xref: /freebsd/sys/kern/sched_ule.c (revision 6bd0c7fd53d61a76231b4ded3a1db05a4d221f78)
1 /*-
2  * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <opt_sched.h>
31 
32 #define kse td_sched
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kdb.h>
37 #include <sys/kernel.h>
38 #include <sys/ktr.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/resource.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sched.h>
45 #include <sys/smp.h>
46 #include <sys/sx.h>
47 #include <sys/sysctl.h>
48 #include <sys/sysproto.h>
49 #include <sys/vmmeter.h>
50 #ifdef KTRACE
51 #include <sys/uio.h>
52 #include <sys/ktrace.h>
53 #endif
54 
55 #include <machine/cpu.h>
56 #include <machine/smp.h>
57 
58 #define KTR_ULE	KTR_NFS
59 
60 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
61 /* XXX This is bogus compatability crap for ps */
62 static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
63 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
64 
65 static void sched_setup(void *dummy);
66 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
67 
68 static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
69 
70 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0,
71     "Scheduler name");
72 
73 static int slice_min = 1;
74 SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
75 
76 static int slice_max = 10;
77 SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
78 
79 int realstathz;
80 int tickincr = 1;
81 
82 #ifdef PREEMPTION
83 static void
84 printf_caddr_t(void *data)
85 {
86 	printf("%s", (char *)data);
87 }
88 static char preempt_warning[] =
89     "WARNING: Kernel PREEMPTION is unstable under SCHED_ULE.\n";
90 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
91     preempt_warning)
92 #endif
93 
94 /*
95  * The schedulable entity that can be given a context to run.
96  * A process may have several of these. Probably one per processor
97  * but posibly a few more. In this universe they are grouped
98  * with a KSEG that contains the priority and niceness
99  * for the group.
100  */
101 struct kse {
102 	TAILQ_ENTRY(kse) ke_kglist;	/* (*) Queue of threads in ke_ksegrp. */
103 	TAILQ_ENTRY(kse) ke_kgrlist;	/* (*) Queue of threads in this state.*/
104 	TAILQ_ENTRY(kse) ke_procq;	/* (j/z) Run queue. */
105 	int		ke_flags;	/* (j) KEF_* flags. */
106 	struct thread	*ke_thread;	/* (*) Active associated thread. */
107 	fixpt_t		ke_pctcpu;	/* (j) %cpu during p_swtime. */
108 	u_char		ke_oncpu;	/* (j) Which cpu we are on. */
109 	char		ke_rqindex;	/* (j) Run queue index. */
110 	enum {
111 		KES_THREAD = 0x0,	/* slaved to thread state */
112 		KES_ONRUNQ
113 	} ke_state;			/* (j) thread sched specific status. */
114 	int		ke_slptime;
115 	int		ke_slice;
116 	struct runq	*ke_runq;
117 	u_char		ke_cpu;		/* CPU that we have affinity for. */
118 	/* The following variables are only used for pctcpu calculation */
119 	int		ke_ltick;	/* Last tick that we were running on */
120 	int		ke_ftick;	/* First tick that we were running on */
121 	int		ke_ticks;	/* Tick count */
122 
123 };
124 
125 
126 #define td_kse td_sched
127 #define	td_slptime		td_kse->ke_slptime
128 #define ke_proc			ke_thread->td_proc
129 #define ke_ksegrp		ke_thread->td_ksegrp
130 
131 /* flags kept in ke_flags */
132 #define	KEF_SCHED0	0x00001	/* For scheduler-specific use. */
133 #define	KEF_SCHED1	0x00002	/* For scheduler-specific use. */
134 #define	KEF_SCHED2	0x00004	/* For scheduler-specific use. */
135 #define	KEF_SCHED3	0x00008	/* For scheduler-specific use. */
136 #define	KEF_DIDRUN	0x02000	/* Thread actually ran. */
137 #define	KEF_EXIT	0x04000	/* Thread is being killed. */
138 
139 /*
140  * These datastructures are allocated within their parent datastructure but
141  * are scheduler specific.
142  */
143 
144 #define	ke_assign	ke_procq.tqe_next
145 
146 #define	KEF_ASSIGNED	KEF_SCHED0	/* Thread is being migrated. */
147 #define	KEF_BOUND	KEF_SCHED1	/* Thread can not migrate. */
148 #define	KEF_XFERABLE	KEF_SCHED2	/* Thread was added as transferable. */
149 #define	KEF_HOLD	KEF_SCHED3	/* Thread is temporarily bound. */
150 
151 struct kg_sched {
152 	struct thread	*skg_last_assigned; /* (j) Last thread assigned to */
153 					   /* the system scheduler */
154 	int	skg_slptime;		/* Number of ticks we vol. slept */
155 	int	skg_runtime;		/* Number of ticks we were running */
156 	int	skg_avail_opennings;	/* (j) Num unfilled slots in group.*/
157 	int	skg_concurrency;	/* (j) Num threads requested in group.*/
158 	int	skg_runq_threads;	/* (j) Num KSEs on runq. */
159 };
160 #define kg_last_assigned	kg_sched->skg_last_assigned
161 #define kg_avail_opennings	kg_sched->skg_avail_opennings
162 #define kg_concurrency		kg_sched->skg_concurrency
163 #define kg_runq_threads		kg_sched->skg_runq_threads
164 #define kg_runtime		kg_sched->skg_runtime
165 #define kg_slptime		kg_sched->skg_slptime
166 
167 #define SLOT_RELEASE(kg)						\
168 do {									\
169 	kg->kg_avail_opennings++; 					\
170 	CTR3(KTR_RUNQ, "kg %p(%d) Slot released (->%d)",		\
171 	kg,								\
172 	kg->kg_concurrency,						\
173 	 kg->kg_avail_opennings);					\
174 	/*KASSERT((kg->kg_avail_opennings <= kg->kg_concurrency),	\
175 	    ("slots out of whack")); */					\
176 } while (0)
177 
178 #define SLOT_USE(kg)							\
179 do {									\
180 	kg->kg_avail_opennings--; 					\
181 	CTR3(KTR_RUNQ, "kg %p(%d) Slot used (->%d)",			\
182 	kg,								\
183 	kg->kg_concurrency,						\
184 	 kg->kg_avail_opennings);					\
185 	/*KASSERT((kg->kg_avail_opennings >= 0),			\
186 	    ("slots out of whack"));*/ 					\
187 } while (0)
188 
189 static struct kse kse0;
190 static struct kg_sched kg_sched0;
191 
192 /*
193  * The priority is primarily determined by the interactivity score.  Thus, we
194  * give lower(better) priorities to kse groups that use less CPU.  The nice
195  * value is then directly added to this to allow nice to have some effect
196  * on latency.
197  *
198  * PRI_RANGE:	Total priority range for timeshare threads.
199  * PRI_NRESV:	Number of nice values.
200  * PRI_BASE:	The start of the dynamic range.
201  */
202 #define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
203 #define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
204 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
205 #define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
206 #define	SCHED_PRI_INTERACT(score)					\
207     ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
208 
209 /*
210  * These determine the interactivity of a process.
211  *
212  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
213  *		before throttling back.
214  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
215  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
216  * INTERACT_THRESH:	Threshhold for placement on the current runq.
217  */
218 #define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
219 #define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
220 #define	SCHED_INTERACT_MAX	(100)
221 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
222 #define	SCHED_INTERACT_THRESH	(30)
223 
224 /*
225  * These parameters and macros determine the size of the time slice that is
226  * granted to each thread.
227  *
228  * SLICE_MIN:	Minimum time slice granted, in units of ticks.
229  * SLICE_MAX:	Maximum time slice granted.
230  * SLICE_RANGE:	Range of available time slices scaled by hz.
231  * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
232  * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
233  * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
234  */
235 #define	SCHED_SLICE_MIN			(slice_min)
236 #define	SCHED_SLICE_MAX			(slice_max)
237 #define	SCHED_SLICE_INTERACTIVE		(slice_max)
238 #define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
239 #define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
240 #define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
241 #define	SCHED_SLICE_NICE(nice)						\
242     (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
243 
244 /*
245  * This macro determines whether or not the thread belongs on the current or
246  * next run queue.
