xref: /freebsd/sys/kern/sched_ule.c (revision 6486b015fc84e96725fef22b0e3363351399ae83)
1 /*-
2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * This file implements the ULE scheduler.  ULE supports independent CPU
29  * run queues and fine grain locking.  It has superior interactive
30  * performance under load even on uni-processor systems.
31  *
32  * etymology:
33  *   ULE is the last three letters in schedule.  It owes its name to a
34  * generic user created for a scheduling system by Paul Mikesell at
35  * Isilon Systems and a general lack of creativity on the part of the author.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_kdtrace.h"
43 #include "opt_sched.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resource.h>
54 #include <sys/resourcevar.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/turnstile.h>
61 #include <sys/umtx.h>
62 #include <sys/vmmeter.h>
63 #include <sys/cpuset.h>
64 #include <sys/sbuf.h>
65 
66 #ifdef HWPMC_HOOKS
67 #include <sys/pmckern.h>
68 #endif
69 
70 #ifdef KDTRACE_HOOKS
71 #include <sys/dtrace_bsd.h>
72 int				dtrace_vtime_active;
73 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
74 #endif
75 
76 #include <machine/cpu.h>
77 #include <machine/smp.h>
78 
79 #if defined(__powerpc__) && defined(E500)
80 #error "This architecture is not currently compatible with ULE"
81 #endif
82 
83 #define	KTR_ULE	0
84 
85 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
86 #define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
87 #define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
88 
89 /*
90  * Thread scheduler specific section.  All fields are protected
91  * by the thread lock.
92  */
93 struct td_sched {
94 	struct runq	*ts_runq;	/* Run-queue we're queued on. */
95 	short		ts_flags;	/* TSF_* flags. */
96 	u_char		ts_cpu;		/* CPU that we have affinity for. */
97 	int		ts_rltick;	/* Real last tick, for affinity. */
98 	int		ts_slice;	/* Ticks of slice remaining. */
99 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
100 	u_int		ts_runtime;	/* Number of ticks we were running */
101 	int		ts_ltick;	/* Last tick that we were running on */
102 	int		ts_ftick;	/* First tick that we were running on */
103 	int		ts_ticks;	/* Tick count */
104 #ifdef KTR
105 	char		ts_name[TS_NAME_LEN];
106 #endif
107 };
108 /* flags kept in ts_flags */
109 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
110 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
111 
112 static struct td_sched td_sched0;
113 
114 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
115 #define	THREAD_CAN_SCHED(td, cpu)	\
116     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
117 
118 /*
119  * Priority ranges used for interactive and non-interactive timeshare
120  * threads.  The timeshare priorities are split up into four ranges.
121  * The first range handles interactive threads.  The last three ranges
122  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
123  * ranges supporting nice values.
124  */
125 #define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
126 #define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
127 #define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
128 
129 #define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
130 #define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
131 #define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
132 #define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
133 
134 /*
135  * Cpu percentage computation macros and defines.
136  *
137  * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
138  * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
139  * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
140  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
141  * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
142  * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
143  */
144 #define	SCHED_TICK_SECS		10
145 #define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
146 #define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
147 #define	SCHED_TICK_SHIFT	10
148 #define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
149 #define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
150 
151 /*
152  * These macros determine priorities for non-interactive threads.  They are
153  * assigned a priority based on their recent cpu utilization as expressed
154  * by the ratio of ticks to the tick total.  NHALF priorities at the start
155  * and end of the MIN to MAX timeshare range are only reachable with negative
156  * or positive nice respectively.
157  *
158  * PRI_RANGE:	Priority range for utilization dependent priorities.
159  * PRI_NRESV:	Number of nice values.
160  * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
161  * PRI_NICE:	Determines the part of the priority inherited from nice.
162  */
163 #define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
164 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
165 #define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
166 #define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
167 #define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
168 #define	SCHED_PRI_TICKS(ts)						\
169     (SCHED_TICK_HZ((ts)) /						\
170     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
171 #define	SCHED_PRI_NICE(nice)	(nice)
172 
173 /*
174  * These determine the interactivity of a process.  Interactivity differs from
175  * cpu utilization in that it expresses the voluntary time slept vs time ran
176  * while cpu utilization includes all time not running.  This more accurately
177  * models the intent of the thread.
178  *
179  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
180  *		before throttling back.
181  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
182  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
183  * INTERACT_THRESH:	Threshold for placement on the current runq.
184  */
185 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
186 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
187 #define	SCHED_INTERACT_MAX	(100)
188 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
189 #define	SCHED_INTERACT_THRESH	(30)
190 
191 /*
192  * tickincr:		Converts a stathz tick into a hz domain scaled by
193  *			the shift factor.  Without the shift the error rate
194  *			due to rounding would be unacceptably high.
195  * realstathz:		stathz is sometimes 0 and run off of hz.
196  * sched_slice:		Runtime of each thread before rescheduling.
197  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
198  */
199 static int sched_interact = SCHED_INTERACT_THRESH;
200 static int realstathz;
201 static int tickincr;
202 static int sched_slice = 1;
203 #ifdef PREEMPTION
204 #ifdef FULL_PREEMPTION
205 static int preempt_thresh = PRI_MAX_IDLE;
206 #else
207 static int preempt_thresh = PRI_MIN_KERN;
208 #endif
209 #else
210 static int preempt_thresh = 0;
211 #endif
212 static int static_boost = PRI_MIN_BATCH;
213 static int sched_idlespins = 10000;
214 static int sched_idlespinthresh = -1;
215 
216 /*
217  * tdq - per processor runqs and statistics.  All fields are protected by the
218  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
219  * locking in sched_pickcpu();
220  */
221 struct tdq {
222 	/* Ordered to improve efficiency of cpu_search() and switch(). */
223 	struct mtx	tdq_lock;		/* run queue lock. */
224 	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
225 	volatile int	tdq_load;		/* Aggregate load. */
226 	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
227 	int		tdq_sysload;		/* For loadavg, !ITHD load. */
228 	int		tdq_transferable;	/* Transferable thread count. */
229 	short		tdq_switchcnt;		/* Switches this tick. */
230 	short		tdq_oldswitchcnt;	/* Switches last tick. */
231 	u_char		tdq_lowpri;		/* Lowest priority thread. */
232 	u_char		tdq_ipipending;		/* IPI pending. */
233 	u_char		tdq_idx;		/* Current insert index. */
234 	u_char		tdq_ridx;		/* Current removal index. */
235 	struct runq	tdq_realtime;		/* real-time run queue. */
236 	struct runq	tdq_timeshare;		/* timeshare run queue. */
237 	struct runq	tdq_idle;		/* Queue of IDLE threads. */
238 	char		tdq_name[TDQ_NAME_LEN];
239 #ifdef KTR
240 	char		tdq_loadname[TDQ_LOADNAME_LEN];
241 #endif
242 } __aligned(64);
243 
244 /* Idle thread states and config. */
245 #define	TDQ_RUNNING	1
246 #define	TDQ_IDLE	2
247 
248 #ifdef SMP
249 struct cpu_group *cpu_top;		/* CPU topology */
250 
251 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
252 #define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
253 
254 /*
255  * Run-time tunables.
256  */
257 static int rebalance = 1;
258 static int balance_interval = 128;	/* Default set in sched_initticks(). */
259 static int affinity;
260 static int steal_idle = 1;
261 static int steal_thresh = 2;
262 
263 /*
264  * One thread queue per processor.
265  */
266 static struct tdq	tdq_cpu[MAXCPU];
267 static struct tdq	*balance_tdq;
268 static int balance_ticks;
269 static DPCPU_DEFINE(uint32_t, randomval);
270 
271 #define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
272 #define	TDQ_CPU(x)	(&tdq_cpu[(x)])
273 #define	TDQ_ID(x)	((int)((x) - tdq_cpu))
274 #else	/* !SMP */
275 static struct tdq	tdq_cpu;
276 
277 #define	TDQ_ID(x)	(0)
278 #define	TDQ_SELF()	(&tdq_cpu)
279 #define	TDQ_CPU(x)	(&tdq_cpu)
280 #endif
281 
282 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
283 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
284 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
285 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
286 #define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
287 
288 static void sched_priority(struct thread *);
289 static void sched_thread_priority(struct thread *, u_char);
290 static int sched_interact_score(struct thread *);
291 static void sched_interact_update(struct thread *);
292 static void sched_interact_fork(struct thread *);
293 static void sched_pctcpu_update(struct td_sched *, int);
294 
295 /* Operations on per processor queues */
296 static struct thread *tdq_choose(struct tdq *);
297 static void tdq_setup(struct tdq *);
298 static void tdq_load_add(struct tdq *, struct thread *);
299 static void tdq_load_rem(struct tdq *, struct thread *);
300 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
301 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
302 static inline int sched_shouldpreempt(int, int, int);
303 void tdq_print(int cpu);
304 static void runq_print(struct runq *rq);
305 static void tdq_add(struct tdq *, struct thread *, int);
306 #ifdef SMP
307 static int tdq_move(struct tdq *, struct tdq *);
308 static int tdq_idled(struct tdq *);
309 static void tdq_notify(struct tdq *, struct thread *);
310 static struct thread *tdq_steal(struct tdq *, int);
311 static struct thread *runq_steal(struct runq *, int);
312 static int sched_pickcpu(struct thread *, int);
313 static void sched_balance(void);
314 static int sched_balance_pair(struct tdq *, struct tdq *);
315 static inline struct tdq *sched_setcpu(struct thread *, int, int);
316 static inline void thread_unblock_switch(struct thread *, struct mtx *);
317 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
318 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
319 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
320     struct cpu_group *cg, int indent);
321 #endif
322 
323 static void sched_setup(void *dummy);
324 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
325 
326 static void sched_initticks(void *dummy);
327 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
328     NULL);
329 
330 /*
331  * Print the threads waiting on a run-queue.
332  */
333 static void
334 runq_print(struct runq *rq)
335 {
336 	struct rqhead *rqh;
337 	struct thread *td;
338 	int pri;
339 	int j;
340 	int i;
341 
342 	for (i = 0; i < RQB_LEN; i++) {
343 		printf("\t\trunq bits %d 0x%zx\n",
344 		    i, rq->rq_status.rqb_bits[i]);
345 		for (j = 0; j < RQB_BPW; j++)
346 			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
347 				pri = j + (i << RQB_L2BPW);
348 				rqh = &rq->rq_queues[pri];
349 				TAILQ_FOREACH(td, rqh, td_runq) {
350 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
351 					    td, td->td_name, td->td_priority,
352 					    td->td_rqindex, pri);
353 				}
354 			}
355 	}
356 }
357 
358 /*
359  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
360  */
361 void
362 tdq_print(int cpu)
363 {
364 	struct tdq *tdq;
365 
366 	tdq = TDQ_CPU(cpu);
367 
368 	printf("tdq %d:\n", TDQ_ID(tdq));
369 	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
370 	printf("\tLock name:      %s\n", tdq->tdq_name);
371 	printf("\tload:           %d\n", tdq->tdq_load);
372 	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
373 	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
374 	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
375 	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
376 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
377 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
378 	printf("\trealtime runq:\n");
379 	runq_print(&tdq->tdq_realtime);
380 	printf("\ttimeshare runq:\n");
381 	runq_print(&tdq->tdq_timeshare);
382 	printf("\tidle runq:\n");
383 	runq_print(&tdq->tdq_idle);
384 }
385 
386 static inline int
387 sched_shouldpreempt(int pri, int cpri, int remote)
388 {
389 	/*
390 	 * If the new priority is not better than the current priority there is
391 	 * nothing to do.
