1 /*- 2 * Copyright (c) 2002-2005, Jeffrey Roberson <jeff@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_hwpmc_hooks.h" 31 #include "opt_sched.h" 32 33 #define kse td_sched 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kdb.h> 38 #include <sys/kernel.h> 39 #include <sys/ktr.h> 40 #include <sys/lock.h> 41 #include <sys/mutex.h> 42 #include <sys/proc.h> 43 #include <sys/resource.h> 44 #include <sys/resourcevar.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/sx.h> 48 #include <sys/sysctl.h> 49 #include <sys/sysproto.h> 50 #include <sys/turnstile.h> 51 #include <sys/vmmeter.h> 52 #ifdef KTRACE 53 #include <sys/uio.h> 54 #include <sys/ktrace.h> 55 #endif 56 57 #ifdef HWPMC_HOOKS 58 #include <sys/pmckern.h> 59 #endif 60 61 #include <machine/cpu.h> 62 #include <machine/smp.h> 63 64 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 65 /* XXX This is bogus compatability crap for ps */ 66 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 67 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 68 69 static void sched_setup(void *dummy); 70 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL) 71 72 static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler"); 73 74 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0, 75 "Scheduler name"); 76 77 static int slice_min = 1; 78 SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, ""); 79 80 static int slice_max = 10; 81 SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, ""); 82 83 int realstathz; 84 int tickincr = 1; 85 86 /* 87 * The following datastructures are allocated within their parent structure 88 * but are scheduler specific. 89 */ 90 /* 91 * The schedulable entity that can be given a context to run. A process may 92 * have several of these. 93 */ 94 struct kse { 95 TAILQ_ENTRY(kse) ke_procq; /* (j/z) Run queue. */ 96 int ke_flags; /* (j) KEF_* flags. */ 97 struct thread *ke_thread; /* (*) Active associated thread. */ 98 fixpt_t ke_pctcpu; /* (j) %cpu during p_swtime. */ 99 char ke_rqindex; /* (j) Run queue index. */ 100 enum { 101 KES_THREAD = 0x0, /* slaved to thread state */ 102 KES_ONRUNQ 103 } ke_state; /* (j) thread sched specific status. */ 104 int ke_slptime; 105 int ke_slice; 106 struct runq *ke_runq; 107 u_char ke_cpu; /* CPU that we have affinity for. */ 108 /* The following variables are only used for pctcpu calculation */ 109 int ke_ltick; /* Last tick that we were running on */ 110 int ke_ftick; /* First tick that we were running on */ 111 int ke_ticks; /* Tick count */ 112 113 }; 114 #define td_kse td_sched 115 #define td_slptime td_kse->ke_slptime 116 #define ke_proc ke_thread->td_proc 117 #define ke_ksegrp ke_thread->td_ksegrp 118 #define ke_assign ke_procq.tqe_next 119 /* flags kept in ke_flags */ 120 #define KEF_ASSIGNED 0x0001 /* Thread is being migrated. */ 121 #define KEF_BOUND 0x0002 /* Thread can not migrate. */ 122 #define KEF_XFERABLE 0x0004 /* Thread was added as transferable. */ 123 #define KEF_HOLD 0x0008 /* Thread is temporarily bound. */ 124 #define KEF_REMOVED 0x0010 /* Thread was removed while ASSIGNED */ 125 #define KEF_INTERNAL 0x0020 /* Thread added due to migration. */ 126 #define KEF_DIDRUN 0x02000 /* Thread actually ran. */ 127 #define KEF_EXIT 0x04000 /* Thread is being killed. */ 128 129 struct kg_sched { 130 struct thread *skg_last_assigned; /* (j) Last thread assigned to */ 131 /* the system scheduler */ 132 int skg_slptime; /* Number of ticks we vol. slept */ 133 int skg_runtime; /* Number of ticks we were running */ 134 int skg_avail_opennings; /* (j) Num unfilled slots in group.*/ 135 int skg_concurrency; /* (j) Num threads requested in group.*/ 136 }; 137 #define kg_last_assigned kg_sched->skg_last_assigned 138 #define kg_avail_opennings kg_sched->skg_avail_opennings 139 #define kg_concurrency kg_sched->skg_concurrency 140 #define kg_runtime kg_sched->skg_runtime 141 #define kg_slptime kg_sched->skg_slptime 142 143 #define SLOT_RELEASE(kg) (kg)->kg_avail_opennings++ 144 #define SLOT_USE(kg) (kg)->kg_avail_opennings-- 145 146 static struct kse kse0; 147 static struct kg_sched kg_sched0; 148 149 /* 150 * The priority is primarily determined by the interactivity score. Thus, we 151 * give lower(better) priorities to kse groups that use less CPU. The nice 152 * value is then directly added to this to allow nice to have some effect 153 * on latency. 154 * 155 * PRI_RANGE: Total priority range for timeshare threads. 156 * PRI_NRESV: Number of nice values. 157 * PRI_BASE: The start of the dynamic range. 158 */ 159 #define SCHED_PRI_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1) 160 #define SCHED_PRI_NRESV ((PRIO_MAX - PRIO_MIN) + 1) 161 #define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2) 162 #define SCHED_PRI_BASE (PRI_MIN_TIMESHARE) 163 #define SCHED_PRI_INTERACT(score) \ 164 ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX) 165 166 /* 167 * These determine the interactivity of a process. 168 * 169 * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate 170 * before throttling back. 171 * SLP_RUN_FORK: Maximum slp+run time to inherit at fork time. 172 * INTERACT_MAX: Maximum interactivity value. Smaller is better. 173 * INTERACT_THRESH: Threshhold for placement on the current runq. 174 */ 175 #define SCHED_SLP_RUN_MAX ((hz * 5) << 10) 176 #define SCHED_SLP_RUN_FORK ((hz / 2) << 10) 177 #define SCHED_INTERACT_MAX (100) 178 #define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2) 179 #define SCHED_INTERACT_THRESH (30) 180 181 /* 182 * These parameters and macros determine the size of the time slice that is 183 * granted to each thread. 184 * 185 * SLICE_MIN: Minimum time slice granted, in units of ticks. 186 * SLICE_MAX: Maximum time slice granted. 187 * SLICE_RANGE: Range of available time slices scaled by hz. 188 * SLICE_SCALE: The number slices granted per val in the range of [0, max]. 189 * SLICE_NICE: Determine the amount of slice granted to a scaled nice. 190 * SLICE_NTHRESH: The nice cutoff point for slice assignment. 191 */ 192 #define SCHED_SLICE_MIN (slice_min) 193 #define SCHED_SLICE_MAX (slice_max) 194 #define SCHED_SLICE_INTERACTIVE (slice_max) 195 #define SCHED_SLICE_NTHRESH (SCHED_PRI_NHALF - 1) 196 #define SCHED_SLICE_RANGE (SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1) 197 #define SCHED_SLICE_SCALE(val, max) (((val) * SCHED_SLICE_RANGE) / (max)) 198 #define SCHED_SLICE_NICE(nice) \ 199 (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH)) 200 201 /* 202 * This macro determines whether or not the thread belongs on the current or 203 * next run queue. 204 */ 205 #define SCHED_INTERACTIVE(kg) \ 206 (sched_interact_score(kg) < SCHED_INTERACT_THRESH) 207 #define SCHED_CURR(kg, ke) \ 208 ((ke->ke_thread->td_flags & TDF_BORROWING) || SCHED_INTERACTIVE(kg)) 209 210 /* 211 * Cpu percentage computation macros and defines. 212 * 213 * SCHED_CPU_TIME: Number of seconds to average the cpu usage across. 214 * SCHED_CPU_TICKS: Number of hz ticks to average the cpu usage across. 