xref: /freebsd/sys/kern/sched_ule.c (revision 7cd2dcf07629713e5a3d60472cfe4701b705a167)
1 /*-
2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * This file implements the ULE scheduler.  ULE supports independent CPU
29  * run queues and fine grain locking.  It has superior interactive
30  * performance under load even on uni-processor systems.
31  *
32  * etymology:
33  *   ULE is the last three letters in schedule.  It owes its name to a
34  * generic user created for a scheduling system by Paul Mikesell at
35  * Isilon Systems and a general lack of creativity on the part of the author.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_kdtrace.h"
43 #include "opt_sched.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resource.h>
54 #include <sys/resourcevar.h>
55 #include <sys/sched.h>
56 #include <sys/sdt.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/turnstile.h>
62 #include <sys/umtx.h>
63 #include <sys/vmmeter.h>
64 #include <sys/cpuset.h>
65 #include <sys/sbuf.h>
66 
67 #ifdef HWPMC_HOOKS
68 #include <sys/pmckern.h>
69 #endif
70 
71 #ifdef KDTRACE_HOOKS
72 #include <sys/dtrace_bsd.h>
73 int				dtrace_vtime_active;
74 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75 #endif
76 
77 #include <machine/cpu.h>
78 #include <machine/smp.h>
79 
80 #if defined(__powerpc__) && defined(BOOKE_E500)
81 #error "This architecture is not currently compatible with ULE"
82 #endif
83 
84 #define	KTR_ULE	0
85 
86 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87 #define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
88 #define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
89 
90 /*
91  * Thread scheduler specific section.  All fields are protected
92  * by the thread lock.
93  */
94 struct td_sched {
95 	struct runq	*ts_runq;	/* Run-queue we're queued on. */
96 	short		ts_flags;	/* TSF_* flags. */
97 	u_char		ts_cpu;		/* CPU that we have affinity for. */
98 	int		ts_rltick;	/* Real last tick, for affinity. */
99 	int		ts_slice;	/* Ticks of slice remaining. */
100 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
101 	u_int		ts_runtime;	/* Number of ticks we were running */
102 	int		ts_ltick;	/* Last tick that we were running on */
103 	int		ts_ftick;	/* First tick that we were running on */
104 	int		ts_ticks;	/* Tick count */
105 #ifdef KTR
106 	char		ts_name[TS_NAME_LEN];
107 #endif
108 };
109 /* flags kept in ts_flags */
110 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112 
113 static struct td_sched td_sched0;
114 
115 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116 #define	THREAD_CAN_SCHED(td, cpu)	\
117     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118 
119 /*
120  * Priority ranges used for interactive and non-interactive timeshare
121  * threads.  The timeshare priorities are split up into four ranges.
122  * The first range handles interactive threads.  The last three ranges
123  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124  * ranges supporting nice values.
125  */
126 #define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127 #define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128 #define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129 
130 #define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131 #define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132 #define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133 #define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134 
135 /*
136  * Cpu percentage computation macros and defines.
137  *
138  * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139  * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140  * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142  * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143  * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144  */
145 #define	SCHED_TICK_SECS		10
146 #define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147 #define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148 #define	SCHED_TICK_SHIFT	10
149 #define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150 #define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151 
152 /*
153  * These macros determine priorities for non-interactive threads.  They are
154  * assigned a priority based on their recent cpu utilization as expressed
155  * by the ratio of ticks to the tick total.  NHALF priorities at the start
156  * and end of the MIN to MAX timeshare range are only reachable with negative
157  * or positive nice respectively.
158  *
159  * PRI_RANGE:	Priority range for utilization dependent priorities.
160  * PRI_NRESV:	Number of nice values.
161  * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162  * PRI_NICE:	Determines the part of the priority inherited from nice.
163  */
164 #define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166 #define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167 #define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168 #define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169 #define	SCHED_PRI_TICKS(ts)						\
170     (SCHED_TICK_HZ((ts)) /						\
171     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172 #define	SCHED_PRI_NICE(nice)	(nice)
173 
174 /*
175  * These determine the interactivity of a process.  Interactivity differs from
176  * cpu utilization in that it expresses the voluntary time slept vs time ran
177  * while cpu utilization includes all time not running.  This more accurately
178  * models the intent of the thread.
179  *
180  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181  *		before throttling back.
182  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184  * INTERACT_THRESH:	Threshold for placement on the current runq.
185  */
186 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188 #define	SCHED_INTERACT_MAX	(100)
189 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190 #define	SCHED_INTERACT_THRESH	(30)
191 
192 /* Flags kept in td_flags. */
193 #define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
194 
195 /*
196  * tickincr:		Converts a stathz tick into a hz domain scaled by
197  *			the shift factor.  Without the shift the error rate
198  *			due to rounding would be unacceptably high.
199  * realstathz:		stathz is sometimes 0 and run off of hz.
200  * sched_slice:		Runtime of each thread before rescheduling.
201  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
202  */
203 static int sched_interact = SCHED_INTERACT_THRESH;
204 static int realstathz = 127;
205 static int tickincr = 8 << SCHED_TICK_SHIFT;
206 static int sched_slice = 12;
207 #ifdef PREEMPTION
208 #ifdef FULL_PREEMPTION
209 static int preempt_thresh = PRI_MAX_IDLE;
210 #else
211 static int preempt_thresh = PRI_MIN_KERN;
212 #endif
213 #else
214 static int preempt_thresh = 0;
215 #endif
216 static int static_boost = PRI_MIN_BATCH;
217 static int sched_idlespins = 10000;
218 static int sched_idlespinthresh = -1;
219 
220 /*
221  * tdq - per processor runqs and statistics.  All fields are protected by the
222  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
223  * locking in sched_pickcpu();
224  */
225 struct tdq {
226 	/*
227 	 * Ordered to improve efficiency of cpu_search() and switch().
228 	 * tdq_lock is padded to avoid false sharing with tdq_load and
229 	 * tdq_cpu_idle.
230 	 */
231 	struct mtx_padalign tdq_lock;		/* run queue lock. */
232 	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
233 	volatile int	tdq_load;		/* Aggregate load. */
234 	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
235 	int		tdq_sysload;		/* For loadavg, !ITHD load. */
236 	int		tdq_transferable;	/* Transferable thread count. */
237 	short		tdq_switchcnt;		/* Switches this tick. */
238 	short		tdq_oldswitchcnt;	/* Switches last tick. */
239 	u_char		tdq_lowpri;		/* Lowest priority thread. */
240 	u_char		tdq_ipipending;		/* IPI pending. */
241 	u_char		tdq_idx;		/* Current insert index. */
242 	u_char		tdq_ridx;		/* Current removal index. */
243 	struct runq	tdq_realtime;		/* real-time run queue. */
244 	struct runq	tdq_timeshare;		/* timeshare run queue. */
245 	struct runq	tdq_idle;		/* Queue of IDLE threads. */
246 	char		tdq_name[TDQ_NAME_LEN];
247 #ifdef KTR
248 	char		tdq_loadname[TDQ_LOADNAME_LEN];
249 #endif
250 } __aligned(64);
251 
252 /* Idle thread states and config. */
253 #define	TDQ_RUNNING	1
254 #define	TDQ_IDLE	2
255 
256 #ifdef SMP
257 struct cpu_group *cpu_top;		/* CPU topology */
258 
259 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
260 #define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
261 
262 /*
263  * Run-time tunables.
264  */
265 static int rebalance = 1;
266 static int balance_interval = 128;	/* Default set in sched_initticks(). */
267 static int affinity;
268 static int steal_idle = 1;
269 static int steal_thresh = 2;
270 
271 /*
272  * One thread queue per processor.
273  */
274 static struct tdq	tdq_cpu[MAXCPU];
275 static struct tdq	*balance_tdq;
276 static int balance_ticks;
277 static DPCPU_DEFINE(uint32_t, randomval);
278 
279 #define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
280 #define	TDQ_CPU(x)	(&tdq_cpu[(x)])
281 #define	TDQ_ID(x)	((int)((x) - tdq_cpu))
282 #else	/* !SMP */
283 static struct tdq	tdq_cpu;
284 
285 #define	TDQ_ID(x)	(0)
286 #define	TDQ_SELF()	(&tdq_cpu)
287 #define	TDQ_CPU(x)	(&tdq_cpu)
288 #endif
289 
290 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
291 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
292 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
293 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
294 #define	TDQ_LOCKPTR(t)		((struct mtx *)(&(t)->tdq_lock))
295 
296 static void sched_priority(struct thread *);
297 static void sched_thread_priority(struct thread *, u_char);
298 static int sched_interact_score(struct thread *);
299 static void sched_interact_update(struct thread *);
300 static void sched_interact_fork(struct thread *);
301 static void sched_pctcpu_update(struct td_sched *, int);
302 
303 /* Operations on per processor queues */
304 static struct thread *tdq_choose(struct tdq *);
305 static void tdq_setup(struct tdq *);
306 static void tdq_load_add(struct tdq *, struct thread *);
307 static void tdq_load_rem(struct tdq *, struct thread *);
308 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
309 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
310 static inline int sched_shouldpreempt(int, int, int);
311 void tdq_print(int cpu);
312 static void runq_print(struct runq *rq);
313 static void tdq_add(struct tdq *, struct thread *, int);
314 #ifdef SMP
315 static int tdq_move(struct tdq *, struct tdq *);
316 static int tdq_idled(struct tdq *);
317 static void tdq_notify(struct tdq *, struct thread *);
318 static struct thread *tdq_steal(struct tdq *, int);
319 static struct thread *runq_steal(struct runq *, int);
320 static int sched_pickcpu(struct thread *, int);
321 static void sched_balance(void);
322 static int sched_balance_pair(struct tdq *, struct tdq *);
323 static inline struct tdq *sched_setcpu(struct thread *, int, int);
324 static inline void thread_unblock_switch(struct thread *, struct mtx *);
325 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
326 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
327 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
328     struct cpu_group *cg, int indent);
329 #endif
330 
331 static void sched_setup(void *dummy);
332 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
333 
334 static void sched_initticks(void *dummy);
335 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
336     NULL);
337 
338 SDT_PROVIDER_DEFINE(sched);
339 
340 SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *",
341     "struct proc *", "uint8_t");
342 SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *",
343     "struct proc *", "void *");
344 SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *",
345     "struct proc *", "void *", "int");
346 SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *",
347     "struct proc *", "uint8_t", "struct thread *");
348 SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
349 SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
350     "struct proc *");
351 SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
352 SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
353 SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
354     "struct proc *");
355 
356 /*
357  * Print the threads waiting on a run-queue.
