1 /*- 2 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <opt_sched.h> 31 32 #define kse td_sched 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kdb.h> 37 #include <sys/kernel.h> 38 #include <sys/ktr.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/resource.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sched.h> 45 #include <sys/smp.h> 46 #include <sys/sx.h> 47 #include <sys/sysctl.h> 48 #include <sys/sysproto.h> 49 #include <sys/vmmeter.h> 50 #ifdef KTRACE 51 #include <sys/uio.h> 52 #include <sys/ktrace.h> 53 #endif 54 55 #include <machine/cpu.h> 56 #include <machine/smp.h> 57 58 #define KTR_ULE KTR_NFS 59 60 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 61 /* XXX This is bogus compatability crap for ps */ 62 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 63 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 64 65 static void sched_setup(void *dummy); 66 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL) 67 68 static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler"); 69 70 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0, 71 "Scheduler name"); 72 73 static int slice_min = 1; 74 SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, ""); 75 76 static int slice_max = 10; 77 SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, ""); 78 79 int realstathz; 80 int tickincr = 1; 81 82 #ifdef PREEMPTION 83 static void 84 printf_caddr_t(void *data) 85 { 86 printf("%s", (char *)data); 87 } 88 static char preempt_warning[] = 89 "WARNING: Kernel PREEMPTION is unstable under SCHED_ULE.\n"; 90 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t, 91 preempt_warning) 92 #endif 93 94 /* 95 * The schedulable entity that can be given a context to run. 96 * A process may have several of these. Probably one per processor 97 * but posibly a few more. In this universe they are grouped 98 * with a KSEG that contains the priority and niceness 99 * for the group. 100 */ 101 struct kse { 102 TAILQ_ENTRY(kse) ke_kglist; /* (*) Queue of threads in ke_ksegrp. */ 103 TAILQ_ENTRY(kse) ke_kgrlist; /* (*) Queue of threads in this state.*/ 104 TAILQ_ENTRY(kse) ke_procq; /* (j/z) Run queue. */ 105 int ke_flags; /* (j) KEF_* flags. */ 106 struct thread *ke_thread; /* (*) Active associated thread. */ 107 fixpt_t ke_pctcpu; /* (j) %cpu during p_swtime. */ 108 u_char ke_oncpu; /* (j) Which cpu we are on. */ 109 char ke_rqindex; /* (j) Run queue index. */ 110 enum { 111 KES_THREAD = 0x0, /* slaved to thread state */ 112 KES_ONRUNQ 113 } ke_state; /* (j) thread sched specific status. */ 114 int ke_slptime; 115 int ke_slice; 116 struct runq *ke_runq; 117 u_char ke_cpu; /* CPU that we have affinity for. */ 118 /* The following variables are only used for pctcpu calculation */ 119 int ke_ltick; /* Last tick that we were running on */ 120 int ke_ftick; /* First tick that we were running on */ 121 int ke_ticks; /* Tick count */ 122 123 }; 124 125 126 #define td_kse td_sched 127 #define td_slptime td_kse->ke_slptime 128 #define ke_proc ke_thread->td_proc 129 #define ke_ksegrp ke_thread->td_ksegrp 130 131 /* flags kept in ke_flags */ 132 #define KEF_SCHED0 0x00001 /* For scheduler-specific use. */ 133 #define KEF_SCHED1 0x00002 /* For scheduler-specific use. */ 134 #define KEF_SCHED2 0x00004 /* For scheduler-specific use. */ 135 #define KEF_SCHED3 0x00008 /* For scheduler-specific use. */ 136 #define KEF_DIDRUN 0x02000 /* Thread actually ran. */ 137 #define KEF_EXIT 0x04000 /* Thread is being killed. */ 138 139 /* 140 * These datastructures are allocated within their parent datastructure but 141 * are scheduler specific. 142 */ 143 144 #define ke_assign ke_procq.tqe_next 145 146 #define KEF_ASSIGNED KEF_SCHED0 /* Thread is being migrated. */ 147 #define KEF_BOUND KEF_SCHED1 /* Thread can not migrate. */ 148 #define KEF_XFERABLE KEF_SCHED2 /* Thread was added as transferable. */ 149 #define KEF_HOLD KEF_SCHED3 /* Thread is temporarily bound. */ 150 151 struct kg_sched { 152 struct thread *skg_last_assigned; /* (j) Last thread assigned to */ 153 /* the system scheduler */ 154 int skg_slptime; /* Number of ticks we vol. slept */ 155 int skg_runtime; /* Number of ticks we were running */ 156 int skg_avail_opennings; /* (j) Num unfilled slots in group.*/ 157 int skg_concurrency; /* (j) Num threads requested in group.*/ 158 int skg_runq_threads; /* (j) Num KSEs on runq. */ 159 }; 160 #define kg_last_assigned kg_sched->skg_last_assigned 161 #define kg_avail_opennings kg_sched->skg_avail_opennings 162 #define kg_concurrency kg_sched->skg_concurrency 163 #define kg_runq_threads kg_sched->skg_runq_threads 164 #define kg_runtime kg_sched->skg_runtime 165 #define kg_slptime kg_sched->skg_slptime 166 167 #define SLOT_RELEASE(kg) \ 168 do { \ 169 kg->kg_avail_opennings++; \ 170 CTR3(KTR_RUNQ, "kg %p(%d) Slot released (->%d)", \ 171 kg, \ 172 kg->kg_concurrency, \ 173 kg->kg_avail_opennings); \ 174 /*KASSERT((kg->kg_avail_opennings <= kg->kg_concurrency), \ 175 ("slots out of whack")); */ \ 176 } while (0) 177 178 #define SLOT_USE(kg) \ 179 do { \ 180 kg->kg_avail_opennings--; \ 181 CTR3(KTR_RUNQ, "kg %p(%d) Slot used (->%d)", \ 182 kg, \ 183 kg->kg_concurrency, \ 184 kg->kg_avail_opennings); \ 185 /*KASSERT((kg->kg_avail_opennings >= 0), \ 186 ("slots out of whack"));*/ \ 187 } while (0) 188 189 static struct kse kse0; 190 static struct kg_sched kg_sched0; 191 192 /* 193 * The priority is primarily determined by the interactivity score. Thus, we 194 * give lower(better) priorities to kse groups that use less CPU. The nice 195 * value is then directly added to this to allow nice to have some effect 196 * on latency. 197 * 198 * PRI_RANGE: Total priority range for timeshare threads. 199 * PRI_NRESV: Number of nice values. 200 * PRI_BASE: The start of the dynamic range. 201 */ 202 #define SCHED_PRI_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1) 203 #define SCHED_PRI_NRESV ((PRIO_MAX - PRIO_MIN) + 1) 204 #define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2) 205 #define SCHED_PRI_BASE (PRI_MIN_TIMESHARE) 206 #define SCHED_PRI_INTERACT(score) \ 207 ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX) 208 209 /* 210 * These determine the interactivity of a process. 211 * 212 * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate 213 * before throttling back. 214 * SLP_RUN_FORK: Maximum slp+run time to inherit at fork time. 215 * INTERACT_MAX: Maximum interactivity value. Smaller is better. 216 * INTERACT_THRESH: Threshhold for placement on the current runq. 217 */ 218 #define SCHED_SLP_RUN_MAX ((hz * 5) << 10) 219 #define SCHED_SLP_RUN_FORK ((hz / 2) << 10) 220 #define SCHED_INTERACT_MAX (100) 221 #define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2) 222 #define SCHED_INTERACT_THRESH (30) 223 224 /* 225 * These parameters and macros determine the size of the time slice that is 226 * granted to each thread. 