247  */
248 #define	SCHED_INTERACTIVE(kg)						\
249     (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
250 #define	SCHED_CURR(kg, ke)						\
251     (ke->ke_thread->td_priority < kg->kg_user_pri ||			\
252     SCHED_INTERACTIVE(kg))
253 
254 /*
255  * Cpu percentage computation macros and defines.
256  *
257  * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
258  * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
259  */
260 
261 #define	SCHED_CPU_TIME	10
262 #define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
263 
264 /*
265  * kseq - per processor runqs and statistics.
266  */
267 struct kseq {
268 	struct runq	ksq_idle;		/* Queue of IDLE threads. */
269 	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
270 	struct runq	*ksq_next;		/* Next timeshare queue. */
271 	struct runq	*ksq_curr;		/* Current queue. */
272 	int		ksq_load_timeshare;	/* Load for timeshare. */
273 	int		ksq_load;		/* Aggregate load. */
274 	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
275 	short		ksq_nicemin;		/* Least nice. */
276 #ifdef SMP
277 	int			ksq_transferable;
278 	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
279 	struct kseq_group	*ksq_group;	/* Our processor group. */
280 	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
281 #else
282 	int		ksq_sysload;		/* For loadavg, !ITHD load. */
283 #endif
284 };
285 
286 #ifdef SMP
287 /*
288  * kseq groups are groups of processors which can cheaply share threads.  When
289  * one processor in the group goes idle it will check the runqs of the other
290  * processors in its group prior to halting and waiting for an interrupt.
291  * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
292  * In a numa environment we'd want an idle bitmap per group and a two tiered
293  * load balancer.
294  */
295 struct kseq_group {
296 	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
297 	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
298 	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
299 	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
300 	int	ksg_load;		/* Total load of this group. */
301 	int	ksg_transferable;	/* Transferable load of this group. */
302 	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
303 };
304 #endif
305 
306 /*
307  * One kse queue per processor.
308  */
309 #ifdef SMP
310 static cpumask_t kseq_idle;
311 static int ksg_maxid;
312 static struct kseq	kseq_cpu[MAXCPU];
313 static struct kseq_group kseq_groups[MAXCPU];
314 static int bal_tick;
315 static int gbal_tick;
316 
317 #define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
318 #define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
319 #define	KSEQ_ID(x)	((x) - kseq_cpu)
320 #define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
321 #else	/* !SMP */
322 static struct kseq	kseq_cpu;
323 
324 #define	KSEQ_SELF()	(&kseq_cpu)
325 #define	KSEQ_CPU(x)	(&kseq_cpu)
326 #endif
327 
328 static void	slot_fill(struct ksegrp *kg);
329 static struct kse *sched_choose(void);		/* XXX Should be thread * */
330 static void sched_add_internal(struct thread *td, int preemptive);
331 static void sched_slice(struct kse *ke);
332 static void sched_priority(struct ksegrp *kg);
333 static int sched_interact_score(struct ksegrp *kg);
334 static void sched_interact_update(struct ksegrp *kg);
335 static void sched_interact_fork(struct ksegrp *kg);
336 static void sched_pctcpu_update(struct kse *ke);
337 
338 /* Operations on per processor queues */
339 static struct kse * kseq_choose(struct kseq *kseq);
340 static void kseq_setup(struct kseq *kseq);
341 static void kseq_load_add(struct kseq *kseq, struct kse *ke);
342 static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
343 static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
344 static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
345 static void kseq_nice_add(struct kseq *kseq, int nice);
346 static void kseq_nice_rem(struct kseq *kseq, int nice);
347 void kseq_print(int cpu);
348 #ifdef SMP
349 static int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
350 static struct kse *runq_steal(struct runq *rq);
351 static void sched_balance(void);
352 static void sched_balance_groups(void);
353 static void sched_balance_group(struct kseq_group *ksg);
354 static void sched_balance_pair(struct kseq *high, struct kseq *low);
355 static void kseq_move(struct kseq *from, int cpu);
356 static int kseq_idled(struct kseq *kseq);
357 static void kseq_notify(struct kse *ke, int cpu);
358 static void kseq_assign(struct kseq *);
359 static struct kse *kseq_steal(struct kseq *kseq, int stealidle);
360 /*
361  * On P4 Xeons the round-robin interrupt delivery is broken.  As a result of
362  * this, we can't pin interrupts to the cpu that they were delivered to,
363  * otherwise all ithreads only run on CPU 0.
364  */
365 #ifdef __i386__
366 #define	KSE_CAN_MIGRATE(ke, class)					\
367     ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
368 #else /* !__i386__ */
369 #define	KSE_CAN_MIGRATE(ke, class)					\
370     ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
371     ((ke)->ke_flags & KEF_BOUND) == 0)
372 #endif /* !__i386__ */
373 #endif
374 
375 void
376 kseq_print(int cpu)
377 {
378 	struct kseq *kseq;
379 	int i;
380 
381 	kseq = KSEQ_CPU(cpu);
382 
383 	printf("kseq:\n");
384 	printf("\tload:           %d\n", kseq->ksq_load);
385 	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
386 #ifdef SMP
387 	printf("\tload transferable: %d\n", kseq->ksq_transferable);
388 #endif
389 	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
390 	printf("\tnice counts:\n");
391 	for (i = 0; i < SCHED_PRI_NRESV; i++)
392 		if (kseq->ksq_nice[i])
393 			printf("\t\t%d = %d\n",
394 			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
395 }
396 
397 static __inline void
398 kseq_runq_add(struct kseq *kseq, struct kse *ke)
399 {
400 #ifdef SMP
401 	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
402 		kseq->ksq_transferable++;
403 		kseq->ksq_group->ksg_transferable++;
404 		ke->ke_flags |= KEF_XFERABLE;
405 	}
406 #endif
407 	runq_add(ke->ke_runq, ke, 0);
408 }
409 
410 static __inline void
411 kseq_runq_rem(struct kseq *kseq, struct kse *ke)
412 {
413 #ifdef SMP
414 	if (ke->ke_flags & KEF_XFERABLE) {
415 		kseq->ksq_transferable--;
416 		kseq->ksq_group->ksg_transferable--;
417 		ke->ke_flags &= ~KEF_XFERABLE;
418 	}
419 #endif
420 	runq_remove(ke->ke_runq, ke);
421 }
422 
423 static void
424 kseq_load_add(struct kseq *kseq, struct kse *ke)
425 {
426 	int class;
427 	mtx_assert(&sched_lock, MA_OWNED);
428 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
429 	if (class == PRI_TIMESHARE)
430 		kseq->ksq_load_timeshare++;
431 	kseq->ksq_load++;
432 	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
433 #ifdef SMP
434 		kseq->ksq_group->ksg_load++;
435 #else
436 		kseq->ksq_sysload++;
437 #endif
438 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
439 		CTR6(KTR_ULE,
440 		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
441 		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
442 		    ke->ke_proc->p_nice, kseq->ksq_nicemin);
443 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
444 		kseq_nice_add(kseq, ke->ke_proc->p_nice);
445 }
446 
447 static void
448 kseq_load_rem(struct kseq *kseq, struct kse *ke)
449 {
450 	int class;
451 	mtx_assert(&sched_lock, MA_OWNED);
452 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
453 	if (class == PRI_TIMESHARE)
454 		kseq->ksq_load_timeshare--;
455 	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
456 #ifdef SMP
457 		kseq->ksq_group->ksg_load--;
458 #else
459 		kseq->ksq_sysload--;
460 #endif
461 	kseq->ksq_load--;
462 	ke->ke_runq = NULL;
463 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
464 		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
465 }
466 
467 static void
468 kseq_nice_add(struct kseq *kseq, int nice)
469 {
470 	mtx_assert(&sched_lock, MA_OWNED);
471 	/* Normalize to zero. */
472 	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
473 	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
474 		kseq->ksq_nicemin = nice;
475 }
476 
477 static void
478 kseq_nice_rem(struct kseq *kseq, int nice)
479 {
480 	int n;
481 
482 	mtx_assert(&sched_lock, MA_OWNED);
483 	/* Normalize to zero. */
484 	n = nice + SCHED_PRI_NHALF;
485 	kseq->ksq_nice[n]--;
486 	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
487 
488 	/*
489 	 * If this wasn't the smallest nice value or there are more in
490 	 * this bucket we can just return.  Otherwise we have to recalculate
491 	 * the smallest nice.