215 */ 216 217 #define SCHED_CPU_TIME 10 218 #define SCHED_CPU_TICKS (hz * SCHED_CPU_TIME) 219 220 /* 221 * kseq - per processor runqs and statistics. 222 */ 223 struct kseq { 224 struct runq ksq_idle; /* Queue of IDLE threads. */ 225 struct runq ksq_timeshare[2]; /* Run queues for !IDLE. */ 226 struct runq *ksq_next; /* Next timeshare queue. */ 227 struct runq *ksq_curr; /* Current queue. */ 228 int ksq_load_timeshare; /* Load for timeshare. */ 229 int ksq_load; /* Aggregate load. */ 230 short ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */ 231 short ksq_nicemin; /* Least nice. */ 232 #ifdef SMP 233 int ksq_transferable; 234 LIST_ENTRY(kseq) ksq_siblings; /* Next in kseq group. */ 235 struct kseq_group *ksq_group; /* Our processor group. */ 236 volatile struct kse *ksq_assigned; /* assigned by another CPU. */ 237 #else 238 int ksq_sysload; /* For loadavg, !ITHD load. */ 239 #endif 240 }; 241 242 #ifdef SMP 243 /* 244 * kseq groups are groups of processors which can cheaply share threads. When 245 * one processor in the group goes idle it will check the runqs of the other 246 * processors in its group prior to halting and waiting for an interrupt. 247 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA. 248 * In a numa environment we'd want an idle bitmap per group and a two tiered 249 * load balancer. 250 */ 251 struct kseq_group { 252 int ksg_cpus; /* Count of CPUs in this kseq group. */ 253 cpumask_t ksg_cpumask; /* Mask of cpus in this group. */ 254 cpumask_t ksg_idlemask; /* Idle cpus in this group. */ 255 cpumask_t ksg_mask; /* Bit mask for first cpu. */ 256 int ksg_load; /* Total load of this group. */ 257 int ksg_transferable; /* Transferable load of this group. */ 258 LIST_HEAD(, kseq) ksg_members; /* Linked list of all members. */ 259 }; 260 #endif 261 262 /* 263 * One kse queue per processor. 264 */ 265 #ifdef SMP 266 static cpumask_t kseq_idle; 267 static int ksg_maxid; 268 static struct kseq kseq_cpu[MAXCPU]; 269 static struct kseq_group kseq_groups[MAXCPU]; 270 static int bal_tick; 271 static int gbal_tick; 272 static int balance_groups; 273 274 #define KSEQ_SELF() (&kseq_cpu[PCPU_GET(cpuid)]) 275 #define KSEQ_CPU(x) (&kseq_cpu[(x)]) 276 #define KSEQ_ID(x) ((x) - kseq_cpu) 277 #define KSEQ_GROUP(x) (&kseq_groups[(x)]) 278 #else /* !SMP */ 279 static struct kseq kseq_cpu; 280 281 #define KSEQ_SELF() (&kseq_cpu) 282 #define KSEQ_CPU(x) (&kseq_cpu) 283 #endif 284 285 static void slot_fill(struct ksegrp *); 286 static struct kse *sched_choose(void); /* XXX Should be thread * */ 287 static void sched_slice(struct kse *); 288 static void sched_priority(struct ksegrp *); 289 static void sched_thread_priority(struct thread *, u_char); 290 static int sched_interact_score(struct ksegrp *); 291 static void sched_interact_update(struct ksegrp *); 292 static void sched_interact_fork(struct ksegrp *); 293 static void sched_pctcpu_update(struct kse *); 294 295 /* Operations on per processor queues */ 296 static struct kse * kseq_choose(struct kseq *); 297 static void kseq_setup(struct kseq *); 298 static void kseq_load_add(struct kseq *, struct kse *); 299 static void kseq_load_rem(struct kseq *, struct kse *); 300 static __inline void kseq_runq_add(struct kseq *, struct kse *, int); 301 static __inline void kseq_runq_rem(struct kseq *, struct kse *); 302 static void kseq_nice_add(struct kseq *, int); 303 static void kseq_nice_rem(struct kseq *, int); 304 void kseq_print(int cpu); 305 #ifdef SMP 306 static int kseq_transfer(struct kseq *, struct kse *, int); 307 static struct kse *runq_steal(struct runq *); 308 static void sched_balance(void); 309 static void sched_balance_groups(void); 310 static void sched_balance_group(struct kseq_group *); 311 static void sched_balance_pair(struct kseq *, struct kseq *); 312 static void kseq_move(struct kseq *, int); 313 static int kseq_idled(struct kseq *); 314 static void kseq_notify(struct kse *, int); 315 static void kseq_assign(struct kseq *); 316 static struct kse *kseq_steal(struct kseq *, int); 317 #define KSE_CAN_MIGRATE(ke) \ 318 ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0) 319 #endif 320 321 void 322 kseq_print(int cpu) 323 { 324 struct kseq *kseq; 325 int i; 326 327 kseq = KSEQ_CPU(cpu); 328 329 printf("kseq:\n"); 330 printf("\tload: %d\n", kseq->ksq_load); 331 printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare); 332 #ifdef SMP 333 printf("\tload transferable: %d\n", kseq->ksq_transferable); 334 #endif 335 printf("\tnicemin:\t%d\n", kseq->ksq_nicemin); 336 printf("\tnice counts:\n"); 337 for (i = 0; i < SCHED_PRI_NRESV; i++) 338 if (kseq->ksq_nice[i]) 339 printf("\t\t%d = %d\n", 340 i - SCHED_PRI_NHALF, kseq->ksq_nice[i]); 341 } 342 343 static __inline void 344 kseq_runq_add(struct kseq *kseq, struct kse *ke, int flags) 345 { 346 #ifdef SMP 347 if (KSE_CAN_MIGRATE(ke)) { 348 kseq->ksq_transferable++; 349 kseq->ksq_group->ksg_transferable++; 350 ke->ke_flags |= KEF_XFERABLE; 351 } 352 #endif 353 runq_add(ke->ke_runq, ke, flags); 354 } 355 356 static __inline void 357 kseq_runq_rem(struct kseq *kseq, struct kse *ke) 358 { 359 #ifdef SMP 360 if (ke->ke_flags & KEF_XFERABLE) { 361 kseq->ksq_transferable--; 362 kseq->ksq_group->ksg_transferable--; 363 ke->ke_flags &= ~KEF_XFERABLE; 364 } 365 #endif 366 runq_remove(ke->ke_runq, ke); 367 } 368 369 static void 370 kseq_load_add(struct kseq *kseq, struct kse *ke) 371 { 372 int class; 373 mtx_assert(&sched_lock, MA_OWNED); 374 class = PRI_BASE(ke->ke_ksegrp->kg_pri_class); 375 if (class == PRI_TIMESHARE) 376 kseq->ksq_load_timeshare++; 377 kseq->ksq_load++; 378 CTR1(KTR_SCHED, "load: %d", kseq->ksq_load); 379 if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0) 380 #ifdef SMP 381 kseq->ksq_group->ksg_load++; 382 #else 383 kseq->ksq_sysload++; 384 #endif 385 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) 386 kseq_nice_add(kseq, ke->ke_proc->p_nice); 387 } 388 389 static void 390 kseq_load_rem(struct kseq *kseq, struct kse *ke) 391 { 392 int class; 393 mtx_assert(&sched_lock, MA_OWNED); 394 class = PRI_BASE(ke->ke_ksegrp->kg_pri_class); 395 if (class == PRI_TIMESHARE) 396 kseq->ksq_load_timeshare--; 397 if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0) 398 #ifdef SMP 399 kseq->ksq_group->ksg_load--; 400 #else 401 kseq->ksq_sysload--; 402 #endif 403 kseq->ksq_load--; 404 CTR1(KTR_SCHED, "load: %d", kseq->ksq_load); 405 ke->ke_runq = NULL; 406 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) 407 kseq_nice_rem(kseq, ke->ke_proc->p_nice); 408 } 409 410 static void 411 kseq_nice_add(struct kseq *kseq, int nice) 412 { 413 mtx_assert(&sched_lock, MA_OWNED); 414 /* Normalize to zero. */ 415 kseq->ksq_nice[nice + SCHED_PRI_NHALF]++; 416 if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1) 417 kseq->ksq_nicemin = nice; 418 } 419 420 static void 421 kseq_nice_rem(struct kseq *kseq, int nice) 422 { 423 int n; 424 425 mtx_assert(&sched_lock, MA_OWNED); 426 /* Normalize to zero. */ 427 n = nice + SCHED_PRI_NHALF; 428 kseq->ksq_nice[n]--; 429 KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count.")); 430 431 /* 432 * If this wasn't the smallest nice value or there are more in 433 * this bucket we can just return. Otherwise we have to recalculate 434 * the smallest nice. 435 */ 436 if (nice != kseq->ksq_nicemin || 437 kseq->ksq_nice[n] != 0 || 438 kseq->ksq_load_timeshare == 0) 439 return; 440 441 for (; n < SCHED_PRI_NRESV; n++) 442 if (kseq->ksq_nice[n]) { 443 kseq->ksq_nicemin = n - SCHED_PRI_NHALF; 444 return; 445 } 446 } 447 448 #ifdef SMP 449 /* 450 * sched_balance is a simple CPU load balancing algorithm. It operates by 451 * finding the least loaded and most loaded cpu and equalizing their load 452 * by migrating some processes. 