_priority(struct thread *td, u_char prio)
1557 {
1558 	struct td_sched *ts;
1559 	struct tdq *tdq;
1560 	int oldpri;
1561 
1562 	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
1563 	    td, td->td_name, td->td_priority, prio, curthread,
1564 	    curthread->td_name);
1565 	ts = td->td_sched;
1566 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1567 	if (td->td_priority == prio)
1568 		return;
1569 	/*
1570 	 * If the priority has been elevated due to priority
1571 	 * propagation, we may have to move ourselves to a new
1572 	 * queue.  This could be optimized to not re-add in some
1573 	 * cases.
1574 	 */
1575 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1576 		sched_rem(td);
1577 		td->td_priority = prio;
1578 		sched_add(td, SRQ_BORROWING);
1579 		return;
1580 	}
1581 	/*
1582 	 * If the thread is currently running we may have to adjust the lowpri
1583 	 * information so other cpus are aware of our current priority.
1584 	 */
1585 	if (TD_IS_RUNNING(td)) {
1586 		tdq = TDQ_CPU(ts->ts_cpu);
1587 		oldpri = td->td_priority;
1588 		td->td_priority = prio;
1589 		if (prio < tdq->tdq_lowpri)
1590 			tdq->tdq_lowpri = prio;
1591 		else if (tdq->tdq_lowpri == oldpri)
1592 			tdq_setlowpri(tdq, td);
1593 		return;
1594 	}
1595 	td->td_priority = prio;
1596 }
1597 
1598 /*
1599  * Update a thread's priority when it is lent another thread's
1600  * priority.
1601  */
1602 void
1603 sched_lend_prio(struct thread *td, u_char prio)
1604 {
1605 
1606 	td->td_flags |= TDF_BORROWING;
1607 	sched_thread_priority(td, prio);
1608 }
1609 
1610 /*
1611  * Restore a thread's priority when priority propagation is
1612  * over.  The prio argument is the minimum priority the thread
1613  * needs to have to satisfy other possible priority lending
1614  * requests.  If the thread's regular priority is less
1615  * important than prio, the thread will keep a priority boost
1616  * of prio.
1617  */
1618 void
1619 sched_unlend_prio(struct thread *td, u_char prio)
1620 {
1621 	u_char base_pri;
1622 
1623 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1624 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1625 		base_pri = td->td_user_pri;
1626 	else
1627 		base_pri = td->td_base_pri;
1628 	if (prio >= base_pri) {
1629 		td->td_flags &= ~TDF_BORROWING;
1630 		sched_thread_priority(td, base_pri);
1631 	} else
1632 		sched_lend_prio(td, prio);
1633 }
1634 
1635 /*
1636  * Standard entry for setting the priority to an absolute value.
1637  */
1638 void
1639 sched_prio(struct thread *td, u_char prio)
1640 {
1641 	u_char oldprio;
1642 
1643 	/* First, update the base priority. */
1644 	td->td_base_pri = prio;
1645 
1646 	/*
1647 	 * If the thread is borrowing another thread's priority, don't
1648 	 * ever lower the priority.
1649 	 */
1650 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1651 		return;
1652 
1653 	/* Change the real priority. */
1654 	oldprio = td->td_priority;
1655 	sched_thread_priority(td, prio);
1656 
1657 	/*
1658 	 * If the thread is on a turnstile, then let the turnstile update
1659 	 * its state.
1660 	 */
1661 	if (TD_ON_LOCK(td) && oldprio != prio)
1662 		turnstile_adjust(td, oldprio);
1663 }
1664 
1665 /*
1666  * Set the base user priority, does not effect current running priority.
1667  */
1668 void
1669 sched_user_prio(struct thread *td, u_char prio)
1670 {
1671 	u_char oldprio;
1672 
1673 	td->td_base_user_pri = prio;
1674 	if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
1675                 return;
1676 	oldprio = td->td_user_pri;
1677 	td->td_user_pri = prio;
1678 }
1679 
1680 void
1681 sched_lend_user_prio(struct thread *td, u_char prio)
1682 {
1683 	u_char oldprio;
1684 
1685 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1686 	td->td_flags |= TDF_UBORROWING;
1687 	oldprio = td->td_user_pri;
1688 	td->td_user_pri = prio;
1689 }
1690 
1691 void
1692 sched_unlend_user_prio(struct thread *td, u_char prio)
1693 {
1694 	u_char base_pri;
1695 
1696 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1697 	base_pri = td->td_base_user_pri;
1698 	if (prio >= base_pri) {
1699 		td->td_flags &= ~TDF_UBORROWING;
1700 		sched_user_prio(td, base_pri);
1701 	} else {
1702 		sched_lend_user_prio(td, prio);
1703 	}
1704 }
1705 
1706 /*
1707  * Block a thread for switching.  Similar to thread_block() but does not
1708  * bump the spin count.
