1 /*- 2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* 28 * This file implements the ULE scheduler. ULE supports independent CPU 29 * run queues and fine grain locking. It has superior interactive 30 * performance under load even on uni-processor systems. 31 * 32 * etymology: 33 * ULE is the last three letters in schedule. It owes its name to a 34 * generic user created for a scheduling system by Paul Mikesell at 35 * Isilon Systems and a general lack of creativity on the part of the author. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_hwpmc_hooks.h" 42 #include "opt_kdtrace.h" 43 #include "opt_sched.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/kdb.h> 48 #include <sys/kernel.h> 49 #include <sys/ktr.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/proc.h> 53 #include <sys/resource.h> 54 #include <sys/resourcevar.h> 55 #include <sys/sched.h> 56 #include <sys/smp.h> 57 #include <sys/sx.h> 58 #include <sys/sysctl.h> 59 #include <sys/sysproto.h> 60 #include <sys/turnstile.h> 61 #include <sys/umtx.h> 62 #include <sys/vmmeter.h> 63 #include <sys/cpuset.h> 64 #include <sys/sbuf.h> 65 66 #ifdef HWPMC_HOOKS 67 #include <sys/pmckern.h> 68 #endif 69 70 #ifdef KDTRACE_HOOKS 71 #include <sys/dtrace_bsd.h> 72 int dtrace_vtime_active; 73 dtrace_vtime_switch_func_t dtrace_vtime_switch_func; 74 #endif 75 76 #include <machine/cpu.h> 77 #include <machine/smp.h> 78 79 #if defined(__powerpc__) && defined(E500) 80 #error "This architecture is not currently compatible with ULE" 81 #endif 82 83 #define KTR_ULE 0 84 85 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX))) 86 #define TDQ_NAME_LEN (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU))) 87 #define TDQ_LOADNAME_LEN (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load")) 88 89 /* 90 * Thread scheduler specific section. All fields are protected 91 * by the thread lock. 92 */ 93 struct td_sched { 94 struct runq *ts_runq; /* Run-queue we're queued on. */ 95 short ts_flags; /* TSF_* flags. */ 96 u_char ts_cpu; /* CPU that we have affinity for. */ 97 int ts_rltick; /* Real last tick, for affinity. */ 98 int ts_slice; /* Ticks of slice remaining. */ 99 u_int ts_slptime; /* Number of ticks we vol. slept */ 100 u_int ts_runtime; /* Number of ticks we were running */ 101 int ts_ltick; /* Last tick that we were running on */ 102 int ts_ftick; /* First tick that we were running on */ 103 int ts_ticks; /* Tick count */ 104 #ifdef KTR 105 char ts_name[TS_NAME_LEN]; 106 #endif 107 }; 108 /* flags kept in ts_flags */ 109 #define TSF_BOUND 0x0001 /* Thread can not migrate. */ 110 #define TSF_XFERABLE 0x0002 /* Thread was added as transferable. */ 111 112 static struct td_sched td_sched0; 113 114 #define THREAD_CAN_MIGRATE(td) ((td)->td_pinned == 0) 115 #define THREAD_CAN_SCHED(td, cpu) \ 116 CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask) 117 118 /* 119 * Priority ranges used for interactive and non-interactive timeshare 120 * threads. The timeshare priorities are split up into four ranges. 121 * The first range handles interactive threads. The last three ranges 122 * (NHALF, x, and NHALF) handle non-interactive threads with the outer 123 * ranges supporting nice values. 124 */ 125 #define PRI_TIMESHARE_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1) 126 #define PRI_INTERACT_RANGE ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2) 127 #define PRI_BATCH_RANGE (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE) 128 129 #define PRI_MIN_INTERACT PRI_MIN_TIMESHARE 130 #define PRI_MAX_INTERACT (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1) 131 #define PRI_MIN_BATCH (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE) 132 #define PRI_MAX_BATCH PRI_MAX_TIMESHARE 133 134 /* 135 * Cpu percentage computation macros and defines. 136 * 137 * SCHED_TICK_SECS: Number of seconds to average the cpu usage across. 138 * SCHED_TICK_TARG: Number of hz ticks to average the cpu usage across. 139 * SCHED_TICK_MAX: Maximum number of ticks before scaling back. 140 * SCHED_TICK_SHIFT: Shift factor to avoid rounding away results. 141 * SCHED_TICK_HZ: Compute the number of hz ticks for a given ticks count. 142 * SCHED_TICK_TOTAL: Gives the amount of time we've been recording ticks. 143 */ 144 #define SCHED_TICK_SECS 10 145 #define SCHED_TICK_TARG (hz * SCHED_TICK_SECS) 146 #define SCHED_TICK_MAX (SCHED_TICK_TARG + hz) 147 #define SCHED_TICK_SHIFT 10 148 #define SCHED_TICK_HZ(ts) ((ts)->ts_ticks >> SCHED_TICK_SHIFT) 149 #define SCHED_TICK_TOTAL(ts) (max((ts)->ts_ltick - (ts)->ts_ftick, hz)) 150 151 /* 152 * These macros determine priorities for non-interactive threads. They are 153 * assigned a priority based on their recent cpu utilization as expressed 154 * by the ratio of ticks to the tick total. NHALF priorities at the start 155 * and end of the MIN to MAX timeshare range are only reachable with negative 156 * or positive nice respectively. 157 * 158 * PRI_RANGE: Priority range for utilization dependent priorities. 159 * PRI_NRESV: Number of nice values. 160 * PRI_TICKS: Compute a priority in PRI_RANGE from the ticks count and total. 161 * PRI_NICE: Determines the part of the priority inherited from nice. 162 */ 163 #define SCHED_PRI_NRESV (PRIO_MAX - PRIO_MIN) 164 #define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2) 165 #define SCHED_PRI_MIN (PRI_MIN_BATCH + SCHED_PRI_NHALF) 166 #define SCHED_PRI_MAX (PRI_MAX_BATCH - SCHED_PRI_NHALF) 167 #define SCHED_PRI_RANGE (SCHED_PRI_MAX - SCHED_PRI_MIN + 1) 168 #define SCHED_PRI_TICKS(ts) \ 169 (SCHED_TICK_HZ((ts)) / \ 170 (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE)) 171 #define SCHED_PRI_NICE(nice) (nice) 172 173 /* 174 * These determine the interactivity of a process. Interactivity differs from 175 * cpu utilization in that it expresses the voluntary time slept vs time ran 176 * while cpu utilization includes all time not running. This more accurately 177 * models the intent of the thread. 178 * 179 * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate 180 * before throttling back. 181 * SLP_RUN_FORK: Maximum slp+run time to inherit at fork time. 182 * INTERACT_MAX: Maximum interactivity value. Smaller is better. 183 * INTERACT_THRESH: Threshold for placement on the current runq. 184 */ 185 #define SCHED_SLP_RUN_MAX ((hz * 5) << SCHED_TICK_SHIFT) 186 #define SCHED_SLP_RUN_FORK ((hz / 2) << SCHED_TICK_SHIFT) 187 #define SCHED_INTERACT_MAX (100) 188 #define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2) 189 #define SCHED_INTERACT_THRESH (30) 190 191 /* 192 * tickincr: Converts a stathz tick into a hz domain scaled by 193 * the shift factor. Without the shift the error rate 194 * due to rounding would be unacceptably high. 195 * realstathz: stathz is sometimes 0 and run off of hz. 196 * sched_slice: Runtime of each thread before rescheduling. 197 * preempt_thresh: Priority threshold for preemption and remote IPIs. 198 */ 199 static int sched_interact = SCHED_INTERACT_THRESH; 200 static int realstathz; 201 static int tickincr; 202 static int sched_slice = 1; 203 #ifdef PREEMPTION 204 #ifdef FULL_PREEMPTION 205 static int preempt_thresh = PRI_MAX_IDLE; 206 #else 207 static int preempt_thresh = PRI_MIN_KERN; 208 #endif 209 #else 210 static int preempt_thresh = 0; 211 #endif 212 static int static_boost = PRI_MIN_BATCH; 213 static int sched_idlespins = 10000; 214 static int sched_idlespinthresh = -1; 215 216 /* 217 * tdq - per processor runqs and statistics. All fields are protected by the 218 * tdq_lock. The load and lowpri may be accessed without to avoid excess 219 * locking in sched_pickcpu(); 220 */ 221 struct tdq { 222 /* Ordered to improve efficiency of cpu_search() and switch(). */ 223 struct mtx tdq_lock; /* run queue lock. */ 224 struct cpu_group *tdq_cg; /* Pointer to cpu topology. */ 225 volatile int tdq_load; /* Aggregate load. */ 226 volatile int tdq_cpu_idle; /* cpu_idle() is active. */ 227 int tdq_sysload; /* For loadavg, !ITHD load. */ 228 int tdq_transferable; /* Transferable thread count. */ 229 short tdq_switchcnt; /* Switches this tick. */ 230 short tdq_oldswitchcnt; /* Switches last tick. */ 231 u_char tdq_lowpri; /* Lowest priority thread. */ 232 u_char tdq_ipipending; /* IPI pending. */ 233 u_char tdq_idx; /* Current insert index. */ 234 u_char tdq_ridx; /* Current removal index. */ 235 struct runq tdq_realtime; /* real-time run queue. */ 236 struct runq tdq_timeshare; /* timeshare run queue. */ 237 struct runq tdq_idle; /* Queue of IDLE threads. */ 238 char tdq_name[TDQ_NAME_LEN]; 239 #ifdef KTR 240 char tdq_loadname[TDQ_LOADNAME_LEN]; 241 #endif 242 } __aligned(64); 243 244 /* Idle thread states and config. */ 245 #define TDQ_RUNNING 1 246 #define TDQ_IDLE 2 247 248 #ifdef SMP 249 struct cpu_group *cpu_top; /* CPU topology */ 250 251 #define SCHED_AFFINITY_DEFAULT (max(1, hz / 1000)) 252 #define SCHED_AFFINITY(ts, t) ((ts)->ts_rltick > ticks - ((t) * affinity)) 253 254 /* 255 * Run-time tunables. 256 */ 257 static int rebalance = 1; 258 static int balance_interval = 128; /* Default set in sched_initticks(). */ 259 static int affinity; 260 static int steal_idle = 1; 261 static int steal_thresh = 2; 262 263 /* 264 * One thread queue per processor. 