453 * 454 * Dealing only with two CPUs at a time has two advantages. Firstly, most 455 * installations will only have 2 cpus. Secondly, load balancing too much at 456 * once can have an unpleasant effect on the system. The scheduler rarely has 457 * enough information to make perfect decisions. So this algorithm chooses 458 * algorithm simplicity and more gradual effects on load in larger systems. 459 * 460 * It could be improved by considering the priorities and slices assigned to 461 * each task prior to balancing them. There are many pathological cases with 462 * any approach and so the semi random algorithm below may work as well as any. 463 * 464 */ 465 static void 466 sched_balance(void) 467 { 468 struct kseq_group *high; 469 struct kseq_group *low; 470 struct kseq_group *ksg; 471 int cnt; 472 int i; 473 474 bal_tick = ticks + (random() % (hz * 2)); 475 if (smp_started == 0) 476 return; 477 low = high = NULL; 478 i = random() % (ksg_maxid + 1); 479 for (cnt = 0; cnt <= ksg_maxid; cnt++) { 480 ksg = KSEQ_GROUP(i); 481 /* 482 * Find the CPU with the highest load that has some 483 * threads to transfer. 484 */ 485 if ((high == NULL || ksg->ksg_load > high->ksg_load) 486 && ksg->ksg_transferable) 487 high = ksg; 488 if (low == NULL || ksg->ksg_load < low->ksg_load) 489 low = ksg; 490 if (++i > ksg_maxid) 491 i = 0; 492 } 493 if (low != NULL && high != NULL && high != low) 494 sched_balance_pair(LIST_FIRST(&high->ksg_members), 495 LIST_FIRST(&low->ksg_members)); 496 } 497 498 static void 499 sched_balance_groups(void) 500 { 501 int i; 502 503 gbal_tick = ticks + (random() % (hz * 2)); 504 mtx_assert(&sched_lock, MA_OWNED); 505 if (smp_started) 506 for (i = 0; i <= ksg_maxid; i++) 507 sched_balance_group(KSEQ_GROUP(i)); 508 } 509 510 static void 511 sched_balance_group(struct kseq_group *ksg) 512 { 513 struct kseq *kseq; 514 struct kseq *high; 515 struct kseq *low; 516 int load; 517 518 if (ksg->ksg_transferable == 0) 519 return; 520 low = NULL; 521 high = NULL; 522 LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) { 523 load = kseq->ksq_load; 524 if (high == NULL || load > high->ksq_load) 525 high = kseq; 526 if (low == NULL || load < low->ksq_load) 527 low = kseq; 528 } 529 if (high != NULL && low != NULL && high != low) 530 sched_balance_pair(high, low); 531 } 532 533 static void 534 sched_balance_pair(struct kseq *high, struct kseq *low) 535 { 536 int transferable; 537 int high_load; 538 int low_load; 539 int move; 540 int diff; 541 int i; 542 543 /* 544 * If we're transfering within a group we have to use this specific 545 * kseq's transferable count, otherwise we can steal from other members 546 * of the group. 547 */ 548 if (high->ksq_group == low->ksq_group) { 549 transferable = high->ksq_transferable; 550 high_load = high->ksq_load; 551 low_load = low->ksq_load; 552 } else { 553 transferable = high->ksq_group->ksg_transferable; 554 high_load = high->ksq_group->ksg_load; 555 low_load = low->ksq_group->ksg_load; 556 } 557 if (transferable == 0) 558 return; 559 /* 560 * Determine what the imbalance is and then adjust that to how many 561 * kses we actually have to give up (transferable). 562 */ 563 diff = high_load - low_load; 564 move = diff / 2; 565 if (diff & 0x1) 566 move++; 567 move = min(move, transferable); 568 for (i = 0; i < move; i++) 569 kseq_move(high, KSEQ_ID(low)); 570 return; 571 } 572 573 static void 574 kseq_move(struct kseq *from, int cpu) 575 { 576 struct kseq *kseq; 577 struct kseq *to; 578 struct kse *ke; 579 580 kseq = from; 581 to = KSEQ_CPU(cpu); 582 ke = kseq_steal(kseq, 1); 583 if (ke == NULL) { 584 struct kseq_group *ksg; 585 586 ksg = kseq->ksq_group; 587 LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) { 588 if (kseq == from || kseq->ksq_transferable == 0) 589 continue; 590 ke = kseq_steal(kseq, 1); 591 break; 592 } 593 if (ke == NULL) 594 panic("kseq_move: No KSEs available with a " 595 "transferable count of %d\n", 596 ksg->ksg_transferable); 597 } 598 if (kseq == to) 599 return; 600 ke->ke_state = KES_THREAD; 601 kseq_runq_rem(kseq, ke); 602 kseq_load_rem(kseq, ke); 603 kseq_notify(ke, cpu); 604 } 605 606 static int 607 kseq_idled(struct kseq *kseq) 608 { 609 struct kseq_group *ksg; 610 struct kseq *steal; 611 struct kse *ke; 612 613 ksg = kseq->ksq_group; 614 /* 615 * If we're in a cpu group, try and steal kses from another cpu in 616 * the group before idling. 617 */ 618 if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) { 619 LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) { 620 if (steal == kseq || steal->ksq_transferable == 0) 621 continue; 622 ke = kseq_steal(steal, 0); 623 if (ke == NULL) 624 continue; 625 ke->ke_state = KES_THREAD; 626 kseq_runq_rem(steal, ke); 627 kseq_load_rem(steal, ke); 628 ke->ke_cpu = PCPU_GET(cpuid); 629 ke->ke_flags |= KEF_INTERNAL | KEF_HOLD; 630 sched_add(ke->ke_thread, SRQ_YIELDING); 631 return (0); 632 } 633 } 634 /* 635 * We only set the idled bit when all of the cpus in the group are 636 * idle. Otherwise we could get into a situation where a KSE bounces 637 * back and forth between two idle cores on seperate physical CPUs. 638 */ 639 ksg->ksg_idlemask |= PCPU_GET(cpumask); 640 if (ksg->ksg_idlemask != ksg->ksg_cpumask) 641 return (1); 642 atomic_set_int(&kseq_idle, ksg->ksg_mask); 643 return (1); 644 } 645 646 static void 647 kseq_assign(struct kseq *kseq) 648 { 649 struct kse *nke; 650 struct kse *ke; 651 652 do { 653 *(volatile struct kse **)&ke = kseq->ksq_assigned; 654 } while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL)); 655 for (; ke != NULL; ke = nke) { 656 nke = ke->ke_assign; 657 kseq->ksq_group->ksg_load--; 658 kseq->ksq_load--; 659 ke->ke_flags &= ~KEF_ASSIGNED; 660 ke->ke_flags |= KEF_INTERNAL | KEF_HOLD; 661 sched_add(ke->ke_thread, SRQ_YIELDING); 662 } 663 } 664 665 static void 666 kseq_notify(struct kse *ke, int cpu) 667 { 668 struct kseq *kseq; 669 struct thread *td; 670 struct pcpu *pcpu; 671 int class; 672 int prio; 673 674 kseq = KSEQ_CPU(cpu); 675 /* XXX */ 676 class = PRI_BASE(ke->ke_ksegrp->kg_pri_class); 677 if ((class == PRI_TIMESHARE || class == PRI_REALTIME) && 678 (kseq_idle & kseq->ksq_group->ksg_mask)) 679 atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask); 680 kseq->ksq_group->ksg_load++; 681 kseq->ksq_load++; 682 ke->ke_cpu = cpu; 683 ke->ke_flags |= KEF_ASSIGNED; 684 prio = ke->ke_thread->td_priority; 685 686 /* 687 * Place a KSE on another cpu's queue and force a resched. 