392 	 */
393 	if (pri >= cpri)
394 		return (0);
395 	/*
396 	 * Always preempt idle.
397 	 */
398 	if (cpri >= PRI_MIN_IDLE)
399 		return (1);
400 	/*
401 	 * If preemption is disabled don't preempt others.
402 	 */
403 	if (preempt_thresh == 0)
404 		return (0);
405 	/*
406 	 * Preempt if we exceed the threshold.
407 	 */
408 	if (pri <= preempt_thresh)
409 		return (1);
410 	/*
411 	 * If we're interactive or better and there is non-interactive
412 	 * or worse running preempt only remote processors.
413 	 */
414 	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
415 		return (1);
416 	return (0);
417 }
418 
419 /*
420  * Add a thread to the actual run-queue.  Keeps transferable counts up to
421  * date with what is actually on the run-queue.  Selects the correct
422  * queue position for timeshare threads.
423  */
424 static __inline void
425 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
426 {
427 	struct td_sched *ts;
428 	u_char pri;
429 
430 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
431 	THREAD_LOCK_ASSERT(td, MA_OWNED);
432 
433 	pri = td->td_priority;
434 	ts = td->td_sched;
435 	TD_SET_RUNQ(td);
436 	if (THREAD_CAN_MIGRATE(td)) {
437 		tdq->tdq_transferable++;
438 		ts->ts_flags |= TSF_XFERABLE;
439 	}
440 	if (pri < PRI_MIN_BATCH) {
441 		ts->ts_runq = &tdq->tdq_realtime;
442 	} else if (pri <= PRI_MAX_BATCH) {
443 		ts->ts_runq = &tdq->tdq_timeshare;
444 		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
445 			("Invalid priority %d on timeshare runq", pri));
446 		/*
447 		 * This queue contains only priorities between MIN and MAX
448 		 * realtime.  Use the whole queue to represent these values.
449 		 */
450 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
451 			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
452 			pri = (pri + tdq->tdq_idx) % RQ_NQS;
453 			/*
454 			 * This effectively shortens the queue by one so we
455 			 * can have a one slot difference between idx and
456 			 * ridx while we wait for threads to drain.
457 			 */
458 			if (tdq->tdq_ridx != tdq->tdq_idx &&
459 			    pri == tdq->tdq_ridx)
460 				pri = (unsigned char)(pri - 1) % RQ_NQS;
461 		} else
462 			pri = tdq->tdq_ridx;
463 		runq_add_pri(ts->ts_runq, td, pri, flags);
464 		return;
465 	} else
466 		ts->ts_runq = &tdq->tdq_idle;
467 	runq_add(ts->ts_runq, td, flags);
468 }
469 
470 /*
471  * Remove a thread from a run-queue.  This typically happens when a thread
472  * is selected to run.  Running threads are not on the queue and the
473  * transferable count does not reflect them.
474  */
475 static __inline void
476 tdq_runq_rem(struct tdq *tdq, struct thread *td)
477 {
478 	struct td_sched *ts;
479 
480 	ts = td->td_sched;
481 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
482 	KASSERT(ts->ts_runq != NULL,
483 	    ("tdq_runq_remove: thread %p null ts_runq", td));
484 	if (ts->ts_flags & TSF_XFERABLE) {
485 		tdq->tdq_transferable--;
486 		ts->ts_flags &= ~TSF_XFERABLE;
487 	}
488 	if (ts->ts_runq == &tdq->tdq_timeshare) {
489 		if (tdq->tdq_idx != tdq->tdq_ridx)
490 			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
491 		else
492 			runq_remove_idx(ts->ts_runq, td, NULL);
493 	} else
494 		runq_remove(ts->ts_runq, td);
495 }
496 
497 /*
498  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
499  * for this thread to the referenced thread queue.
500  */
501 static void
502 tdq_load_add(struct tdq *tdq, struct thread *td)
503 {
504 
505 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
506 	THREAD_LOCK_ASSERT(td, MA_OWNED);
507 
508 	tdq->tdq_load++;
509 	if ((td->td_flags & TDF_NOLOAD) == 0)
510 		tdq->tdq_sysload++;
511 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
512 }
513 
514 /*
515  * Remove the load from a thread that is transitioning to a sleep state or
516  * exiting.
517  */
518 static void
519 tdq_load_rem(struct tdq *tdq, struct thread *td)
520 {
521 
522 	THREAD_LOCK_ASSERT(td, MA_OWNED);
523 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
524 	KASSERT(tdq->tdq_load != 0,
525 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
526 
527 	tdq->tdq_load--;
528 	if ((td->td_flags & TDF_NOLOAD) == 0)
529 		tdq->tdq_sysload--;
530 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
531 }
532 
533 /*
534  * Set lowpri to its exact value by searching the run-queue and
535  * evaluating curthread.  curthread may be passed as an optimization.
536  */
537 static void
538 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
539 {
540 	struct thread *td;
541 
542 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
543 	if (ctd == NULL)
544 		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
545 	td = tdq_choose(tdq);
546 	if (td == NULL || td->td_priority > ctd->td_priority)
547 		tdq->tdq_lowpri = ctd->td_priority;
548 	else
549 		tdq->tdq_lowpri = td->td_priority;
550 }
551 
552 #ifdef SMP
553 struct cpu_search {
554 	cpuset_t cs_mask;
555 	u_int	cs_prefer;
556 	int	cs_pri;		/* Min priority for low. */
557 	int	cs_limit;	/* Max load for low, min load for high. */
558 	int	cs_cpu;
559 	int	cs_load;
560 };
561 
562 #define	CPU_SEARCH_LOWEST	0x1
563 #define	CPU_SEARCH_HIGHEST	0x2
564 #define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
565 
566 #define	CPUSET_FOREACH(cpu, mask)				\
567 	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
568 		if (CPU_ISSET(cpu, &mask))
569 
570 static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
571     struct cpu_search *high, const int match);
572 int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
573 int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
574 int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
575     struct cpu_search *high);
576 
577 /*
578  * Search the tree of cpu_groups for the lowest or highest loaded cpu
579  * according to the match argument.  This routine actually compares the
580  * load on all paths through the tree and finds the least loaded cpu on
581  * the least loaded path, which may differ from the least loaded cpu in
582  * the system.  This balances work among caches and busses.
583  *
584  * This inline is instantiated in three forms below using constants for the
585  * match argument.  It is reduced to the minimum set for each case.  It is
586  * also recursive to the depth of the tree.
587  */
588 static __inline int
589 cpu_search(const struct cpu_group *cg, struct cpu_search *low,
590     struct cpu_search *high, const int match)
591 {
592 	struct cpu_search lgroup;
593 	struct cpu_search hgroup;
594 	cpuset_t cpumask;
595 	struct cpu_group *child;
596 	struct tdq *tdq;
597 	int cpu, i, hload, lload, load, total, rnd, *rndptr;
598 
599 	total = 0;
600 	cpumask = cg->cg_mask;
601 	if (match & CPU_SEARCH_LOWEST) {
602 		lload = INT_MAX;
603 		lgroup = *low;
604 	}
605 	if (match & CPU_SEARCH_HIGHEST) {
606 		hload = INT_MIN;
607 		hgroup = *high;
608 	}
609 
610 	/* Iterate through the child CPU groups and then remaining CPUs. */
611 	for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) {
612 		if (i == 0) {
613 			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
614 				cpu--;
615 			if (cpu < 0)
616 				break;
617 			child = NULL;
618 		} else
619 			child = &cg->cg_child[i - 1];
620 
621 		if (match & CPU_SEARCH_LOWEST)
622 			lgroup.cs_cpu = -1;
623 		if (match & CPU_SEARCH_HIGHEST)
624 			hgroup.cs_cpu = -1;
625 		if (child) {			/* Handle child CPU group. */
626 			CPU_NAND(&cpumask, &child->cg_mask);
627 			switch (match) {
628 			case CPU_SEARCH_LOWEST:
629 				load = cpu_search_lowest(child, &lgroup);
630 				break;
631 			case CPU_SEARCH_HIGHEST:
632 				load = cpu_search_highest(child, &hgroup);
633 				break;
634 			case CPU_SEARCH_BOTH:
635 				load = cpu_search_both(child, &lgroup, &hgroup);
636 				break;
637 			}
638 		} else {			/* Handle child CPU. */
639 			tdq = TDQ_CPU(cpu);
640 			load = tdq->tdq_load * 256;
641 			rndptr = DPCPU_PTR(randomval);
642 			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
643 			if (match & CPU_SEARCH_LOWEST) {
644 				if (cpu == low->cs_prefer)
645 					load -= 64;
646 				/* If that CPU is allowed and get data. */
647 				if (tdq->tdq_lowpri > lgroup.cs_pri &&
648 				    tdq->tdq_load <= lgroup.cs_limit &&
649 				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
650 					lgroup.cs_cpu = cpu;
651 					lgroup.cs_load = load - rnd;
652 				}
653 			}
654 			if (match & CPU_SEARCH_HIGHEST)
655 				if (tdq->tdq_load >= hgroup.cs_limit &&
656 				    tdq->tdq_transferable &&
657 				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
658 					hgroup.cs_cpu = cpu;
659 					hgroup.cs_load = load - rnd;
660 				}
661 		}
662 		total += load;
663 
664 		/* We have info about child item. Compare it. */
665 		if (match & CPU_SEARCH_LOWEST) {
666 			if (lgroup.cs_cpu >= 0 &&
667 			    (load < lload ||
668 			     (load == lload && lgroup.cs_load < low->cs_load))) {
669 				lload = load;
670 				low->cs_cpu = lgroup.cs_cpu;
671 				low->cs_load = lgroup.cs_load;
672 			}
673 		}
674 		if (match & CPU_SEARCH_HIGHEST)
675 			if (hgroup.cs_cpu >= 0 &&
676 			    (load > hload ||
677 			     (load == hload && hgroup.cs_load > high->cs_load))) {
678 				hload = load;
679 				high->cs_cpu = hgroup.cs_cpu;
680 				high->cs_load = hgroup.cs_load;
681 			}
682 		if (child) {
683 			i--;
684 			if (i == 0 && CPU_EMPTY(&cpumask))
685 				break;
686 		} else
687 			cpu--;
688 	}
689 	return (total);
690 }
691 
692 /*
693  * cpu_search instantiations must pass constants to maintain the inline
694  * optimization.
