1 /*- 2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* 28 * This file implements the ULE scheduler. ULE supports independent CPU 29 * run queues and fine grain locking. It has superior interactive 30 * performance under load even on uni-processor systems. 31 * 32 * etymology: 33 * ULE is the last three letters in schedule. It owes its name to a 34 * generic user created for a scheduling system by Paul Mikesell at 35 * Isilon Systems and a general lack of creativity on the part of the author. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_hwpmc_hooks.h" 42 #include "opt_kdtrace.h" 43 #include "opt_sched.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/kdb.h> 48 #include <sys/kernel.h> 49 #include <sys/ktr.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/proc.h> 53 #include <sys/resource.h> 54 #include <sys/resourcevar.h> 55 #include <sys/sched.h> 56 #include <sys/sdt.h> 57 #include <sys/smp.h> 58 #include <sys/sx.h> 59 #include <sys/sysctl.h> 60 #include <sys/sysproto.h> 61 #include <sys/turnstile.h> 62 #include <sys/umtx.h> 63 #include <sys/vmmeter.h> 64 #include <sys/cpuset.h> 65 #include <sys/sbuf.h> 66 67 #ifdef HWPMC_HOOKS 68 #include <sys/pmckern.h> 69 #endif 70 71 #ifdef KDTRACE_HOOKS 72 #include <sys/dtrace_bsd.h> 73 int dtrace_vtime_active; 74 dtrace_vtime_switch_func_t dtrace_vtime_switch_func; 75 #endif 76 77 #include <machine/cpu.h> 78 #include <machine/smp.h> 79 80 #if defined(__powerpc__) && defined(BOOKE_E500) 81 #error "This architecture is not currently compatible with ULE" 82 #endif 83 84 #define KTR_ULE 0 85 86 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX))) 87 #define TDQ_NAME_LEN (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU))) 88 #define TDQ_LOADNAME_LEN (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load")) 89 90 /* 91 * Thread scheduler specific section. All fields are protected 92 * by the thread lock. 93 */ 94 struct td_sched { 95 struct runq *ts_runq; /* Run-queue we're queued on. */ 96 short ts_flags; /* TSF_* flags. */ 97 u_char ts_cpu; /* CPU that we have affinity for. */ 98 int ts_rltick; /* Real last tick, for affinity. */ 99 int ts_slice; /* Ticks of slice remaining. */ 100 u_int ts_slptime; /* Number of ticks we vol. slept */ 101 u_int ts_runtime; /* Number of ticks we were running */ 102 int ts_ltick; /* Last tick that we were running on */ 103 int ts_ftick; /* First tick that we were running on */ 104 int ts_ticks; /* Tick count */ 105 #ifdef KTR 106 char ts_name[TS_NAME_LEN]; 107 #endif 108 }; 109 /* flags kept in ts_flags */ 110 #define TSF_BOUND 0x0001 /* Thread can not migrate. */ 111 #define TSF_XFERABLE 0x0002 /* Thread was added as transferable. */ 112 113 static struct td_sched td_sched0; 114 115 #define THREAD_CAN_MIGRATE(td) ((td)->td_pinned == 0) 116 #define THREAD_CAN_SCHED(td, cpu) \ 117 CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask) 118 119 /* 120 * Priority ranges used for interactive and non-interactive timeshare 121 * threads. The timeshare priorities are split up into four ranges. 122 * The first range handles interactive threads. The last three ranges 123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer 124 * ranges supporting nice values. 125 */ 126 #define PRI_TIMESHARE_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1) 127 #define PRI_INTERACT_RANGE ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2) 128 #define PRI_BATCH_RANGE (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE) 129 130 #define PRI_MIN_INTERACT PRI_MIN_TIMESHARE 131 #define PRI_MAX_INTERACT (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1) 132 #define PRI_MIN_BATCH (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE) 133 #define PRI_MAX_BATCH PRI_MAX_TIMESHARE 134 135 /* 136 * Cpu percentage computation macros and defines. 137 * 138 * SCHED_TICK_SECS: Number of seconds to average the cpu usage across. 139 * SCHED_TICK_TARG: Number of hz ticks to average the cpu usage across. 140 * SCHED_TICK_MAX: Maximum number of ticks before scaling back. 141 * SCHED_TICK_SHIFT: Shift factor to avoid rounding away results. 142 * SCHED_TICK_HZ: Compute the number of hz ticks for a given ticks count. 143 * SCHED_TICK_TOTAL: Gives the amount of time we've been recording ticks. 144 */ 145 #define SCHED_TICK_SECS 10 146 #define SCHED_TICK_TARG (hz * SCHED_TICK_SECS) 147 #define SCHED_TICK_MAX (SCHED_TICK_TARG + hz) 148 #define SCHED_TICK_SHIFT 10 149 #define SCHED_TICK_HZ(ts) ((ts)->ts_ticks >> SCHED_TICK_SHIFT) 150 #define SCHED_TICK_TOTAL(ts) (max((ts)->ts_ltick - (ts)->ts_ftick, hz)) 151 152 /* 153 * These macros determine priorities for non-interactive threads. They are 154 * assigned a priority based on their recent cpu utilization as expressed 155 * by the ratio of ticks to the tick total. NHALF priorities at the start 156 * and end of the MIN to MAX timeshare range are only reachable with negative 157 * or positive nice respectively. 158 * 159 * PRI_RANGE: Priority range for utilization dependent priorities. 160 * PRI_NRESV: Number of nice values. 161 * PRI_TICKS: Compute a priority in PRI_RANGE from the ticks count and total. 162 * PRI_NICE: Determines the part of the priority inherited from nice. 163 */ 164 #define SCHED_PRI_NRESV (PRIO_MAX - PRIO_MIN) 165 #define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2) 166 #define SCHED_PRI_MIN (PRI_MIN_BATCH + SCHED_PRI_NHALF) 167 #define SCHED_PRI_MAX (PRI_MAX_BATCH - SCHED_PRI_NHALF) 168 #define SCHED_PRI_RANGE (SCHED_PRI_MAX - SCHED_PRI_MIN + 1) 169 #define SCHED_PRI_TICKS(ts) \ 170 (SCHED_TICK_HZ((ts)) / \ 171 (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE)) 172 #define SCHED_PRI_NICE(nice) (nice) 173 174 /* 175 * These determine the interactivity of a process. Interactivity differs from 176 * cpu utilization in that it expresses the voluntary time slept vs time ran 177 * while cpu utilization includes all time not running. This more accurately 178 * models the intent of the thread. 179 * 180 * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate 181 * before throttling back. 182 * SLP_RUN_FORK: Maximum slp+run time to inherit at fork time. 183 * INTERACT_MAX: Maximum interactivity value. Smaller is better. 184 * INTERACT_THRESH: Threshold for placement on the current runq. 185 */ 186 #define SCHED_SLP_RUN_MAX ((hz * 5) << SCHED_TICK_SHIFT) 187 #define SCHED_SLP_RUN_FORK ((hz / 2) << SCHED_TICK_SHIFT) 188 #define SCHED_INTERACT_MAX (100) 189 #define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2) 190 #define SCHED_INTERACT_THRESH (30) 191 192 /* Flags kept in td_flags. */ 193 #define TDF_SLICEEND TDF_SCHED2 /* Thread time slice is over. */ 194 195 /* 196 * tickincr: Converts a stathz tick into a hz domain scaled by 197 * the shift factor. Without the shift the error rate 198 * due to rounding would be unacceptably high. 199 * realstathz: stathz is sometimes 0 and run off of hz. 200 * sched_slice: Runtime of each thread before rescheduling. 201 * preempt_thresh: Priority threshold for preemption and remote IPIs. 202 */ 203 static int sched_interact = SCHED_INTERACT_THRESH; 204 static int realstathz = 127; 205 static int tickincr = 8 << SCHED_TICK_SHIFT; 206 static int sched_slice = 12; 207 #ifdef PREEMPTION 208 #ifdef FULL_PREEMPTION 209 static int preempt_thresh = PRI_MAX_IDLE; 210 #else 211 static int preempt_thresh = PRI_MIN_KERN; 212 #endif 213 #else 214 static int preempt_thresh = 0; 215 #endif 216 static int static_boost = PRI_MIN_BATCH; 217 static int sched_idlespins = 10000; 218 static int sched_idlespinthresh = -1; 219 220 /* 221 * tdq - per processor runqs and statistics. All fields are protected by the 222 * tdq_lock. The load and lowpri may be accessed without to avoid excess 223 * locking in sched_pickcpu(); 224 */ 225 struct tdq { 226 /* 227 * Ordered to improve efficiency of cpu_search() and switch(). 228 * tdq_lock is padded to avoid false sharing with tdq_load and 229 * tdq_cpu_idle. 230 */ 231 struct mtx_padalign tdq_lock; /* run queue lock. */ 232 struct cpu_group *tdq_cg; /* Pointer to cpu topology. */ 233 volatile int tdq_load; /* Aggregate load. */ 234 volatile int tdq_cpu_idle; /* cpu_idle() is active. */ 235 int tdq_sysload; /* For loadavg, !ITHD load. */ 236 int tdq_transferable; /* Transferable thread count. */ 237 short tdq_switchcnt; /* Switches this tick. */ 238 short tdq_oldswitchcnt; /* Switches last tick. */ 239 u_char tdq_lowpri; /* Lowest priority thread. */ 240 u_char tdq_ipipending; /* IPI pending. */ 241 u_char tdq_idx; /* Current insert index. */ 242 u_char tdq_ridx; /* Current removal index. */ 243 struct runq tdq_realtime; /* real-time run queue. */ 244 struct runq tdq_timeshare; /* timeshare run queue. */ 245 struct runq tdq_idle; /* Queue of IDLE threads. */ 246 char tdq_name[TDQ_NAME_LEN]; 247 #ifdef KTR 248 char tdq_loadname[TDQ_LOADNAME_LEN]; 249 #endif 250 } __aligned(64); 251 252 /* Idle thread states and config. */ 253 #define TDQ_RUNNING 1 254 #define TDQ_IDLE 2 255 256 #ifdef SMP 257 struct cpu_group *cpu_top; /* CPU topology */ 258 259 #define SCHED_AFFINITY_DEFAULT (max(1, hz / 1000)) 260 #define SCHED_AFFINITY(ts, t) ((ts)->ts_rltick > ticks - ((t) * affinity)) 261 262 /* 263 * Run-time tunables. 264 */ 265 static int rebalance = 1; 266 static int balance_interval = 128; /* Default set in sched_initticks(). */ 267 static int affinity; 268 static int steal_idle = 1; 269 static int steal_thresh = 2; 270 271 /* 272 * One thread queue per processor. 