492 	 */
493 	if (nice != kseq->ksq_nicemin ||
494 	    kseq->ksq_nice[n] != 0 ||
495 	    kseq->ksq_load_timeshare == 0)
496 		return;
497 
498 	for (; n < SCHED_PRI_NRESV; n++)
499 		if (kseq->ksq_nice[n]) {
500 			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
501 			return;
502 		}
503 }
504 
505 #ifdef SMP
506 /*
507  * sched_balance is a simple CPU load balancing algorithm.  It operates by
508  * finding the least loaded and most loaded cpu and equalizing their load
509  * by migrating some processes.
510  *
511  * Dealing only with two CPUs at a time has two advantages.  Firstly, most
512  * installations will only have 2 cpus.  Secondly, load balancing too much at
513  * once can have an unpleasant effect on the system.  The scheduler rarely has
514  * enough information to make perfect decisions.  So this algorithm chooses
515  * algorithm simplicity and more gradual effects on load in larger systems.
516  *
517  * It could be improved by considering the priorities and slices assigned to
518  * each task prior to balancing them.  There are many pathological cases with
519  * any approach and so the semi random algorithm below may work as well as any.
520  *
521  */
522 static void
523 sched_balance(void)
524 {
525 	struct kseq_group *high;
526 	struct kseq_group *low;
527 	struct kseq_group *ksg;
528 	int cnt;
529 	int i;
530 
531 	if (smp_started == 0)
532 		goto out;
533 	low = high = NULL;
534 	i = random() % (ksg_maxid + 1);
535 	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
536 		ksg = KSEQ_GROUP(i);
537 		/*
538 		 * Find the CPU with the highest load that has some
539 		 * threads to transfer.
540 		 */
541 		if ((high == NULL || ksg->ksg_load > high->ksg_load)
542 		    && ksg->ksg_transferable)
543 			high = ksg;
544 		if (low == NULL || ksg->ksg_load < low->ksg_load)
545 			low = ksg;
546 		if (++i > ksg_maxid)
547 			i = 0;
548 	}
549 	if (low != NULL && high != NULL && high != low)
550 		sched_balance_pair(LIST_FIRST(&high->ksg_members),
551 		    LIST_FIRST(&low->ksg_members));
552 out:
553 	bal_tick = ticks + (random() % (hz * 2));
554 }
555 
556 static void
557 sched_balance_groups(void)
558 {
559 	int i;
560 
561 	mtx_assert(&sched_lock, MA_OWNED);
562 	if (smp_started)
563 		for (i = 0; i <= ksg_maxid; i++)
564 			sched_balance_group(KSEQ_GROUP(i));
565 	gbal_tick = ticks + (random() % (hz * 2));
566 }
567 
568 static void
569 sched_balance_group(struct kseq_group *ksg)
570 {
571 	struct kseq *kseq;
572 	struct kseq *high;
573 	struct kseq *low;
574 	int load;
575 
576 	if (ksg->ksg_transferable == 0)
577 		return;
578 	low = NULL;
579 	high = NULL;
580 	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
581 		load = kseq->ksq_load;
582 		if (high == NULL || load > high->ksq_load)
583 			high = kseq;
584 		if (low == NULL || load < low->ksq_load)
585 			low = kseq;
586 	}
587 	if (high != NULL && low != NULL && high != low)
588 		sched_balance_pair(high, low);
589 }
590 
591 static void
592 sched_balance_pair(struct kseq *high, struct kseq *low)
593 {
594 	int transferable;
595 	int high_load;
596 	int low_load;
597 	int move;
598 	int diff;
599 	int i;
600 
601 	/*
602 	 * If we're transfering within a group we have to use this specific
603 	 * kseq's transferable count, otherwise we can steal from other members
604 	 * of the group.
605 	 */
606 	if (high->ksq_group == low->ksq_group) {
607 		transferable = high->ksq_transferable;
608 		high_load = high->ksq_load;
609 		low_load = low->ksq_load;
610 	} else {
611 		transferable = high->ksq_group->ksg_transferable;
612 		high_load = high->ksq_group->ksg_load;
613 		low_load = low->ksq_group->ksg_load;
614 	}
615 	if (transferable == 0)
616 		return;
617 	/*
618 	 * Determine what the imbalance is and then adjust that to how many
619 	 * kses we actually have to give up (transferable).
620 	 */
621 	diff = high_load - low_load;
622 	move = diff / 2;
623 	if (diff & 0x1)
624 		move++;
625 	move = min(move, transferable);
626 	for (i = 0; i < move; i++)
627 		kseq_move(high, KSEQ_ID(low));
628 	return;
629 }
630 
631 static void
632 kseq_move(struct kseq *from, int cpu)
633 {
634 	struct kseq *kseq;
635 	struct kseq *to;
636 	struct kse *ke;
637 
638 	kseq = from;
639 	to = KSEQ_CPU(cpu);
640 	ke = kseq_steal(kseq, 1);
641 	if (ke == NULL) {
642 		struct kseq_group *ksg;
643 
644 		ksg = kseq->ksq_group;
645 		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
646 			if (kseq == from || kseq->ksq_transferable == 0)
647 				continue;
648 			ke = kseq_steal(kseq, 1);
649 			break;
650 		}
651 		if (ke == NULL)
652 			panic("kseq_move: No KSEs available with a "
653 			    "transferable count of %d\n",
654 			    ksg->ksg_transferable);
655 	}
656 	if (kseq == to)
657 		return;
658 	ke->ke_state = KES_THREAD;
659 	kseq_runq_rem(kseq, ke);
660 	kseq_load_rem(kseq, ke);
661 	kseq_notify(ke, cpu);
662 }
663 
664 static int
665 kseq_idled(struct kseq *kseq)
666 {
667 	struct kseq_group *ksg;
668 	struct kseq *steal;
669 	struct kse *ke;
670 
671 	ksg = kseq->ksq_group;
672 	/*
673 	 * If we're in a cpu group, try and steal kses from another cpu in
674 	 * the group before idling.
675 	 */
676 	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
677 		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
678 			if (steal == kseq || steal->ksq_transferable == 0)
679 				continue;
680 			ke = kseq_steal(steal, 0);
681 			if (ke == NULL)
682 				continue;
683 			ke->ke_state = KES_THREAD;
684 			kseq_runq_rem(steal, ke);
685 			kseq_load_rem(steal, ke);
686 			ke->ke_cpu = PCPU_GET(cpuid);
687 			sched_add_internal(ke->ke_thread, 0);
688 			return (0);
689 		}
690 	}
691 	/*
692 	 * We only set the idled bit when all of the cpus in the group are
693 	 * idle.  Otherwise we could get into a situation where a KSE bounces
694 	 * back and forth between two idle cores on seperate physical CPUs.
695 	 */
696 	ksg->ksg_idlemask |= PCPU_GET(cpumask);
697 	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
698 		return (1);
699 	atomic_set_int(&kseq_idle, ksg->ksg_mask);
700 	return (1);
701 }
702 
703 static void
704 kseq_assign(struct kseq *kseq)
705 {
706 	struct kse *nke;
707 	struct kse *ke;
708 
709 	do {
710 		*(volatile struct kse **)&ke = kseq->ksq_assigned;
711 	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
712 	for (; ke != NULL; ke = nke) {
713 		nke = ke->ke_assign;
714 		ke->ke_flags &= ~KEF_ASSIGNED;
715 		sched_add_internal(ke->ke_thread, 0);
716 	}
717 }
718 
719 static void
720 kseq_notify(struct kse *ke, int cpu)
721 {
722 	struct kseq *kseq;
723 	struct thread *td;
724 	struct pcpu *pcpu;
725 	int prio;
726 
727 	ke->ke_cpu = cpu;
728 	ke->ke_flags |= KEF_ASSIGNED;
729 	prio = ke->ke_thread->td_priority;
730 
731 	kseq = KSEQ_CPU(cpu);
732 
733 	/*
734 	 * Place a KSE on another cpu's queue and force a resched.
735 	 */
736 	do {
737 		*(volatile struct kse **)&ke->ke_assign = kseq->ksq_assigned;
738 	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
739 	/*
740 	 * Without sched_lock we could lose a race where we set NEEDRESCHED
741 	 * on a thread that is switched out before the IPI is delivered.  This
742 	 * would lead us to miss the resched.  This will be a problem once
743 	 * sched_lock is pushed down.