695  */
696 int
697 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
698 {
699 	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
700 }
701 
702 int
703 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
704 {
705 	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
706 }
707 
708 int
709 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
710     struct cpu_search *high)
711 {
712 	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
713 }
714 
715 /*
716  * Find the cpu with the least load via the least loaded path that has a
717  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
718  * acceptable.
719  */
720 static inline int
721 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
722     int prefer)
723 {
724 	struct cpu_search low;
725 
726 	low.cs_cpu = -1;
727 	low.cs_prefer = prefer;
728 	low.cs_mask = mask;
729 	low.cs_pri = pri;
730 	low.cs_limit = maxload;
731 	cpu_search_lowest(cg, &low);
732 	return low.cs_cpu;
733 }
734 
735 /*
736  * Find the cpu with the highest load via the highest loaded path.
737  */
738 static inline int
739 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
740 {
741 	struct cpu_search high;
742 
743 	high.cs_cpu = -1;
744 	high.cs_mask = mask;
745 	high.cs_limit = minload;
746 	cpu_search_highest(cg, &high);
747 	return high.cs_cpu;
748 }
749 
750 /*
751  * Simultaneously find the highest and lowest loaded cpu reachable via
752  * cg.
753  */
754 static inline void
755 sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
756 {
757 	struct cpu_search high;
758 	struct cpu_search low;
759 
760 	low.cs_cpu = -1;
761 	low.cs_prefer = -1;
762 	low.cs_pri = -1;
763 	low.cs_limit = INT_MAX;
764 	low.cs_mask = mask;
765 	high.cs_cpu = -1;
766 	high.cs_limit = -1;
767 	high.cs_mask = mask;
768 	cpu_search_both(cg, &low, &high);
769 	*lowcpu = low.cs_cpu;
770 	*highcpu = high.cs_cpu;
771 	return;
772 }
773 
774 static void
775 sched_balance_group(struct cpu_group *cg)
776 {
777 	cpuset_t hmask, lmask;
778 	int high, low, anylow;
779 
780 	CPU_FILL(&hmask);
781 	for (;;) {
782 		high = sched_highest(cg, hmask, 1);
783 		/* Stop if there is no more CPU with transferrable threads. */
784 		if (high == -1)
785 			break;
786 		CPU_CLR(high, &hmask);
787 		CPU_COPY(&hmask, &lmask);
788 		/* Stop if there is no more CPU left for low. */
789 		if (CPU_EMPTY(&lmask))
790 			break;
791 		anylow = 1;
792 nextlow:
793 		low = sched_lowest(cg, lmask, -1,
794 		    TDQ_CPU(high)->tdq_load - 1, high);
795 		/* Stop if we looked well and found no less loaded CPU. */
796 		if (anylow && low == -1)
797 			break;
798 		/* Go to next high if we found no less loaded CPU. */
799 		if (low == -1)
800 			continue;
801 		/* Transfer thread from high to low. */
802 		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
803 			/* CPU that got thread can no longer be a donor. */
804 			CPU_CLR(low, &hmask);
805 		} else {
806 			/*
807 			 * If failed, then there is no threads on high
808 			 * that can run on this low. Drop low from low
809 			 * mask and look for different one.
810 			 */
811 			CPU_CLR(low, &lmask);
812 			anylow = 0;
813 			goto nextlow;
814 		}
815 	}
816 }
817 
818 static void
819 sched_balance(void)
820 {
821 	struct tdq *tdq;
822 
823 	/*
824 	 * Select a random time between .5 * balance_interval and
825 	 * 1.5 * balance_interval.
826 	 */
827 	balance_ticks = max(balance_interval / 2, 1);
828 	balance_ticks += random() % balance_interval;
829 	if (smp_started == 0 || rebalance == 0)
830 		return;
831 	tdq = TDQ_SELF();
832 	TDQ_UNLOCK(tdq);
833 	sched_balance_group(cpu_top);
834 	TDQ_LOCK(tdq);
835 }
836 
837 /*
838  * Lock two thread queues using their address to maintain lock order.
839  */
840 static void
841 tdq_lock_pair(struct tdq *one, struct tdq *two)
842 {
843 	if (one < two) {
844 		TDQ_LOCK(one);
845 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
846 	} else {
847 		TDQ_LOCK(two);
848 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
849 	}
850 }
851 
852 /*
853  * Unlock two thread queues.  Order is not important here.
854  */
855 static void
856 tdq_unlock_pair(struct tdq *one, struct tdq *two)
857 {
858 	TDQ_UNLOCK(one);
859 	TDQ_UNLOCK(two);
860 }
861 
862 /*
863  * Transfer load between two imbalanced thread queues.
864  */
865 static int
866 sched_balance_pair(struct tdq *high, struct tdq *low)
867 {
868 	int moved;
869 	int cpu;
870 
871 	tdq_lock_pair(high, low);
872 	moved = 0;
873 	/*
874 	 * Determine what the imbalance is and then adjust that to how many
875 	 * threads we actually have to give up (transferable).
876 	 */
877 	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
878 	    (moved = tdq_move(high, low)) > 0) {
879 		/*
880 		 * In case the target isn't the current cpu IPI it to force a
881 		 * reschedule with the new workload.
882 		 */
883 		cpu = TDQ_ID(low);
884 		sched_pin();
885 		if (cpu != PCPU_GET(cpuid))
886 			ipi_cpu(cpu, IPI_PREEMPT);
887 		sched_unpin();
888 	}
889 	tdq_unlock_pair(high, low);
890 	return (moved);
891 }
892 
893 /*
894  * Move a thread from one thread queue to another.
895  */
896 static int
897 tdq_move(struct tdq *from, struct tdq *to)
898 {
899 	struct td_sched *ts;
900 	struct thread *td;
901 	struct tdq *tdq;
902 	int cpu;
903 
904 	TDQ_LOCK_ASSERT(from, MA_OWNED);
905 	TDQ_LOCK_ASSERT(to, MA_OWNED);
906 
907 	tdq = from;
908 	cpu = TDQ_ID(to);
909 	td = tdq_steal(tdq, cpu);
910 	if (td == NULL)
911 		return (0);
912 	ts = td->td_sched;
913 	/*
914 	 * Although the run queue is locked the thread may be blocked.  Lock
915 	 * it to clear this and acquire the run-queue lock.
916 	 */
917 	thread_lock(td);
918 	/* Drop recursive lock on from acquired via thread_lock(). */
919 	TDQ_UNLOCK(from);
920 	sched_rem(td);
921 	ts->ts_cpu = cpu;
922 	td->td_lock = TDQ_LOCKPTR(to);
923 	tdq_add(to, td, SRQ_YIELDING);
924 	return (1);
925 }
926 
927 /*
928  * This tdq has idled.  Try to steal a thread from another cpu and switch
929  * to it.
930  */
931 static int
932 tdq_idled(struct tdq *tdq)
933 {
934 	struct cpu_group *cg;
935 	struct tdq *steal;
936 	cpuset_t mask;
937 	int thresh;
938 	int cpu;
939 
940 	if (smp_started == 0 || steal_idle == 0)
941 		return (1);
942 	CPU_FILL(&mask);
943 	CPU_CLR(PCPU_GET(cpuid), &mask);
944 	/* We don't want to be preempted while we're iterating. */
945 	spinlock_enter();
946 	for (cg = tdq->tdq_cg; cg != NULL; ) {
947 		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
948 			thresh = steal_thresh;
949 		else
950 			thresh = 1;
951 		cpu = sched_highest(cg, mask, thresh);
952 		if (cpu == -1) {
953 			cg = cg->cg_parent;
954 			continue;
955 		}
956 		steal = TDQ_CPU(cpu);
957 		CPU_CLR(cpu, &mask);
958 		tdq_lock_pair(tdq, steal);
959 		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
960 			tdq_unlock_pair(tdq, steal);
961 			continue;
962 		}
963 		/*
964 		 * If a thread was added while interrupts were disabled don't
965 		 * steal one here.  If we fail to acquire one due to affinity
966 		 * restrictions loop again with this cpu removed from the
967 		 * set.
968 		 */
969 		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
970 			tdq_unlock_pair(tdq, steal);
971 			continue;
972 		}
973 		spinlock_exit();
974 		TDQ_UNLOCK(steal);
975 		mi_switch(SW_VOL | SWT_IDLE, NULL);
976 		thread_unlock(curthread);
977 
978 		return (0);
979 	}
980 	spinlock_exit();
981 	return (1);
982 }
983 
984 /*
985  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
986  */
987 static void
988 tdq_notify(struct tdq *tdq, struct thread *td)
989 {
990 	struct thread *ctd;
991 	int pri;
992 	int cpu;
993 
994 	if (tdq->tdq_ipipending)
995 		return;
996 	cpu = td->td_sched->ts_cpu;
997 	pri = td->td_priority;
998 	ctd = pcpu_find(cpu)->pc_curthread;
999 	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1000 		return;
1001 	if (TD_IS_IDLETHREAD(ctd)) {
1002 		/*
1003 		 * If the MD code has an idle wakeup routine try that before
1004 		 * falling back to IPI.
1005 		 */
1006 		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1007 			return;
1008 	}
1009 	tdq->tdq_ipipending = 1;
1010 	ipi_cpu(cpu, IPI_PREEMPT);
1011 }
1012 
1013 /*
1014  * Steals load from a timeshare queue.  Honors the rotating queue head
1015  * index.
1016  */
1017 static struct thread *
1018 runq_steal_from(struct runq *rq, int cpu, u_char start)
1019 {
1020 	struct rqbits *rqb;
1021 	struct rqhead *rqh;
1022 	struct thread *td, *first;
1023 	int bit;
1024 	int pri;
1025 	int i;
1026 
1027 	rqb = &rq->rq_status;
1028 	bit = start & (RQB_BPW -1);
1029 	pri = 0;
1030 	first = NULL;
1031 again:
1032 	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1033 		if (rqb->rqb_bits[i] == 0)
1034 			continue;
1035 		if (bit != 0) {
1036 			for (pri = bit; pri < RQB_BPW; pri++)
1037 				if (rqb->rqb_bits[i] & (1ul << pri))
1038 					break;
1039 			if (pri >= RQB_BPW)
1040 				continue;
1041 		} else
1042 			pri = RQB_FFS(rqb->rqb_bits[i]);
1043 		pri += (i << RQB_L2BPW);
1044 		rqh = &rq->rq_queues[pri];
1045 		TAILQ_FOREACH(td, rqh, td_runq) {
1046 			if (first && THREAD_CAN_MIGRATE(td) &&
1047 			    THREAD_CAN_SCHED(td, cpu))
1048 				return (td);
1049 			first = td;
1050 		}
1051 	}
1052 	if (start != 0) {
1053 		start = 0;
1054 		goto again;
1055 	}
1056 
1057 	if (first && THREAD_CAN_MIGRATE(first) &&
1058 	    THREAD_CAN_SCHED(first, cpu))
1059 		return (first);
1060 	return (NULL);
1061 }
1062 
1063 /*
1064  * Steals load from a standard linear queue.