273 */ 274 static struct tdq tdq_cpu[MAXCPU]; 275 static struct tdq *balance_tdq; 276 static int balance_ticks; 277 static DPCPU_DEFINE(uint32_t, randomval); 278 279 #define TDQ_SELF() (&tdq_cpu[PCPU_GET(cpuid)]) 280 #define TDQ_CPU(x) (&tdq_cpu[(x)]) 281 #define TDQ_ID(x) ((int)((x) - tdq_cpu)) 282 #else /* !SMP */ 283 static struct tdq tdq_cpu; 284 285 #define TDQ_ID(x) (0) 286 #define TDQ_SELF() (&tdq_cpu) 287 #define TDQ_CPU(x) (&tdq_cpu) 288 #endif 289 290 #define TDQ_LOCK_ASSERT(t, type) mtx_assert(TDQ_LOCKPTR((t)), (type)) 291 #define TDQ_LOCK(t) mtx_lock_spin(TDQ_LOCKPTR((t))) 292 #define TDQ_LOCK_FLAGS(t, f) mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f)) 293 #define TDQ_UNLOCK(t) mtx_unlock_spin(TDQ_LOCKPTR((t))) 294 #define TDQ_LOCKPTR(t) ((struct mtx *)(&(t)->tdq_lock)) 295 296 static void sched_priority(struct thread *); 297 static void sched_thread_priority(struct thread *, u_char); 298 static int sched_interact_score(struct thread *); 299 static void sched_interact_update(struct thread *); 300 static void sched_interact_fork(struct thread *); 301 static void sched_pctcpu_update(struct td_sched *, int); 302 303 /* Operations on per processor queues */ 304 static struct thread *tdq_choose(struct tdq *); 305 static void tdq_setup(struct tdq *); 306 static void tdq_load_add(struct tdq *, struct thread *); 307 static void tdq_load_rem(struct tdq *, struct thread *); 308 static __inline void tdq_runq_add(struct tdq *, struct thread *, int); 309 static __inline void tdq_runq_rem(struct tdq *, struct thread *); 310 static inline int sched_shouldpreempt(int, int, int); 311 void tdq_print(int cpu); 312 static void runq_print(struct runq *rq); 313 static void tdq_add(struct tdq *, struct thread *, int); 314 #ifdef SMP 315 static int tdq_move(struct tdq *, struct tdq *); 316 static int tdq_idled(struct tdq *); 317 static void tdq_notify(struct tdq *, struct thread *); 318 static struct thread *tdq_steal(struct tdq *, int); 319 static struct thread *runq_steal(struct runq *, int); 320 static int sched_pickcpu(struct thread *, int); 321 static void sched_balance(void); 322 static int sched_balance_pair(struct tdq *, struct tdq *); 323 static inline struct tdq *sched_setcpu(struct thread *, int, int); 324 static inline void thread_unblock_switch(struct thread *, struct mtx *); 325 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int); 326 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS); 327 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 328 struct cpu_group *cg, int indent); 329 #endif 330 331 static void sched_setup(void *dummy); 332 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL); 333 334 static void sched_initticks(void *dummy); 335 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, 336 NULL); 337 338 SDT_PROVIDER_DEFINE(sched); 339 340 SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *", 341 "struct proc *", "uint8_t"); 342 SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *", 343 "struct proc *", "void *"); 344 SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *", 345 "struct proc *", "void *", "int"); 346 SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *", 347 "struct proc *", "uint8_t", "struct thread *"); 348 SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int"); 349 SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *", 350 "struct proc *"); 351 SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu); 352 SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu); 353 SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *", 354 "struct proc *"); 355 356 /* 357 * Print the threads waiting on a run-queue. 358 */ 359 static void 360 runq_print(struct runq *rq) 361 { 362 struct rqhead *rqh; 363 struct thread *td; 364 int pri; 365 int j; 366 int i; 367 368 for (i = 0; i < RQB_LEN; i++) { 369 printf("\t\trunq bits %d 0x%zx\n", 370 i, rq->rq_status.rqb_bits[i]); 371 for (j = 0; j < RQB_BPW; j++) 372 if (rq->rq_status.rqb_bits[i] & (1ul << j)) { 373 pri = j + (i << RQB_L2BPW); 374 rqh = &rq->rq_queues[pri]; 375 TAILQ_FOREACH(td, rqh, td_runq) { 376 printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n", 377 td, td->td_name, td->td_priority, 378 td->td_rqindex, pri); 379 } 380 } 381 } 382 } 383 384 /* 385 * Print the status of a per-cpu thread queue. Should be a ddb show cmd. 386 */ 387 void 388 tdq_print(int cpu) 389 { 390 struct tdq *tdq; 391 392 tdq = TDQ_CPU(cpu); 393 394 printf("tdq %d:\n", TDQ_ID(tdq)); 395 printf("\tlock %p\n", TDQ_LOCKPTR(tdq)); 396 printf("\tLock name: %s\n", tdq->tdq_name); 397 printf("\tload: %d\n", tdq->tdq_load); 398 printf("\tswitch cnt: %d\n", tdq->tdq_switchcnt); 399 printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt); 400 printf("\ttimeshare idx: %d\n", tdq->tdq_idx); 401 printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx); 402 printf("\tload transferable: %d\n", tdq->tdq_transferable); 403 printf("\tlowest priority: %d\n", tdq->tdq_lowpri); 404 printf("\trealtime runq:\n"); 405 runq_print(&tdq->tdq_realtime); 406 printf("\ttimeshare runq:\n"); 407 runq_print(&tdq->tdq_timeshare); 408 printf("\tidle runq:\n"); 409 runq_print(&tdq->tdq_idle); 410 } 411 412 static inline int 413 sched_shouldpreempt(int pri, int cpri, int remote) 414 { 415 /* 416 * If the new priority is not better than the current priority there is 417 * nothing to do. 418 */ 419 if (pri >= cpri) 420 return (0); 421 /* 422 * Always preempt idle. 423 */ 424 if (cpri >= PRI_MIN_IDLE) 425 return (1); 426 /* 427 * If preemption is disabled don't preempt others. 428 */ 429 if (preempt_thresh == 0) 430 return (0); 431 /* 432 * Preempt if we exceed the threshold. 433 */ 434 if (pri <= preempt_thresh) 435 return (1); 436 /* 437 * If we're interactive or better and there is non-interactive 438 * or worse running preempt only remote processors. 439 */ 440 if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT) 441 return (1); 442 return (0); 443 } 444 445 /* 446 * Add a thread to the actual run-queue. Keeps transferable counts up to 447 * date with what is actually on the run-queue. Selects the correct 448 * queue position for timeshare threads. 449 */ 450 static __inline void 451 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags) 452 { 453 struct td_sched *ts; 454 u_char pri; 455 456 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 457 THREAD_LOCK_ASSERT(td, MA_OWNED); 458 459 pri = td->td_priority; 460 ts = td->td_sched; 461 TD_SET_RUNQ(td); 462 if (THREAD_CAN_MIGRATE(td)) { 463 tdq->tdq_transferable++; 464 ts->ts_flags |= TSF_XFERABLE; 465 } 466 if (pri < PRI_MIN_BATCH) { 467 ts->ts_runq = &tdq->tdq_realtime; 468 } else if (pri <= PRI_MAX_BATCH) { 469 ts->ts_runq = &tdq->tdq_timeshare; 470 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH, 471 ("Invalid priority %d on timeshare runq", pri)); 472 /* 473 * This queue contains only priorities between MIN and MAX 474 * realtime. Use the whole queue to represent these values. 475 */ 476 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) { 477 pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE; 478 pri = (pri + tdq->tdq_idx) % RQ_NQS; 479 /* 480 * This effectively shortens the queue by one so we 481 * can have a one slot difference between idx and 482 * ridx while we wait for threads to drain. 483 */ 484 if (tdq->tdq_ridx != tdq->tdq_idx && 485 pri == tdq->tdq_ridx) 486 pri = (unsigned char)(pri - 1) % RQ_NQS; 487 } else 488 pri = tdq->tdq_ridx; 489 runq_add_pri(ts->ts_runq, td, pri, flags); 490 return; 491 } else 492 ts->ts_runq = &tdq->tdq_idle; 493 runq_add(ts->ts_runq, td, flags); 494 } 495 496 /* 497 * Remove a thread from a run-queue. This typically happens when a thread 498 * is selected to run. Running threads are not on the queue and the 499 * transferable count does not reflect them. 500 */ 501 static __inline void 502 tdq_runq_rem(struct tdq *tdq, struct thread *td) 503 { 504 struct td_sched *ts; 505 506 ts = td->td_sched; 507 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 508 KASSERT(ts->ts_runq != NULL, 509 ("tdq_runq_remove: thread %p null ts_runq", td)); 510 if (ts->ts_flags & TSF_XFERABLE) { 511 tdq->tdq_transferable--; 512 ts->ts_flags &= ~TSF_XFERABLE; 513 } 514 if (ts->ts_runq == &tdq->tdq_timeshare) { 515 if (tdq->tdq_idx != tdq->tdq_ridx) 516 runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx); 517 else 518 runq_remove_idx(ts->ts_runq, td, NULL); 519 } else 520 runq_remove(ts->ts_runq, td); 521 } 522 523 /* 524 * Load is maintained for all threads RUNNING and ON_RUNQ. Add the load 525 * for this thread to the referenced thread queue. 526 */ 527 static void 528 tdq_load_add(struct tdq *tdq, struct thread *td) 529 { 530 531 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 532 THREAD_LOCK_ASSERT(td, MA_OWNED); 533 534 tdq->tdq_load++; 535 if ((td->td_flags & TDF_NOLOAD) == 0) 536 tdq->tdq_sysload++; 537 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 538 SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load); 539 } 540 541 /* 542 * Remove the load from a thread that is transitioning to a sleep state or 543 * exiting. 544 */ 545 static void 546 tdq_load_rem(struct tdq *tdq, struct thread *td) 547 { 548 549 THREAD_LOCK_ASSERT(td, MA_OWNED); 550 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 551 KASSERT(tdq->tdq_load != 0, 552 ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq))); 553 554 tdq->tdq_load--; 555 if ((td->td_flags & TDF_NOLOAD) == 0) 556 tdq->tdq_sysload--; 557 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 558 SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load); 559 } 560 561 /* 562 * Set lowpri to its exact value by searching the run-queue and 563 * evaluating curthread. curthread may be passed as an optimization. 564 */ 565 static void 566 tdq_setlowpri(struct tdq *tdq, struct thread *ctd) 567 { 568 struct thread *td; 569 570 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 571 if (ctd == NULL) 572 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread; 573 td = tdq_choose(tdq); 574 if (td == NULL || td->td_priority > ctd->td_priority) 575 tdq->tdq_lowpri = ctd->td_priority; 576 else 577 tdq->tdq_lowpri = td->td_priority; 578 } 579 580 #ifdef SMP 581 struct cpu_search { 582 cpuset_t cs_mask; 583 u_int cs_prefer; 584 int cs_pri; /* Min priority for low. */ 585 int cs_limit; /* Max load for low, min load for high. */ 586 int cs_cpu; 587 int cs_load; 588 }; 589 590 #define CPU_SEARCH_LOWEST 0x1 591 #define CPU_SEARCH_HIGHEST 0x2 592 #define CPU_SEARCH_BOTH (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST) 593 594 #define CPUSET_FOREACH(cpu, mask) \ 595 for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++) \ 596 if (CPU_ISSET(cpu, &mask)) 597 598 static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low, 599 struct cpu_search *high, const int match); 600 int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low); 601 int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high); 602 int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low, 603 struct cpu_search *high); 604 605 /* 606 * Search the tree of cpu_groups for the lowest or highest loaded cpu 607 * according to the match argument. This routine actually compares the 608 * load on all paths through the tree and finds the least loaded cpu on 609 * the least loaded path, which may differ from the least loaded cpu in 610 * the system. This balances work among caches and busses. 