265 */ 266 static struct tdq tdq_cpu[MAXCPU]; 267 static struct tdq *balance_tdq; 268 static int balance_ticks; 269 static DPCPU_DEFINE(uint32_t, randomval); 270 271 #define TDQ_SELF() (&tdq_cpu[PCPU_GET(cpuid)]) 272 #define TDQ_CPU(x) (&tdq_cpu[(x)]) 273 #define TDQ_ID(x) ((int)((x) - tdq_cpu)) 274 #else /* !SMP */ 275 static struct tdq tdq_cpu; 276 277 #define TDQ_ID(x) (0) 278 #define TDQ_SELF() (&tdq_cpu) 279 #define TDQ_CPU(x) (&tdq_cpu) 280 #endif 281 282 #define TDQ_LOCK_ASSERT(t, type) mtx_assert(TDQ_LOCKPTR((t)), (type)) 283 #define TDQ_LOCK(t) mtx_lock_spin(TDQ_LOCKPTR((t))) 284 #define TDQ_LOCK_FLAGS(t, f) mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f)) 285 #define TDQ_UNLOCK(t) mtx_unlock_spin(TDQ_LOCKPTR((t))) 286 #define TDQ_LOCKPTR(t) (&(t)->tdq_lock) 287 288 static void sched_priority(struct thread *); 289 static void sched_thread_priority(struct thread *, u_char); 290 static int sched_interact_score(struct thread *); 291 static void sched_interact_update(struct thread *); 292 static void sched_interact_fork(struct thread *); 293 static void sched_pctcpu_update(struct td_sched *, int); 294 295 /* Operations on per processor queues */ 296 static struct thread *tdq_choose(struct tdq *); 297 static void tdq_setup(struct tdq *); 298 static void tdq_load_add(struct tdq *, struct thread *); 299 static void tdq_load_rem(struct tdq *, struct thread *); 300 static __inline void tdq_runq_add(struct tdq *, struct thread *, int); 301 static __inline void tdq_runq_rem(struct tdq *, struct thread *); 302 static inline int sched_shouldpreempt(int, int, int); 303 void tdq_print(int cpu); 304 static void runq_print(struct runq *rq); 305 static void tdq_add(struct tdq *, struct thread *, int); 306 #ifdef SMP 307 static int tdq_move(struct tdq *, struct tdq *); 308 static int tdq_idled(struct tdq *); 309 static void tdq_notify(struct tdq *, struct thread *); 310 static struct thread *tdq_steal(struct tdq *, int); 311 static struct thread *runq_steal(struct runq *, int); 312 static int sched_pickcpu(struct thread *, int); 313 static void sched_balance(void); 314 static int sched_balance_pair(struct tdq *, struct tdq *); 315 static inline struct tdq *sched_setcpu(struct thread *, int, int); 316 static inline void thread_unblock_switch(struct thread *, struct mtx *); 317 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int); 318 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS); 319 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 320 struct cpu_group *cg, int indent); 321 #endif 322 323 static void sched_setup(void *dummy); 324 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL); 325 326 static void sched_initticks(void *dummy); 327 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, 328 NULL); 329 330 /* 331 * Print the threads waiting on a run-queue. 332 */ 333 static void 334 runq_print(struct runq *rq) 335 { 336 struct rqhead *rqh; 337 struct thread *td; 338 int pri; 339 int j; 340 int i; 341 342 for (i = 0; i < RQB_LEN; i++) { 343 printf("\t\trunq bits %d 0x%zx\n", 344 i, rq->rq_status.rqb_bits[i]); 345 for (j = 0; j < RQB_BPW; j++) 346 if (rq->rq_status.rqb_bits[i] & (1ul << j)) { 347 pri = j + (i << RQB_L2BPW); 348 rqh = &rq->rq_queues[pri]; 349 TAILQ_FOREACH(td, rqh, td_runq) { 350 printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n", 351 td, td->td_name, td->td_priority, 352 td->td_rqindex, pri); 353 } 354 } 355 } 356 } 357 358 /* 359 * Print the status of a per-cpu thread queue. Should be a ddb show cmd. 360 */ 361 void 362 tdq_print(int cpu) 363 { 364 struct tdq *tdq; 365 366 tdq = TDQ_CPU(cpu); 367 368 printf("tdq %d:\n", TDQ_ID(tdq)); 369 printf("\tlock %p\n", TDQ_LOCKPTR(tdq)); 370 printf("\tLock name: %s\n", tdq->tdq_name); 371 printf("\tload: %d\n", tdq->tdq_load); 372 printf("\tswitch cnt: %d\n", tdq->tdq_switchcnt); 373 printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt); 374 printf("\ttimeshare idx: %d\n", tdq->tdq_idx); 375 printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx); 376 printf("\tload transferable: %d\n", tdq->tdq_transferable); 377 printf("\tlowest priority: %d\n", tdq->tdq_lowpri); 378 printf("\trealtime runq:\n"); 379 runq_print(&tdq->tdq_realtime); 380 printf("\ttimeshare runq:\n"); 381 runq_print(&tdq->tdq_timeshare); 382 printf("\tidle runq:\n"); 383 runq_print(&tdq->tdq_idle); 384 } 385 386 static inline int 387 sched_shouldpreempt(int pri, int cpri, int remote) 388 { 389 /* 390 * If the new priority is not better than the current priority there is 391 * nothing to do. 392 */ 393 if (pri >= cpri) 394 return (0); 395 /* 396 * Always preempt idle. 397 */ 398 if (cpri >= PRI_MIN_IDLE) 399 return (1); 400 /* 401 * If preemption is disabled don't preempt others. 402 */ 403 if (preempt_thresh == 0) 404 return (0); 405 /* 406 * Preempt if we exceed the threshold. 407 */ 408 if (pri <= preempt_thresh) 409 return (1); 410 /* 411 * If we're interactive or better and there is non-interactive 412 * or worse running preempt only remote processors. 413 */ 414 if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT) 415 return (1); 416 return (0); 417 } 418 419 /* 420 * Add a thread to the actual run-queue. Keeps transferable counts up to 421 * date with what is actually on the run-queue. Selects the correct 422 * queue position for timeshare threads. 423 */ 424 static __inline void 425 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags) 426 { 427 struct td_sched *ts; 428 u_char pri; 429 430 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 431 THREAD_LOCK_ASSERT(td, MA_OWNED); 432 433 pri = td->td_priority; 434 ts = td->td_sched; 435 TD_SET_RUNQ(td); 436 if (THREAD_CAN_MIGRATE(td)) { 437 tdq->tdq_transferable++; 438 ts->ts_flags |= TSF_XFERABLE; 439 } 440 if (pri < PRI_MIN_BATCH) { 441 ts->ts_runq = &tdq->tdq_realtime; 442 } else if (pri <= PRI_MAX_BATCH) { 443 ts->ts_runq = &tdq->tdq_timeshare; 444 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH, 445 ("Invalid priority %d on timeshare runq", pri)); 446 /* 447 * This queue contains only priorities between MIN and MAX 448 * realtime. Use the whole queue to represent these values. 449 */ 450 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) { 451 pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE; 452 pri = (pri + tdq->tdq_idx) % RQ_NQS; 453 /* 454 * This effectively shortens the queue by one so we 455 * can have a one slot difference between idx and 456 * ridx while we wait for threads to drain. 457 */ 458 if (tdq->tdq_ridx != tdq->tdq_idx && 459 pri == tdq->tdq_ridx) 460 pri = (unsigned char)(pri - 1) % RQ_NQS; 461 } else 462 pri = tdq->tdq_ridx; 463 runq_add_pri(ts->ts_runq, td, pri, flags); 464 return; 465 } else 466 ts->ts_runq = &tdq->tdq_idle; 467 runq_add(ts->ts_runq, td, flags); 468 } 469 470 /* 471 * Remove a thread from a run-queue. This typically happens when a thread 472 * is selected to run. Running threads are not on the queue and the 473 * transferable count does not reflect them. 474 */ 475 static __inline void 476 tdq_runq_rem(struct tdq *tdq, struct thread *td) 477 { 478 struct td_sched *ts; 479 480 ts = td->td_sched; 481 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 482 KASSERT(ts->ts_runq != NULL, 483 ("tdq_runq_remove: thread %p null ts_runq", td)); 484 if (ts->ts_flags & TSF_XFERABLE) { 485 tdq->tdq_transferable--; 486 ts->ts_flags &= ~TSF_XFERABLE; 487 } 488 if (ts->ts_runq == &tdq->tdq_timeshare) { 489 if (tdq->tdq_idx != tdq->tdq_ridx) 490 runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx); 491 else 492 runq_remove_idx(ts->ts_runq, td, NULL); 493 } else 494 runq_remove(ts->ts_runq, td); 495 } 496 497 /* 498 * Load is maintained for all threads RUNNING and ON_RUNQ. Add the load 499 * for this thread to the referenced thread queue. 500 */ 501 static void 502 tdq_load_add(struct tdq *tdq, struct thread *td) 503 { 504 505 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 506 THREAD_LOCK_ASSERT(td, MA_OWNED); 507 508 tdq->tdq_load++; 509 if ((td->td_flags & TDF_NOLOAD) == 0) 510 tdq->tdq_sysload++; 511 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 512 } 513 514 /* 515 * Remove the load from a thread that is transitioning to a sleep state or 516 * exiting. 517 */ 518 static void 519 tdq_load_rem(struct tdq *tdq, struct thread *td) 520 { 521 522 THREAD_LOCK_ASSERT(td, MA_OWNED); 523 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 524 KASSERT(tdq->tdq_load != 0, 525 ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq))); 526 527 tdq->tdq_load--; 528 if ((td->td_flags & TDF_NOLOAD) == 0) 529 tdq->tdq_sysload--; 530 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 531 } 532 533 /* 534 * Set lowpri to its exact value by searching the run-queue and 535 * evaluating curthread. curthread may be passed as an optimization. 536 */ 537 static void 538 tdq_setlowpri(struct tdq *tdq, struct thread *ctd) 539 { 540 struct thread *td; 541 542 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 543 if (ctd == NULL) 544 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread; 545 td = tdq_choose(tdq); 546 if (td == NULL || td->td_priority > ctd->td_priority) 547 tdq->tdq_lowpri = ctd->td_priority; 548 else 549 tdq->tdq_lowpri = td->td_priority; 550 } 551 552 #ifdef SMP 553 struct cpu_search { 554 cpuset_t cs_mask; 555 u_int cs_prefer; 556 int cs_pri; /* Min priority for low. */ 557 int cs_limit; /* Max load for low, min load for high. */ 558 int cs_cpu; 559 int cs_load; 560 }; 561 562 #define CPU_SEARCH_LOWEST 0x1 563 #define CPU_SEARCH_HIGHEST 0x2 564 #define CPU_SEARCH_BOTH (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST) 565 566 #define CPUSET_FOREACH(cpu, mask) \ 567 for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++) \ 568 if (CPU_ISSET(cpu, &mask)) 569 570 static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low, 571 struct cpu_search *high, const int match); 572 int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low); 573 int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high); 574 int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low, 575 struct cpu_search *high); 576 577 /* 578 * Search the tree of cpu_groups for the lowest or highest loaded cpu 579 * according to the match argument. This routine actually compares the 580 * load on all paths through the tree and finds the least loaded cpu on 581 * the least loaded path, which may differ from the least loaded cpu in 582 * the system. This balances work among caches and busses. 