1065  */
1066 static struct thread *
1067 runq_steal(struct runq *rq, int cpu)
1068 {
1069 	struct rqhead *rqh;
1070 	struct rqbits *rqb;
1071 	struct thread *td;
1072 	int word;
1073 	int bit;
1074 
1075 	rqb = &rq->rq_status;
1076 	for (word = 0; word < RQB_LEN; word++) {
1077 		if (rqb->rqb_bits[word] == 0)
1078 			continue;
1079 		for (bit = 0; bit < RQB_BPW; bit++) {
1080 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1081 				continue;
1082 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1083 			TAILQ_FOREACH(td, rqh, td_runq)
1084 				if (THREAD_CAN_MIGRATE(td) &&
1085 				    THREAD_CAN_SCHED(td, cpu))
1086 					return (td);
1087 		}
1088 	}
1089 	return (NULL);
1090 }
1091 
1092 /*
1093  * Attempt to steal a thread in priority order from a thread queue.
1094  */
1095 static struct thread *
1096 tdq_steal(struct tdq *tdq, int cpu)
1097 {
1098 	struct thread *td;
1099 
1100 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1101 	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1102 		return (td);
1103 	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1104 	    cpu, tdq->tdq_ridx)) != NULL)
1105 		return (td);
1106 	return (runq_steal(&tdq->tdq_idle, cpu));
1107 }
1108 
1109 /*
1110  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1111  * current lock and returns with the assigned queue locked.
1112  */
1113 static inline struct tdq *
1114 sched_setcpu(struct thread *td, int cpu, int flags)
1115 {
1116 
1117 	struct tdq *tdq;
1118 
1119 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1120 	tdq = TDQ_CPU(cpu);
1121 	td->td_sched->ts_cpu = cpu;
1122 	/*
1123 	 * If the lock matches just return the queue.
1124 	 */
1125 	if (td->td_lock == TDQ_LOCKPTR(tdq))
1126 		return (tdq);
1127 #ifdef notyet
1128 	/*
1129 	 * If the thread isn't running its lockptr is a
1130 	 * turnstile or a sleepqueue.  We can just lock_set without
1131 	 * blocking.
1132 	 */
1133 	if (TD_CAN_RUN(td)) {
1134 		TDQ_LOCK(tdq);
1135 		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1136 		return (tdq);
1137 	}
1138 #endif
1139 	/*
1140 	 * The hard case, migration, we need to block the thread first to
1141 	 * prevent order reversals with other cpus locks.
1142 	 */
1143 	spinlock_enter();
1144 	thread_lock_block(td);
1145 	TDQ_LOCK(tdq);
1146 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1147 	spinlock_exit();
1148 	return (tdq);
1149 }
1150 
1151 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1152 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1153 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1154 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1155 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1156 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1157 
1158 static int
1159 sched_pickcpu(struct thread *td, int flags)
1160 {
1161 	struct cpu_group *cg, *ccg;
1162 	struct td_sched *ts;
1163 	struct tdq *tdq;
1164 	cpuset_t mask;
1165 	int cpu, pri, self;
1166 
1167 	self = PCPU_GET(cpuid);
1168 	ts = td->td_sched;
1169 	if (smp_started == 0)
1170 		return (self);
1171 	/*
1172 	 * Don't migrate a running thread from sched_switch().
1173 	 */
1174 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1175 		return (ts->ts_cpu);
1176 	/*
1177 	 * Prefer to run interrupt threads on the processors that generate
1178 	 * the interrupt.
1179 	 */
1180 	pri = td->td_priority;
1181 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1182 	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1183 		SCHED_STAT_INC(pickcpu_intrbind);
1184 		ts->ts_cpu = self;
1185 		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1186 			SCHED_STAT_INC(pickcpu_affinity);
1187 			return (ts->ts_cpu);
1188 		}
1189 	}
1190 	/*
1191 	 * If the thread can run on the last cpu and the affinity has not
1192 	 * expired or it is idle run it there.
1193 	 */
1194 	tdq = TDQ_CPU(ts->ts_cpu);
1195 	cg = tdq->tdq_cg;
1196 	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1197 	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1198 	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1199 		if (cg->cg_flags & CG_FLAG_THREAD) {
1200 			CPUSET_FOREACH(cpu, cg->cg_mask) {
1201 				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1202 					break;
1203 			}
1204 		} else
1205 			cpu = INT_MAX;
1206 		if (cpu > mp_maxid) {
1207 			SCHED_STAT_INC(pickcpu_idle_affinity);
1208 			return (ts->ts_cpu);
1209 		}
1210 	}
1211 	/*
1212 	 * Search for the last level cache CPU group in the tree.
1213 	 * Skip caches with expired affinity time and SMT groups.
1214 	 * Affinity to higher level caches will be handled less aggressively.
1215 	 */
1216 	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1217 		if (cg->cg_flags & CG_FLAG_THREAD)
1218 			continue;
1219 		if (!SCHED_AFFINITY(ts, cg->cg_level))
1220 			continue;
1221 		ccg = cg;
1222 	}
1223 	if (ccg != NULL)
1224 		cg = ccg;
1225 	cpu = -1;
1226 	/* Search the group for the less loaded idle CPU we can run now. */
1227 	mask = td->td_cpuset->cs_mask;
1228 	if (cg != NULL && cg != cpu_top &&
1229 	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1230 		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1231 		    INT_MAX, ts->ts_cpu);
1232 	/* Search globally for the less loaded CPU we can run now. */
1233 	if (cpu == -1)
1234 		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1235 	/* Search globally for the less loaded CPU. */
1236 	if (cpu == -1)
1237 		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1238 	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1239 	/*
1240 	 * Compare the lowest loaded cpu to current cpu.
1241 	 */
1242 	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1243 	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1244 	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1245 		SCHED_STAT_INC(pickcpu_local);
1246 		cpu = self;
1247 	} else
1248 		SCHED_STAT_INC(pickcpu_lowest);
1249 	if (cpu != ts->ts_cpu)
1250 		SCHED_STAT_INC(pickcpu_migration);
1251 	return (cpu);
1252 }
1253 #endif
1254 
1255 /*
1256  * Pick the highest priority task we have and return it.
1257  */
1258 static struct thread *
1259 tdq_choose(struct tdq *tdq)
1260 {
1261 	struct thread *td;
1262 
1263 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1264 	td = runq_choose(&tdq->tdq_realtime);
1265 	if (td != NULL)
1266 		return (td);
1267 	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1268 	if (td != NULL) {
1269 		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1270 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1271 		    td->td_priority));
1272 		return (td);
1273 	}
1274 	td = runq_choose(&tdq->tdq_idle);
1275 	if (td != NULL) {
1276 		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1277 		    ("tdq_choose: Invalid priority on idle queue %d",
1278 		    td->td_priority));
1279 		return (td);
1280 	}
1281 
1282 	return (NULL);
1283 }
1284 
1285 /*
1286  * Initialize a thread queue.
1287  */
1288 static void
1289 tdq_setup(struct tdq *tdq)
1290 {
1291 
1292 	if (bootverbose)
1293 		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1294 	runq_init(&tdq->tdq_realtime);
1295 	runq_init(&tdq->tdq_timeshare);
1296 	runq_init(&tdq->tdq_idle);
1297 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1298 	    "sched lock %d", (int)TDQ_ID(tdq));
1299 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1300 	    MTX_SPIN | MTX_RECURSE);
1301 #ifdef KTR
1302 	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1303 	    "CPU %d load", (int)TDQ_ID(tdq));
1304 #endif
1305 }
1306 
1307 #ifdef SMP
1308 static void
1309 sched_setup_smp(void)
1310 {
1311 	struct tdq *tdq;
1312 	int i;
1313 
1314 	cpu_top = smp_topo();
1315 	CPU_FOREACH(i) {
1316 		tdq = TDQ_CPU(i);
1317 		tdq_setup(tdq);
1318 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1319 		if (tdq->tdq_cg == NULL)
1320 			panic("Can't find cpu group for %d\n", i);
1321 	}
1322 	balance_tdq = TDQ_SELF();
1323 	sched_balance();
1324 }
1325 #endif
1326 
1327 /*
1328  * Setup the thread queues and initialize the topology based on MD
1329  * information.
1330  */
1331 static void
1332 sched_setup(void *dummy)
1333 {
1334 	struct tdq *tdq;
1335 
1336 	tdq = TDQ_SELF();
1337 #ifdef SMP
1338 	sched_setup_smp();
1339 #else
1340 	tdq_setup(tdq);
1341 #endif
1342 	/*
1343 	 * To avoid divide-by-zero, we set realstathz a dummy value
1344 	 * in case which sched_clock() called before sched_initticks().
1345 	 */
1346 	realstathz = hz;
1347 	sched_slice = (realstathz/10);	/* ~100ms */
1348 	tickincr = 1 << SCHED_TICK_SHIFT;
1349 
1350 	/* Add thread0's load since it's running. */
1351 	TDQ_LOCK(tdq);
1352 	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1353 	tdq_load_add(tdq, &thread0);
1354 	tdq->tdq_lowpri = thread0.td_priority;
1355 	TDQ_UNLOCK(tdq);
1356 }
1357 
1358 /*
1359  * This routine determines the tickincr after stathz and hz are setup.
1360  */
1361 /* ARGSUSED */
1362 static void
1363 sched_initticks(void *dummy)
1364 {
1365 	int incr;
1366 
1367 	realstathz = stathz ? stathz : hz;
1368 	sched_slice = (realstathz/10);	/* ~100ms */
1369 
1370 	/*
1371 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1372 	 * hz not being evenly divisible by stathz on all platforms.
1373 	 */
1374 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1375 	/*
1376 	 * This does not work for values of stathz that are more than
1377 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1378 	 */
1379 	if (incr == 0)
1380 		incr = 1;
1381 	tickincr = incr;
1382 #ifdef SMP
1383 	/*
1384 	 * Set the default balance interval now that we know
1385 	 * what realstathz is.
1386 	 */
1387 	balance_interval = realstathz;
1388 	/*
1389 	 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4.
1390 	 * This prevents excess thrashing on large machines and excess idle
1391 	 * on smaller machines.
1392 	 */
1393 	steal_thresh = min(fls(mp_ncpus) - 1, 3);
1394 	affinity = SCHED_AFFINITY_DEFAULT;
1395 #endif
1396 	if (sched_idlespinthresh < 0)
1397 		sched_idlespinthresh = max(16, 2 * hz / realstathz);
1398 }
1399 
1400 
1401 /*
1402  * This is the core of the interactivity algorithm.  Determines a score based
1403  * on past behavior.  It is the ratio of sleep time to run time scaled to
1404  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1405  * differs from the cpu usage because it does not account for time spent
1406  * waiting on a run-queue.  Would be prettier if we had floating point.