227 * 228 * SLICE_MIN: Minimum time slice granted, in units of ticks. 229 * SLICE_MAX: Maximum time slice granted. 230 * SLICE_RANGE: Range of available time slices scaled by hz. 231 * SLICE_SCALE: The number slices granted per val in the range of [0, max]. 232 * SLICE_NICE: Determine the amount of slice granted to a scaled nice. 233 * SLICE_NTHRESH: The nice cutoff point for slice assignment. 234 */ 235 #define SCHED_SLICE_MIN (slice_min) 236 #define SCHED_SLICE_MAX (slice_max) 237 #define SCHED_SLICE_INTERACTIVE (slice_max) 238 #define SCHED_SLICE_NTHRESH (SCHED_PRI_NHALF - 1) 239 #define SCHED_SLICE_RANGE (SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1) 240 #define SCHED_SLICE_SCALE(val, max) (((val) * SCHED_SLICE_RANGE) / (max)) 241 #define SCHED_SLICE_NICE(nice) \ 242 (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH)) 243 244 /* 245 * This macro determines whether or not the thread belongs on the current or 246 * next run queue. 247 */ 248 #define SCHED_INTERACTIVE(kg) \ 249 (sched_interact_score(kg) < SCHED_INTERACT_THRESH) 250 #define SCHED_CURR(kg, ke) \ 251 (ke->ke_thread->td_priority < kg->kg_user_pri || \ 252 SCHED_INTERACTIVE(kg)) 253 254 /* 255 * Cpu percentage computation macros and defines. 256 * 257 * SCHED_CPU_TIME: Number of seconds to average the cpu usage across. 258 * SCHED_CPU_TICKS: Number of hz ticks to average the cpu usage across. 259 */ 260 261 #define SCHED_CPU_TIME 10 262 #define SCHED_CPU_TICKS (hz * SCHED_CPU_TIME) 263 264 /* 265 * kseq - per processor runqs and statistics. 266 */ 267 struct kseq { 268 struct runq ksq_idle; /* Queue of IDLE threads. */ 269 struct runq ksq_timeshare[2]; /* Run queues for !IDLE. */ 270 struct runq *ksq_next; /* Next timeshare queue. */ 271 struct runq *ksq_curr; /* Current queue. */ 272 int ksq_load_timeshare; /* Load for timeshare. */ 273 int ksq_load; /* Aggregate load. */ 274 short ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */ 275 short ksq_nicemin; /* Least nice. */ 276 #ifdef SMP 277 int ksq_transferable; 278 LIST_ENTRY(kseq) ksq_siblings; /* Next in kseq group. */ 279 struct kseq_group *ksq_group; /* Our processor group. */ 280 volatile struct kse *ksq_assigned; /* assigned by another CPU. */ 281 #else 282 int ksq_sysload; /* For loadavg, !ITHD load. */ 283 #endif 284 }; 285 286 #ifdef SMP 287 /* 288 * kseq groups are groups of processors which can cheaply share threads. When 289 * one processor in the group goes idle it will check the runqs of the other 290 * processors in its group prior to halting and waiting for an interrupt. 291 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA. 292 * In a numa environment we'd want an idle bitmap per group and a two tiered 293 * load balancer. 294 */ 295 struct kseq_group { 296 int ksg_cpus; /* Count of CPUs in this kseq group. */ 297 cpumask_t ksg_cpumask; /* Mask of cpus in this group. */ 298 cpumask_t ksg_idlemask; /* Idle cpus in this group. */ 299 cpumask_t ksg_mask; /* Bit mask for first cpu. */ 300 int ksg_load; /* Total load of this group. */ 301 int ksg_transferable; /* Transferable load of this group. */ 302 LIST_HEAD(, kseq) ksg_members; /* Linked list of all members. */ 303 }; 304 #endif 305 306 /* 307 * One kse queue per processor. 308 */ 309 #ifdef SMP 310 static cpumask_t kseq_idle; 311 static int ksg_maxid; 312 static struct kseq kseq_cpu[MAXCPU]; 313 static struct kseq_group kseq_groups[MAXCPU]; 314 static int bal_tick; 315 static int gbal_tick; 316 317 #define KSEQ_SELF() (&kseq_cpu[PCPU_GET(cpuid)]) 318 #define KSEQ_CPU(x) (&kseq_cpu[(x)]) 319 #define KSEQ_ID(x) ((x) - kseq_cpu) 320 #define KSEQ_GROUP(x) (&kseq_groups[(x)]) 321 #else /* !SMP */ 322 static struct kseq kseq_cpu; 323 324 #define KSEQ_SELF() (&kseq_cpu) 325 #define KSEQ_CPU(x) (&kseq_cpu) 326 #endif 327 328 static void slot_fill(struct ksegrp *kg); 329 static struct kse *sched_choose(void); /* XXX Should be thread * */ 330 static void sched_add_internal(struct thread *td, int preemptive); 331 static void sched_slice(struct kse *ke); 332 static void sched_priority(struct ksegrp *kg); 333 static int sched_interact_score(struct ksegrp *kg); 334 static void sched_interact_update(struct ksegrp *kg); 335 static void sched_interact_fork(struct ksegrp *kg); 336 static void sched_pctcpu_update(struct kse *ke); 337 338 /* Operations on per processor queues */ 339 static struct kse * kseq_choose(struct kseq *kseq); 340 static void kseq_setup(struct kseq *kseq); 341 static void kseq_load_add(struct kseq *kseq, struct kse *ke); 342 static void kseq_load_rem(struct kseq *kseq, struct kse *ke); 343 static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke); 344 static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke); 345 static void kseq_nice_add(struct kseq *kseq, int nice); 346 static void kseq_nice_rem(struct kseq *kseq, int nice); 347 void kseq_print(int cpu); 348 #ifdef SMP 349 static int kseq_transfer(struct kseq *ksq, struct kse *ke, int class); 350 static struct kse *runq_steal(struct runq *rq); 351 static void sched_balance(void); 352 static void sched_balance_groups(void); 353 static void sched_balance_group(struct kseq_group *ksg); 354 static void sched_balance_pair(struct kseq *high, struct kseq *low); 355 static void kseq_move(struct kseq *from, int cpu); 356 static int kseq_idled(struct kseq *kseq); 357 static void kseq_notify(struct kse *ke, int cpu); 358 static void kseq_assign(struct kseq *); 359 static struct kse *kseq_steal(struct kseq *kseq, int stealidle); 360 /* 361 * On P4 Xeons the round-robin interrupt delivery is broken. As a result of 362 * this, we can't pin interrupts to the cpu that they were delivered to, 363 * otherwise all ithreads only run on CPU 0. 364 */ 365 #ifdef __i386__ 366 #define KSE_CAN_MIGRATE(ke, class) \ 367 ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0) 368 #else /* !__i386__ */ 369 #define KSE_CAN_MIGRATE(ke, class) \ 370 ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 && \ 371 ((ke)->ke_flags & KEF_BOUND) == 0) 372 #endif /* !