1709  */
1710 static inline struct mtx *
1711 thread_block_switch(struct thread *td)
1712 {
1713 	struct mtx *lock;
1714 
1715 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1716 	lock = td->td_lock;
1717 	td->td_lock = &blocked_lock;
1718 	mtx_unlock_spin(lock);
1719 
1720 	return (lock);
1721 }
1722 
1723 /*
1724  * Handle migration from sched_switch().  This happens only for
1725  * cpu binding.
1726  */
1727 static struct mtx *
1728 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1729 {
1730 	struct tdq *tdn;
1731 
1732 	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1733 #ifdef SMP
1734 	tdq_load_rem(tdq, td);
1735 	/*
1736 	 * Do the lock dance required to avoid LOR.  We grab an extra
1737 	 * spinlock nesting to prevent preemption while we're
1738 	 * not holding either run-queue lock.
1739 	 */
1740 	spinlock_enter();
1741 	thread_block_switch(td);	/* This releases the lock on tdq. */
1742 	TDQ_LOCK(tdn);
1743 	tdq_add(tdn, td, flags);
1744 	tdq_notify(tdn, td);
1745 	/*
1746 	 * After we unlock tdn the new cpu still can't switch into this
1747 	 * thread until we've unblocked it in cpu_switch().  The lock
1748 	 * pointers may match in the case of HTT cores.  Don't unlock here
1749 	 * or we can deadlock when the other CPU runs the IPI handler.
1750 	 */
1751 	if (TDQ_LOCKPTR(tdn) != TDQ_LOCKPTR(tdq)) {
1752 		TDQ_UNLOCK(tdn);
1753 		TDQ_LOCK(tdq);
1754 	}
1755 	spinlock_exit();
1756 #endif
1757 	return (TDQ_LOCKPTR(tdn));
1758 }
1759 
1760 /*
1761  * Release a thread that was blocked with thread_block_switch().
1762  */
1763 static inline void
1764 thread_unblock_switch(struct thread *td, struct mtx *mtx)
1765 {
1766 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1767 	    (uintptr_t)mtx);
1768 }
1769 
1770 /*
1771  * Switch threads.  This function has to handle threads coming in while
1772  * blocked for some reason, running, or idle.  It also must deal with
1773  * migrating a thread from one queue to another as running threads may
1774  * be assigned elsewhere via binding.
1775  */
1776 void
1777 sched_switch(struct thread *td, struct thread *newtd, int flags)
1778 {
1779 	struct tdq *tdq;
1780 	struct td_sched *ts;
1781 	struct mtx *mtx;
1782 	int srqflag;
1783 	int cpuid;
1784 
1785 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1786 	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1787 
1788 	cpuid = PCPU_GET(cpuid);
1789 	tdq = TDQ_CPU(cpuid);
1790 	ts = td->td_sched;
1791 	mtx = td->td_lock;
1792 	ts->ts_rltick = ticks;
1793 	td->td_lastcpu = td->td_oncpu;
1794 	td->td_oncpu = NOCPU;
1795 	td->td_flags &= ~TDF_NEEDRESCHED;
1796 	td->td_owepreempt = 0;
1797 	tdq->tdq_switchcnt++;
1798 	/*
1799 	 * The lock pointer in an idle thread should never change.  Reset it
1800 	 * to CAN_RUN as well.
1801 	 */
1802 	if (TD_IS_IDLETHREAD(td)) {
1803 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1804 		TD_SET_CAN_RUN(td);
1805 	} else if (TD_IS_RUNNING(td)) {
1806 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1807 		srqflag = (flags & SW_PREEMPT) ?
1808 		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1809 		    SRQ_OURSELF|SRQ_YIELDING;
1810 		if (ts->ts_cpu == cpuid)
1811 			tdq_runq_add(tdq, td, srqflag);
1812 		else
1813 			mtx = sched_switch_migrate(tdq, td, srqflag);
1814 	} else {
1815 		/* This thread must be going to sleep. */
1816 		TDQ_LOCK(tdq);
1817 		mtx = thread_block_switch(td);
1818 		tdq_load_rem(tdq, td);
1819 	}
1820 	/*
1821 	 * We enter here with the thread blocked and assigned to the
1822 	 * appropriate cpu run-queue or sleep-queue and with the current
1823 	 * thread-queue locked.
1824 	 */
1825 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1826 	newtd = choosethread();
1827 	/*
1828 	 * Call the MD code to switch contexts if necessary.
1829 	 */
1830 	if (td != newtd) {
1831 #ifdef	HWPMC_HOOKS
1832 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1833 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1834 #endif
1835 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1836 		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1837 
1838 #ifdef KDTRACE_HOOKS
1839 		/*
1840 		 * If DTrace has set the active vtime enum to anything
1841 		 * other than INACTIVE (0), then it should have set the
1842 		 * function to call.