744 	 */
745 	pcpu = pcpu_find(cpu);
746 	td = pcpu->pc_curthread;
747 	if (ke->ke_thread->td_priority < td->td_priority ||
748 	    td == pcpu->pc_idlethread) {
749 		td->td_flags |= TDF_NEEDRESCHED;
750 		ipi_selected(1 << cpu, IPI_AST);
751 	}
752 }
753 
754 static struct kse *
755 runq_steal(struct runq *rq)
756 {
757 	struct rqhead *rqh;
758 	struct rqbits *rqb;
759 	struct kse *ke;
760 	int word;
761 	int bit;
762 
763 	mtx_assert(&sched_lock, MA_OWNED);
764 	rqb = &rq->rq_status;
765 	for (word = 0; word < RQB_LEN; word++) {
766 		if (rqb->rqb_bits[word] == 0)
767 			continue;
768 		for (bit = 0; bit < RQB_BPW; bit++) {
769 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
770 				continue;
771 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
772 			TAILQ_FOREACH(ke, rqh, ke_procq) {
773 				if (KSE_CAN_MIGRATE(ke,
774 				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
775 					return (ke);
776 			}
777 		}
778 	}
779 	return (NULL);
780 }
781 
782 static struct kse *
783 kseq_steal(struct kseq *kseq, int stealidle)
784 {
785 	struct kse *ke;
786 
787 	/*
788 	 * Steal from next first to try to get a non-interactive task that
789 	 * may not have run for a while.
790 	 */
791 	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
792 		return (ke);
793 	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
794 		return (ke);
795 	if (stealidle)
796 		return (runq_steal(&kseq->ksq_idle));
797 	return (NULL);
798 }
799 
800 int
801 kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
802 {
803 	struct kseq_group *ksg;
804 	int cpu;
805 
806 	if (smp_started == 0)
807 		return (0);
808 	cpu = 0;
809 	/*
810 	 * If our load exceeds a certain threshold we should attempt to
811 	 * reassign this thread.  The first candidate is the cpu that
812 	 * originally ran the thread.  If it is idle, assign it there,
813 	 * otherwise, pick an idle cpu.
814 	 *
815 	 * The threshold at which we start to reassign kses has a large impact
816 	 * on the overall performance of the system.  Tuned too high and
817 	 * some CPUs may idle.  Too low and there will be excess migration
818 	 * and context switches.
819 	 */
820 	ksg = kseq->ksq_group;
821 	if (ksg->ksg_load > ksg->ksg_cpus && kseq_idle) {
822 		ksg = KSEQ_CPU(ke->ke_cpu)->ksq_group;
823 		if (kseq_idle & ksg->ksg_mask) {
824 			cpu = ffs(ksg->ksg_idlemask);
825 			if (cpu)
826 				goto migrate;
827 		}
828 		/*
829 		 * Multiple cpus could find this bit simultaneously
830 		 * but the race shouldn't be terrible.
831 		 */
832 		cpu = ffs(kseq_idle);
833 		if (cpu)
834 			goto migrate;
835 	}
836 	/*
837 	 * If another cpu in this group has idled, assign a thread over
838 	 * to them after checking to see if there are idled groups.
839 	 */
840 	ksg = kseq->ksq_group;
841 	if (ksg->ksg_idlemask) {
842 		cpu = ffs(ksg->ksg_idlemask);
843 		if (cpu)
844 			goto migrate;
845 	}
846 	/*
847 	 * No new CPU was found.
848 	 */
849 	return (0);
850 migrate:
851 	/*
852 	 * Now that we've found an idle CPU, migrate the thread.
853 	 */
854 	cpu--;
855 	ke->ke_runq = NULL;
856 	kseq_notify(ke, cpu);
857 
858 	return (1);
859 }
860 
861 #endif	/* SMP */
862 
863 /*
864  * Pick the highest priority task we have and return it.
865  */
866 
867 static struct kse *
868 kseq_choose(struct kseq *kseq)
869 {
870 	struct kse *ke;
871 	struct runq *swap;
872 
873 	mtx_assert(&sched_lock, MA_OWNED);
874 	swap = NULL;
875 
876 	for (;;) {
877 		ke = runq_choose(kseq->ksq_curr);
878 		if (ke == NULL) {
879 			/*
880 			 * We already swapped once and didn't get anywhere.
881 			 */
882 			if (swap)
883 				break;
884 			swap = kseq->ksq_curr;
885 			kseq->ksq_curr = kseq->ksq_next;
886 			kseq->ksq_next = swap;
887 			continue;
888 		}
889 		/*
890 		 * If we encounter a slice of 0 the kse is in a
891 		 * TIMESHARE kse group and its nice was too far out
892 		 * of the range that receives slices.
893 		 */
894 		if (ke->ke_slice == 0) {
895 			runq_remove(ke->ke_runq, ke);
896 			sched_slice(ke);
897 			ke->ke_runq = kseq->ksq_next;
898 			runq_add(ke->ke_runq, ke, 0);
899 			continue;
900 		}
901 		return (ke);
902 	}
903 
904 	return (runq_choose(&kseq->ksq_idle));
905 }
906 
907 static void
908 kseq_setup(struct kseq *kseq)
909 {
910 	runq_init(&kseq->ksq_timeshare[0]);
911 	runq_init(&kseq->ksq_timeshare[1]);
912 	runq_init(&kseq->ksq_idle);
913 	kseq->ksq_curr = &kseq->ksq_timeshare[0];
914 	kseq->ksq_next = &kseq->ksq_timeshare[1];
915 	kseq->ksq_load = 0;
916 	kseq->ksq_load_timeshare = 0;
917 }
918 
919 static void
920 sched_setup(void *dummy)
921 {
922 #ifdef SMP
923 	int balance_groups;
924 	int i;
925 #endif
926 
927 	slice_min = (hz/100);	/* 10ms */
928 	slice_max = (hz/7);	/* ~140ms */
929 
930 #ifdef SMP
931 	balance_groups = 0;
932 	/*
933 	 * Initialize the kseqs.
934 	 */
935 	for (i = 0; i < MAXCPU; i++) {
936 		struct kseq *ksq;
937 
938 		ksq = &kseq_cpu[i];
939 		ksq->ksq_assigned = NULL;
940 		kseq_setup(&kseq_cpu[i]);
941 	}
942 	if (smp_topology == NULL) {
943 		struct kseq_group *ksg;
944 		struct kseq *ksq;
945 
946 		for (i = 0; i < MAXCPU; i++) {
947 			ksq = &kseq_cpu[i];
948 			ksg = &kseq_groups[i];
949 			/*
950 			 * Setup a kseq group with one member.
951 			 */
952 			ksq->ksq_transferable = 0;
953 			ksq->ksq_group = ksg;
954 			ksg->ksg_cpus = 1;
955 			ksg->ksg_idlemask = 0;
956 			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
957 			ksg->ksg_load = 0;
958 			ksg->ksg_transferable = 0;
959 			LIST_INIT(&ksg->ksg_members);
960 			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
961 		}
962 	} else {
963 		struct kseq_group *ksg;
964 		struct cpu_group *cg;
965 		int j;
966 
967 		for (i = 0; i < smp_topology->ct_count; i++) {
968 			cg = &smp_topology->ct_group[i];
969 			ksg = &kseq_groups[i];
970 			/*
971 			 * Initialize the group.
972 			 */
973 			ksg->ksg_idlemask = 0;
974 			ksg->ksg_load = 0;
975 			ksg->ksg_transferable = 0;
976 			ksg->ksg_cpus = cg->cg_count;
977 			ksg->ksg_cpumask = cg->cg_mask;
978 			LIST_INIT(&ksg->ksg_members);
979 			/*
980 			 * Find all of the group members and add them.
981 			 */
982 			for (j = 0; j < MAXCPU; j++) {
983 				if ((cg->cg_mask & (1 << j)) != 0) {
984 					if (ksg->ksg_mask == 0)
985 						ksg->ksg_mask = 1 << j;
986 					kseq_cpu[j].ksq_transferable = 0;
987 					kseq_cpu[j].ksq_group = ksg;
988 					LIST_INSERT_HEAD(&ksg->ksg_members,
989 					    &kseq_cpu[j], ksq_siblings);
990 				}
991 			}
992 			if (ksg->ksg_cpus > 1)
993 				balance_groups = 1;
994 		}
995 		ksg_maxid = smp_topology->ct_count - 1;
996 	}
997 	/*
998 	 * Stagger the group and global load balancer so they do not
999 	 * interfere with each other.