__i386__ */ 373 #endif 374 375 void 376 kseq_print(int cpu) 377 { 378 struct kseq *kseq; 379 int i; 380 381 kseq = KSEQ_CPU(cpu); 382 383 printf("kseq:\n"); 384 printf("\tload: %d\n", kseq->ksq_load); 385 printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare); 386 #ifdef SMP 387 printf("\tload transferable: %d\n", kseq->ksq_transferable); 388 #endif 389 printf("\tnicemin:\t%d\n", kseq->ksq_nicemin); 390 printf("\tnice counts:\n"); 391 for (i = 0; i < SCHED_PRI_NRESV; i++) 392 if (kseq->ksq_nice[i]) 393 printf("\t\t%d = %d\n", 394 i - SCHED_PRI_NHALF, kseq->ksq_nice[i]); 395 } 396 397 static __inline void 398 kseq_runq_add(struct kseq *kseq, struct kse *ke) 399 { 400 #ifdef SMP 401 if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) { 402 kseq->ksq_transferable++; 403 kseq->ksq_group->ksg_transferable++; 404 ke->ke_flags |= KEF_XFERABLE; 405 } 406 #endif 407 runq_add(ke->ke_runq, ke, 0); 408 } 409 410 static __inline void 411 kseq_runq_rem(struct kseq *kseq, struct kse *ke) 412 { 413 #ifdef SMP 414 if (ke->ke_flags & KEF_XFERABLE) { 415 kseq->ksq_transferable--; 416 kseq->ksq_group->ksg_transferable--; 417 ke->ke_flags &= ~KEF_XFERABLE; 418 } 419 #endif 420 runq_remove(ke->ke_runq, ke); 421 } 422 423 static void 424 kseq_load_add(struct kseq *kseq, struct kse *ke) 425 { 426 int class; 427 mtx_assert(&sched_lock, MA_OWNED); 428 class = PRI_BASE(ke->ke_ksegrp->kg_pri_class); 429 if (class == PRI_TIMESHARE) 430 kseq->ksq_load_timeshare++; 431 kseq->ksq_load++; 432 if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0) 433 #ifdef SMP 434 kseq->ksq_group->ksg_load++; 435 #else 436 kseq->ksq_sysload++; 437 #endif 438 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) 439 CTR6(KTR_ULE, 440 "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))", 441 ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority, 442 ke->ke_proc->p_nice, kseq->ksq_nicemin); 443 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) 444 kseq_nice_add(kseq, ke->ke_proc->p_nice); 445 } 446 447 static void 448 kseq_load_rem(struct kseq *kseq, struct kse *ke) 449 { 450 int class; 451 mtx_assert(&sched_lock, MA_OWNED); 452 class = PRI_BASE(ke->ke_ksegrp->kg_pri_class); 453 if (class == PRI_TIMESHARE) 454 kseq->ksq_load_timeshare--; 455 if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0) 456 #ifdef SMP 457 kseq->ksq_group->ksg_load--; 458 #else 459 kseq->ksq_sysload--; 460 #endif 461 kseq->ksq_load--; 462 ke->ke_runq = NULL; 463 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) 464 kseq_nice_rem(kseq, ke->ke_proc->p_nice); 465 } 466 467 static void 468 kseq_nice_add(struct kseq *kseq, int nice) 469 { 470 mtx_assert(&sched_lock, MA_OWNED); 471 /* Normalize to zero. */ 472 kseq->ksq_nice[nice + SCHED_PRI_NHALF]++; 473 if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1) 474 kseq->ksq_nicemin = nice; 475 } 476 477 static void 478 kseq_nice_rem(struct kseq *kseq, int nice) 479 { 480 int n; 481 482 mtx_assert(&sched_lock, MA_OWNED); 483 /* Normalize to zero. */ 484 n = nice + SCHED_PRI_NHALF; 485 kseq->ksq_nice[n]--; 486 KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count.")); 487 488 /* 489 * If this wasn't the smallest nice value or there are more in 490 * this bucket we can just return. Otherwise we have to recalculate 491 * the smallest nice. 492 */ 493 if (nice != kseq->ksq_nicemin || 494 kseq->ksq_nice[n] != 0 || 495 kseq->ksq_load_timeshare == 0) 496 return; 497 498 for (; n < SCHED_PRI_NRESV; n++) 499 if (kseq->ksq_nice[n]) { 500 kseq->ksq_nicemin = n - SCHED_PRI_NHALF; 501 return; 502 } 503 } 504 505 #ifdef SMP 506 /* 507 * sched_balance is a simple CPU load balancing algorithm. It operates by 508 * finding the least loaded and most loaded cpu and equalizing their load 509 * by migrating some processes. 510 * 511 * Dealing only with two CPUs at a time has two advantages. Firstly, most 512 * installations will only have 2 cpus. Secondly, load balancing too much at 513 * once can have an unpleasant effect on the system. The scheduler rarely has 514 * enough information to make perfect decisions. So this algorithm chooses 515 * algorithm simplicity and more gradual effects on load in larger systems. 516 * 517 * It could be improved by considering the priorities and slices assigned to 518 * each task prior to balancing them. There are many pathological cases with 519 * any approach and so the semi random algorithm below may work as well as any. 520 * 521 */ 522 static void 523 sched_balance(void) 524 { 525 struct kseq_group *high; 526 struct kseq_group *low; 527 struct kseq_group *ksg; 528 int cnt; 529 int i; 530 531 if (smp_started == 0) 532 goto out; 533 low = high = NULL; 534 i = random() % (ksg_maxid + 1); 535 for (cnt = 0; cnt <= ksg_maxid; cnt++) { 536 ksg = KSEQ_GROUP(i); 537 /* 538 * Find the CPU with the highest load that has some 539 * threads to transfer. 540 */ 541 if ((high == NULL || ksg->ksg_load > high->ksg_load) 542 && ksg->ksg_transferable) 543 high = ksg; 544 if (low == NULL || ksg->ksg_load < low->ksg_load) 545 low = ksg; 546 if (++i > ksg_maxid) 547 i = 0; 548 } 549 if (low != NULL && high != NULL && high != low) 550 sched_balance_pair(LIST_FIRST(&high->ksg_members), 551 LIST_FIRST(&low->ksg_members)); 552 out: 553 bal_tick = ticks + (random() % (hz * 2)); 554 } 555 556 static void 557 sched_balance_groups(void) 558 { 559 int i; 560 561 mtx_assert(&sched_lock, MA_OWNED); 562 if (smp_started) 563 for (i = 0; i <= ksg_maxid; i++) 564 sched_balance_group(KSEQ_GROUP(i)); 565 gbal_tick = ticks + (random() % (hz * 2)); 566 } 567 568 static void 569 sched_balance_group(struct kseq_group *ksg) 570 { 571 struct kseq *kseq; 572 struct kseq *high; 573 struct kseq *low; 574 int load; 575 576 if (ksg->ksg_transferable == 0) 577 return; 578 low = NULL; 579 high = NULL; 580 LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) { 581 load = kseq->ksq_load; 582 if (high == NULL || load > high->ksq_load) 583 high = kseq; 584 if (low == NULL || load < low->ksq_load) 585 low = kseq; 586 } 587 if (high != NULL && low != NULL && high != low) 588 sched_balance_pair(high, low); 589 } 590 591 static void 592 sched_balance_pair(struct kseq *high, struct kseq *low) 593 { 594 int transferable; 595 int high_load; 596 int low_load; 597 int move; 598 int diff; 599 int i; 600 601 /* 602 * If we're transfering within a group we have to use this specific 603 * kseq's transferable count, otherwise we can steal from other members 604 * of the group. 605 */ 606 if (high->ksq_group == low->ksq_group) { 607 transferable = high->ksq_transferable; 608 high_load = high->ksq_load; 609 low_load = low->ksq_load; 610 } else { 611 transferable = high->ksq_group->ksg_transferable; 612 high_load = high->ksq_group->ksg_load; 613 low_load = low->ksq_group->ksg_load; 614 } 615 if (transferable == 0) 616 return; 617 /* 618 * Determine what the imbalance is and then adjust that to how many 619 * kses we actually have to give up (transferable). 