688 */ 689 do { 690 *(volatile struct kse **)&ke->ke_assign = kseq->ksq_assigned; 691 } while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke)); 692 /* 693 * Without sched_lock we could lose a race where we set NEEDRESCHED 694 * on a thread that is switched out before the IPI is delivered. This 695 * would lead us to miss the resched. This will be a problem once 696 * sched_lock is pushed down. 697 */ 698 pcpu = pcpu_find(cpu); 699 td = pcpu->pc_curthread; 700 if (ke->ke_thread->td_priority < td->td_priority || 701 td == pcpu->pc_idlethread) { 702 td->td_flags |= TDF_NEEDRESCHED; 703 ipi_selected(1 << cpu, IPI_AST); 704 } 705 } 706 707 static struct kse * 708 runq_steal(struct runq *rq) 709 { 710 struct rqhead *rqh; 711 struct rqbits *rqb; 712 struct kse *ke; 713 int word; 714 int bit; 715 716 mtx_assert(&sched_lock, MA_OWNED); 717 rqb = &rq->rq_status; 718 for (word = 0; word < RQB_LEN; word++) { 719 if (rqb->rqb_bits[word] == 0) 720 continue; 721 for (bit = 0; bit < RQB_BPW; bit++) { 722 if ((rqb->rqb_bits[word] & (1ul << bit)) == 0) 723 continue; 724 rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)]; 725 TAILQ_FOREACH(ke, rqh, ke_procq) { 726 if (KSE_CAN_MIGRATE(ke)) 727 return (ke); 728 } 729 } 730 } 731 return (NULL); 732 } 733 734 static struct kse * 735 kseq_steal(struct kseq *kseq, int stealidle) 736 { 737 struct kse *ke; 738 739 /* 740 * Steal from next first to try to get a non-interactive task that 741 * may not have run for a while. 742 */ 743 if ((ke = runq_steal(kseq->ksq_next)) != NULL) 744 return (ke); 745 if ((ke = runq_steal(kseq->ksq_curr)) != NULL) 746 return (ke); 747 if (stealidle) 748 return (runq_steal(&kseq->ksq_idle)); 749 return (NULL); 750 } 751 752 int 753 kseq_transfer(struct kseq *kseq, struct kse *ke, int class) 754 { 755 struct kseq_group *nksg; 756 struct kseq_group *ksg; 757 struct kseq *old; 758 int cpu; 759 int idx; 760 761 if (smp_started == 0) 762 return (0); 763 cpu = 0; 764 /* 765 * If our load exceeds a certain threshold we should attempt to 766 * reassign this thread. The first candidate is the cpu that 767 * originally ran the thread. If it is idle, assign it there, 768 * otherwise, pick an idle cpu. 769 * 770 * The threshold at which we start to reassign kses has a large impact 771 * on the overall performance of the system. Tuned too high and 772 * some CPUs may idle. Too low and there will be excess migration 773 * and context switches. 774 */ 775 old = KSEQ_CPU(ke->ke_cpu); 776 nksg = old->ksq_group; 777 ksg = kseq->ksq_group; 778 if (kseq_idle) { 779 if (kseq_idle & nksg->ksg_mask) { 780 cpu = ffs(nksg->ksg_idlemask); 781 if (cpu) { 782 CTR2(KTR_SCHED, 783 "kseq_transfer: %p found old cpu %X " 784 "in idlemask.", ke, cpu); 785 goto migrate; 786 } 787 } 788 /* 789 * Multiple cpus could find this bit simultaneously 790 * but the race shouldn't be terrible. 791 */ 792 cpu = ffs(kseq_idle); 793 if (cpu) { 794 CTR2(KTR_SCHED, "kseq_transfer: %p found %X " 795 "in idlemask.", ke, cpu); 796 goto migrate; 797 } 798 } 799 idx = 0; 800 #if 0 801 if (old->ksq_load < kseq->ksq_load) { 802 cpu = ke->ke_cpu + 1; 803 CTR2(KTR_SCHED, "kseq_transfer: %p old cpu %X " 804 "load less than ours.", ke, cpu); 805 goto migrate; 806 } 807 /* 808 * No new CPU was found, look for one with less load. 809 */ 810 for (idx = 0; idx <= ksg_maxid; idx++) { 811 nksg = KSEQ_GROUP(idx); 812 if (nksg->ksg_load /*+ (nksg->ksg_cpus * 2)*/ < ksg->ksg_load) { 813 cpu = ffs(nksg->ksg_cpumask); 814 CTR2(KTR_SCHED, "kseq_transfer: %p cpu %X load less " 815 "than ours.", ke, cpu); 816 goto migrate; 817 } 818 } 819 #endif 820 /* 821 * If another cpu in this group has idled, assign a thread over 822 * to them after checking to see if there are idled groups. 823 */ 824 if (ksg->ksg_idlemask) { 825 cpu = ffs(ksg->ksg_idlemask); 826 if (cpu) { 827 CTR2(KTR_SCHED, "kseq_transfer: %p cpu %X idle in " 828 "group.", ke, cpu); 829 goto migrate; 830 } 831 } 832 return (0); 833 migrate: 834 /* 835 * Now that we've found an idle CPU, migrate the thread. 836 */ 837 cpu--; 838 ke->ke_runq = NULL; 839 kseq_notify(ke, cpu); 840 841 return (1); 842 } 843 844 #endif /* SMP */ 845 846 /* 847 * Pick the highest priority task we have and return it. 848 */ 849 850 static struct kse * 851 kseq_choose(struct kseq *kseq) 852 { 853 struct runq *swap; 854 struct kse *ke; 855 int nice; 856 857 mtx_assert(&sched_lock, MA_OWNED); 858 swap = NULL; 859 860 for (;;) { 861 ke = runq_choose(kseq->ksq_curr); 862 if (ke == NULL) { 863 /* 864 * We already swapped once and didn't get anywhere. 865 */ 866 if (swap) 867 break; 868 swap = kseq->ksq_curr; 869 kseq->ksq_curr = kseq->ksq_next; 870 kseq->ksq_next = swap; 871 continue; 872 } 873 /* 874 * If we encounter a slice of 0 the kse is in a 875 * TIMESHARE kse group and its nice was too far out 876 * of the range that receives slices. 877 */ 878 nice = ke->ke_proc->p_nice + (0 - kseq->ksq_nicemin); 879 if (ke->ke_slice == 0 || (nice > SCHED_SLICE_NTHRESH && 880 ke->ke_proc->p_nice != 0)) { 881 runq_remove(ke->ke_runq, ke); 882 sched_slice(ke); 883 ke->ke_runq = kseq->ksq_next; 884 runq_add(ke->ke_runq, ke, 0); 885 continue; 886 } 887 return (ke); 888 } 889 890 return (runq_choose(&kseq->ksq_idle)); 891 } 892 893 static void 894 kseq_setup(struct kseq *kseq) 895 { 896 runq_init(&kseq->ksq_timeshare[0]); 897 runq_init(&kseq->ksq_timeshare[1]); 898 runq_init(&kseq->ksq_idle); 899 kseq->ksq_curr = &kseq->ksq_timeshare[0]; 900 kseq->ksq_next = &kseq->ksq_timeshare[1]; 901 kseq->ksq_load = 0; 902 kseq->ksq_load_timeshare = 0; 903 } 904 905 static void 906 sched_setup(void *dummy) 907 { 908 #ifdef SMP 909 int i; 910 #endif 911 912 slice_min = (hz/100); /* 10ms */ 913 slice_max = (hz/7); /* ~140ms */ 914 915 #ifdef SMP 916 balance_groups = 0; 917 /* 918 * Initialize the kseqs. 919 */ 920 for (i = 0; i < MAXCPU; i++) { 921 struct kseq *ksq; 922 923 ksq = &kseq_cpu[i]; 924 ksq->ksq_assigned = NULL; 925 kseq_setup(&kseq_cpu[i]); 926 } 927 if (smp_topology == NULL) { 928 struct kseq_group *ksg; 929 struct kseq *ksq; 930 int cpus; 931 932 for (cpus = 0, i = 0; i < MAXCPU; i++) { 933 if (CPU_ABSENT(i)) 934 continue; 935 ksq = &kseq_cpu[cpus]; 936 ksg = &kseq_groups[cpus]; 937 /* 938 * Setup a kseq group with one member. 939 */ 940 ksq->ksq_transferable = 0; 941 ksq->ksq_group = ksg; 942 ksg->ksg_cpus = 1; 943 ksg->ksg_idlemask = 0; 944 ksg->ksg_cpumask = ksg->ksg_mask = 1 << i; 945 ksg->ksg_load = 0; 946 ksg->ksg_transferable = 0; 947 LIST_INIT(&ksg->ksg_members); 948 LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings); 949 cpus++; 950 } 951 ksg_maxid = cpus - 1; 952 } else { 953 struct kseq_group *ksg; 954 struct cpu_group *cg; 955 int j; 956 957 for (i = 0; i < smp_topology->ct_count; i++) { 958 cg = &smp_topology->ct_group[i]; 959 ksg = &kseq_groups[i]; 960 /* 961 * Initialize the group. 