1843 		 */
1844 		if (dtrace_vtime_active)
1845 			(*dtrace_vtime_switch_func)(newtd);
1846 #endif
1847 
1848 		cpu_switch(td, newtd, mtx);
1849 		/*
1850 		 * We may return from cpu_switch on a different cpu.  However,
1851 		 * we always return with td_lock pointing to the current cpu's
1852 		 * run queue lock.
1853 		 */
1854 		cpuid = PCPU_GET(cpuid);
1855 		tdq = TDQ_CPU(cpuid);
1856 		lock_profile_obtain_lock_success(
1857 		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1858 #ifdef	HWPMC_HOOKS
1859 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1860 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1861 #endif
1862 	} else
1863 		thread_unblock_switch(td, mtx);
1864 	/*
1865 	 * Assert that all went well and return.
1866 	 */
1867 	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1868 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1869 	td->td_oncpu = cpuid;
1870 }
1871 
1872 /*
1873  * Adjust thread priorities as a result of a nice request.
1874  */
1875 void
1876 sched_nice(struct proc *p, int nice)
1877 {
1878 	struct thread *td;
1879 
1880 	PROC_LOCK_ASSERT(p, MA_OWNED);
1881 
1882 	p->p_nice = nice;
1883 	FOREACH_THREAD_IN_PROC(p, td) {
1884 		thread_lock(td);
1885 		sched_priority(td);
1886 		sched_prio(td, td->td_base_user_pri);
1887 		thread_unlock(td);
1888 	}
1889 }
1890 
1891 /*
1892  * Record the sleep time for the interactivity scorer.
1893  */
1894 void
1895 sched_sleep(struct thread *td, int prio)
1896 {
1897 
1898 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1899 
1900 	td->td_slptick = ticks;
1901 	if (TD_IS_SUSPENDED(td) || prio <= PSOCK)
1902 		td->td_flags |= TDF_CANSWAP;
1903 	if (static_boost == 1 && prio)
1904 		sched_prio(td, prio);
1905 	else if (static_boost && td->td_priority > static_boost)
1906 		sched_prio(td, static_boost);
1907 }
1908 
1909 /*
1910  * Schedule a thread to resume execution and record how long it voluntarily
1911  * slept.  We also update the pctcpu, interactivity, and priority.
1912  */
1913 void
1914 sched_wakeup(struct thread *td)
1915 {
1916 	struct td_sched *ts;
1917 	int slptick;
1918 
1919 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1920 	ts = td->td_sched;
1921 	td->td_flags &= ~TDF_CANSWAP;
1922 	/*
1923 	 * If we slept for more than a tick update our interactivity and
1924 	 * priority.
1925 	 */
1926 	slptick = td->td_slptick;
1927 	td->td_slptick = 0;
1928 	if (slptick && slptick != ticks) {
1929 		u_int hzticks;
1930 
1931 		hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
1932 		ts->ts_slptime += hzticks;
1933 		sched_interact_update(td);
1934 		sched_pctcpu_update(ts);
1935 	}
1936 	/* Reset the slice value after we sleep. */
1937 	ts->ts_slice = sched_slice;
1938 	sched_add(td, SRQ_BORING);
1939 }
1940 
1941 /*
1942  * Penalize the parent for creating a new child and initialize the child's
1943  * priority.
1944  */
1945 void
1946 sched_fork(struct thread *td, struct thread *child)
1947 {
1948 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1949 	sched_fork_thread(td, child);
1950 	/*
1951 	 * Penalize the parent and child for forking.
1952 	 */
1953 	sched_interact_fork(child);
1954 	sched_priority(child);
1955 	td->td_sched->ts_runtime += tickincr;
1956 	sched_interact_update(td);
1957 	sched_priority(td);
1958 }
1959 
1960 /*
1961  * Fork a new thread, may be within the same process.
1962  */
1963 void
1964 sched_fork_thread(struct thread *td, struct thread *child)
1965 {
1966 	struct td_sched *ts;
1967 	struct td_sched *ts2;
1968 
1969 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1970 	/*
1971 	 * Initialize child.
1972 	 */
1973 	ts = td->td_sched;
1974 	ts2 = child->td_sched;
1975 	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1976 	child->td_cpuset = cpuset_ref(td->td_cpuset);
1977 	ts2->ts_cpu = ts->ts_cpu;
1978 	ts2->ts_flags = 0;
1979 	/*
1980 	 * Grab our parents cpu estimation information and priority.