583 * 584 * This inline is instantiated in three forms below using constants for the 585 * match argument. It is reduced to the minimum set for each case. It is 586 * also recursive to the depth of the tree. 587 */ 588 static __inline int 589 cpu_search(const struct cpu_group *cg, struct cpu_search *low, 590 struct cpu_search *high, const int match) 591 { 592 struct cpu_search lgroup; 593 struct cpu_search hgroup; 594 cpuset_t cpumask; 595 struct cpu_group *child; 596 struct tdq *tdq; 597 int cpu, i, hload, lload, load, total, rnd, *rndptr; 598 599 total = 0; 600 cpumask = cg->cg_mask; 601 if (match & CPU_SEARCH_LOWEST) { 602 lload = INT_MAX; 603 lgroup = *low; 604 } 605 if (match & CPU_SEARCH_HIGHEST) { 606 hload = INT_MIN; 607 hgroup = *high; 608 } 609 610 /* Iterate through the child CPU groups and then remaining CPUs. */ 611 for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) { 612 if (i == 0) { 613 while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask)) 614 cpu--; 615 if (cpu < 0) 616 break; 617 child = NULL; 618 } else 619 child = &cg->cg_child[i - 1]; 620 621 if (match & CPU_SEARCH_LOWEST) 622 lgroup.cs_cpu = -1; 623 if (match & CPU_SEARCH_HIGHEST) 624 hgroup.cs_cpu = -1; 625 if (child) { /* Handle child CPU group. */ 626 CPU_NAND(&cpumask, &child->cg_mask); 627 switch (match) { 628 case CPU_SEARCH_LOWEST: 629 load = cpu_search_lowest(child, &lgroup); 630 break; 631 case CPU_SEARCH_HIGHEST: 632 load = cpu_search_highest(child, &hgroup); 633 break; 634 case CPU_SEARCH_BOTH: 635 load = cpu_search_both(child, &lgroup, &hgroup); 636 break; 637 } 638 } else { /* Handle child CPU. */ 639 tdq = TDQ_CPU(cpu); 640 load = tdq->tdq_load * 256; 641 rndptr = DPCPU_PTR(randomval); 642 rnd = (*rndptr = *rndptr * 69069 + 5) >> 26; 643 if (match & CPU_SEARCH_LOWEST) { 644 if (cpu == low->cs_prefer) 645 load -= 64; 646 /* If that CPU is allowed and get data. */ 647 if (tdq->tdq_lowpri > lgroup.cs_pri && 648 tdq->tdq_load <= lgroup.cs_limit && 649 CPU_ISSET(cpu, &lgroup.cs_mask)) { 650 lgroup.cs_cpu = cpu; 651 lgroup.cs_load = load - rnd; 652 } 653 } 654 if (match & CPU_SEARCH_HIGHEST) 655 if (tdq->tdq_load >= hgroup.cs_limit && 656 tdq->tdq_transferable && 657 CPU_ISSET(cpu, &hgroup.cs_mask)) { 658 hgroup.cs_cpu = cpu; 659 hgroup.cs_load = load - rnd; 660 } 661 } 662 total += load; 663 664 /* We have info about child item. Compare it. */ 665 if (match & CPU_SEARCH_LOWEST) { 666 if (lgroup.cs_cpu >= 0 && 667 (load < lload || 668 (load == lload && lgroup.cs_load < low->cs_load))) { 669 lload = load; 670 low->cs_cpu = lgroup.cs_cpu; 671 low->cs_load = lgroup.cs_load; 672 } 673 } 674 if (match & CPU_SEARCH_HIGHEST) 675 if (hgroup.cs_cpu >= 0 && 676 (load > hload || 677 (load == hload && hgroup.cs_load > high->cs_load))) { 678 hload = load; 679 high->cs_cpu = hgroup.cs_cpu; 680 high->cs_load = hgroup.cs_load; 681 } 682 if (child) { 683 i--; 684 if (i == 0 && CPU_EMPTY(&cpumask)) 685 break; 686 } else 687 cpu--; 688 } 689 return (total); 690 } 691 692 /* 693 * cpu_search instantiations must pass constants to maintain the inline 694 * optimization. 695 */ 696 int 697 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low) 698 { 699 return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST); 700 } 701 702 int 703 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high) 704 { 705 return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST); 706 } 707 708 int 709 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low, 710 struct cpu_search *high) 711 { 712 return cpu_search(cg, low, high, CPU_SEARCH_BOTH); 713 } 714 715 /* 716 * Find the cpu with the least load via the least loaded path that has a 717 * lowpri greater than pri pri. A pri of -1 indicates any priority is 718 * acceptable. 719 */ 720 static inline int 721 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload, 722 int prefer) 723 { 724 struct cpu_search low; 725 726 low.cs_cpu = -1; 727 low.cs_prefer = prefer; 728 low.cs_mask = mask; 729 low.cs_pri = pri; 730 low.cs_limit = maxload; 731 cpu_search_lowest(cg, &low); 732 return low.cs_cpu; 733 } 734 735 /* 736 * Find the cpu with the highest load via the highest loaded path. 737 */ 738 static inline int 739 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload) 740 { 741 struct cpu_search high; 742 743 high.cs_cpu = -1; 744 high.cs_mask = mask; 745 high.cs_limit = minload; 746 cpu_search_highest(cg, &high); 747 return high.cs_cpu; 748 } 749 750 /* 751 * Simultaneously find the highest and lowest loaded cpu reachable via 752 * cg. 753 */ 754 static inline void 755 sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu) 756 { 757 struct cpu_search high; 758 struct cpu_search low; 759 760 low.cs_cpu = -1; 761 low.cs_prefer = -1; 762 low.cs_pri = -1; 763 low.cs_limit = INT_MAX; 764 low.cs_mask = mask; 765 high.cs_cpu = -1; 766 high.cs_limit = -1; 767 high.cs_mask = mask; 768 cpu_search_both(cg, &low, &high); 769 *lowcpu = low.cs_cpu; 770 *highcpu = high.cs_cpu; 771 return; 772 } 773 774 static void 775 sched_balance_group(struct cpu_group *cg) 776 { 777 cpuset_t hmask, lmask; 778 int high, low, anylow; 779 780 CPU_FILL(&hmask); 781 for (;;) { 782 high = sched_highest(cg, hmask, 1); 783 /* Stop if there is no more CPU with transferrable threads. */ 784 if (high == -1) 785 break; 786 CPU_CLR(high, &hmask); 787 CPU_COPY(&hmask, &lmask); 788 /* Stop if there is no more CPU left for low. */ 789 if (CPU_EMPTY(&lmask)) 790 break; 791 anylow = 1; 792 nextlow: 793 low = sched_lowest(cg, lmask, -1, 794 TDQ_CPU(high)->tdq_load - 1, high); 795 /* Stop if we looked well and found no less loaded CPU. */ 796 if (anylow && low == -1) 797 break; 798 /* Go to next high if we found no less loaded CPU. */ 799 if (low == -1) 800 continue; 801 /* Transfer thread from high to low. */ 802 if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) { 803 /* CPU that got thread can no longer be a donor. */ 804 CPU_CLR(low, &hmask); 805 } else { 806 /* 807 * If failed, then there is no threads on high 808 * that can run on this low. Drop low from low 809 * mask and look for different one. 810 */ 811 CPU_CLR(low, &lmask); 812 anylow = 0; 813 goto nextlow; 814 } 815 } 816 } 817 818 static void 819 sched_balance(void) 820 { 821 struct tdq *tdq; 822 823 /* 824 * Select a random time between .5 * balance_interval and 825 * 1.5 * balance_interval. 826 */ 827 balance_ticks = max(balance_interval / 2, 1); 828 balance_ticks += random() % balance_interval; 829 if (smp_started == 0 || rebalance == 0) 830 return; 831 tdq = TDQ_SELF(); 832 TDQ_UNLOCK(tdq); 833 sched_balance_group(cpu_top); 834 TDQ_LOCK(tdq); 835 } 836 837 /* 838 * Lock two thread queues using their address to maintain lock order. 839 */ 840 static void 841 tdq_lock_pair(struct tdq *one, struct tdq *two) 842 { 843 if (one < two) { 844 TDQ_LOCK(one); 845 TDQ_LOCK_FLAGS(two, MTX_DUPOK); 846 } else { 847 TDQ_LOCK(two); 848 TDQ_LOCK_FLAGS(one, MTX_DUPOK); 849 } 850 } 851 852 /* 853 * Unlock two thread queues. Order is not important here. 854 */ 855 static void 856 tdq_unlock_pair(struct tdq *one, struct tdq *two) 857 { 858 TDQ_UNLOCK(one); 859 TDQ_UNLOCK(two); 860 } 861 862 /* 863 * Transfer load between two imbalanced thread queues. 864 */ 865 static int 866 sched_balance_pair(struct tdq *high, struct tdq *low) 867 { 868 int moved; 869 int cpu; 870 871 tdq_lock_pair(high, low); 872 moved = 0; 873 /* 874 * Determine what the imbalance is and then adjust that to how many 875 * threads we actually have to give up (transferable). 876 */ 877 if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load && 878 (moved = tdq_move(high, low)) > 0) { 879 /* 880 * In case the target isn't the current cpu IPI it to force a 881 * reschedule with the new workload. 882 */ 883 cpu = TDQ_ID(low); 884 sched_pin(); 885 if (cpu != PCPU_GET(cpuid)) 886 ipi_cpu(cpu, IPI_PREEMPT); 887 sched_unpin(); 888 } 889 tdq_unlock_pair(high, low); 890 return (moved); 891 } 892 893 /* 894 * Move a thread from one thread queue to another. 895 */ 896 static int 897 tdq_move(struct tdq *from, struct tdq *to) 898 { 899 struct td_sched *ts; 900 struct thread *td; 901 struct tdq *tdq; 902 int cpu; 903 904 TDQ_LOCK_ASSERT(from, MA_OWNED); 905 TDQ_LOCK_ASSERT(to, MA_OWNED); 906 907 tdq = from; 908 cpu = TDQ_ID(to); 909 td = tdq_steal(tdq, cpu); 910 if (td == NULL) 911 return (0); 912 ts = td->td_sched; 913 /* 914 * Although the run queue is locked the thread may be blocked. Lock 915 * it to clear this and acquire the run-queue lock. 916 */ 917 thread_lock(td); 918 /* Drop recursive lock on from acquired via thread_lock(). */ 919 TDQ_UNLOCK(from); 920 sched_rem(td); 921 ts->ts_cpu = cpu; 922 td->td_lock = TDQ_LOCKPTR(to); 923 tdq_add(to, td, SRQ_YIELDING); 924 return (1); 925 } 926 927 /* 928 * This tdq has idled. Try to steal a thread from another cpu and switch 929 * to it. 930 */ 931 static int 932 tdq_idled(struct tdq *tdq) 933 { 934 struct cpu_group *cg; 935 struct tdq *steal; 936 cpuset_t mask; 937 int thresh; 938 int cpu; 939 940 if (smp_started == 0 || steal_idle == 0) 941 return (1); 942 CPU_FILL(&mask); 943 CPU_CLR(PCPU_GET(cpuid), &mask); 944 /* We don't want to be preempted while we're iterating. */ 945 spinlock_enter(); 946 for (cg = tdq->tdq_cg; cg != NULL; ) { 947 if ((cg->cg_flags & CG_FLAG_THREAD) == 0) 948 thresh = steal_thresh; 949 else 950 thresh = 1; 951 cpu = sched_highest(cg, mask, thresh); 952 if (cpu == -1) { 953 cg = cg->cg_parent; 954 continue; 955 } 956 steal = TDQ_CPU(cpu); 957 CPU_CLR(cpu, &mask); 958 tdq_lock_pair(tdq, steal); 959 if (steal->tdq_load < thresh || steal->tdq_transferable == 0) { 960 tdq_unlock_pair(tdq, steal); 961 continue; 962 } 963 /* 964 * If a thread was added while interrupts were disabled don't 965 * steal one here. If we fail to acquire one due to affinity 966 * restrictions loop again with this cpu removed from the 967 * set. 968 */ 969 if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) { 970 tdq_unlock_pair(tdq, steal); 971 continue; 972 } 973 spinlock_exit(); 974 TDQ_UNLOCK(steal); 975 mi_switch(SW_VOL | SWT_IDLE, NULL); 976 thread_unlock(curthread); 977 978 return (0); 979 } 980 spinlock_exit(); 981 return (1); 982 } 983 984 /* 985 * Notify a remote cpu of new work. Sends an IPI if criteria are met. 986 */ 987 static void 988 tdq_notify(struct tdq *tdq, struct thread *td) 989 { 990 struct thread *ctd; 991 int pri; 992 int cpu; 993 994 if (tdq->tdq_ipipending) 995 return; 996 cpu = td->td_sched->ts_cpu; 997 pri = td->td_priority; 998 ctd = pcpu_find(cpu)->pc_curthread; 999 if (!sched_shouldpreempt(pri, ctd->td_priority, 1)) 1000 return; 1001 if (TD_IS_IDLETHREAD(ctd)) { 1002 /* 1003 * If the MD code has an idle wakeup routine try that before 1004 * falling back to IPI. 1005 */ 1006 if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu)) 1007 return; 1008 } 1009 tdq->tdq_ipipending = 1; 1010 ipi_cpu(cpu, IPI_PREEMPT); 1011 } 1012 1013 /* 1014 * Steals load from a timeshare queue. Honors the rotating queue head 1015 * index. 