620 */ 621 diff = high_load - low_load; 622 move = diff / 2; 623 if (diff & 0x1) 624 move++; 625 move = min(move, transferable); 626 for (i = 0; i < move; i++) 627 kseq_move(high, KSEQ_ID(low)); 628 return; 629 } 630 631 static void 632 kseq_move(struct kseq *from, int cpu) 633 { 634 struct kseq *kseq; 635 struct kseq *to; 636 struct kse *ke; 637 638 kseq = from; 639 to = KSEQ_CPU(cpu); 640 ke = kseq_steal(kseq, 1); 641 if (ke == NULL) { 642 struct kseq_group *ksg; 643 644 ksg = kseq->ksq_group; 645 LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) { 646 if (kseq == from || kseq->ksq_transferable == 0) 647 continue; 648 ke = kseq_steal(kseq, 1); 649 break; 650 } 651 if (ke == NULL) 652 panic("kseq_move: No KSEs available with a " 653 "transferable count of %d\n", 654 ksg->ksg_transferable); 655 } 656 if (kseq == to) 657 return; 658 ke->ke_state = KES_THREAD; 659 kseq_runq_rem(kseq, ke); 660 kseq_load_rem(kseq, ke); 661 kseq_notify(ke, cpu); 662 } 663 664 static int 665 kseq_idled(struct kseq *kseq) 666 { 667 struct kseq_group *ksg; 668 struct kseq *steal; 669 struct kse *ke; 670 671 ksg = kseq->ksq_group; 672 /* 673 * If we're in a cpu group, try and steal kses from another cpu in 674 * the group before idling. 675 */ 676 if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) { 677 LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) { 678 if (steal == kseq || steal->ksq_transferable == 0) 679 continue; 680 ke = kseq_steal(steal, 0); 681 if (ke == NULL) 682 continue; 683 ke->ke_state = KES_THREAD; 684 kseq_runq_rem(steal, ke); 685 kseq_load_rem(steal, ke); 686 ke->ke_cpu = PCPU_GET(cpuid); 687 sched_add_internal(ke->ke_thread, 0); 688 return (0); 689 } 690 } 691 /* 692 * We only set the idled bit when all of the cpus in the group are 693 * idle. Otherwise we could get into a situation where a KSE bounces 694 * back and forth between two idle cores on seperate physical CPUs. 695 */ 696 ksg->ksg_idlemask |= PCPU_GET(cpumask); 697 if (ksg->ksg_idlemask != ksg->ksg_cpumask) 698 return (1); 699 atomic_set_int(&kseq_idle, ksg->ksg_mask); 700 return (1); 701 } 702 703 static void 704 kseq_assign(struct kseq *kseq) 705 { 706 struct kse *nke; 707 struct kse *ke; 708 709 do { 710 *(volatile struct kse **)&ke = kseq->ksq_assigned; 711 } while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL)); 712 for (; ke != NULL; ke = nke) { 713 nke = ke->ke_assign; 714 ke->ke_flags &= ~KEF_ASSIGNED; 715 sched_add_internal(ke->ke_thread, 0); 716 } 717 } 718 719 static void 720 kseq_notify(struct kse *ke, int cpu) 721 { 722 struct kseq *kseq; 723 struct thread *td; 724 struct pcpu *pcpu; 725 int prio; 726 727 ke->ke_cpu = cpu; 728 ke->ke_flags |= KEF_ASSIGNED; 729 prio = ke->ke_thread->td_priority; 730 731 kseq = KSEQ_CPU(cpu); 732 733 /* 734 * Place a KSE on another cpu's queue and force a resched. 735 */ 736 do { 737 *(volatile struct kse **)&ke->ke_assign = kseq->ksq_assigned; 738 } while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke)); 739 /* 740 * Without sched_lock we could lose a race where we set NEEDRESCHED 741 * on a thread that is switched out before the IPI is delivered. This 742 * would lead us to miss the resched. This will be a problem once 743 * sched_lock is pushed down. 744 */ 745 pcpu = pcpu_find(cpu); 746 td = pcpu->pc_curthread; 747 if (ke->ke_thread->td_priority < td->td_priority || 748 td == pcpu->pc_idlethread) { 749 td->td_flags |= TDF_NEEDRESCHED; 750 ipi_selected(1 << cpu, IPI_AST); 751 } 752 } 753 754 static struct kse * 755 runq_steal(struct runq *rq) 756 { 757 struct rqhead *rqh; 758 struct rqbits *rqb; 759 struct kse *ke; 760 int word; 761 int bit; 762 763 mtx_assert(&sched_lock, MA_OWNED); 764 rqb = &rq->rq_status; 765 for (word = 0; word < RQB_LEN; word++) { 766 if (rqb->rqb_bits[word] == 0) 767 continue; 768 for (bit = 0; bit < RQB_BPW; bit++) { 769 if ((rqb->rqb_bits[word] & (1ul << bit)) == 0) 770 continue; 771 rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)]; 772 TAILQ_FOREACH(ke, rqh, ke_procq) { 773 if (KSE_CAN_MIGRATE(ke, 774 PRI_BASE(ke->ke_ksegrp->kg_pri_class))) 775 return (ke); 776 } 777 } 778 } 779 return (NULL); 780 } 781 782 static struct kse * 783 kseq_steal(struct kseq *kseq, int stealidle) 784 { 785 struct kse *ke; 786 787 /* 788 * Steal from next first to try to get a non-interactive task that 789 * may not have run for a while. 790 */ 791 if ((ke = runq_steal(kseq->ksq_next)) != NULL) 792 return (ke); 793 if ((ke = runq_steal(kseq->ksq_curr)) != NULL) 794 return (ke); 795 if (stealidle) 796 return (runq_steal(&kseq->ksq_idle)); 797 return (NULL); 798 } 799 800 int 801 kseq_transfer(struct kseq *kseq, struct kse *ke, int class) 802 { 803 struct kseq_group *ksg; 804 int cpu; 805 806 if (smp_started == 0) 807 return (0); 808 cpu = 0; 809 /* 810 * If our load exceeds a certain threshold we should attempt to 811 * reassign this thread. The first candidate is the cpu that 812 * originally ran the thread. If it is idle, assign it there, 813 * otherwise, pick an idle cpu. 814 * 815 * The threshold at which we start to reassign kses has a large impact 816 * on the overall performance of the system. Tuned too high and 817 * some CPUs may idle. Too low and there will be excess migration 818 * and context switches. 819 */ 820 ksg = kseq->ksq_group; 821 if (ksg->ksg_load > ksg->ksg_cpus && kseq_idle) { 822 ksg = KSEQ_CPU(ke->ke_cpu)->ksq_group; 823 if (kseq_idle & ksg->ksg_mask) { 824 cpu = ffs(ksg->ksg_idlemask); 825 if (cpu) 826 goto migrate; 827 } 828 /* 829 * Multiple cpus could find this bit simultaneously 830 * but the race shouldn't be terrible. 831 */ 832 cpu = ffs(kseq_idle); 833 if (cpu) 834 goto migrate; 835 } 836 /* 837 * If another cpu in this group has idled, assign a thread over 838 * to them after checking to see if there are idled groups. 839 */ 840 ksg = kseq->ksq_group; 841 if (ksg->ksg_idlemask) { 842 cpu = ffs(ksg->ksg_idlemask); 843 if (cpu) 844 goto migrate; 845 } 846 /* 847 * No new CPU was found. 848 */ 849 return (0); 850 migrate: 851 /* 852 * Now that we've found an idle CPU, migrate the thread. 853 */ 854 cpu--; 855 ke->ke_runq = NULL; 856 kseq_notify(ke, cpu); 857 858 return (1); 859 } 860 861 #endif /* SMP */ 862 863 /* 864 * Pick the highest priority task we have and return it. 865 */ 866 867 static struct kse * 868 kseq_choose(struct kseq *kseq) 869 { 870 struct kse *ke; 871 struct runq *swap; 872 873 mtx_assert(&sched_lock, MA_OWNED); 874 swap = NULL; 875 876 for (;;) { 877 ke = runq_choose(kseq->ksq_curr); 878 if (ke == NULL) { 879 /* 880 * We already swapped once and didn't get anywhere. 881 */ 882 if (swap) 883 break; 884 swap = kseq->ksq_curr; 885 kseq->ksq_curr = kseq->ksq_next; 886 kseq->ksq_next = swap; 887 continue; 888 } 889 /* 890 * If we encounter a slice of 0 the kse is in a 891 * TIMESHARE kse group and its nice was too far out 892 * of the range that receives slices. 893 */ 894 if (ke->ke_slice == 0) { 895 runq_remove(ke->ke_runq, ke); 896 sched_slice(ke); 897 ke->ke_runq = kseq->ksq_next; 898 runq_add(ke->ke_runq, ke, 0); 899 continue; 900 } 901 return (ke); 902 } 903 904 return (runq_choose(&kseq->ksq_idle)); 905 } 906 907 static void 908 kseq_setup(struct kseq *kseq) 909 { 910 runq_init(&kseq->ksq_timeshare[0]); 911 runq_init(&kseq->ksq_timeshare[1]); 912 runq_init(&kseq->ksq_idle); 913 kseq->ksq_curr = &kseq->ksq_timeshare[0]; 914 kseq->ksq_next = &kseq->ksq_timeshare[1]; 915 kseq->ksq_load = 0; 916 kseq->ksq_load_timeshare = 0; 917 } 918 919 static void 920 sched_setup(void *dummy) 921 { 922 #ifdef SMP 923 int balance_groups; 924 int i; 925 #endif 926 927 slice_min = (hz/100); /* 10ms */ 928 slice_max = (hz/7); /* ~140ms */ 929 930 #ifdef SMP 931 balance_groups = 0; 932 /* 933 * Initialize the kseqs. 