611 * 612 * This inline is instantiated in three forms below using constants for the 613 * match argument. It is reduced to the minimum set for each case. It is 614 * also recursive to the depth of the tree. 615 */ 616 static __inline int 617 cpu_search(const struct cpu_group *cg, struct cpu_search *low, 618 struct cpu_search *high, const int match) 619 { 620 struct cpu_search lgroup; 621 struct cpu_search hgroup; 622 cpuset_t cpumask; 623 struct cpu_group *child; 624 struct tdq *tdq; 625 int cpu, i, hload, lload, load, total, rnd, *rndptr; 626 627 total = 0; 628 cpumask = cg->cg_mask; 629 if (match & CPU_SEARCH_LOWEST) { 630 lload = INT_MAX; 631 lgroup = *low; 632 } 633 if (match & CPU_SEARCH_HIGHEST) { 634 hload = INT_MIN; 635 hgroup = *high; 636 } 637 638 /* Iterate through the child CPU groups and then remaining CPUs. */ 639 for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) { 640 if (i == 0) { 641 while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask)) 642 cpu--; 643 if (cpu < 0) 644 break; 645 child = NULL; 646 } else 647 child = &cg->cg_child[i - 1]; 648 649 if (match & CPU_SEARCH_LOWEST) 650 lgroup.cs_cpu = -1; 651 if (match & CPU_SEARCH_HIGHEST) 652 hgroup.cs_cpu = -1; 653 if (child) { /* Handle child CPU group. */ 654 CPU_NAND(&cpumask, &child->cg_mask); 655 switch (match) { 656 case CPU_SEARCH_LOWEST: 657 load = cpu_search_lowest(child, &lgroup); 658 break; 659 case CPU_SEARCH_HIGHEST: 660 load = cpu_search_highest(child, &hgroup); 661 break; 662 case CPU_SEARCH_BOTH: 663 load = cpu_search_both(child, &lgroup, &hgroup); 664 break; 665 } 666 } else { /* Handle child CPU. */ 667 tdq = TDQ_CPU(cpu); 668 load = tdq->tdq_load * 256; 669 rndptr = DPCPU_PTR(randomval); 670 rnd = (*rndptr = *rndptr * 69069 + 5) >> 26; 671 if (match & CPU_SEARCH_LOWEST) { 672 if (cpu == low->cs_prefer) 673 load -= 64; 674 /* If that CPU is allowed and get data. */ 675 if (tdq->tdq_lowpri > lgroup.cs_pri && 676 tdq->tdq_load <= lgroup.cs_limit && 677 CPU_ISSET(cpu, &lgroup.cs_mask)) { 678 lgroup.cs_cpu = cpu; 679 lgroup.cs_load = load - rnd; 680 } 681 } 682 if (match & CPU_SEARCH_HIGHEST) 683 if (tdq->tdq_load >= hgroup.cs_limit && 684 tdq->tdq_transferable && 685 CPU_ISSET(cpu, &hgroup.cs_mask)) { 686 hgroup.cs_cpu = cpu; 687 hgroup.cs_load = load - rnd; 688 } 689 } 690 total += load; 691 692 /* We have info about child item. Compare it. */ 693 if (match & CPU_SEARCH_LOWEST) { 694 if (lgroup.cs_cpu >= 0 && 695 (load < lload || 696 (load == lload && lgroup.cs_load < low->cs_load))) { 697 lload = load; 698 low->cs_cpu = lgroup.cs_cpu; 699 low->cs_load = lgroup.cs_load; 700 } 701 } 702 if (match & CPU_SEARCH_HIGHEST) 703 if (hgroup.cs_cpu >= 0 && 704 (load > hload || 705 (load == hload && hgroup.cs_load > high->cs_load))) { 706 hload = load; 707 high->cs_cpu = hgroup.cs_cpu; 708 high->cs_load = hgroup.cs_load; 709 } 710 if (child) { 711 i--; 712 if (i == 0 && CPU_EMPTY(&cpumask)) 713 break; 714 } else 715 cpu--; 716 } 717 return (total); 718 } 719 720 /* 721 * cpu_search instantiations must pass constants to maintain the inline 722 * optimization. 723 */ 724 int 725 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low) 726 { 727 return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST); 728 } 729 730 int 731 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high) 732 { 733 return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST); 734 } 735 736 int 737 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low, 738 struct cpu_search *high) 739 { 740 return cpu_search(cg, low, high, CPU_SEARCH_BOTH); 741 } 742 743 /* 744 * Find the cpu with the least load via the least loaded path that has a 745 * lowpri greater than pri pri. A pri of -1 indicates any priority is 746 * acceptable. 747 */ 748 static inline int 749 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload, 750 int prefer) 751 { 752 struct cpu_search low; 753 754 low.cs_cpu = -1; 755 low.cs_prefer = prefer; 756 low.cs_mask = mask; 757 low.cs_pri = pri; 758 low.cs_limit = maxload; 759 cpu_search_lowest(cg, &low); 760 return low.cs_cpu; 761 } 762 763 /* 764 * Find the cpu with the highest load via the highest loaded path. 765 */ 766 static inline int 767 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload) 768 { 769 struct cpu_search high; 770 771 high.cs_cpu = -1; 772 high.cs_mask = mask; 773 high.cs_limit = minload; 774 cpu_search_highest(cg, &high); 775 return high.cs_cpu; 776 } 777 778 /* 779 * Simultaneously find the highest and lowest loaded cpu reachable via 780 * cg. 781 */ 782 static inline void 783 sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu) 784 { 785 struct cpu_search high; 786 struct cpu_search low; 787 788 low.cs_cpu = -1; 789 low.cs_prefer = -1; 790 low.cs_pri = -1; 791 low.cs_limit = INT_MAX; 792 low.cs_mask = mask; 793 high.cs_cpu = -1; 794 high.cs_limit = -1; 795 high.cs_mask = mask; 796 cpu_search_both(cg, &low, &high); 797 *lowcpu = low.cs_cpu; 798 *highcpu = high.cs_cpu; 799 return; 800 } 801 802 static void 803 sched_balance_group(struct cpu_group *cg) 804 { 805 cpuset_t hmask, lmask; 806 int high, low, anylow; 807 808 CPU_FILL(&hmask); 809 for (;;) { 810 high = sched_highest(cg, hmask, 1); 811 /* Stop if there is no more CPU with transferrable threads. */ 812 if (high == -1) 813 break; 814 CPU_CLR(high, &hmask); 815 CPU_COPY(&hmask, &lmask); 816 /* Stop if there is no more CPU left for low. */ 817 if (CPU_EMPTY(&lmask)) 818 break; 819 anylow = 1; 820 nextlow: 821 low = sched_lowest(cg, lmask, -1, 822 TDQ_CPU(high)->tdq_load - 1, high); 823 /* Stop if we looked well and found no less loaded CPU. */ 824 if (anylow && low == -1) 825 break; 826 /* Go to next high if we found no less loaded CPU. */ 827 if (low == -1) 828 continue; 829 /* Transfer thread from high to low. */ 830 if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) { 831 /* CPU that got thread can no longer be a donor. */ 832 CPU_CLR(low, &hmask); 833 } else { 834 /* 835 * If failed, then there is no threads on high 836 * that can run on this low. Drop low from low 837 * mask and look for different one. 838 */ 839 CPU_CLR(low, &lmask); 840 anylow = 0; 841 goto nextlow; 842 } 843 } 844 } 845 846 static void 847 sched_balance(void) 848 { 849 struct tdq *tdq; 850 851 /* 852 * Select a random time between .5 * balance_interval and 853 * 1.5 * balance_interval. 854 */ 855 balance_ticks = max(balance_interval / 2, 1); 856 balance_ticks += random() % balance_interval; 857 if (smp_started == 0 || rebalance == 0) 858 return; 859 tdq = TDQ_SELF(); 860 TDQ_UNLOCK(tdq); 861 sched_balance_group(cpu_top); 862 TDQ_LOCK(tdq); 863 } 864 865 /* 866 * Lock two thread queues using their address to maintain lock order. 867 */ 868 static void 869 tdq_lock_pair(struct tdq *one, struct tdq *two) 870 { 871 if (one < two) { 872 TDQ_LOCK(one); 873 TDQ_LOCK_FLAGS(two, MTX_DUPOK); 874 } else { 875 TDQ_LOCK(two); 876 TDQ_LOCK_FLAGS(one, MTX_DUPOK); 877 } 878 } 879 880 /* 881 * Unlock two thread queues. Order is not important here. 882 */ 883 static void 884 tdq_unlock_pair(struct tdq *one, struct tdq *two) 885 { 886 TDQ_UNLOCK(one); 887 TDQ_UNLOCK(two); 888 } 889 890 /* 891 * Transfer load between two imbalanced thread queues. 892 */ 893 static int 894 sched_balance_pair(struct tdq *high, struct tdq *low) 895 { 896 int moved; 897 int cpu; 898 899 tdq_lock_pair(high, low); 900 moved = 0; 901 /* 902 * Determine what the imbalance is and then adjust that to how many 903 * threads we actually have to give up (transferable). 904 */ 905 if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load && 906 (moved = tdq_move(high, low)) > 0) { 907 /* 908 * In case the target isn't the current cpu IPI it to force a 909 * reschedule with the new workload. 910 */ 911 cpu = TDQ_ID(low); 912 if (cpu != PCPU_GET(cpuid)) 913 ipi_cpu(cpu, IPI_PREEMPT); 914 } 915 tdq_unlock_pair(high, low); 916 return (moved); 917 } 918 919 /* 920 * Move a thread from one thread queue to another. 921 */ 922 static int 923 tdq_move(struct tdq *from, struct tdq *to) 924 { 925 struct td_sched *ts; 926 struct thread *td; 927 struct tdq *tdq; 928 int cpu; 929 930 TDQ_LOCK_ASSERT(from, MA_OWNED); 931 TDQ_LOCK_ASSERT(to, MA_OWNED); 932 933 tdq = from; 934 cpu = TDQ_ID(to); 935 td = tdq_steal(tdq, cpu); 936 if (td == NULL) 937 return (0); 938 ts = td->td_sched; 939 /* 940 * Although the run queue is locked the thread may be blocked. Lock 941 * it to clear this and acquire the run-queue lock. 942 */ 943 thread_lock(td); 944 /* Drop recursive lock on from acquired via thread_lock(). */ 945 TDQ_UNLOCK(from); 946 sched_rem(td); 947 ts->ts_cpu = cpu; 948 td->td_lock = TDQ_LOCKPTR(to); 949 tdq_add(to, td, SRQ_YIELDING); 950 return (1); 951 } 952 953 /* 954 * This tdq has idled. Try to steal a thread from another cpu and switch 955 * to it. 956 */ 957 static int 958 tdq_idled(struct tdq *tdq) 959 { 960 struct cpu_group *cg; 961 struct tdq *steal; 962 cpuset_t mask; 963 int thresh; 964 int cpu; 965 966 if (smp_started == 0 || steal_idle == 0) 967 return (1); 968 CPU_FILL(&mask); 969 CPU_CLR(PCPU_GET(cpuid), &mask); 970 /* We don't want to be preempted while we're iterating. */ 971 spinlock_enter(); 972 for (cg = tdq->tdq_cg; cg != NULL; ) { 973 if ((cg->cg_flags & CG_FLAG_THREAD) == 0) 974 thresh = steal_thresh; 975 else 976 thresh = 1; 977 cpu = sched_highest(cg, mask, thresh); 978 if (cpu == -1) { 979 cg = cg->cg_parent; 980 continue; 981 } 982 steal = TDQ_CPU(cpu); 983 CPU_CLR(cpu, &mask); 984 tdq_lock_pair(tdq, steal); 985 if (steal->tdq_load < thresh || steal->tdq_transferable == 0) { 986 tdq_unlock_pair(tdq, steal); 987 continue; 988 } 989 /* 990 * If a thread was added while interrupts were disabled don't 991 * steal one here. If we fail to acquire one due to affinity 992 * restrictions loop again with this cpu removed from the 993 * set. 994 */ 995 if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) { 996 tdq_unlock_pair(tdq, steal); 997 continue; 998 } 999 spinlock_exit(); 1000 TDQ_UNLOCK(steal); 1001 mi_switch(SW_VOL | SWT_IDLE, NULL); 1002 thread_unlock(curthread); 1003 1004 return (0); 1005 } 1006 spinlock_exit(); 1007 return (1); 1008 } 1009 1010 /* 1011 * Notify a remote cpu of new work. Sends an IPI if criteria are met. 1012 */ 1013 static void 1014 tdq_notify(struct tdq *tdq, struct thread *td) 1015 { 1016 struct thread *ctd; 1017 int pri; 1018 int cpu; 1019 1020 if (tdq->tdq_ipipending) 1021 return; 1022 cpu = td->td_sched->ts_cpu; 1023 pri = td->td_priority; 1024 ctd = pcpu_find(cpu)->pc_curthread; 1025 if (!sched_shouldpreempt(pri, ctd->td_priority, 1)) 1026 return; 1027 if (TD_IS_IDLETHREAD(ctd)) { 1028 /* 1029 * If the MD code has an idle wakeup routine try that before 1030 * falling back to IPI. 1031 */ 1032 if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu)) 1033 return; 1034 } 1035 tdq->tdq_ipipending = 1; 1036 ipi_cpu(cpu, IPI_PREEMPT); 1037 } 1038 1039 /* 1040 * Steals load from a timeshare queue. Honors the rotating queue head 1041 * index. 