1016 */ 1017 static struct thread * 1018 runq_steal_from(struct runq *rq, int cpu, u_char start) 1019 { 1020 struct rqbits *rqb; 1021 struct rqhead *rqh; 1022 struct thread *td, *first; 1023 int bit; 1024 int pri; 1025 int i; 1026 1027 rqb = &rq->rq_status; 1028 bit = start & (RQB_BPW -1); 1029 pri = 0; 1030 first = NULL; 1031 again: 1032 for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) { 1033 if (rqb->rqb_bits[i] == 0) 1034 continue; 1035 if (bit != 0) { 1036 for (pri = bit; pri < RQB_BPW; pri++) 1037 if (rqb->rqb_bits[i] & (1ul << pri)) 1038 break; 1039 if (pri >= RQB_BPW) 1040 continue; 1041 } else 1042 pri = RQB_FFS(rqb->rqb_bits[i]); 1043 pri += (i << RQB_L2BPW); 1044 rqh = &rq->rq_queues[pri]; 1045 TAILQ_FOREACH(td, rqh, td_runq) { 1046 if (first && THREAD_CAN_MIGRATE(td) && 1047 THREAD_CAN_SCHED(td, cpu)) 1048 return (td); 1049 first = td; 1050 } 1051 } 1052 if (start != 0) { 1053 start = 0; 1054 goto again; 1055 } 1056 1057 if (first && THREAD_CAN_MIGRATE(first) && 1058 THREAD_CAN_SCHED(first, cpu)) 1059 return (first); 1060 return (NULL); 1061 } 1062 1063 /* 1064 * Steals load from a standard linear queue. 1065 */ 1066 static struct thread * 1067 runq_steal(struct runq *rq, int cpu) 1068 { 1069 struct rqhead *rqh; 1070 struct rqbits *rqb; 1071 struct thread *td; 1072 int word; 1073 int bit; 1074 1075 rqb = &rq->rq_status; 1076 for (word = 0; word < RQB_LEN; word++) { 1077 if (rqb->rqb_bits[word] == 0) 1078 continue; 1079 for (bit = 0; bit < RQB_BPW; bit++) { 1080 if ((rqb->rqb_bits[word] & (1ul << bit)) == 0) 1081 continue; 1082 rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)]; 1083 TAILQ_FOREACH(td, rqh, td_runq) 1084 if (THREAD_CAN_MIGRATE(td) && 1085 THREAD_CAN_SCHED(td, cpu)) 1086 return (td); 1087 } 1088 } 1089 return (NULL); 1090 } 1091 1092 /* 1093 * Attempt to steal a thread in priority order from a thread queue. 1094 */ 1095 static struct thread * 1096 tdq_steal(struct tdq *tdq, int cpu) 1097 { 1098 struct thread *td; 1099 1100 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1101 if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL) 1102 return (td); 1103 if ((td = runq_steal_from(&tdq->tdq_timeshare, 1104 cpu, tdq->tdq_ridx)) != NULL) 1105 return (td); 1106 return (runq_steal(&tdq->tdq_idle, cpu)); 1107 } 1108 1109 /* 1110 * Sets the thread lock and ts_cpu to match the requested cpu. Unlocks the 1111 * current lock and returns with the assigned queue locked. 1112 */ 1113 static inline struct tdq * 1114 sched_setcpu(struct thread *td, int cpu, int flags) 1115 { 1116 1117 struct tdq *tdq; 1118 1119 THREAD_LOCK_ASSERT(td, MA_OWNED); 1120 tdq = TDQ_CPU(cpu); 1121 td->td_sched->ts_cpu = cpu; 1122 /* 1123 * If the lock matches just return the queue. 1124 */ 1125 if (td->td_lock == TDQ_LOCKPTR(tdq)) 1126 return (tdq); 1127 #ifdef notyet 1128 /* 1129 * If the thread isn't running its lockptr is a 1130 * turnstile or a sleepqueue. We can just lock_set without 1131 * blocking. 1132 */ 1133 if (TD_CAN_RUN(td)) { 1134 TDQ_LOCK(tdq); 1135 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 1136 return (tdq); 1137 } 1138 #endif 1139 /* 1140 * The hard case, migration, we need to block the thread first to 1141 * prevent order reversals with other cpus locks. 1142 */ 1143 spinlock_enter(); 1144 thread_lock_block(td); 1145 TDQ_LOCK(tdq); 1146 thread_lock_unblock(td, TDQ_LOCKPTR(tdq)); 1147 spinlock_exit(); 1148 return (tdq); 1149 } 1150 1151 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding"); 1152 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity"); 1153 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity"); 1154 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load"); 1155 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu"); 1156 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration"); 1157 1158 static int 1159 sched_pickcpu(struct thread *td, int flags) 1160 { 1161 struct cpu_group *cg, *ccg; 1162 struct td_sched *ts; 1163 struct tdq *tdq; 1164 cpuset_t mask; 1165 int cpu, pri, self; 1166 1167 self = PCPU_GET(cpuid); 1168 ts = td->td_sched; 1169 if (smp_started == 0) 1170 return (self); 1171 /* 1172 * Don't migrate a running thread from sched_switch(). 1173 */ 1174 if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td)) 1175 return (ts->ts_cpu); 1176 /* 1177 * Prefer to run interrupt threads on the processors that generate 1178 * the interrupt. 1179 */ 1180 pri = td->td_priority; 1181 if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) && 1182 curthread->td_intr_nesting_level && ts->ts_cpu != self) { 1183 SCHED_STAT_INC(pickcpu_intrbind); 1184 ts->ts_cpu = self; 1185 if (TDQ_CPU(self)->tdq_lowpri > pri) { 1186 SCHED_STAT_INC(pickcpu_affinity); 1187 return (ts->ts_cpu); 1188 } 1189 } 1190 /* 1191 * If the thread can run on the last cpu and the affinity has not 1192 * expired or it is idle run it there. 1193 */ 1194 tdq = TDQ_CPU(ts->ts_cpu); 1195 cg = tdq->tdq_cg; 1196 if (THREAD_CAN_SCHED(td, ts->ts_cpu) && 1197 tdq->tdq_lowpri >= PRI_MIN_IDLE && 1198 SCHED_AFFINITY(ts, CG_SHARE_L2)) { 1199 if (cg->cg_flags & CG_FLAG_THREAD) { 1200 CPUSET_FOREACH(cpu, cg->cg_mask) { 1201 if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) 1202 break; 1203 } 1204 } else 1205 cpu = INT_MAX; 1206 if (cpu > mp_maxid) { 1207 SCHED_STAT_INC(pickcpu_idle_affinity); 1208 return (ts->ts_cpu); 1209 } 1210 } 1211 /* 1212 * Search for the last level cache CPU group in the tree. 1213 * Skip caches with expired affinity time and SMT groups. 1214 * Affinity to higher level caches will be handled less aggressively. 1215 */ 1216 for (ccg = NULL; cg != NULL; cg = cg->cg_parent) { 1217 if (cg->cg_flags & CG_FLAG_THREAD) 1218 continue; 1219 if (!SCHED_AFFINITY(ts, cg->cg_level)) 1220 continue; 1221 ccg = cg; 1222 } 1223 if (ccg != NULL) 1224 cg = ccg; 1225 cpu = -1; 1226 /* Search the group for the less loaded idle CPU we can run now. */ 1227 mask = td->td_cpuset->cs_mask; 1228 if (cg != NULL && cg != cpu_top && 1229 CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0) 1230 cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE), 1231 INT_MAX, ts->ts_cpu); 1232 /* Search globally for the less loaded CPU we can run now. */ 1233 if (cpu == -1) 1234 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu); 1235 /* Search globally for the less loaded CPU. */ 1236 if (cpu == -1) 1237 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu); 1238 KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu.")); 1239 /* 1240 * Compare the lowest loaded cpu to current cpu. 1241 */ 1242 if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri && 1243 TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE && 1244 TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) { 1245 SCHED_STAT_INC(pickcpu_local); 1246 cpu = self; 1247 } else 1248 SCHED_STAT_INC(pickcpu_lowest); 1249 if (cpu != ts->ts_cpu) 1250 SCHED_STAT_INC(pickcpu_migration); 1251 return (cpu); 1252 } 1253 #endif 1254 1255 /* 1256 * Pick the highest priority task we have and return it. 1257 */ 1258 static struct thread * 1259 tdq_choose(struct tdq *tdq) 1260 { 1261 struct thread *td; 1262 1263 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1264 td = runq_choose(&tdq->tdq_realtime); 1265 if (td != NULL) 1266 return (td); 1267 td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx); 1268 if (td != NULL) { 1269 KASSERT(td->td_priority >= PRI_MIN_BATCH, 1270 ("tdq_choose: Invalid priority on timeshare queue %d", 1271 td->td_priority)); 1272 return (td); 1273 } 1274 td = runq_choose(&tdq->tdq_idle); 1275 if (td != NULL) { 1276 KASSERT(td->td_priority >= PRI_MIN_IDLE, 1277 ("tdq_choose: Invalid priority on idle queue %d", 1278 td->td_priority)); 1279 return (td); 1280 } 1281 1282 return (NULL); 1283 } 1284 1285 /* 1286 * Initialize a thread queue. 1287 */ 1288 static void 1289 tdq_setup(struct tdq *tdq) 1290 { 1291 1292 if (bootverbose) 1293 printf("ULE: setup cpu %d\n", TDQ_ID(tdq)); 1294 runq_init(&tdq->tdq_realtime); 1295 runq_init(&tdq->tdq_timeshare); 1296 runq_init(&tdq->tdq_idle); 1297 snprintf(tdq->tdq_name, sizeof(tdq->tdq_name), 1298 "sched lock %d", (int)TDQ_ID(tdq)); 1299 mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", 1300 MTX_SPIN | MTX_RECURSE); 1301 #ifdef KTR 1302 snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname), 1303 "CPU %d load", (int)TDQ_ID(tdq)); 1304 #endif 1305 } 1306 1307 #ifdef SMP 1308 static void 1309 sched_setup_smp(void) 1310 { 1311 struct tdq *tdq; 1312 int i; 1313 1314 cpu_top = smp_topo(); 1315 CPU_FOREACH(i) { 1316 tdq = TDQ_CPU(i); 1317 tdq_setup(tdq); 1318 tdq->tdq_cg = smp_topo_find(cpu_top, i); 1319 if (tdq->tdq_cg == NULL) 1320 panic("Can't find cpu group for %d\n", i); 1321 } 1322 balance_tdq = TDQ_SELF(); 1323 sched_balance(); 1324 } 1325 #endif 1326 1327 /* 1328 * Setup the thread queues and initialize the topology based on MD 1329 * information. 1330 */ 1331 static void 1332 sched_setup(void *dummy) 1333 { 1334 struct tdq *tdq; 1335 1336 tdq = TDQ_SELF(); 1337 #ifdef SMP 1338 sched_setup_smp(); 1339 #else 1340 tdq_setup(tdq); 1341 #endif 1342 /* 1343 * To avoid divide-by-zero, we set realstathz a dummy value 1344 * in case which sched_clock() called before sched_initticks(). 1345 */ 1346 realstathz = hz; 1347 sched_slice = (realstathz/10); /* ~100ms */ 1348 tickincr = 1 << SCHED_TICK_SHIFT; 1349 1350 /* Add thread0's load since it's running. */ 1351 TDQ_LOCK(tdq); 1352 thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF()); 1353 tdq_load_add(tdq, &thread0); 1354 tdq->tdq_lowpri = thread0.td_priority; 1355 TDQ_UNLOCK(tdq); 1356 } 1357 1358 /* 1359 * This routine determines the tickincr after stathz and hz are setup. 1360 */ 1361 /* ARGSUSED */ 1362 static void 1363 sched_initticks(void *dummy) 1364 { 1365 int incr; 1366 1367 realstathz = stathz ? stathz : hz; 1368 sched_slice = (realstathz/10); /* ~100ms */ 1369 1370 /* 1371 * tickincr is shifted out by 10 to avoid rounding errors due to 1372 * hz not being evenly divisible by stathz on all platforms. 1373 */ 1374 incr = (hz << SCHED_TICK_SHIFT) / realstathz; 1375 /* 1376 * This does not work for values of stathz that are more than 1377 * 1 << SCHED_TICK_SHIFT * hz. In practice this does not happen. 1378 */ 1379 if (incr == 0) 1380 incr = 1; 1381 tickincr = incr; 1382 #ifdef SMP 1383 /* 1384 * Set the default balance interval now that we know 1385 * what realstathz is. 1386 */ 1387 balance_interval = realstathz; 1388 /* 1389 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4. 