934 */ 935 for (i = 0; i < MAXCPU; i++) { 936 struct kseq *ksq; 937 938 ksq = &kseq_cpu[i]; 939 ksq->ksq_assigned = NULL; 940 kseq_setup(&kseq_cpu[i]); 941 } 942 if (smp_topology == NULL) { 943 struct kseq_group *ksg; 944 struct kseq *ksq; 945 946 for (i = 0; i < MAXCPU; i++) { 947 ksq = &kseq_cpu[i]; 948 ksg = &kseq_groups[i]; 949 /* 950 * Setup a kseq group with one member. 951 */ 952 ksq->ksq_transferable = 0; 953 ksq->ksq_group = ksg; 954 ksg->ksg_cpus = 1; 955 ksg->ksg_idlemask = 0; 956 ksg->ksg_cpumask = ksg->ksg_mask = 1 << i; 957 ksg->ksg_load = 0; 958 ksg->ksg_transferable = 0; 959 LIST_INIT(&ksg->ksg_members); 960 LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings); 961 } 962 } else { 963 struct kseq_group *ksg; 964 struct cpu_group *cg; 965 int j; 966 967 for (i = 0; i < smp_topology->ct_count; i++) { 968 cg = &smp_topology->ct_group[i]; 969 ksg = &kseq_groups[i]; 970 /* 971 * Initialize the group. 972 */ 973 ksg->ksg_idlemask = 0; 974 ksg->ksg_load = 0; 975 ksg->ksg_transferable = 0; 976 ksg->ksg_cpus = cg->cg_count; 977 ksg->ksg_cpumask = cg->cg_mask; 978 LIST_INIT(&ksg->ksg_members); 979 /* 980 * Find all of the group members and add them. 981 */ 982 for (j = 0; j < MAXCPU; j++) { 983 if ((cg->cg_mask & (1 << j)) != 0) { 984 if (ksg->ksg_mask == 0) 985 ksg->ksg_mask = 1 << j; 986 kseq_cpu[j].ksq_transferable = 0; 987 kseq_cpu[j].ksq_group = ksg; 988 LIST_INSERT_HEAD(&ksg->ksg_members, 989 &kseq_cpu[j], ksq_siblings); 990 } 991 } 992 if (ksg->ksg_cpus > 1) 993 balance_groups = 1; 994 } 995 ksg_maxid = smp_topology->ct_count - 1; 996 } 997 /* 998 * Stagger the group and global load balancer so they do not 999 * interfere with each other. 1000 */ 1001 bal_tick = ticks + hz; 1002 if (balance_groups) 1003 gbal_tick = ticks + (hz / 2); 1004 #else 1005 kseq_setup(KSEQ_SELF()); 1006 #endif 1007 mtx_lock_spin(&sched_lock); 1008 kseq_load_add(KSEQ_SELF(), &kse0); 1009 mtx_unlock_spin(&sched_lock); 1010 } 1011 1012 /* 1013 * Scale the scheduling priority according to the "interactivity" of this 1014 * process. 1015 */ 1016 static void 1017 sched_priority(struct ksegrp *kg) 1018 { 1019 int pri; 1020 1021 if (kg->kg_pri_class != PRI_TIMESHARE) 1022 return; 1023 1024 pri = SCHED_PRI_INTERACT(sched_interact_score(kg)); 1025 pri += SCHED_PRI_BASE; 1026 pri += kg->kg_proc->p_nice; 1027 1028 if (pri > PRI_MAX_TIMESHARE) 1029 pri = PRI_MAX_TIMESHARE; 1030 else if (pri < PRI_MIN_TIMESHARE) 1031 pri = PRI_MIN_TIMESHARE; 1032 1033 kg->kg_user_pri = pri; 1034 1035 return; 1036 } 1037 1038 /* 1039 * Calculate a time slice based on the properties of the kseg and the runq 1040 * that we're on. This is only for PRI_TIMESHARE ksegrps. 1041 */ 1042 static void 1043 sched_slice(struct kse *ke) 1044 { 1045 struct kseq *kseq; 1046 struct ksegrp *kg; 1047 1048 kg = ke->ke_ksegrp; 1049 kseq = KSEQ_CPU(ke->ke_cpu); 1050 1051 /* 1052 * Rationale: 1053 * KSEs in interactive ksegs get a minimal slice so that we 1054 * quickly notice if it abuses its advantage. 1055 * 1056 * KSEs in non-interactive ksegs are assigned a slice that is 1057 * based on the ksegs nice value relative to the least nice kseg 1058 * on the run queue for this cpu. 1059 * 1060 * If the KSE is less nice than all others it gets the maximum 1061 * slice and other KSEs will adjust their slice relative to 1062 * this when they first expire. 1063 * 1064 * There is 20 point window that starts relative to the least 1065 * nice kse on the run queue. Slice size is determined by 1066 * the kse distance from the last nice ksegrp. 1067 * 1068 * If the kse is outside of the window it will get no slice 1069 * and will be reevaluated each time it is selected on the 1070 * run queue. The exception to this is nice 0 ksegs when 1071 * a nice -20 is running. They are always granted a minimum 1072 * slice. 1073 */ 1074 if (!SCHED_INTERACTIVE(kg)) { 1075 int nice; 1076 1077 nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin); 1078 if (kseq->ksq_load_timeshare == 0 || 1079 kg->kg_proc->p_nice < kseq->ksq_nicemin) 1080 ke->ke_slice = SCHED_SLICE_MAX; 1081 else if (nice <= SCHED_SLICE_NTHRESH) 1082 ke->ke_slice = SCHED_SLICE_NICE(nice); 1083 else if (kg->kg_proc->p_nice == 0) 1084 ke->ke_slice = SCHED_SLICE_MIN; 1085 else 1086 ke->ke_slice = 0; 1087 } else 1088 ke->ke_slice = SCHED_SLICE_INTERACTIVE; 1089 1090 CTR6(KTR_ULE, 1091 "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)", 1092 ke, ke->ke_slice, kg->kg_proc->p_nice, kseq->ksq_nicemin, 1093 kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg)); 1094 1095 return; 1096 } 1097 1098 /* 1099 * This routine enforces a maximum limit on the amount of scheduling history 1100 * kept. It is called after either the slptime or runtime is adjusted. 1101 * This routine will not operate correctly when slp or run times have been 1102 * adjusted to more than double their maximum. 1103 */ 1104 static void 1105 sched_interact_update(struct ksegrp *kg) 1106 { 1107 int sum; 1108 1109 sum = kg->kg_runtime + kg->kg_slptime; 1110 if (sum < SCHED_SLP_RUN_MAX) 1111 return; 1112 /* 1113 * If we have exceeded by more than 1/5th then the algorithm below 1114 * will not bring us back into range. Dividing by two here forces 1115 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX] 1116 */ 1117 if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) { 1118 kg->kg_runtime /= 2; 1119 kg->kg_slptime /= 2; 1120 return; 1121 } 1122 kg->kg_runtime = (kg->kg_runtime / 5) * 4; 1123 kg->kg_slptime = (kg->kg_slptime / 5) * 4; 1124 } 1125 1126 static void 1127 sched_interact_fork(struct ksegrp *kg) 1128 { 1129 int ratio; 1130 int sum; 1131 1132 sum = kg->kg_runtime + kg->kg_slptime; 1133 if (sum > SCHED_SLP_RUN_FORK) { 1134 ratio = sum / SCHED_SLP_RUN_FORK; 1135 kg->kg_runtime /= ratio; 1136 kg->kg_slptime /= ratio; 1137 } 1138 } 1139 1140 static int 1141 sched_interact_score(struct ksegrp *kg) 1142 { 1143 int div; 1144 1145 if (kg->kg_runtime > kg->kg_slptime) { 1146 div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF); 1147 return (SCHED_INTERACT_HALF + 1148 (SCHED_INTERACT_HALF - (kg->kg_slptime / div))); 1149 } if (kg->kg_slptime > kg->kg_runtime) { 1150 div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF); 1151 return (kg->kg_runtime / div); 1152 } 1153 1154 /* 1155 * This can happen if slptime and runtime are 0. 