1042 */ 1043 static struct thread * 1044 runq_steal_from(struct runq *rq, int cpu, u_char start) 1045 { 1046 struct rqbits *rqb; 1047 struct rqhead *rqh; 1048 struct thread *td, *first; 1049 int bit; 1050 int pri; 1051 int i; 1052 1053 rqb = &rq->rq_status; 1054 bit = start & (RQB_BPW -1); 1055 pri = 0; 1056 first = NULL; 1057 again: 1058 for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) { 1059 if (rqb->rqb_bits[i] == 0) 1060 continue; 1061 if (bit != 0) { 1062 for (pri = bit; pri < RQB_BPW; pri++) 1063 if (rqb->rqb_bits[i] & (1ul << pri)) 1064 break; 1065 if (pri >= RQB_BPW) 1066 continue; 1067 } else 1068 pri = RQB_FFS(rqb->rqb_bits[i]); 1069 pri += (i << RQB_L2BPW); 1070 rqh = &rq->rq_queues[pri]; 1071 TAILQ_FOREACH(td, rqh, td_runq) { 1072 if (first && THREAD_CAN_MIGRATE(td) && 1073 THREAD_CAN_SCHED(td, cpu)) 1074 return (td); 1075 first = td; 1076 } 1077 } 1078 if (start != 0) { 1079 start = 0; 1080 goto again; 1081 } 1082 1083 if (first && THREAD_CAN_MIGRATE(first) && 1084 THREAD_CAN_SCHED(first, cpu)) 1085 return (first); 1086 return (NULL); 1087 } 1088 1089 /* 1090 * Steals load from a standard linear queue. 1091 */ 1092 static struct thread * 1093 runq_steal(struct runq *rq, int cpu) 1094 { 1095 struct rqhead *rqh; 1096 struct rqbits *rqb; 1097 struct thread *td; 1098 int word; 1099 int bit; 1100 1101 rqb = &rq->rq_status; 1102 for (word = 0; word < RQB_LEN; word++) { 1103 if (rqb->rqb_bits[word] == 0) 1104 continue; 1105 for (bit = 0; bit < RQB_BPW; bit++) { 1106 if ((rqb->rqb_bits[word] & (1ul << bit)) == 0) 1107 continue; 1108 rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)]; 1109 TAILQ_FOREACH(td, rqh, td_runq) 1110 if (THREAD_CAN_MIGRATE(td) && 1111 THREAD_CAN_SCHED(td, cpu)) 1112 return (td); 1113 } 1114 } 1115 return (NULL); 1116 } 1117 1118 /* 1119 * Attempt to steal a thread in priority order from a thread queue. 1120 */ 1121 static struct thread * 1122 tdq_steal(struct tdq *tdq, int cpu) 1123 { 1124 struct thread *td; 1125 1126 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1127 if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL) 1128 return (td); 1129 if ((td = runq_steal_from(&tdq->tdq_timeshare, 1130 cpu, tdq->tdq_ridx)) != NULL) 1131 return (td); 1132 return (runq_steal(&tdq->tdq_idle, cpu)); 1133 } 1134 1135 /* 1136 * Sets the thread lock and ts_cpu to match the requested cpu. Unlocks the 1137 * current lock and returns with the assigned queue locked. 1138 */ 1139 static inline struct tdq * 1140 sched_setcpu(struct thread *td, int cpu, int flags) 1141 { 1142 1143 struct tdq *tdq; 1144 1145 THREAD_LOCK_ASSERT(td, MA_OWNED); 1146 tdq = TDQ_CPU(cpu); 1147 td->td_sched->ts_cpu = cpu; 1148 /* 1149 * If the lock matches just return the queue. 1150 */ 1151 if (td->td_lock == TDQ_LOCKPTR(tdq)) 1152 return (tdq); 1153 #ifdef notyet 1154 /* 1155 * If the thread isn't running its lockptr is a 1156 * turnstile or a sleepqueue. We can just lock_set without 1157 * blocking. 1158 */ 1159 if (TD_CAN_RUN(td)) { 1160 TDQ_LOCK(tdq); 1161 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 1162 return (tdq); 1163 } 1164 #endif 1165 /* 1166 * The hard case, migration, we need to block the thread first to 1167 * prevent order reversals with other cpus locks. 1168 */ 1169 spinlock_enter(); 1170 thread_lock_block(td); 1171 TDQ_LOCK(tdq); 1172 thread_lock_unblock(td, TDQ_LOCKPTR(tdq)); 1173 spinlock_exit(); 1174 return (tdq); 1175 } 1176 1177 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding"); 1178 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity"); 1179 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity"); 1180 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load"); 1181 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu"); 1182 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration"); 1183 1184 static int 1185 sched_pickcpu(struct thread *td, int flags) 1186 { 1187 struct cpu_group *cg, *ccg; 1188 struct td_sched *ts; 1189 struct tdq *tdq; 1190 cpuset_t mask; 1191 int cpu, pri, self; 1192 1193 self = PCPU_GET(cpuid); 1194 ts = td->td_sched; 1195 if (smp_started == 0) 1196 return (self); 1197 /* 1198 * Don't migrate a running thread from sched_switch(). 1199 */ 1200 if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td)) 1201 return (ts->ts_cpu); 1202 /* 1203 * Prefer to run interrupt threads on the processors that generate 1204 * the interrupt. 1205 */ 1206 pri = td->td_priority; 1207 if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) && 1208 curthread->td_intr_nesting_level && ts->ts_cpu != self) { 1209 SCHED_STAT_INC(pickcpu_intrbind); 1210 ts->ts_cpu = self; 1211 if (TDQ_CPU(self)->tdq_lowpri > pri) { 1212 SCHED_STAT_INC(pickcpu_affinity); 1213 return (ts->ts_cpu); 1214 } 1215 } 1216 /* 1217 * If the thread can run on the last cpu and the affinity has not 1218 * expired or it is idle run it there. 1219 */ 1220 tdq = TDQ_CPU(ts->ts_cpu); 1221 cg = tdq->tdq_cg; 1222 if (THREAD_CAN_SCHED(td, ts->ts_cpu) && 1223 tdq->tdq_lowpri >= PRI_MIN_IDLE && 1224 SCHED_AFFINITY(ts, CG_SHARE_L2)) { 1225 if (cg->cg_flags & CG_FLAG_THREAD) { 1226 CPUSET_FOREACH(cpu, cg->cg_mask) { 1227 if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) 1228 break; 1229 } 1230 } else 1231 cpu = INT_MAX; 1232 if (cpu > mp_maxid) { 1233 SCHED_STAT_INC(pickcpu_idle_affinity); 1234 return (ts->ts_cpu); 1235 } 1236 } 1237 /* 1238 * Search for the last level cache CPU group in the tree. 1239 * Skip caches with expired affinity time and SMT groups. 1240 * Affinity to higher level caches will be handled less aggressively. 1241 */ 1242 for (ccg = NULL; cg != NULL; cg = cg->cg_parent) { 1243 if (cg->cg_flags & CG_FLAG_THREAD) 1244 continue; 1245 if (!SCHED_AFFINITY(ts, cg->cg_level)) 1246 continue; 1247 ccg = cg; 1248 } 1249 if (ccg != NULL) 1250 cg = ccg; 1251 cpu = -1; 1252 /* Search the group for the less loaded idle CPU we can run now. */ 1253 mask = td->td_cpuset->cs_mask; 1254 if (cg != NULL && cg != cpu_top && 1255 CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0) 1256 cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE), 1257 INT_MAX, ts->ts_cpu); 1258 /* Search globally for the less loaded CPU we can run now. */ 1259 if (cpu == -1) 1260 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu); 1261 /* Search globally for the less loaded CPU. */ 1262 if (cpu == -1) 1263 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu); 1264 KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu.")); 1265 /* 1266 * Compare the lowest loaded cpu to current cpu. 1267 */ 1268 if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri && 1269 TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE && 1270 TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) { 1271 SCHED_STAT_INC(pickcpu_local); 1272 cpu = self; 1273 } else 1274 SCHED_STAT_INC(pickcpu_lowest); 1275 if (cpu != ts->ts_cpu) 1276 SCHED_STAT_INC(pickcpu_migration); 1277 return (cpu); 1278 } 1279 #endif 1280 1281 /* 1282 * Pick the highest priority task we have and return it. 1283 */ 1284 static struct thread * 1285 tdq_choose(struct tdq *tdq) 1286 { 1287 struct thread *td; 1288 1289 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1290 td = runq_choose(&tdq->tdq_realtime); 1291 if (td != NULL) 1292 return (td); 1293 td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx); 1294 if (td != NULL) { 1295 KASSERT(td->td_priority >= PRI_MIN_BATCH, 1296 ("tdq_choose: Invalid priority on timeshare queue %d", 1297 td->td_priority)); 1298 return (td); 1299 } 1300 td = runq_choose(&tdq->tdq_idle); 1301 if (td != NULL) { 1302 KASSERT(td->td_priority >= PRI_MIN_IDLE, 1303 ("tdq_choose: Invalid priority on idle queue %d", 1304 td->td_priority)); 1305 return (td); 1306 } 1307 1308 return (NULL); 1309 } 1310 1311 /* 1312 * Initialize a thread queue. 1313 */ 1314 static void 1315 tdq_setup(struct tdq *tdq) 1316 { 1317 1318 if (bootverbose) 1319 printf("ULE: setup cpu %d\n", TDQ_ID(tdq)); 1320 runq_init(&tdq->tdq_realtime); 1321 runq_init(&tdq->tdq_timeshare); 1322 runq_init(&tdq->tdq_idle); 1323 snprintf(tdq->tdq_name, sizeof(tdq->tdq_name), 1324 "sched lock %d", (int)TDQ_ID(tdq)); 1325 mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", 1326 MTX_SPIN | MTX_RECURSE); 1327 #ifdef KTR 1328 snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname), 1329 "CPU %d load", (int)TDQ_ID(tdq)); 1330 #endif 1331 } 1332 1333 #ifdef SMP 1334 static void 1335 sched_setup_smp(void) 1336 { 1337 struct tdq *tdq; 1338 int i; 1339 1340 cpu_top = smp_topo(); 1341 CPU_FOREACH(i) { 1342 tdq = TDQ_CPU(i); 1343 tdq_setup(tdq); 1344 tdq->tdq_cg = smp_topo_find(cpu_top, i); 1345 if (tdq->tdq_cg == NULL) 1346 panic("Can't find cpu group for %d\n", i); 1347 } 1348 balance_tdq = TDQ_SELF(); 1349 sched_balance(); 1350 } 1351 #endif 1352 1353 /* 1354 * Setup the thread queues and initialize the topology based on MD 1355 * information. 1356 */ 1357 static void 1358 sched_setup(void *dummy) 1359 { 1360 struct tdq *tdq; 1361 1362 tdq = TDQ_SELF(); 1363 #ifdef SMP 1364 sched_setup_smp(); 1365 #else 1366 tdq_setup(tdq); 1367 #endif 1368 1369 /* Add thread0's load since it's running. */ 1370 TDQ_LOCK(tdq); 1371 thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF()); 1372 tdq_load_add(tdq, &thread0); 1373 tdq->tdq_lowpri = thread0.td_priority; 1374 TDQ_UNLOCK(tdq); 1375 } 1376 1377 /* 1378 * This routine determines time constants after stathz and hz are setup. 1379 */ 1380 /* ARGSUSED */ 1381 static void 1382 sched_initticks(void *dummy) 1383 { 1384 int incr; 1385 1386 realstathz = stathz ? stathz : hz; 1387 sched_slice = realstathz / 10; /* ~100ms */ 1388 hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) / 1389 realstathz); 1390 1391 /* 1392 * tickincr is shifted out by 10 to avoid rounding errors due to 1393 * hz not being evenly divisible by stathz on all platforms. 1394 */ 1395 incr = (hz << SCHED_TICK_SHIFT) / realstathz; 1396 /* 1397 * This does not work for values of stathz that are more than 1398 * 1 << SCHED_TICK_SHIFT * hz. In practice this does not happen. 