1390 * This prevents excess thrashing on large machines and excess idle 1391 * on smaller machines. 1392 */ 1393 steal_thresh = min(fls(mp_ncpus) - 1, 3); 1394 affinity = SCHED_AFFINITY_DEFAULT; 1395 #endif 1396 if (sched_idlespinthresh < 0) 1397 sched_idlespinthresh = max(16, 2 * hz / realstathz); 1398 } 1399 1400 1401 /* 1402 * This is the core of the interactivity algorithm. Determines a score based 1403 * on past behavior. It is the ratio of sleep time to run time scaled to 1404 * a [0, 100] integer. This is the voluntary sleep time of a process, which 1405 * differs from the cpu usage because it does not account for time spent 1406 * waiting on a run-queue. Would be prettier if we had floating point. 1407 */ 1408 static int 1409 sched_interact_score(struct thread *td) 1410 { 1411 struct td_sched *ts; 1412 int div; 1413 1414 ts = td->td_sched; 1415 /* 1416 * The score is only needed if this is likely to be an interactive 1417 * task. Don't go through the expense of computing it if there's 1418 * no chance. 1419 */ 1420 if (sched_interact <= SCHED_INTERACT_HALF && 1421 ts->ts_runtime >= ts->ts_slptime) 1422 return (SCHED_INTERACT_HALF); 1423 1424 if (ts->ts_runtime > ts->ts_slptime) { 1425 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF); 1426 return (SCHED_INTERACT_HALF + 1427 (SCHED_INTERACT_HALF - (ts->ts_slptime / div))); 1428 } 1429 if (ts->ts_slptime > ts->ts_runtime) { 1430 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF); 1431 return (ts->ts_runtime / div); 1432 } 1433 /* runtime == slptime */ 1434 if (ts->ts_runtime) 1435 return (SCHED_INTERACT_HALF); 1436 1437 /* 1438 * This can happen if slptime and runtime are 0. 1439 */ 1440 return (0); 1441 1442 } 1443 1444 /* 1445 * Scale the scheduling priority according to the "interactivity" of this 1446 * process. 1447 */ 1448 static void 1449 sched_priority(struct thread *td) 1450 { 1451 int score; 1452 int pri; 1453 1454 if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE) 1455 return; 1456 /* 1457 * If the score is interactive we place the thread in the realtime 1458 * queue with a priority that is less than kernel and interrupt 1459 * priorities. These threads are not subject to nice restrictions. 1460 * 1461 * Scores greater than this are placed on the normal timeshare queue 1462 * where the priority is partially decided by the most recent cpu 1463 * utilization and the rest is decided by nice value. 1464 * 1465 * The nice value of the process has a linear effect on the calculated 1466 * score. Negative nice values make it easier for a thread to be 1467 * considered interactive. 1468 */ 1469 score = imax(0, sched_interact_score(td) + td->td_proc->p_nice); 1470 if (score < sched_interact) { 1471 pri = PRI_MIN_INTERACT; 1472 pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) / 1473 sched_interact) * score; 1474 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT, 1475 ("sched_priority: invalid interactive priority %d score %d", 1476 pri, score)); 1477 } else { 1478 pri = SCHED_PRI_MIN; 1479 if (td->td_sched->ts_ticks) 1480 pri += min(SCHED_PRI_TICKS(td->td_sched), 1481 SCHED_PRI_RANGE); 1482 pri += SCHED_PRI_NICE(td->td_proc->p_nice); 1483 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH, 1484 ("sched_priority: invalid priority %d: nice %d, " 1485 "ticks %d ftick %d ltick %d tick pri %d", 1486 pri, td->td_proc->p_nice, td->td_sched->ts_ticks, 1487 td->td_sched->ts_ftick, td->td_sched->ts_ltick, 1488 SCHED_PRI_TICKS(td->td_sched))); 1489 } 1490 sched_user_prio(td, pri); 1491 1492 return; 1493 } 1494 1495 /* 1496 * This routine enforces a maximum limit on the amount of scheduling history 1497 * kept. It is called after either the slptime or runtime is adjusted. This 1498 * function is ugly due to integer math. 1499 */ 1500 static void 1501 sched_interact_update(struct thread *td) 1502 { 1503 struct td_sched *ts; 1504 u_int sum; 1505 1506 ts = td->td_sched; 1507 sum = ts->ts_runtime + ts->ts_slptime; 1508 if (sum < SCHED_SLP_RUN_MAX) 1509 return; 1510 /* 1511 * This only happens from two places: 1512 * 1) We have added an unusual amount of run time from fork_exit. 1513 * 2) We have added an unusual amount of sleep time from sched_sleep(). 1514 */ 1515 if (sum > SCHED_SLP_RUN_MAX * 2) { 1516 if (ts->ts_runtime > ts->ts_slptime) { 1517 ts->ts_runtime = SCHED_SLP_RUN_MAX; 1518 ts->ts_slptime = 1; 1519 } else { 1520 ts->ts_slptime = SCHED_SLP_RUN_MAX; 1521 ts->ts_runtime = 1; 1522 } 1523 return; 1524 } 1525 /* 1526 * If we have exceeded by more than 1/5th then the algorithm below 1527 * will not bring us back into range. Dividing by two here forces 1528 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX] 1529 */ 1530 if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) { 1531 ts->ts_runtime /= 2; 1532 ts->ts_slptime /= 2; 1533 return; 1534 } 1535 ts->ts_runtime = (ts->ts_runtime / 5) * 4; 1536 ts->ts_slptime = (ts->ts_slptime / 5) * 4; 1537 } 1538 1539 /* 1540 * Scale back the interactivity history when a child thread is created. The 1541 * history is inherited from the parent but the thread may behave totally 1542 * differently. For example, a shell spawning a compiler process. We want 1543 * to learn that the compiler is behaving badly very quickly. 1544 */ 1545 static void 1546 sched_interact_fork(struct thread *td) 1547 { 1548 int ratio; 1549 int sum; 1550 1551 sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime; 1552 if (sum > SCHED_SLP_RUN_FORK) { 1553 ratio = sum / SCHED_SLP_RUN_FORK; 1554 td->td_sched->ts_runtime /= ratio; 1555 td->td_sched->ts_slptime /= ratio; 1556 } 1557 } 1558 1559 /* 1560 * Called from proc0_init() to setup the scheduler fields. 1561 */ 1562 void 1563 schedinit(void) 1564 { 1565 1566 /* 1567 * Set up the scheduler specific parts of proc0. 1568 */ 1569 proc0.p_sched = NULL; /* XXX */ 1570 thread0.td_sched = &td_sched0; 1571 td_sched0.ts_ltick = ticks; 1572 td_sched0.ts_ftick = ticks; 1573 td_sched0.ts_slice = sched_slice; 1574 } 1575 1576 /* 1577 * This is only somewhat accurate since given many processes of the same 1578 * priority they will switch when their slices run out, which will be 1579 * at most sched_slice stathz ticks. 1580 */ 1581 int 1582 sched_rr_interval(void) 1583 { 1584 1585 /* Convert sched_slice to hz */ 1586 return (hz/(realstathz/sched_slice)); 1587 } 1588 1589 /* 1590 * Update the percent cpu tracking information when it is requested or 1591 * the total history exceeds the maximum. We keep a sliding history of 1592 * tick counts that slowly decays. This is less precise than the 4BSD 1593 * mechanism since it happens with less regular and frequent events. 1594 */ 1595 static void 1596 sched_pctcpu_update(struct td_sched *ts, int run) 1597 { 1598 int t = ticks; 1599 1600 if (t - ts->ts_ltick >= SCHED_TICK_TARG) { 1601 ts->ts_ticks = 0; 1602 ts->ts_ftick = t - SCHED_TICK_TARG; 1603 } else if (t - ts->ts_ftick >= SCHED_TICK_MAX) { 1604 ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) * 1605 (ts->ts_ltick - (t - SCHED_TICK_TARG)); 1606 ts->ts_ftick = t - SCHED_TICK_TARG; 1607 } 1608 if (run) 1609 ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT; 1610 ts->ts_ltick = t; 1611 } 1612 1613 /* 1614 * Adjust the priority of a thread. Move it to the appropriate run-queue 1615 * if necessary. This is the back-end for several priority related 1616 * functions. 1617 */ 1618 static void 1619 sched_thread_priority(struct thread *td, u_char prio) 1620 { 1621 struct td_sched *ts; 1622 struct tdq *tdq; 1623 int oldpri; 1624 1625 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio", 1626 "prio:%d", td->td_priority, "new prio:%d", prio, 1627 KTR_ATTR_LINKED, sched_tdname(curthread)); 1628 if (td != curthread && prio > td->td_priority) { 1629 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread), 1630 "lend prio", "prio:%d", td->td_priority, "new prio:%d", 1631 prio, KTR_ATTR_LINKED, sched_tdname(td)); 1632 } 1633 ts = td->td_sched; 1634 THREAD_LOCK_ASSERT(td, MA_OWNED); 1635 if (td->td_priority == prio) 1636 return; 1637 /* 1638 * If the priority has been elevated due to priority 1639 * propagation, we may have to move ourselves to a new 1640 * queue. This could be optimized to not re-add in some 1641 * cases. 1642 */ 1643 if (TD_ON_RUNQ(td) && prio < td->td_priority) { 1644 sched_rem(td); 1645 td->td_priority = prio; 1646 sched_add(td, SRQ_BORROWING); 1647 return; 1648 } 1649 /* 1650 * If the thread is currently running we may have to adjust the lowpri 1651 * information so other cpus are aware of our current priority. 1652 */ 1653 if (TD_IS_RUNNING(td)) { 1654 tdq = TDQ_CPU(ts->ts_cpu); 1655 oldpri = td->td_priority; 1656 td->td_priority = prio; 1657 if (prio < tdq->tdq_lowpri) 1658 tdq->tdq_lowpri = prio; 1659 else if (tdq->tdq_lowpri == oldpri) 1660 tdq_setlowpri(tdq, td); 1661 return; 1662 } 1663 td->td_priority = prio; 1664 } 1665 1666 /* 1667 * Update a thread's priority when it is lent another thread's 1668 * priority. 1669 */ 1670 void 1671 sched_lend_prio(struct thread *td, u_char prio) 1672 { 1673 1674 td->td_flags |= TDF_BORROWING; 1675 sched_thread_priority(td, prio); 1676 } 1677 1678 /* 1679 * Restore a thread's priority when priority propagation is 1680 * over. The prio argument is the minimum priority the thread 1681 * needs to have to satisfy other possible priority lending 1682 * requests. If the thread's regular priority is less 1683 * important than prio, the thread will keep a priority boost 1684 * of prio. 1685 */ 1686 void 1687 sched_unlend_prio(struct thread *td, u_char prio) 1688 { 1689 u_char base_pri; 1690 1691 if (td->td_base_pri >= PRI_MIN_TIMESHARE && 1692 td->td_base_pri <= PRI_MAX_TIMESHARE) 1693 base_pri = td->td_user_pri; 1694 else 1695 base_pri = td->td_base_pri; 1696 if (prio >= base_pri) { 1697 td->td_flags &= ~TDF_BORROWING; 1698 sched_thread_priority(td, base_pri); 1699 } else 1700 sched_lend_prio(td, prio); 1701 } 1702 1703 /* 1704 * Standard entry for setting the priority to an absolute value. 1705 */ 1706 void 1707 sched_prio(struct thread *td, u_char prio) 1708 { 1709 u_char oldprio; 1710 1711 /* First, update the base priority. */ 1712 td->td_base_pri = prio; 1713 1714 /* 1715 * If the thread is borrowing another thread's priority, don't 1716 * ever lower the priority. 