358  */
359 static void
360 runq_print(struct runq *rq)
361 {
362 	struct rqhead *rqh;
363 	struct thread *td;
364 	int pri;
365 	int j;
366 	int i;
367 
368 	for (i = 0; i < RQB_LEN; i++) {
369 		printf("\t\trunq bits %d 0x%zx\n",
370 		    i, rq->rq_status.rqb_bits[i]);
371 		for (j = 0; j < RQB_BPW; j++)
372 			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
373 				pri = j + (i << RQB_L2BPW);
374 				rqh = &rq->rq_queues[pri];
375 				TAILQ_FOREACH(td, rqh, td_runq) {
376 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
377 					    td, td->td_name, td->td_priority,
378 					    td->td_rqindex, pri);
379 				}
380 			}
381 	}
382 }
383 
384 /*
385  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
386  */
387 void
388 tdq_print(int cpu)
389 {
390 	struct tdq *tdq;
391 
392 	tdq = TDQ_CPU(cpu);
393 
394 	printf("tdq %d:\n", TDQ_ID(tdq));
395 	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
396 	printf("\tLock name:      %s\n", tdq->tdq_name);
397 	printf("\tload:           %d\n", tdq->tdq_load);
398 	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
399 	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
400 	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
401 	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
402 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
403 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
404 	printf("\trealtime runq:\n");
405 	runq_print(&tdq->tdq_realtime);
406 	printf("\ttimeshare runq:\n");
407 	runq_print(&tdq->tdq_timeshare);
408 	printf("\tidle runq:\n");
409 	runq_print(&tdq->tdq_idle);
410 }
411 
412 static inline int
413 sched_shouldpreempt(int pri, int cpri, int remote)
414 {
415 	/*
416 	 * If the new priority is not better than the current priority there is
417 	 * nothing to do.
418 	 */
419 	if (pri >= cpri)
420 		return (0);
421 	/*
422 	 * Always preempt idle.
423 	 */
424 	if (cpri >= PRI_MIN_IDLE)
425 		return (1);
426 	/*
427 	 * If preemption is disabled don't preempt others.
428 	 */
429 	if (preempt_thresh == 0)
430 		return (0);
431 	/*
432 	 * Preempt if we exceed the threshold.
433 	 */
434 	if (pri <= preempt_thresh)
435 		return (1);
436 	/*
437 	 * If we're interactive or better and there is non-interactive
438 	 * or worse running preempt only remote processors.
439 	 */
440 	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
441 		return (1);
442 	return (0);
443 }
444 
445 /*
446  * Add a thread to the actual run-queue.  Keeps transferable counts up to
447  * date with what is actually on the run-queue.  Selects the correct
448  * queue position for timeshare threads.
449  */
450 static __inline void
451 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
452 {
453 	struct td_sched *ts;
454 	u_char pri;
455 
456 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
457 	THREAD_LOCK_ASSERT(td, MA_OWNED);
458 
459 	pri = td->td_priority;
460 	ts = td->td_sched;
461 	TD_SET_RUNQ(td);
462 	if (THREAD_CAN_MIGRATE(td)) {
463 		tdq->tdq_transferable++;
464 		ts->ts_flags |= TSF_XFERABLE;
465 	}
466 	if (pri < PRI_MIN_BATCH) {
467 		ts->ts_runq = &tdq->tdq_realtime;
468 	} else if (pri <= PRI_MAX_BATCH) {
469 		ts->ts_runq = &tdq->tdq_timeshare;
470 		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
471 			("Invalid priority %d on timeshare runq", pri));
472 		/*
473 		 * This queue contains only priorities between MIN and MAX
474 		 * realtime.  Use the whole queue to represent these values.
475 		 */
476 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
477 			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
478 			pri = (pri + tdq->tdq_idx) % RQ_NQS;
479 			/*
480 			 * This effectively shortens the queue by one so we
481 			 * can have a one slot difference between idx and
482 			 * ridx while we wait for threads to drain.
483 			 */
484 			if (tdq->tdq_ridx != tdq->tdq_idx &&
485 			    pri == tdq->tdq_ridx)
486 				pri = (unsigned char)(pri - 1) % RQ_NQS;
487 		} else
488 			pri = tdq->tdq_ridx;
489 		runq_add_pri(ts->ts_runq, td, pri, flags);
490 		return;
491 	} else
492 		ts->ts_runq = &tdq->tdq_idle;
493 	runq_add(ts->ts_runq, td, flags);
494 }
495 
496 /*
497  * Remove a thread from a run-queue.  This typically happens when a thread
498  * is selected to run.  Running threads are not on the queue and the
499  * transferable count does not reflect them.
500  */
501 static __inline void
502 tdq_runq_rem(struct tdq *tdq, struct thread *td)
503 {
504 	struct td_sched *ts;
505 
506 	ts = td->td_sched;
507 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
508 	KASSERT(ts->ts_runq != NULL,
509 	    ("tdq_runq_remove: thread %p null ts_runq", td));
510 	if (ts->ts_flags & TSF_XFERABLE) {
511 		tdq->tdq_transferable--;
512 		ts->ts_flags &= ~TSF_XFERABLE;
513 	}
514 	if (ts->ts_runq == &tdq->tdq_timeshare) {
515 		if (tdq->tdq_idx != tdq->tdq_ridx)
516 			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
517 		else
518 			runq_remove_idx(ts->ts_runq, td, NULL);
519 	} else
520 		runq_remove(ts->ts_runq, td);
521 }
522 
523 /*
524  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
525  * for this thread to the referenced thread queue.
526  */
527 static void
528 tdq_load_add(struct tdq *tdq, struct thread *td)
529 {
530 
531 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
532 	THREAD_LOCK_ASSERT(td, MA_OWNED);
533 
534 	tdq->tdq_load++;
535 	if ((td->td_flags & TDF_NOLOAD) == 0)
536 		tdq->tdq_sysload++;
537 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
538 	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
539 }
540 
541 /*
542  * Remove the load from a thread that is transitioning to a sleep state or
543  * exiting.
544  */
545 static void
546 tdq_load_rem(struct tdq *tdq, struct thread *td)
547 {
548 
549 	THREAD_LOCK_ASSERT(td, MA_OWNED);
550 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
551 	KASSERT(tdq->tdq_load != 0,
552 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
553 
554 	tdq->tdq_load--;
555 	if ((td->td_flags & TDF_NOLOAD) == 0)
556 		tdq->tdq_sysload--;
557 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
558 	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
559 }
560 
561 /*
562  * Set lowpri to its exact value by searching the run-queue and
563  * evaluating curthread.  curthread may be passed as an optimization.
564  */
565 static void
566 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
567 {
568 	struct thread *td;
569 
570 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
571 	if (ctd == NULL)
572 		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
573 	td = tdq_choose(tdq);
574 	if (td == NULL || td->td_priority > ctd->td_priority)
575 		tdq->tdq_lowpri = ctd->td_priority;
576 	else
577 		tdq->tdq_lowpri = td->td_priority;
578 }
579 
580 #ifdef SMP
581 struct cpu_search {
582 	cpuset_t cs_mask;
583 	u_int	cs_prefer;
584 	int	cs_pri;		/* Min priority for low. */
585 	int	cs_limit;	/* Max load for low, min load for high. */
586 	int	cs_cpu;
587 	int	cs_load;
588 };
589 
590 #define	CPU_SEARCH_LOWEST	0x1
591 #define	CPU_SEARCH_HIGHEST	0x2
592 #define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
593 
594 #define	CPUSET_FOREACH(cpu, mask)				\
595 	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
596 		if (CPU_ISSET(cpu, &mask))
597 
598 static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
599     struct cpu_search *high, const int match);
600 int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
601 int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
602 int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
603     struct cpu_search *high);
604 
605 /*
606  * Search the tree of cpu_groups for the lowest or highest loaded cpu
607  * according to the match argument.  This routine actually compares the
608  * load on all paths through the tree and finds the least loaded cpu on
609  * the least loaded path, which may differ from the least loaded cpu in
610  * the system.  This balances work among caches and busses.
611  *
612  * This inline is instantiated in three forms below using constants for the
613  * match argument.  It is reduced to the minimum set for each case.  It is
614  * also recursive to the depth of the tree.
615  */
616 static __inline int
617 cpu_search(const struct cpu_group *cg, struct cpu_search *low,
618     struct cpu_search *high, const int match)
619 {
620 	struct cpu_search lgroup;
621 	struct cpu_search hgroup;
622 	cpuset_t cpumask;
623 	struct cpu_group *child;
624 	struct tdq *tdq;
625 	int cpu, i, hload, lload, load, total, rnd, *rndptr;
626 
627 	total = 0;
628 	cpumask = cg->cg_mask;
629 	if (match & CPU_SEARCH_LOWEST) {
630 		lload = INT_MAX;
631 		lgroup = *low;
632 	}
633 	if (match & CPU_SEARCH_HIGHEST) {
634 		hload = INT_MIN;
635 		hgroup = *high;
636 	}
637 
638 	/* Iterate through the child CPU groups and then remaining CPUs. */
639 	for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) {
640 		if (i == 0) {
641 			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
642 				cpu--;
643 			if (cpu < 0)
644 				break;
645 			child = NULL;
646 		} else
647 			child = &cg->cg_child[i - 1];
648 
649 		if (match & CPU_SEARCH_LOWEST)
650 			lgroup.cs_cpu = -1;
651 		if (match & CPU_SEARCH_HIGHEST)
652 			hgroup.cs_cpu = -1;
653 		if (child) {			/* Handle child CPU group. */
654 			CPU_NAND(&cpumask, &child->cg_mask);
655 			switch (match) {
656 			case CPU_SEARCH_LOWEST:
657 				load = cpu_search_lowest(child, &lgroup);
658 				break;
659 			case CPU_SEARCH_HIGHEST:
660 				load = cpu_search_highest(child, &hgroup);
661 				break;
662 			case CPU_SEARCH_BOTH:
663 				load = cpu_search_both(child, &lgroup, &hgroup);
664 				break;
665 			}
666 		} else {			/* Handle child CPU. */
667 			tdq = TDQ_CPU(cpu);
668 			load = tdq->tdq_load * 256;
669 			rndptr = DPCPU_PTR(randomval);
670 			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
671 			if (match & CPU_SEARCH_LOWEST) {
672 				if (cpu == low->cs_prefer)
673 					load -= 64;
674 				/* If that CPU is allowed and get data. */
675 				if (tdq->tdq_lowpri > lgroup.cs_pri &&
676 				    tdq->tdq_load <= lgroup.cs_limit &&
677 				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
678 					lgroup.cs_cpu = cpu;
679 					lgroup.cs_load = load - rnd;
680 				}
681 			}
682 			if (match & CPU_SEARCH_HIGHEST)
683 				if (tdq->tdq_load >= hgroup.cs_limit &&
684 				    tdq->tdq_transferable &&
685 				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
686 					hgroup.cs_cpu = cpu;
687 					hgroup.cs_load = load - rnd;
688 				}
689 		}
690 		total += load;
691 
692 		/* We have info about child item. Compare it. */
693 		if (match & CPU_SEARCH_LOWEST) {
694 			if (lgroup.cs_cpu >= 0 &&
695 			    (load < lload ||
696 			     (load == lload && lgroup.cs_load < low->cs_load))) {
697 				lload = load;
698 				low->cs_cpu = lgroup.cs_cpu;
699 				low->cs_load = lgroup.cs_load;
700 			}
701 		}
702 		if (match & CPU_SEARCH_HIGHEST)
703 			if (hgroup.cs_cpu >= 0 &&
704 			    (load > hload ||
705 			     (load == hload && hgroup.cs_load > high->cs_load))) {
706 				hload = load;
707 				high->cs_cpu = hgroup.cs_cpu;
708 				high->cs_load = hgroup.cs_load;
709 			}
710 		if (child) {
711 			i--;
712 			if (i == 0 && CPU_EMPTY(&cpumask))
713 				break;
714 		} else
715 			cpu--;
716 	}
717 	return (total);
718 }
719 
720 /*
721  * cpu_search instantiations must pass constants to maintain the inline
722  * optimization.
