xref: /freebsd/sys/kern/sched_ule.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * This file implements the ULE scheduler.  ULE supports independent CPU
29  * run queues and fine grain locking.  It has superior interactive
30  * performance under load even on uni-processor systems.
31  *
32  * etymology:
33  *   ULE is the last three letters in schedule.  It owes its name to a
34  * generic user created for a scheduling system by Paul Mikesell at
35  * Isilon Systems and a general lack of creativity on the part of the author.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_kdtrace.h"
43 #include "opt_sched.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resource.h>
54 #include <sys/resourcevar.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/turnstile.h>
61 #include <sys/umtx.h>
62 #include <sys/vmmeter.h>
63 #include <sys/cpuset.h>
64 #include <sys/sbuf.h>
65 
66 #ifdef HWPMC_HOOKS
67 #include <sys/pmckern.h>
68 #endif
69 
70 #ifdef KDTRACE_HOOKS
71 #include <sys/dtrace_bsd.h>
72 int				dtrace_vtime_active;
73 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
74 #endif
75 
76 #include <machine/cpu.h>
77 #include <machine/smp.h>
78 
79 #if defined(__sparc64__)
80 #error "This architecture is not currently compatible with ULE"
81 #endif
82 
83 #define	KTR_ULE	0
84 
85 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
86 #define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
87 #define	TDQ_LOADNAME_LEN	(PCPU_NAME_LEN + sizeof(" load"))
88 
89 /*
90  * Thread scheduler specific section.  All fields are protected
91  * by the thread lock.
92  */
93 struct td_sched {
94 	struct runq	*ts_runq;	/* Run-queue we're queued on. */
95 	short		ts_flags;	/* TSF_* flags. */
96 	u_char		ts_cpu;		/* CPU that we have affinity for. */
97 	int		ts_rltick;	/* Real last tick, for affinity. */
98 	int		ts_slice;	/* Ticks of slice remaining. */
99 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
100 	u_int		ts_runtime;	/* Number of ticks we were running */
101 	int		ts_ltick;	/* Last tick that we were running on */
102 	int		ts_incrtick;	/* Last tick that we incremented on */
103 	int		ts_ftick;	/* First tick that we were running on */
104 	int		ts_ticks;	/* Tick count */
105 #ifdef KTR
106 	char		ts_name[TS_NAME_LEN];
107 #endif
108 };
109 /* flags kept in ts_flags */
110 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112 
113 static struct td_sched td_sched0;
114 
115 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116 #define	THREAD_CAN_SCHED(td, cpu)	\
117     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118 
119 /*
120  * Priority ranges used for interactive and non-interactive timeshare
121  * threads.  The timeshare priorities are split up into four ranges.
122  * The first range handles interactive threads.  The last three ranges
123  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124  * ranges supporting nice values.
125  */
126 #define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127 #define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128 
129 #define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
130 #define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
131 #define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
132 #define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
133 
134 /*
135  * Cpu percentage computation macros and defines.
136  *
137  * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
138  * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
139  * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
140  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
141  * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
142  * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
143  */
144 #define	SCHED_TICK_SECS		10
145 #define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
146 #define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
147 #define	SCHED_TICK_SHIFT	10
148 #define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
149 #define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
150 
151 /*
152  * These macros determine priorities for non-interactive threads.  They are
153  * assigned a priority based on their recent cpu utilization as expressed
154  * by the ratio of ticks to the tick total.  NHALF priorities at the start
155  * and end of the MIN to MAX timeshare range are only reachable with negative
156  * or positive nice respectively.
157  *
158  * PRI_RANGE:	Priority range for utilization dependent priorities.
159  * PRI_NRESV:	Number of nice values.
160  * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
161  * PRI_NICE:	Determines the part of the priority inherited from nice.
162  */
163 #define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
164 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
165 #define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
166 #define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
167 #define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
168 #define	SCHED_PRI_TICKS(ts)						\
169     (SCHED_TICK_HZ((ts)) /						\
170     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
171 #define	SCHED_PRI_NICE(nice)	(nice)
172 
173 /*
174  * These determine the interactivity of a process.  Interactivity differs from
175  * cpu utilization in that it expresses the voluntary time slept vs time ran
176  * while cpu utilization includes all time not running.  This more accurately
177  * models the intent of the thread.
178  *
179  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
180  *		before throttling back.
181  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
182  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
183  * INTERACT_THRESH:	Threshold for placement on the current runq.
184  */
185 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
186 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
187 #define	SCHED_INTERACT_MAX	(100)
188 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
189 #define	SCHED_INTERACT_THRESH	(30)
190 
191 /*
192  * tickincr:		Converts a stathz tick into a hz domain scaled by
193  *			the shift factor.  Without the shift the error rate
194  *			due to rounding would be unacceptably high.
195  * realstathz:		stathz is sometimes 0 and run off of hz.
196  * sched_slice:		Runtime of each thread before rescheduling.
197  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
198  */
199 static int sched_interact = SCHED_INTERACT_THRESH;
200 static int realstathz;
201 static int tickincr;
202 static int sched_slice = 1;
203 #ifdef PREEMPTION
204 #ifdef FULL_PREEMPTION
205 static int preempt_thresh = PRI_MAX_IDLE;
206 #else
207 static int preempt_thresh = PRI_MIN_KERN;
208 #endif
209 #else
210 static int preempt_thresh = 0;
211 #endif
212 static int static_boost = PRI_MIN_BATCH;
213 static int sched_idlespins = 10000;
214 static int sched_idlespinthresh = 16;
215 
216 /*
217  * tdq - per processor runqs and statistics.  All fields are protected by the
218  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
219  * locking in sched_pickcpu();
220  */
221 struct tdq {
222 	/* Ordered to improve efficiency of cpu_search() and switch(). */
223 	struct mtx	tdq_lock;		/* run queue lock. */
224 	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
225 	volatile int	tdq_load;		/* Aggregate load. */
226 	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
227 	int		tdq_sysload;		/* For loadavg, !ITHD load. */
228 	int		tdq_transferable;	/* Transferable thread count. */
229 	short		tdq_switchcnt;		/* Switches this tick. */
230 	short		tdq_oldswitchcnt;	/* Switches last tick. */
231 	u_char		tdq_lowpri;		/* Lowest priority thread. */
232 	u_char		tdq_ipipending;		/* IPI pending. */
233 	u_char		tdq_idx;		/* Current insert index. */
234 	u_char		tdq_ridx;		/* Current removal index. */
235 	struct runq	tdq_realtime;		/* real-time run queue. */
236 	struct runq	tdq_timeshare;		/* timeshare run queue. */
237 	struct runq	tdq_idle;		/* Queue of IDLE threads. */
238 	char		tdq_name[TDQ_NAME_LEN];
239 #ifdef KTR
240 	char		tdq_loadname[TDQ_LOADNAME_LEN];
241 #endif
242 } __aligned(64);
243 
244 /* Idle thread states and config. */
245 #define	TDQ_RUNNING	1
246 #define	TDQ_IDLE	2
247 
248 #ifdef SMP
249 struct cpu_group *cpu_top;		/* CPU topology */
250 
251 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
252 #define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
253 
254 /*
255  * Run-time tunables.
256  */
257 static int rebalance = 1;
258 static int balance_interval = 128;	/* Default set in sched_initticks(). */
259 static int affinity;
260 static int steal_htt = 1;
261 static int steal_idle = 1;
262 static int steal_thresh = 2;
263 
264 /*
265  * One thread queue per processor.
266  */
267 static struct tdq	tdq_cpu[MAXCPU];
268 static struct tdq	*balance_tdq;
269 static int balance_ticks;
270 
271 #define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
272 #define	TDQ_CPU(x)	(&tdq_cpu[(x)])
273 #define	TDQ_ID(x)	((int)((x) - tdq_cpu))
274 #else	/* !SMP */
275 static struct tdq	tdq_cpu;
276 
277 #define	TDQ_ID(x)	(0)
278 #define	TDQ_SELF()	(&tdq_cpu)
279 #define	TDQ_CPU(x)	(&tdq_cpu)
280 #endif
281 
282 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
283 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
284 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
285 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
286 #define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
287 
288 static void sched_priority(struct thread *);
289 static void sched_thread_priority(struct thread *, u_char);
290 static int sched_interact_score(struct thread *);
291 static void sched_interact_update(struct thread *);
292 static void sched_interact_fork(struct thread *);
293 static void sched_pctcpu_update(struct td_sched *);
294 
295 /* Operations on per processor queues */
296 static struct thread *tdq_choose(struct tdq *);
297 static void tdq_setup(struct tdq *);
298 static void tdq_load_add(struct tdq *, struct thread *);
299 static void tdq_load_rem(struct tdq *, struct thread *);
300 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
301 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
302 static inline int sched_shouldpreempt(int, int, int);
303 void tdq_print(int cpu);
304 static void runq_print(struct runq *rq);
305 static void tdq_add(struct tdq *, struct thread *, int);
306 #ifdef SMP
307 static int tdq_move(struct tdq *, struct tdq *);
308 static int tdq_idled(struct tdq *);
309 static void tdq_notify(struct tdq *, struct thread *);
310 static struct thread *tdq_steal(struct tdq *, int);
311 static struct thread *runq_steal(struct runq *, int);
312 static int sched_pickcpu(struct thread *, int);
313 static void sched_balance(void);
314 static int sched_balance_pair(struct tdq *, struct tdq *);
315 static inline struct tdq *sched_setcpu(struct thread *, int, int);
316 static inline void thread_unblock_switch(struct thread *, struct mtx *);
317 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
318 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
319 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
320     struct cpu_group *cg, int indent);
321 #endif
322 
323 static void sched_setup(void *dummy);
324 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
325 
326 static void sched_initticks(void *dummy);
327 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
328     NULL);
329 
330 /*
331  * Print the threads waiting on a run-queue.
332  */
333 static void
334 runq_print(struct runq *rq)
335 {
336 	struct rqhead *rqh;
337 	struct thread *td;
338 	int pri;
339 	int j;
340 	int i;
341 
342 	for (i = 0; i < RQB_LEN; i++) {
343 		printf("\t\trunq bits %d 0x%zx\n",
344 		    i, rq->rq_status.rqb_bits[i]);
345 		for (j = 0; j < RQB_BPW; j++)
346 			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
347 				pri = j + (i << RQB_L2BPW);
348 				rqh = &rq->rq_queues[pri];
349 				TAILQ_FOREACH(td, rqh, td_runq) {
350 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
351 					    td, td->td_name, td->td_priority,
352 					    td->td_rqindex, pri);
353 				}
354 			}
355 	}
356 }
357 
358 /*
359  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
360  */
361 void
362 tdq_print(int cpu)
363 {
364 	struct tdq *tdq;
365 
366 	tdq = TDQ_CPU(cpu);
367 
368 	printf("tdq %d:\n", TDQ_ID(tdq));
369 	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
370 	printf("\tLock name:      %s\n", tdq->tdq_name);
371 	printf("\tload:           %d\n", tdq->tdq_load);
372 	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
373 	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
374 	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
375 	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
376 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
377 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
378 	printf("\trealtime runq:\n");
379 	runq_print(&tdq->tdq_realtime);
380 	printf("\ttimeshare runq:\n");
381 	runq_print(&tdq->tdq_timeshare);
382 	printf("\tidle runq:\n");
383 	runq_print(&tdq->tdq_idle);
384 }
385 
386 static inline int
387 sched_shouldpreempt(int pri, int cpri, int remote)
388 {
389 	/*
390 	 * If the new priority is not better than the current priority there is
391 	 * nothing to do.