962 */ 963 ksg->ksg_idlemask = 0; 964 ksg->ksg_load = 0; 965 ksg->ksg_transferable = 0; 966 ksg->ksg_cpus = cg->cg_count; 967 ksg->ksg_cpumask = cg->cg_mask; 968 LIST_INIT(&ksg->ksg_members); 969 /* 970 * Find all of the group members and add them. 971 */ 972 for (j = 0; j < MAXCPU; j++) { 973 if ((cg->cg_mask & (1 << j)) != 0) { 974 if (ksg->ksg_mask == 0) 975 ksg->ksg_mask = 1 << j; 976 kseq_cpu[j].ksq_transferable = 0; 977 kseq_cpu[j].ksq_group = ksg; 978 LIST_INSERT_HEAD(&ksg->ksg_members, 979 &kseq_cpu[j], ksq_siblings); 980 } 981 } 982 if (ksg->ksg_cpus > 1) 983 balance_groups = 1; 984 } 985 ksg_maxid = smp_topology->ct_count - 1; 986 } 987 /* 988 * Stagger the group and global load balancer so they do not 989 * interfere with each other. 990 */ 991 bal_tick = ticks + hz; 992 if (balance_groups) 993 gbal_tick = ticks + (hz / 2); 994 #else 995 kseq_setup(KSEQ_SELF()); 996 #endif 997 mtx_lock_spin(&sched_lock); 998 kseq_load_add(KSEQ_SELF(), &kse0); 999 mtx_unlock_spin(&sched_lock); 1000 } 1001 1002 /* 1003 * Scale the scheduling priority according to the "interactivity" of this 1004 * process. 1005 */ 1006 static void 1007 sched_priority(struct ksegrp *kg) 1008 { 1009 int pri; 1010 1011 if (kg->kg_pri_class != PRI_TIMESHARE) 1012 return; 1013 1014 pri = SCHED_PRI_INTERACT(sched_interact_score(kg)); 1015 pri += SCHED_PRI_BASE; 1016 pri += kg->kg_proc->p_nice; 1017 1018 if (pri > PRI_MAX_TIMESHARE) 1019 pri = PRI_MAX_TIMESHARE; 1020 else if (pri < PRI_MIN_TIMESHARE) 1021 pri = PRI_MIN_TIMESHARE; 1022 1023 kg->kg_user_pri = pri; 1024 1025 return; 1026 } 1027 1028 /* 1029 * Calculate a time slice based on the properties of the kseg and the runq 1030 * that we're on. This is only for PRI_TIMESHARE ksegrps. 1031 */ 1032 static void 1033 sched_slice(struct kse *ke) 1034 { 1035 struct kseq *kseq; 1036 struct ksegrp *kg; 1037 1038 kg = ke->ke_ksegrp; 1039 kseq = KSEQ_CPU(ke->ke_cpu); 1040 1041 if (ke->ke_thread->td_flags & TDF_BORROWING) { 1042 ke->ke_slice = SCHED_SLICE_MIN; 1043 return; 1044 } 1045 1046 /* 1047 * Rationale: 1048 * KSEs in interactive ksegs get a minimal slice so that we 1049 * quickly notice if it abuses its advantage. 1050 * 1051 * KSEs in non-interactive ksegs are assigned a slice that is 1052 * based on the ksegs nice value relative to the least nice kseg 1053 * on the run queue for this cpu. 1054 * 1055 * If the KSE is less nice than all others it gets the maximum 1056 * slice and other KSEs will adjust their slice relative to 1057 * this when they first expire. 1058 * 1059 * There is 20 point window that starts relative to the least 1060 * nice kse on the run queue. Slice size is determined by 1061 * the kse distance from the last nice ksegrp. 1062 * 1063 * If the kse is outside of the window it will get no slice 1064 * and will be reevaluated each time it is selected on the 1065 * run queue. The exception to this is nice 0 ksegs when 1066 * a nice -20 is running. They are always granted a minimum 1067 * slice. 1068 */ 1069 if (!SCHED_INTERACTIVE(kg)) { 1070 int nice; 1071 1072 nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin); 1073 if (kseq->ksq_load_timeshare == 0 || 1074 kg->kg_proc->p_nice < kseq->ksq_nicemin) 1075 ke->ke_slice = SCHED_SLICE_MAX; 1076 else if (nice <= SCHED_SLICE_NTHRESH) 1077 ke->ke_slice = SCHED_SLICE_NICE(nice); 1078 else if (kg->kg_proc->p_nice == 0) 1079 ke->ke_slice = SCHED_SLICE_MIN; 1080 else 1081 ke->ke_slice = 0; 1082 } else 1083 ke->ke_slice = SCHED_SLICE_INTERACTIVE; 1084 1085 return; 1086 } 1087 1088 /* 1089 * This routine enforces a maximum limit on the amount of scheduling history 1090 * kept. It is called after either the slptime or runtime is adjusted. 1091 * This routine will not operate correctly when slp or run times have been 1092 * adjusted to more than double their maximum. 1093 */ 1094 static void 1095 sched_interact_update(struct ksegrp *kg) 1096 { 1097 int sum; 1098 1099 sum = kg->kg_runtime + kg->kg_slptime; 1100 if (sum < SCHED_SLP_RUN_MAX) 1101 return; 1102 /* 1103 * If we have exceeded by more than 1/5th then the algorithm below 1104 * will not bring us back into range. Dividing by two here forces 1105 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX] 1106 */ 1107 if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) { 1108 kg->kg_runtime /= 2; 1109 kg->kg_slptime /= 2; 1110 return; 1111 } 1112 kg->kg_runtime = (kg->kg_runtime / 5) * 4; 1113 kg->kg_slptime = (kg->kg_slptime / 5) * 4; 1114 } 1115 1116 static void 1117 sched_interact_fork(struct ksegrp *kg) 1118 { 1119 int ratio; 1120 int sum; 1121 1122 sum = kg->kg_runtime + kg->kg_slptime; 1123 if (sum > SCHED_SLP_RUN_FORK) { 1124 ratio = sum / SCHED_SLP_RUN_FORK; 1125 kg->kg_runtime /= ratio; 1126 kg->kg_slptime /= ratio; 1127 } 1128 } 1129 1130 static int 1131 sched_interact_score(struct ksegrp *kg) 1132 { 1133 int div; 1134 1135 if (kg->kg_runtime > kg->kg_slptime) { 1136 div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF); 1137 return (SCHED_INTERACT_HALF + 1138 (SCHED_INTERACT_HALF - (kg->kg_slptime / div))); 1139 } if (kg->kg_slptime > kg->kg_runtime) { 1140 div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF); 1141 return (kg->kg_runtime / div); 1142 } 1143 1144 /* 1145 * This can happen if slptime and runtime are 0. 1146 */ 1147 return (0); 1148 1149 } 1150 1151 /* 1152 * Very early in the boot some setup of scheduler-specific 1153 * parts of proc0 and of soem scheduler resources needs to be done. 1154 * Called from: 1155 * proc0_init() 1156 */ 1157 void 1158 schedinit(void) 1159 { 1160 /* 1161 * Set up the scheduler specific parts of proc0. 1162 */ 1163 proc0.p_sched = NULL; /* XXX */ 1164 ksegrp0.kg_sched = &kg_sched0; 1165 thread0.td_sched = &kse0; 1166 kse0.ke_thread = &thread0; 1167 kse0.ke_state = KES_THREAD; 1168 kg_sched0.skg_concurrency = 1; 1169 kg_sched0.skg_avail_opennings = 0; /* we are already running */ 1170 } 1171 1172 /* 1173 * This is only somewhat accurate since given many processes of the same 1174 * priority they will switch when their slices run out, which will be 1175 * at most SCHED_SLICE_MAX. 1176 */ 1177 int 1178 sched_rr_interval(void) 1179 { 1180 return (SCHED_SLICE_MAX); 1181 } 1182 1183 static void 1184 sched_pctcpu_update(struct kse *ke) 1185 { 1186 /* 1187 * Adjust counters and watermark for pctcpu calc. 1188 */ 1189 if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) { 1190 /* 1191 * Shift the tick count out so that the divide doesn't 1192 * round away our results. 