723  */
724 int
725 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
726 {
727 	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
728 }
729 
730 int
731 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
732 {
733 	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
734 }
735 
736 int
737 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
738     struct cpu_search *high)
739 {
740 	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
741 }
742 
743 /*
744  * Find the cpu with the least load via the least loaded path that has a
745  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
746  * acceptable.
747  */
748 static inline int
749 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
750     int prefer)
751 {
752 	struct cpu_search low;
753 
754 	low.cs_cpu = -1;
755 	low.cs_prefer = prefer;
756 	low.cs_mask = mask;
757 	low.cs_pri = pri;
758 	low.cs_limit = maxload;
759 	cpu_search_lowest(cg, &low);
760 	return low.cs_cpu;
761 }
762 
763 /*
764  * Find the cpu with the highest load via the highest loaded path.
765  */
766 static inline int
767 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
768 {
769 	struct cpu_search high;
770 
771 	high.cs_cpu = -1;
772 	high.cs_mask = mask;
773 	high.cs_limit = minload;
774 	cpu_search_highest(cg, &high);
775 	return high.cs_cpu;
776 }
777 
778 /*
779  * Simultaneously find the highest and lowest loaded cpu reachable via
780  * cg.
781  */
782 static inline void
783 sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
784 {
785 	struct cpu_search high;
786 	struct cpu_search low;
787 
788 	low.cs_cpu = -1;
789 	low.cs_prefer = -1;
790 	low.cs_pri = -1;
791 	low.cs_limit = INT_MAX;
792 	low.cs_mask = mask;
793 	high.cs_cpu = -1;
794 	high.cs_limit = -1;
795 	high.cs_mask = mask;
796 	cpu_search_both(cg, &low, &high);
797 	*lowcpu = low.cs_cpu;
798 	*highcpu = high.cs_cpu;
799 	return;
800 }
801 
802 static void
803 sched_balance_group(struct cpu_group *cg)
804 {
805 	cpuset_t hmask, lmask;
806 	int high, low, anylow;
807 
808 	CPU_FILL(&hmask);
809 	for (;;) {
810 		high = sched_highest(cg, hmask, 1);
811 		/* Stop if there is no more CPU with transferrable threads. */
812 		if (high == -1)
813 			break;
814 		CPU_CLR(high, &hmask);
815 		CPU_COPY(&hmask, &lmask);
816 		/* Stop if there is no more CPU left for low. */
817 		if (CPU_EMPTY(&lmask))
818 			break;
819 		anylow = 1;
820 nextlow:
821 		low = sched_lowest(cg, lmask, -1,
822 		    TDQ_CPU(high)->tdq_load - 1, high);
823 		/* Stop if we looked well and found no less loaded CPU. */
824 		if (anylow && low == -1)
825 			break;
826 		/* Go to next high if we found no less loaded CPU. */
827 		if (low == -1)
828 			continue;
829 		/* Transfer thread from high to low. */
830 		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
831 			/* CPU that got thread can no longer be a donor. */
832 			CPU_CLR(low, &hmask);
833 		} else {
834 			/*
835 			 * If failed, then there is no threads on high
836 			 * that can run on this low. Drop low from low
837 			 * mask and look for different one.
838 			 */
839 			CPU_CLR(low, &lmask);
840 			anylow = 0;
841 			goto nextlow;
842 		}
843 	}
844 }
845 
846 static void
847 sched_balance(void)
848 {
849 	struct tdq *tdq;
850 
851 	/*
852 	 * Select a random time between .5 * balance_interval and
853 	 * 1.5 * balance_interval.
854 	 */
855 	balance_ticks = max(balance_interval / 2, 1);
856 	balance_ticks += random() % balance_interval;
857 	if (smp_started == 0 || rebalance == 0)
858 		return;
859 	tdq = TDQ_SELF();
860 	TDQ_UNLOCK(tdq);
861 	sched_balance_group(cpu_top);
862 	TDQ_LOCK(tdq);
863 }
864 
865 /*
866  * Lock two thread queues using their address to maintain lock order.
867  */
868 static void
869 tdq_lock_pair(struct tdq *one, struct tdq *two)
870 {
871 	if (one < two) {
872 		TDQ_LOCK(one);
873 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
874 	} else {
875 		TDQ_LOCK(two);
876 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
877 	}
878 }
879 
880 /*
881  * Unlock two thread queues.  Order is not important here.
882  */
883 static void
884 tdq_unlock_pair(struct tdq *one, struct tdq *two)
885 {
886 	TDQ_UNLOCK(one);
887 	TDQ_UNLOCK(two);
888 }
889 
890 /*
891  * Transfer load between two imbalanced thread queues.
892  */
893 static int
894 sched_balance_pair(struct tdq *high, struct tdq *low)
895 {
896 	int moved;
897 	int cpu;
898 
899 	tdq_lock_pair(high, low);
900 	moved = 0;
901 	/*
902 	 * Determine what the imbalance is and then adjust that to how many
903 	 * threads we actually have to give up (transferable).
904 	 */
905 	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
906 	    (moved = tdq_move(high, low)) > 0) {
907 		/*
908 		 * In case the target isn't the current cpu IPI it to force a
909 		 * reschedule with the new workload.
910 		 */
911 		cpu = TDQ_ID(low);
912 		if (cpu != PCPU_GET(cpuid))
913 			ipi_cpu(cpu, IPI_PREEMPT);
914 	}
915 	tdq_unlock_pair(high, low);
916 	return (moved);
917 }
918 
919 /*
920  * Move a thread from one thread queue to another.
921  */
922 static int
923 tdq_move(struct tdq *from, struct tdq *to)
924 {
925 	struct td_sched *ts;
926 	struct thread *td;
927 	struct tdq *tdq;
928 	int cpu;
929 
930 	TDQ_LOCK_ASSERT(from, MA_OWNED);
931 	TDQ_LOCK_ASSERT(to, MA_OWNED);
932 
933 	tdq = from;
934 	cpu = TDQ_ID(to);
935 	td = tdq_steal(tdq, cpu);
936 	if (td == NULL)
937 		return (0);
938 	ts = td->td_sched;
939 	/*
940 	 * Although the run queue is locked the thread may be blocked.  Lock
941 	 * it to clear this and acquire the run-queue lock.
942 	 */
943 	thread_lock(td);
944 	/* Drop recursive lock on from acquired via thread_lock(). */
945 	TDQ_UNLOCK(from);
946 	sched_rem(td);
947 	ts->ts_cpu = cpu;
948 	td->td_lock = TDQ_LOCKPTR(to);
949 	tdq_add(to, td, SRQ_YIELDING);
950 	return (1);
951 }
952 
953 /*
954  * This tdq has idled.  Try to steal a thread from another cpu and switch
955  * to it.
956  */
957 static int
958 tdq_idled(struct tdq *tdq)
959 {
960 	struct cpu_group *cg;
961 	struct tdq *steal;
962 	cpuset_t mask;
963 	int thresh;
964 	int cpu;
965 
966 	if (smp_started == 0 || steal_idle == 0)
967 		return (1);
968 	CPU_FILL(&mask);
969 	CPU_CLR(PCPU_GET(cpuid), &mask);
970 	/* We don't want to be preempted while we're iterating. */
971 	spinlock_enter();
972 	for (cg = tdq->tdq_cg; cg != NULL; ) {
973 		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
974 			thresh = steal_thresh;
975 		else
976 			thresh = 1;
977 		cpu = sched_highest(cg, mask, thresh);
978 		if (cpu == -1) {
979 			cg = cg->cg_parent;
980 			continue;
981 		}
982 		steal = TDQ_CPU(cpu);
983 		CPU_CLR(cpu, &mask);
984 		tdq_lock_pair(tdq, steal);
985 		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
986 			tdq_unlock_pair(tdq, steal);
987 			continue;
988 		}
989 		/*
990 		 * If a thread was added while interrupts were disabled don't
991 		 * steal one here.  If we fail to acquire one due to affinity
992 		 * restrictions loop again with this cpu removed from the
993 		 * set.
994 		 */
995 		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
996 			tdq_unlock_pair(tdq, steal);
997 			continue;
998 		}
999 		spinlock_exit();
1000 		TDQ_UNLOCK(steal);
1001 		mi_switch(SW_VOL | SWT_IDLE, NULL);
1002 		thread_unlock(curthread);
1003 
1004 		return (0);
1005 	}
1006 	spinlock_exit();
1007 	return (1);
1008 }
1009 
1010 /*
1011  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1012  */
1013 static void
1014 tdq_notify(struct tdq *tdq, struct thread *td)
1015 {
1016 	struct thread *ctd;
1017 	int pri;
1018 	int cpu;
1019 
1020 	if (tdq->tdq_ipipending)
1021 		return;
1022 	cpu = td->td_sched->ts_cpu;
1023 	pri = td->td_priority;
1024 	ctd = pcpu_find(cpu)->pc_curthread;
1025 	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1026 		return;
1027 	if (TD_IS_IDLETHREAD(ctd)) {
1028 		/*
1029 		 * If the MD code has an idle wakeup routine try that before
1030 		 * falling back to IPI.
1031 		 */
1032 		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1033 			return;
1034 	}
1035 	tdq->tdq_ipipending = 1;
1036 	ipi_cpu(cpu, IPI_PREEMPT);
1037 }
1038 
1039 /*
1040  * Steals load from a timeshare queue.  Honors the rotating queue head
1041  * index.
1042  */
1043 static struct thread *
1044 runq_steal_from(struct runq *rq, int cpu, u_char start)
1045 {
1046 	struct rqbits *rqb;
1047 	struct rqhead *rqh;
1048 	struct thread *td, *first;
1049 	int bit;
1050 	int pri;
1051 	int i;
1052 
1053 	rqb = &rq->rq_status;
1054 	bit = start & (RQB_BPW -1);
1055 	pri = 0;
1056 	first = NULL;
1057 again:
1058 	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1059 		if (rqb->rqb_bits[i] == 0)
1060 			continue;
1061 		if (bit != 0) {
1062 			for (pri = bit; pri < RQB_BPW; pri++)
1063 				if (rqb->rqb_bits[i] & (1ul << pri))
1064 					break;
1065 			if (pri >= RQB_BPW)
1066 				continue;
1067 		} else
1068 			pri = RQB_FFS(rqb->rqb_bits[i]);
1069 		pri += (i << RQB_L2BPW);
1070 		rqh = &rq->rq_queues[pri];
1071 		TAILQ_FOREACH(td, rqh, td_runq) {
1072 			if (first && THREAD_CAN_MIGRATE(td) &&
1073 			    THREAD_CAN_SCHED(td, cpu))
1074 				return (td);
1075 			first = td;
1076 		}
1077 	}
1078 	if (start != 0) {
1079 		start = 0;
1080 		goto again;
1081 	}
1082 
1083 	if (first && THREAD_CAN_MIGRATE(first) &&
1084 	    THREAD_CAN_SCHED(first, cpu))
1085 		return (first);
1086 	return (NULL);
1087 }
1088 
1089 /*
1090  * Steals load from a standard linear queue.