392 	 */
393 	if (pri >= cpri)
394 		return (0);
395 	/*
396 	 * Always preempt idle.
397 	 */
398 	if (cpri >= PRI_MIN_IDLE)
399 		return (1);
400 	/*
401 	 * If preemption is disabled don't preempt others.
402 	 */
403 	if (preempt_thresh == 0)
404 		return (0);
405 	/*
406 	 * Preempt if we exceed the threshold.
407 	 */
408 	if (pri <= preempt_thresh)
409 		return (1);
410 	/*
411 	 * If we're interactive or better and there is non-interactive
412 	 * or worse running preempt only remote processors.
413 	 */
414 	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
415 		return (1);
416 	return (0);
417 }
418 
419 #define	TS_RQ_PPQ	(((PRI_MAX_BATCH - PRI_MIN_BATCH) + 1) / RQ_NQS)
420 /*
421  * Add a thread to the actual run-queue.  Keeps transferable counts up to
422  * date with what is actually on the run-queue.  Selects the correct
423  * queue position for timeshare threads.
424  */
425 static __inline void
426 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
427 {
428 	struct td_sched *ts;
429 	u_char pri;
430 
431 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
432 	THREAD_LOCK_ASSERT(td, MA_OWNED);
433 
434 	pri = td->td_priority;
435 	ts = td->td_sched;
436 	TD_SET_RUNQ(td);
437 	if (THREAD_CAN_MIGRATE(td)) {
438 		tdq->tdq_transferable++;
439 		ts->ts_flags |= TSF_XFERABLE;
440 	}
441 	if (pri < PRI_MIN_BATCH) {
442 		ts->ts_runq = &tdq->tdq_realtime;
443 	} else if (pri <= PRI_MAX_BATCH) {
444 		ts->ts_runq = &tdq->tdq_timeshare;
445 		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
446 			("Invalid priority %d on timeshare runq", pri));
447 		/*
448 		 * This queue contains only priorities between MIN and MAX
449 		 * realtime.  Use the whole queue to represent these values.
450 		 */
451 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
452 			pri = (pri - PRI_MIN_BATCH) / TS_RQ_PPQ;
453 			pri = (pri + tdq->tdq_idx) % RQ_NQS;
454 			/*
455 			 * This effectively shortens the queue by one so we
456 			 * can have a one slot difference between idx and
457 			 * ridx while we wait for threads to drain.
458 			 */
459 			if (tdq->tdq_ridx != tdq->tdq_idx &&
460 			    pri == tdq->tdq_ridx)
461 				pri = (unsigned char)(pri - 1) % RQ_NQS;
462 		} else
463 			pri = tdq->tdq_ridx;
464 		runq_add_pri(ts->ts_runq, td, pri, flags);
465 		return;
466 	} else
467 		ts->ts_runq = &tdq->tdq_idle;
468 	runq_add(ts->ts_runq, td, flags);
469 }
470 
471 /*
472  * Remove a thread from a run-queue.  This typically happens when a thread
473  * is selected to run.  Running threads are not on the queue and the
474  * transferable count does not reflect them.
475  */
476 static __inline void
477 tdq_runq_rem(struct tdq *tdq, struct thread *td)
478 {
479 	struct td_sched *ts;
480 
481 	ts = td->td_sched;
482 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
483 	KASSERT(ts->ts_runq != NULL,
484 	    ("tdq_runq_remove: thread %p null ts_runq", td));
485 	if (ts->ts_flags & TSF_XFERABLE) {
486 		tdq->tdq_transferable--;
487 		ts->ts_flags &= ~TSF_XFERABLE;
488 	}
489 	if (ts->ts_runq == &tdq->tdq_timeshare) {
490 		if (tdq->tdq_idx != tdq->tdq_ridx)
491 			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
492 		else
493 			runq_remove_idx(ts->ts_runq, td, NULL);
494 	} else
495 		runq_remove(ts->ts_runq, td);
496 }
497 
498 /*
499  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
500  * for this thread to the referenced thread queue.
501  */
502 static void
503 tdq_load_add(struct tdq *tdq, struct thread *td)
504 {
505 
506 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
507 	THREAD_LOCK_ASSERT(td, MA_OWNED);
508 
509 	tdq->tdq_load++;
510 	if ((td->td_flags & TDF_NOLOAD) == 0)
511 		tdq->tdq_sysload++;
512 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
513 }
514 
515 /*
516  * Remove the load from a thread that is transitioning to a sleep state or
517  * exiting.
518  */
519 static void
520 tdq_load_rem(struct tdq *tdq, struct thread *td)
521 {
522 
523 	THREAD_LOCK_ASSERT(td, MA_OWNED);
524 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
525 	KASSERT(tdq->tdq_load != 0,
526 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
527 
528 	tdq->tdq_load--;
529 	if ((td->td_flags & TDF_NOLOAD) == 0)
530 		tdq->tdq_sysload--;
531 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
532 }
533 
534 /*
535  * Set lowpri to its exact value by searching the run-queue and
536  * evaluating curthread.  curthread may be passed as an optimization.
537  */
538 static void
539 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
540 {
541 	struct thread *td;
542 
543 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
544 	if (ctd == NULL)
545 		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
546 	td = tdq_choose(tdq);
547 	if (td == NULL || td->td_priority > ctd->td_priority)
548 		tdq->tdq_lowpri = ctd->td_priority;
549 	else
550 		tdq->tdq_lowpri = td->td_priority;
551 }
552 
553 #ifdef SMP
554 struct cpu_search {
555 	cpuset_t cs_mask;
556 	u_int	cs_load;
557 	u_int	cs_cpu;
558 	int	cs_limit;	/* Min priority for low min load for high. */
559 };
560 
561 #define	CPU_SEARCH_LOWEST	0x1
562 #define	CPU_SEARCH_HIGHEST	0x2
563 #define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
564 
565 #define	CPUSET_FOREACH(cpu, mask)				\
566 	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
567 		if ((mask) & 1 << (cpu))
568 
569 static __inline int cpu_search(struct cpu_group *cg, struct cpu_search *low,
570     struct cpu_search *high, const int match);
571 int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low);
572 int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high);
573 int cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
574     struct cpu_search *high);
575 
576 /*
577  * This routine compares according to the match argument and should be
578  * reduced in actual instantiations via constant propagation and dead code
579  * elimination.
580  */
581 static __inline int
582 cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high,
583     const int match)
584 {
585 	struct tdq *tdq;
586 
587 	tdq = TDQ_CPU(cpu);
588 	if (match & CPU_SEARCH_LOWEST)
589 		if (CPU_ISSET(cpu, &low->cs_mask) &&
590 		    tdq->tdq_load < low->cs_load &&
591 		    tdq->tdq_lowpri > low->cs_limit) {
592 			low->cs_cpu = cpu;
593 			low->cs_load = tdq->tdq_load;
594 		}
595 	if (match & CPU_SEARCH_HIGHEST)
596 		if (CPU_ISSET(cpu, &high->cs_mask) &&
597 		    tdq->tdq_load >= high->cs_limit &&
598 		    tdq->tdq_load > high->cs_load &&
599 		    tdq->tdq_transferable) {
600 			high->cs_cpu = cpu;
601 			high->cs_load = tdq->tdq_load;
602 		}
603 	return (tdq->tdq_load);
604 }
605 
606 /*
607  * Search the tree of cpu_groups for the lowest or highest loaded cpu
608  * according to the match argument.  This routine actually compares the
609  * load on all paths through the tree and finds the least loaded cpu on
610  * the least loaded path, which may differ from the least loaded cpu in
611  * the system.  This balances work among caches and busses.
612  *
613  * This inline is instantiated in three forms below using constants for the
614  * match argument.  It is reduced to the minimum set for each case.  It is
615  * also recursive to the depth of the tree.
616  */
617 static __inline int
618 cpu_search(struct cpu_group *cg, struct cpu_search *low,
619     struct cpu_search *high, const int match)
620 {
621 	int total;
622 
623 	total = 0;
624 	if (cg->cg_children) {
625 		struct cpu_search lgroup;
626 		struct cpu_search hgroup;
627 		struct cpu_group *child;
628 		u_int lload;
629 		int hload;
630 		int load;
631 		int i;
632 
633 		lload = -1;
634 		hload = -1;
635 		for (i = 0; i < cg->cg_children; i++) {
636 			child = &cg->cg_child[i];
637 			if (match & CPU_SEARCH_LOWEST) {
638 				lgroup = *low;
639 				lgroup.cs_load = -1;
640 			}
641 			if (match & CPU_SEARCH_HIGHEST) {
642 				hgroup = *high;
643 				lgroup.cs_load = 0;
644 			}
645 			switch (match) {
646 			case CPU_SEARCH_LOWEST:
647 				load = cpu_search_lowest(child, &lgroup);
648 				break;
649 			case CPU_SEARCH_HIGHEST:
650 				load = cpu_search_highest(child, &hgroup);
651 				break;
652 			case CPU_SEARCH_BOTH:
653 				load = cpu_search_both(child, &lgroup, &hgroup);
654 				break;
655 			}
656 			total += load;
657 			if (match & CPU_SEARCH_LOWEST)
658 				if (load < lload || low->cs_cpu == -1) {
659 					*low = lgroup;
660 					lload = load;
661 				}
662 			if (match & CPU_SEARCH_HIGHEST)
663 				if (load > hload || high->cs_cpu == -1) {
664 					hload = load;
665 					*high = hgroup;
666 				}
667 		}
668 	} else {
669 		int cpu;
670 
671 		CPUSET_FOREACH(cpu, cg->cg_mask)
672 			total += cpu_compare(cpu, low, high, match);
673 	}
674 	return (total);
675 }
676 
677 /*
678  * cpu_search instantiations must pass constants to maintain the inline
679  * optimization.
680  */
681 int
682 cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low)
683 {
684 	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
685 }
686 
687 int
688 cpu_search_highest(struct cpu_group *cg, struct cpu_search *high)
689 {
690 	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
691 }
692 
693 int
694 cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
695     struct cpu_search *high)
696 {
697 	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
698 }
699 
700 /*
701  * Find the cpu with the least load via the least loaded path that has a
702  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
703  * acceptable.
