1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * This file implements the ULE scheduler. ULE supports independent CPU 31 * run queues and fine grain locking. It has superior interactive 32 * performance under load even on uni-processor systems. 33 * 34 * etymology: 35 * ULE is the last three letters in schedule. It owes its name to a 36 * generic user created for a scheduling system by Paul Mikesell at 37 * Isilon Systems and a general lack of creativity on the part of the author. 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_hwpmc_hooks.h" 44 #include "opt_sched.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kdb.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/limits.h> 52 #include <sys/lock.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/resource.h> 56 #include <sys/resourcevar.h> 57 #include <sys/sched.h> 58 #include <sys/sdt.h> 59 #include <sys/smp.h> 60 #include <sys/sx.h> 61 #include <sys/sysctl.h> 62 #include <sys/sysproto.h> 63 #include <sys/turnstile.h> 64 #include <sys/umtx.h> 65 #include <sys/vmmeter.h> 66 #include <sys/cpuset.h> 67 #include <sys/sbuf.h> 68 69 #ifdef HWPMC_HOOKS 70 #include <sys/pmckern.h> 71 #endif 72 73 #ifdef KDTRACE_HOOKS 74 #include <sys/dtrace_bsd.h> 75 int dtrace_vtime_active; 76 dtrace_vtime_switch_func_t dtrace_vtime_switch_func; 77 #endif 78 79 #include <machine/cpu.h> 80 #include <machine/smp.h> 81 82 #define KTR_ULE 0 83 84 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX))) 85 #define TDQ_NAME_LEN (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU))) 86 #define TDQ_LOADNAME_LEN (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load")) 87 88 /* 89 * Thread scheduler specific section. All fields are protected 90 * by the thread lock. 91 */ 92 struct td_sched { 93 struct runq *ts_runq; /* Run-queue we're queued on. */ 94 short ts_flags; /* TSF_* flags. */ 95 int ts_cpu; /* CPU that we have affinity for. */ 96 int ts_rltick; /* Real last tick, for affinity. */ 97 int ts_slice; /* Ticks of slice remaining. */ 98 u_int ts_slptime; /* Number of ticks we vol. slept */ 99 u_int ts_runtime; /* Number of ticks we were running */ 100 int ts_ltick; /* Last tick that we were running on */ 101 int ts_ftick; /* First tick that we were running on */ 102 int ts_ticks; /* Tick count */ 103 #ifdef KTR 104 char ts_name[TS_NAME_LEN]; 105 #endif 106 }; 107 /* flags kept in ts_flags */ 108 #define TSF_BOUND 0x0001 /* Thread can not migrate. */ 109 #define TSF_XFERABLE 0x0002 /* Thread was added as transferable. */ 110 111 #define THREAD_CAN_MIGRATE(td) ((td)->td_pinned == 0) 112 #define THREAD_CAN_SCHED(td, cpu) \ 113 CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask) 114 115 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <= 116 sizeof(struct thread0_storage), 117 "increase struct thread0_storage.t0st_sched size"); 118 119 /* 120 * Priority ranges used for interactive and non-interactive timeshare 121 * threads. The timeshare priorities are split up into four ranges. 122 * The first range handles interactive threads. The last three ranges 123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer 124 * ranges supporting nice values. 125 */ 126 #define PRI_TIMESHARE_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1) 127 #define PRI_INTERACT_RANGE ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2) 128 #define PRI_BATCH_RANGE (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE) 129 130 #define PRI_MIN_INTERACT PRI_MIN_TIMESHARE 131 #define PRI_MAX_INTERACT (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1) 132 #define PRI_MIN_BATCH (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE) 133 #define PRI_MAX_BATCH PRI_MAX_TIMESHARE 134 135 /* 136 * Cpu percentage computation macros and defines. 