1091  */
1092 static struct thread *
1093 runq_steal(struct runq *rq, int cpu)
1094 {
1095 	struct rqhead *rqh;
1096 	struct rqbits *rqb;
1097 	struct thread *td;
1098 	int word;
1099 	int bit;
1100 
1101 	rqb = &rq->rq_status;
1102 	for (word = 0; word < RQB_LEN; word++) {
1103 		if (rqb->rqb_bits[word] == 0)
1104 			continue;
1105 		for (bit = 0; bit < RQB_BPW; bit++) {
1106 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1107 				continue;
1108 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1109 			TAILQ_FOREACH(td, rqh, td_runq)
1110 				if (THREAD_CAN_MIGRATE(td) &&
1111 				    THREAD_CAN_SCHED(td, cpu))
1112 					return (td);
1113 		}
1114 	}
1115 	return (NULL);
1116 }
1117 
1118 /*
1119  * Attempt to steal a thread in priority order from a thread queue.
1120  */
1121 static struct thread *
1122 tdq_steal(struct tdq *tdq, int cpu)
1123 {
1124 	struct thread *td;
1125 
1126 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1127 	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1128 		return (td);
1129 	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1130 	    cpu, tdq->tdq_ridx)) != NULL)
1131 		return (td);
1132 	return (runq_steal(&tdq->tdq_idle, cpu));
1133 }
1134 
1135 /*
1136  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1137  * current lock and returns with the assigned queue locked.
1138  */
1139 static inline struct tdq *
1140 sched_setcpu(struct thread *td, int cpu, int flags)
1141 {
1142 
1143 	struct tdq *tdq;
1144 
1145 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1146 	tdq = TDQ_CPU(cpu);
1147 	td->td_sched->ts_cpu = cpu;
1148 	/*
1149 	 * If the lock matches just return the queue.
1150 	 */
1151 	if (td->td_lock == TDQ_LOCKPTR(tdq))
1152 		return (tdq);
1153 #ifdef notyet
1154 	/*
1155 	 * If the thread isn't running its lockptr is a
1156 	 * turnstile or a sleepqueue.  We can just lock_set without
1157 	 * blocking.
1158 	 */
1159 	if (TD_CAN_RUN(td)) {
1160 		TDQ_LOCK(tdq);
1161 		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1162 		return (tdq);
1163 	}
1164 #endif
1165 	/*
1166 	 * The hard case, migration, we need to block the thread first to
1167 	 * prevent order reversals with other cpus locks.
1168 	 */
1169 	spinlock_enter();
1170 	thread_lock_block(td);
1171 	TDQ_LOCK(tdq);
1172 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1173 	spinlock_exit();
1174 	return (tdq);
1175 }
1176 
1177 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1178 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1179 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1180 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1181 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1182 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1183 
1184 static int
1185 sched_pickcpu(struct thread *td, int flags)
1186 {
1187 	struct cpu_group *cg, *ccg;
1188 	struct td_sched *ts;
1189 	struct tdq *tdq;
1190 	cpuset_t mask;
1191 	int cpu, pri, self;
1192 
1193 	self = PCPU_GET(cpuid);
1194 	ts = td->td_sched;
1195 	if (smp_started == 0)
1196 		return (self);
1197 	/*
1198 	 * Don't migrate a running thread from sched_switch().
1199 	 */
1200 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1201 		return (ts->ts_cpu);
1202 	/*
1203 	 * Prefer to run interrupt threads on the processors that generate
1204 	 * the interrupt.
1205 	 */
1206 	pri = td->td_priority;
1207 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1208 	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1209 		SCHED_STAT_INC(pickcpu_intrbind);
1210 		ts->ts_cpu = self;
1211 		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1212 			SCHED_STAT_INC(pickcpu_affinity);
1213 			return (ts->ts_cpu);
1214 		}
1215 	}
1216 	/*
1217 	 * If the thread can run on the last cpu and the affinity has not
1218 	 * expired or it is idle run it there.
1219 	 */
1220 	tdq = TDQ_CPU(ts->ts_cpu);
1221 	cg = tdq->tdq_cg;
1222 	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1223 	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1224 	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1225 		if (cg->cg_flags & CG_FLAG_THREAD) {
1226 			CPUSET_FOREACH(cpu, cg->cg_mask) {
1227 				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1228 					break;
1229 			}
1230 		} else
1231 			cpu = INT_MAX;
1232 		if (cpu > mp_maxid) {
1233 			SCHED_STAT_INC(pickcpu_idle_affinity);
1234 			return (ts->ts_cpu);
1235 		}
1236 	}
1237 	/*
1238 	 * Search for the last level cache CPU group in the tree.
1239 	 * Skip caches with expired affinity time and SMT groups.
1240 	 * Affinity to higher level caches will be handled less aggressively.
1241 	 */
1242 	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1243 		if (cg->cg_flags & CG_FLAG_THREAD)
1244 			continue;
1245 		if (!SCHED_AFFINITY(ts, cg->cg_level))
1246 			continue;
1247 		ccg = cg;
1248 	}
1249 	if (ccg != NULL)
1250 		cg = ccg;
1251 	cpu = -1;
1252 	/* Search the group for the less loaded idle CPU we can run now. */
1253 	mask = td->td_cpuset->cs_mask;
1254 	if (cg != NULL && cg != cpu_top &&
1255 	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1256 		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1257 		    INT_MAX, ts->ts_cpu);
1258 	/* Search globally for the less loaded CPU we can run now. */
1259 	if (cpu == -1)
1260 		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1261 	/* Search globally for the less loaded CPU. */
1262 	if (cpu == -1)
1263 		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1264 	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1265 	/*
1266 	 * Compare the lowest loaded cpu to current cpu.
1267 	 */
1268 	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1269 	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1270 	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1271 		SCHED_STAT_INC(pickcpu_local);
1272 		cpu = self;
1273 	} else
1274 		SCHED_STAT_INC(pickcpu_lowest);
1275 	if (cpu != ts->ts_cpu)
1276 		SCHED_STAT_INC(pickcpu_migration);
1277 	return (cpu);
1278 }
1279 #endif
1280 
1281 /*
1282  * Pick the highest priority task we have and return it.
1283  */
1284 static struct thread *
1285 tdq_choose(struct tdq *tdq)
1286 {
1287 	struct thread *td;
1288 
1289 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1290 	td = runq_choose(&tdq->tdq_realtime);
1291 	if (td != NULL)
1292 		return (td);
1293 	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1294 	if (td != NULL) {
1295 		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1296 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1297 		    td->td_priority));
1298 		return (td);
1299 	}
1300 	td = runq_choose(&tdq->tdq_idle);
1301 	if (td != NULL) {
1302 		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1303 		    ("tdq_choose: Invalid priority on idle queue %d",
1304 		    td->td_priority));
1305 		return (td);
1306 	}
1307 
1308 	return (NULL);
1309 }
1310 
1311 /*
1312  * Initialize a thread queue.
1313  */
1314 static void
1315 tdq_setup(struct tdq *tdq)
1316 {
1317 
1318 	if (bootverbose)
1319 		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1320 	runq_init(&tdq->tdq_realtime);
1321 	runq_init(&tdq->tdq_timeshare);
1322 	runq_init(&tdq->tdq_idle);
1323 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1324 	    "sched lock %d", (int)TDQ_ID(tdq));
1325 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1326 	    MTX_SPIN | MTX_RECURSE);
1327 #ifdef KTR
1328 	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1329 	    "CPU %d load", (int)TDQ_ID(tdq));
1330 #endif
1331 }
1332 
1333 #ifdef SMP
1334 static void
1335 sched_setup_smp(void)
1336 {
1337 	struct tdq *tdq;
1338 	int i;
1339 
1340 	cpu_top = smp_topo();
1341 	CPU_FOREACH(i) {
1342 		tdq = TDQ_CPU(i);
1343 		tdq_setup(tdq);
1344 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1345 		if (tdq->tdq_cg == NULL)
1346 			panic("Can't find cpu group for %d\n", i);
1347 	}
1348 	balance_tdq = TDQ_SELF();
1349 	sched_balance();
1350 }
1351 #endif
1352 
1353 /*
1354  * Setup the thread queues and initialize the topology based on MD
1355  * information.
1356  */
1357 static void
1358 sched_setup(void *dummy)
1359 {
1360 	struct tdq *tdq;
1361 
1362 	tdq = TDQ_SELF();
1363 #ifdef SMP
1364 	sched_setup_smp();
1365 #else
1366 	tdq_setup(tdq);
1367 #endif
1368 
1369 	/* Add thread0's load since it's running. */
1370 	TDQ_LOCK(tdq);
1371 	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1372 	tdq_load_add(tdq, &thread0);
1373 	tdq->tdq_lowpri = thread0.td_priority;
1374 	TDQ_UNLOCK(tdq);
1375 }
1376 
1377 /*
1378  * This routine determines time constants after stathz and hz are setup.
1379  */
1380 /* ARGSUSED */
1381 static void
1382 sched_initticks(void *dummy)
1383 {
1384 	int incr;
1385 
1386 	realstathz = stathz ? stathz : hz;
1387 	sched_slice = realstathz / 10;	/* ~100ms */
1388 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1389 	    realstathz);
1390 
1391 	/*
1392 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1393 	 * hz not being evenly divisible by stathz on all platforms.
1394 	 */
1395 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1396 	/*
1397 	 * This does not work for values of stathz that are more than
1398 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1399 	 */
1400 	if (incr == 0)
1401 		incr = 1;
1402 	tickincr = incr;
1403 #ifdef SMP
1404 	/*
1405 	 * Set the default balance interval now that we know
1406 	 * what realstathz is.
1407 	 */
1408 	balance_interval = realstathz;
1409 	affinity = SCHED_AFFINITY_DEFAULT;
1410 #endif
1411 	if (sched_idlespinthresh < 0)
1412 		sched_idlespinthresh = imax(16, 2 * hz / realstathz);
1413 }
1414 
1415 
1416 /*
1417  * This is the core of the interactivity algorithm.  Determines a score based
1418  * on past behavior.  It is the ratio of sleep time to run time scaled to
1419  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1420  * differs from the cpu usage because it does not account for time spent
1421  * waiting on a run-queue.  Would be prettier if we had floating point.
1422  */
1423 static int
1424 sched_interact_score(struct thread *td)
1425 {
1426 	struct td_sched *ts;
1427 	int div;
1428 
1429 	ts = td->td_sched;
1430 	/*
1431 	 * The score is only needed if this is likely to be an interactive
1432 	 * task.  Don't go through the expense of computing it if there's
1433 	 * no chance.