704  */
705 static inline int
706 sched_lowest(struct cpu_group *cg, cpuset_t mask, int pri)
707 {
708 	struct cpu_search low;
709 
710 	low.cs_cpu = -1;
711 	low.cs_load = -1;
712 	low.cs_mask = mask;
713 	low.cs_limit = pri;
714 	cpu_search_lowest(cg, &low);
715 	return low.cs_cpu;
716 }
717 
718 /*
719  * Find the cpu with the highest load via the highest loaded path.
720  */
721 static inline int
722 sched_highest(struct cpu_group *cg, cpuset_t mask, int minload)
723 {
724 	struct cpu_search high;
725 
726 	high.cs_cpu = -1;
727 	high.cs_load = 0;
728 	high.cs_mask = mask;
729 	high.cs_limit = minload;
730 	cpu_search_highest(cg, &high);
731 	return high.cs_cpu;
732 }
733 
734 /*
735  * Simultaneously find the highest and lowest loaded cpu reachable via
736  * cg.
737  */
738 static inline void
739 sched_both(struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
740 {
741 	struct cpu_search high;
742 	struct cpu_search low;
743 
744 	low.cs_cpu = -1;
745 	low.cs_limit = -1;
746 	low.cs_load = -1;
747 	low.cs_mask = mask;
748 	high.cs_load = 0;
749 	high.cs_cpu = -1;
750 	high.cs_limit = -1;
751 	high.cs_mask = mask;
752 	cpu_search_both(cg, &low, &high);
753 	*lowcpu = low.cs_cpu;
754 	*highcpu = high.cs_cpu;
755 	return;
756 }
757 
758 static void
759 sched_balance_group(struct cpu_group *cg)
760 {
761 	cpuset_t mask;
762 	int high;
763 	int low;
764 	int i;
765 
766 	CPU_FILL(&mask);
767 	for (;;) {
768 		sched_both(cg, mask, &low, &high);
769 		if (low == high || low == -1 || high == -1)
770 			break;
771 		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low)))
772 			break;
773 		/*
774 		 * If we failed to move any threads determine which cpu
775 		 * to kick out of the set and try again.
776 	 	 */
777 		if (TDQ_CPU(high)->tdq_transferable == 0)
778 			CPU_CLR(high, &mask);
779 		else
780 			CPU_CLR(low, &mask);
781 	}
782 
783 	for (i = 0; i < cg->cg_children; i++)
784 		sched_balance_group(&cg->cg_child[i]);
785 }
786 
787 static void
788 sched_balance(void)
789 {
790 	struct tdq *tdq;
791 
792 	/*
793 	 * Select a random time between .5 * balance_interval and
794 	 * 1.5 * balance_interval.
795 	 */
796 	balance_ticks = max(balance_interval / 2, 1);
797 	balance_ticks += random() % balance_interval;
798 	if (smp_started == 0 || rebalance == 0)
799 		return;
800 	tdq = TDQ_SELF();
801 	TDQ_UNLOCK(tdq);
802 	sched_balance_group(cpu_top);
803 	TDQ_LOCK(tdq);
804 }
805 
806 /*
807  * Lock two thread queues using their address to maintain lock order.
808  */
809 static void
810 tdq_lock_pair(struct tdq *one, struct tdq *two)
811 {
812 	if (one < two) {
813 		TDQ_LOCK(one);
814 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
815 	} else {
816 		TDQ_LOCK(two);
817 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
818 	}
819 }
820 
821 /*
822  * Unlock two thread queues.  Order is not important here.
823  */
824 static void
825 tdq_unlock_pair(struct tdq *one, struct tdq *two)
826 {
827 	TDQ_UNLOCK(one);
828 	TDQ_UNLOCK(two);
829 }
830 
831 /*
832  * Transfer load between two imbalanced thread queues.
833  */
834 static int
835 sched_balance_pair(struct tdq *high, struct tdq *low)
836 {
837 	int transferable;
838 	int high_load;
839 	int low_load;
840 	int moved;
841 	int move;
842 	int diff;
843 	int i;
844 
845 	tdq_lock_pair(high, low);
846 	transferable = high->tdq_transferable;
847 	high_load = high->tdq_load;
848 	low_load = low->tdq_load;
849 	moved = 0;
850 	/*
851 	 * Determine what the imbalance is and then adjust that to how many
852 	 * threads we actually have to give up (transferable).
853 	 */
854 	if (transferable != 0) {
855 		diff = high_load - low_load;
856 		move = diff / 2;
857 		if (diff & 0x1)
858 			move++;
859 		move = min(move, transferable);
860 		for (i = 0; i < move; i++)
861 			moved += tdq_move(high, low);
862 		/*
863 		 * IPI the target cpu to force it to reschedule with the new
864 		 * workload.
865 		 */
866 		ipi_cpu(TDQ_ID(low), IPI_PREEMPT);
867 	}
868 	tdq_unlock_pair(high, low);
869 	return (moved);
870 }
871 
872 /*
873  * Move a thread from one thread queue to another.
874  */
875 static int
876 tdq_move(struct tdq *from, struct tdq *to)
877 {
878 	struct td_sched *ts;
879 	struct thread *td;
880 	struct tdq *tdq;
881 	int cpu;
882 
883 	TDQ_LOCK_ASSERT(from, MA_OWNED);
884 	TDQ_LOCK_ASSERT(to, MA_OWNED);
885 
886 	tdq = from;
887 	cpu = TDQ_ID(to);
888 	td = tdq_steal(tdq, cpu);
889 	if (td == NULL)
890 		return (0);
891 	ts = td->td_sched;
892 	/*
893 	 * Although the run queue is locked the thread may be blocked.  Lock
894 	 * it to clear this and acquire the run-queue lock.
895 	 */
896 	thread_lock(td);
897 	/* Drop recursive lock on from acquired via thread_lock(). */
898 	TDQ_UNLOCK(from);
899 	sched_rem(td);
900 	ts->ts_cpu = cpu;
901 	td->td_lock = TDQ_LOCKPTR(to);
902 	tdq_add(to, td, SRQ_YIELDING);
903 	return (1);
904 }
905 
906 /*
907  * This tdq has idled.  Try to steal a thread from another cpu and switch
908  * to it.
909  */
910 static int
911 tdq_idled(struct tdq *tdq)
912 {
913 	struct cpu_group *cg;
914 	struct tdq *steal;
915 	cpuset_t mask;
916 	int thresh;
917 	int cpu;
918 
919 	if (smp_started == 0 || steal_idle == 0)
920 		return (1);
921 	CPU_FILL(&mask);
922 	CPU_CLR(PCPU_GET(cpuid), &mask);
923 	/* We don't want to be preempted while we're iterating. */
924 	spinlock_enter();
925 	for (cg = tdq->tdq_cg; cg != NULL; ) {
926 		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
927 			thresh = steal_thresh;
928 		else
929 			thresh = 1;
930 		cpu = sched_highest(cg, mask, thresh);
931 		if (cpu == -1) {
932 			cg = cg->cg_parent;
933 			continue;
934 		}
935 		steal = TDQ_CPU(cpu);
936 		CPU_CLR(cpu, &mask);
937 		tdq_lock_pair(tdq, steal);
938 		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
939 			tdq_unlock_pair(tdq, steal);
940 			continue;
941 		}
942 		/*
943 		 * If a thread was added while interrupts were disabled don't
944 		 * steal one here.  If we fail to acquire one due to affinity
945 		 * restrictions loop again with this cpu removed from the
946 		 * set.
947 		 */
948 		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
949 			tdq_unlock_pair(tdq, steal);
950 			continue;
951 		}
952 		spinlock_exit();
953 		TDQ_UNLOCK(steal);
954 		mi_switch(SW_VOL | SWT_IDLE, NULL);
955 		thread_unlock(curthread);
956 
957 		return (0);
958 	}
959 	spinlock_exit();
960 	return (1);
961 }
962 
963 /*
964  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
965  */
966 static void
967 tdq_notify(struct tdq *tdq, struct thread *td)
968 {
969 	struct thread *ctd;
970 	int pri;
971 	int cpu;
972 
973 	if (tdq->tdq_ipipending)
974 		return;
975 	cpu = td->td_sched->ts_cpu;
976 	pri = td->td_priority;
977 	ctd = pcpu_find(cpu)->pc_curthread;
978 	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
979 		return;
980 	if (TD_IS_IDLETHREAD(ctd)) {
981 		/*
982 		 * If the MD code has an idle wakeup routine try that before
983 		 * falling back to IPI.
984 		 */
985 		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
986 			return;
987 	}
988 	tdq->tdq_ipipending = 1;
989 	ipi_cpu(cpu, IPI_PREEMPT);
990 }
991 
992 /*
993  * Steals load from a timeshare queue.  Honors the rotating queue head
994  * index.
995  */
996 static struct thread *
997 runq_steal_from(struct runq *rq, int cpu, u_char start)
998 {
999 	struct rqbits *rqb;
1000 	struct rqhead *rqh;
1001 	struct thread *td;
1002 	int first;
1003 	int bit;
1004 	int pri;
1005 	int i;
1006 
1007 	rqb = &rq->rq_status;
1008 	bit = start & (RQB_BPW -1);
1009 	pri = 0;
1010 	first = 0;
1011 again:
1012 	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1013 		if (rqb->rqb_bits[i] == 0)
1014 			continue;
1015 		if (bit != 0) {
1016 			for (pri = bit; pri < RQB_BPW; pri++)
1017 				if (rqb->rqb_bits[i] & (1ul << pri))
1018 					break;
1019 			if (pri >= RQB_BPW)
1020 				continue;
1021 		} else
1022 			pri = RQB_FFS(rqb->rqb_bits[i]);
1023 		pri += (i << RQB_L2BPW);
1024 		rqh = &rq->rq_queues[pri];
1025 		TAILQ_FOREACH(td, rqh, td_runq) {
1026 			if (first && THREAD_CAN_MIGRATE(td) &&
1027 			    THREAD_CAN_SCHED(td, cpu))
1028 				return (td);
1029 			first = 1;
1030 		}
1031 	}
1032 	if (start != 0) {
1033 		start = 0;
1034 		goto again;
1035 	}
1036 
1037 	return (NULL);
1038 }
1039 
1040 /*
1041  * Steals load from a standard linear queue.