1156 */ 1157 return (0); 1158 1159 } 1160 1161 /* 1162 * Very early in the boot some setup of scheduler-specific 1163 * parts of proc0 and of soem scheduler resources needs to be done. 1164 * Called from: 1165 * proc0_init() 1166 */ 1167 void 1168 schedinit(void) 1169 { 1170 /* 1171 * Set up the scheduler specific parts of proc0. 1172 */ 1173 proc0.p_sched = NULL; /* XXX */ 1174 ksegrp0.kg_sched = &kg_sched0; 1175 thread0.td_sched = &kse0; 1176 kse0.ke_thread = &thread0; 1177 kse0.ke_oncpu = NOCPU; /* wrong.. can we use PCPU(cpuid) yet? */ 1178 kse0.ke_state = KES_THREAD; 1179 kg_sched0.skg_concurrency = 1; 1180 kg_sched0.skg_avail_opennings = 0; /* we are already running */ 1181 } 1182 1183 /* 1184 * This is only somewhat accurate since given many processes of the same 1185 * priority they will switch when their slices run out, which will be 1186 * at most SCHED_SLICE_MAX. 1187 */ 1188 int 1189 sched_rr_interval(void) 1190 { 1191 return (SCHED_SLICE_MAX); 1192 } 1193 1194 static void 1195 sched_pctcpu_update(struct kse *ke) 1196 { 1197 /* 1198 * Adjust counters and watermark for pctcpu calc. 1199 */ 1200 if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) { 1201 /* 1202 * Shift the tick count out so that the divide doesn't 1203 * round away our results. 1204 */ 1205 ke->ke_ticks <<= 10; 1206 ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) * 1207 SCHED_CPU_TICKS; 1208 ke->ke_ticks >>= 10; 1209 } else 1210 ke->ke_ticks = 0; 1211 ke->ke_ltick = ticks; 1212 ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS; 1213 } 1214 1215 void 1216 sched_prio(struct thread *td, u_char prio) 1217 { 1218 struct kse *ke; 1219 1220 ke = td->td_kse; 1221 mtx_assert(&sched_lock, MA_OWNED); 1222 if (TD_ON_RUNQ(td)) { 1223 /* 1224 * If the priority has been elevated due to priority 1225 * propagation, we may have to move ourselves to a new 1226 * queue. We still call adjustrunqueue below in case kse 1227 * needs to fix things up. 1228 */ 1229 if (prio < td->td_priority && ke && ke->ke_runq != NULL && 1230 (ke->ke_flags & KEF_ASSIGNED) == 0 && 1231 ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) { 1232 runq_remove(ke->ke_runq, ke); 1233 ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr; 1234 runq_add(ke->ke_runq, ke, 0); 1235 } 1236 /* 1237 * Hold this kse on this cpu so that sched_prio() doesn't 1238 * cause excessive migration. We only want migration to 1239 * happen as the result of a wakeup. 1240 */ 1241 ke->ke_flags |= KEF_HOLD; 1242 adjustrunqueue(td, prio); 1243 } else 1244 td->td_priority = prio; 1245 } 1246 1247 void 1248 sched_switch(struct thread *td, struct thread *newtd, int flags) 1249 { 1250 struct kse *ke; 1251 1252 mtx_assert(&sched_lock, MA_OWNED); 1253 1254 ke = td->td_kse; 1255 1256 td->td_lastcpu = td->td_oncpu; 1257 td->td_oncpu = NOCPU; 1258 td->td_flags &= ~TDF_NEEDRESCHED; 1259 td->td_pflags &= ~TDP_OWEPREEMPT; 1260 1261 /* 1262 * If the KSE has been assigned it may be in the process of switching 1263 * to the new cpu. This is the case in sched_bind(). 1264 */ 1265 if ((ke->ke_flags & KEF_ASSIGNED) == 0) { 1266 if (td == PCPU_GET(idlethread)) { 1267 TD_SET_CAN_RUN(td); 1268 } else { 1269 /* We are ending our run so make our slot available again */ 1270 SLOT_RELEASE(td->td_ksegrp); 1271 if (TD_IS_RUNNING(td)) { 1272 kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke); 1273 /* 1274 * Don't allow the thread to migrate 1275 * from a preemption. 1276 */ 1277 ke->ke_flags |= KEF_HOLD; 1278 setrunqueue(td, SRQ_OURSELF|SRQ_YIELDING); 1279 } else { 1280 if (ke->ke_runq) { 1281 kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke); 1282 } else if ((td->td_flags & TDF_IDLETD) == 0) 1283 kdb_backtrace(); 1284 /* 1285 * We will not be on the run queue. 1286 * So we must be sleeping or similar. 1287 * Don't use the slot if we will need it 1288 * for newtd. 1289 */ 1290 if ((td->td_proc->p_flag & P_HADTHREADS) && 1291 (newtd == NULL || 1292 newtd->td_ksegrp != td->td_ksegrp)) 1293 slot_fill(td->td_ksegrp); 1294 } 1295 } 1296 } 1297 if (newtd != NULL) { 1298 /* 1299 * If we bring in a thread, 1300 * then account for it as if it had been added to the 1301 * run queue and then chosen. 1302 */ 1303 newtd->td_kse->ke_flags |= KEF_DIDRUN; 1304 SLOT_USE(newtd->td_ksegrp); 1305 TD_SET_RUNNING(newtd); 1306 kseq_load_add(KSEQ_SELF(), newtd->td_kse); 1307 } else 1308 newtd = choosethread(); 1309 if (td != newtd) 1310 cpu_switch(td, newtd); 1311 sched_lock.mtx_lock = (uintptr_t)td; 1312 1313 td->td_oncpu = PCPU_GET(cpuid); 1314 } 1315 1316 void 1317 sched_nice(struct proc *p, int nice) 1318 { 1319 struct ksegrp *kg; 1320 struct kse *ke; 1321 struct thread *td; 1322 struct kseq *kseq; 1323 1324 PROC_LOCK_ASSERT(p, MA_OWNED); 1325 mtx_assert(&sched_lock, MA_OWNED); 1326 /* 1327 * We need to adjust the nice counts for running KSEs. 1328 */ 1329 FOREACH_KSEGRP_IN_PROC(p, kg) { 1330 if (kg->kg_pri_class == PRI_TIMESHARE) { 1331 FOREACH_THREAD_IN_GROUP(kg, td) { 1332 ke = td->td_kse; 1333 if (ke->ke_runq == NULL) 1334 continue; 1335 kseq = KSEQ_CPU(ke->ke_cpu); 1336 kseq_nice_rem(kseq, p->p_nice); 1337 kseq_nice_add(kseq, nice); 1338 } 1339 } 1340 } 1341 p->p_nice = nice; 1342 FOREACH_KSEGRP_IN_PROC(p, kg) { 1343 sched_priority(kg); 1344 FOREACH_THREAD_IN_GROUP(kg, td) 1345 td->td_flags |= TDF_NEEDRESCHED; 1346 } 1347 } 1348 1349 void 1350 sched_sleep(struct thread *td) 1351 { 1352 mtx_assert(&sched_lock, MA_OWNED); 1353 1354 td->td_slptime = ticks; 1355 td->td_base_pri = td->td_priority; 1356 1357 CTR2(KTR_ULE, "sleep thread %p (tick: %d)", 1358 td, td->td_slptime); 1359 } 1360 1361 void 1362 sched_wakeup(struct thread *td) 1363 { 1364 mtx_assert(&sched_lock, MA_OWNED); 1365 1366 /* 1367 * Let the kseg know how long we slept for. This is because process 1368 * interactivity behavior is modeled in the kseg. 1369 */ 1370 if (td->td_slptime) { 1371 struct ksegrp *kg; 1372 int hzticks; 1373 1374 kg = td->td_ksegrp; 1375 hzticks = (ticks - td->td_slptime) << 10; 1376 if (hzticks >= SCHED_SLP_RUN_MAX) { 1377 kg->kg_slptime = SCHED_SLP_RUN_MAX; 1378 kg->kg_runtime = 1; 1379 } else { 1380 kg->kg_slptime += hzticks; 1381 sched_interact_update(kg); 1382 } 1383 sched_priority(kg); 1384 sched_slice(td->td_kse); 1385 CTR2(KTR_ULE, "wakeup thread %p (%d ticks)", td, hzticks); 1386 td->td_slptime = 0; 1387 } 1388 setrunqueue(td, SRQ_BORING); 1389 } 1390 1391 /* 1392 * Penalize the parent for creating a new child and initialize the child's 1393 * priority. 