1717 */ 1718 if (td->td_flags & TDF_BORROWING && td->td_priority < prio) 1719 return; 1720 1721 /* Change the real priority. */ 1722 oldprio = td->td_priority; 1723 sched_thread_priority(td, prio); 1724 1725 /* 1726 * If the thread is on a turnstile, then let the turnstile update 1727 * its state. 1728 */ 1729 if (TD_ON_LOCK(td) && oldprio != prio) 1730 turnstile_adjust(td, oldprio); 1731 } 1732 1733 /* 1734 * Set the base user priority, does not effect current running priority. 1735 */ 1736 void 1737 sched_user_prio(struct thread *td, u_char prio) 1738 { 1739 1740 td->td_base_user_pri = prio; 1741 if (td->td_lend_user_pri <= prio) 1742 return; 1743 td->td_user_pri = prio; 1744 } 1745 1746 void 1747 sched_lend_user_prio(struct thread *td, u_char prio) 1748 { 1749 1750 THREAD_LOCK_ASSERT(td, MA_OWNED); 1751 td->td_lend_user_pri = prio; 1752 td->td_user_pri = min(prio, td->td_base_user_pri); 1753 if (td->td_priority > td->td_user_pri) 1754 sched_prio(td, td->td_user_pri); 1755 else if (td->td_priority != td->td_user_pri) 1756 td->td_flags |= TDF_NEEDRESCHED; 1757 } 1758 1759 /* 1760 * Handle migration from sched_switch(). This happens only for 1761 * cpu binding. 1762 */ 1763 static struct mtx * 1764 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags) 1765 { 1766 struct tdq *tdn; 1767 1768 tdn = TDQ_CPU(td->td_sched->ts_cpu); 1769 #ifdef SMP 1770 tdq_load_rem(tdq, td); 1771 /* 1772 * Do the lock dance required to avoid LOR. We grab an extra 1773 * spinlock nesting to prevent preemption while we're 1774 * not holding either run-queue lock. 1775 */ 1776 spinlock_enter(); 1777 thread_lock_block(td); /* This releases the lock on tdq. */ 1778 1779 /* 1780 * Acquire both run-queue locks before placing the thread on the new 1781 * run-queue to avoid deadlocks created by placing a thread with a 1782 * blocked lock on the run-queue of a remote processor. The deadlock 1783 * occurs when a third processor attempts to lock the two queues in 1784 * question while the target processor is spinning with its own 1785 * run-queue lock held while waiting for the blocked lock to clear. 1786 */ 1787 tdq_lock_pair(tdn, tdq); 1788 tdq_add(tdn, td, flags); 1789 tdq_notify(tdn, td); 1790 TDQ_UNLOCK(tdn); 1791 spinlock_exit(); 1792 #endif 1793 return (TDQ_LOCKPTR(tdn)); 1794 } 1795 1796 /* 1797 * Variadic version of thread_lock_unblock() that does not assume td_lock 1798 * is blocked. 1799 */ 1800 static inline void 1801 thread_unblock_switch(struct thread *td, struct mtx *mtx) 1802 { 1803 atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock, 1804 (uintptr_t)mtx); 1805 } 1806 1807 /* 1808 * Switch threads. This function has to handle threads coming in while 1809 * blocked for some reason, running, or idle. It also must deal with 1810 * migrating a thread from one queue to another as running threads may 1811 * be assigned elsewhere via binding. 1812 */ 1813 void 1814 sched_switch(struct thread *td, struct thread *newtd, int flags) 1815 { 1816 struct tdq *tdq; 1817 struct td_sched *ts; 1818 struct mtx *mtx; 1819 int srqflag; 1820 int cpuid; 1821 1822 THREAD_LOCK_ASSERT(td, MA_OWNED); 1823 KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument")); 1824 1825 cpuid = PCPU_GET(cpuid); 1826 tdq = TDQ_CPU(cpuid); 1827 ts = td->td_sched; 1828 mtx = td->td_lock; 1829 sched_pctcpu_update(ts, 1); 1830 ts->ts_rltick = ticks; 1831 td->td_lastcpu = td->td_oncpu; 1832 td->td_oncpu = NOCPU; 1833 if (!(flags & SW_PREEMPT)) 1834 td->td_flags &= ~TDF_NEEDRESCHED; 1835 td->td_owepreempt = 0; 1836 tdq->tdq_switchcnt++; 1837 /* 1838 * The lock pointer in an idle thread should never change. Reset it 1839 * to CAN_RUN as well. 1840 */ 1841 if (TD_IS_IDLETHREAD(td)) { 1842 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1843 TD_SET_CAN_RUN(td); 1844 } else if (TD_IS_RUNNING(td)) { 1845 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1846 srqflag = (flags & SW_PREEMPT) ? 1847 SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED : 1848 SRQ_OURSELF|SRQ_YIELDING; 1849 #ifdef SMP 1850 if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu)) 1851 ts->ts_cpu = sched_pickcpu(td, 0); 1852 #endif 1853 if (ts->ts_cpu == cpuid) 1854 tdq_runq_add(tdq, td, srqflag); 1855 else { 1856 KASSERT(THREAD_CAN_MIGRATE(td) || 1857 (ts->ts_flags & TSF_BOUND) != 0, 1858 ("Thread %p shouldn't migrate", td)); 1859 mtx = sched_switch_migrate(tdq, td, srqflag); 1860 } 1861 } else { 1862 /* This thread must be going to sleep. */ 1863 TDQ_LOCK(tdq); 1864 mtx = thread_lock_block(td); 1865 tdq_load_rem(tdq, td); 1866 } 1867 /* 1868 * We enter here with the thread blocked and assigned to the 1869 * appropriate cpu run-queue or sleep-queue and with the current 1870 * thread-queue locked. 1871 */ 1872 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 1873 newtd = choosethread(); 1874 /* 1875 * Call the MD code to switch contexts if necessary. 1876 */ 1877 if (td != newtd) { 1878 #ifdef HWPMC_HOOKS 1879 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1880 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 1881 #endif 1882 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 1883 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 1884 sched_pctcpu_update(newtd->td_sched, 0); 1885 1886 #ifdef KDTRACE_HOOKS 1887 /* 1888 * If DTrace has set the active vtime enum to anything 1889 * other than INACTIVE (0), then it should have set the 1890 * function to call. 1891 */ 1892 if (dtrace_vtime_active) 1893 (*dtrace_vtime_switch_func)(newtd); 1894 #endif 1895 1896 cpu_switch(td, newtd, mtx); 1897 /* 1898 * We may return from cpu_switch on a different cpu. However, 1899 * we always return with td_lock pointing to the current cpu's 1900 * run queue lock. 1901 */ 1902 cpuid = PCPU_GET(cpuid); 1903 tdq = TDQ_CPU(cpuid); 1904 lock_profile_obtain_lock_success( 1905 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 1906 #ifdef HWPMC_HOOKS 1907 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1908 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN); 1909 #endif 1910 } else 1911 thread_unblock_switch(td, mtx); 1912 /* 1913 * Assert that all went well and return. 1914 */ 1915 TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED); 1916 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1917 td->td_oncpu = cpuid; 1918 } 1919 1920 /* 1921 * Adjust thread priorities as a result of a nice request. 1922 */ 1923 void 1924 sched_nice(struct proc *p, int nice) 1925 { 1926 struct thread *td; 1927 1928 PROC_LOCK_ASSERT(p, MA_OWNED); 1929 1930 p->p_nice = nice; 1931 FOREACH_THREAD_IN_PROC(p, td) { 1932 thread_lock(td); 1933 sched_priority(td); 1934 sched_prio(td, td->td_base_user_pri); 1935 thread_unlock(td); 1936 } 1937 } 1938 1939 /* 1940 * Record the sleep time for the interactivity scorer. 1941 */ 1942 void 1943 sched_sleep(struct thread *td, int prio) 1944 { 1945 1946 THREAD_LOCK_ASSERT(td, MA_OWNED); 1947 1948 td->td_slptick = ticks; 1949 if (TD_IS_SUSPENDED(td) || prio >= PSOCK) 1950 td->td_flags |= TDF_CANSWAP; 1951 if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE) 1952 return; 1953 if (static_boost == 1 && prio) 1954 sched_prio(td, prio); 1955 else if (static_boost && td->td_priority > static_boost) 1956 sched_prio(td, static_boost); 1957 } 1958 1959 /* 1960 * Schedule a thread to resume execution and record how long it voluntarily 1961 * slept. We also update the pctcpu, interactivity, and priority. 1962 */ 1963 void 1964 sched_wakeup(struct thread *td) 1965 { 1966 struct td_sched *ts; 1967 int slptick; 1968 1969 THREAD_LOCK_ASSERT(td, MA_OWNED); 1970 ts = td->td_sched; 1971 td->td_flags &= ~TDF_CANSWAP; 1972 /* 1973 * If we slept for more than a tick update our interactivity and 1974 * priority. 1975 */ 1976 slptick = td->td_slptick; 1977 td->td_slptick = 0; 1978 if (slptick && slptick != ticks) { 1979 ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT; 1980 sched_interact_update(td); 1981 sched_pctcpu_update(ts, 0); 1982 } 1983 /* Reset the slice value after we sleep. */ 1984 ts->ts_slice = sched_slice; 1985 sched_add(td, SRQ_BORING); 1986 } 1987 1988 /* 1989 * Penalize the parent for creating a new child and initialize the child's 1990 * priority. 1991 */ 1992 void 1993 sched_fork(struct thread *td, struct thread *child) 1994 { 1995 THREAD_LOCK_ASSERT(td, MA_OWNED); 1996 sched_pctcpu_update(td->td_sched, 1); 1997 sched_fork_thread(td, child); 1998 /* 1999 * Penalize the parent and child for forking. 2000 */ 2001 sched_interact_fork(child); 2002 sched_priority(child); 2003 td->td_sched->ts_runtime += tickincr; 2004 sched_interact_update(td); 2005 sched_priority(td); 2006 } 2007 2008 /* 2009 * Fork a new thread, may be within the same process. 2010 */ 2011 void 2012 sched_fork_thread(struct thread *td, struct thread *child) 2013 { 2014 struct td_sched *ts; 2015 struct td_sched *ts2; 2016 2017 THREAD_LOCK_ASSERT(td, MA_OWNED); 2018 /* 2019 * Initialize child. 2020 */ 2021 ts = td->td_sched; 2022 ts2 = child->td_sched; 2023 child->td_lock = TDQ_LOCKPTR(TDQ_SELF()); 2024 child->td_cpuset = cpuset_ref(td->td_cpuset); 2025 ts2->ts_cpu = ts->ts_cpu; 2026 ts2->ts_flags = 0; 2027 /* 2028 * Grab our parents cpu estimation information. 2029 */ 2030 ts2->ts_ticks = ts->ts_ticks; 2031 ts2->ts_ltick = ts->ts_ltick; 2032 ts2->ts_ftick = ts->ts_ftick; 2033 /* 2034 * Do not inherit any borrowed priority from the parent. 2035 */ 2036 child->td_priority = child->td_base_pri; 2037 /* 2038 * And update interactivity score. 2039 */ 2040 ts2->ts_slptime = ts->ts_slptime; 2041 ts2->ts_runtime = ts->ts_runtime; 2042 ts2->ts_slice = 1; /* Attempt to quickly learn interactivity. */ 2043 #ifdef KTR 2044 bzero(ts2->ts_name, sizeof(ts2->ts_name)); 2045 #endif 2046 } 2047 2048 /* 2049 * Adjust the priority class of a thread. 2050 */ 2051 void 2052 sched_class(struct thread *td, int class) 2053 { 2054 2055 THREAD_LOCK_ASSERT(td, MA_OWNED); 2056 if (td->td_pri_class == class) 2057 return; 2058 td->td_pri_class = class; 2059 } 2060 2061 /* 2062 * Return some of the child's priority and interactivity to the parent. 