1042  */
1043 static struct thread *
1044 runq_steal(struct runq *rq, int cpu)
1045 {
1046 	struct rqhead *rqh;
1047 	struct rqbits *rqb;
1048 	struct thread *td;
1049 	int word;
1050 	int bit;
1051 
1052 	rqb = &rq->rq_status;
1053 	for (word = 0; word < RQB_LEN; word++) {
1054 		if (rqb->rqb_bits[word] == 0)
1055 			continue;
1056 		for (bit = 0; bit < RQB_BPW; bit++) {
1057 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1058 				continue;
1059 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1060 			TAILQ_FOREACH(td, rqh, td_runq)
1061 				if (THREAD_CAN_MIGRATE(td) &&
1062 				    THREAD_CAN_SCHED(td, cpu))
1063 					return (td);
1064 		}
1065 	}
1066 	return (NULL);
1067 }
1068 
1069 /*
1070  * Attempt to steal a thread in priority order from a thread queue.
1071  */
1072 static struct thread *
1073 tdq_steal(struct tdq *tdq, int cpu)
1074 {
1075 	struct thread *td;
1076 
1077 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1078 	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1079 		return (td);
1080 	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1081 	    cpu, tdq->tdq_ridx)) != NULL)
1082 		return (td);
1083 	return (runq_steal(&tdq->tdq_idle, cpu));
1084 }
1085 
1086 /*
1087  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1088  * current lock and returns with the assigned queue locked.
1089  */
1090 static inline struct tdq *
1091 sched_setcpu(struct thread *td, int cpu, int flags)
1092 {
1093 
1094 	struct tdq *tdq;
1095 
1096 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1097 	tdq = TDQ_CPU(cpu);
1098 	td->td_sched->ts_cpu = cpu;
1099 	/*
1100 	 * If the lock matches just return the queue.
1101 	 */
1102 	if (td->td_lock == TDQ_LOCKPTR(tdq))
1103 		return (tdq);
1104 #ifdef notyet
1105 	/*
1106 	 * If the thread isn't running its lockptr is a
1107 	 * turnstile or a sleepqueue.  We can just lock_set without
1108 	 * blocking.
1109 	 */
1110 	if (TD_CAN_RUN(td)) {
1111 		TDQ_LOCK(tdq);
1112 		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1113 		return (tdq);
1114 	}
1115 #endif
1116 	/*
1117 	 * The hard case, migration, we need to block the thread first to
1118 	 * prevent order reversals with other cpus locks.
1119 	 */
1120 	spinlock_enter();
1121 	thread_lock_block(td);
1122 	TDQ_LOCK(tdq);
1123 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1124 	spinlock_exit();
1125 	return (tdq);
1126 }
1127 
1128 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1129 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1130 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1131 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1132 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1133 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1134 
1135 static int
1136 sched_pickcpu(struct thread *td, int flags)
1137 {
1138 	struct cpu_group *cg;
1139 	struct td_sched *ts;
1140 	struct tdq *tdq;
1141 	cpuset_t mask;
1142 	int self;
1143 	int pri;
1144 	int cpu;
1145 
1146 	self = PCPU_GET(cpuid);
1147 	ts = td->td_sched;
1148 	if (smp_started == 0)
1149 		return (self);
1150 	/*
1151 	 * Don't migrate a running thread from sched_switch().
1152 	 */
1153 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1154 		return (ts->ts_cpu);
1155 	/*
1156 	 * Prefer to run interrupt threads on the processors that generate
1157 	 * the interrupt.
1158 	 */
1159 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1160 	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1161 		SCHED_STAT_INC(pickcpu_intrbind);
1162 		ts->ts_cpu = self;
1163 	}
1164 	/*
1165 	 * If the thread can run on the last cpu and the affinity has not
1166 	 * expired or it is idle run it there.
1167 	 */
1168 	pri = td->td_priority;
1169 	tdq = TDQ_CPU(ts->ts_cpu);
1170 	if (THREAD_CAN_SCHED(td, ts->ts_cpu)) {
1171 		if (tdq->tdq_lowpri > PRI_MIN_IDLE) {
1172 			SCHED_STAT_INC(pickcpu_idle_affinity);
1173 			return (ts->ts_cpu);
1174 		}
1175 		if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri) {
1176 			SCHED_STAT_INC(pickcpu_affinity);
1177 			return (ts->ts_cpu);
1178 		}
1179 	}
1180 	/*
1181 	 * Search for the highest level in the tree that still has affinity.
1182 	 */
1183 	cg = NULL;
1184 	for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent)
1185 		if (SCHED_AFFINITY(ts, cg->cg_level))
1186 			break;
1187 	cpu = -1;
1188 	mask = td->td_cpuset->cs_mask;
1189 	if (cg)
1190 		cpu = sched_lowest(cg, mask, pri);
1191 	if (cpu == -1)
1192 		cpu = sched_lowest(cpu_top, mask, -1);
1193 	/*
1194 	 * Compare the lowest loaded cpu to current cpu.
1195 	 */
1196 	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1197 	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) {
1198 		SCHED_STAT_INC(pickcpu_local);
1199 		cpu = self;
1200 	} else
1201 		SCHED_STAT_INC(pickcpu_lowest);
1202 	if (cpu != ts->ts_cpu)
1203 		SCHED_STAT_INC(pickcpu_migration);
1204 	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1205 	return (cpu);
1206 }
1207 #endif
1208 
1209 /*
1210  * Pick the highest priority task we have and return it.
1211  */
1212 static struct thread *
1213 tdq_choose(struct tdq *tdq)
1214 {
1215 	struct thread *td;
1216 
1217 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1218 	td = runq_choose(&tdq->tdq_realtime);
1219 	if (td != NULL)
1220 		return (td);
1221 	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1222 	if (td != NULL) {
1223 		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1224 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1225 		    td->td_priority));
1226 		return (td);
1227 	}
1228 	td = runq_choose(&tdq->tdq_idle);
1229 	if (td != NULL) {
1230 		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1231 		    ("tdq_choose: Invalid priority on idle queue %d",
1232 		    td->td_priority));
1233 		return (td);
1234 	}
1235 
1236 	return (NULL);
1237 }
1238 
1239 /*
1240  * Initialize a thread queue.
1241  */
1242 static void
1243 tdq_setup(struct tdq *tdq)
1244 {
1245 
1246 	if (bootverbose)
1247 		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1248 	runq_init(&tdq->tdq_realtime);
1249 	runq_init(&tdq->tdq_timeshare);
1250 	runq_init(&tdq->tdq_idle);
1251 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1252 	    "sched lock %d", (int)TDQ_ID(tdq));
1253 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1254 	    MTX_SPIN | MTX_RECURSE);
1255 #ifdef KTR
1256 	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1257 	    "CPU %d load", (int)TDQ_ID(tdq));
1258 #endif
1259 }
1260 
1261 #ifdef SMP
1262 static void
1263 sched_setup_smp(void)
1264 {
1265 	struct tdq *tdq;
1266 	int i;
1267 
1268 	cpu_top = smp_topo();
1269 	CPU_FOREACH(i) {
1270 		tdq = TDQ_CPU(i);
1271 		tdq_setup(tdq);
1272 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1273 		if (tdq->tdq_cg == NULL)
1274 			panic("Can't find cpu group for %d\n", i);
1275 	}
1276 	balance_tdq = TDQ_SELF();
1277 	sched_balance();
1278 }
1279 #endif
1280 
1281 /*
1282  * Setup the thread queues and initialize the topology based on MD
1283  * information.
1284  */
1285 static void
1286 sched_setup(void *dummy)
1287 {
1288 	struct tdq *tdq;
1289 
1290 	tdq = TDQ_SELF();
1291 #ifdef SMP
1292 	sched_setup_smp();
1293 #else
1294 	tdq_setup(tdq);
1295 #endif
1296 	/*
1297 	 * To avoid divide-by-zero, we set realstathz a dummy value
1298 	 * in case which sched_clock() called before sched_initticks().
1299 	 */
1300 	realstathz = hz;
1301 	sched_slice = (realstathz/10);	/* ~100ms */
1302 	tickincr = 1 << SCHED_TICK_SHIFT;
1303 
1304 	/* Add thread0's load since it's running. */
1305 	TDQ_LOCK(tdq);
1306 	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1307 	tdq_load_add(tdq, &thread0);
1308 	tdq->tdq_lowpri = thread0.td_priority;
1309 	TDQ_UNLOCK(tdq);
1310 }
1311 
1312 /*
1313  * This routine determines the tickincr after stathz and hz are setup.
1314  */
1315 /* ARGSUSED */
1316 static void
1317 sched_initticks(void *dummy)
1318 {
1319 	int incr;
1320 
1321 	realstathz = stathz ? stathz : hz;
1322 	sched_slice = (realstathz/10);	/* ~100ms */
1323 
1324 	/*
1325 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1326 	 * hz not being evenly divisible by stathz on all platforms.
1327 	 */
1328 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1329 	/*
1330 	 * This does not work for values of stathz that are more than
1331 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1332 	 */
1333 	if (incr == 0)
1334 		incr = 1;
1335 	tickincr = incr;
1336 #ifdef SMP
1337 	/*
1338 	 * Set the default balance interval now that we know
1339 	 * what realstathz is.
1340 	 */
1341 	balance_interval = realstathz;
1342 	/*
1343 	 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4.
1344 	 * This prevents excess thrashing on large machines and excess idle
1345 	 * on smaller machines.
1346 	 */
1347 	steal_thresh = min(fls(mp_ncpus) - 1, 3);
1348 	affinity = SCHED_AFFINITY_DEFAULT;
1349 #endif
1350 }
1351 
1352 
1353 /*
1354  * This is the core of the interactivity algorithm.  Determines a score based
1355  * on past behavior.  It is the ratio of sleep time to run time scaled to
1356  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1357  * differs from the cpu usage because it does not account for time spent
1358  * waiting on a run-queue.  Would be prettier if we had floating point.
1359  */
1360 static int
1361 sched_interact_score(struct thread *td)
1362 {
1363 	struct td_sched *ts;
1364 	int div;
1365 
1366 	ts = td->td_sched;
1367 	/*
1368 	 * The score is only needed if this is likely to be an interactive
1369 	 * task.  Don't go through the expense of computing it if there's
1370 	 * no chance.
1371 	 */
1372 	if (sched_interact <= SCHED_INTERACT_HALF &&
1373 		ts->ts_runtime >= ts->ts_slptime)
1374 			return (SCHED_INTERACT_HALF);
1375 
1376 	if (ts->ts_runtime > ts->ts_slptime) {
1377 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1378 		return (SCHED_INTERACT_HALF +
1379 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1380 	}
1381 	if (ts->ts_slptime > ts->ts_runtime) {
1382 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1383 		return (ts->ts_runtime / div);
1384 	}
1385 	/* runtime == slptime */
1386 	if (ts->ts_runtime)
1387 		return (SCHED_INTERACT_HALF);
1388 
1389 	/*
1390 	 * This can happen if slptime and runtime are 0.
1391 	 */
1392 	return (0);
1393 
1394 }
1395 
1396 /*
1397  * Scale the scheduling priority according to the "interactivity" of this
1398  * process.