1407  */
1408 static int
1409 sched_interact_score(struct thread *td)
1410 {
1411 	struct td_sched *ts;
1412 	int div;
1413 
1414 	ts = td->td_sched;
1415 	/*
1416 	 * The score is only needed if this is likely to be an interactive
1417 	 * task.  Don't go through the expense of computing it if there's
1418 	 * no chance.
1419 	 */
1420 	if (sched_interact <= SCHED_INTERACT_HALF &&
1421 		ts->ts_runtime >= ts->ts_slptime)
1422 			return (SCHED_INTERACT_HALF);
1423 
1424 	if (ts->ts_runtime > ts->ts_slptime) {
1425 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1426 		return (SCHED_INTERACT_HALF +
1427 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1428 	}
1429 	if (ts->ts_slptime > ts->ts_runtime) {
1430 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1431 		return (ts->ts_runtime / div);
1432 	}
1433 	/* runtime == slptime */
1434 	if (ts->ts_runtime)
1435 		return (SCHED_INTERACT_HALF);
1436 
1437 	/*
1438 	 * This can happen if slptime and runtime are 0.
1439 	 */
1440 	return (0);
1441 
1442 }
1443 
1444 /*
1445  * Scale the scheduling priority according to the "interactivity" of this
1446  * process.
1447  */
1448 static void
1449 sched_priority(struct thread *td)
1450 {
1451 	int score;
1452 	int pri;
1453 
1454 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1455 		return;
1456 	/*
1457 	 * If the score is interactive we place the thread in the realtime
1458 	 * queue with a priority that is less than kernel and interrupt
1459 	 * priorities.  These threads are not subject to nice restrictions.
1460 	 *
1461 	 * Scores greater than this are placed on the normal timeshare queue
1462 	 * where the priority is partially decided by the most recent cpu
1463 	 * utilization and the rest is decided by nice value.
1464 	 *
1465 	 * The nice value of the process has a linear effect on the calculated
1466 	 * score.  Negative nice values make it easier for a thread to be
1467 	 * considered interactive.
1468 	 */
1469 	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1470 	if (score < sched_interact) {
1471 		pri = PRI_MIN_INTERACT;
1472 		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1473 		    sched_interact) * score;
1474 		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1475 		    ("sched_priority: invalid interactive priority %d score %d",
1476 		    pri, score));
1477 	} else {
1478 		pri = SCHED_PRI_MIN;
1479 		if (td->td_sched->ts_ticks)
1480 			pri += min(SCHED_PRI_TICKS(td->td_sched),
1481 			    SCHED_PRI_RANGE);
1482 		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1483 		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1484 		    ("sched_priority: invalid priority %d: nice %d, "
1485 		    "ticks %d ftick %d ltick %d tick pri %d",
1486 		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1487 		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1488 		    SCHED_PRI_TICKS(td->td_sched)));
1489 	}
1490 	sched_user_prio(td, pri);
1491 
1492 	return;
1493 }
1494 
1495 /*
1496  * This routine enforces a maximum limit on the amount of scheduling history
1497  * kept.  It is called after either the slptime or runtime is adjusted.  This
1498  * function is ugly due to integer math.
1499  */
1500 static void
1501 sched_interact_update(struct thread *td)
1502 {
1503 	struct td_sched *ts;
1504 	u_int sum;
1505 
1506 	ts = td->td_sched;
1507 	sum = ts->ts_runtime + ts->ts_slptime;
1508 	if (sum < SCHED_SLP_RUN_MAX)
1509 		return;
1510 	/*
1511 	 * This only happens from two places:
1512 	 * 1) We have added an unusual amount of run time from fork_exit.
1513 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1514 	 */
1515 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1516 		if (ts->ts_runtime > ts->ts_slptime) {
1517 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1518 			ts->ts_slptime = 1;
1519 		} else {
1520 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1521 			ts->ts_runtime = 1;
1522 		}
1523 		return;
1524 	}
1525 	/*
1526 	 * If we have exceeded by more than 1/5th then the algorithm below
1527 	 * will not bring us back into range.  Dividing by two here forces
1528 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1529 	 */
1530 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1531 		ts->ts_runtime /= 2;
1532 		ts->ts_slptime /= 2;
1533 		return;
1534 	}
1535 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1536 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1537 }
1538 
1539 /*
1540  * Scale back the interactivity history when a child thread is created.  The
1541  * history is inherited from the parent but the thread may behave totally
1542  * differently.  For example, a shell spawning a compiler process.  We want
1543  * to learn that the compiler is behaving badly very quickly.
1544  */
1545 static void
1546 sched_interact_fork(struct thread *td)
1547 {
1548 	int ratio;
1549 	int sum;
1550 
1551 	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1552 	if (sum > SCHED_SLP_RUN_FORK) {
1553 		ratio = sum / SCHED_SLP_RUN_FORK;
1554 		td->td_sched->ts_runtime /= ratio;
1555 		td->td_sched->ts_slptime /= ratio;
1556 	}
1557 }
1558 
1559 /*
1560  * Called from proc0_init() to setup the scheduler fields.
1561  */
1562 void
1563 schedinit(void)
1564 {
1565 
1566 	/*
1567 	 * Set up the scheduler specific parts of proc0.
1568 	 */
1569 	proc0.p_sched = NULL; /* XXX */
1570 	thread0.td_sched = &td_sched0;
1571 	td_sched0.ts_ltick = ticks;
1572 	td_sched0.ts_ftick = ticks;
1573 	td_sched0.ts_slice = sched_slice;
1574 }
1575 
1576 /*
1577  * This is only somewhat accurate since given many processes of the same
1578  * priority they will switch when their slices run out, which will be
1579  * at most sched_slice stathz ticks.
1580  */
1581 int
1582 sched_rr_interval(void)
1583 {
1584 
1585 	/* Convert sched_slice to hz */
1586 	return (hz/(realstathz/sched_slice));
1587 }
1588 
1589 /*
1590  * Update the percent cpu tracking information when it is requested or
1591  * the total history exceeds the maximum.  We keep a sliding history of
1592  * tick counts that slowly decays.  This is less precise than the 4BSD
1593  * mechanism since it happens with less regular and frequent events.
1594  */
1595 static void
1596 sched_pctcpu_update(struct td_sched *ts, int run)
1597 {
1598 	int t = ticks;
1599 
1600 	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1601 		ts->ts_ticks = 0;
1602 		ts->ts_ftick = t - SCHED_TICK_TARG;
1603 	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1604 		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1605 		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1606 		ts->ts_ftick = t - SCHED_TICK_TARG;
1607 	}
1608 	if (run)
1609 		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1610 	ts->ts_ltick = t;
1611 }
1612 
1613 /*
1614  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1615  * if necessary.  This is the back-end for several priority related
1616  * functions.
1617  */
1618 static void
1619 sched_thread_priority(struct thread *td, u_char prio)
1620 {
1621 	struct td_sched *ts;
1622 	struct tdq *tdq;
1623 	int oldpri;
1624 
1625 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1626 	    "prio:%d", td->td_priority, "new prio:%d", prio,
1627 	    KTR_ATTR_LINKED, sched_tdname(curthread));
1628 	if (td != curthread && prio > td->td_priority) {
1629 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1630 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1631 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1632 	}
1633 	ts = td->td_sched;
1634 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1635 	if (td->td_priority == prio)
1636 		return;
1637 	/*
1638 	 * If the priority has been elevated due to priority
1639 	 * propagation, we may have to move ourselves to a new
1640 	 * queue.  This could be optimized to not re-add in some
1641 	 * cases.
1642 	 */
1643 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1644 		sched_rem(td);
1645 		td->td_priority = prio;
1646 		sched_add(td, SRQ_BORROWING);
1647 		return;
1648 	}
1649 	/*
1650 	 * If the thread is currently running we may have to adjust the lowpri
1651 	 * information so other cpus are aware of our current priority.
1652 	 */
1653 	if (TD_IS_RUNNING(td)) {
1654 		tdq = TDQ_CPU(ts->ts_cpu);
1655 		oldpri = td->td_priority;
1656 		td->td_priority = prio;
1657 		if (prio < tdq->tdq_lowpri)
1658 			tdq->tdq_lowpri = prio;
1659 		else if (tdq->tdq_lowpri == oldpri)
1660 			tdq_setlowpri(tdq, td);
1661 		return;
1662 	}
1663 	td->td_priority = prio;
1664 }
1665 
1666 /*
1667  * Update a thread's priority when it is lent another thread's
1668  * priority.
1669  */
1670 void
1671 sched_lend_prio(struct thread *td, u_char prio)
1672 {
1673 
1674 	td->td_flags |= TDF_BORROWING;
1675 	sched_thread_priority(td, prio);
1676 }
1677 
1678 /*
1679  * Restore a thread's priority when priority propagation is
1680  * over.  The prio argument is the minimum priority the thread
1681  * needs to have to satisfy other possible priority lending
1682  * requests.  If the thread's regular priority is less
1683  * important than prio, the thread will keep a priority boost
1684  * of prio.
1685  */
1686 void
1687 sched_unlend_prio(struct thread *td, u_char prio)
1688 {
1689 	u_char base_pri;
1690 
1691 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1692 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1693 		base_pri = td->td_user_pri;
1694 	else
1695 		base_pri = td->td_base_pri;
1696 	if (prio >= base_pri) {
1697 		td->td_flags &= ~TDF_BORROWING;
1698 		sched_thread_priority(td, base_pri);
1699 	} else
1700 		sched_lend_prio(td, prio);
1701 }
1702 
1703 /*
1704  * Standard entry for setting the priority to an absolute value.
1705  */
1706 void
1707 sched_prio(struct thread *td, u_char prio)
1708 {
1709 	u_char oldprio;
1710 
1711 	/* First, update the base priority. */
1712 	td->td_base_pri = prio;
1713 
1714 	/*
1715 	 * If the thread is borrowing another thread's priority, don't
1716 	 * ever lower the priority.
1717 	 */
1718 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1719 		return;
1720 
1721 	/* Change the real priority. */
1722 	oldprio = td->td_priority;
1723 	sched_thread_priority(td, prio);
1724 
1725 	/*
1726 	 * If the thread is on a turnstile, then let the turnstile update
1727 	 * its state.
1728 	 */
1729 	if (TD_ON_LOCK(td) && oldprio != prio)
1730 		turnstile_adjust(td, oldprio);
1731 }
1732 
1733 /*
1734  * Set the base user priority, does not effect current running priority.