1434 	 */
1435 	if (sched_interact <= SCHED_INTERACT_HALF &&
1436 		ts->ts_runtime >= ts->ts_slptime)
1437 			return (SCHED_INTERACT_HALF);
1438 
1439 	if (ts->ts_runtime > ts->ts_slptime) {
1440 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1441 		return (SCHED_INTERACT_HALF +
1442 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1443 	}
1444 	if (ts->ts_slptime > ts->ts_runtime) {
1445 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1446 		return (ts->ts_runtime / div);
1447 	}
1448 	/* runtime == slptime */
1449 	if (ts->ts_runtime)
1450 		return (SCHED_INTERACT_HALF);
1451 
1452 	/*
1453 	 * This can happen if slptime and runtime are 0.
1454 	 */
1455 	return (0);
1456 
1457 }
1458 
1459 /*
1460  * Scale the scheduling priority according to the "interactivity" of this
1461  * process.
1462  */
1463 static void
1464 sched_priority(struct thread *td)
1465 {
1466 	int score;
1467 	int pri;
1468 
1469 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1470 		return;
1471 	/*
1472 	 * If the score is interactive we place the thread in the realtime
1473 	 * queue with a priority that is less than kernel and interrupt
1474 	 * priorities.  These threads are not subject to nice restrictions.
1475 	 *
1476 	 * Scores greater than this are placed on the normal timeshare queue
1477 	 * where the priority is partially decided by the most recent cpu
1478 	 * utilization and the rest is decided by nice value.
1479 	 *
1480 	 * The nice value of the process has a linear effect on the calculated
1481 	 * score.  Negative nice values make it easier for a thread to be
1482 	 * considered interactive.
1483 	 */
1484 	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1485 	if (score < sched_interact) {
1486 		pri = PRI_MIN_INTERACT;
1487 		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1488 		    sched_interact) * score;
1489 		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1490 		    ("sched_priority: invalid interactive priority %d score %d",
1491 		    pri, score));
1492 	} else {
1493 		pri = SCHED_PRI_MIN;
1494 		if (td->td_sched->ts_ticks)
1495 			pri += min(SCHED_PRI_TICKS(td->td_sched),
1496 			    SCHED_PRI_RANGE);
1497 		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1498 		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1499 		    ("sched_priority: invalid priority %d: nice %d, "
1500 		    "ticks %d ftick %d ltick %d tick pri %d",
1501 		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1502 		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1503 		    SCHED_PRI_TICKS(td->td_sched)));
1504 	}
1505 	sched_user_prio(td, pri);
1506 
1507 	return;
1508 }
1509 
1510 /*
1511  * This routine enforces a maximum limit on the amount of scheduling history
1512  * kept.  It is called after either the slptime or runtime is adjusted.  This
1513  * function is ugly due to integer math.
1514  */
1515 static void
1516 sched_interact_update(struct thread *td)
1517 {
1518 	struct td_sched *ts;
1519 	u_int sum;
1520 
1521 	ts = td->td_sched;
1522 	sum = ts->ts_runtime + ts->ts_slptime;
1523 	if (sum < SCHED_SLP_RUN_MAX)
1524 		return;
1525 	/*
1526 	 * This only happens from two places:
1527 	 * 1) We have added an unusual amount of run time from fork_exit.
1528 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1529 	 */
1530 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1531 		if (ts->ts_runtime > ts->ts_slptime) {
1532 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1533 			ts->ts_slptime = 1;
1534 		} else {
1535 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1536 			ts->ts_runtime = 1;
1537 		}
1538 		return;
1539 	}
1540 	/*
1541 	 * If we have exceeded by more than 1/5th then the algorithm below
1542 	 * will not bring us back into range.  Dividing by two here forces
1543 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1544 	 */
1545 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1546 		ts->ts_runtime /= 2;
1547 		ts->ts_slptime /= 2;
1548 		return;
1549 	}
1550 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1551 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1552 }
1553 
1554 /*
1555  * Scale back the interactivity history when a child thread is created.  The
1556  * history is inherited from the parent but the thread may behave totally
1557  * differently.  For example, a shell spawning a compiler process.  We want
1558  * to learn that the compiler is behaving badly very quickly.
1559  */
1560 static void
1561 sched_interact_fork(struct thread *td)
1562 {
1563 	int ratio;
1564 	int sum;
1565 
1566 	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1567 	if (sum > SCHED_SLP_RUN_FORK) {
1568 		ratio = sum / SCHED_SLP_RUN_FORK;
1569 		td->td_sched->ts_runtime /= ratio;
1570 		td->td_sched->ts_slptime /= ratio;
1571 	}
1572 }
1573 
1574 /*
1575  * Called from proc0_init() to setup the scheduler fields.
1576  */
1577 void
1578 schedinit(void)
1579 {
1580 
1581 	/*
1582 	 * Set up the scheduler specific parts of proc0.
1583 	 */
1584 	proc0.p_sched = NULL; /* XXX */
1585 	thread0.td_sched = &td_sched0;
1586 	td_sched0.ts_ltick = ticks;
1587 	td_sched0.ts_ftick = ticks;
1588 	td_sched0.ts_slice = sched_slice;
1589 }
1590 
1591 /*
1592  * This is only somewhat accurate since given many processes of the same
1593  * priority they will switch when their slices run out, which will be
1594  * at most sched_slice stathz ticks.
1595  */
1596 int
1597 sched_rr_interval(void)
1598 {
1599 
1600 	/* Convert sched_slice from stathz to hz. */
1601 	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1602 }
1603 
1604 /*
1605  * Update the percent cpu tracking information when it is requested or
1606  * the total history exceeds the maximum.  We keep a sliding history of
1607  * tick counts that slowly decays.  This is less precise than the 4BSD
1608  * mechanism since it happens with less regular and frequent events.
1609  */
1610 static void
1611 sched_pctcpu_update(struct td_sched *ts, int run)
1612 {
1613 	int t = ticks;
1614 
1615 	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1616 		ts->ts_ticks = 0;
1617 		ts->ts_ftick = t - SCHED_TICK_TARG;
1618 	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1619 		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1620 		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1621 		ts->ts_ftick = t - SCHED_TICK_TARG;
1622 	}
1623 	if (run)
1624 		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1625 	ts->ts_ltick = t;
1626 }
1627 
1628 /*
1629  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1630  * if necessary.  This is the back-end for several priority related
1631  * functions.
1632  */
1633 static void
1634 sched_thread_priority(struct thread *td, u_char prio)
1635 {
1636 	struct td_sched *ts;
1637 	struct tdq *tdq;
1638 	int oldpri;
1639 
1640 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1641 	    "prio:%d", td->td_priority, "new prio:%d", prio,
1642 	    KTR_ATTR_LINKED, sched_tdname(curthread));
1643 	SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
1644 	if (td != curthread && prio < td->td_priority) {
1645 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1646 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1647 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1648 		SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio,
1649 		    curthread);
1650 	}
1651 	ts = td->td_sched;
1652 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1653 	if (td->td_priority == prio)
1654 		return;
1655 	/*
1656 	 * If the priority has been elevated due to priority
1657 	 * propagation, we may have to move ourselves to a new
1658 	 * queue.  This could be optimized to not re-add in some
1659 	 * cases.
1660 	 */
1661 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1662 		sched_rem(td);
1663 		td->td_priority = prio;
1664 		sched_add(td, SRQ_BORROWING);
1665 		return;
1666 	}
1667 	/*
1668 	 * If the thread is currently running we may have to adjust the lowpri
1669 	 * information so other cpus are aware of our current priority.
1670 	 */
1671 	if (TD_IS_RUNNING(td)) {
1672 		tdq = TDQ_CPU(ts->ts_cpu);
1673 		oldpri = td->td_priority;
1674 		td->td_priority = prio;
1675 		if (prio < tdq->tdq_lowpri)
1676 			tdq->tdq_lowpri = prio;
1677 		else if (tdq->tdq_lowpri == oldpri)
1678 			tdq_setlowpri(tdq, td);
1679 		return;
1680 	}
1681 	td->td_priority = prio;
1682 }
1683 
1684 /*
1685  * Update a thread's priority when it is lent another thread's
1686  * priority.
1687  */
1688 void
1689 sched_lend_prio(struct thread *td, u_char prio)
1690 {
1691 
1692 	td->td_flags |= TDF_BORROWING;
1693 	sched_thread_priority(td, prio);
1694 }
1695 
1696 /*
1697  * Restore a thread's priority when priority propagation is
1698  * over.  The prio argument is the minimum priority the thread
1699  * needs to have to satisfy other possible priority lending
1700  * requests.  If the thread's regular priority is less
1701  * important than prio, the thread will keep a priority boost
1702  * of prio.
1703  */
1704 void
1705 sched_unlend_prio(struct thread *td, u_char prio)
1706 {
1707 	u_char base_pri;
1708 
1709 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1710 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1711 		base_pri = td->td_user_pri;
1712 	else
1713 		base_pri = td->td_base_pri;
1714 	if (prio >= base_pri) {
1715 		td->td_flags &= ~TDF_BORROWING;
1716 		sched_thread_priority(td, base_pri);
1717 	} else
1718 		sched_lend_prio(td, prio);
1719 }
1720 
1721 /*
1722  * Standard entry for setting the priority to an absolute value.
1723  */
1724 void
1725 sched_prio(struct thread *td, u_char prio)
1726 {
1727 	u_char oldprio;
1728 
1729 	/* First, update the base priority. */
1730 	td->td_base_pri = prio;
1731 
1732 	/*
1733 	 * If the thread is borrowing another thread's priority, don't
1734 	 * ever lower the priority.
1735 	 */
1736 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1737 		return;
1738 
1739 	/* Change the real priority. */
1740 	oldprio = td->td_priority;
1741 	sched_thread_priority(td, prio);
1742 
1743 	/*
1744 	 * If the thread is on a turnstile, then let the turnstile update
1745 	 * its state.
1746 	 */
1747 	if (TD_ON_LOCK(td) && oldprio != prio)
1748 		turnstile_adjust(td, oldprio);
1749 }
1750 
1751 /*
1752  * Set the base user priority, does not effect current running priority.
1753  */
1754 void
1755 sched_user_prio(struct thread *td, u_char prio)
1756 {
1757 
1758 	td->td_base_user_pri = prio;
1759 	if (td->td_lend_user_pri <= prio)
1760 		return;
1761 	td->td_user_pri = prio;
1762 }
1763 
1764 void
1765 sched_lend_user_prio(struct thread *td, u_char prio)
1766 {
1767 
1768 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1769 	td->td_lend_user_pri = prio;
1770 	td->td_user_pri = min(prio, td->td_base_user_pri);
1771 	if (td->td_priority > td->td_user_pri)
1772 		sched_prio(td, td->td_user_pri);
1773 	else if (td->td_priority != td->td_user_pri)
1774 		td->td_flags |= TDF_NEEDRESCHED;
1775 }
1776 
1777 /*
1778  * Handle migration from sched_switch().  This happens only for
1779  * cpu binding.