2063 */ 2064 void 2065 sched_exit(struct proc *p, struct thread *child) 2066 { 2067 struct thread *td; 2068 2069 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit", 2070 "prio:%d", child->td_priority); 2071 PROC_LOCK_ASSERT(p, MA_OWNED); 2072 td = FIRST_THREAD_IN_PROC(p); 2073 sched_exit_thread(td, child); 2074 } 2075 2076 /* 2077 * Penalize another thread for the time spent on this one. This helps to 2078 * worsen the priority and interactivity of processes which schedule batch 2079 * jobs such as make. This has little effect on the make process itself but 2080 * causes new processes spawned by it to receive worse scores immediately. 2081 */ 2082 void 2083 sched_exit_thread(struct thread *td, struct thread *child) 2084 { 2085 2086 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit", 2087 "prio:%d", child->td_priority); 2088 /* 2089 * Give the child's runtime to the parent without returning the 2090 * sleep time as a penalty to the parent. This causes shells that 2091 * launch expensive things to mark their children as expensive. 2092 */ 2093 thread_lock(td); 2094 td->td_sched->ts_runtime += child->td_sched->ts_runtime; 2095 sched_interact_update(td); 2096 sched_priority(td); 2097 thread_unlock(td); 2098 } 2099 2100 void 2101 sched_preempt(struct thread *td) 2102 { 2103 struct tdq *tdq; 2104 2105 thread_lock(td); 2106 tdq = TDQ_SELF(); 2107 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2108 tdq->tdq_ipipending = 0; 2109 if (td->td_priority > tdq->tdq_lowpri) { 2110 int flags; 2111 2112 flags = SW_INVOL | SW_PREEMPT; 2113 if (td->td_critnest > 1) 2114 td->td_owepreempt = 1; 2115 else if (TD_IS_IDLETHREAD(td)) 2116 mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL); 2117 else 2118 mi_switch(flags | SWT_REMOTEPREEMPT, NULL); 2119 } 2120 thread_unlock(td); 2121 } 2122 2123 /* 2124 * Fix priorities on return to user-space. Priorities may be elevated due 2125 * to static priorities in msleep() or similar. 2126 */ 2127 void 2128 sched_userret(struct thread *td) 2129 { 2130 /* 2131 * XXX we cheat slightly on the locking here to avoid locking in 2132 * the usual case. Setting td_priority here is essentially an 2133 * incomplete workaround for not setting it properly elsewhere. 2134 * Now that some interrupt handlers are threads, not setting it 2135 * properly elsewhere can clobber it in the window between setting 2136 * it here and returning to user mode, so don't waste time setting 2137 * it perfectly here. 2138 */ 2139 KASSERT((td->td_flags & TDF_BORROWING) == 0, 2140 ("thread with borrowed priority returning to userland")); 2141 if (td->td_priority != td->td_user_pri) { 2142 thread_lock(td); 2143 td->td_priority = td->td_user_pri; 2144 td->td_base_pri = td->td_user_pri; 2145 tdq_setlowpri(TDQ_SELF(), td); 2146 thread_unlock(td); 2147 } 2148 } 2149 2150 /* 2151 * Handle a stathz tick. This is really only relevant for timeshare 2152 * threads. 2153 */ 2154 void 2155 sched_clock(struct thread *td) 2156 { 2157 struct tdq *tdq; 2158 struct td_sched *ts; 2159 2160 THREAD_LOCK_ASSERT(td, MA_OWNED); 2161 tdq = TDQ_SELF(); 2162 #ifdef SMP 2163 /* 2164 * We run the long term load balancer infrequently on the first cpu. 2165 */ 2166 if (balance_tdq == tdq) { 2167 if (balance_ticks && --balance_ticks == 0) 2168 sched_balance(); 2169 } 2170 #endif 2171 /* 2172 * Save the old switch count so we have a record of the last ticks 2173 * activity. Initialize the new switch count based on our load. 2174 * If there is some activity seed it to reflect that. 2175 */ 2176 tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt; 2177 tdq->tdq_switchcnt = tdq->tdq_load; 2178 /* 2179 * Advance the insert index once for each tick to ensure that all 2180 * threads get a chance to run. 2181 */ 2182 if (tdq->tdq_idx == tdq->tdq_ridx) { 2183 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS; 2184 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx])) 2185 tdq->tdq_ridx = tdq->tdq_idx; 2186 } 2187 ts = td->td_sched; 2188 sched_pctcpu_update(ts, 1); 2189 if (td->td_pri_class & PRI_FIFO_BIT) 2190 return; 2191 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) { 2192 /* 2193 * We used a tick; charge it to the thread so 2194 * that we can compute our interactivity. 2195 */ 2196 td->td_sched->ts_runtime += tickincr; 2197 sched_interact_update(td); 2198 sched_priority(td); 2199 } 2200 /* 2201 * We used up one time slice. 2202 */ 2203 if (--ts->ts_slice > 0) 2204 return; 2205 /* 2206 * We're out of time, force a requeue at userret(). 2207 */ 2208 ts->ts_slice = sched_slice; 2209 td->td_flags |= TDF_NEEDRESCHED; 2210 } 2211 2212 /* 2213 * Called once per hz tick. 2214 */ 2215 void 2216 sched_tick(int cnt) 2217 { 2218 2219 } 2220 2221 /* 2222 * Return whether the current CPU has runnable tasks. Used for in-kernel 2223 * cooperative idle threads. 2224 */ 2225 int 2226 sched_runnable(void) 2227 { 2228 struct tdq *tdq; 2229 int load; 2230 2231 load = 1; 2232 2233 tdq = TDQ_SELF(); 2234 if ((curthread->td_flags & TDF_IDLETD) != 0) { 2235 if (tdq->tdq_load > 0) 2236 goto out; 2237 } else 2238 if (tdq->tdq_load - 1 > 0) 2239 goto out; 2240 load = 0; 2241 out: 2242 return (load); 2243 } 2244 2245 /* 2246 * Choose the highest priority thread to run. The thread is removed from 2247 * the run-queue while running however the load remains. For SMP we set 2248 * the tdq in the global idle bitmask if it idles here. 2249 */ 2250 struct thread * 2251 sched_choose(void) 2252 { 2253 struct thread *td; 2254 struct tdq *tdq; 2255 2256 tdq = TDQ_SELF(); 2257 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2258 td = tdq_choose(tdq); 2259 if (td) { 2260 tdq_runq_rem(tdq, td); 2261 tdq->tdq_lowpri = td->td_priority; 2262 return (td); 2263 } 2264 tdq->tdq_lowpri = PRI_MAX_IDLE; 2265 return (PCPU_GET(idlethread)); 2266 } 2267 2268 /* 2269 * Set owepreempt if necessary. Preemption never happens directly in ULE, 2270 * we always request it once we exit a critical section. 2271 */ 2272 static inline void 2273 sched_setpreempt(struct thread *td) 2274 { 2275 struct thread *ctd; 2276 int cpri; 2277 int pri; 2278 2279 THREAD_LOCK_ASSERT(curthread, MA_OWNED); 2280 2281 ctd = curthread; 2282 pri = td->td_priority; 2283 cpri = ctd->td_priority; 2284 if (pri < cpri) 2285 ctd->td_flags |= TDF_NEEDRESCHED; 2286 if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd)) 2287 return; 2288 if (!sched_shouldpreempt(pri, cpri, 0)) 2289 return; 2290 ctd->td_owepreempt = 1; 2291 } 2292 2293 /* 2294 * Add a thread to a thread queue. Select the appropriate runq and add the 2295 * thread to it. This is the internal function called when the tdq is 2296 * predetermined. 2297 */ 2298 void 2299 tdq_add(struct tdq *tdq, struct thread *td, int flags) 2300 { 2301 2302 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2303 KASSERT((td->td_inhibitors == 0), 2304 ("sched_add: trying to run inhibited thread")); 2305 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 2306 ("sched_add: bad thread state")); 2307 KASSERT(td->td_flags & TDF_INMEM, 2308 ("sched_add: thread swapped out")); 2309 2310 if (td->td_priority < tdq->tdq_lowpri) 2311 tdq->tdq_lowpri = td->td_priority; 2312 tdq_runq_add(tdq, td, flags); 2313 tdq_load_add(tdq, td); 2314 } 2315 2316 /* 2317 * Select the target thread queue and add a thread to it. Request 2318 * preemption or IPI a remote processor if required. 2319 */ 2320 void 2321 sched_add(struct thread *td, int flags) 2322 { 2323 struct tdq *tdq; 2324 #ifdef SMP 2325 int cpu; 2326 #endif 2327 2328 KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add", 2329 "prio:%d", td->td_priority, KTR_ATTR_LINKED, 2330 sched_tdname(curthread)); 2331 KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup", 2332 KTR_ATTR_LINKED, sched_tdname(td)); 2333 THREAD_LOCK_ASSERT(td, MA_OWNED); 2334 /* 2335 * Recalculate the priority before we select the target cpu or 2336 * run-queue. 2337 */ 2338 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 2339 sched_priority(td); 2340 #ifdef SMP 2341 /* 2342 * Pick the destination cpu and if it isn't ours transfer to the 2343 * target cpu. 2344 */ 2345 cpu = sched_pickcpu(td, flags); 2346 tdq = sched_setcpu(td, cpu, flags); 2347 tdq_add(tdq, td, flags); 2348 if (cpu != PCPU_GET(cpuid)) { 2349 tdq_notify(tdq, td); 2350 return; 2351 } 2352 #else 2353 tdq = TDQ_SELF(); 2354 TDQ_LOCK(tdq); 2355 /* 2356 * Now that the thread is moving to the run-queue, set the lock 2357 * to the scheduler's lock. 2358 */ 2359 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 2360 tdq_add(tdq, td, flags); 2361 #endif 2362 if (!(flags & SRQ_YIELDING)) 2363 sched_setpreempt(td); 2364 } 2365 2366 /* 2367 * Remove a thread from a run-queue without running it. This is used 2368 * when we're stealing a thread from a remote queue. Otherwise all threads 2369 * exit by calling sched_exit_thread() and sched_throw() themselves. 2370 */ 2371 void 2372 sched_rem(struct thread *td) 2373 { 2374 struct tdq *tdq; 2375 2376 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem", 2377 "prio:%d", td->td_priority); 2378 tdq = TDQ_CPU(td->td_sched->ts_cpu); 2379 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2380 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2381 KASSERT(TD_ON_RUNQ(td), 2382 ("sched_rem: thread not on run queue")); 2383 tdq_runq_rem(tdq, td); 2384 tdq_load_rem(tdq, td); 2385 TD_SET_CAN_RUN(td); 2386 if (td->td_priority == tdq->tdq_lowpri) 2387 tdq_setlowpri(tdq, NULL); 2388 } 2389 2390 /* 2391 * Fetch cpu utilization information. Updates on demand. 2392 */ 2393 fixpt_t 2394 sched_pctcpu(struct thread *td) 2395 { 2396 fixpt_t pctcpu; 2397 struct td_sched *ts; 2398 2399 pctcpu = 0; 2400 ts = td->td_sched; 2401 if (ts == NULL) 2402 return (0); 2403 2404 THREAD_LOCK_ASSERT(td, MA_OWNED); 2405 sched_pctcpu_update(ts, TD_IS_RUNNING(td)); 2406 if (ts->ts_ticks) { 2407 int rtick; 2408 2409 /* How many rtick per second ? */ 2410 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz); 2411 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT; 2412 } 2413 2414 return (pctcpu); 2415 } 2416 2417 /* 2418 * Enforce affinity settings for a thread. Called after adjustments to 2419 * cpumask. 2420 */ 2421 void 2422 sched_affinity(struct thread *td) 2423 { 2424 #ifdef SMP 2425 struct td_sched *ts; 2426 2427 THREAD_LOCK_ASSERT(td, MA_OWNED); 2428 ts = td->td_sched; 2429 if (THREAD_CAN_SCHED(td, ts->ts_cpu)) 2430 return; 2431 if (TD_ON_RUNQ(td)) { 2432 sched_rem(td); 2433 sched_add(td, SRQ_BORING); 2434 return; 2435 } 2436 if (!TD_IS_RUNNING(td)) 2437 return; 2438 /* 2439 * Force a switch before returning to userspace. If the 2440 * target thread is not running locally send an ipi to force 2441 * the issue. 