1000 	 */
1001 	bal_tick = ticks + hz;
1002 	if (balance_groups)
1003 		gbal_tick = ticks + (hz / 2);
1004 #else
1005 	kseq_setup(KSEQ_SELF());
1006 #endif
1007 	mtx_lock_spin(&sched_lock);
1008 	kseq_load_add(KSEQ_SELF(), &kse0);
1009 	mtx_unlock_spin(&sched_lock);
1010 }
1011 
1012 /*
1013  * Scale the scheduling priority according to the "interactivity" of this
1014  * process.
1015  */
1016 static void
1017 sched_priority(struct ksegrp *kg)
1018 {
1019 	int pri;
1020 
1021 	if (kg->kg_pri_class != PRI_TIMESHARE)
1022 		return;
1023 
1024 	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
1025 	pri += SCHED_PRI_BASE;
1026 	pri += kg->kg_proc->p_nice;
1027 
1028 	if (pri > PRI_MAX_TIMESHARE)
1029 		pri = PRI_MAX_TIMESHARE;
1030 	else if (pri < PRI_MIN_TIMESHARE)
1031 		pri = PRI_MIN_TIMESHARE;
1032 
1033 	kg->kg_user_pri = pri;
1034 
1035 	return;
1036 }
1037 
1038 /*
1039  * Calculate a time slice based on the properties of the kseg and the runq
1040  * that we're on.  This is only for PRI_TIMESHARE ksegrps.
1041  */
1042 static void
1043 sched_slice(struct kse *ke)
1044 {
1045 	struct kseq *kseq;
1046 	struct ksegrp *kg;
1047 
1048 	kg = ke->ke_ksegrp;
1049 	kseq = KSEQ_CPU(ke->ke_cpu);
1050 
1051 	/*
1052 	 * Rationale:
1053 	 * KSEs in interactive ksegs get a minimal slice so that we
1054 	 * quickly notice if it abuses its advantage.
1055 	 *
1056 	 * KSEs in non-interactive ksegs are assigned a slice that is
1057 	 * based on the ksegs nice value relative to the least nice kseg
1058 	 * on the run queue for this cpu.
1059 	 *
1060 	 * If the KSE is less nice than all others it gets the maximum
1061 	 * slice and other KSEs will adjust their slice relative to
1062 	 * this when they first expire.
1063 	 *
1064 	 * There is 20 point window that starts relative to the least
1065 	 * nice kse on the run queue.  Slice size is determined by
1066 	 * the kse distance from the last nice ksegrp.
1067 	 *
1068 	 * If the kse is outside of the window it will get no slice
1069 	 * and will be reevaluated each time it is selected on the
1070 	 * run queue.  The exception to this is nice 0 ksegs when
1071 	 * a nice -20 is running.  They are always granted a minimum
1072 	 * slice.
1073 	 */
1074 	if (!SCHED_INTERACTIVE(kg)) {
1075 		int nice;
1076 
1077 		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
1078 		if (kseq->ksq_load_timeshare == 0 ||
1079 		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
1080 			ke->ke_slice = SCHED_SLICE_MAX;
1081 		else if (nice <= SCHED_SLICE_NTHRESH)
1082 			ke->ke_slice = SCHED_SLICE_NICE(nice);
1083 		else if (kg->kg_proc->p_nice == 0)
1084 			ke->ke_slice = SCHED_SLICE_MIN;
1085 		else
1086 			ke->ke_slice = 0;
1087 	} else
1088 		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
1089 
1090 	CTR6(KTR_ULE,
1091 	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
1092 	    ke, ke->ke_slice, kg->kg_proc->p_nice, kseq->ksq_nicemin,
1093 	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
1094 
1095 	return;
1096 }
1097 
1098 /*
1099  * This routine enforces a maximum limit on the amount of scheduling history
1100  * kept.  It is called after either the slptime or runtime is adjusted.
1101  * This routine will not operate correctly when slp or run times have been
1102  * adjusted to more than double their maximum.
1103  */
1104 static void
1105 sched_interact_update(struct ksegrp *kg)
1106 {
1107 	int sum;
1108 
1109 	sum = kg->kg_runtime + kg->kg_slptime;
1110 	if (sum < SCHED_SLP_RUN_MAX)
1111 		return;
1112 	/*
1113 	 * If we have exceeded by more than 1/5th then the algorithm below
1114 	 * will not bring us back into range.  Dividing by two here forces
1115 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1116 	 */
1117 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1118 		kg->kg_runtime /= 2;
1119 		kg->kg_slptime /= 2;
1120 		return;
1121 	}
1122 	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1123 	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1124 }
1125 
1126 static void
1127 sched_interact_fork(struct ksegrp *kg)
1128 {
1129 	int ratio;
1130 	int sum;
1131 
1132 	sum = kg->kg_runtime + kg->kg_slptime;
1133 	if (sum > SCHED_SLP_RUN_FORK) {
1134 		ratio = sum / SCHED_SLP_RUN_FORK;
1135 		kg->kg_runtime /= ratio;
1136 		kg->kg_slptime /= ratio;
1137 	}
1138 }
1139 
1140 static int
1141 sched_interact_score(struct ksegrp *kg)
1142 {
1143 	int div;
1144 
1145 	if (kg->kg_runtime > kg->kg_slptime) {
1146 		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1147 		return (SCHED_INTERACT_HALF +
1148 		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1149 	} if (kg->kg_slptime > kg->kg_runtime) {
1150 		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1151 		return (kg->kg_runtime / div);
1152 	}
1153 
1154 	/*
1155 	 * This can happen if slptime and runtime are 0.
1156 	 */
1157 	return (0);
1158 
1159 }
1160 
1161 /*
1162  * Very early in the boot some setup of scheduler-specific
1163  * parts of proc0 and of soem scheduler resources needs to be done.
1164  * Called from:
1165  *  proc0_init()
1166  */
1167 void
1168 schedinit(void)
1169 {
1170 	/*
1171 	 * Set up the scheduler specific parts of proc0.
1172 	 */
1173 	proc0.p_sched = NULL; /* XXX */
1174 	ksegrp0.kg_sched = &kg_sched0;
1175 	thread0.td_sched = &kse0;
1176 	kse0.ke_thread = &thread0;
1177 	kse0.ke_oncpu = NOCPU; /* wrong.. can we use PCPU(cpuid) yet? */
1178 	kse0.ke_state = KES_THREAD;
1179 	kg_sched0.skg_concurrency = 1;
1180 	kg_sched0.skg_avail_opennings = 0; /* we are already running */
1181 }
1182 
1183 /*
1184  * This is only somewhat accurate since given many processes of the same
1185  * priority they will switch when their slices run out, which will be
1186  * at most SCHED_SLICE_MAX.
1187  */
1188 int
1189 sched_rr_interval(void)
1190 {
1191 	return (SCHED_SLICE_MAX);
1192 }
1193 
1194 static void
1195 sched_pctcpu_update(struct kse *ke)
1196 {
1197 	/*
1198 	 * Adjust counters and watermark for pctcpu calc.
1199 	 */
1200 	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1201 		/*
1202 		 * Shift the tick count out so that the divide doesn't
1203 		 * round away our results.
1204 		 */
1205 		ke->ke_ticks <<= 10;
1206 		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1207 			    SCHED_CPU_TICKS;
1208 		ke->ke_ticks >>= 10;
1209 	} else
1210 		ke->ke_ticks = 0;
1211 	ke->ke_ltick = ticks;
1212 	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1213 }
1214 
1215 void
1216 sched_prio(struct thread *td, u_char prio)
1217 {
1218 	struct kse *ke;
1219 
1220 	ke = td->td_kse;
1221 	mtx_assert(&sched_lock, MA_OWNED);
1222 	if (TD_ON_RUNQ(td)) {
1223 		/*
1224 		 * If the priority has been elevated due to priority
1225 		 * propagation, we may have to move ourselves to a new
1226 		 * queue.  We still call adjustrunqueue below in case kse
1227 		 * needs to fix things up.