1399  */
1400 static void
1401 sched_priority(struct thread *td)
1402 {
1403 	int score;
1404 	int pri;
1405 
1406 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1407 		return;
1408 	/*
1409 	 * If the score is interactive we place the thread in the realtime
1410 	 * queue with a priority that is less than kernel and interrupt
1411 	 * priorities.  These threads are not subject to nice restrictions.
1412 	 *
1413 	 * Scores greater than this are placed on the normal timeshare queue
1414 	 * where the priority is partially decided by the most recent cpu
1415 	 * utilization and the rest is decided by nice value.
1416 	 *
1417 	 * The nice value of the process has a linear effect on the calculated
1418 	 * score.  Negative nice values make it easier for a thread to be
1419 	 * considered interactive.
1420 	 */
1421 	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1422 	if (score < sched_interact) {
1423 		pri = PRI_MIN_INTERACT;
1424 		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1425 		    sched_interact) * score;
1426 		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1427 		    ("sched_priority: invalid interactive priority %d score %d",
1428 		    pri, score));
1429 	} else {
1430 		pri = SCHED_PRI_MIN;
1431 		if (td->td_sched->ts_ticks)
1432 			pri += SCHED_PRI_TICKS(td->td_sched);
1433 		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1434 		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1435 		    ("sched_priority: invalid priority %d: nice %d, "
1436 		    "ticks %d ftick %d ltick %d tick pri %d",
1437 		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1438 		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1439 		    SCHED_PRI_TICKS(td->td_sched)));
1440 	}
1441 	sched_user_prio(td, pri);
1442 
1443 	return;
1444 }
1445 
1446 /*
1447  * This routine enforces a maximum limit on the amount of scheduling history
1448  * kept.  It is called after either the slptime or runtime is adjusted.  This
1449  * function is ugly due to integer math.
1450  */
1451 static void
1452 sched_interact_update(struct thread *td)
1453 {
1454 	struct td_sched *ts;
1455 	u_int sum;
1456 
1457 	ts = td->td_sched;
1458 	sum = ts->ts_runtime + ts->ts_slptime;
1459 	if (sum < SCHED_SLP_RUN_MAX)
1460 		return;
1461 	/*
1462 	 * This only happens from two places:
1463 	 * 1) We have added an unusual amount of run time from fork_exit.
1464 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1465 	 */
1466 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1467 		if (ts->ts_runtime > ts->ts_slptime) {
1468 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1469 			ts->ts_slptime = 1;
1470 		} else {
1471 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1472 			ts->ts_runtime = 1;
1473 		}
1474 		return;
1475 	}
1476 	/*
1477 	 * If we have exceeded by more than 1/5th then the algorithm below
1478 	 * will not bring us back into range.  Dividing by two here forces
1479 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1480 	 */
1481 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1482 		ts->ts_runtime /= 2;
1483 		ts->ts_slptime /= 2;
1484 		return;
1485 	}
1486 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1487 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1488 }
1489 
1490 /*
1491  * Scale back the interactivity history when a child thread is created.  The
1492  * history is inherited from the parent but the thread may behave totally
1493  * differently.  For example, a shell spawning a compiler process.  We want
1494  * to learn that the compiler is behaving badly very quickly.
1495  */
1496 static void
1497 sched_interact_fork(struct thread *td)
1498 {
1499 	int ratio;
1500 	int sum;
1501 
1502 	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1503 	if (sum > SCHED_SLP_RUN_FORK) {
1504 		ratio = sum / SCHED_SLP_RUN_FORK;
1505 		td->td_sched->ts_runtime /= ratio;
1506 		td->td_sched->ts_slptime /= ratio;
1507 	}
1508 }
1509 
1510 /*
1511  * Called from proc0_init() to setup the scheduler fields.
1512  */
1513 void
1514 schedinit(void)
1515 {
1516 
1517 	/*
1518 	 * Set up the scheduler specific parts of proc0.
1519 	 */
1520 	proc0.p_sched = NULL; /* XXX */
1521 	thread0.td_sched = &td_sched0;
1522 	td_sched0.ts_ltick = ticks;
1523 	td_sched0.ts_ftick = ticks;
1524 	td_sched0.ts_slice = sched_slice;
1525 }
1526 
1527 /*
1528  * This is only somewhat accurate since given many processes of the same
1529  * priority they will switch when their slices run out, which will be
1530  * at most sched_slice stathz ticks.
1531  */
1532 int
1533 sched_rr_interval(void)
1534 {
1535 
1536 	/* Convert sched_slice to hz */
1537 	return (hz/(realstathz/sched_slice));
1538 }
1539 
1540 /*
1541  * Update the percent cpu tracking information when it is requested or
1542  * the total history exceeds the maximum.  We keep a sliding history of
1543  * tick counts that slowly decays.  This is less precise than the 4BSD
1544  * mechanism since it happens with less regular and frequent events.
1545  */
1546 static void
1547 sched_pctcpu_update(struct td_sched *ts)
1548 {
1549 
1550 	if (ts->ts_ticks == 0)
1551 		return;
1552 	if (ticks - (hz / 10) < ts->ts_ltick &&
1553 	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
1554 		return;
1555 	/*
1556 	 * Adjust counters and watermark for pctcpu calc.
1557 	 */
1558 	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
1559 		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
1560 			    SCHED_TICK_TARG;
1561 	else
1562 		ts->ts_ticks = 0;
1563 	ts->ts_ltick = ticks;
1564 	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
1565 }
1566 
1567 /*
1568  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1569  * if necessary.  This is the back-end for several priority related
1570  * functions.
1571  */
1572 static void
1573 sched_thread_priority(struct thread *td, u_char prio)
1574 {
1575 	struct td_sched *ts;
1576 	struct tdq *tdq;
1577 	int oldpri;
1578 
1579 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1580 	    "prio:%d", td->td_priority, "new prio:%d", prio,
1581 	    KTR_ATTR_LINKED, sched_tdname(curthread));
1582 	if (td != curthread && prio > td->td_priority) {
1583 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1584 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1585 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1586 	}
1587 	ts = td->td_sched;
1588 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1589 	if (td->td_priority == prio)
1590 		return;
1591 	/*
1592 	 * If the priority has been elevated due to priority
1593 	 * propagation, we may have to move ourselves to a new
1594 	 * queue.  This could be optimized to not re-add in some
1595 	 * cases.
1596 	 */
1597 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1598 		sched_rem(td);
1599 		td->td_priority = prio;
1600 		sched_add(td, SRQ_BORROWING);
1601 		return;
1602 	}
1603 	/*
1604 	 * If the thread is currently running we may have to adjust the lowpri
1605 	 * information so other cpus are aware of our current priority.
1606 	 */
1607 	if (TD_IS_RUNNING(td)) {
1608 		tdq = TDQ_CPU(ts->ts_cpu);
1609 		oldpri = td->td_priority;
1610 		td->td_priority = prio;
1611 		if (prio < tdq->tdq_lowpri)
1612 			tdq->tdq_lowpri = prio;
1613 		else if (tdq->tdq_lowpri == oldpri)
1614 			tdq_setlowpri(tdq, td);
1615 		return;
1616 	}
1617 	td->td_priority = prio;
1618 }
1619 
1620 /*
1621  * Update a thread's priority when it is lent another thread's
1622  * priority.
1623  */
1624 void
1625 sched_lend_prio(struct thread *td, u_char prio)
1626 {
1627 
1628 	td->td_flags |= TDF_BORROWING;
1629 	sched_thread_priority(td, prio);
1630 }
1631 
1632 /*
1633  * Restore a thread's priority when priority propagation is
1634  * over.  The prio argument is the minimum priority the thread
1635  * needs to have to satisfy other possible priority lending
1636  * requests.  If the thread's regular priority is less
1637  * important than prio, the thread will keep a priority boost
1638  * of prio.
1639  */
1640 void
1641 sched_unlend_prio(struct thread *td, u_char prio)
1642 {
1643 	u_char base_pri;
1644 
1645 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1646 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1647 		base_pri = td->td_user_pri;
1648 	else
1649 		base_pri = td->td_base_pri;
1650 	if (prio >= base_pri) {
1651 		td->td_flags &= ~TDF_BORROWING;
1652 		sched_thread_priority(td, base_pri);
1653 	} else
1654 		sched_lend_prio(td, prio);
1655 }
1656 
1657 /*
1658  * Standard entry for setting the priority to an absolute value.
1659  */
1660 void
1661 sched_prio(struct thread *td, u_char prio)
1662 {
1663 	u_char oldprio;
1664 
1665 	/* First, update the base priority. */
1666 	td->td_base_pri = prio;
1667 
1668 	/*
1669 	 * If the thread is borrowing another thread's priority, don't
1670 	 * ever lower the priority.
1671 	 */
1672 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1673 		return;
1674 
1675 	/* Change the real priority. */
1676 	oldprio = td->td_priority;
1677 	sched_thread_priority(td, prio);
1678 
1679 	/*
1680 	 * If the thread is on a turnstile, then let the turnstile update
1681 	 * its state.
1682 	 */
1683 	if (TD_ON_LOCK(td) && oldprio != prio)
1684 		turnstile_adjust(td, oldprio);
1685 }
1686 
1687 /*
1688  * Set the base user priority, does not effect current running priority.
1689  */
1690 void
1691 sched_user_prio(struct thread *td, u_char prio)
1692 {
1693 
1694 	td->td_base_user_pri = prio;
1695 	if (td->td_lend_user_pri <= prio)
1696 		return;
1697 	td->td_user_pri = prio;
1698 }
1699 
1700 void
1701 sched_lend_user_prio(struct thread *td, u_char prio)
1702 {
1703 
1704 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1705 	td->td_lend_user_pri = prio;
1706 	td->td_user_pri = min(prio, td->td_base_user_pri);
1707 	if (td->td_priority > td->td_user_pri)
1708 		sched_prio(td, td->td_user_pri);
1709 	else if (td->td_priority != td->td_user_pri)
1710 		td->td_flags |= TDF_NEEDRESCHED;
1711 }
1712 
1713 /*
1714  * Handle migration from sched_switch().  This happens only for
1715  * cpu binding.
1716  */
1717 static struct mtx *
1718 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1719 {
1720 	struct tdq *tdn;
1721 
1722 	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1723 #ifdef SMP
1724 	tdq_load_rem(tdq, td);
1725 	/*
1726 	 * Do the lock dance required to avoid LOR.  We grab an extra
1727 	 * spinlock nesting to prevent preemption while we're
1728 	 * not holding either run-queue lock.