1399 */ 1400 if (incr == 0) 1401 incr = 1; 1402 tickincr = incr; 1403 #ifdef SMP 1404 /* 1405 * Set the default balance interval now that we know 1406 * what realstathz is. 1407 */ 1408 balance_interval = realstathz; 1409 affinity = SCHED_AFFINITY_DEFAULT; 1410 #endif 1411 if (sched_idlespinthresh < 0) 1412 sched_idlespinthresh = imax(16, 2 * hz / realstathz); 1413 } 1414 1415 1416 /* 1417 * This is the core of the interactivity algorithm. Determines a score based 1418 * on past behavior. It is the ratio of sleep time to run time scaled to 1419 * a [0, 100] integer. This is the voluntary sleep time of a process, which 1420 * differs from the cpu usage because it does not account for time spent 1421 * waiting on a run-queue. Would be prettier if we had floating point. 1422 */ 1423 static int 1424 sched_interact_score(struct thread *td) 1425 { 1426 struct td_sched *ts; 1427 int div; 1428 1429 ts = td->td_sched; 1430 /* 1431 * The score is only needed if this is likely to be an interactive 1432 * task. Don't go through the expense of computing it if there's 1433 * no chance. 1434 */ 1435 if (sched_interact <= SCHED_INTERACT_HALF && 1436 ts->ts_runtime >= ts->ts_slptime) 1437 return (SCHED_INTERACT_HALF); 1438 1439 if (ts->ts_runtime > ts->ts_slptime) { 1440 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF); 1441 return (SCHED_INTERACT_HALF + 1442 (SCHED_INTERACT_HALF - (ts->ts_slptime / div))); 1443 } 1444 if (ts->ts_slptime > ts->ts_runtime) { 1445 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF); 1446 return (ts->ts_runtime / div); 1447 } 1448 /* runtime == slptime */ 1449 if (ts->ts_runtime) 1450 return (SCHED_INTERACT_HALF); 1451 1452 /* 1453 * This can happen if slptime and runtime are 0. 1454 */ 1455 return (0); 1456 1457 } 1458 1459 /* 1460 * Scale the scheduling priority according to the "interactivity" of this 1461 * process. 1462 */ 1463 static void 1464 sched_priority(struct thread *td) 1465 { 1466 int score; 1467 int pri; 1468 1469 if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE) 1470 return; 1471 /* 1472 * If the score is interactive we place the thread in the realtime 1473 * queue with a priority that is less than kernel and interrupt 1474 * priorities. These threads are not subject to nice restrictions. 1475 * 1476 * Scores greater than this are placed on the normal timeshare queue 1477 * where the priority is partially decided by the most recent cpu 1478 * utilization and the rest is decided by nice value. 1479 * 1480 * The nice value of the process has a linear effect on the calculated 1481 * score. Negative nice values make it easier for a thread to be 1482 * considered interactive. 1483 */ 1484 score = imax(0, sched_interact_score(td) + td->td_proc->p_nice); 1485 if (score < sched_interact) { 1486 pri = PRI_MIN_INTERACT; 1487 pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) / 1488 sched_interact) * score; 1489 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT, 1490 ("sched_priority: invalid interactive priority %d score %d", 1491 pri, score)); 1492 } else { 1493 pri = SCHED_PRI_MIN; 1494 if (td->td_sched->ts_ticks) 1495 pri += min(SCHED_PRI_TICKS(td->td_sched), 1496 SCHED_PRI_RANGE); 1497 pri += SCHED_PRI_NICE(td->td_proc->p_nice); 1498 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH, 1499 ("sched_priority: invalid priority %d: nice %d, " 1500 "ticks %d ftick %d ltick %d tick pri %d", 1501 pri, td->td_proc->p_nice, td->td_sched->ts_ticks, 1502 td->td_sched->ts_ftick, td->td_sched->ts_ltick, 1503 SCHED_PRI_TICKS(td->td_sched))); 1504 } 1505 sched_user_prio(td, pri); 1506 1507 return; 1508 } 1509 1510 /* 1511 * This routine enforces a maximum limit on the amount of scheduling history 1512 * kept. It is called after either the slptime or runtime is adjusted. This 1513 * function is ugly due to integer math. 1514 */ 1515 static void 1516 sched_interact_update(struct thread *td) 1517 { 1518 struct td_sched *ts; 1519 u_int sum; 1520 1521 ts = td->td_sched; 1522 sum = ts->ts_runtime + ts->ts_slptime; 1523 if (sum < SCHED_SLP_RUN_MAX) 1524 return; 1525 /* 1526 * This only happens from two places: 1527 * 1) We have added an unusual amount of run time from fork_exit. 1528 * 2) We have added an unusual amount of sleep time from sched_sleep(). 1529 */ 1530 if (sum > SCHED_SLP_RUN_MAX * 2) { 1531 if (ts->ts_runtime > ts->ts_slptime) { 1532 ts->ts_runtime = SCHED_SLP_RUN_MAX; 1533 ts->ts_slptime = 1; 1534 } else { 1535 ts->ts_slptime = SCHED_SLP_RUN_MAX; 1536 ts->ts_runtime = 1; 1537 } 1538 return; 1539 } 1540 /* 1541 * If we have exceeded by more than 1/5th then the algorithm below 1542 * will not bring us back into range. Dividing by two here forces 1543 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX] 1544 */ 1545 if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) { 1546 ts->ts_runtime /= 2; 1547 ts->ts_slptime /= 2; 1548 return; 1549 } 1550 ts->ts_runtime = (ts->ts_runtime / 5) * 4; 1551 ts->ts_slptime = (ts->ts_slptime / 5) * 4; 1552 } 1553 1554 /* 1555 * Scale back the interactivity history when a child thread is created. The 1556 * history is inherited from the parent but the thread may behave totally 1557 * differently. For example, a shell spawning a compiler process. We want 1558 * to learn that the compiler is behaving badly very quickly. 1559 */ 1560 static void 1561 sched_interact_fork(struct thread *td) 1562 { 1563 int ratio; 1564 int sum; 1565 1566 sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime; 1567 if (sum > SCHED_SLP_RUN_FORK) { 1568 ratio = sum / SCHED_SLP_RUN_FORK; 1569 td->td_sched->ts_runtime /= ratio; 1570 td->td_sched->ts_slptime /= ratio; 1571 } 1572 } 1573 1574 /* 1575 * Called from proc0_init() to setup the scheduler fields. 1576 */ 1577 void 1578 schedinit(void) 1579 { 1580 1581 /* 1582 * Set up the scheduler specific parts of proc0. 1583 */ 1584 proc0.p_sched = NULL; /* XXX */ 1585 thread0.td_sched = &td_sched0; 1586 td_sched0.ts_ltick = ticks; 1587 td_sched0.ts_ftick = ticks; 1588 td_sched0.ts_slice = sched_slice; 1589 } 1590 1591 /* 1592 * This is only somewhat accurate since given many processes of the same 1593 * priority they will switch when their slices run out, which will be 1594 * at most sched_slice stathz ticks. 1595 */ 1596 int 1597 sched_rr_interval(void) 1598 { 1599 1600 /* Convert sched_slice from stathz to hz. */ 1601 return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz)); 1602 } 1603 1604 /* 1605 * Update the percent cpu tracking information when it is requested or 1606 * the total history exceeds the maximum. We keep a sliding history of 1607 * tick counts that slowly decays. This is less precise than the 4BSD 1608 * mechanism since it happens with less regular and frequent events. 1609 */ 1610 static void 1611 sched_pctcpu_update(struct td_sched *ts, int run) 1612 { 1613 int t = ticks; 1614 1615 if (t - ts->ts_ltick >= SCHED_TICK_TARG) { 1616 ts->ts_ticks = 0; 1617 ts->ts_ftick = t - SCHED_TICK_TARG; 1618 } else if (t - ts->ts_ftick >= SCHED_TICK_MAX) { 1619 ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) * 1620 (ts->ts_ltick - (t - SCHED_TICK_TARG)); 1621 ts->ts_ftick = t - SCHED_TICK_TARG; 1622 } 1623 if (run) 1624 ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT; 1625 ts->ts_ltick = t; 1626 } 1627 1628 /* 1629 * Adjust the priority of a thread. Move it to the appropriate run-queue 1630 * if necessary. This is the back-end for several priority related 1631 * functions. 1632 */ 1633 static void 1634 sched_thread_priority(struct thread *td, u_char prio) 1635 { 1636 struct td_sched *ts; 1637 struct tdq *tdq; 1638 int oldpri; 1639 1640 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio", 1641 "prio:%d", td->td_priority, "new prio:%d", prio, 1642 KTR_ATTR_LINKED, sched_tdname(curthread)); 1643 SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio); 1644 if (td != curthread && prio < td->td_priority) { 1645 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread), 1646 "lend prio", "prio:%d", td->td_priority, "new prio:%d", 1647 prio, KTR_ATTR_LINKED, sched_tdname(td)); 1648 SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio, 1649 curthread); 1650 } 1651 ts = td->td_sched; 1652 THREAD_LOCK_ASSERT(td, MA_OWNED); 1653 if (td->td_priority == prio) 1654 return; 1655 /* 1656 * If the priority has been elevated due to priority 1657 * propagation, we may have to move ourselves to a new 1658 * queue. This could be optimized to not re-add in some 1659 * cases. 1660 */ 1661 if (TD_ON_RUNQ(td) && prio < td->td_priority) { 1662 sched_rem(td); 1663 td->td_priority = prio; 1664 sched_add(td, SRQ_BORROWING); 1665 return; 1666 } 1667 /* 1668 * If the thread is currently running we may have to adjust the lowpri 1669 * information so other cpus are aware of our current priority. 1670 */ 1671 if (TD_IS_RUNNING(td)) { 1672 tdq = TDQ_CPU(ts->ts_cpu); 1673 oldpri = td->td_priority; 1674 td->td_priority = prio; 1675 if (prio < tdq->tdq_lowpri) 1676 tdq->tdq_lowpri = prio; 1677 else if (tdq->tdq_lowpri == oldpri) 1678 tdq_setlowpri(tdq, td); 1679 return; 1680 } 1681 td->td_priority = prio; 1682 } 1683 1684 /* 1685 * Update a thread's priority when it is lent another thread's 1686 * priority. 1687 */ 1688 void 1689 sched_lend_prio(struct thread *td, u_char prio) 1690 { 1691 1692 td->td_flags |= TDF_BORROWING; 1693 sched_thread_priority(td, prio); 1694 } 1695 1696 /* 1697 * Restore a thread's priority when priority propagation is 1698 * over. The prio argument is the minimum priority the thread 1699 * needs to have to satisfy other possible priority lending 1700 * requests. If the thread's regular priority is less 1701 * important than prio, the thread will keep a priority boost 1702 * of prio. 1703 */ 1704 void 1705 sched_unlend_prio(struct thread *td, u_char prio) 1706 { 1707 u_char base_pri; 1708 1709 if (td->td_base_pri >= PRI_MIN_TIMESHARE && 1710 td->td_base_pri <= PRI_MAX_TIMESHARE) 1711 base_pri = td->td_user_pri; 1712 else 1713 base_pri = td->td_base_pri; 1714 if (prio >= base_pri) { 1715 td->td_flags &= ~TDF_BORROWING; 1716 sched_thread_priority(td, base_pri); 1717 } else 1718 sched_lend_prio(td, prio); 1719 } 1720 1721 /* 1722 * Standard entry for setting the priority to an absolute value. 1723 */ 1724 void 1725 sched_prio(struct thread *td, u_char prio) 1726 { 1727 u_char oldprio; 1728 1729 /* First, update the base priority. */ 1730 td->td_base_pri = prio; 1731 1732 /* 1733 * If the thread is borrowing another thread's priority, don't 1734 * ever lower the priority. 1735 */ 1736 if (td->td_flags & TDF_BORROWING && td->td_priority < prio) 1737 return; 1738 1739 /* Change the real priority. */ 1740 oldprio = td->td_priority; 1741 sched_thread_priority(td, prio); 1742 1743 /* 1744 * If the thread is on a turnstile, then let the turnstile update 1745 * its state. 