2442 */ 2443 td->td_flags |= TDF_NEEDRESCHED; 2444 if (td != curthread) 2445 ipi_cpu(ts->ts_cpu, IPI_PREEMPT); 2446 #endif 2447 } 2448 2449 /* 2450 * Bind a thread to a target cpu. 2451 */ 2452 void 2453 sched_bind(struct thread *td, int cpu) 2454 { 2455 struct td_sched *ts; 2456 2457 THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED); 2458 KASSERT(td == curthread, ("sched_bind: can only bind curthread")); 2459 ts = td->td_sched; 2460 if (ts->ts_flags & TSF_BOUND) 2461 sched_unbind(td); 2462 KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td)); 2463 ts->ts_flags |= TSF_BOUND; 2464 sched_pin(); 2465 if (PCPU_GET(cpuid) == cpu) 2466 return; 2467 ts->ts_cpu = cpu; 2468 /* When we return from mi_switch we'll be on the correct cpu. */ 2469 mi_switch(SW_VOL, NULL); 2470 } 2471 2472 /* 2473 * Release a bound thread. 2474 */ 2475 void 2476 sched_unbind(struct thread *td) 2477 { 2478 struct td_sched *ts; 2479 2480 THREAD_LOCK_ASSERT(td, MA_OWNED); 2481 KASSERT(td == curthread, ("sched_unbind: can only bind curthread")); 2482 ts = td->td_sched; 2483 if ((ts->ts_flags & TSF_BOUND) == 0) 2484 return; 2485 ts->ts_flags &= ~TSF_BOUND; 2486 sched_unpin(); 2487 } 2488 2489 int 2490 sched_is_bound(struct thread *td) 2491 { 2492 THREAD_LOCK_ASSERT(td, MA_OWNED); 2493 return (td->td_sched->ts_flags & TSF_BOUND); 2494 } 2495 2496 /* 2497 * Basic yield call. 2498 */ 2499 void 2500 sched_relinquish(struct thread *td) 2501 { 2502 thread_lock(td); 2503 mi_switch(SW_VOL | SWT_RELINQUISH, NULL); 2504 thread_unlock(td); 2505 } 2506 2507 /* 2508 * Return the total system load. 2509 */ 2510 int 2511 sched_load(void) 2512 { 2513 #ifdef SMP 2514 int total; 2515 int i; 2516 2517 total = 0; 2518 CPU_FOREACH(i) 2519 total += TDQ_CPU(i)->tdq_sysload; 2520 return (total); 2521 #else 2522 return (TDQ_SELF()->tdq_sysload); 2523 #endif 2524 } 2525 2526 int 2527 sched_sizeof_proc(void) 2528 { 2529 return (sizeof(struct proc)); 2530 } 2531 2532 int 2533 sched_sizeof_thread(void) 2534 { 2535 return (sizeof(struct thread) + sizeof(struct td_sched)); 2536 } 2537 2538 #ifdef SMP 2539 #define TDQ_IDLESPIN(tdq) \ 2540 ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0) 2541 #else 2542 #define TDQ_IDLESPIN(tdq) 1 2543 #endif 2544 2545 /* 2546 * The actual idle process. 2547 */ 2548 void 2549 sched_idletd(void *dummy) 2550 { 2551 struct thread *td; 2552 struct tdq *tdq; 2553 int switchcnt; 2554 int i; 2555 2556 mtx_assert(&Giant, MA_NOTOWNED); 2557 td = curthread; 2558 tdq = TDQ_SELF(); 2559 for (;;) { 2560 #ifdef SMP 2561 if (tdq_idled(tdq) == 0) 2562 continue; 2563 #endif 2564 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2565 /* 2566 * If we're switching very frequently, spin while checking 2567 * for load rather than entering a low power state that 2568 * may require an IPI. However, don't do any busy 2569 * loops while on SMT machines as this simply steals 2570 * cycles from cores doing useful work. 2571 */ 2572 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) { 2573 for (i = 0; i < sched_idlespins; i++) { 2574 if (tdq->tdq_load) 2575 break; 2576 cpu_spinwait(); 2577 } 2578 } 2579 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2580 if (tdq->tdq_load == 0) { 2581 tdq->tdq_cpu_idle = 1; 2582 if (tdq->tdq_load == 0) { 2583 cpu_idle(switchcnt > sched_idlespinthresh * 4); 2584 tdq->tdq_switchcnt++; 2585 } 2586 tdq->tdq_cpu_idle = 0; 2587 } 2588 if (tdq->tdq_load) { 2589 thread_lock(td); 2590 mi_switch(SW_VOL | SWT_IDLE, NULL); 2591 thread_unlock(td); 2592 } 2593 } 2594 } 2595 2596 /* 2597 * A CPU is entering for the first time or a thread is exiting. 2598 */ 2599 void 2600 sched_throw(struct thread *td) 2601 { 2602 struct thread *newtd; 2603 struct tdq *tdq; 2604 2605 tdq = TDQ_SELF(); 2606 if (td == NULL) { 2607 /* Correct spinlock nesting and acquire the correct lock. */ 2608 TDQ_LOCK(tdq); 2609 spinlock_exit(); 2610 PCPU_SET(switchtime, cpu_ticks()); 2611 PCPU_SET(switchticks, ticks); 2612 } else { 2613 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2614 tdq_load_rem(tdq, td); 2615 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 2616 } 2617 KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count")); 2618 newtd = choosethread(); 2619 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 2620 cpu_throw(td, newtd); /* doesn't return */ 2621 } 2622 2623 /* 2624 * This is called from fork_exit(). Just acquire the correct locks and 2625 * let fork do the rest of the work. 2626 */ 2627 void 2628 sched_fork_exit(struct thread *td) 2629 { 2630 struct td_sched *ts; 2631 struct tdq *tdq; 2632 int cpuid; 2633 2634 /* 2635 * Finish setting up thread glue so that it begins execution in a 2636 * non-nested critical section with the scheduler lock held. 2637 */ 2638 cpuid = PCPU_GET(cpuid); 2639 tdq = TDQ_CPU(cpuid); 2640 ts = td->td_sched; 2641 if (TD_IS_IDLETHREAD(td)) 2642 td->td_lock = TDQ_LOCKPTR(tdq); 2643 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2644 td->td_oncpu = cpuid; 2645 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 2646 lock_profile_obtain_lock_success( 2647 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 2648 } 2649 2650 /* 2651 * Create on first use to catch odd startup conditons. 2652 */ 2653 char * 2654 sched_tdname(struct thread *td) 2655 { 2656 #ifdef KTR 2657 struct td_sched *ts; 2658 2659 ts = td->td_sched; 2660 if (ts->ts_name[0] == '\0') 2661 snprintf(ts->ts_name, sizeof(ts->ts_name), 2662 "%s tid %d", td->td_name, td->td_tid); 2663 return (ts->ts_name); 2664 #else 2665 return (td->td_name); 2666 #endif 2667 } 2668 2669 #ifdef KTR 2670 void 2671 sched_clear_tdname(struct thread *td) 2672 { 2673 struct td_sched *ts; 2674 2675 ts = td->td_sched; 2676 ts->ts_name[0] = '\0'; 2677 } 2678 #endif 2679 2680 #ifdef SMP 2681 2682 /* 2683 * Build the CPU topology dump string. Is recursively called to collect 2684 * the topology tree. 2685 */ 2686 static int 2687 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg, 2688 int indent) 2689 { 2690 char cpusetbuf[CPUSETBUFSIZ]; 2691 int i, first; 2692 2693 sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent, 2694 "", 1 + indent / 2, cg->cg_level); 2695 sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "", 2696 cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask)); 2697 first = TRUE; 2698 for (i = 0; i < MAXCPU; i++) { 2699 if (CPU_ISSET(i, &cg->cg_mask)) { 2700 if (!first) 2701 sbuf_printf(sb, ", "); 2702 else 2703 first = FALSE; 2704 sbuf_printf(sb, "%d", i); 2705 } 2706 } 2707 sbuf_printf(sb, "</cpu>\n"); 2708 2709 if (cg->cg_flags != 0) { 2710 sbuf_printf(sb, "%*s <flags>", indent, ""); 2711 if ((cg->cg_flags & CG_FLAG_HTT) != 0) 2712 sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>"); 2713 if ((cg->cg_flags & CG_FLAG_THREAD) != 0) 2714 sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>"); 2715 if ((cg->cg_flags & CG_FLAG_SMT) != 0) 2716 sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>"); 2717 sbuf_printf(sb, "</flags>\n"); 2718 } 2719 2720 if (cg->cg_children > 0) { 2721 sbuf_printf(sb, "%*s <children>\n", indent, ""); 2722 for (i = 0; i < cg->cg_children; i++) 2723 sysctl_kern_sched_topology_spec_internal(sb, 2724 &cg->cg_child[i], indent+2); 2725 sbuf_printf(sb, "%*s </children>\n", indent, ""); 2726 } 2727 sbuf_printf(sb, "%*s</group>\n", indent, ""); 2728 return (0); 2729 } 2730 2731 /* 2732 * Sysctl handler for retrieving topology dump. It's a wrapper for 2733 * the recursive sysctl_kern_smp_topology_spec_internal(). 2734 */ 2735 static int 2736 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS) 2737 { 2738 struct sbuf *topo; 2739 int err; 2740 2741 KASSERT(cpu_top != NULL, ("cpu_top isn't initialized")); 2742 2743 topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND); 2744 if (topo == NULL) 2745 return (ENOMEM); 2746 2747 sbuf_printf(topo, "<groups>\n"); 2748 err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1); 2749 sbuf_printf(topo, "</groups>\n"); 2750 2751 if (err == 0) { 2752 sbuf_finish(topo); 2753 err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo)); 2754 } 2755 sbuf_delete(topo); 2756 return (err); 2757 } 2758 2759 #endif 2760 2761 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler"); 2762 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0, 2763 "Scheduler name"); 2764 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0, 2765 "Slice size for timeshare threads"); 2766 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0, 2767 "Interactivity score threshold"); 2768 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh, 2769 0,"Min priority for preemption, lower priorities have greater precedence"); 2770 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 2771 0,"Controls whether static kernel priorities are assigned to sleeping threads."); 2772 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 2773 0,"Number of times idle will spin waiting for new work."); 2774 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh, 2775 0,"Threshold before we will permit idle spinning."); 2776 #ifdef SMP 2777 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0, 2778 "Number of hz ticks to keep thread affinity for"); 2779 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0, 2780 "Enables the long-term load balancer"); 2781 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW, 2782 &balance_interval, 0, 2783 "Average frequency in stathz ticks to run the long-term balancer"); 2784 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0, 2785 "Attempts to steal work from other cores before idling"); 2786 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0, 2787 "Minimum load on remote cpu before we'll steal"); 2788 2789 /* Retrieve SMP topology */ 2790 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING | 2791 CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A", 2792 "XML dump of detected CPU topology"); 2793 2794 #endif 2795 2796 /* ps compat. All cpu percentages from ULE are weighted. */ 2797 static int ccpu = 0; 2798 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 2799