1981 	 */
1982 	ts2->ts_ticks = ts->ts_ticks;
1983 	ts2->ts_ltick = ts->ts_ltick;
1984 	ts2->ts_ftick = ts->ts_ftick;
1985 	child->td_user_pri = td->td_user_pri;
1986 	child->td_base_user_pri = td->td_base_user_pri;
1987 	/*
1988 	 * And update interactivity score.
1989 	 */
1990 	ts2->ts_slptime = ts->ts_slptime;
1991 	ts2->ts_runtime = ts->ts_runtime;
1992 	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
1993 }
1994 
1995 /*
1996  * Adjust the priority class of a thread.
1997  */
1998 void
1999 sched_class(struct thread *td, int class)
2000 {
2001 
2002 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2003 	if (td->td_pri_class == class)
2004 		return;
2005 	td->td_pri_class = class;
2006 }
2007 
2008 /*
2009  * Return some of the child's priority and interactivity to the parent.
2010  */
2011 void
2012 sched_exit(struct proc *p, struct thread *child)
2013 {
2014 	struct thread *td;
2015 
2016 	CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
2017 	    child, child->td_name, child->td_priority);
2018 
2019 	PROC_LOCK_ASSERT(p, MA_OWNED);
2020 	td = FIRST_THREAD_IN_PROC(p);
2021 	sched_exit_thread(td, child);
2022 }
2023 
2024 /*
2025  * Penalize another thread for the time spent on this one.  This helps to
2026  * worsen the priority and interactivity of processes which schedule batch
2027  * jobs such as make.  This has little effect on the make process itself but
2028  * causes new processes spawned by it to receive worse scores immediately.
2029  */
2030 void
2031 sched_exit_thread(struct thread *td, struct thread *child)
2032 {
2033 
2034 	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
2035 	    child, child->td_name, child->td_priority);
2036 
2037 	/*
2038 	 * Give the child's runtime to the parent without returning the
2039 	 * sleep time as a penalty to the parent.  This causes shells that
2040 	 * launch expensive things to mark their children as expensive.
2041 	 */
2042 	thread_lock(td);
2043 	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2044 	sched_interact_update(td);
2045 	sched_priority(td);
2046 	thread_unlock(td);
2047 }
2048 
2049 void
2050 sched_preempt(struct thread *td)
2051 {
2052 	struct tdq *tdq;
2053 
2054 	thread_lock(td);
2055 	tdq = TDQ_SELF();
2056 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2057 	tdq->tdq_ipipending = 0;
2058 	if (td->td_priority > tdq->tdq_lowpri) {
2059 		int flags;
2060 
2061 		flags = SW_INVOL | SW_PREEMPT;
2062 		if (td->td_critnest > 1)
2063 			td->td_owepreempt = 1;
2064 		else if (TD_IS_IDLETHREAD(td))
2065 			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2066 		else
2067 			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2068 	}
2069 	thread_unlock(td);
2070 }
2071 
2072 /*
2073  * Fix priorities on return to user-space.  Priorities may be elevated due
2074  * to static priorities in msleep() or similar.
2075  */
2076 void
2077 sched_userret(struct thread *td)
2078 {
2079 	/*
2080 	 * XXX we cheat slightly on the locking here to avoid locking in
2081 	 * the usual case.  Setting td_priority here is essentially an
2082 	 * incomplete workaround for not setting it properly elsewhere.
2083 	 * Now that some interrupt handlers are threads, not setting it
2084 	 * properly elsewhere can clobber it in the window between setting
2085 	 * it here and returning to user mode, so don't waste time setting
2086 	 * it perfectly here.
2087 	 */
2088 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2089 	    ("thread with borrowed priority returning to userland"));
2090 	if (td->td_priority != td->td_user_pri) {
2091 		thread_lock(td);
2092 		td->td_priority = td->td_user_pri;
2093 		td->td_base_pri = td->td_user_pri;
2094 		tdq_setlowpri(TDQ_SELF(), td);
2095 		thread_unlock(td);
2096         }
2097 }
2098 
2099 /*
2100  * Handle a stathz tick.  This is really only relevant for timeshare
2101  * threads.
2102  */
2103 void
2104 sched_clock(struct thread *td)
2105 {
2106 	struct tdq *tdq;
2107 	struct td_sched *ts;
2108 
2109 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2110 	tdq = TDQ_SELF();
2111 #ifdef SMP
2112 	/*
2113 	 * We run the long term load balancer infrequently on the first cpu.
2114 	 */
2115 	if (balance_tdq == tdq) {
2116 		if (balance_ticks && --balance_ticks == 0)
2117 			sched_balance();
2118 	}
2119 #endif
2120 	/*
2121 	 * Save the old switch count so we have a record of the last ticks
2122 	 * activity.   Initialize the new switch count based on our load.
2123 	 * If there is some activity seed it to reflect that.