1193 */ 1194 ke->ke_ticks <<= 10; 1195 ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) * 1196 SCHED_CPU_TICKS; 1197 ke->ke_ticks >>= 10; 1198 } else 1199 ke->ke_ticks = 0; 1200 ke->ke_ltick = ticks; 1201 ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS; 1202 } 1203 1204 void 1205 sched_thread_priority(struct thread *td, u_char prio) 1206 { 1207 struct kse *ke; 1208 1209 CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)", 1210 td, td->td_proc->p_comm, td->td_priority, prio, curthread, 1211 curthread->td_proc->p_comm); 1212 ke = td->td_kse; 1213 mtx_assert(&sched_lock, MA_OWNED); 1214 if (td->td_priority == prio) 1215 return; 1216 if (TD_ON_RUNQ(td)) { 1217 /* 1218 * If the priority has been elevated due to priority 1219 * propagation, we may have to move ourselves to a new 1220 * queue. We still call adjustrunqueue below in case kse 1221 * needs to fix things up. 1222 */ 1223 if (prio < td->td_priority && ke->ke_runq != NULL && 1224 (ke->ke_flags & KEF_ASSIGNED) == 0 && 1225 ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) { 1226 runq_remove(ke->ke_runq, ke); 1227 ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr; 1228 runq_add(ke->ke_runq, ke, 0); 1229 } 1230 /* 1231 * Hold this kse on this cpu so that sched_prio() doesn't 1232 * cause excessive migration. We only want migration to 1233 * happen as the result of a wakeup. 1234 */ 1235 ke->ke_flags |= KEF_HOLD; 1236 adjustrunqueue(td, prio); 1237 ke->ke_flags &= ~KEF_HOLD; 1238 } else 1239 td->td_priority = prio; 1240 } 1241 1242 /* 1243 * Update a thread's priority when it is lent another thread's 1244 * priority. 1245 */ 1246 void 1247 sched_lend_prio(struct thread *td, u_char prio) 1248 { 1249 1250 td->td_flags |= TDF_BORROWING; 1251 sched_thread_priority(td, prio); 1252 } 1253 1254 /* 1255 * Restore a thread's priority when priority propagation is 1256 * over. The prio argument is the minimum priority the thread 1257 * needs to have to satisfy other possible priority lending 1258 * requests. If the thread's regular priority is less 1259 * important than prio, the thread will keep a priority boost 1260 * of prio. 1261 */ 1262 void 1263 sched_unlend_prio(struct thread *td, u_char prio) 1264 { 1265 u_char base_pri; 1266 1267 if (td->td_base_pri >= PRI_MIN_TIMESHARE && 1268 td->td_base_pri <= PRI_MAX_TIMESHARE) 1269 base_pri = td->td_ksegrp->kg_user_pri; 1270 else 1271 base_pri = td->td_base_pri; 1272 if (prio >= base_pri) { 1273 td->td_flags &= ~TDF_BORROWING; 1274 sched_thread_priority(td, base_pri); 1275 } else 1276 sched_lend_prio(td, prio); 1277 } 1278 1279 void 1280 sched_prio(struct thread *td, u_char prio) 1281 { 1282 u_char oldprio; 1283 1284 /* First, update the base priority. */ 1285 td->td_base_pri = prio; 1286 1287 /* 1288 * If the thread is borrowing another thread's priority, don't 1289 * ever lower the priority. 1290 */ 1291 if (td->td_flags & TDF_BORROWING && td->td_priority < prio) 1292 return; 1293 1294 /* Change the real priority. */ 1295 oldprio = td->td_priority; 1296 sched_thread_priority(td, prio); 1297 1298 /* 1299 * If the thread is on a turnstile, then let the turnstile update 1300 * its state. 1301 */ 1302 if (TD_ON_LOCK(td) && oldprio != prio) 1303 turnstile_adjust(td, oldprio); 1304 } 1305 1306 void 1307 sched_switch(struct thread *td, struct thread *newtd, int flags) 1308 { 1309 struct kseq *ksq; 1310 struct kse *ke; 1311 1312 mtx_assert(&sched_lock, MA_OWNED); 1313 1314 ke = td->td_kse; 1315 ksq = KSEQ_SELF(); 1316 1317 td->td_lastcpu = td->td_oncpu; 1318 td->td_oncpu = NOCPU; 1319 td->td_flags &= ~TDF_NEEDRESCHED; 1320 td->td_owepreempt = 0; 1321 1322 /* 1323 * If the KSE has been assigned it may be in the process of switching 1324 * to the new cpu. This is the case in sched_bind(). 1325 */ 1326 if (td == PCPU_GET(idlethread)) { 1327 TD_SET_CAN_RUN(td); 1328 } else if ((ke->ke_flags & KEF_ASSIGNED) == 0) { 1329 /* We are ending our run so make our slot available again */ 1330 SLOT_RELEASE(td->td_ksegrp); 1331 kseq_load_rem(ksq, ke); 1332 if (TD_IS_RUNNING(td)) { 1333 /* 1334 * Don't allow the thread to migrate 1335 * from a preemption. 1336 */ 1337 ke->ke_flags |= KEF_HOLD; 1338 setrunqueue(td, (flags & SW_PREEMPT) ? 1339 SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED : 1340 SRQ_OURSELF|SRQ_YIELDING); 1341 ke->ke_flags &= ~KEF_HOLD; 1342 } else if ((td->td_proc->p_flag & P_HADTHREADS) && 1343 (newtd == NULL || newtd->td_ksegrp != td->td_ksegrp)) 1344 /* 1345 * We will not be on the run queue. 1346 * So we must be sleeping or similar. 1347 * Don't use the slot if we will need it 1348 * for newtd. 1349 */ 1350 slot_fill(td->td_ksegrp); 1351 } 1352 if (newtd != NULL) { 1353 /* 1354 * If we bring in a thread account for it as if it had been 1355 * added to the run queue and then chosen. 1356 */ 1357 newtd->td_kse->ke_flags |= KEF_DIDRUN; 1358 newtd->td_kse->ke_runq = ksq->ksq_curr; 1359 TD_SET_RUNNING(newtd); 1360 kseq_load_add(KSEQ_SELF(), newtd->td_kse); 1361 /* 1362 * XXX When we preempt, we've already consumed a slot because 1363 * we got here through sched_add(). However, newtd can come 1364 * from thread_switchout() which can't SLOT_USE() because 1365 * the SLOT code is scheduler dependent. We must use the 1366 * slot here otherwise. 1367 */ 1368 if ((flags & SW_PREEMPT) == 0) 1369 SLOT_USE(newtd->td_ksegrp); 1370 } else 1371 newtd = choosethread(); 1372 if (td != newtd) { 1373 #ifdef HWPMC_HOOKS 1374 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1375 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 1376 #endif 1377 cpu_switch(td, newtd); 1378 #ifdef HWPMC_HOOKS 1379 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1380 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN); 1381 #endif 1382 } 1383 1384 sched_lock.mtx_lock = (uintptr_t)td; 1385 1386 td->td_oncpu = PCPU_GET(cpuid); 1387 } 1388 1389 void 1390 sched_nice(struct proc *p, int nice) 1391 { 1392 struct ksegrp *kg; 1393 struct kse *ke; 1394 struct thread *td; 1395 struct kseq *kseq; 1396 1397 PROC_LOCK_ASSERT(p, MA_OWNED); 1398 mtx_assert(&sched_lock, MA_OWNED); 1399 /* 1400 * We need to adjust the nice counts for running KSEs. 1401 */ 1402 FOREACH_KSEGRP_IN_PROC(p, kg) { 1403 if (kg->kg_pri_class == PRI_TIMESHARE) { 1404 FOREACH_THREAD_IN_GROUP(kg, td) { 1405 ke = td->td_kse; 1406 if (ke->ke_runq == NULL) 1407 continue; 1408 kseq = KSEQ_CPU(ke->ke_cpu); 1409 kseq_nice_rem(kseq, p->p_nice); 1410 kseq_nice_add(kseq, nice); 1411 } 1412 } 1413 } 1414 p->p_nice = nice; 1415 FOREACH_KSEGRP_IN_PROC(p, kg) { 1416 sched_priority(kg); 1417 FOREACH_THREAD_IN_GROUP(kg, td) 1418 td->td_flags |= TDF_NEEDRESCHED; 1419 } 1420 } 1421 1422 void 1423 sched_sleep(struct thread *td) 1424 { 1425 mtx_assert(&sched_lock, MA_OWNED); 1426 1427 td->td_slptime = ticks; 1428 } 1429 1430 void 1431 sched_wakeup(struct thread *td) 1432 { 1433 mtx_assert(&sched_lock, MA_OWNED); 1434 1435 /* 1436 * Let the kseg know how long we slept for. This is because process 1437 * interactivity behavior is modeled in the kseg. 1438 */ 1439 if (td->td_slptime) { 1440 struct ksegrp *kg; 1441 int hzticks; 1442 1443 kg = td->td_ksegrp; 1444 hzticks = (ticks - td->td_slptime) << 10; 1445 if (hzticks >= SCHED_SLP_RUN_MAX) { 1446 kg->kg_slptime = SCHED_SLP_RUN_MAX; 1447 kg->kg_runtime = 1; 1448 } else { 1449 kg->kg_slptime += hzticks; 1450 sched_interact_update(kg); 1451 } 1452 sched_priority(kg); 1453 sched_slice(td->td_kse); 1454 td->td_slptime = 0; 1455 } 1456 setrunqueue(td, SRQ_BORING); 1457 } 1458 1459 /* 1460 * Penalize the parent for creating a new child and initialize the child's 1461 * priority. 