1780  */
1781 static struct mtx *
1782 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1783 {
1784 	struct tdq *tdn;
1785 
1786 	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1787 #ifdef SMP
1788 	tdq_load_rem(tdq, td);
1789 	/*
1790 	 * Do the lock dance required to avoid LOR.  We grab an extra
1791 	 * spinlock nesting to prevent preemption while we're
1792 	 * not holding either run-queue lock.
1793 	 */
1794 	spinlock_enter();
1795 	thread_lock_block(td);	/* This releases the lock on tdq. */
1796 
1797 	/*
1798 	 * Acquire both run-queue locks before placing the thread on the new
1799 	 * run-queue to avoid deadlocks created by placing a thread with a
1800 	 * blocked lock on the run-queue of a remote processor.  The deadlock
1801 	 * occurs when a third processor attempts to lock the two queues in
1802 	 * question while the target processor is spinning with its own
1803 	 * run-queue lock held while waiting for the blocked lock to clear.
1804 	 */
1805 	tdq_lock_pair(tdn, tdq);
1806 	tdq_add(tdn, td, flags);
1807 	tdq_notify(tdn, td);
1808 	TDQ_UNLOCK(tdn);
1809 	spinlock_exit();
1810 #endif
1811 	return (TDQ_LOCKPTR(tdn));
1812 }
1813 
1814 /*
1815  * Variadic version of thread_lock_unblock() that does not assume td_lock
1816  * is blocked.
1817  */
1818 static inline void
1819 thread_unblock_switch(struct thread *td, struct mtx *mtx)
1820 {
1821 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1822 	    (uintptr_t)mtx);
1823 }
1824 
1825 /*
1826  * Switch threads.  This function has to handle threads coming in while
1827  * blocked for some reason, running, or idle.  It also must deal with
1828  * migrating a thread from one queue to another as running threads may
1829  * be assigned elsewhere via binding.
1830  */
1831 void
1832 sched_switch(struct thread *td, struct thread *newtd, int flags)
1833 {
1834 	struct tdq *tdq;
1835 	struct td_sched *ts;
1836 	struct mtx *mtx;
1837 	int srqflag;
1838 	int cpuid, preempted;
1839 
1840 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1841 	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1842 
1843 	cpuid = PCPU_GET(cpuid);
1844 	tdq = TDQ_CPU(cpuid);
1845 	ts = td->td_sched;
1846 	mtx = td->td_lock;
1847 	sched_pctcpu_update(ts, 1);
1848 	ts->ts_rltick = ticks;
1849 	td->td_lastcpu = td->td_oncpu;
1850 	td->td_oncpu = NOCPU;
1851 	preempted = !(td->td_flags & TDF_SLICEEND);
1852 	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1853 	td->td_owepreempt = 0;
1854 	tdq->tdq_switchcnt++;
1855 	/*
1856 	 * The lock pointer in an idle thread should never change.  Reset it
1857 	 * to CAN_RUN as well.
1858 	 */
1859 	if (TD_IS_IDLETHREAD(td)) {
1860 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1861 		TD_SET_CAN_RUN(td);
1862 	} else if (TD_IS_RUNNING(td)) {
1863 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1864 		srqflag = preempted ?
1865 		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1866 		    SRQ_OURSELF|SRQ_YIELDING;
1867 #ifdef SMP
1868 		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1869 			ts->ts_cpu = sched_pickcpu(td, 0);
1870 #endif
1871 		if (ts->ts_cpu == cpuid)
1872 			tdq_runq_add(tdq, td, srqflag);
1873 		else {
1874 			KASSERT(THREAD_CAN_MIGRATE(td) ||
1875 			    (ts->ts_flags & TSF_BOUND) != 0,
1876 			    ("Thread %p shouldn't migrate", td));
1877 			mtx = sched_switch_migrate(tdq, td, srqflag);
1878 		}
1879 	} else {
1880 		/* This thread must be going to sleep. */
1881 		TDQ_LOCK(tdq);
1882 		mtx = thread_lock_block(td);
1883 		tdq_load_rem(tdq, td);
1884 	}
1885 	/*
1886 	 * We enter here with the thread blocked and assigned to the
1887 	 * appropriate cpu run-queue or sleep-queue and with the current
1888 	 * thread-queue locked.
1889 	 */
1890 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1891 	newtd = choosethread();
1892 	/*
1893 	 * Call the MD code to switch contexts if necessary.
1894 	 */
1895 	if (td != newtd) {
1896 #ifdef	HWPMC_HOOKS
1897 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1898 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1899 #endif
1900 		SDT_PROBE2(sched, , , off_cpu, td, td->td_proc);
1901 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1902 		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1903 		sched_pctcpu_update(newtd->td_sched, 0);
1904 
1905 #ifdef KDTRACE_HOOKS
1906 		/*
1907 		 * If DTrace has set the active vtime enum to anything
1908 		 * other than INACTIVE (0), then it should have set the
1909 		 * function to call.
1910 		 */
1911 		if (dtrace_vtime_active)
1912 			(*dtrace_vtime_switch_func)(newtd);
1913 #endif
1914 
1915 		cpu_switch(td, newtd, mtx);
1916 		/*
1917 		 * We may return from cpu_switch on a different cpu.  However,
1918 		 * we always return with td_lock pointing to the current cpu's
1919 		 * run queue lock.
1920 		 */
1921 		cpuid = PCPU_GET(cpuid);
1922 		tdq = TDQ_CPU(cpuid);
1923 		lock_profile_obtain_lock_success(
1924 		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1925 
1926 		SDT_PROBE0(sched, , , on_cpu);
1927 #ifdef	HWPMC_HOOKS
1928 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1929 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1930 #endif
1931 	} else {
1932 		thread_unblock_switch(td, mtx);
1933 		SDT_PROBE0(sched, , , remain_cpu);
1934 	}
1935 	/*
1936 	 * Assert that all went well and return.
1937 	 */
1938 	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1939 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1940 	td->td_oncpu = cpuid;
1941 }
1942 
1943 /*
1944  * Adjust thread priorities as a result of a nice request.
1945  */
1946 void
1947 sched_nice(struct proc *p, int nice)
1948 {
1949 	struct thread *td;
1950 
1951 	PROC_LOCK_ASSERT(p, MA_OWNED);
1952 
1953 	p->p_nice = nice;
1954 	FOREACH_THREAD_IN_PROC(p, td) {
1955 		thread_lock(td);
1956 		sched_priority(td);
1957 		sched_prio(td, td->td_base_user_pri);
1958 		thread_unlock(td);
1959 	}
1960 }
1961 
1962 /*
1963  * Record the sleep time for the interactivity scorer.
1964  */
1965 void
1966 sched_sleep(struct thread *td, int prio)
1967 {
1968 
1969 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1970 
1971 	td->td_slptick = ticks;
1972 	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1973 		td->td_flags |= TDF_CANSWAP;
1974 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1975 		return;
1976 	if (static_boost == 1 && prio)
1977 		sched_prio(td, prio);
1978 	else if (static_boost && td->td_priority > static_boost)
1979 		sched_prio(td, static_boost);
1980 }
1981 
1982 /*
1983  * Schedule a thread to resume execution and record how long it voluntarily
1984  * slept.  We also update the pctcpu, interactivity, and priority.
1985  */
1986 void
1987 sched_wakeup(struct thread *td)
1988 {
1989 	struct td_sched *ts;
1990 	int slptick;
1991 
1992 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1993 	ts = td->td_sched;
1994 	td->td_flags &= ~TDF_CANSWAP;
1995 	/*
1996 	 * If we slept for more than a tick update our interactivity and
1997 	 * priority.
1998 	 */
1999 	slptick = td->td_slptick;
2000 	td->td_slptick = 0;
2001 	if (slptick && slptick != ticks) {
2002 		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2003 		sched_interact_update(td);
2004 		sched_pctcpu_update(ts, 0);
2005 	}
2006 	/* Reset the slice value after we sleep. */
2007 	ts->ts_slice = sched_slice;
2008 	sched_add(td, SRQ_BORING);
2009 }
2010 
2011 /*
2012  * Penalize the parent for creating a new child and initialize the child's
2013  * priority.
2014  */
2015 void
2016 sched_fork(struct thread *td, struct thread *child)
2017 {
2018 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2019 	sched_pctcpu_update(td->td_sched, 1);
2020 	sched_fork_thread(td, child);
2021 	/*
2022 	 * Penalize the parent and child for forking.
2023 	 */
2024 	sched_interact_fork(child);
2025 	sched_priority(child);
2026 	td->td_sched->ts_runtime += tickincr;
2027 	sched_interact_update(td);
2028 	sched_priority(td);
2029 }
2030 
2031 /*
2032  * Fork a new thread, may be within the same process.
2033  */
2034 void
2035 sched_fork_thread(struct thread *td, struct thread *child)
2036 {
2037 	struct td_sched *ts;
2038 	struct td_sched *ts2;
2039 
2040 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2041 	/*
2042 	 * Initialize child.
2043 	 */
2044 	ts = td->td_sched;
2045 	ts2 = child->td_sched;
2046 	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2047 	child->td_cpuset = cpuset_ref(td->td_cpuset);
2048 	ts2->ts_cpu = ts->ts_cpu;
2049 	ts2->ts_flags = 0;
2050 	/*
2051 	 * Grab our parents cpu estimation information.
2052 	 */
2053 	ts2->ts_ticks = ts->ts_ticks;
2054 	ts2->ts_ltick = ts->ts_ltick;
2055 	ts2->ts_ftick = ts->ts_ftick;
2056 	/*
2057 	 * Do not inherit any borrowed priority from the parent.
2058 	 */
2059 	child->td_priority = child->td_base_pri;
2060 	/*
2061 	 * And update interactivity score.
2062 	 */
2063 	ts2->ts_slptime = ts->ts_slptime;
2064 	ts2->ts_runtime = ts->ts_runtime;
2065 	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2066 #ifdef KTR
2067 	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2068 #endif
2069 }
2070 
2071 /*
2072  * Adjust the priority class of a thread.
2073  */
2074 void
2075 sched_class(struct thread *td, int class)
2076 {
2077 
2078 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2079 	if (td->td_pri_class == class)
2080 		return;
2081 	td->td_pri_class = class;
2082 }
2083 
2084 /*
2085  * Return some of the child's priority and interactivity to the parent.
2086  */
2087 void
2088 sched_exit(struct proc *p, struct thread *child)
2089 {
2090 	struct thread *td;
2091 
2092 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2093 	    "prio:%d", child->td_priority);
2094 	PROC_LOCK_ASSERT(p, MA_OWNED);
2095 	td = FIRST_THREAD_IN_PROC(p);
2096 	sched_exit_thread(td, child);
2097 }
2098 
2099 /*
2100  * Penalize another thread for the time spent on this one.  This helps to
2101  * worsen the priority and interactivity of processes which schedule batch
2102  * jobs such as make.  This has little effect on the make process itself but
2103  * causes new processes spawned by it to receive worse scores immediately.