137 * 138 * SCHED_TICK_SECS: Number of seconds to average the cpu usage across. 139 * SCHED_TICK_TARG: Number of hz ticks to average the cpu usage across. 140 * SCHED_TICK_MAX: Maximum number of ticks before scaling back. 141 * SCHED_TICK_SHIFT: Shift factor to avoid rounding away results. 142 * SCHED_TICK_HZ: Compute the number of hz ticks for a given ticks count. 143 * SCHED_TICK_TOTAL: Gives the amount of time we've been recording ticks. 144 */ 145 #define SCHED_TICK_SECS 10 146 #define SCHED_TICK_TARG (hz * SCHED_TICK_SECS) 147 #define SCHED_TICK_MAX (SCHED_TICK_TARG + hz) 148 #define SCHED_TICK_SHIFT 10 149 #define SCHED_TICK_HZ(ts) ((ts)->ts_ticks >> SCHED_TICK_SHIFT) 150 #define SCHED_TICK_TOTAL(ts) (max((ts)->ts_ltick - (ts)->ts_ftick, hz)) 151 152 /* 153 * These macros determine priorities for non-interactive threads. They are 154 * assigned a priority based on their recent cpu utilization as expressed 155 * by the ratio of ticks to the tick total. NHALF priorities at the start 156 * and end of the MIN to MAX timeshare range are only reachable with negative 157 * or positive nice respectively. 158 * 159 * PRI_RANGE: Priority range for utilization dependent priorities. 160 * PRI_NRESV: Number of nice values. 161 * PRI_TICKS: Compute a priority in PRI_RANGE from the ticks count and total. 162 * PRI_NICE: Determines the part of the priority inherited from nice. 163 */ 164 #define SCHED_PRI_NRESV (PRIO_MAX - PRIO_MIN) 165 #define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2) 166 #define SCHED_PRI_MIN (PRI_MIN_BATCH + SCHED_PRI_NHALF) 167 #define SCHED_PRI_MAX (PRI_MAX_BATCH - SCHED_PRI_NHALF) 168 #define SCHED_PRI_RANGE (SCHED_PRI_MAX - SCHED_PRI_MIN + 1) 169 #define SCHED_PRI_TICKS(ts) \ 170 (SCHED_TICK_HZ((ts)) / \ 171 (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE)) 172 #define SCHED_PRI_NICE(nice) (nice) 173 174 /* 175 * These determine the interactivity of a process. Interactivity differs from 176 * cpu utilization in that it expresses the voluntary time slept vs time ran 177 * while cpu utilization includes all time not running. This more accurately 178 * models the intent of the thread. 179 * 180 * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate 181 * before throttling back. 182 * SLP_RUN_FORK: Maximum slp+run time to inherit at fork time. 183 * INTERACT_MAX: Maximum interactivity value. Smaller is better. 184 * INTERACT_THRESH: Threshold for placement on the current runq. 185 */ 186 #define SCHED_SLP_RUN_MAX ((hz * 5) << SCHED_TICK_SHIFT) 187 #define SCHED_SLP_RUN_FORK ((hz / 2) << SCHED_TICK_SHIFT) 188 #define SCHED_INTERACT_MAX (100) 189 #define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2) 190 #define SCHED_INTERACT_THRESH (30) 191 192 /* 193 * These parameters determine the slice behavior for batch work. 194 */ 195 #define SCHED_SLICE_DEFAULT_DIVISOR 10 /* ~94 ms, 12 stathz ticks. */ 196 #define SCHED_SLICE_MIN_DIVISOR 6 /* DEFAULT/MIN = ~16 ms. */ 197 198 /* Flags kept in td_flags. */ 199 #define TDF_SLICEEND TDF_SCHED2 /* Thread time slice is over. */ 200 201 /* 202 * tickincr: Converts a stathz tick into a hz domain scaled by 203 * the shift factor. Without the shift the error rate 204 * due to rounding would be unacceptably high. 205 * realstathz: stathz is sometimes 0 and run off of hz. 206 * sched_slice: Runtime of each thread before rescheduling. 