2124 	 */
2125 	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2126 	tdq->tdq_switchcnt = tdq->tdq_load;
2127 	/*
2128 	 * Advance the insert index once for each tick to ensure that all
2129 	 * threads get a chance to run.
2130 	 */
2131 	if (tdq->tdq_idx == tdq->tdq_ridx) {
2132 		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2133 		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2134 			tdq->tdq_ridx = tdq->tdq_idx;
2135 	}
2136 	ts = td->td_sched;
2137 	if (td->td_pri_class & PRI_FIFO_BIT)
2138 		return;
2139 	if (td->td_pri_class == PRI_TIMESHARE) {
2140 		/*
2141 		 * We used a tick; charge it to the thread so
2142 		 * that we can compute our interactivity.
2143 		 */
2144 		td->td_sched->ts_runtime += tickincr;
2145 		sched_interact_update(td);
2146 		sched_priority(td);
2147 	}
2148 	/*
2149 	 * We used up one time slice.
2150 	 */
2151 	if (--ts->ts_slice > 0)
2152 		return;
2153 	/*
2154 	 * We're out of time, force a requeue at userret().
2155 	 */
2156 	ts->ts_slice = sched_slice;
2157 	td->td_flags |= TDF_NEEDRESCHED;
2158 }
2159 
2160 /*
2161  * Called once per hz tick.  Used for cpu utilization information.  This
2162  * is easier than trying to scale based on stathz.
2163  */
2164 void
2165 sched_tick(void)
2166 {
2167 	struct td_sched *ts;
2168 
2169 	ts = curthread->td_sched;
2170 	/*
2171 	 * Ticks is updated asynchronously on a single cpu.  Check here to
2172 	 * avoid incrementing ts_ticks multiple times in a single tick.
2173 	 */
2174 	if (ts->ts_ltick == ticks)
2175 		return;
2176 	/* Adjust ticks for pctcpu */
2177 	ts->ts_ticks += 1 << SCHED_TICK_SHIFT;
2178 	ts->ts_ltick = ticks;
2179 	/*
2180 	 * Update if we've exceeded our desired tick threshhold by over one
2181 	 * second.
2182 	 */
2183 	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
2184 		sched_pctcpu_update(ts);
2185 }
2186 
2187 /*
2188  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2189  * cooperative idle threads.
2190  */
2191 int
2192 sched_runnable(void)
2193 {
2194 	struct tdq *tdq;
2195 	int load;
2196 
2197 	load = 1;
2198 
2199 	tdq = TDQ_SELF();
2200 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2201 		if (tdq->tdq_load > 0)
2202 			goto out;
2203 	} else
2204 		if (tdq->tdq_load - 1 > 0)
2205 			goto out;
2206 	load = 0;
2207 out:
2208 	return (load);
2209 }
2210 
2211 /*
2212  * Choose the highest priority thread to run.  The thread is removed from
2213  * the run-queue while running however the load remains.  For SMP we set
2214  * the tdq in the global idle bitmask if it idles here.
2215  */
2216 struct thread *
2217 sched_choose(void)
2218 {
2219 	struct thread *td;
2220 	struct tdq *tdq;
2221 
2222 	tdq = TDQ_SELF();
2223 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2224 	td = tdq_choose(tdq);
2225 	if (td) {
2226 		td->td_sched->ts_ltick = ticks;
2227 		tdq_runq_rem(tdq, td);
2228 		tdq->tdq_lowpri = td->td_priority;
2229 		return (td);
2230 	}
2231 	tdq->tdq_lowpri = PRI_MAX_IDLE;
2232 	return (PCPU_GET(idlethread));
2233 }
2234 
2235 /*
2236  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2237  * we always request it once we exit a critical section.
2238  */
2239 static inline void
2240 sched_setpreempt(struct thread *td)
2241 {
2242 	struct thread *ctd;
2243 	int cpri;
2244 	int pri;
2245 
2246 	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2247 
2248 	ctd = curthread;
2249 	pri = td->td_priority;
2250 	cpri = ctd->td_priority;
2251 	if (pri < cpri)
2252 		ctd->td_flags |= TDF_NEEDRESCHED;
2253 	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2254 		return;
2255 	if (!sched_shouldpreempt(pri, cpri, 0))
2256 		return;
2257 	ctd->td_owepreempt = 1;
2258 }
2259 
2260 /*
2261  * Add a thread to a thread queue.  Select the appropriate runq and add the
2262  * thread to it.  This is the internal function called when the tdq is
2263  * predetermined.