2104  */
2105 void
2106 sched_exit_thread(struct thread *td, struct thread *child)
2107 {
2108 
2109 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2110 	    "prio:%d", child->td_priority);
2111 	/*
2112 	 * Give the child's runtime to the parent without returning the
2113 	 * sleep time as a penalty to the parent.  This causes shells that
2114 	 * launch expensive things to mark their children as expensive.
2115 	 */
2116 	thread_lock(td);
2117 	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2118 	sched_interact_update(td);
2119 	sched_priority(td);
2120 	thread_unlock(td);
2121 }
2122 
2123 void
2124 sched_preempt(struct thread *td)
2125 {
2126 	struct tdq *tdq;
2127 
2128 	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2129 
2130 	thread_lock(td);
2131 	tdq = TDQ_SELF();
2132 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2133 	tdq->tdq_ipipending = 0;
2134 	if (td->td_priority > tdq->tdq_lowpri) {
2135 		int flags;
2136 
2137 		flags = SW_INVOL | SW_PREEMPT;
2138 		if (td->td_critnest > 1)
2139 			td->td_owepreempt = 1;
2140 		else if (TD_IS_IDLETHREAD(td))
2141 			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2142 		else
2143 			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2144 	}
2145 	thread_unlock(td);
2146 }
2147 
2148 /*
2149  * Fix priorities on return to user-space.  Priorities may be elevated due
2150  * to static priorities in msleep() or similar.
2151  */
2152 void
2153 sched_userret(struct thread *td)
2154 {
2155 	/*
2156 	 * XXX we cheat slightly on the locking here to avoid locking in
2157 	 * the usual case.  Setting td_priority here is essentially an
2158 	 * incomplete workaround for not setting it properly elsewhere.
2159 	 * Now that some interrupt handlers are threads, not setting it
2160 	 * properly elsewhere can clobber it in the window between setting
2161 	 * it here and returning to user mode, so don't waste time setting
2162 	 * it perfectly here.
2163 	 */
2164 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2165 	    ("thread with borrowed priority returning to userland"));
2166 	if (td->td_priority != td->td_user_pri) {
2167 		thread_lock(td);
2168 		td->td_priority = td->td_user_pri;
2169 		td->td_base_pri = td->td_user_pri;
2170 		tdq_setlowpri(TDQ_SELF(), td);
2171 		thread_unlock(td);
2172         }
2173 }
2174 
2175 /*
2176  * Handle a stathz tick.  This is really only relevant for timeshare
2177  * threads.
2178  */
2179 void
2180 sched_clock(struct thread *td)
2181 {
2182 	struct tdq *tdq;
2183 	struct td_sched *ts;
2184 
2185 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2186 	tdq = TDQ_SELF();
2187 #ifdef SMP
2188 	/*
2189 	 * We run the long term load balancer infrequently on the first cpu.
2190 	 */
2191 	if (balance_tdq == tdq) {
2192 		if (balance_ticks && --balance_ticks == 0)
2193 			sched_balance();
2194 	}
2195 #endif
2196 	/*
2197 	 * Save the old switch count so we have a record of the last ticks
2198 	 * activity.   Initialize the new switch count based on our load.
2199 	 * If there is some activity seed it to reflect that.
2200 	 */
2201 	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2202 	tdq->tdq_switchcnt = tdq->tdq_load;
2203 	/*
2204 	 * Advance the insert index once for each tick to ensure that all
2205 	 * threads get a chance to run.
2206 	 */
2207 	if (tdq->tdq_idx == tdq->tdq_ridx) {
2208 		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2209 		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2210 			tdq->tdq_ridx = tdq->tdq_idx;
2211 	}
2212 	ts = td->td_sched;
2213 	sched_pctcpu_update(ts, 1);
2214 	if (td->td_pri_class & PRI_FIFO_BIT)
2215 		return;
2216 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2217 		/*
2218 		 * We used a tick; charge it to the thread so
2219 		 * that we can compute our interactivity.
2220 		 */
2221 		td->td_sched->ts_runtime += tickincr;
2222 		sched_interact_update(td);
2223 		sched_priority(td);
2224 	}
2225 
2226 	/*
2227 	 * Force a context switch if the current thread has used up a full
2228 	 * time slice (default is 100ms).
2229 	 */
2230 	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
2231 		ts->ts_slice = sched_slice;
2232 		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2233 	}
2234 }
2235 
2236 /*
2237  * Called once per hz tick.
2238  */
2239 void
2240 sched_tick(int cnt)
2241 {
2242 
2243 }
2244 
2245 /*
2246  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2247  * cooperative idle threads.
2248  */
2249 int
2250 sched_runnable(void)
2251 {
2252 	struct tdq *tdq;
2253 	int load;
2254 
2255 	load = 1;
2256 
2257 	tdq = TDQ_SELF();
2258 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2259 		if (tdq->tdq_load > 0)
2260 			goto out;
2261 	} else
2262 		if (tdq->tdq_load - 1 > 0)
2263 			goto out;
2264 	load = 0;
2265 out:
2266 	return (load);
2267 }
2268 
2269 /*
2270  * Choose the highest priority thread to run.  The thread is removed from
2271  * the run-queue while running however the load remains.  For SMP we set
2272  * the tdq in the global idle bitmask if it idles here.
2273  */
2274 struct thread *
2275 sched_choose(void)
2276 {
2277 	struct thread *td;
2278 	struct tdq *tdq;
2279 
2280 	tdq = TDQ_SELF();
2281 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2282 	td = tdq_choose(tdq);
2283 	if (td) {
2284 		tdq_runq_rem(tdq, td);
2285 		tdq->tdq_lowpri = td->td_priority;
2286 		return (td);
2287 	}
2288 	tdq->tdq_lowpri = PRI_MAX_IDLE;
2289 	return (PCPU_GET(idlethread));
2290 }
2291 
2292 /*
2293  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2294  * we always request it once we exit a critical section.
2295  */
2296 static inline void
2297 sched_setpreempt(struct thread *td)
2298 {
2299 	struct thread *ctd;
2300 	int cpri;
2301 	int pri;
2302 
2303 	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2304 
2305 	ctd = curthread;
2306 	pri = td->td_priority;
2307 	cpri = ctd->td_priority;
2308 	if (pri < cpri)
2309 		ctd->td_flags |= TDF_NEEDRESCHED;
2310 	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2311 		return;
2312 	if (!sched_shouldpreempt(pri, cpri, 0))
2313 		return;
2314 	ctd->td_owepreempt = 1;
2315 }
2316 
2317 /*
2318  * Add a thread to a thread queue.  Select the appropriate runq and add the
2319  * thread to it.  This is the internal function called when the tdq is
2320  * predetermined.
2321  */
2322 void
2323 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2324 {
2325 
2326 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2327 	KASSERT((td->td_inhibitors == 0),
2328 	    ("sched_add: trying to run inhibited thread"));
2329 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2330 	    ("sched_add: bad thread state"));
2331 	KASSERT(td->td_flags & TDF_INMEM,
2332 	    ("sched_add: thread swapped out"));
2333 
2334 	if (td->td_priority < tdq->tdq_lowpri)
2335 		tdq->tdq_lowpri = td->td_priority;
2336 	tdq_runq_add(tdq, td, flags);
2337 	tdq_load_add(tdq, td);
2338 }
2339 
2340 /*
2341  * Select the target thread queue and add a thread to it.  Request
2342  * preemption or IPI a remote processor if required.
2343  */
2344 void
2345 sched_add(struct thread *td, int flags)
2346 {
2347 	struct tdq *tdq;
2348 #ifdef SMP
2349 	int cpu;
2350 #endif
2351 
2352 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2353 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2354 	    sched_tdname(curthread));
2355 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2356 	    KTR_ATTR_LINKED, sched_tdname(td));
2357 	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2358 	    flags & SRQ_PREEMPTED);
2359 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2360 	/*
2361 	 * Recalculate the priority before we select the target cpu or
2362 	 * run-queue.
2363 	 */
2364 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2365 		sched_priority(td);
2366 #ifdef SMP
2367 	/*
2368 	 * Pick the destination cpu and if it isn't ours transfer to the
2369 	 * target cpu.
2370 	 */
2371 	cpu = sched_pickcpu(td, flags);
2372 	tdq = sched_setcpu(td, cpu, flags);
2373 	tdq_add(tdq, td, flags);
2374 	if (cpu != PCPU_GET(cpuid)) {
2375 		tdq_notify(tdq, td);
2376 		return;
2377 	}
2378 #else
2379 	tdq = TDQ_SELF();
2380 	TDQ_LOCK(tdq);
2381 	/*
2382 	 * Now that the thread is moving to the run-queue, set the lock
2383 	 * to the scheduler's lock.
2384 	 */
2385 	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2386 	tdq_add(tdq, td, flags);
2387 #endif
2388 	if (!(flags & SRQ_YIELDING))
2389 		sched_setpreempt(td);
2390 }
2391 
2392 /*
2393  * Remove a thread from a run-queue without running it.  This is used
2394  * when we're stealing a thread from a remote queue.  Otherwise all threads
2395  * exit by calling sched_exit_thread() and sched_throw() themselves.
2396  */
2397 void
2398 sched_rem(struct thread *td)
2399 {
2400 	struct tdq *tdq;
2401 
2402 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2403 	    "prio:%d", td->td_priority);
2404 	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2405 	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2406 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2407 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2408 	KASSERT(TD_ON_RUNQ(td),
2409 	    ("sched_rem: thread not on run queue"));
2410 	tdq_runq_rem(tdq, td);
2411 	tdq_load_rem(tdq, td);
2412 	TD_SET_CAN_RUN(td);
2413 	if (td->td_priority == tdq->tdq_lowpri)
2414 		tdq_setlowpri(tdq, NULL);
2415 }
2416 
2417 /*
2418  * Fetch cpu utilization information.  Updates on demand.
2419  */
2420 fixpt_t
2421 sched_pctcpu(struct thread *td)
2422 {
2423 	fixpt_t pctcpu;
2424 	struct td_sched *ts;
2425 
2426 	pctcpu = 0;
2427 	ts = td->td_sched;
2428 	if (ts == NULL)
2429 		return (0);
2430 
2431 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2432 	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2433 	if (ts->ts_ticks) {
2434 		int rtick;
2435 
2436 		/* How many rtick per second ? */
2437 		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2438 		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2439 	}
2440 
2441 	return (pctcpu);
2442 }
2443 
2444 /*
2445  * Enforce affinity settings for a thread.  Called after adjustments to
2446  * cpumask.
2447  */
2448 void
2449 sched_affinity(struct thread *td)
2450 {
2451 #ifdef SMP
2452 	struct td_sched *ts;
2453 
2454 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2455 	ts = td->td_sched;
2456 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2457 		return;
2458 	if (TD_ON_RUNQ(td)) {
2459 		sched_rem(td);
2460 		sched_add(td, SRQ_BORING);
2461 		return;
2462 	}
2463 	if (!TD_IS_RUNNING(td))
2464 		return;
2465 	/*
2466 	 * Force a switch before returning to userspace.  If the
2467 	 * target thread is not running locally send an ipi to force
2468 	 * the issue.