1394 */ 1395 void 1396 sched_fork(struct thread *td, struct thread *childtd) 1397 { 1398 1399 mtx_assert(&sched_lock, MA_OWNED); 1400 1401 sched_fork_ksegrp(td, childtd->td_ksegrp); 1402 sched_fork_thread(td, childtd); 1403 } 1404 1405 void 1406 sched_fork_ksegrp(struct thread *td, struct ksegrp *child) 1407 { 1408 struct ksegrp *kg = td->td_ksegrp; 1409 mtx_assert(&sched_lock, MA_OWNED); 1410 1411 child->kg_slptime = kg->kg_slptime; 1412 child->kg_runtime = kg->kg_runtime; 1413 child->kg_user_pri = kg->kg_user_pri; 1414 sched_interact_fork(child); 1415 kg->kg_runtime += tickincr << 10; 1416 sched_interact_update(kg); 1417 1418 CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)", 1419 kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime, 1420 child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime); 1421 } 1422 1423 void 1424 sched_fork_thread(struct thread *td, struct thread *child) 1425 { 1426 struct kse *ke; 1427 struct kse *ke2; 1428 1429 sched_newthread(child); 1430 ke = td->td_kse; 1431 ke2 = child->td_kse; 1432 ke2->ke_slice = 1; /* Attempt to quickly learn interactivity. */ 1433 ke2->ke_cpu = ke->ke_cpu; 1434 ke2->ke_runq = NULL; 1435 1436 /* Grab our parents cpu estimation information. */ 1437 ke2->ke_ticks = ke->ke_ticks; 1438 ke2->ke_ltick = ke->ke_ltick; 1439 ke2->ke_ftick = ke->ke_ftick; 1440 } 1441 1442 void 1443 sched_class(struct ksegrp *kg, int class) 1444 { 1445 struct kseq *kseq; 1446 struct kse *ke; 1447 struct thread *td; 1448 int nclass; 1449 int oclass; 1450 1451 mtx_assert(&sched_lock, MA_OWNED); 1452 if (kg->kg_pri_class == class) 1453 return; 1454 1455 nclass = PRI_BASE(class); 1456 oclass = PRI_BASE(kg->kg_pri_class); 1457 FOREACH_THREAD_IN_GROUP(kg, td) { 1458 ke = td->td_kse; 1459 if (ke->ke_state != KES_ONRUNQ && 1460 ke->ke_state != KES_THREAD) 1461 continue; 1462 kseq = KSEQ_CPU(ke->ke_cpu); 1463 1464 #ifdef SMP 1465 /* 1466 * On SMP if we're on the RUNQ we must adjust the transferable 1467 * count because could be changing to or from an interrupt 1468 * class. 1469 */ 1470 if (ke->ke_state == KES_ONRUNQ) { 1471 if (KSE_CAN_MIGRATE(ke, oclass)) { 1472 kseq->ksq_transferable--; 1473 kseq->ksq_group->ksg_transferable--; 1474 } 1475 if (KSE_CAN_MIGRATE(ke, nclass)) { 1476 kseq->ksq_transferable++; 1477 kseq->ksq_group->ksg_transferable++; 1478 } 1479 } 1480 #endif 1481 if (oclass == PRI_TIMESHARE) { 1482 kseq->ksq_load_timeshare--; 1483 kseq_nice_rem(kseq, kg->kg_proc->p_nice); 1484 } 1485 if (nclass == PRI_TIMESHARE) { 1486 kseq->ksq_load_timeshare++; 1487 kseq_nice_add(kseq, kg->kg_proc->p_nice); 1488 } 1489 } 1490 1491 kg->kg_pri_class = class; 1492 } 1493 1494 /* 1495 * Return some of the child's priority and interactivity to the parent. 1496 * Avoid using sched_exit_thread to avoid having to decide which 1497 * thread in the parent gets the honour since it isn't used. 1498 */ 1499 void 1500 sched_exit(struct proc *p, struct thread *childtd) 1501 { 1502 mtx_assert(&sched_lock, MA_OWNED); 1503 sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), childtd); 1504 kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse); 1505 } 1506 1507 void 1508 sched_exit_ksegrp(struct ksegrp *kg, struct thread *td) 1509 { 1510 /* kg->kg_slptime += td->td_ksegrp->kg_slptime; */ 1511 kg->kg_runtime += td->td_ksegrp->kg_runtime; 1512 sched_interact_update(kg); 1513 } 1514 1515 void 1516 sched_exit_thread(struct thread *td, struct thread *childtd) 1517 { 1518 kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse); 1519 } 1520 1521 void 1522 sched_clock(struct thread *td) 1523 { 1524 struct kseq *kseq; 1525 struct ksegrp *kg; 1526 struct kse *ke; 1527 1528 mtx_assert(&sched_lock, MA_OWNED); 1529 kseq = KSEQ_SELF(); 1530 #ifdef SMP 1531 if (ticks == bal_tick) 1532 sched_balance(); 1533 if (ticks == gbal_tick) 1534 sched_balance_groups(); 1535 /* 1536 * We could have been assigned a non real-time thread without an 1537 * IPI. 1538 */ 1539 if (kseq->ksq_assigned) 1540 kseq_assign(kseq); /* Potentially sets NEEDRESCHED */ 1541 #endif 1542 /* 1543 * sched_setup() apparently happens prior to stathz being set. We 1544 * need to resolve the timers earlier in the boot so we can avoid 1545 * calculating this here. 1546 */ 1547 if (realstathz == 0) { 1548 realstathz = stathz ? stathz : hz; 1549 tickincr = hz / realstathz; 1550 /* 1551 * XXX This does not work for values of stathz that are much 1552 * larger than hz. 1553 */ 1554 if (tickincr == 0) 1555 tickincr = 1; 1556 } 1557 1558 ke = td->td_kse; 1559 kg = ke->ke_ksegrp; 1560 1561 /* Adjust ticks for pctcpu */ 1562 ke->ke_ticks++; 1563 ke->ke_ltick = ticks; 1564 1565 /* Go up to one second beyond our max and then trim back down */ 1566 if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick) 1567 sched_pctcpu_update(ke); 1568 1569 if (td->td_flags & TDF_IDLETD) 1570 return; 1571 1572 CTR4(KTR_ULE, "Tick thread %p (slice: %d, slptime: %d, runtime: %d)", 1573 td, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10); 1574 /* 1575 * We only do slicing code for TIMESHARE ksegrps. 1576 */ 1577 if (kg->kg_pri_class != PRI_TIMESHARE) 1578 return; 1579 /* 1580 * We used a tick charge it to the ksegrp so that we can compute our 1581 * interactivity. 1582 */ 1583 kg->kg_runtime += tickincr << 10; 1584 sched_interact_update(kg); 1585 1586 /* 1587 * We used up one time slice. 1588 */ 1589 if (--ke->ke_slice > 0) 1590 return; 1591 /* 1592 * We're out of time, recompute priorities and requeue. 1593 */ 1594 kseq_load_rem(kseq, ke); 1595 sched_priority(kg); 1596 sched_slice(ke); 1597 if (SCHED_CURR(kg, ke)) 1598 ke->ke_runq = kseq->ksq_curr; 1599 else 1600 ke->ke_runq = kseq->ksq_next; 1601 kseq_load_add(kseq, ke); 1602 td->td_flags |= TDF_NEEDRESCHED; 1603 } 1604 1605 int 1606 sched_runnable(void) 1607 { 1608 struct kseq *kseq; 1609 int load; 1610 1611 load = 1; 1612 1613 kseq = KSEQ_SELF(); 1614 #ifdef SMP 1615 if (kseq->ksq_assigned) { 1616 mtx_lock_spin(&sched_lock); 1617 kseq_assign(kseq); 1618 mtx_unlock_spin(&sched_lock); 1619 } 1620 #endif 1621 if ((curthread->td_flags & TDF_IDLETD) != 0) { 1622 if (kseq->ksq_load > 0) 1623 goto out; 1624 } else 1625 if (kseq->ksq_load - 1 > 0) 1626 goto out; 1627 load = 0; 1628 out: 1629 return (load); 1630 } 1631 1632 void 1633 sched_userret(struct thread *td) 1634 { 1635 struct ksegrp *kg; 1636 1637 kg = td->td_ksegrp; 1638 1639 if (td->td_priority != kg->kg_user_pri) { 1640 mtx_lock_spin(&sched_lock); 1641 td->td_priority = kg->kg_user_pri; 1642 mtx_unlock_spin(&sched_lock); 1643 } 1644 } 1645 1646 struct kse * 1647 sched_choose(void) 1648 { 1649 struct kseq *kseq; 1650 struct kse *ke; 1651 1652 mtx_assert(&sched_lock, MA_OWNED); 1653 kseq = KSEQ_SELF(); 1654 #ifdef SMP 1655 restart: 1656 if (kseq->ksq_assigned) 1657 kseq_assign(kseq); 1658 #endif 1659 ke = kseq_choose(kseq); 1660 if (ke) { 1661 #ifdef SMP 1662 if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE) 1663 if (kseq_idled(kseq) == 0) 1664 goto restart; 1665 #endif 1666 kseq_runq_rem(kseq, ke); 1667 ke->ke_state = KES_THREAD; 1668 1669 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) { 1670 CTR4(KTR_ULE, "Run thread %p from %p (slice: %d, pri: %d)", 1671 ke->ke_thread, ke->ke_runq, ke->ke_slice, 1672 