2264  */
2265 void
2266 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2267 {
2268 
2269 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2270 	KASSERT((td->td_inhibitors == 0),
2271 	    ("sched_add: trying to run inhibited thread"));
2272 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2273 	    ("sched_add: bad thread state"));
2274 	KASSERT(td->td_flags & TDF_INMEM,
2275 	    ("sched_add: thread swapped out"));
2276 
2277 	if (td->td_priority < tdq->tdq_lowpri)
2278 		tdq->tdq_lowpri = td->td_priority;
2279 	tdq_runq_add(tdq, td, flags);
2280 	tdq_load_add(tdq, td);
2281 }
2282 
2283 /*
2284  * Select the target thread queue and add a thread to it.  Request
2285  * preemption or IPI a remote processor if required.
2286  */
2287 void
2288 sched_add(struct thread *td, int flags)
2289 {
2290 	struct tdq *tdq;
2291 #ifdef SMP
2292 	int cpu;
2293 #endif
2294 	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
2295 	    td, td->td_name, td->td_priority, curthread,
2296 	    curthread->td_name);
2297 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2298 	/*
2299 	 * Recalculate the priority before we select the target cpu or
2300 	 * run-queue.
2301 	 */
2302 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2303 		sched_priority(td);
2304 #ifdef SMP
2305 	/*
2306 	 * Pick the destination cpu and if it isn't ours transfer to the
2307 	 * target cpu.
2308 	 */
2309 	cpu = sched_pickcpu(td, flags);
2310 	tdq = sched_setcpu(td, cpu, flags);
2311 	tdq_add(tdq, td, flags);
2312 	if (cpu != PCPU_GET(cpuid)) {
2313 		tdq_notify(tdq, td);
2314 		return;
2315 	}
2316 #else
2317 	tdq = TDQ_SELF();
2318 	TDQ_LOCK(tdq);
2319 	/*
2320 	 * Now that the thread is moving to the run-queue, set the lock
2321 	 * to the scheduler's lock.
2322 	 */
2323 	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2324 	tdq_add(tdq, td, flags);
2325 #endif
2326 	if (!(flags & SRQ_YIELDING))
2327 		sched_setpreempt(td);
2328 }
2329 
2330 /*
2331  * Remove a thread from a run-queue without running it.  This is used
2332  * when we're stealing a thread from a remote queue.  Otherwise all threads
2333  * exit by calling sched_exit_thread() and sched_throw() themselves.
2334  */
2335 void
2336 sched_rem(struct thread *td)
2337 {
2338 	struct tdq *tdq;
2339 
2340 	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
2341 	    td, td->td_name, td->td_priority, curthread,
2342 	    curthread->td_name);
2343 	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2344 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2345 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2346 	KASSERT(TD_ON_RUNQ(td),
2347 	    ("sched_rem: thread not on run queue"));
2348 	tdq_runq_rem(tdq, td);
2349 	tdq_load_rem(tdq, td);
2350 	TD_SET_CAN_RUN(td);
2351 	if (td->td_priority == tdq->tdq_lowpri)
2352 		tdq_setlowpri(tdq, NULL);
2353 }
2354 
2355 /*
2356  * Fetch cpu utilization information.  Updates on demand.
2357  */
2358 fixpt_t
2359 sched_pctcpu(struct thread *td)
2360 {
2361 	fixpt_t pctcpu;
2362 	struct td_sched *ts;
2363 
2364 	pctcpu = 0;
2365 	ts = td->td_sched;
2366 	if (ts == NULL)
2367 		return (0);
2368 
2369 	thread_lock(td);
2370 	if (ts->ts_ticks) {
2371 		int rtick;
2372 
2373 		sched_pctcpu_update(ts);
2374 		/* How many rtick per second ? */
2375 		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2376 		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2377 	}
2378 	thread_unlock(td);
2379 
2380 	return (pctcpu);
2381 }
2382 
2383 /*
2384  * Enforce affinity settings for a thread.  Called after adjustments to
2385  * cpumask.
2386  */
2387 void
2388 sched_affinity(struct thread *td)
2389 {
2390 #ifdef SMP
2391 	struct td_sched *ts;
2392 	int cpu;
2393 
2394 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2395 	ts = td->td_sched;
2396 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2397 		return;
2398 	if (!TD_IS_RUNNING(td))
2399 		return;
2400 	td->td_flags |= TDF_NEEDRESCHED;
2401 	if (!THREAD_CAN_MIGRATE(td))
2402 		return;
2403 	/*
2404 	 * Assign the new cpu and force a switch before returning to
2405 	 * userspace.  If the target thread is not running locally send
2406 	 * an ipi to force the issue.
2407 	 */
2408 	cpu = ts->ts_cpu;
2409 	ts->ts_cpu = sched_pickcpu(td, 0);
2410 	if (cpu != PCPU_GET(cpuid))
2411 		ipi_selected(1 << cpu, IPI_PREEMPT);
2412 #endif
2413 }
2414 
2415 /*
2416  * Bind a thread to a target cpu.