2469 	 */
2470 	td->td_flags |= TDF_NEEDRESCHED;
2471 	if (td != curthread)
2472 		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2473 #endif
2474 }
2475 
2476 /*
2477  * Bind a thread to a target cpu.
2478  */
2479 void
2480 sched_bind(struct thread *td, int cpu)
2481 {
2482 	struct td_sched *ts;
2483 
2484 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2485 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2486 	ts = td->td_sched;
2487 	if (ts->ts_flags & TSF_BOUND)
2488 		sched_unbind(td);
2489 	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2490 	ts->ts_flags |= TSF_BOUND;
2491 	sched_pin();
2492 	if (PCPU_GET(cpuid) == cpu)
2493 		return;
2494 	ts->ts_cpu = cpu;
2495 	/* When we return from mi_switch we'll be on the correct cpu. */
2496 	mi_switch(SW_VOL, NULL);
2497 }
2498 
2499 /*
2500  * Release a bound thread.
2501  */
2502 void
2503 sched_unbind(struct thread *td)
2504 {
2505 	struct td_sched *ts;
2506 
2507 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2508 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2509 	ts = td->td_sched;
2510 	if ((ts->ts_flags & TSF_BOUND) == 0)
2511 		return;
2512 	ts->ts_flags &= ~TSF_BOUND;
2513 	sched_unpin();
2514 }
2515 
2516 int
2517 sched_is_bound(struct thread *td)
2518 {
2519 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2520 	return (td->td_sched->ts_flags & TSF_BOUND);
2521 }
2522 
2523 /*
2524  * Basic yield call.
2525  */
2526 void
2527 sched_relinquish(struct thread *td)
2528 {
2529 	thread_lock(td);
2530 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2531 	thread_unlock(td);
2532 }
2533 
2534 /*
2535  * Return the total system load.
2536  */
2537 int
2538 sched_load(void)
2539 {
2540 #ifdef SMP
2541 	int total;
2542 	int i;
2543 
2544 	total = 0;
2545 	CPU_FOREACH(i)
2546 		total += TDQ_CPU(i)->tdq_sysload;
2547 	return (total);
2548 #else
2549 	return (TDQ_SELF()->tdq_sysload);
2550 #endif
2551 }
2552 
2553 int
2554 sched_sizeof_proc(void)
2555 {
2556 	return (sizeof(struct proc));
2557 }
2558 
2559 int
2560 sched_sizeof_thread(void)
2561 {
2562 	return (sizeof(struct thread) + sizeof(struct td_sched));
2563 }
2564 
2565 #ifdef SMP
2566 #define	TDQ_IDLESPIN(tdq)						\
2567     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2568 #else
2569 #define	TDQ_IDLESPIN(tdq)	1
2570 #endif
2571 
2572 /*
2573  * The actual idle process.
2574  */
2575 void
2576 sched_idletd(void *dummy)
2577 {
2578 	struct thread *td;
2579 	struct tdq *tdq;
2580 	int switchcnt;
2581 	int i;
2582 
2583 	mtx_assert(&Giant, MA_NOTOWNED);
2584 	td = curthread;
2585 	tdq = TDQ_SELF();
2586 	THREAD_NO_SLEEPING();
2587 	for (;;) {
2588 #ifdef SMP
2589 		if (tdq_idled(tdq) == 0)
2590 			continue;
2591 #endif
2592 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2593 		/*
2594 		 * If we're switching very frequently, spin while checking
2595 		 * for load rather than entering a low power state that
2596 		 * may require an IPI.  However, don't do any busy
2597 		 * loops while on SMT machines as this simply steals
2598 		 * cycles from cores doing useful work.
2599 		 */
2600 		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2601 			for (i = 0; i < sched_idlespins; i++) {
2602 				if (tdq->tdq_load)
2603 					break;
2604 				cpu_spinwait();
2605 			}
2606 		}
2607 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2608 		if (tdq->tdq_load == 0) {
2609 			tdq->tdq_cpu_idle = 1;
2610 			if (tdq->tdq_load == 0) {
2611 				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2612 				tdq->tdq_switchcnt++;
2613 			}
2614 			tdq->tdq_cpu_idle = 0;
2615 		}
2616 		if (tdq->tdq_load) {
2617 			thread_lock(td);
2618 			mi_switch(SW_VOL | SWT_IDLE, NULL);
2619 			thread_unlock(td);
2620 		}
2621 	}
2622 }
2623 
2624 /*
2625  * A CPU is entering for the first time or a thread is exiting.
2626  */
2627 void
2628 sched_throw(struct thread *td)
2629 {
2630 	struct thread *newtd;
2631 	struct tdq *tdq;
2632 
2633 	tdq = TDQ_SELF();
2634 	if (td == NULL) {
2635 		/* Correct spinlock nesting and acquire the correct lock. */
2636 		TDQ_LOCK(tdq);
2637 		spinlock_exit();
2638 		PCPU_SET(switchtime, cpu_ticks());
2639 		PCPU_SET(switchticks, ticks);
2640 	} else {
2641 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2642 		tdq_load_rem(tdq, td);
2643 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2644 	}
2645 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2646 	newtd = choosethread();
2647 	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2648 	cpu_throw(td, newtd);		/* doesn't return */
2649 }
2650 
2651 /*
2652  * This is called from fork_exit().  Just acquire the correct locks and
2653  * let fork do the rest of the work.
2654  */
2655 void
2656 sched_fork_exit(struct thread *td)
2657 {
2658 	struct td_sched *ts;
2659 	struct tdq *tdq;
2660 	int cpuid;
2661 
2662 	/*
2663 	 * Finish setting up thread glue so that it begins execution in a
2664 	 * non-nested critical section with the scheduler lock held.
2665 	 */
2666 	cpuid = PCPU_GET(cpuid);
2667 	tdq = TDQ_CPU(cpuid);
2668 	ts = td->td_sched;
2669 	if (TD_IS_IDLETHREAD(td))
2670 		td->td_lock = TDQ_LOCKPTR(tdq);
2671 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2672 	td->td_oncpu = cpuid;
2673 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2674 	lock_profile_obtain_lock_success(
2675 	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2676 }
2677 
2678 /*
2679  * Create on first use to catch odd startup conditons.
2680  */
2681 char *
2682 sched_tdname(struct thread *td)
2683 {
2684 #ifdef KTR
2685 	struct td_sched *ts;
2686 
2687 	ts = td->td_sched;
2688 	if (ts->ts_name[0] == '\0')
2689 		snprintf(ts->ts_name, sizeof(ts->ts_name),
2690 		    "%s tid %d", td->td_name, td->td_tid);
2691 	return (ts->ts_name);
2692 #else
2693 	return (td->td_name);
2694 #endif
2695 }
2696 
2697 #ifdef KTR
2698 void
2699 sched_clear_tdname(struct thread *td)
2700 {
2701 	struct td_sched *ts;
2702 
2703 	ts = td->td_sched;
2704 	ts->ts_name[0] = '\0';
2705 }
2706 #endif
2707 
2708 #ifdef SMP
2709 
2710 /*
2711  * Build the CPU topology dump string. Is recursively called to collect
2712  * the topology tree.
2713  */
2714 static int
2715 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2716     int indent)
2717 {
2718 	char cpusetbuf[CPUSETBUFSIZ];
2719 	int i, first;
2720 
2721 	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2722 	    "", 1 + indent / 2, cg->cg_level);
2723 	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2724 	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2725 	first = TRUE;
2726 	for (i = 0; i < MAXCPU; i++) {
2727 		if (CPU_ISSET(i, &cg->cg_mask)) {
2728 			if (!first)
2729 				sbuf_printf(sb, ", ");
2730 			else
2731 				first = FALSE;
2732 			sbuf_printf(sb, "%d", i);
2733 		}
2734 	}
2735 	sbuf_printf(sb, "</cpu>\n");
2736 
2737 	if (cg->cg_flags != 0) {
2738 		sbuf_printf(sb, "%*s <flags>", indent, "");
2739 		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2740 			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2741 		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2742 			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2743 		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2744 			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2745 		sbuf_printf(sb, "</flags>\n");
2746 	}
2747 
2748 	if (cg->cg_children > 0) {
2749 		sbuf_printf(sb, "%*s <children>\n", indent, "");
2750 		for (i = 0; i < cg->cg_children; i++)
2751 			sysctl_kern_sched_topology_spec_internal(sb,
2752 			    &cg->cg_child[i], indent+2);
2753 		sbuf_printf(sb, "%*s </children>\n", indent, "");
2754 	}
2755 	sbuf_printf(sb, "%*s</group>\n", indent, "");
2756 	return (0);
2757 }
2758 
2759 /*
2760  * Sysctl handler for retrieving topology dump. It's a wrapper for
2761  * the recursive sysctl_kern_smp_topology_spec_internal().
2762  */
2763 static int
2764 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2765 {
2766 	struct sbuf *topo;
2767 	int err;
2768 
2769 	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2770 
2771 	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2772 	if (topo == NULL)
2773 		return (ENOMEM);
2774 
2775 	sbuf_printf(topo, "<groups>\n");
2776 	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2777 	sbuf_printf(topo, "</groups>\n");
2778 
2779 	if (err == 0) {
2780 		sbuf_finish(topo);
2781 		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2782 	}
2783 	sbuf_delete(topo);
2784 	return (err);
2785 }
2786 
2787 #endif
2788 
2789 static int
2790 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
2791 {
2792 	int error, new_val, period;
2793 
2794 	period = 1000000 / realstathz;
2795 	new_val = period * sched_slice;
2796 	error = sysctl_handle_int(oidp, &new_val, 0, req);
2797 	if (error != 0 || req->newptr == NULL)
2798 		return (error);
2799 	if (new_val <= 0)
2800 		return (EINVAL);
2801 	sched_slice = imax(1, (new_val + period / 2) / period);
2802 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
2803 	    realstathz);
2804 	return (0);
2805 }
2806 
2807 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2808 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2809     "Scheduler name");
2810 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
2811     NULL, 0, sysctl_kern_quantum, "I",
2812     "Quantum for timeshare threads in microseconds");
2813 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2814     "Quantum for timeshare threads in stathz ticks");
2815 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2816     "Interactivity score threshold");
2817 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
2818     &preempt_thresh, 0,
2819     "Maximal (lowest) priority for preemption");
2820 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
2821     "Assign static kernel priorities to sleeping threads");
2822 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
2823     "Number of times idle thread will spin waiting for new work");
2824 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
2825     &sched_idlespinthresh, 0,
2826     "Threshold before we will permit idle thread spinning");
2827 #ifdef SMP
2828 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2829     "Number of hz ticks to keep thread affinity for");
2830 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2831     "Enables the long-term load balancer");
2832 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2833     &balance_interval, 0,
2834     "Average period in stathz ticks to run the long-term balancer");
2835 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2836     "Attempts to steal work from other cores before idling");
2837 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2838     "Minimum load on remote CPU before we'll steal");
2839 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2840     CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2841     "XML dump of detected CPU topology");
2842 #endif
2843 
2844 /* ps compat.  All cpu percentages from ULE are weighted. */
2845 static int ccpu = 0;
2846 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2847