1735  */
1736 void
1737 sched_user_prio(struct thread *td, u_char prio)
1738 {
1739 
1740 	td->td_base_user_pri = prio;
1741 	if (td->td_lend_user_pri <= prio)
1742 		return;
1743 	td->td_user_pri = prio;
1744 }
1745 
1746 void
1747 sched_lend_user_prio(struct thread *td, u_char prio)
1748 {
1749 
1750 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1751 	td->td_lend_user_pri = prio;
1752 	td->td_user_pri = min(prio, td->td_base_user_pri);
1753 	if (td->td_priority > td->td_user_pri)
1754 		sched_prio(td, td->td_user_pri);
1755 	else if (td->td_priority != td->td_user_pri)
1756 		td->td_flags |= TDF_NEEDRESCHED;
1757 }
1758 
1759 /*
1760  * Handle migration from sched_switch().  This happens only for
1761  * cpu binding.
1762  */
1763 static struct mtx *
1764 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1765 {
1766 	struct tdq *tdn;
1767 
1768 	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1769 #ifdef SMP
1770 	tdq_load_rem(tdq, td);
1771 	/*
1772 	 * Do the lock dance required to avoid LOR.  We grab an extra
1773 	 * spinlock nesting to prevent preemption while we're
1774 	 * not holding either run-queue lock.
1775 	 */
1776 	spinlock_enter();
1777 	thread_lock_block(td);	/* This releases the lock on tdq. */
1778 
1779 	/*
1780 	 * Acquire both run-queue locks before placing the thread on the new
1781 	 * run-queue to avoid deadlocks created by placing a thread with a
1782 	 * blocked lock on the run-queue of a remote processor.  The deadlock
1783 	 * occurs when a third processor attempts to lock the two queues in
1784 	 * question while the target processor is spinning with its own
1785 	 * run-queue lock held while waiting for the blocked lock to clear.
1786 	 */
1787 	tdq_lock_pair(tdn, tdq);
1788 	tdq_add(tdn, td, flags);
1789 	tdq_notify(tdn, td);
1790 	TDQ_UNLOCK(tdn);
1791 	spinlock_exit();
1792 #endif
1793 	return (TDQ_LOCKPTR(tdn));
1794 }
1795 
1796 /*
1797  * Variadic version of thread_lock_unblock() that does not assume td_lock
1798  * is blocked.
1799  */
1800 static inline void
1801 thread_unblock_switch(struct thread *td, struct mtx *mtx)
1802 {
1803 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1804 	    (uintptr_t)mtx);
1805 }
1806 
1807 /*
1808  * Switch threads.  This function has to handle threads coming in while
1809  * blocked for some reason, running, or idle.  It also must deal with
1810  * migrating a thread from one queue to another as running threads may
1811  * be assigned elsewhere via binding.
1812  */
1813 void
1814 sched_switch(struct thread *td, struct thread *newtd, int flags)
1815 {
1816 	struct tdq *tdq;
1817 	struct td_sched *ts;
1818 	struct mtx *mtx;
1819 	int srqflag;
1820 	int cpuid;
1821 
1822 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1823 	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1824 
1825 	cpuid = PCPU_GET(cpuid);
1826 	tdq = TDQ_CPU(cpuid);
1827 	ts = td->td_sched;
1828 	mtx = td->td_lock;
1829 	sched_pctcpu_update(ts, 1);
1830 	ts->ts_rltick = ticks;
1831 	td->td_lastcpu = td->td_oncpu;
1832 	td->td_oncpu = NOCPU;
1833 	if (!(flags & SW_PREEMPT))
1834 		td->td_flags &= ~TDF_NEEDRESCHED;
1835 	td->td_owepreempt = 0;
1836 	tdq->tdq_switchcnt++;
1837 	/*
1838 	 * The lock pointer in an idle thread should never change.  Reset it
1839 	 * to CAN_RUN as well.
1840 	 */
1841 	if (TD_IS_IDLETHREAD(td)) {
1842 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1843 		TD_SET_CAN_RUN(td);
1844 	} else if (TD_IS_RUNNING(td)) {
1845 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1846 		srqflag = (flags & SW_PREEMPT) ?
1847 		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1848 		    SRQ_OURSELF|SRQ_YIELDING;
1849 #ifdef SMP
1850 		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1851 			ts->ts_cpu = sched_pickcpu(td, 0);
1852 #endif
1853 		if (ts->ts_cpu == cpuid)
1854 			tdq_runq_add(tdq, td, srqflag);
1855 		else {
1856 			KASSERT(THREAD_CAN_MIGRATE(td) ||
1857 			    (ts->ts_flags & TSF_BOUND) != 0,
1858 			    ("Thread %p shouldn't migrate", td));
1859 			mtx = sched_switch_migrate(tdq, td, srqflag);
1860 		}
1861 	} else {
1862 		/* This thread must be going to sleep. */
1863 		TDQ_LOCK(tdq);
1864 		mtx = thread_lock_block(td);
1865 		tdq_load_rem(tdq, td);
1866 	}
1867 	/*
1868 	 * We enter here with the thread blocked and assigned to the
1869 	 * appropriate cpu run-queue or sleep-queue and with the current
1870 	 * thread-queue locked.
1871 	 */
1872 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1873 	newtd = choosethread();
1874 	/*
1875 	 * Call the MD code to switch contexts if necessary.
1876 	 */
1877 	if (td != newtd) {
1878 #ifdef	HWPMC_HOOKS
1879 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1880 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1881 #endif
1882 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1883 		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1884 		sched_pctcpu_update(newtd->td_sched, 0);
1885 
1886 #ifdef KDTRACE_HOOKS
1887 		/*
1888 		 * If DTrace has set the active vtime enum to anything
1889 		 * other than INACTIVE (0), then it should have set the
1890 		 * function to call.
1891 		 */
1892 		if (dtrace_vtime_active)
1893 			(*dtrace_vtime_switch_func)(newtd);
1894 #endif
1895 
1896 		cpu_switch(td, newtd, mtx);
1897 		/*
1898 		 * We may return from cpu_switch on a different cpu.  However,
1899 		 * we always return with td_lock pointing to the current cpu's
1900 		 * run queue lock.
1901 		 */
1902 		cpuid = PCPU_GET(cpuid);
1903 		tdq = TDQ_CPU(cpuid);
1904 		lock_profile_obtain_lock_success(
1905 		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1906 #ifdef	HWPMC_HOOKS
1907 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1908 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1909 #endif
1910 	} else
1911 		thread_unblock_switch(td, mtx);
1912 	/*
1913 	 * Assert that all went well and return.
1914 	 */
1915 	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1916 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1917 	td->td_oncpu = cpuid;
1918 }
1919 
1920 /*
1921  * Adjust thread priorities as a result of a nice request.
1922  */
1923 void
1924 sched_nice(struct proc *p, int nice)
1925 {
1926 	struct thread *td;
1927 
1928 	PROC_LOCK_ASSERT(p, MA_OWNED);
1929 
1930 	p->p_nice = nice;
1931 	FOREACH_THREAD_IN_PROC(p, td) {
1932 		thread_lock(td);
1933 		sched_priority(td);
1934 		sched_prio(td, td->td_base_user_pri);
1935 		thread_unlock(td);
1936 	}
1937 }
1938 
1939 /*
1940  * Record the sleep time for the interactivity scorer.
1941  */
1942 void
1943 sched_sleep(struct thread *td, int prio)
1944 {
1945 
1946 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1947 
1948 	td->td_slptick = ticks;
1949 	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1950 		td->td_flags |= TDF_CANSWAP;
1951 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1952 		return;
1953 	if (static_boost == 1 && prio)
1954 		sched_prio(td, prio);
1955 	else if (static_boost && td->td_priority > static_boost)
1956 		sched_prio(td, static_boost);
1957 }
1958 
1959 /*
1960  * Schedule a thread to resume execution and record how long it voluntarily
1961  * slept.  We also update the pctcpu, interactivity, and priority.
1962  */
1963 void
1964 sched_wakeup(struct thread *td)
1965 {
1966 	struct td_sched *ts;
1967 	int slptick;
1968 
1969 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1970 	ts = td->td_sched;
1971 	td->td_flags &= ~TDF_CANSWAP;
1972 	/*
1973 	 * If we slept for more than a tick update our interactivity and
1974 	 * priority.
1975 	 */
1976 	slptick = td->td_slptick;
1977 	td->td_slptick = 0;
1978 	if (slptick && slptick != ticks) {
1979 		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
1980 		sched_interact_update(td);
1981 		sched_pctcpu_update(ts, 0);
1982 	}
1983 	/* Reset the slice value after we sleep. */
1984 	ts->ts_slice = sched_slice;
1985 	sched_add(td, SRQ_BORING);
1986 }
1987 
1988 /*
1989  * Penalize the parent for creating a new child and initialize the child's
1990  * priority.
1991  */
1992 void
1993 sched_fork(struct thread *td, struct thread *child)
1994 {
1995 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1996 	sched_pctcpu_update(td->td_sched, 1);
1997 	sched_fork_thread(td, child);
1998 	/*
1999 	 * Penalize the parent and child for forking.
2000 	 */
2001 	sched_interact_fork(child);
2002 	sched_priority(child);
2003 	td->td_sched->ts_runtime += tickincr;
2004 	sched_interact_update(td);
2005 	sched_priority(td);
2006 }
2007 
2008 /*
2009  * Fork a new thread, may be within the same process.
2010  */
2011 void
2012 sched_fork_thread(struct thread *td, struct thread *child)
2013 {
2014 	struct td_sched *ts;
2015 	struct td_sched *ts2;
2016 
2017 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2018 	/*
2019 	 * Initialize child.
2020 	 */
2021 	ts = td->td_sched;
2022 	ts2 = child->td_sched;
2023 	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2024 	child->td_cpuset = cpuset_ref(td->td_cpuset);
2025 	ts2->ts_cpu = ts->ts_cpu;
2026 	ts2->ts_flags = 0;
2027 	/*
2028 	 * Grab our parents cpu estimation information.
2029 	 */
2030 	ts2->ts_ticks = ts->ts_ticks;
2031 	ts2->ts_ltick = ts->ts_ltick;
2032 	ts2->ts_ftick = ts->ts_ftick;
2033 	/*
2034 	 * Do not inherit any borrowed priority from the parent.
2035 	 */
2036 	child->td_priority = child->td_base_pri;
2037 	/*
2038 	 * And update interactivity score.
2039 	 */
2040 	ts2->ts_slptime = ts->ts_slptime;
2041 	ts2->ts_runtime = ts->ts_runtime;
2042 	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2043 #ifdef KTR
2044 	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2045 #endif
2046 }
2047 
2048 /*
2049  * Adjust the priority class of a thread.
2050  */
2051 void
2052 sched_class(struct thread *td, int class)
2053 {
2054 
2055 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2056 	if (td->td_pri_class == class)
2057 		return;
2058 	td->td_pri_class = class;
2059 }
2060 
2061 /*
2062  * Return some of the child's priority and interactivity to the parent.