2417  */
2418 void
2419 sched_bind(struct thread *td, int cpu)
2420 {
2421 	struct td_sched *ts;
2422 
2423 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2424 	ts = td->td_sched;
2425 	if (ts->ts_flags & TSF_BOUND)
2426 		sched_unbind(td);
2427 	ts->ts_flags |= TSF_BOUND;
2428 	sched_pin();
2429 	if (PCPU_GET(cpuid) == cpu)
2430 		return;
2431 	ts->ts_cpu = cpu;
2432 	/* When we return from mi_switch we'll be on the correct cpu. */
2433 	mi_switch(SW_VOL, NULL);
2434 }
2435 
2436 /*
2437  * Release a bound thread.
2438  */
2439 void
2440 sched_unbind(struct thread *td)
2441 {
2442 	struct td_sched *ts;
2443 
2444 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2445 	ts = td->td_sched;
2446 	if ((ts->ts_flags & TSF_BOUND) == 0)
2447 		return;
2448 	ts->ts_flags &= ~TSF_BOUND;
2449 	sched_unpin();
2450 }
2451 
2452 int
2453 sched_is_bound(struct thread *td)
2454 {
2455 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2456 	return (td->td_sched->ts_flags & TSF_BOUND);
2457 }
2458 
2459 /*
2460  * Basic yield call.
2461  */
2462 void
2463 sched_relinquish(struct thread *td)
2464 {
2465 	thread_lock(td);
2466 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2467 	thread_unlock(td);
2468 }
2469 
2470 /*
2471  * Return the total system load.
2472  */
2473 int
2474 sched_load(void)
2475 {
2476 #ifdef SMP
2477 	int total;
2478 	int i;
2479 
2480 	total = 0;
2481 	for (i = 0; i <= mp_maxid; i++)
2482 		total += TDQ_CPU(i)->tdq_sysload;
2483 	return (total);
2484 #else
2485 	return (TDQ_SELF()->tdq_sysload);
2486 #endif
2487 }
2488 
2489 int
2490 sched_sizeof_proc(void)
2491 {
2492 	return (sizeof(struct proc));
2493 }
2494 
2495 int
2496 sched_sizeof_thread(void)
2497 {
2498 	return (sizeof(struct thread) + sizeof(struct td_sched));
2499 }
2500 
2501 /*
2502  * The actual idle process.
2503  */
2504 void
2505 sched_idletd(void *dummy)
2506 {
2507 	struct thread *td;
2508 	struct tdq *tdq;
2509 	int switchcnt;
2510 	int i;
2511 
2512 	td = curthread;
2513 	tdq = TDQ_SELF();
2514 	mtx_assert(&Giant, MA_NOTOWNED);
2515 	/* ULE relies on preemption for idle interruption. */
2516 	for (;;) {
2517 		tdq->tdq_idlestate = TDQ_RUNNING;
2518 #ifdef SMP
2519 		if (tdq_idled(tdq) == 0)
2520 			continue;
2521 #endif
2522 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2523 		/*
2524 		 * If we're switching very frequently, spin while checking
2525 		 * for load rather than entering a low power state that
2526 		 * requires an IPI.
2527 		 */
2528 		if (switchcnt > sched_idlespinthresh) {
2529 			for (i = 0; i < sched_idlespins; i++) {
2530 				if (tdq->tdq_load)
2531 					break;
2532 				cpu_spinwait();
2533 			}
2534 		}
2535 		/*
2536 		 * We must set our state to IDLE before checking
2537 		 * tdq_load for the last time to avoid a race with
2538 		 * tdq_notify().
2539 		 */
2540 		if (tdq->tdq_load == 0) {
2541 			switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2542 			tdq->tdq_idlestate = TDQ_IDLE;
2543 			if (tdq->tdq_load == 0)
2544 				cpu_idle(switchcnt > 1);
2545 		}
2546 		if (tdq->tdq_load) {
2547 			thread_lock(td);
2548 			mi_switch(SW_VOL | SWT_IDLE, NULL);
2549 			thread_unlock(td);
2550 		}
2551 	}
2552 }
2553 
2554 /*
2555  * A CPU is entering for the first time or a thread is exiting.
2556  */
2557 void
2558 sched_throw(struct thread *td)
2559 {
2560 	struct thread *newtd;
2561 	struct tdq *tdq;
2562 
2563 	tdq = TDQ_SELF();
2564 	if (td == NULL) {
2565 		/* Correct spinlock nesting and acquire the correct lock. */
2566 		TDQ_LOCK(tdq);
2567 		spinlock_exit();
2568 	} else {
2569 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2570 		tdq_load_rem(tdq, td);
2571 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2572 	}
2573 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2574 	newtd = choosethread();
2575 	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2576 	PCPU_SET(switchtime, cpu_ticks());
2577 	PCPU_SET(switchticks, ticks);
2578 	cpu_throw(td, newtd);		/* doesn't return */
2579 }
2580 
2581 /*
2582  * This is called from fork_exit().  Just acquire the correct locks and
2583  * let fork do the rest of the work.