1729 	 */
1730 	spinlock_enter();
1731 	thread_lock_block(td);	/* This releases the lock on tdq. */
1732 
1733 	/*
1734 	 * Acquire both run-queue locks before placing the thread on the new
1735 	 * run-queue to avoid deadlocks created by placing a thread with a
1736 	 * blocked lock on the run-queue of a remote processor.  The deadlock
1737 	 * occurs when a third processor attempts to lock the two queues in
1738 	 * question while the target processor is spinning with its own
1739 	 * run-queue lock held while waiting for the blocked lock to clear.
1740 	 */
1741 	tdq_lock_pair(tdn, tdq);
1742 	tdq_add(tdn, td, flags);
1743 	tdq_notify(tdn, td);
1744 	TDQ_UNLOCK(tdn);
1745 	spinlock_exit();
1746 #endif
1747 	return (TDQ_LOCKPTR(tdn));
1748 }
1749 
1750 /*
1751  * Variadic version of thread_lock_unblock() that does not assume td_lock
1752  * is blocked.
1753  */
1754 static inline void
1755 thread_unblock_switch(struct thread *td, struct mtx *mtx)
1756 {
1757 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1758 	    (uintptr_t)mtx);
1759 }
1760 
1761 /*
1762  * Switch threads.  This function has to handle threads coming in while
1763  * blocked for some reason, running, or idle.  It also must deal with
1764  * migrating a thread from one queue to another as running threads may
1765  * be assigned elsewhere via binding.
1766  */
1767 void
1768 sched_switch(struct thread *td, struct thread *newtd, int flags)
1769 {
1770 	struct tdq *tdq;
1771 	struct td_sched *ts;
1772 	struct mtx *mtx;
1773 	int srqflag;
1774 	int cpuid;
1775 
1776 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1777 	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1778 
1779 	cpuid = PCPU_GET(cpuid);
1780 	tdq = TDQ_CPU(cpuid);
1781 	ts = td->td_sched;
1782 	mtx = td->td_lock;
1783 	ts->ts_rltick = ticks;
1784 	td->td_lastcpu = td->td_oncpu;
1785 	td->td_oncpu = NOCPU;
1786 	if (!(flags & SW_PREEMPT))
1787 		td->td_flags &= ~TDF_NEEDRESCHED;
1788 	td->td_owepreempt = 0;
1789 	tdq->tdq_switchcnt++;
1790 	/*
1791 	 * The lock pointer in an idle thread should never change.  Reset it
1792 	 * to CAN_RUN as well.
1793 	 */
1794 	if (TD_IS_IDLETHREAD(td)) {
1795 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1796 		TD_SET_CAN_RUN(td);
1797 	} else if (TD_IS_RUNNING(td)) {
1798 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1799 		srqflag = (flags & SW_PREEMPT) ?
1800 		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1801 		    SRQ_OURSELF|SRQ_YIELDING;
1802 #ifdef SMP
1803 		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1804 			ts->ts_cpu = sched_pickcpu(td, 0);
1805 #endif
1806 		if (ts->ts_cpu == cpuid)
1807 			tdq_runq_add(tdq, td, srqflag);
1808 		else {
1809 			KASSERT(THREAD_CAN_MIGRATE(td) ||
1810 			    (ts->ts_flags & TSF_BOUND) != 0,
1811 			    ("Thread %p shouldn't migrate", td));
1812 			mtx = sched_switch_migrate(tdq, td, srqflag);
1813 		}
1814 	} else {
1815 		/* This thread must be going to sleep. */
1816 		TDQ_LOCK(tdq);
1817 		mtx = thread_lock_block(td);
1818 		tdq_load_rem(tdq, td);
1819 	}
1820 	/*
1821 	 * We enter here with the thread blocked and assigned to the
1822 	 * appropriate cpu run-queue or sleep-queue and with the current
1823 	 * thread-queue locked.
1824 	 */
1825 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1826 	newtd = choosethread();
1827 	/*
1828 	 * Call the MD code to switch contexts if necessary.
1829 	 */
1830 	if (td != newtd) {
1831 #ifdef	HWPMC_HOOKS
1832 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1833 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1834 #endif
1835 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1836 		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1837 
1838 #ifdef KDTRACE_HOOKS
1839 		/*
1840 		 * If DTrace has set the active vtime enum to anything
1841 		 * other than INACTIVE (0), then it should have set the
1842 		 * function to call.
1843 		 */
1844 		if (dtrace_vtime_active)
1845 			(*dtrace_vtime_switch_func)(newtd);
1846 #endif
1847 
1848 		cpu_switch(td, newtd, mtx);
1849 		/*
1850 		 * We may return from cpu_switch on a different cpu.  However,
1851 		 * we always return with td_lock pointing to the current cpu's
1852 		 * run queue lock.
1853 		 */
1854 		cpuid = PCPU_GET(cpuid);
1855 		tdq = TDQ_CPU(cpuid);
1856 		lock_profile_obtain_lock_success(
1857 		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1858 #ifdef	HWPMC_HOOKS
1859 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1860 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1861 #endif
1862 	} else
1863 		thread_unblock_switch(td, mtx);
1864 	/*
1865 	 * Assert that all went well and return.
1866 	 */
1867 	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1868 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1869 	td->td_oncpu = cpuid;
1870 }
1871 
1872 /*
1873  * Adjust thread priorities as a result of a nice request.
1874  */
1875 void
1876 sched_nice(struct proc *p, int nice)
1877 {
1878 	struct thread *td;
1879 
1880 	PROC_LOCK_ASSERT(p, MA_OWNED);
1881 
1882 	p->p_nice = nice;
1883 	FOREACH_THREAD_IN_PROC(p, td) {
1884 		thread_lock(td);
1885 		sched_priority(td);
1886 		sched_prio(td, td->td_base_user_pri);
1887 		thread_unlock(td);
1888 	}
1889 }
1890 
1891 /*
1892  * Record the sleep time for the interactivity scorer.
1893  */
1894 void
1895 sched_sleep(struct thread *td, int prio)
1896 {
1897 
1898 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1899 
1900 	td->td_slptick = ticks;
1901 	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1902 		td->td_flags |= TDF_CANSWAP;
1903 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1904 		return;
1905 	if (static_boost == 1 && prio)
1906 		sched_prio(td, prio);
1907 	else if (static_boost && td->td_priority > static_boost)
1908 		sched_prio(td, static_boost);
1909 }
1910 
1911 /*
1912  * Schedule a thread to resume execution and record how long it voluntarily
1913  * slept.  We also update the pctcpu, interactivity, and priority.
1914  */
1915 void
1916 sched_wakeup(struct thread *td)
1917 {
1918 	struct td_sched *ts;
1919 	int slptick;
1920 
1921 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1922 	ts = td->td_sched;
1923 	td->td_flags &= ~TDF_CANSWAP;
1924 	/*
1925 	 * If we slept for more than a tick update our interactivity and
1926 	 * priority.
1927 	 */
1928 	slptick = td->td_slptick;
1929 	td->td_slptick = 0;
1930 	if (slptick && slptick != ticks) {
1931 		u_int hzticks;
1932 
1933 		hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
1934 		ts->ts_slptime += hzticks;
1935 		sched_interact_update(td);
1936 		sched_pctcpu_update(ts);
1937 	}
1938 	/* Reset the slice value after we sleep. */
1939 	ts->ts_slice = sched_slice;
1940 	sched_add(td, SRQ_BORING);
1941 }
1942 
1943 /*
1944  * Penalize the parent for creating a new child and initialize the child's
1945  * priority.
1946  */
1947 void
1948 sched_fork(struct thread *td, struct thread *child)
1949 {
1950 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1951 	sched_fork_thread(td, child);
1952 	/*
1953 	 * Penalize the parent and child for forking.
1954 	 */
1955 	sched_interact_fork(child);
1956 	sched_priority(child);
1957 	td->td_sched->ts_runtime += tickincr;
1958 	sched_interact_update(td);
1959 	sched_priority(td);
1960 }
1961 
1962 /*
1963  * Fork a new thread, may be within the same process.
1964  */
1965 void
1966 sched_fork_thread(struct thread *td, struct thread *child)
1967 {
1968 	struct td_sched *ts;
1969 	struct td_sched *ts2;
1970 
1971 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1972 	/*
1973 	 * Initialize child.
1974 	 */
1975 	ts = td->td_sched;
1976 	ts2 = child->td_sched;
1977 	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1978 	child->td_cpuset = cpuset_ref(td->td_cpuset);
1979 	ts2->ts_cpu = ts->ts_cpu;
1980 	ts2->ts_flags = 0;
1981 	/*
1982 	 * Grab our parents cpu estimation information.
1983 	 */
1984 	ts2->ts_ticks = ts->ts_ticks;
1985 	ts2->ts_ltick = ts->ts_ltick;
1986 	ts2->ts_incrtick = ts->ts_incrtick;
1987 	ts2->ts_ftick = ts->ts_ftick;
1988 	/*
1989 	 * Do not inherit any borrowed priority from the parent.
1990 	 */
1991 	child->td_priority = child->td_base_pri;
1992 	/*
1993 	 * And update interactivity score.
1994 	 */
1995 	ts2->ts_slptime = ts->ts_slptime;
1996 	ts2->ts_runtime = ts->ts_runtime;
1997 	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
1998 #ifdef KTR
1999 	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2000 #endif
2001 }
2002 
2003 /*
2004  * Adjust the priority class of a thread.
2005  */
2006 void
2007 sched_class(struct thread *td, int class)
2008 {
2009 
2010 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2011 	if (td->td_pri_class == class)
2012 		return;
2013 	td->td_pri_class = class;
2014 }
2015 
2016 /*
2017  * Return some of the child's priority and interactivity to the parent.
2018  */
2019 void
2020 sched_exit(struct proc *p, struct thread *child)
2021 {
2022 	struct thread *td;
2023 
2024 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2025 	    "prio:td", child->td_priority);
2026 	PROC_LOCK_ASSERT(p, MA_OWNED);
2027 	td = FIRST_THREAD_IN_PROC(p);
2028 	sched_exit_thread(td, child);
2029 }
2030 
2031 /*
2032  * Penalize another thread for the time spent on this one.  This helps to
2033  * worsen the priority and interactivity of processes which schedule batch
2034  * jobs such as make.  This has little effect on the make process itself but
2035  * causes new processes spawned by it to receive worse scores immediately.
2036  */
2037 void
2038 sched_exit_thread(struct thread *td, struct thread *child)
2039 {
2040 
2041 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2042 	    "prio:td", child->td_priority);
2043 	/*
2044 	 * Give the child's runtime to the parent without returning the
2045 	 * sleep time as a penalty to the parent.  This causes shells that
2046 	 * launch expensive things to mark their children as expensive.