ke->ke_thread->td_priority); 1673 } 1674 return (ke); 1675 } 1676 #ifdef SMP 1677 if (kseq_idled(kseq) == 0) 1678 goto restart; 1679 #endif 1680 return (NULL); 1681 } 1682 1683 void 1684 sched_add(struct thread *td, int flags) 1685 { 1686 1687 /* let jeff work out how to map the flags better */ 1688 /* I'm open to suggestions */ 1689 if (flags & SRQ_YIELDING) 1690 /* 1691 * Preempting during switching can be bad JUJU 1692 * especially for KSE processes 1693 */ 1694 sched_add_internal(td, 0); 1695 else 1696 sched_add_internal(td, 1); 1697 } 1698 1699 static void 1700 sched_add_internal(struct thread *td, int preemptive) 1701 { 1702 struct kseq *kseq; 1703 struct ksegrp *kg; 1704 struct kse *ke; 1705 #ifdef SMP 1706 int canmigrate; 1707 #endif 1708 int class; 1709 1710 mtx_assert(&sched_lock, MA_OWNED); 1711 ke = td->td_kse; 1712 kg = td->td_ksegrp; 1713 if (ke->ke_flags & KEF_ASSIGNED) 1714 return; 1715 kseq = KSEQ_SELF(); 1716 KASSERT(ke->ke_state != KES_ONRUNQ, 1717 ("sched_add: kse %p (%s) already in run queue", ke, 1718 ke->ke_proc->p_comm)); 1719 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 1720 ("sched_add: process swapped out")); 1721 KASSERT(ke->ke_runq == NULL, 1722 ("sched_add: KSE %p is still assigned to a run queue", ke)); 1723 1724 class = PRI_BASE(kg->kg_pri_class); 1725 switch (class) { 1726 case PRI_ITHD: 1727 case PRI_REALTIME: 1728 ke->ke_runq = kseq->ksq_curr; 1729 ke->ke_slice = SCHED_SLICE_MAX; 1730 ke->ke_cpu = PCPU_GET(cpuid); 1731 break; 1732 case PRI_TIMESHARE: 1733 if (SCHED_CURR(kg, ke)) 1734 ke->ke_runq = kseq->ksq_curr; 1735 else 1736 ke->ke_runq = kseq->ksq_next; 1737 break; 1738 case PRI_IDLE: 1739 /* 1740 * This is for priority prop. 1741 */ 1742 if (ke->ke_thread->td_priority < PRI_MIN_IDLE) 1743 ke->ke_runq = kseq->ksq_curr; 1744 else 1745 ke->ke_runq = &kseq->ksq_idle; 1746 ke->ke_slice = SCHED_SLICE_MIN; 1747 break; 1748 default: 1749 panic("Unknown pri class."); 1750 break; 1751 } 1752 #ifdef SMP 1753 /* 1754 * Don't migrate running threads here. Force the long term balancer 1755 * to do it. 1756 */ 1757 canmigrate = KSE_CAN_MIGRATE(ke, class); 1758 if (ke->ke_flags & KEF_HOLD) { 1759 ke->ke_flags &= ~KEF_HOLD; 1760 canmigrate = 0; 1761 } 1762 /* 1763 * If this thread is pinned or bound, notify the target cpu. 1764 */ 1765 if (!canmigrate && ke->ke_cpu != PCPU_GET(cpuid) ) { 1766 ke->ke_runq = NULL; 1767 kseq_notify(ke, ke->ke_cpu); 1768 return; 1769 } 1770 /* 1771 * If we had been idle, clear our bit in the group and potentially 1772 * the global bitmap. If not, see if we should transfer this thread. 1773 */ 1774 if ((class == PRI_TIMESHARE || class == PRI_REALTIME) && 1775 (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) { 1776 /* 1777 * Check to see if our group is unidling, and if so, remove it 1778 * from the global idle mask. 1779 */ 1780 if (kseq->ksq_group->ksg_idlemask == 1781 kseq->ksq_group->ksg_cpumask) 1782 atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask); 1783 /* 1784 * Now remove ourselves from the group specific idle mask. 1785 */ 1786 kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask); 1787 } else if (kseq->ksq_load > 1 && canmigrate) 1788 if (kseq_transfer(kseq, ke, class)) 1789 return; 1790 ke->ke_cpu = PCPU_GET(cpuid); 1791 #endif 1792 /* 1793 * XXX With preemption this is not necessary. 1794 */ 1795 if (td->td_priority < curthread->td_priority && 1796 ke->ke_runq == kseq->ksq_curr) 1797 curthread->td_flags |= TDF_NEEDRESCHED; 1798 if (preemptive && maybe_preempt(td)) 1799 return; 1800 SLOT_USE(td->td_ksegrp); 1801 ke->ke_ksegrp->kg_runq_threads++; 1802 ke->ke_state = KES_ONRUNQ; 1803 1804 kseq_runq_add(kseq, ke); 1805 kseq_load_add(kseq, ke); 1806 } 1807 1808 void 1809 sched_rem(struct thread *td) 1810 { 1811 struct kseq *kseq; 1812 struct kse *ke; 1813 1814 ke = td->td_kse; 1815 /* 1816 * It is safe to just return here because sched_rem() is only ever 1817 * used in places where we're immediately going to add the 1818 * kse back on again. In that case it'll be added with the correct 1819 * thread and priority when the caller drops the sched_lock. 1820 */ 1821 if (ke->ke_flags & KEF_ASSIGNED) 1822 return; 1823 mtx_assert(&sched_lock, MA_OWNED); 1824 KASSERT((ke->ke_state == KES_ONRUNQ), 1825 ("sched_rem: KSE not on run queue")); 1826 1827 ke->ke_state = KES_THREAD; 1828 SLOT_RELEASE(td->td_ksegrp); 1829 ke->ke_ksegrp->kg_runq_threads--; 1830 kseq = KSEQ_CPU(ke->ke_cpu); 1831 kseq_runq_rem(kseq, ke); 1832 kseq_load_rem(kseq, ke); 1833 } 1834 1835 fixpt_t 1836 sched_pctcpu(struct thread *td) 1837 { 1838 fixpt_t pctcpu; 1839 struct kse *ke; 1840 1841 pctcpu = 0; 1842 ke = td->td_kse; 1843 if (ke == NULL) 1844 return (0); 1845 1846 mtx_lock_spin(&sched_lock); 1847 if (ke->ke_ticks) { 1848 int rtick; 1849 1850 /* 1851 * Don't update more frequently than twice a second. Allowing 1852 * this causes the cpu usage to decay away too quickly due to 1853 * rounding errors. 1854 */ 1855 if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick || 1856 ke->ke_ltick < (ticks - (hz / 2))) 1857 sched_pctcpu_update(ke); 1858 /* How many rtick per second ? */ 1859 rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS); 1860 pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT; 1861 } 1862 1863 ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick; 1864 mtx_unlock_spin(&sched_lock); 1865 1866 return (pctcpu); 1867 } 1868 1869 void 1870 sched_bind(struct thread *td, int cpu) 1871 { 1872 struct kse *ke; 1873 1874 mtx_assert(&sched_lock, MA_OWNED); 1875 ke = td->td_kse; 1876 ke->ke_flags |= KEF_BOUND; 1877 #ifdef SMP 1878 if (PCPU_GET(cpuid) == cpu) 1879 return; 1880 /* sched_rem without the runq_remove */ 1881 ke->ke_state = KES_THREAD; 1882 ke->ke_ksegrp->kg_runq_threads--; 1883 kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke); 1884 kseq_notify(ke, cpu); 1885 /* When we return from mi_switch we'll be on the correct cpu. */ 1886 mi_switch(SW_VOL, NULL); 1887 #endif 1888 } 1889 1890 void 1891 sched_unbind(struct thread *td) 1892 { 1893 mtx_assert(&sched_lock, MA_OWNED); 1894 td->td_kse->ke_flags &= ~KEF_BOUND; 1895 } 1896 1897 int 1898 sched_load(void) 1899 { 1900 #ifdef SMP 1901 int total; 1902 int i; 1903 1904 total = 0; 1905 for (i = 0; i <= ksg_maxid; i++) 1906 total += KSEQ_GROUP(i)->ksg_load; 1907 return (total); 1908 #else 1909 return (KSEQ_SELF()->ksq_sysload); 1910 #endif 1911 } 1912 1913 int 1914 sched_sizeof_ksegrp(void) 1915 { 1916 return (sizeof(struct ksegrp) + sizeof(struct kg_sched)); 1917 } 1918 1919 int 1920 sched_sizeof_proc(void) 1921 { 1922 return (sizeof(struct proc)); 1923 } 1924 1925 int 1926 sched_sizeof_thread(void) 1927 { 1928 return (sizeof(struct thread) + sizeof(struct td_sched)); 1929 } 1930 #define KERN_SWITCH_INCLUDE 1 1931 #include "kern/kern_switch.c" 1932