1228 		 */
1229 		if (prio < td->td_priority && ke && ke->ke_runq != NULL &&
1230 		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1231 		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1232 			runq_remove(ke->ke_runq, ke);
1233 			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1234 			runq_add(ke->ke_runq, ke, 0);
1235 		}
1236 		/*
1237 		 * Hold this kse on this cpu so that sched_prio() doesn't
1238 		 * cause excessive migration.  We only want migration to
1239 		 * happen as the result of a wakeup.
1240 		 */
1241 		ke->ke_flags |= KEF_HOLD;
1242 		adjustrunqueue(td, prio);
1243 	} else
1244 		td->td_priority = prio;
1245 }
1246 
1247 void
1248 sched_switch(struct thread *td, struct thread *newtd, int flags)
1249 {
1250 	struct kse *ke;
1251 
1252 	mtx_assert(&sched_lock, MA_OWNED);
1253 
1254 	ke = td->td_kse;
1255 
1256 	td->td_lastcpu = td->td_oncpu;
1257 	td->td_oncpu = NOCPU;
1258 	td->td_flags &= ~TDF_NEEDRESCHED;
1259 	td->td_pflags &= ~TDP_OWEPREEMPT;
1260 
1261 	/*
1262 	 * If the KSE has been assigned it may be in the process of switching
1263 	 * to the new cpu.  This is the case in sched_bind().
1264 	 */
1265 	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1266 		if (td == PCPU_GET(idlethread)) {
1267 			TD_SET_CAN_RUN(td);
1268 		} else {
1269 			/* We are ending our run so make our slot available again */
1270 			SLOT_RELEASE(td->td_ksegrp);
1271 			if (TD_IS_RUNNING(td)) {
1272 				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1273 				/*
1274 				 * Don't allow the thread to migrate
1275 				 * from a preemption.
1276 				 */
1277 				ke->ke_flags |= KEF_HOLD;
1278 				setrunqueue(td, SRQ_OURSELF|SRQ_YIELDING);
1279 			} else {
1280 				if (ke->ke_runq) {
1281 					kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1282 				} else if ((td->td_flags & TDF_IDLETD) == 0)
1283 					kdb_backtrace();
1284 				/*
1285 				 * We will not be on the run queue.
1286 				 * So we must be sleeping or similar.
1287 				 * Don't use the slot if we will need it
1288 				 * for newtd.
1289 				 */
1290 				if ((td->td_proc->p_flag & P_HADTHREADS) &&
1291 				    (newtd == NULL ||
1292 				    newtd->td_ksegrp != td->td_ksegrp))
1293 					slot_fill(td->td_ksegrp);
1294 			}
1295 		}
1296 	}
1297 	if (newtd != NULL) {
1298 		/*
1299 		 * If we bring in a thread,
1300 		 * then account for it as if it had been added to the
1301 		 * run queue and then chosen.
1302 		 */
1303 		newtd->td_kse->ke_flags |= KEF_DIDRUN;
1304 		SLOT_USE(newtd->td_ksegrp);
1305 		TD_SET_RUNNING(newtd);
1306 		kseq_load_add(KSEQ_SELF(), newtd->td_kse);
1307 	} else
1308 		newtd = choosethread();
1309 	if (td != newtd)
1310 		cpu_switch(td, newtd);
1311 	sched_lock.mtx_lock = (uintptr_t)td;
1312 
1313 	td->td_oncpu = PCPU_GET(cpuid);
1314 }
1315 
1316 void
1317 sched_nice(struct proc *p, int nice)
1318 {
1319 	struct ksegrp *kg;
1320 	struct kse *ke;
1321 	struct thread *td;
1322 	struct kseq *kseq;
1323 
1324 	PROC_LOCK_ASSERT(p, MA_OWNED);
1325 	mtx_assert(&sched_lock, MA_OWNED);
1326 	/*
1327 	 * We need to adjust the nice counts for running KSEs.
1328 	 */
1329 	FOREACH_KSEGRP_IN_PROC(p, kg) {
1330 		if (kg->kg_pri_class == PRI_TIMESHARE) {
1331 			FOREACH_THREAD_IN_GROUP(kg, td) {
1332 				ke = td->td_kse;
1333 				if (ke->ke_runq == NULL)
1334 					continue;
1335 				kseq = KSEQ_CPU(ke->ke_cpu);
1336 				kseq_nice_rem(kseq, p->p_nice);
1337 				kseq_nice_add(kseq, nice);
1338 			}
1339 		}
1340 	}
1341 	p->p_nice = nice;
1342 	FOREACH_KSEGRP_IN_PROC(p, kg) {
1343 		sched_priority(kg);
1344 		FOREACH_THREAD_IN_GROUP(kg, td)
1345 			td->td_flags |= TDF_NEEDRESCHED;
1346 	}
1347 }
1348 
1349 void
1350 sched_sleep(struct thread *td)
1351 {
1352 	mtx_assert(&sched_lock, MA_OWNED);
1353 
1354 	td->td_slptime = ticks;
1355 	td->td_base_pri = td->td_priority;
1356 
1357 	CTR2(KTR_ULE, "sleep thread %p (tick: %d)",
1358 	    td, td->td_slptime);
1359 }
1360 
1361 void
1362 sched_wakeup(struct thread *td)
1363 {
1364 	mtx_assert(&sched_lock, MA_OWNED);
1365 
1366 	/*
1367 	 * Let the kseg know how long we slept for.  This is because process
1368 	 * interactivity behavior is modeled in the kseg.
1369 	 */
1370 	if (td->td_slptime) {
1371 		struct ksegrp *kg;
1372 		int hzticks;
1373 
1374 		kg = td->td_ksegrp;
1375 		hzticks = (ticks - td->td_slptime) << 10;
1376 		if (hzticks >= SCHED_SLP_RUN_MAX) {
1377 			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1378 			kg->kg_runtime = 1;
1379 		} else {
1380 			kg->kg_slptime += hzticks;
1381 			sched_interact_update(kg);
1382 		}
1383 		sched_priority(kg);
1384 		sched_slice(td->td_kse);
1385 		CTR2(KTR_ULE, "wakeup thread %p (%d ticks)", td, hzticks);
1386 		td->td_slptime = 0;
1387 	}
1388 	setrunqueue(td, SRQ_BORING);
1389 }
1390 
1391 /*
1392  * Penalize the parent for creating a new child and initialize the child's
1393  * priority.
1394  */
1395 void
1396 sched_fork(struct thread *td, struct thread *childtd)
1397 {
1398 
1399 	mtx_assert(&sched_lock, MA_OWNED);
1400 
1401 	sched_fork_ksegrp(td, childtd->td_ksegrp);
1402 	sched_fork_thread(td, childtd);
1403 }
1404 
1405 void
1406 sched_fork_ksegrp(struct thread *td, struct ksegrp *child)
1407 {
1408 	struct ksegrp *kg = td->td_ksegrp;
1409 	mtx_assert(&sched_lock, MA_OWNED);
1410 
1411 	child->kg_slptime = kg->kg_slptime;
1412 	child->kg_runtime = kg->kg_runtime;
1413 	child->kg_user_pri = kg->kg_user_pri;
1414 	sched_interact_fork(child);
1415 	kg->kg_runtime += tickincr << 10;
1416 	sched_interact_update(kg);
1417 
1418 	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1419 	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1420 	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1421 }
1422 
1423 void
1424 sched_fork_thread(struct thread *td, struct thread *child)
1425 {
1426 	struct kse *ke;
1427 	struct kse *ke2;
1428 
1429 	sched_newthread(child);
1430 	ke = td->td_kse;
1431 	ke2 = child->td_kse;
1432 	ke2->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1433 	ke2->ke_cpu = ke->ke_cpu;
1434 	ke2->ke_runq = NULL;
1435 
1436 	/* Grab our parents cpu estimation information. */
1437 	ke2->ke_ticks = ke->ke_ticks;
1438 	ke2->ke_ltick = ke->ke_ltick;
1439 	ke2->ke_ftick = ke->ke_ftick;
1440 }
1441 
1442 void
1443 sched_class(struct ksegrp *kg, int class)
1444 {
1445 	struct kseq *kseq;
1446 	struct kse *ke;
1447 	struct thread *td;
1448 	int nclass;
1449 	int oclass;
1450 
1451 	mtx_assert(&sched_lock, MA_OWNED);
1452 	if (kg->kg_pri_class == class)
1453 		return;
1454 
1455 	nclass = PRI_BASE(class);
1456 	oclass = PRI_BASE(kg->kg_pri_class);
1457 	FOREACH_THREAD_IN_GROUP(kg, td) {
1458 		ke = td->td_kse;
1459 		if (ke->ke_state != KES_ONRUNQ &&
1460 		    ke->ke_state != KES_THREAD)
1461 			continue;
1462 		kseq = KSEQ_CPU(ke->ke_cpu);
1463 
1464 #ifdef SMP
1465 		/*
1466 		 * On SMP if we're on the RUNQ we must adjust the transferable
1467 		 * count because could be changing to or from an interrupt
1468 		 * class.