1746 */ 1747 if (TD_ON_LOCK(td) && oldprio != prio) 1748 turnstile_adjust(td, oldprio); 1749 } 1750 1751 /* 1752 * Set the base user priority, does not effect current running priority. 1753 */ 1754 void 1755 sched_user_prio(struct thread *td, u_char prio) 1756 { 1757 1758 td->td_base_user_pri = prio; 1759 if (td->td_lend_user_pri <= prio) 1760 return; 1761 td->td_user_pri = prio; 1762 } 1763 1764 void 1765 sched_lend_user_prio(struct thread *td, u_char prio) 1766 { 1767 1768 THREAD_LOCK_ASSERT(td, MA_OWNED); 1769 td->td_lend_user_pri = prio; 1770 td->td_user_pri = min(prio, td->td_base_user_pri); 1771 if (td->td_priority > td->td_user_pri) 1772 sched_prio(td, td->td_user_pri); 1773 else if (td->td_priority != td->td_user_pri) 1774 td->td_flags |= TDF_NEEDRESCHED; 1775 } 1776 1777 /* 1778 * Handle migration from sched_switch(). This happens only for 1779 * cpu binding. 1780 */ 1781 static struct mtx * 1782 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags) 1783 { 1784 struct tdq *tdn; 1785 1786 tdn = TDQ_CPU(td->td_sched->ts_cpu); 1787 #ifdef SMP 1788 tdq_load_rem(tdq, td); 1789 /* 1790 * Do the lock dance required to avoid LOR. We grab an extra 1791 * spinlock nesting to prevent preemption while we're 1792 * not holding either run-queue lock. 1793 */ 1794 spinlock_enter(); 1795 thread_lock_block(td); /* This releases the lock on tdq. */ 1796 1797 /* 1798 * Acquire both run-queue locks before placing the thread on the new 1799 * run-queue to avoid deadlocks created by placing a thread with a 1800 * blocked lock on the run-queue of a remote processor. The deadlock 1801 * occurs when a third processor attempts to lock the two queues in 1802 * question while the target processor is spinning with its own 1803 * run-queue lock held while waiting for the blocked lock to clear. 1804 */ 1805 tdq_lock_pair(tdn, tdq); 1806 tdq_add(tdn, td, flags); 1807 tdq_notify(tdn, td); 1808 TDQ_UNLOCK(tdn); 1809 spinlock_exit(); 1810 #endif 1811 return (TDQ_LOCKPTR(tdn)); 1812 } 1813 1814 /* 1815 * Variadic version of thread_lock_unblock() that does not assume td_lock 1816 * is blocked. 1817 */ 1818 static inline void 1819 thread_unblock_switch(struct thread *td, struct mtx *mtx) 1820 { 1821 atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock, 1822 (uintptr_t)mtx); 1823 } 1824 1825 /* 1826 * Switch threads. This function has to handle threads coming in while 1827 * blocked for some reason, running, or idle. It also must deal with 1828 * migrating a thread from one queue to another as running threads may 1829 * be assigned elsewhere via binding. 1830 */ 1831 void 1832 sched_switch(struct thread *td, struct thread *newtd, int flags) 1833 { 1834 struct tdq *tdq; 1835 struct td_sched *ts; 1836 struct mtx *mtx; 1837 int srqflag; 1838 int cpuid, preempted; 1839 1840 THREAD_LOCK_ASSERT(td, MA_OWNED); 1841 KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument")); 1842 1843 cpuid = PCPU_GET(cpuid); 1844 tdq = TDQ_CPU(cpuid); 1845 ts = td->td_sched; 1846 mtx = td->td_lock; 1847 sched_pctcpu_update(ts, 1); 1848 ts->ts_rltick = ticks; 1849 td->td_lastcpu = td->td_oncpu; 1850 td->td_oncpu = NOCPU; 1851 preempted = !(td->td_flags & TDF_SLICEEND); 1852 td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND); 1853 td->td_owepreempt = 0; 1854 tdq->tdq_switchcnt++; 1855 /* 1856 * The lock pointer in an idle thread should never change. Reset it 1857 * to CAN_RUN as well. 1858 */ 1859 if (TD_IS_IDLETHREAD(td)) { 1860 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1861 TD_SET_CAN_RUN(td); 1862 } else if (TD_IS_RUNNING(td)) { 1863 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1864 srqflag = preempted ? 1865 SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED : 1866 SRQ_OURSELF|SRQ_YIELDING; 1867 #ifdef SMP 1868 if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu)) 1869 ts->ts_cpu = sched_pickcpu(td, 0); 1870 #endif 1871 if (ts->ts_cpu == cpuid) 1872 tdq_runq_add(tdq, td, srqflag); 1873 else { 1874 KASSERT(THREAD_CAN_MIGRATE(td) || 1875 (ts->ts_flags & TSF_BOUND) != 0, 1876 ("Thread %p shouldn't migrate", td)); 1877 mtx = sched_switch_migrate(tdq, td, srqflag); 1878 } 1879 } else { 1880 /* This thread must be going to sleep. */ 1881 TDQ_LOCK(tdq); 1882 mtx = thread_lock_block(td); 1883 tdq_load_rem(tdq, td); 1884 } 1885 /* 1886 * We enter here with the thread blocked and assigned to the 1887 * appropriate cpu run-queue or sleep-queue and with the current 1888 * thread-queue locked. 1889 */ 1890 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 1891 newtd = choosethread(); 1892 /* 1893 * Call the MD code to switch contexts if necessary. 1894 */ 1895 if (td != newtd) { 1896 #ifdef HWPMC_HOOKS 1897 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1898 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 1899 #endif 1900 SDT_PROBE2(sched, , , off_cpu, td, td->td_proc); 1901 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 1902 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 1903 sched_pctcpu_update(newtd->td_sched, 0); 1904 1905 #ifdef KDTRACE_HOOKS 1906 /* 1907 * If DTrace has set the active vtime enum to anything 1908 * other than INACTIVE (0), then it should have set the 1909 * function to call. 1910 */ 1911 if (dtrace_vtime_active) 1912 (*dtrace_vtime_switch_func)(newtd); 1913 #endif 1914 1915 cpu_switch(td, newtd, mtx); 1916 /* 1917 * We may return from cpu_switch on a different cpu. However, 1918 * we always return with td_lock pointing to the current cpu's 1919 * run queue lock. 1920 */ 1921 cpuid = PCPU_GET(cpuid); 1922 tdq = TDQ_CPU(cpuid); 1923 lock_profile_obtain_lock_success( 1924 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 1925 1926 SDT_PROBE0(sched, , , on_cpu); 1927 #ifdef HWPMC_HOOKS 1928 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1929 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN); 1930 #endif 1931 } else { 1932 thread_unblock_switch(td, mtx); 1933 SDT_PROBE0(sched, , , remain_cpu); 1934 } 1935 /* 1936 * Assert that all went well and return. 1937 */ 1938 TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED); 1939 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1940 td->td_oncpu = cpuid; 1941 } 1942 1943 /* 1944 * Adjust thread priorities as a result of a nice request. 1945 */ 1946 void 1947 sched_nice(struct proc *p, int nice) 1948 { 1949 struct thread *td; 1950 1951 PROC_LOCK_ASSERT(p, MA_OWNED); 1952 1953 p->p_nice = nice; 1954 FOREACH_THREAD_IN_PROC(p, td) { 1955 thread_lock(td); 1956 sched_priority(td); 1957 sched_prio(td, td->td_base_user_pri); 1958 thread_unlock(td); 1959 } 1960 } 1961 1962 /* 1963 * Record the sleep time for the interactivity scorer. 1964 */ 1965 void 1966 sched_sleep(struct thread *td, int prio) 1967 { 1968 1969 THREAD_LOCK_ASSERT(td, MA_OWNED); 1970 1971 td->td_slptick = ticks; 1972 if (TD_IS_SUSPENDED(td) || prio >= PSOCK) 1973 td->td_flags |= TDF_CANSWAP; 1974 if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE) 1975 return; 1976 if (static_boost == 1 && prio) 1977 sched_prio(td, prio); 1978 else if (static_boost && td->td_priority > static_boost) 1979 sched_prio(td, static_boost); 1980 } 1981 1982 /* 1983 * Schedule a thread to resume execution and record how long it voluntarily 1984 * slept. We also update the pctcpu, interactivity, and priority. 1985 */ 1986 void 1987 sched_wakeup(struct thread *td) 1988 { 1989 struct td_sched *ts; 1990 int slptick; 1991 1992 THREAD_LOCK_ASSERT(td, MA_OWNED); 1993 ts = td->td_sched; 1994 td->td_flags &= ~TDF_CANSWAP; 1995 /* 1996 * If we slept for more than a tick update our interactivity and 1997 * priority. 1998 */ 1999 slptick = td->td_slptick; 2000 td->td_slptick = 0; 2001 if (slptick && slptick != ticks) { 2002 ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT; 2003 sched_interact_update(td); 2004 sched_pctcpu_update(ts, 0); 2005 } 2006 /* Reset the slice value after we sleep. */ 2007 ts->ts_slice = sched_slice; 2008 sched_add(td, SRQ_BORING); 2009 } 2010 2011 /* 2012 * Penalize the parent for creating a new child and initialize the child's 2013 * priority. 2014 */ 2015 void 2016 sched_fork(struct thread *td, struct thread *child) 2017 { 2018 THREAD_LOCK_ASSERT(td, MA_OWNED); 2019 sched_pctcpu_update(td->td_sched, 1); 2020 sched_fork_thread(td, child); 2021 /* 2022 * Penalize the parent and child for forking. 2023 */ 2024 sched_interact_fork(child); 2025 sched_priority(child); 2026 td->td_sched->ts_runtime += tickincr; 2027 sched_interact_update(td); 2028 sched_priority(td); 2029 } 2030 2031 /* 2032 * Fork a new thread, may be within the same process. 2033 */ 2034 void 2035 sched_fork_thread(struct thread *td, struct thread *child) 2036 { 2037 struct td_sched *ts; 2038 struct td_sched *ts2; 2039 2040 THREAD_LOCK_ASSERT(td, MA_OWNED); 2041 /* 2042 * Initialize child. 2043 */ 2044 ts = td->td_sched; 2045 ts2 = child->td_sched; 2046 child->td_lock = TDQ_LOCKPTR(TDQ_SELF()); 2047 child->td_cpuset = cpuset_ref(td->td_cpuset); 2048 ts2->ts_cpu = ts->ts_cpu; 2049 ts2->ts_flags = 0; 2050 /* 2051 * Grab our parents cpu estimation information. 2052 */ 2053 ts2->ts_ticks = ts->ts_ticks; 2054 ts2->ts_ltick = ts->ts_ltick; 2055 ts2->ts_ftick = ts->ts_ftick; 2056 /* 2057 * Do not inherit any borrowed priority from the parent. 2058 */ 2059 child->td_priority = child->td_base_pri; 2060 /* 2061 * And update interactivity score. 2062 */ 2063 ts2->ts_slptime = ts->ts_slptime; 2064 ts2->ts_runtime = ts->ts_runtime; 2065 ts2->ts_slice = 1; /* Attempt to quickly learn interactivity. */ 2066 #ifdef KTR 2067 bzero(ts2->ts_name, sizeof(ts2->ts_name)); 2068 #endif 2069 } 2070 2071 /* 2072 * Adjust the priority class of a thread. 2073 */ 2074 void 2075 sched_class(struct thread *td, int class) 2076 { 2077 2078 THREAD_LOCK_ASSERT(td, MA_OWNED); 2079 if (td->td_pri_class == class) 2080 return; 2081 td->td_pri_class = class; 2082 } 2083 2084 /* 2085 * Return some of the child's priority and interactivity to the parent. 2086 */ 2087 void 2088 sched_exit(struct proc *p, struct thread *child) 2089 { 2090 struct thread *td; 2091 2092 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit", 2093 "prio:%d", child->td_priority); 2094 PROC_LOCK_ASSERT(p, MA_OWNED); 2095 td = FIRST_THREAD_IN_PROC(p); 2096 sched_exit_thread(td, child); 2097 } 2098 2099 /* 2100 * Penalize another thread for the time spent on this one. This helps to 2101 * worsen the priority and interactivity of processes which schedule batch 2102 * jobs such as make. This has little effect on the make process itself but 2103 * causes new processes spawned by it to receive worse scores immediately. 