2047 	 */
2048 	thread_lock(td);
2049 	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2050 	sched_interact_update(td);
2051 	sched_priority(td);
2052 	thread_unlock(td);
2053 }
2054 
2055 void
2056 sched_preempt(struct thread *td)
2057 {
2058 	struct tdq *tdq;
2059 
2060 	thread_lock(td);
2061 	tdq = TDQ_SELF();
2062 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2063 	tdq->tdq_ipipending = 0;
2064 	if (td->td_priority > tdq->tdq_lowpri) {
2065 		int flags;
2066 
2067 		flags = SW_INVOL | SW_PREEMPT;
2068 		if (td->td_critnest > 1)
2069 			td->td_owepreempt = 1;
2070 		else if (TD_IS_IDLETHREAD(td))
2071 			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2072 		else
2073 			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2074 	}
2075 	thread_unlock(td);
2076 }
2077 
2078 /*
2079  * Fix priorities on return to user-space.  Priorities may be elevated due
2080  * to static priorities in msleep() or similar.
2081  */
2082 void
2083 sched_userret(struct thread *td)
2084 {
2085 	/*
2086 	 * XXX we cheat slightly on the locking here to avoid locking in
2087 	 * the usual case.  Setting td_priority here is essentially an
2088 	 * incomplete workaround for not setting it properly elsewhere.
2089 	 * Now that some interrupt handlers are threads, not setting it
2090 	 * properly elsewhere can clobber it in the window between setting
2091 	 * it here and returning to user mode, so don't waste time setting
2092 	 * it perfectly here.
2093 	 */
2094 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2095 	    ("thread with borrowed priority returning to userland"));
2096 	if (td->td_priority != td->td_user_pri) {
2097 		thread_lock(td);
2098 		td->td_priority = td->td_user_pri;
2099 		td->td_base_pri = td->td_user_pri;
2100 		tdq_setlowpri(TDQ_SELF(), td);
2101 		thread_unlock(td);
2102         }
2103 }
2104 
2105 /*
2106  * Handle a stathz tick.  This is really only relevant for timeshare
2107  * threads.
2108  */
2109 void
2110 sched_clock(struct thread *td)
2111 {
2112 	struct tdq *tdq;
2113 	struct td_sched *ts;
2114 
2115 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2116 	tdq = TDQ_SELF();
2117 #ifdef SMP
2118 	/*
2119 	 * We run the long term load balancer infrequently on the first cpu.
2120 	 */
2121 	if (balance_tdq == tdq) {
2122 		if (balance_ticks && --balance_ticks == 0)
2123 			sched_balance();
2124 	}
2125 #endif
2126 	/*
2127 	 * Save the old switch count so we have a record of the last ticks
2128 	 * activity.   Initialize the new switch count based on our load.
2129 	 * If there is some activity seed it to reflect that.
2130 	 */
2131 	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2132 	tdq->tdq_switchcnt = tdq->tdq_load;
2133 	/*
2134 	 * Advance the insert index once for each tick to ensure that all
2135 	 * threads get a chance to run.
2136 	 */
2137 	if (tdq->tdq_idx == tdq->tdq_ridx) {
2138 		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2139 		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2140 			tdq->tdq_ridx = tdq->tdq_idx;
2141 	}
2142 	ts = td->td_sched;
2143 	if (td->td_pri_class & PRI_FIFO_BIT)
2144 		return;
2145 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2146 		/*
2147 		 * We used a tick; charge it to the thread so
2148 		 * that we can compute our interactivity.
2149 		 */
2150 		td->td_sched->ts_runtime += tickincr;
2151 		sched_interact_update(td);
2152 		sched_priority(td);
2153 	}
2154 	/*
2155 	 * We used up one time slice.
2156 	 */
2157 	if (--ts->ts_slice > 0)
2158 		return;
2159 	/*
2160 	 * We're out of time, force a requeue at userret().
2161 	 */
2162 	ts->ts_slice = sched_slice;
2163 	td->td_flags |= TDF_NEEDRESCHED;
2164 }
2165 
2166 /*
2167  * Called once per hz tick.  Used for cpu utilization information.  This
2168  * is easier than trying to scale based on stathz.
2169  */
2170 void
2171 sched_tick(int cnt)
2172 {
2173 	struct td_sched *ts;
2174 
2175 	ts = curthread->td_sched;
2176 	/*
2177 	 * Ticks is updated asynchronously on a single cpu.  Check here to
2178 	 * avoid incrementing ts_ticks multiple times in a single tick.
2179 	 */
2180 	if (ts->ts_incrtick == ticks)
2181 		return;
2182 	/* Adjust ticks for pctcpu */
2183 	ts->ts_ticks += cnt << SCHED_TICK_SHIFT;
2184 	ts->ts_ltick = ticks;
2185 	ts->ts_incrtick = ticks;
2186 	/*
2187 	 * Update if we've exceeded our desired tick threshold by over one
2188 	 * second.
2189 	 */
2190 	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
2191 		sched_pctcpu_update(ts);
2192 }
2193 
2194 /*
2195  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2196  * cooperative idle threads.
2197  */
2198 int
2199 sched_runnable(void)
2200 {
2201 	struct tdq *tdq;
2202 	int load;
2203 
2204 	load = 1;
2205 
2206 	tdq = TDQ_SELF();
2207 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2208 		if (tdq->tdq_load > 0)
2209 			goto out;
2210 	} else
2211 		if (tdq->tdq_load - 1 > 0)
2212 			goto out;
2213 	load = 0;
2214 out:
2215 	return (load);
2216 }
2217 
2218 /*
2219  * Choose the highest priority thread to run.  The thread is removed from
2220  * the run-queue while running however the load remains.  For SMP we set
2221  * the tdq in the global idle bitmask if it idles here.
2222  */
2223 struct thread *
2224 sched_choose(void)
2225 {
2226 	struct thread *td;
2227 	struct tdq *tdq;
2228 
2229 	tdq = TDQ_SELF();
2230 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2231 	td = tdq_choose(tdq);
2232 	if (td) {
2233 		td->td_sched->ts_ltick = ticks;
2234 		tdq_runq_rem(tdq, td);
2235 		tdq->tdq_lowpri = td->td_priority;
2236 		return (td);
2237 	}
2238 	tdq->tdq_lowpri = PRI_MAX_IDLE;
2239 	return (PCPU_GET(idlethread));
2240 }
2241 
2242 /*
2243  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2244  * we always request it once we exit a critical section.
2245  */
2246 static inline void
2247 sched_setpreempt(struct thread *td)
2248 {
2249 	struct thread *ctd;
2250 	int cpri;
2251 	int pri;
2252 
2253 	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2254 
2255 	ctd = curthread;
2256 	pri = td->td_priority;
2257 	cpri = ctd->td_priority;
2258 	if (pri < cpri)
2259 		ctd->td_flags |= TDF_NEEDRESCHED;
2260 	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2261 		return;
2262 	if (!sched_shouldpreempt(pri, cpri, 0))
2263 		return;
2264 	ctd->td_owepreempt = 1;
2265 }
2266 
2267 /*
2268  * Add a thread to a thread queue.  Select the appropriate runq and add the
2269  * thread to it.  This is the internal function called when the tdq is
2270  * predetermined.
2271  */
2272 void
2273 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2274 {
2275 
2276 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2277 	KASSERT((td->td_inhibitors == 0),
2278 	    ("sched_add: trying to run inhibited thread"));
2279 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2280 	    ("sched_add: bad thread state"));
2281 	KASSERT(td->td_flags & TDF_INMEM,
2282 	    ("sched_add: thread swapped out"));
2283 
2284 	if (td->td_priority < tdq->tdq_lowpri)
2285 		tdq->tdq_lowpri = td->td_priority;
2286 	tdq_runq_add(tdq, td, flags);
2287 	tdq_load_add(tdq, td);
2288 }
2289 
2290 /*
2291  * Select the target thread queue and add a thread to it.  Request
2292  * preemption or IPI a remote processor if required.
2293  */
2294 void
2295 sched_add(struct thread *td, int flags)
2296 {
2297 	struct tdq *tdq;
2298 #ifdef SMP
2299 	int cpu;
2300 #endif
2301 
2302 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2303 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2304 	    sched_tdname(curthread));
2305 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2306 	    KTR_ATTR_LINKED, sched_tdname(td));
2307 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2308 	/*
2309 	 * Recalculate the priority before we select the target cpu or
2310 	 * run-queue.
2311 	 */
2312 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2313 		sched_priority(td);
2314 #ifdef SMP
2315 	/*
2316 	 * Pick the destination cpu and if it isn't ours transfer to the
2317 	 * target cpu.
2318 	 */
2319 	cpu = sched_pickcpu(td, flags);
2320 	tdq = sched_setcpu(td, cpu, flags);
2321 	tdq_add(tdq, td, flags);
2322 	if (cpu != PCPU_GET(cpuid)) {
2323 		tdq_notify(tdq, td);
2324 		return;
2325 	}
2326 #else
2327 	tdq = TDQ_SELF();
2328 	TDQ_LOCK(tdq);
2329 	/*
2330 	 * Now that the thread is moving to the run-queue, set the lock
2331 	 * to the scheduler's lock.
2332 	 */
2333 	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2334 	tdq_add(tdq, td, flags);
2335 #endif
2336 	if (!(flags & SRQ_YIELDING))
2337 		sched_setpreempt(td);
2338 }
2339 
2340 /*
2341  * Remove a thread from a run-queue without running it.  This is used
2342  * when we're stealing a thread from a remote queue.  Otherwise all threads
2343  * exit by calling sched_exit_thread() and sched_throw() themselves.
2344  */
2345 void
2346 sched_rem(struct thread *td)
2347 {
2348 	struct tdq *tdq;
2349 
2350 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2351 	    "prio:%d", td->td_priority);
2352 	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2353 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2354 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2355 	KASSERT(TD_ON_RUNQ(td),
2356 	    ("sched_rem: thread not on run queue"));
2357 	tdq_runq_rem(tdq, td);
2358 	tdq_load_rem(tdq, td);
2359 	TD_SET_CAN_RUN(td);
2360 	if (td->td_priority == tdq->tdq_lowpri)
2361 		tdq_setlowpri(tdq, NULL);
2362 }
2363 
2364 /*
2365  * Fetch cpu utilization information.  Updates on demand.
2366  */
2367 fixpt_t
2368 sched_pctcpu(struct thread *td)
2369 {
2370 	fixpt_t pctcpu;
2371 	struct td_sched *ts;
2372 
2373 	pctcpu = 0;
2374 	ts = td->td_sched;
2375 	if (ts == NULL)
2376 		return (0);
2377 
2378 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2379 	if (ts->ts_ticks) {
2380 		int rtick;
2381 
2382 		sched_pctcpu_update(ts);
2383 		/* How many rtick per second ? */
2384 		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2385 		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2386 	}
2387 
2388 	return (pctcpu);
2389 }
2390 
2391 /*
2392  * Enforce affinity settings for a thread.  Called after adjustments to
2393  * cpumask.