2063  */
2064 void
2065 sched_exit(struct proc *p, struct thread *child)
2066 {
2067 	struct thread *td;
2068 
2069 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2070 	    "prio:%d", child->td_priority);
2071 	PROC_LOCK_ASSERT(p, MA_OWNED);
2072 	td = FIRST_THREAD_IN_PROC(p);
2073 	sched_exit_thread(td, child);
2074 }
2075 
2076 /*
2077  * Penalize another thread for the time spent on this one.  This helps to
2078  * worsen the priority and interactivity of processes which schedule batch
2079  * jobs such as make.  This has little effect on the make process itself but
2080  * causes new processes spawned by it to receive worse scores immediately.
2081  */
2082 void
2083 sched_exit_thread(struct thread *td, struct thread *child)
2084 {
2085 
2086 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2087 	    "prio:%d", child->td_priority);
2088 	/*
2089 	 * Give the child's runtime to the parent without returning the
2090 	 * sleep time as a penalty to the parent.  This causes shells that
2091 	 * launch expensive things to mark their children as expensive.
2092 	 */
2093 	thread_lock(td);
2094 	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2095 	sched_interact_update(td);
2096 	sched_priority(td);
2097 	thread_unlock(td);
2098 }
2099 
2100 void
2101 sched_preempt(struct thread *td)
2102 {
2103 	struct tdq *tdq;
2104 
2105 	thread_lock(td);
2106 	tdq = TDQ_SELF();
2107 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2108 	tdq->tdq_ipipending = 0;
2109 	if (td->td_priority > tdq->tdq_lowpri) {
2110 		int flags;
2111 
2112 		flags = SW_INVOL | SW_PREEMPT;
2113 		if (td->td_critnest > 1)
2114 			td->td_owepreempt = 1;
2115 		else if (TD_IS_IDLETHREAD(td))
2116 			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2117 		else
2118 			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2119 	}
2120 	thread_unlock(td);
2121 }
2122 
2123 /*
2124  * Fix priorities on return to user-space.  Priorities may be elevated due
2125  * to static priorities in msleep() or similar.
2126  */
2127 void
2128 sched_userret(struct thread *td)
2129 {
2130 	/*
2131 	 * XXX we cheat slightly on the locking here to avoid locking in
2132 	 * the usual case.  Setting td_priority here is essentially an
2133 	 * incomplete workaround for not setting it properly elsewhere.
2134 	 * Now that some interrupt handlers are threads, not setting it
2135 	 * properly elsewhere can clobber it in the window between setting
2136 	 * it here and returning to user mode, so don't waste time setting
2137 	 * it perfectly here.
2138 	 */
2139 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2140 	    ("thread with borrowed priority returning to userland"));
2141 	if (td->td_priority != td->td_user_pri) {
2142 		thread_lock(td);
2143 		td->td_priority = td->td_user_pri;
2144 		td->td_base_pri = td->td_user_pri;
2145 		tdq_setlowpri(TDQ_SELF(), td);
2146 		thread_unlock(td);
2147         }
2148 }
2149 
2150 /*
2151  * Handle a stathz tick.  This is really only relevant for timeshare
2152  * threads.
2153  */
2154 void
2155 sched_clock(struct thread *td)
2156 {
2157 	struct tdq *tdq;
2158 	struct td_sched *ts;
2159 
2160 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2161 	tdq = TDQ_SELF();
2162 #ifdef SMP
2163 	/*
2164 	 * We run the long term load balancer infrequently on the first cpu.
2165 	 */
2166 	if (balance_tdq == tdq) {
2167 		if (balance_ticks && --balance_ticks == 0)
2168 			sched_balance();
2169 	}
2170 #endif
2171 	/*
2172 	 * Save the old switch count so we have a record of the last ticks
2173 	 * activity.   Initialize the new switch count based on our load.
2174 	 * If there is some activity seed it to reflect that.
2175 	 */
2176 	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2177 	tdq->tdq_switchcnt = tdq->tdq_load;
2178 	/*
2179 	 * Advance the insert index once for each tick to ensure that all
2180 	 * threads get a chance to run.
2181 	 */
2182 	if (tdq->tdq_idx == tdq->tdq_ridx) {
2183 		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2184 		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2185 			tdq->tdq_ridx = tdq->tdq_idx;
2186 	}
2187 	ts = td->td_sched;
2188 	sched_pctcpu_update(ts, 1);
2189 	if (td->td_pri_class & PRI_FIFO_BIT)
2190 		return;
2191 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2192 		/*
2193 		 * We used a tick; charge it to the thread so
2194 		 * that we can compute our interactivity.
2195 		 */
2196 		td->td_sched->ts_runtime += tickincr;
2197 		sched_interact_update(td);
2198 		sched_priority(td);
2199 	}
2200 	/*
2201 	 * We used up one time slice.
2202 	 */
2203 	if (--ts->ts_slice > 0)
2204 		return;
2205 	/*
2206 	 * We're out of time, force a requeue at userret().
2207 	 */
2208 	ts->ts_slice = sched_slice;
2209 	td->td_flags |= TDF_NEEDRESCHED;
2210 }
2211 
2212 /*
2213  * Called once per hz tick.
2214  */
2215 void
2216 sched_tick(int cnt)
2217 {
2218 
2219 }
2220 
2221 /*
2222  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2223  * cooperative idle threads.
2224  */
2225 int
2226 sched_runnable(void)
2227 {
2228 	struct tdq *tdq;
2229 	int load;
2230 
2231 	load = 1;
2232 
2233 	tdq = TDQ_SELF();
2234 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2235 		if (tdq->tdq_load > 0)
2236 			goto out;
2237 	} else
2238 		if (tdq->tdq_load - 1 > 0)
2239 			goto out;
2240 	load = 0;
2241 out:
2242 	return (load);
2243 }
2244 
2245 /*
2246  * Choose the highest priority thread to run.  The thread is removed from
2247  * the run-queue while running however the load remains.  For SMP we set
2248  * the tdq in the global idle bitmask if it idles here.
2249  */
2250 struct thread *
2251 sched_choose(void)
2252 {
2253 	struct thread *td;
2254 	struct tdq *tdq;
2255 
2256 	tdq = TDQ_SELF();
2257 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2258 	td = tdq_choose(tdq);
2259 	if (td) {
2260 		tdq_runq_rem(tdq, td);
2261 		tdq->tdq_lowpri = td->td_priority;
2262 		return (td);
2263 	}
2264 	tdq->tdq_lowpri = PRI_MAX_IDLE;
2265 	return (PCPU_GET(idlethread));
2266 }
2267 
2268 /*
2269  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2270  * we always request it once we exit a critical section.
2271  */
2272 static inline void
2273 sched_setpreempt(struct thread *td)
2274 {
2275 	struct thread *ctd;
2276 	int cpri;
2277 	int pri;
2278 
2279 	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2280 
2281 	ctd = curthread;
2282 	pri = td->td_priority;
2283 	cpri = ctd->td_priority;
2284 	if (pri < cpri)
2285 		ctd->td_flags |= TDF_NEEDRESCHED;
2286 	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2287 		return;
2288 	if (!sched_shouldpreempt(pri, cpri, 0))
2289 		return;
2290 	ctd->td_owepreempt = 1;
2291 }
2292 
2293 /*
2294  * Add a thread to a thread queue.  Select the appropriate runq and add the
2295  * thread to it.  This is the internal function called when the tdq is
2296  * predetermined.
2297  */
2298 void
2299 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2300 {
2301 
2302 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2303 	KASSERT((td->td_inhibitors == 0),
2304 	    ("sched_add: trying to run inhibited thread"));
2305 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2306 	    ("sched_add: bad thread state"));
2307 	KASSERT(td->td_flags & TDF_INMEM,
2308 	    ("sched_add: thread swapped out"));
2309 
2310 	if (td->td_priority < tdq->tdq_lowpri)
2311 		tdq->tdq_lowpri = td->td_priority;
2312 	tdq_runq_add(tdq, td, flags);
2313 	tdq_load_add(tdq, td);
2314 }
2315 
2316 /*
2317  * Select the target thread queue and add a thread to it.  Request
2318  * preemption or IPI a remote processor if required.
2319  */
2320 void
2321 sched_add(struct thread *td, int flags)
2322 {
2323 	struct tdq *tdq;
2324 #ifdef SMP
2325 	int cpu;
2326 #endif
2327 
2328 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2329 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2330 	    sched_tdname(curthread));
2331 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2332 	    KTR_ATTR_LINKED, sched_tdname(td));
2333 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2334 	/*
2335 	 * Recalculate the priority before we select the target cpu or
2336 	 * run-queue.
2337 	 */
2338 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2339 		sched_priority(td);
2340 #ifdef SMP
2341 	/*
2342 	 * Pick the destination cpu and if it isn't ours transfer to the
2343 	 * target cpu.
2344 	 */
2345 	cpu = sched_pickcpu(td, flags);
2346 	tdq = sched_setcpu(td, cpu, flags);
2347 	tdq_add(tdq, td, flags);
2348 	if (cpu != PCPU_GET(cpuid)) {
2349 		tdq_notify(tdq, td);
2350 		return;
2351 	}
2352 #else
2353 	tdq = TDQ_SELF();
2354 	TDQ_LOCK(tdq);
2355 	/*
2356 	 * Now that the thread is moving to the run-queue, set the lock
2357 	 * to the scheduler's lock.
2358 	 */
2359 	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2360 	tdq_add(tdq, td, flags);
2361 #endif
2362 	if (!(flags & SRQ_YIELDING))
2363 		sched_setpreempt(td);
2364 }
2365 
2366 /*
2367  * Remove a thread from a run-queue without running it.  This is used
2368  * when we're stealing a thread from a remote queue.  Otherwise all threads
2369  * exit by calling sched_exit_thread() and sched_throw() themselves.
2370  */
2371 void
2372 sched_rem(struct thread *td)
2373 {
2374 	struct tdq *tdq;
2375 
2376 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2377 	    "prio:%d", td->td_priority);
2378 	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2379 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2380 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2381 	KASSERT(TD_ON_RUNQ(td),
2382 	    ("sched_rem: thread not on run queue"));
2383 	tdq_runq_rem(tdq, td);
2384 	tdq_load_rem(tdq, td);
2385 	TD_SET_CAN_RUN(td);
2386 	if (td->td_priority == tdq->tdq_lowpri)
2387 		tdq_setlowpri(tdq, NULL);
2388 }
2389 
2390 /*
2391  * Fetch cpu utilization information.  Updates on demand.
2392  */
2393 fixpt_t
2394 sched_pctcpu(struct thread *td)
2395 {
2396 	fixpt_t pctcpu;
2397 	struct td_sched *ts;
2398 
2399 	pctcpu = 0;
2400 	ts = td->td_sched;
2401 	if (ts == NULL)
2402 		return (0);
2403 
2404 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2405 	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2406 	if (ts->ts_ticks) {
2407 		int rtick;
2408 
2409 		/* How many rtick per second ? */
2410 		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2411 		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2412 	}
2413 
2414 	return (pctcpu);
2415 }
2416 
2417 /*
2418  * Enforce affinity settings for a thread.  Called after adjustments to
2419  * cpumask.