2104 */ 2105 void 2106 sched_exit_thread(struct thread *td, struct thread *child) 2107 { 2108 2109 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit", 2110 "prio:%d", child->td_priority); 2111 /* 2112 * Give the child's runtime to the parent without returning the 2113 * sleep time as a penalty to the parent. This causes shells that 2114 * launch expensive things to mark their children as expensive. 2115 */ 2116 thread_lock(td); 2117 td->td_sched->ts_runtime += child->td_sched->ts_runtime; 2118 sched_interact_update(td); 2119 sched_priority(td); 2120 thread_unlock(td); 2121 } 2122 2123 void 2124 sched_preempt(struct thread *td) 2125 { 2126 struct tdq *tdq; 2127 2128 SDT_PROBE2(sched, , , surrender, td, td->td_proc); 2129 2130 thread_lock(td); 2131 tdq = TDQ_SELF(); 2132 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2133 tdq->tdq_ipipending = 0; 2134 if (td->td_priority > tdq->tdq_lowpri) { 2135 int flags; 2136 2137 flags = SW_INVOL | SW_PREEMPT; 2138 if (td->td_critnest > 1) 2139 td->td_owepreempt = 1; 2140 else if (TD_IS_IDLETHREAD(td)) 2141 mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL); 2142 else 2143 mi_switch(flags | SWT_REMOTEPREEMPT, NULL); 2144 } 2145 thread_unlock(td); 2146 } 2147 2148 /* 2149 * Fix priorities on return to user-space. Priorities may be elevated due 2150 * to static priorities in msleep() or similar. 2151 */ 2152 void 2153 sched_userret(struct thread *td) 2154 { 2155 /* 2156 * XXX we cheat slightly on the locking here to avoid locking in 2157 * the usual case. Setting td_priority here is essentially an 2158 * incomplete workaround for not setting it properly elsewhere. 2159 * Now that some interrupt handlers are threads, not setting it 2160 * properly elsewhere can clobber it in the window between setting 2161 * it here and returning to user mode, so don't waste time setting 2162 * it perfectly here. 2163 */ 2164 KASSERT((td->td_flags & TDF_BORROWING) == 0, 2165 ("thread with borrowed priority returning to userland")); 2166 if (td->td_priority != td->td_user_pri) { 2167 thread_lock(td); 2168 td->td_priority = td->td_user_pri; 2169 td->td_base_pri = td->td_user_pri; 2170 tdq_setlowpri(TDQ_SELF(), td); 2171 thread_unlock(td); 2172 } 2173 } 2174 2175 /* 2176 * Handle a stathz tick. This is really only relevant for timeshare 2177 * threads. 2178 */ 2179 void 2180 sched_clock(struct thread *td) 2181 { 2182 struct tdq *tdq; 2183 struct td_sched *ts; 2184 2185 THREAD_LOCK_ASSERT(td, MA_OWNED); 2186 tdq = TDQ_SELF(); 2187 #ifdef SMP 2188 /* 2189 * We run the long term load balancer infrequently on the first cpu. 2190 */ 2191 if (balance_tdq == tdq) { 2192 if (balance_ticks && --balance_ticks == 0) 2193 sched_balance(); 2194 } 2195 #endif 2196 /* 2197 * Save the old switch count so we have a record of the last ticks 2198 * activity. Initialize the new switch count based on our load. 2199 * If there is some activity seed it to reflect that. 2200 */ 2201 tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt; 2202 tdq->tdq_switchcnt = tdq->tdq_load; 2203 /* 2204 * Advance the insert index once for each tick to ensure that all 2205 * threads get a chance to run. 2206 */ 2207 if (tdq->tdq_idx == tdq->tdq_ridx) { 2208 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS; 2209 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx])) 2210 tdq->tdq_ridx = tdq->tdq_idx; 2211 } 2212 ts = td->td_sched; 2213 sched_pctcpu_update(ts, 1); 2214 if (td->td_pri_class & PRI_FIFO_BIT) 2215 return; 2216 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) { 2217 /* 2218 * We used a tick; charge it to the thread so 2219 * that we can compute our interactivity. 2220 */ 2221 td->td_sched->ts_runtime += tickincr; 2222 sched_interact_update(td); 2223 sched_priority(td); 2224 } 2225 2226 /* 2227 * Force a context switch if the current thread has used up a full 2228 * time slice (default is 100ms). 2229 */ 2230 if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) { 2231 ts->ts_slice = sched_slice; 2232 td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND; 2233 } 2234 } 2235 2236 /* 2237 * Called once per hz tick. 2238 */ 2239 void 2240 sched_tick(int cnt) 2241 { 2242 2243 } 2244 2245 /* 2246 * Return whether the current CPU has runnable tasks. Used for in-kernel 2247 * cooperative idle threads. 2248 */ 2249 int 2250 sched_runnable(void) 2251 { 2252 struct tdq *tdq; 2253 int load; 2254 2255 load = 1; 2256 2257 tdq = TDQ_SELF(); 2258 if ((curthread->td_flags & TDF_IDLETD) != 0) { 2259 if (tdq->tdq_load > 0) 2260 goto out; 2261 } else 2262 if (tdq->tdq_load - 1 > 0) 2263 goto out; 2264 load = 0; 2265 out: 2266 return (load); 2267 } 2268 2269 /* 2270 * Choose the highest priority thread to run. The thread is removed from 2271 * the run-queue while running however the load remains. For SMP we set 2272 * the tdq in the global idle bitmask if it idles here. 2273 */ 2274 struct thread * 2275 sched_choose(void) 2276 { 2277 struct thread *td; 2278 struct tdq *tdq; 2279 2280 tdq = TDQ_SELF(); 2281 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2282 td = tdq_choose(tdq); 2283 if (td) { 2284 tdq_runq_rem(tdq, td); 2285 tdq->tdq_lowpri = td->td_priority; 2286 return (td); 2287 } 2288 tdq->tdq_lowpri = PRI_MAX_IDLE; 2289 return (PCPU_GET(idlethread)); 2290 } 2291 2292 /* 2293 * Set owepreempt if necessary. Preemption never happens directly in ULE, 2294 * we always request it once we exit a critical section. 2295 */ 2296 static inline void 2297 sched_setpreempt(struct thread *td) 2298 { 2299 struct thread *ctd; 2300 int cpri; 2301 int pri; 2302 2303 THREAD_LOCK_ASSERT(curthread, MA_OWNED); 2304 2305 ctd = curthread; 2306 pri = td->td_priority; 2307 cpri = ctd->td_priority; 2308 if (pri < cpri) 2309 ctd->td_flags |= TDF_NEEDRESCHED; 2310 if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd)) 2311 return; 2312 if (!sched_shouldpreempt(pri, cpri, 0)) 2313 return; 2314 ctd->td_owepreempt = 1; 2315 } 2316 2317 /* 2318 * Add a thread to a thread queue. Select the appropriate runq and add the 2319 * thread to it. This is the internal function called when the tdq is 2320 * predetermined. 2321 */ 2322 void 2323 tdq_add(struct tdq *tdq, struct thread *td, int flags) 2324 { 2325 2326 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2327 KASSERT((td->td_inhibitors == 0), 2328 ("sched_add: trying to run inhibited thread")); 2329 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 2330 ("sched_add: bad thread state")); 2331 KASSERT(td->td_flags & TDF_INMEM, 2332 ("sched_add: thread swapped out")); 2333 2334 if (td->td_priority < tdq->tdq_lowpri) 2335 tdq->tdq_lowpri = td->td_priority; 2336 tdq_runq_add(tdq, td, flags); 2337 tdq_load_add(tdq, td); 2338 } 2339 2340 /* 2341 * Select the target thread queue and add a thread to it. Request 2342 * preemption or IPI a remote processor if required. 2343 */ 2344 void 2345 sched_add(struct thread *td, int flags) 2346 { 2347 struct tdq *tdq; 2348 #ifdef SMP 2349 int cpu; 2350 #endif 2351 2352 KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add", 2353 "prio:%d", td->td_priority, KTR_ATTR_LINKED, 2354 sched_tdname(curthread)); 2355 KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup", 2356 KTR_ATTR_LINKED, sched_tdname(td)); 2357 SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 2358 flags & SRQ_PREEMPTED); 2359 THREAD_LOCK_ASSERT(td, MA_OWNED); 2360 /* 2361 * Recalculate the priority before we select the target cpu or 2362 * run-queue. 2363 */ 2364 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 2365 sched_priority(td); 2366 #ifdef SMP 2367 /* 2368 * Pick the destination cpu and if it isn't ours transfer to the 2369 * target cpu. 2370 */ 2371 cpu = sched_pickcpu(td, flags); 2372 tdq = sched_setcpu(td, cpu, flags); 2373 tdq_add(tdq, td, flags); 2374 if (cpu != PCPU_GET(cpuid)) { 2375 tdq_notify(tdq, td); 2376 return; 2377 } 2378 #else 2379 tdq = TDQ_SELF(); 2380 TDQ_LOCK(tdq); 2381 /* 2382 * Now that the thread is moving to the run-queue, set the lock 2383 * to the scheduler's lock. 2384 */ 2385 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 2386 tdq_add(tdq, td, flags); 2387 #endif 2388 if (!(flags & SRQ_YIELDING)) 2389 sched_setpreempt(td); 2390 } 2391 2392 /* 2393 * Remove a thread from a run-queue without running it. This is used 2394 * when we're stealing a thread from a remote queue. Otherwise all threads 2395 * exit by calling sched_exit_thread() and sched_throw() themselves. 2396 */ 2397 void 2398 sched_rem(struct thread *td) 2399 { 2400 struct tdq *tdq; 2401 2402 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem", 2403 "prio:%d", td->td_priority); 2404 SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL); 2405 tdq = TDQ_CPU(td->td_sched->ts_cpu); 2406 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2407 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2408 KASSERT(TD_ON_RUNQ(td), 2409 ("sched_rem: thread not on run queue")); 2410 tdq_runq_rem(tdq, td); 2411 tdq_load_rem(tdq, td); 2412 TD_SET_CAN_RUN(td); 2413 if (td->td_priority == tdq->tdq_lowpri) 2414 tdq_setlowpri(tdq, NULL); 2415 } 2416 2417 /* 2418 * Fetch cpu utilization information. Updates on demand. 2419 */ 2420 fixpt_t 2421 sched_pctcpu(struct thread *td) 2422 { 2423 fixpt_t pctcpu; 2424 struct td_sched *ts; 2425 2426 pctcpu = 0; 2427 ts = td->td_sched; 2428 if (ts == NULL) 2429 return (0); 2430 2431 THREAD_LOCK_ASSERT(td, MA_OWNED); 2432 sched_pctcpu_update(ts, TD_IS_RUNNING(td)); 2433 if (ts->ts_ticks) { 2434 int rtick; 2435 2436 /* How many rtick per second ? */ 2437 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz); 2438 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT; 2439 } 2440 2441 return (pctcpu); 2442 } 2443 2444 /* 2445 * Enforce affinity settings for a thread. Called after adjustments to 2446 * cpumask. 2447 */ 2448 void 2449 sched_affinity(struct thread *td) 2450 { 2451 #ifdef SMP 2452 struct td_sched *ts; 2453 2454 THREAD_LOCK_ASSERT(td, MA_OWNED); 2455 ts = td->td_sched; 2456 if (THREAD_CAN_SCHED(td, ts->ts_cpu)) 2457 return; 2458 if (TD_ON_RUNQ(td)) { 2459 sched_rem(td); 2460 sched_add(td, SRQ_BORING); 2461 return; 2462 } 2463 if (!TD_IS_RUNNING(td)) 2464 return; 2465 /* 2466 * Force a switch before returning to userspace. If the 2467 * target thread is not running locally send an ipi to force 2468 * the issue. 