1469 		 */
1470 		if (ke->ke_state == KES_ONRUNQ) {
1471 			if (KSE_CAN_MIGRATE(ke, oclass)) {
1472 				kseq->ksq_transferable--;
1473 				kseq->ksq_group->ksg_transferable--;
1474 			}
1475 			if (KSE_CAN_MIGRATE(ke, nclass)) {
1476 				kseq->ksq_transferable++;
1477 				kseq->ksq_group->ksg_transferable++;
1478 			}
1479 		}
1480 #endif
1481 		if (oclass == PRI_TIMESHARE) {
1482 			kseq->ksq_load_timeshare--;
1483 			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1484 		}
1485 		if (nclass == PRI_TIMESHARE) {
1486 			kseq->ksq_load_timeshare++;
1487 			kseq_nice_add(kseq, kg->kg_proc->p_nice);
1488 		}
1489 	}
1490 
1491 	kg->kg_pri_class = class;
1492 }
1493 
1494 /*
1495  * Return some of the child's priority and interactivity to the parent.
1496  * Avoid using sched_exit_thread to avoid having to decide which
1497  * thread in the parent gets the honour since it isn't used.
1498  */
1499 void
1500 sched_exit(struct proc *p, struct thread *childtd)
1501 {
1502 	mtx_assert(&sched_lock, MA_OWNED);
1503 	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), childtd);
1504 	kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse);
1505 }
1506 
1507 void
1508 sched_exit_ksegrp(struct ksegrp *kg, struct thread *td)
1509 {
1510 	/* kg->kg_slptime += td->td_ksegrp->kg_slptime; */
1511 	kg->kg_runtime += td->td_ksegrp->kg_runtime;
1512 	sched_interact_update(kg);
1513 }
1514 
1515 void
1516 sched_exit_thread(struct thread *td, struct thread *childtd)
1517 {
1518 	kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse);
1519 }
1520 
1521 void
1522 sched_clock(struct thread *td)
1523 {
1524 	struct kseq *kseq;
1525 	struct ksegrp *kg;
1526 	struct kse *ke;
1527 
1528 	mtx_assert(&sched_lock, MA_OWNED);
1529 	kseq = KSEQ_SELF();
1530 #ifdef SMP
1531 	if (ticks == bal_tick)
1532 		sched_balance();
1533 	if (ticks == gbal_tick)
1534 		sched_balance_groups();
1535 	/*
1536 	 * We could have been assigned a non real-time thread without an
1537 	 * IPI.
1538 	 */
1539 	if (kseq->ksq_assigned)
1540 		kseq_assign(kseq);	/* Potentially sets NEEDRESCHED */
1541 #endif
1542 	/*
1543 	 * sched_setup() apparently happens prior to stathz being set.  We
1544 	 * need to resolve the timers earlier in the boot so we can avoid
1545 	 * calculating this here.
1546 	 */
1547 	if (realstathz == 0) {
1548 		realstathz = stathz ? stathz : hz;
1549 		tickincr = hz / realstathz;
1550 		/*
1551 		 * XXX This does not work for values of stathz that are much
1552 		 * larger than hz.
1553 		 */
1554 		if (tickincr == 0)
1555 			tickincr = 1;
1556 	}
1557 
1558 	ke = td->td_kse;
1559 	kg = ke->ke_ksegrp;
1560 
1561 	/* Adjust ticks for pctcpu */
1562 	ke->ke_ticks++;
1563 	ke->ke_ltick = ticks;
1564 
1565 	/* Go up to one second beyond our max and then trim back down */
1566 	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1567 		sched_pctcpu_update(ke);
1568 
1569 	if (td->td_flags & TDF_IDLETD)
1570 		return;
1571 
1572 	CTR4(KTR_ULE, "Tick thread %p (slice: %d, slptime: %d, runtime: %d)",
1573 	    td, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1574 	/*
1575 	 * We only do slicing code for TIMESHARE ksegrps.
1576 	 */
1577 	if (kg->kg_pri_class != PRI_TIMESHARE)
1578 		return;
1579 	/*
1580 	 * We used a tick charge it to the ksegrp so that we can compute our
1581 	 * interactivity.
1582 	 */
1583 	kg->kg_runtime += tickincr << 10;
1584 	sched_interact_update(kg);
1585 
1586 	/*
1587 	 * We used up one time slice.
1588 	 */
1589 	if (--ke->ke_slice > 0)
1590 		return;
1591 	/*
1592 	 * We're out of time, recompute priorities and requeue.
1593 	 */
1594 	kseq_load_rem(kseq, ke);
1595 	sched_priority(kg);
1596 	sched_slice(ke);
1597 	if (SCHED_CURR(kg, ke))
1598 		ke->ke_runq = kseq->ksq_curr;
1599 	else
1600 		ke->ke_runq = kseq->ksq_next;
1601 	kseq_load_add(kseq, ke);
1602 	td->td_flags |= TDF_NEEDRESCHED;
1603 }
1604 
1605 int
1606 sched_runnable(void)
1607 {
1608 	struct kseq *kseq;
1609 	int load;
1610 
1611 	load = 1;
1612 
1613 	kseq = KSEQ_SELF();
1614 #ifdef SMP
1615 	if (kseq->ksq_assigned) {
1616 		mtx_lock_spin(&sched_lock);
1617 		kseq_assign(kseq);
1618 		mtx_unlock_spin(&sched_lock);
1619 	}
1620 #endif
1621 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1622 		if (kseq->ksq_load > 0)
1623 			goto out;
1624 	} else
1625 		if (kseq->ksq_load - 1 > 0)
1626 			goto out;
1627 	load = 0;
1628 out:
1629 	return (load);
1630 }
1631 
1632 void
1633 sched_userret(struct thread *td)
1634 {
1635 	struct ksegrp *kg;
1636 
1637 	kg = td->td_ksegrp;
1638 
1639 	if (td->td_priority != kg->kg_user_pri) {
1640 		mtx_lock_spin(&sched_lock);
1641 		td->td_priority = kg->kg_user_pri;
1642 		mtx_unlock_spin(&sched_lock);
1643 	}
1644 }
1645 
1646 struct kse *
1647 sched_choose(void)
1648 {
1649 	struct kseq *kseq;
1650 	struct kse *ke;
1651 
1652 	mtx_assert(&sched_lock, MA_OWNED);
1653 	kseq = KSEQ_SELF();
1654 #ifdef SMP
1655 restart:
1656 	if (kseq->ksq_assigned)
1657 		kseq_assign(kseq);
1658 #endif
1659 	ke = kseq_choose(kseq);
1660 	if (ke) {
1661 #ifdef SMP
1662 		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1663 			if (kseq_idled(kseq) == 0)
1664 				goto restart;
1665 #endif
1666 		kseq_runq_rem(kseq, ke);
1667 		ke->ke_state = KES_THREAD;
1668 
1669 		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1670 			CTR4(KTR_ULE, "Run thread %p from %p (slice: %d, pri: %d)",
1671 			    ke->ke_thread, ke->ke_runq, ke->ke_slice,
1672 			    ke->ke_thread->td_priority);
1673 		}
1674 		return (ke);
1675 	}
1676 #ifdef SMP
1677 	if (kseq_idled(kseq) == 0)
1678 		goto restart;
1679 #endif
1680 	return (NULL);
1681 }
1682 
1683 void
1684 sched_add(struct thread *td, int flags)
1685 {
1686 
1687 	/* let jeff work out how to map the flags better */
1688 	/* I'm open to suggestions */
1689 	if (flags & SRQ_YIELDING)
1690 		/*
1691 		 * Preempting during switching can be bad JUJU
1692 		 * especially for KSE processes
1693 		 */
1694 		sched_add_internal(td, 0);
1695 	else
1696 		sched_add_internal(td, 1);
1697 }
1698 
1699 static void
1700 sched_add_internal(struct thread *td, int preemptive)
1701 {
1702 	struct kseq *kseq;
1703 	struct ksegrp *kg;
1704 	struct kse *ke;
1705 #ifdef SMP
1706 	int canmigrate;
1707 #endif
1708 	int class;
1709 
1710 	mtx_assert(&sched_lock, MA_OWNED);
1711 	ke = td->td_kse;
1712 	kg = td->td_ksegrp;
1713 	if (ke->ke_flags & KEF_ASSIGNED)
1714 		return;
1715 	kseq = KSEQ_SELF();
1716 	KASSERT(ke->ke_state != KES_ONRUNQ,
1717 	    ("sched_add: kse %p (%s) already in run queue", ke,
1718 	    ke->ke_proc->p_comm));
1719 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1720 	    ("sched_add: process swapped out"));
1721 	KASSERT(ke->ke_runq == NULL,
1722 	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1723 
1724 	class = PRI_BASE(kg->kg_pri_class);
1725 	switch (class) {
1726 	case PRI_ITHD:
1727 	case PRI_REALTIME:
1728 		ke->ke_runq = kseq->ksq_curr;
1729 		ke->ke_slice = SCHED_SLICE_MAX;
1730 		ke->ke_cpu = PCPU_GET(cpuid);
1731 		break;
1732 	case PRI_TIMESHARE:
1733 		if (SCHED_CURR(kg, ke))
1734 			ke->ke_runq = kseq->ksq_curr;
1735 		else
1736 			ke->ke_runq = kseq->ksq_next;
1737 		break;
1738 	case PRI_IDLE:
1739 		/*
1740 		 * This is for priority prop.