2394  */
2395 void
2396 sched_affinity(struct thread *td)
2397 {
2398 #ifdef SMP
2399 	struct td_sched *ts;
2400 
2401 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2402 	ts = td->td_sched;
2403 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2404 		return;
2405 	if (TD_ON_RUNQ(td)) {
2406 		sched_rem(td);
2407 		sched_add(td, SRQ_BORING);
2408 		return;
2409 	}
2410 	if (!TD_IS_RUNNING(td))
2411 		return;
2412 	/*
2413 	 * Force a switch before returning to userspace.  If the
2414 	 * target thread is not running locally send an ipi to force
2415 	 * the issue.
2416 	 */
2417 	td->td_flags |= TDF_NEEDRESCHED;
2418 	if (td != curthread)
2419 		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2420 #endif
2421 }
2422 
2423 /*
2424  * Bind a thread to a target cpu.
2425  */
2426 void
2427 sched_bind(struct thread *td, int cpu)
2428 {
2429 	struct td_sched *ts;
2430 
2431 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2432 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2433 	ts = td->td_sched;
2434 	if (ts->ts_flags & TSF_BOUND)
2435 		sched_unbind(td);
2436 	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2437 	ts->ts_flags |= TSF_BOUND;
2438 	sched_pin();
2439 	if (PCPU_GET(cpuid) == cpu)
2440 		return;
2441 	ts->ts_cpu = cpu;
2442 	/* When we return from mi_switch we'll be on the correct cpu. */
2443 	mi_switch(SW_VOL, NULL);
2444 }
2445 
2446 /*
2447  * Release a bound thread.
2448  */
2449 void
2450 sched_unbind(struct thread *td)
2451 {
2452 	struct td_sched *ts;
2453 
2454 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2455 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2456 	ts = td->td_sched;
2457 	if ((ts->ts_flags & TSF_BOUND) == 0)
2458 		return;
2459 	ts->ts_flags &= ~TSF_BOUND;
2460 	sched_unpin();
2461 }
2462 
2463 int
2464 sched_is_bound(struct thread *td)
2465 {
2466 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2467 	return (td->td_sched->ts_flags & TSF_BOUND);
2468 }
2469 
2470 /*
2471  * Basic yield call.
2472  */
2473 void
2474 sched_relinquish(struct thread *td)
2475 {
2476 	thread_lock(td);
2477 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2478 	thread_unlock(td);
2479 }
2480 
2481 /*
2482  * Return the total system load.
2483  */
2484 int
2485 sched_load(void)
2486 {
2487 #ifdef SMP
2488 	int total;
2489 	int i;
2490 
2491 	total = 0;
2492 	CPU_FOREACH(i)
2493 		total += TDQ_CPU(i)->tdq_sysload;
2494 	return (total);
2495 #else
2496 	return (TDQ_SELF()->tdq_sysload);
2497 #endif
2498 }
2499 
2500 int
2501 sched_sizeof_proc(void)
2502 {
2503 	return (sizeof(struct proc));
2504 }
2505 
2506 int
2507 sched_sizeof_thread(void)
2508 {
2509 	return (sizeof(struct thread) + sizeof(struct td_sched));
2510 }
2511 
2512 #ifdef SMP
2513 #define	TDQ_IDLESPIN(tdq)						\
2514     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2515 #else
2516 #define	TDQ_IDLESPIN(tdq)	1
2517 #endif
2518 
2519 /*
2520  * The actual idle process.
2521  */
2522 void
2523 sched_idletd(void *dummy)
2524 {
2525 	struct thread *td;
2526 	struct tdq *tdq;
2527 	int switchcnt;
2528 	int i;
2529 
2530 	mtx_assert(&Giant, MA_NOTOWNED);
2531 	td = curthread;
2532 	tdq = TDQ_SELF();
2533 	for (;;) {
2534 #ifdef SMP
2535 		if (tdq_idled(tdq) == 0)
2536 			continue;
2537 #endif
2538 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2539 		/*
2540 		 * If we're switching very frequently, spin while checking
2541 		 * for load rather than entering a low power state that
2542 		 * may require an IPI.  However, don't do any busy
2543 		 * loops while on SMT machines as this simply steals
2544 		 * cycles from cores doing useful work.
2545 		 */
2546 		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2547 			for (i = 0; i < sched_idlespins; i++) {
2548 				if (tdq->tdq_load)
2549 					break;
2550 				cpu_spinwait();
2551 			}
2552 		}
2553 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2554 		if (tdq->tdq_load == 0) {
2555 			tdq->tdq_cpu_idle = 1;
2556 			if (tdq->tdq_load == 0) {
2557 				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2558 				tdq->tdq_switchcnt++;
2559 			}
2560 			tdq->tdq_cpu_idle = 0;
2561 		}
2562 		if (tdq->tdq_load) {
2563 			thread_lock(td);
2564 			mi_switch(SW_VOL | SWT_IDLE, NULL);
2565 			thread_unlock(td);
2566 		}
2567 	}
2568 }
2569 
2570 /*
2571  * A CPU is entering for the first time or a thread is exiting.
2572  */
2573 void
2574 sched_throw(struct thread *td)
2575 {
2576 	struct thread *newtd;
2577 	struct tdq *tdq;
2578 
2579 	tdq = TDQ_SELF();
2580 	if (td == NULL) {
2581 		/* Correct spinlock nesting and acquire the correct lock. */
2582 		TDQ_LOCK(tdq);
2583 		spinlock_exit();
2584 	} else {
2585 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2586 		tdq_load_rem(tdq, td);
2587 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2588 	}
2589 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2590 	newtd = choosethread();
2591 	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2592 	PCPU_SET(switchtime, cpu_ticks());
2593 	PCPU_SET(switchticks, ticks);
2594 	cpu_throw(td, newtd);		/* doesn't return */
2595 }
2596 
2597 /*
2598  * This is called from fork_exit().  Just acquire the correct locks and
2599  * let fork do the rest of the work.
2600  */
2601 void
2602 sched_fork_exit(struct thread *td)
2603 {
2604 	struct td_sched *ts;
2605 	struct tdq *tdq;
2606 	int cpuid;
2607 
2608 	/*
2609 	 * Finish setting up thread glue so that it begins execution in a
2610 	 * non-nested critical section with the scheduler lock held.
2611 	 */
2612 	cpuid = PCPU_GET(cpuid);
2613 	tdq = TDQ_CPU(cpuid);
2614 	ts = td->td_sched;
2615 	if (TD_IS_IDLETHREAD(td))
2616 		td->td_lock = TDQ_LOCKPTR(tdq);
2617 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2618 	td->td_oncpu = cpuid;
2619 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2620 	lock_profile_obtain_lock_success(
2621 	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2622 }
2623 
2624 /*
2625  * Create on first use to catch odd startup conditons.
2626  */
2627 char *
2628 sched_tdname(struct thread *td)
2629 {
2630 #ifdef KTR
2631 	struct td_sched *ts;
2632 
2633 	ts = td->td_sched;
2634 	if (ts->ts_name[0] == '\0')
2635 		snprintf(ts->ts_name, sizeof(ts->ts_name),
2636 		    "%s tid %d", td->td_name, td->td_tid);
2637 	return (ts->ts_name);
2638 #else
2639 	return (td->td_name);
2640 #endif
2641 }
2642 
2643 #ifdef SMP
2644 
2645 /*
2646  * Build the CPU topology dump string. Is recursively called to collect
2647  * the topology tree.
2648  */
2649 static int
2650 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2651     int indent)
2652 {
2653 	int i, first;
2654 
2655 	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2656 	    "", 1 + indent / 2, cg->cg_level);
2657 	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"0x%x\">", indent, "",
2658 	    cg->cg_count, cg->cg_mask);
2659 	first = TRUE;
2660 	for (i = 0; i < MAXCPU; i++) {
2661 		if ((cg->cg_mask & (1 << i)) != 0) {
2662 			if (!first)
2663 				sbuf_printf(sb, ", ");
2664 			else
2665 				first = FALSE;
2666 			sbuf_printf(sb, "%d", i);
2667 		}
2668 	}
2669 	sbuf_printf(sb, "</cpu>\n");
2670 
2671 	if (cg->cg_flags != 0) {
2672 		sbuf_printf(sb, "%*s <flags>", indent, "");
2673 		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2674 			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2675 		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2676 			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2677 		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2678 			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2679 		sbuf_printf(sb, "</flags>\n");
2680 	}
2681 
2682 	if (cg->cg_children > 0) {
2683 		sbuf_printf(sb, "%*s <children>\n", indent, "");
2684 		for (i = 0; i < cg->cg_children; i++)
2685 			sysctl_kern_sched_topology_spec_internal(sb,
2686 			    &cg->cg_child[i], indent+2);
2687 		sbuf_printf(sb, "%*s </children>\n", indent, "");
2688 	}
2689 	sbuf_printf(sb, "%*s</group>\n", indent, "");
2690 	return (0);
2691 }
2692 
2693 /*
2694  * Sysctl handler for retrieving topology dump. It's a wrapper for
2695  * the recursive sysctl_kern_smp_topology_spec_internal().
2696  */
2697 static int
2698 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2699 {
2700 	struct sbuf *topo;
2701 	int err;
2702 
2703 	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2704 
2705 	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2706 	if (topo == NULL)
2707 		return (ENOMEM);
2708 
2709 	sbuf_printf(topo, "<groups>\n");
2710 	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2711 	sbuf_printf(topo, "</groups>\n");
2712 
2713 	if (err == 0) {
2714 		sbuf_finish(topo);
2715 		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2716 	}
2717 	sbuf_delete(topo);
2718 	return (err);
2719 }
2720 
2721 #endif
2722 
2723 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2724 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2725     "Scheduler name");
2726 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2727     "Slice size for timeshare threads");
2728 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2729      "Interactivity score threshold");
2730 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2731      0,"Min priority for preemption, lower priorities have greater precedence");
2732 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2733      0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2734 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2735      0,"Number of times idle will spin waiting for new work.");
2736 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2737      0,"Threshold before we will permit idle spinning.");
2738 #ifdef SMP
2739 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2740     "Number of hz ticks to keep thread affinity for");
2741 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2742     "Enables the long-term load balancer");
2743 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2744     &balance_interval, 0,
2745     "Average frequency in stathz ticks to run the long-term balancer");
2746 SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0,
2747     "Steals work from another hyper-threaded core on idle");
2748 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2749     "Attempts to steal work from other cores before idling");
2750 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2751     "Minimum load on remote cpu before we'll steal");
2752 
2753 /* Retrieve SMP topology */
2754 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2755     CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2756     "XML dump of detected CPU topology");
2757 
2758 #endif
2759 
2760 /* ps compat.  All cpu percentages from ULE are weighted. */
2761 static int ccpu = 0;
2762 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2763