2469 */ 2470 td->td_flags |= TDF_NEEDRESCHED; 2471 if (td != curthread) 2472 ipi_cpu(ts->ts_cpu, IPI_PREEMPT); 2473 #endif 2474 } 2475 2476 /* 2477 * Bind a thread to a target cpu. 2478 */ 2479 void 2480 sched_bind(struct thread *td, int cpu) 2481 { 2482 struct td_sched *ts; 2483 2484 THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED); 2485 KASSERT(td == curthread, ("sched_bind: can only bind curthread")); 2486 ts = td->td_sched; 2487 if (ts->ts_flags & TSF_BOUND) 2488 sched_unbind(td); 2489 KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td)); 2490 ts->ts_flags |= TSF_BOUND; 2491 sched_pin(); 2492 if (PCPU_GET(cpuid) == cpu) 2493 return; 2494 ts->ts_cpu = cpu; 2495 /* When we return from mi_switch we'll be on the correct cpu. */ 2496 mi_switch(SW_VOL, NULL); 2497 } 2498 2499 /* 2500 * Release a bound thread. 2501 */ 2502 void 2503 sched_unbind(struct thread *td) 2504 { 2505 struct td_sched *ts; 2506 2507 THREAD_LOCK_ASSERT(td, MA_OWNED); 2508 KASSERT(td == curthread, ("sched_unbind: can only bind curthread")); 2509 ts = td->td_sched; 2510 if ((ts->ts_flags & TSF_BOUND) == 0) 2511 return; 2512 ts->ts_flags &= ~TSF_BOUND; 2513 sched_unpin(); 2514 } 2515 2516 int 2517 sched_is_bound(struct thread *td) 2518 { 2519 THREAD_LOCK_ASSERT(td, MA_OWNED); 2520 return (td->td_sched->ts_flags & TSF_BOUND); 2521 } 2522 2523 /* 2524 * Basic yield call. 2525 */ 2526 void 2527 sched_relinquish(struct thread *td) 2528 { 2529 thread_lock(td); 2530 mi_switch(SW_VOL | SWT_RELINQUISH, NULL); 2531 thread_unlock(td); 2532 } 2533 2534 /* 2535 * Return the total system load. 2536 */ 2537 int 2538 sched_load(void) 2539 { 2540 #ifdef SMP 2541 int total; 2542 int i; 2543 2544 total = 0; 2545 CPU_FOREACH(i) 2546 total += TDQ_CPU(i)->tdq_sysload; 2547 return (total); 2548 #else 2549 return (TDQ_SELF()->tdq_sysload); 2550 #endif 2551 } 2552 2553 int 2554 sched_sizeof_proc(void) 2555 { 2556 return (sizeof(struct proc)); 2557 } 2558 2559 int 2560 sched_sizeof_thread(void) 2561 { 2562 return (sizeof(struct thread) + sizeof(struct td_sched)); 2563 } 2564 2565 #ifdef SMP 2566 #define TDQ_IDLESPIN(tdq) \ 2567 ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0) 2568 #else 2569 #define TDQ_IDLESPIN(tdq) 1 2570 #endif 2571 2572 /* 2573 * The actual idle process. 2574 */ 2575 void 2576 sched_idletd(void *dummy) 2577 { 2578 struct thread *td; 2579 struct tdq *tdq; 2580 int switchcnt; 2581 int i; 2582 2583 mtx_assert(&Giant, MA_NOTOWNED); 2584 td = curthread; 2585 tdq = TDQ_SELF(); 2586 THREAD_NO_SLEEPING(); 2587 for (;;) { 2588 #ifdef SMP 2589 if (tdq_idled(tdq) == 0) 2590 continue; 2591 #endif 2592 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2593 /* 2594 * If we're switching very frequently, spin while checking 2595 * for load rather than entering a low power state that 2596 * may require an IPI. However, don't do any busy 2597 * loops while on SMT machines as this simply steals 2598 * cycles from cores doing useful work. 2599 */ 2600 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) { 2601 for (i = 0; i < sched_idlespins; i++) { 2602 if (tdq->tdq_load) 2603 break; 2604 cpu_spinwait(); 2605 } 2606 } 2607 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2608 if (tdq->tdq_load == 0) { 2609 tdq->tdq_cpu_idle = 1; 2610 if (tdq->tdq_load == 0) { 2611 cpu_idle(switchcnt > sched_idlespinthresh * 4); 2612 tdq->tdq_switchcnt++; 2613 } 2614 tdq->tdq_cpu_idle = 0; 2615 } 2616 if (tdq->tdq_load) { 2617 thread_lock(td); 2618 mi_switch(SW_VOL | SWT_IDLE, NULL); 2619 thread_unlock(td); 2620 } 2621 } 2622 } 2623 2624 /* 2625 * A CPU is entering for the first time or a thread is exiting. 2626 */ 2627 void 2628 sched_throw(struct thread *td) 2629 { 2630 struct thread *newtd; 2631 struct tdq *tdq; 2632 2633 tdq = TDQ_SELF(); 2634 if (td == NULL) { 2635 /* Correct spinlock nesting and acquire the correct lock. */ 2636 TDQ_LOCK(tdq); 2637 spinlock_exit(); 2638 PCPU_SET(switchtime, cpu_ticks()); 2639 PCPU_SET(switchticks, ticks); 2640 } else { 2641 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2642 tdq_load_rem(tdq, td); 2643 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 2644 } 2645 KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count")); 2646 newtd = choosethread(); 2647 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 2648 cpu_throw(td, newtd); /* doesn't return */ 2649 } 2650 2651 /* 2652 * This is called from fork_exit(). Just acquire the correct locks and 2653 * let fork do the rest of the work. 2654 */ 2655 void 2656 sched_fork_exit(struct thread *td) 2657 { 2658 struct td_sched *ts; 2659 struct tdq *tdq; 2660 int cpuid; 2661 2662 /* 2663 * Finish setting up thread glue so that it begins execution in a 2664 * non-nested critical section with the scheduler lock held. 2665 */ 2666 cpuid = PCPU_GET(cpuid); 2667 tdq = TDQ_CPU(cpuid); 2668 ts = td->td_sched; 2669 if (TD_IS_IDLETHREAD(td)) 2670 td->td_lock = TDQ_LOCKPTR(tdq); 2671 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2672 td->td_oncpu = cpuid; 2673 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 2674 lock_profile_obtain_lock_success( 2675 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 2676 } 2677 2678 /* 2679 * Create on first use to catch odd startup conditons. 2680 */ 2681 char * 2682 sched_tdname(struct thread *td) 2683 { 2684 #ifdef KTR 2685 struct td_sched *ts; 2686 2687 ts = td->td_sched; 2688 if (ts->ts_name[0] == '\0') 2689 snprintf(ts->ts_name, sizeof(ts->ts_name), 2690 "%s tid %d", td->td_name, td->td_tid); 2691 return (ts->ts_name); 2692 #else 2693 return (td->td_name); 2694 #endif 2695 } 2696 2697 #ifdef KTR 2698 void 2699 sched_clear_tdname(struct thread *td) 2700 { 2701 struct td_sched *ts; 2702 2703 ts = td->td_sched; 2704 ts->ts_name[0] = '\0'; 2705 } 2706 #endif 2707 2708 #ifdef SMP 2709 2710 /* 2711 * Build the CPU topology dump string. Is recursively called to collect 2712 * the topology tree. 2713 */ 2714 static int 2715 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg, 2716 int indent) 2717 { 2718 char cpusetbuf[CPUSETBUFSIZ]; 2719 int i, first; 2720 2721 sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent, 2722 "", 1 + indent / 2, cg->cg_level); 2723 sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "", 2724 cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask)); 2725 first = TRUE; 2726 for (i = 0; i < MAXCPU; i++) { 2727 if (CPU_ISSET(i, &cg->cg_mask)) { 2728 if (!first) 2729 sbuf_printf(sb, ", "); 2730 else 2731 first = FALSE; 2732 sbuf_printf(sb, "%d", i); 2733 } 2734 } 2735 sbuf_printf(sb, "</cpu>\n"); 2736 2737 if (cg->cg_flags != 0) { 2738 sbuf_printf(sb, "%*s <flags>", indent, ""); 2739 if ((cg->cg_flags & CG_FLAG_HTT) != 0) 2740 sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>"); 2741 if ((cg->cg_flags & CG_FLAG_THREAD) != 0) 2742 sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>"); 2743 if ((cg->cg_flags & CG_FLAG_SMT) != 0) 2744 sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>"); 2745 sbuf_printf(sb, "</flags>\n"); 2746 } 2747 2748 if (cg->cg_children > 0) { 2749 sbuf_printf(sb, "%*s <children>\n", indent, ""); 2750 for (i = 0; i < cg->cg_children; i++) 2751 sysctl_kern_sched_topology_spec_internal(sb, 2752 &cg->cg_child[i], indent+2); 2753 sbuf_printf(sb, "%*s </children>\n", indent, ""); 2754 } 2755 sbuf_printf(sb, "%*s</group>\n", indent, ""); 2756 return (0); 2757 } 2758 2759 /* 2760 * Sysctl handler for retrieving topology dump. It's a wrapper for 2761 * the recursive sysctl_kern_smp_topology_spec_internal(). 2762 */ 2763 static int 2764 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS) 2765 { 2766 struct sbuf *topo; 2767 int err; 2768 2769 KASSERT(cpu_top != NULL, ("cpu_top isn't initialized")); 2770 2771 topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND); 2772 if (topo == NULL) 2773 return (ENOMEM); 2774 2775 sbuf_printf(topo, "<groups>\n"); 2776 err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1); 2777 sbuf_printf(topo, "</groups>\n"); 2778 2779 if (err == 0) { 2780 sbuf_finish(topo); 2781 err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo)); 2782 } 2783 sbuf_delete(topo); 2784 return (err); 2785 } 2786 2787 #endif 2788 2789 static int 2790 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS) 2791 { 2792 int error, new_val, period; 2793 2794 period = 1000000 / realstathz; 2795 new_val = period * sched_slice; 2796 error = sysctl_handle_int(oidp, &new_val, 0, req); 2797 if (error != 0 || req->newptr == NULL) 2798 return (error); 2799 if (new_val <= 0) 2800 return (EINVAL); 2801 sched_slice = imax(1, (new_val + period / 2) / period); 2802 hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) / 2803 realstathz); 2804 return (0); 2805 } 2806 2807 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler"); 2808 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0, 2809 "Scheduler name"); 2810 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW, 2811 NULL, 0, sysctl_kern_quantum, "I", 2812 "Quantum for timeshare threads in microseconds"); 2813 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0, 2814 "Quantum for timeshare threads in stathz ticks"); 2815 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0, 2816 "Interactivity score threshold"); 2817 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, 2818 &preempt_thresh, 0, 2819 "Maximal (lowest) priority for preemption"); 2820 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0, 2821 "Assign static kernel priorities to sleeping threads"); 2822 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0, 2823 "Number of times idle thread will spin waiting for new work"); 2824 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, 2825 &sched_idlespinthresh, 0, 2826 "Threshold before we will permit idle thread spinning"); 2827 #ifdef SMP 2828 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0, 2829 "Number of hz ticks to keep thread affinity for"); 2830 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0, 2831 "Enables the long-term load balancer"); 2832 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW, 2833 &balance_interval, 0, 2834 "Average period in stathz ticks to run the long-term balancer"); 2835 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0, 2836 "Attempts to steal work from other cores before idling"); 2837 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0, 2838 "Minimum load on remote CPU before we'll steal"); 2839 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING | 2840 CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A", 2841 "XML dump of detected CPU topology"); 2842 #endif 2843 2844 /* ps compat. All cpu percentages from ULE are weighted. */ 2845 static int ccpu = 0; 2846 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 2847