2420  */
2421 void
2422 sched_affinity(struct thread *td)
2423 {
2424 #ifdef SMP
2425 	struct td_sched *ts;
2426 
2427 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2428 	ts = td->td_sched;
2429 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2430 		return;
2431 	if (TD_ON_RUNQ(td)) {
2432 		sched_rem(td);
2433 		sched_add(td, SRQ_BORING);
2434 		return;
2435 	}
2436 	if (!TD_IS_RUNNING(td))
2437 		return;
2438 	/*
2439 	 * Force a switch before returning to userspace.  If the
2440 	 * target thread is not running locally send an ipi to force
2441 	 * the issue.
2442 	 */
2443 	td->td_flags |= TDF_NEEDRESCHED;
2444 	if (td != curthread)
2445 		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2446 #endif
2447 }
2448 
2449 /*
2450  * Bind a thread to a target cpu.
2451  */
2452 void
2453 sched_bind(struct thread *td, int cpu)
2454 {
2455 	struct td_sched *ts;
2456 
2457 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2458 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2459 	ts = td->td_sched;
2460 	if (ts->ts_flags & TSF_BOUND)
2461 		sched_unbind(td);
2462 	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2463 	ts->ts_flags |= TSF_BOUND;
2464 	sched_pin();
2465 	if (PCPU_GET(cpuid) == cpu)
2466 		return;
2467 	ts->ts_cpu = cpu;
2468 	/* When we return from mi_switch we'll be on the correct cpu. */
2469 	mi_switch(SW_VOL, NULL);
2470 }
2471 
2472 /*
2473  * Release a bound thread.
2474  */
2475 void
2476 sched_unbind(struct thread *td)
2477 {
2478 	struct td_sched *ts;
2479 
2480 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2481 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2482 	ts = td->td_sched;
2483 	if ((ts->ts_flags & TSF_BOUND) == 0)
2484 		return;
2485 	ts->ts_flags &= ~TSF_BOUND;
2486 	sched_unpin();
2487 }
2488 
2489 int
2490 sched_is_bound(struct thread *td)
2491 {
2492 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2493 	return (td->td_sched->ts_flags & TSF_BOUND);
2494 }
2495 
2496 /*
2497  * Basic yield call.
2498  */
2499 void
2500 sched_relinquish(struct thread *td)
2501 {
2502 	thread_lock(td);
2503 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2504 	thread_unlock(td);
2505 }
2506 
2507 /*
2508  * Return the total system load.
2509  */
2510 int
2511 sched_load(void)
2512 {
2513 #ifdef SMP
2514 	int total;
2515 	int i;
2516 
2517 	total = 0;
2518 	CPU_FOREACH(i)
2519 		total += TDQ_CPU(i)->tdq_sysload;
2520 	return (total);
2521 #else
2522 	return (TDQ_SELF()->tdq_sysload);
2523 #endif
2524 }
2525 
2526 int
2527 sched_sizeof_proc(void)
2528 {
2529 	return (sizeof(struct proc));
2530 }
2531 
2532 int
2533 sched_sizeof_thread(void)
2534 {
2535 	return (sizeof(struct thread) + sizeof(struct td_sched));
2536 }
2537 
2538 #ifdef SMP
2539 #define	TDQ_IDLESPIN(tdq)						\
2540     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2541 #else
2542 #define	TDQ_IDLESPIN(tdq)	1
2543 #endif
2544 
2545 /*
2546  * The actual idle process.
2547  */
2548 void
2549 sched_idletd(void *dummy)
2550 {
2551 	struct thread *td;
2552 	struct tdq *tdq;
2553 	int switchcnt;
2554 	int i;
2555 
2556 	mtx_assert(&Giant, MA_NOTOWNED);
2557 	td = curthread;
2558 	tdq = TDQ_SELF();
2559 	for (;;) {
2560 #ifdef SMP
2561 		if (tdq_idled(tdq) == 0)
2562 			continue;
2563 #endif
2564 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2565 		/*
2566 		 * If we're switching very frequently, spin while checking
2567 		 * for load rather than entering a low power state that
2568 		 * may require an IPI.  However, don't do any busy
2569 		 * loops while on SMT machines as this simply steals
2570 		 * cycles from cores doing useful work.
2571 		 */
2572 		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2573 			for (i = 0; i < sched_idlespins; i++) {
2574 				if (tdq->tdq_load)
2575 					break;
2576 				cpu_spinwait();
2577 			}
2578 		}
2579 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2580 		if (tdq->tdq_load == 0) {
2581 			tdq->tdq_cpu_idle = 1;
2582 			if (tdq->tdq_load == 0) {
2583 				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2584 				tdq->tdq_switchcnt++;
2585 			}
2586 			tdq->tdq_cpu_idle = 0;
2587 		}
2588 		if (tdq->tdq_load) {
2589 			thread_lock(td);
2590 			mi_switch(SW_VOL | SWT_IDLE, NULL);
2591 			thread_unlock(td);
2592 		}
2593 	}
2594 }
2595 
2596 /*
2597  * A CPU is entering for the first time or a thread is exiting.
2598  */
2599 void
2600 sched_throw(struct thread *td)
2601 {
2602 	struct thread *newtd;
2603 	struct tdq *tdq;
2604 
2605 	tdq = TDQ_SELF();
2606 	if (td == NULL) {
2607 		/* Correct spinlock nesting and acquire the correct lock. */
2608 		TDQ_LOCK(tdq);
2609 		spinlock_exit();
2610 		PCPU_SET(switchtime, cpu_ticks());
2611 		PCPU_SET(switchticks, ticks);
2612 	} else {
2613 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2614 		tdq_load_rem(tdq, td);
2615 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2616 	}
2617 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2618 	newtd = choosethread();
2619 	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2620 	cpu_throw(td, newtd);		/* doesn't return */
2621 }
2622 
2623 /*
2624  * This is called from fork_exit().  Just acquire the correct locks and
2625  * let fork do the rest of the work.
2626  */
2627 void
2628 sched_fork_exit(struct thread *td)
2629 {
2630 	struct td_sched *ts;
2631 	struct tdq *tdq;
2632 	int cpuid;
2633 
2634 	/*
2635 	 * Finish setting up thread glue so that it begins execution in a
2636 	 * non-nested critical section with the scheduler lock held.
2637 	 */
2638 	cpuid = PCPU_GET(cpuid);
2639 	tdq = TDQ_CPU(cpuid);
2640 	ts = td->td_sched;
2641 	if (TD_IS_IDLETHREAD(td))
2642 		td->td_lock = TDQ_LOCKPTR(tdq);
2643 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2644 	td->td_oncpu = cpuid;
2645 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2646 	lock_profile_obtain_lock_success(
2647 	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2648 }
2649 
2650 /*
2651  * Create on first use to catch odd startup conditons.
2652  */
2653 char *
2654 sched_tdname(struct thread *td)
2655 {
2656 #ifdef KTR
2657 	struct td_sched *ts;
2658 
2659 	ts = td->td_sched;
2660 	if (ts->ts_name[0] == '\0')
2661 		snprintf(ts->ts_name, sizeof(ts->ts_name),
2662 		    "%s tid %d", td->td_name, td->td_tid);
2663 	return (ts->ts_name);
2664 #else
2665 	return (td->td_name);
2666 #endif
2667 }
2668 
2669 #ifdef KTR
2670 void
2671 sched_clear_tdname(struct thread *td)
2672 {
2673 	struct td_sched *ts;
2674 
2675 	ts = td->td_sched;
2676 	ts->ts_name[0] = '\0';
2677 }
2678 #endif
2679 
2680 #ifdef SMP
2681 
2682 /*
2683  * Build the CPU topology dump string. Is recursively called to collect
2684  * the topology tree.
2685  */
2686 static int
2687 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2688     int indent)
2689 {
2690 	char cpusetbuf[CPUSETBUFSIZ];
2691 	int i, first;
2692 
2693 	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2694 	    "", 1 + indent / 2, cg->cg_level);
2695 	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2696 	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2697 	first = TRUE;
2698 	for (i = 0; i < MAXCPU; i++) {
2699 		if (CPU_ISSET(i, &cg->cg_mask)) {
2700 			if (!first)
2701 				sbuf_printf(sb, ", ");
2702 			else
2703 				first = FALSE;
2704 			sbuf_printf(sb, "%d", i);
2705 		}
2706 	}
2707 	sbuf_printf(sb, "</cpu>\n");
2708 
2709 	if (cg->cg_flags != 0) {
2710 		sbuf_printf(sb, "%*s <flags>", indent, "");
2711 		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2712 			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2713 		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2714 			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2715 		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2716 			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2717 		sbuf_printf(sb, "</flags>\n");
2718 	}
2719 
2720 	if (cg->cg_children > 0) {
2721 		sbuf_printf(sb, "%*s <children>\n", indent, "");
2722 		for (i = 0; i < cg->cg_children; i++)
2723 			sysctl_kern_sched_topology_spec_internal(sb,
2724 			    &cg->cg_child[i], indent+2);
2725 		sbuf_printf(sb, "%*s </children>\n", indent, "");
2726 	}
2727 	sbuf_printf(sb, "%*s</group>\n", indent, "");
2728 	return (0);
2729 }
2730 
2731 /*
2732  * Sysctl handler for retrieving topology dump. It's a wrapper for
2733  * the recursive sysctl_kern_smp_topology_spec_internal().
2734  */
2735 static int
2736 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2737 {
2738 	struct sbuf *topo;
2739 	int err;
2740 
2741 	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2742 
2743 	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2744 	if (topo == NULL)
2745 		return (ENOMEM);
2746 
2747 	sbuf_printf(topo, "<groups>\n");
2748 	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2749 	sbuf_printf(topo, "</groups>\n");
2750 
2751 	if (err == 0) {
2752 		sbuf_finish(topo);
2753 		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2754 	}
2755 	sbuf_delete(topo);
2756 	return (err);
2757 }
2758 
2759 #endif
2760 
2761 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2762 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2763     "Scheduler name");
2764 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2765     "Slice size for timeshare threads");
2766 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2767      "Interactivity score threshold");
2768 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2769      0,"Min priority for preemption, lower priorities have greater precedence");
2770 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2771      0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2772 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2773      0,"Number of times idle will spin waiting for new work.");
2774 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2775      0,"Threshold before we will permit idle spinning.");
2776 #ifdef SMP
2777 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2778     "Number of hz ticks to keep thread affinity for");
2779 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2780     "Enables the long-term load balancer");
2781 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2782     &balance_interval, 0,
2783     "Average frequency in stathz ticks to run the long-term balancer");
2784 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2785     "Attempts to steal work from other cores before idling");
2786 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2787     "Minimum load on remote cpu before we'll steal");
2788 
2789 /* Retrieve SMP topology */
2790 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2791     CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2792     "XML dump of detected CPU topology");
2793 
2794 #endif
2795 
2796 /* ps compat.  All cpu percentages from ULE are weighted. */
2797 static int ccpu = 0;
2798 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2799