1462 */ 1463 void 1464 sched_fork(struct thread *td, struct thread *childtd) 1465 { 1466 1467 mtx_assert(&sched_lock, MA_OWNED); 1468 1469 sched_fork_ksegrp(td, childtd->td_ksegrp); 1470 sched_fork_thread(td, childtd); 1471 } 1472 1473 void 1474 sched_fork_ksegrp(struct thread *td, struct ksegrp *child) 1475 { 1476 struct ksegrp *kg = td->td_ksegrp; 1477 mtx_assert(&sched_lock, MA_OWNED); 1478 1479 child->kg_slptime = kg->kg_slptime; 1480 child->kg_runtime = kg->kg_runtime; 1481 child->kg_user_pri = kg->kg_user_pri; 1482 sched_interact_fork(child); 1483 kg->kg_runtime += tickincr << 10; 1484 sched_interact_update(kg); 1485 } 1486 1487 void 1488 sched_fork_thread(struct thread *td, struct thread *child) 1489 { 1490 struct kse *ke; 1491 struct kse *ke2; 1492 1493 sched_newthread(child); 1494 ke = td->td_kse; 1495 ke2 = child->td_kse; 1496 ke2->ke_slice = 1; /* Attempt to quickly learn interactivity. */ 1497 ke2->ke_cpu = ke->ke_cpu; 1498 ke2->ke_runq = NULL; 1499 1500 /* Grab our parents cpu estimation information. */ 1501 ke2->ke_ticks = ke->ke_ticks; 1502 ke2->ke_ltick = ke->ke_ltick; 1503 ke2->ke_ftick = ke->ke_ftick; 1504 } 1505 1506 void 1507 sched_class(struct ksegrp *kg, int class) 1508 { 1509 struct kseq *kseq; 1510 struct kse *ke; 1511 struct thread *td; 1512 int nclass; 1513 int oclass; 1514 1515 mtx_assert(&sched_lock, MA_OWNED); 1516 if (kg->kg_pri_class == class) 1517 return; 1518 1519 nclass = PRI_BASE(class); 1520 oclass = PRI_BASE(kg->kg_pri_class); 1521 FOREACH_THREAD_IN_GROUP(kg, td) { 1522 ke = td->td_kse; 1523 if ((ke->ke_state != KES_ONRUNQ && 1524 ke->ke_state != KES_THREAD) || ke->ke_runq == NULL) 1525 continue; 1526 kseq = KSEQ_CPU(ke->ke_cpu); 1527 1528 #ifdef SMP 1529 /* 1530 * On SMP if we're on the RUNQ we must adjust the transferable 1531 * count because could be changing to or from an interrupt 1532 * class. 1533 */ 1534 if (ke->ke_state == KES_ONRUNQ) { 1535 if (KSE_CAN_MIGRATE(ke)) { 1536 kseq->ksq_transferable--; 1537 kseq->ksq_group->ksg_transferable--; 1538 } 1539 if (KSE_CAN_MIGRATE(ke)) { 1540 kseq->ksq_transferable++; 1541 kseq->ksq_group->ksg_transferable++; 1542 } 1543 } 1544 #endif 1545 if (oclass == PRI_TIMESHARE) { 1546 kseq->ksq_load_timeshare--; 1547 kseq_nice_rem(kseq, kg->kg_proc->p_nice); 1548 } 1549 if (nclass == PRI_TIMESHARE) { 1550 kseq->ksq_load_timeshare++; 1551 kseq_nice_add(kseq, kg->kg_proc->p_nice); 1552 } 1553 } 1554 1555 kg->kg_pri_class = class; 1556 } 1557 1558 /* 1559 * Return some of the child's priority and interactivity to the parent. 1560 */ 1561 void 1562 sched_exit(struct proc *p, struct thread *childtd) 1563 { 1564 mtx_assert(&sched_lock, MA_OWNED); 1565 sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), childtd); 1566 sched_exit_thread(NULL, childtd); 1567 } 1568 1569 void 1570 sched_exit_ksegrp(struct ksegrp *kg, struct thread *td) 1571 { 1572 /* kg->kg_slptime += td->td_ksegrp->kg_slptime; */ 1573 kg->kg_runtime += td->td_ksegrp->kg_runtime; 1574 sched_interact_update(kg); 1575 } 1576 1577 void 1578 sched_exit_thread(struct thread *td, struct thread *childtd) 1579 { 1580 CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d", 1581 childtd, childtd->td_proc->p_comm, childtd->td_priority); 1582 kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse); 1583 } 1584 1585 void 1586 sched_clock(struct thread *td) 1587 { 1588 struct kseq *kseq; 1589 struct ksegrp *kg; 1590 struct kse *ke; 1591 1592 mtx_assert(&sched_lock, MA_OWNED); 1593 kseq = KSEQ_SELF(); 1594 #ifdef SMP 1595 if (ticks >= bal_tick) 1596 sched_balance(); 1597 if (ticks >= gbal_tick && balance_groups) 1598 sched_balance_groups(); 1599 /* 1600 * We could have been assigned a non real-time thread without an 1601 * IPI. 1602 */ 1603 if (kseq->ksq_assigned) 1604 kseq_assign(kseq); /* Potentially sets NEEDRESCHED */ 1605 #endif 1606 /* 1607 * sched_setup() apparently happens prior to stathz being set. We 1608 * need to resolve the timers earlier in the boot so we can avoid 1609 * calculating this here. 1610 */ 1611 if (realstathz == 0) { 1612 realstathz = stathz ? stathz : hz; 1613 tickincr = hz / realstathz; 1614 /* 1615 * XXX This does not work for values of stathz that are much 1616 * larger than hz. 1617 */ 1618 if (tickincr == 0) 1619 tickincr = 1; 1620 } 1621 1622 ke = td->td_kse; 1623 kg = ke->ke_ksegrp; 1624 1625 /* Adjust ticks for pctcpu */ 1626 ke->ke_ticks++; 1627 ke->ke_ltick = ticks; 1628 1629 /* Go up to one second beyond our max and then trim back down */ 1630 if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick) 1631 sched_pctcpu_update(ke); 1632 1633 if (td->td_flags & TDF_IDLETD) 1634 return; 1635 /* 1636 * We only do slicing code for TIMESHARE ksegrps. 1637 */ 1638 if (kg->kg_pri_class != PRI_TIMESHARE) 1639 return; 1640 /* 1641 * We used a tick charge it to the ksegrp so that we can compute our 1642 * interactivity. 1643 */ 1644 kg->kg_runtime += tickincr << 10; 1645 sched_interact_update(kg); 1646 1647 /* 1648 * We used up one time slice. 1649 */ 1650 if (--ke->ke_slice > 0) 1651 return; 1652 /* 1653 * We're out of time, recompute priorities and requeue. 1654 */ 1655 kseq_load_rem(kseq, ke); 1656 sched_priority(kg); 1657 sched_slice(ke); 1658 if (SCHED_CURR(kg, ke)) 1659 ke->ke_runq = kseq->ksq_curr; 1660 else 1661 ke->ke_runq = kseq->ksq_next; 1662 kseq_load_add(kseq, ke); 1663 td->td_flags |= TDF_NEEDRESCHED; 1664 } 1665 1666 int 1667 sched_runnable(void) 1668 { 1669 struct kseq *kseq; 1670 int load; 1671 1672 load = 1; 1673 1674 kseq = KSEQ_SELF(); 1675 #ifdef SMP 1676 if (kseq->ksq_assigned) { 1677 mtx_lock_spin(&sched_lock); 1678 kseq_assign(kseq); 1679 mtx_unlock_spin(&sched_lock); 1680 } 1681 #endif 1682 if ((curthread->td_flags & TDF_IDLETD) != 0) { 1683 if (kseq->ksq_load > 0) 1684 goto out; 1685 } else 1686 if (kseq->ksq_load - 1 > 0) 1687 goto out; 1688 load = 0; 1689 out: 1690 return (load); 1691 } 1692 1693 void 1694 sched_userret(struct thread *td) 1695 { 1696 struct ksegrp *kg; 1697 1698 KASSERT((td->td_flags & TDF_BORROWING) == 0, 1699 ("thread with borrowed priority returning to userland")); 1700 kg = td->td_ksegrp; 1701 if (td->td_priority != kg->kg_user_pri) { 1702 mtx_lock_spin(&sched_lock); 1703 td->td_priority = kg->kg_user_pri; 1704 td->td_base_pri = kg->kg_user_pri; 1705 mtx_unlock_spin(&sched_lock); 1706 } 1707 } 1708 1709 struct kse * 1710 sched_choose(void) 1711 { 1712 struct kseq *kseq; 1713 struct kse *ke; 1714 1715 mtx_assert(&sched_lock, MA_OWNED); 1716 kseq = KSEQ_SELF(); 1717 #ifdef SMP 1718 restart: 1719 if (kseq->ksq_assigned) 1720 kseq_assign(kseq); 1721 #endif 1722 ke = kseq_choose(kseq); 1723 if (ke) { 1724 #ifdef SMP 1725 if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE) 1726 if (kseq_idled(kseq) == 0) 1727 goto restart; 1728 #endif 1729 kseq_runq_rem(kseq, ke); 1730 ke->ke_state = KES_THREAD; 1731 return (ke); 1732 } 1733 #ifdef SMP 1734 if (kseq_idled(kseq) == 0) 1735 goto restart; 1736 #endif 1737 return (NULL); 1738 } 1739 1740 void 1741 sched_add(struct thread *td, int flags) 1742 { 1743 struct kseq *kseq; 1744 struct ksegrp *kg; 1745 struct kse *ke; 1746 int preemptive; 1747 int canmigrate; 1748 int class; 1749 1750 CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)", 1751 td, td->td_proc->p_comm, td->td_priority, curthread, 1752 curthread->td_proc->p_comm); 1753 mtx_assert(&sched_lock, MA_OWNED); 1754 ke = td->td_kse; 1755 kg = td->td_ksegrp; 1756 canmigrate = 1; 1757 preemptive = !