2584  */
2585 void
2586 sched_fork_exit(struct thread *td)
2587 {
2588 	struct td_sched *ts;
2589 	struct tdq *tdq;
2590 	int cpuid;
2591 
2592 	/*
2593 	 * Finish setting up thread glue so that it begins execution in a
2594 	 * non-nested critical section with the scheduler lock held.
2595 	 */
2596 	cpuid = PCPU_GET(cpuid);
2597 	tdq = TDQ_CPU(cpuid);
2598 	ts = td->td_sched;
2599 	if (TD_IS_IDLETHREAD(td))
2600 		td->td_lock = TDQ_LOCKPTR(tdq);
2601 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2602 	td->td_oncpu = cpuid;
2603 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2604 	lock_profile_obtain_lock_success(
2605 	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2606 }
2607 
2608 #ifdef SMP
2609 
2610 /*
2611  * Build the CPU topology dump string. Is recursively called to collect
2612  * the topology tree.
2613  */
2614 static int
2615 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2616     int indent)
2617 {
2618 	int i, first;
2619 
2620 	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2621 	    "", indent, cg->cg_level);
2622 	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"0x%x\">", indent, "",
2623 	    cg->cg_count, cg->cg_mask);
2624 	first = TRUE;
2625 	for (i = 0; i < MAXCPU; i++) {
2626 		if ((cg->cg_mask & (1 << i)) != 0) {
2627 			if (!first)
2628 				sbuf_printf(sb, ", ");
2629 			else
2630 				first = FALSE;
2631 			sbuf_printf(sb, "%d", i);
2632 		}
2633 	}
2634 	sbuf_printf(sb, "</cpu>\n");
2635 
2636 	sbuf_printf(sb, "%*s <flags>", indent, "");
2637 	if (cg->cg_flags != 0) {
2638 		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2639 			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>\n");
2640 		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2641 			sbuf_printf(sb, "<flag name=\"THREAD\">SMT group</flag>\n");
2642 	}
2643 	sbuf_printf(sb, "</flags>\n");
2644 
2645 	if (cg->cg_children > 0) {
2646 		sbuf_printf(sb, "%*s <children>\n", indent, "");
2647 		for (i = 0; i < cg->cg_children; i++)
2648 			sysctl_kern_sched_topology_spec_internal(sb,
2649 			    &cg->cg_child[i], indent+2);
2650 		sbuf_printf(sb, "%*s </children>\n", indent, "");
2651 	}
2652 	sbuf_printf(sb, "%*s</group>\n", indent, "");
2653 	return (0);
2654 }
2655 
2656 /*
2657  * Sysctl handler for retrieving topology dump. It's a wrapper for
2658  * the recursive sysctl_kern_smp_topology_spec_internal().
2659  */
2660 static int
2661 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2662 {
2663 	struct sbuf *topo;
2664 	int err;
2665 
2666 	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2667 
2668 	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2669 	if (topo == NULL)
2670 		return (ENOMEM);
2671 
2672 	sbuf_printf(topo, "<groups>\n");
2673 	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2674 	sbuf_printf(topo, "</groups>\n");
2675 
2676 	if (err == 0) {
2677 		sbuf_finish(topo);
2678 		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2679 	}
2680 	sbuf_delete(topo);
2681 	return (err);
2682 }
2683 #endif
2684 
2685 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2686 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2687     "Scheduler name");
2688 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2689     "Slice size for timeshare threads");
2690 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2691      "Interactivity score threshold");
2692 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2693      0,"Min priority for preemption, lower priorities have greater precedence");
2694 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2695      0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2696 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2697      0,"Number of times idle will spin waiting for new work.");
2698 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2699      0,"Threshold before we will permit idle spinning.");
2700 #ifdef SMP
2701 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2702     "Number of hz ticks to keep thread affinity for");
2703 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2704     "Enables the long-term load balancer");
2705 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2706     &balance_interval, 0,
2707     "Average frequency in stathz ticks to run the long-term balancer");
2708 SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0,
2709     "Steals work from another hyper-threaded core on idle");
2710 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2711     "Attempts to steal work from other cores before idling");
2712 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2713     "Minimum load on remote cpu before we'll steal");
2714 
2715 /* Retrieve SMP topology */
2716 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2717     CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2718     "XML dump of detected CPU topology");
2719 #endif
2720 
2721 /* ps compat.  All cpu percentages from ULE are weighted. */
2722 static int ccpu = 0;
2723 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2724