1741 		 */
1742 		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1743 			ke->ke_runq = kseq->ksq_curr;
1744 		else
1745 			ke->ke_runq = &kseq->ksq_idle;
1746 		ke->ke_slice = SCHED_SLICE_MIN;
1747 		break;
1748 	default:
1749 		panic("Unknown pri class.");
1750 		break;
1751 	}
1752 #ifdef SMP
1753 	/*
1754 	 * Don't migrate running threads here.  Force the long term balancer
1755 	 * to do it.
1756 	 */
1757 	canmigrate = KSE_CAN_MIGRATE(ke, class);
1758 	if (ke->ke_flags & KEF_HOLD) {
1759 		ke->ke_flags &= ~KEF_HOLD;
1760 		canmigrate = 0;
1761 	}
1762 	/*
1763 	 * If this thread is pinned or bound, notify the target cpu.
1764 	 */
1765 	if (!canmigrate && ke->ke_cpu != PCPU_GET(cpuid) ) {
1766 		ke->ke_runq = NULL;
1767 		kseq_notify(ke, ke->ke_cpu);
1768 		return;
1769 	}
1770 	/*
1771 	 * If we had been idle, clear our bit in the group and potentially
1772 	 * the global bitmap.  If not, see if we should transfer this thread.
1773 	 */
1774 	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1775 	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1776 		/*
1777 		 * Check to see if our group is unidling, and if so, remove it
1778 		 * from the global idle mask.
1779 		 */
1780 		if (kseq->ksq_group->ksg_idlemask ==
1781 		    kseq->ksq_group->ksg_cpumask)
1782 			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1783 		/*
1784 		 * Now remove ourselves from the group specific idle mask.
1785 		 */
1786 		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1787 	} else if (kseq->ksq_load > 1 && canmigrate)
1788 		if (kseq_transfer(kseq, ke, class))
1789 			return;
1790 	ke->ke_cpu = PCPU_GET(cpuid);
1791 #endif
1792 	/*
1793 	 * XXX With preemption this is not necessary.
1794 	 */
1795 	if (td->td_priority < curthread->td_priority &&
1796 	    ke->ke_runq == kseq->ksq_curr)
1797 		curthread->td_flags |= TDF_NEEDRESCHED;
1798 	if (preemptive && maybe_preempt(td))
1799 		return;
1800 	SLOT_USE(td->td_ksegrp);
1801 	ke->ke_ksegrp->kg_runq_threads++;
1802 	ke->ke_state = KES_ONRUNQ;
1803 
1804 	kseq_runq_add(kseq, ke);
1805 	kseq_load_add(kseq, ke);
1806 }
1807 
1808 void
1809 sched_rem(struct thread *td)
1810 {
1811 	struct kseq *kseq;
1812 	struct kse *ke;
1813 
1814 	ke = td->td_kse;
1815 	/*
1816 	 * It is safe to just return here because sched_rem() is only ever
1817 	 * used in places where we're immediately going to add the
1818 	 * kse back on again.  In that case it'll be added with the correct
1819 	 * thread and priority when the caller drops the sched_lock.
1820 	 */
1821 	if (ke->ke_flags & KEF_ASSIGNED)
1822 		return;
1823 	mtx_assert(&sched_lock, MA_OWNED);
1824 	KASSERT((ke->ke_state == KES_ONRUNQ),
1825 	    ("sched_rem: KSE not on run queue"));
1826 
1827 	ke->ke_state = KES_THREAD;
1828 	SLOT_RELEASE(td->td_ksegrp);
1829 	ke->ke_ksegrp->kg_runq_threads--;
1830 	kseq = KSEQ_CPU(ke->ke_cpu);
1831 	kseq_runq_rem(kseq, ke);
1832 	kseq_load_rem(kseq, ke);
1833 }
1834 
1835 fixpt_t
1836 sched_pctcpu(struct thread *td)
1837 {
1838 	fixpt_t pctcpu;
1839 	struct kse *ke;
1840 
1841 	pctcpu = 0;
1842 	ke = td->td_kse;
1843 	if (ke == NULL)
1844 		return (0);
1845 
1846 	mtx_lock_spin(&sched_lock);
1847 	if (ke->ke_ticks) {
1848 		int rtick;
1849 
1850 		/*
1851 		 * Don't update more frequently than twice a second.  Allowing
1852 		 * this causes the cpu usage to decay away too quickly due to
1853 		 * rounding errors.
1854 		 */
1855 		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1856 		    ke->ke_ltick < (ticks - (hz / 2)))
1857 			sched_pctcpu_update(ke);
1858 		/* How many rtick per second ? */
1859 		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1860 		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1861 	}
1862 
1863 	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1864 	mtx_unlock_spin(&sched_lock);
1865 
1866 	return (pctcpu);
1867 }
1868 
1869 void
1870 sched_bind(struct thread *td, int cpu)
1871 {
1872 	struct kse *ke;
1873 
1874 	mtx_assert(&sched_lock, MA_OWNED);
1875 	ke = td->td_kse;
1876 	ke->ke_flags |= KEF_BOUND;
1877 #ifdef SMP
1878 	if (PCPU_GET(cpuid) == cpu)
1879 		return;
1880 	/* sched_rem without the runq_remove */
1881 	ke->ke_state = KES_THREAD;
1882 	ke->ke_ksegrp->kg_runq_threads--;
1883 	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1884 	kseq_notify(ke, cpu);
1885 	/* When we return from mi_switch we'll be on the correct cpu. */
1886 	mi_switch(SW_VOL, NULL);
1887 #endif
1888 }
1889 
1890 void
1891 sched_unbind(struct thread *td)
1892 {
1893 	mtx_assert(&sched_lock, MA_OWNED);
1894 	td->td_kse->ke_flags &= ~KEF_BOUND;
1895 }
1896 
1897 int
1898 sched_load(void)
1899 {
1900 #ifdef SMP
1901 	int total;
1902 	int i;
1903 
1904 	total = 0;
1905 	for (i = 0; i <= ksg_maxid; i++)
1906 		total += KSEQ_GROUP(i)->ksg_load;
1907 	return (total);
1908 #else
1909 	return (KSEQ_SELF()->ksq_sysload);
1910 #endif
1911 }
1912 
1913 int
1914 sched_sizeof_ksegrp(void)
1915 {
1916 	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1917 }
1918 
1919 int
1920 sched_sizeof_proc(void)
1921 {
1922 	return (sizeof(struct proc));
1923 }
1924 
1925 int
1926 sched_sizeof_thread(void)
1927 {
1928 	return (sizeof(struct thread) + sizeof(struct td_sched));
1929 }
1930 #define KERN_SWITCH_INCLUDE 1
1931 #include "kern/kern_switch.c"
1932