(flags & SRQ_YIELDING); 1758 class = PRI_BASE(kg->kg_pri_class); 1759 kseq = KSEQ_SELF(); 1760 if ((ke->ke_flags & KEF_INTERNAL) == 0) 1761 SLOT_USE(td->td_ksegrp); 1762 ke->ke_flags &= ~KEF_INTERNAL; 1763 #ifdef SMP 1764 if (ke->ke_flags & KEF_ASSIGNED) { 1765 if (ke->ke_flags & KEF_REMOVED) 1766 ke->ke_flags &= ~KEF_REMOVED; 1767 return; 1768 } 1769 canmigrate = KSE_CAN_MIGRATE(ke); 1770 #endif 1771 KASSERT(ke->ke_state != KES_ONRUNQ, 1772 ("sched_add: kse %p (%s) already in run queue", ke, 1773 ke->ke_proc->p_comm)); 1774 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 1775 ("sched_add: process swapped out")); 1776 KASSERT(ke->ke_runq == NULL, 1777 ("sched_add: KSE %p is still assigned to a run queue", ke)); 1778 switch (class) { 1779 case PRI_ITHD: 1780 case PRI_REALTIME: 1781 ke->ke_runq = kseq->ksq_curr; 1782 ke->ke_slice = SCHED_SLICE_MAX; 1783 if (canmigrate) 1784 ke->ke_cpu = PCPU_GET(cpuid); 1785 break; 1786 case PRI_TIMESHARE: 1787 if (SCHED_CURR(kg, ke)) 1788 ke->ke_runq = kseq->ksq_curr; 1789 else 1790 ke->ke_runq = kseq->ksq_next; 1791 break; 1792 case PRI_IDLE: 1793 /* 1794 * This is for priority prop. 1795 */ 1796 if (ke->ke_thread->td_priority < PRI_MIN_IDLE) 1797 ke->ke_runq = kseq->ksq_curr; 1798 else 1799 ke->ke_runq = &kseq->ksq_idle; 1800 ke->ke_slice = SCHED_SLICE_MIN; 1801 break; 1802 default: 1803 panic("Unknown pri class."); 1804 break; 1805 } 1806 #ifdef SMP 1807 /* 1808 * Don't migrate running threads here. Force the long term balancer 1809 * to do it. 1810 */ 1811 if (ke->ke_flags & KEF_HOLD) { 1812 ke->ke_flags &= ~KEF_HOLD; 1813 canmigrate = 0; 1814 } 1815 /* 1816 * If this thread is pinned or bound, notify the target cpu. 1817 */ 1818 if (!canmigrate && ke->ke_cpu != PCPU_GET(cpuid) ) { 1819 ke->ke_runq = NULL; 1820 kseq_notify(ke, ke->ke_cpu); 1821 return; 1822 } 1823 /* 1824 * If we had been idle, clear our bit in the group and potentially 1825 * the global bitmap. If not, see if we should transfer this thread. 1826 */ 1827 if ((class == PRI_TIMESHARE || class == PRI_REALTIME) && 1828 (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) { 1829 /* 1830 * Check to see if our group is unidling, and if so, remove it 1831 * from the global idle mask. 1832 */ 1833 if (kseq->ksq_group->ksg_idlemask == 1834 kseq->ksq_group->ksg_cpumask) 1835 atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask); 1836 /* 1837 * Now remove ourselves from the group specific idle mask. 1838 */ 1839 kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask); 1840 } else if (canmigrate && kseq->ksq_load > 1 && class != PRI_ITHD) 1841 if (kseq_transfer(kseq, ke, class)) 1842 return; 1843 ke->ke_cpu = PCPU_GET(cpuid); 1844 #endif 1845 if (td->td_priority < curthread->td_priority && 1846 ke->ke_runq == kseq->ksq_curr) 1847 curthread->td_flags |= TDF_NEEDRESCHED; 1848 if (preemptive && maybe_preempt(td)) 1849 return; 1850 ke->ke_state = KES_ONRUNQ; 1851 1852 kseq_runq_add(kseq, ke, flags); 1853 kseq_load_add(kseq, ke); 1854 } 1855 1856 void 1857 sched_rem(struct thread *td) 1858 { 1859 struct kseq *kseq; 1860 struct kse *ke; 1861 1862 CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)", 1863 td, td->td_proc->p_comm, td->td_priority, curthread, 1864 curthread->td_proc->p_comm); 1865 mtx_assert(&sched_lock, MA_OWNED); 1866 ke = td->td_kse; 1867 SLOT_RELEASE(td->td_ksegrp); 1868 if (ke->ke_flags & KEF_ASSIGNED) { 1869 ke->ke_flags |= KEF_REMOVED; 1870 return; 1871 } 1872 KASSERT((ke->ke_state == KES_ONRUNQ), 1873 ("sched_rem: KSE not on run queue")); 1874 1875 ke->ke_state = KES_THREAD; 1876 kseq = KSEQ_CPU(ke->ke_cpu); 1877 kseq_runq_rem(kseq, ke); 1878 kseq_load_rem(kseq, ke); 1879 } 1880 1881 fixpt_t 1882 sched_pctcpu(struct thread *td) 1883 { 1884 fixpt_t pctcpu; 1885 struct kse *ke; 1886 1887 pctcpu = 0; 1888 ke = td->td_kse; 1889 if (ke == NULL) 1890 return (0); 1891 1892 mtx_lock_spin(&sched_lock); 1893 if (ke->ke_ticks) { 1894 int rtick; 1895 1896 /* 1897 * Don't update more frequently than twice a second. Allowing 1898 * this causes the cpu usage to decay away too quickly due to 1899 * rounding errors. 1900 */ 1901 if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick || 1902 ke->ke_ltick < (ticks - (hz / 2))) 1903 sched_pctcpu_update(ke); 1904 /* How many rtick per second ? */ 1905 rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS); 1906 pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT; 1907 } 1908 1909 ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick; 1910 mtx_unlock_spin(&sched_lock); 1911 1912 return (pctcpu); 1913 } 1914 1915 void 1916 sched_bind(struct thread *td, int cpu) 1917 { 1918 struct kse *ke; 1919 1920 mtx_assert(&sched_lock, MA_OWNED); 1921 ke = td->td_kse; 1922 ke->ke_flags |= KEF_BOUND; 1923 #ifdef SMP 1924 if (PCPU_GET(cpuid) == cpu) 1925 return; 1926 /* sched_rem without the runq_remove */ 1927 ke->ke_state = KES_THREAD; 1928 kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke); 1929 kseq_notify(ke, cpu); 1930 /* When we return from mi_switch we'll be on the correct cpu. */ 1931 mi_switch(SW_VOL, NULL); 1932 #endif 1933 } 1934 1935 void 1936 sched_unbind(struct thread *td) 1937 { 1938 mtx_assert(&sched_lock, MA_OWNED); 1939 td->td_kse->ke_flags &= ~KEF_BOUND; 1940 } 1941 1942 int 1943 sched_is_bound(struct thread *td) 1944 { 1945 mtx_assert(&sched_lock, MA_OWNED); 1946 return (td->td_kse->ke_flags & KEF_BOUND); 1947 } 1948 1949 int 1950 sched_load(void) 1951 { 1952 #ifdef SMP 1953 int total; 1954 int i; 1955 1956 total = 0; 1957 for (i = 0; i <= ksg_maxid; i++) 1958 total += KSEQ_GROUP(i)->ksg_load; 1959 return (total); 1960 #else 1961 return (KSEQ_SELF()->ksq_sysload); 1962 #endif 1963 } 1964 1965 int 1966 sched_sizeof_ksegrp(void) 1967 { 1968 return (sizeof(struct ksegrp) + sizeof(struct kg_sched)); 1969 } 1970 1971 int 1972 sched_sizeof_proc(void) 1973 { 1974 return (sizeof(struct proc)); 1975 } 1976 1977 int 1978 sched_sizeof_thread(void) 1979 { 1980 return (sizeof(struct thread) + sizeof(struct td_sched)); 1981 } 1982 #define KERN_SWITCH_INCLUDE 1 1983 #include "kern/kern_switch.c" 1984