207 * preempt_thresh: Priority threshold for preemption and remote IPIs. 208 */ 209 static int sched_interact = SCHED_INTERACT_THRESH; 210 static int tickincr = 8 << SCHED_TICK_SHIFT; 211 static int realstathz = 127; /* reset during boot. */ 212 static int sched_slice = 10; /* reset during boot. */ 213 static int sched_slice_min = 1; /* reset during boot. */ 214 #ifdef PREEMPTION 215 #ifdef FULL_PREEMPTION 216 static int preempt_thresh = PRI_MAX_IDLE; 217 #else 218 static int preempt_thresh = PRI_MIN_KERN; 219 #endif 220 #else 221 static int preempt_thresh = 0; 222 #endif 223 static int static_boost = PRI_MIN_BATCH; 224 static int sched_idlespins = 10000; 225 static int sched_idlespinthresh = -1; 226 227 /* 228 * tdq - per processor runqs and statistics. All fields are protected by the 229 * tdq_lock. The load and lowpri may be accessed without to avoid excess 230 * locking in sched_pickcpu(); 231 */ 232 struct tdq { 233 /* 234 * Ordered to improve efficiency of cpu_search() and switch(). 235 * tdq_lock is padded to avoid false sharing with tdq_load and 236 * tdq_cpu_idle. 237 */ 238 struct mtx_padalign tdq_lock; /* run queue lock. */ 239 struct cpu_group *tdq_cg; /* Pointer to cpu topology. */ 240 volatile int tdq_load; /* Aggregate load. */ 241 volatile int tdq_cpu_idle; /* cpu_idle() is active. */ 242 int tdq_sysload; /* For loadavg, !ITHD load. */ 243 volatile int tdq_transferable; /* Transferable thread count. */ 244 volatile short tdq_switchcnt; /* Switches this tick. */ 245 volatile short tdq_oldswitchcnt; /* Switches last tick. */ 246 u_char tdq_lowpri; /* Lowest priority thread. */ 247 u_char tdq_ipipending; /* IPI pending. */ 248 u_char tdq_idx; /* Current insert index. */ 249 u_char tdq_ridx; /* Current removal index. */ 250 struct runq tdq_realtime; /* real-time run queue. */ 251 struct runq tdq_timeshare; /* timeshare run queue. */ 252 struct runq tdq_idle; /* Queue of IDLE threads. */ 253 char tdq_name[TDQ_NAME_LEN]; 254 #ifdef KTR 255 char tdq_loadname[TDQ_LOADNAME_LEN]; 256 #endif 257 } __aligned(64); 258 259 /* Idle thread states and config. */ 260 #define TDQ_RUNNING 1 261 #define TDQ_IDLE 2 262 263 #ifdef SMP 264 struct cpu_group *cpu_top; /* CPU topology */ 265 266 #define SCHED_AFFINITY_DEFAULT (max(1, hz / 1000)) 267 #define SCHED_AFFINITY(ts, t) ((ts)->ts_rltick > ticks - ((t) * affinity)) 268 269 /* 270 * Run-time tunables. 271 */ 272 static int rebalance = 1; 273 static int balance_interval = 128; /* Default set in sched_initticks(). */ 274 static int affinity; 275 static int steal_idle = 1; 276 static int steal_thresh = 2; 277 static int always_steal = 0; 278 static int trysteal_limit = 2; 279 280 /* 281 * One thread queue per processor. 282 */ 283 static struct tdq tdq_cpu[MAXCPU]; 284 static struct tdq *balance_tdq; 285 static int balance_ticks; 286 static DPCPU_DEFINE(uint32_t, randomval); 287 288 #define TDQ_SELF() (&tdq_cpu[PCPU_GET(cpuid)]) 289 #define TDQ_CPU(x) (&tdq_cpu[(x)]) 290 #define TDQ_ID(x) ((int)((x) - tdq_cpu)) 291 #else /* !SMP */ 292 static struct tdq tdq_cpu; 293 294 #define TDQ_ID(x) (0) 295 #define TDQ_SELF() (&tdq_cpu) 296 #define TDQ_CPU(x) (&tdq_cpu) 297 #endif 298 299 #define TDQ_LOCK_ASSERT(t, type) mtx_assert(TDQ_LOCKPTR((t)), (type)) 300 #define TDQ_LOCK(t) mtx_lock_spin(TDQ_LOCKPTR((t))) 301 #define TDQ_LOCK_FLAGS(t, f) mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f)) 302 #define TDQ_UNLOCK(t) mtx_unlock_spin(TDQ_LOCKPTR((t))) 303 #define TDQ_LOCKPTR(t) ((struct mtx *)(&(t)->tdq_lock)) 304 305 static void sched_priority(struct thread *); 306 static void sched_thread_priority(struct thread *, u_char); 307 static int sched_interact_score(struct thread *); 308 static void sched_interact_update(struct thread *); 309 static void sched_interact_fork(struct thread *); 310 static void sched_pctcpu_update(struct td_sched *, int); 311 312 /* Operations on per processor queues */ 313 static struct thread *tdq_choose(struct tdq *); 314 static void tdq_setup(struct tdq *); 315 static void tdq_load_add(struct tdq *, struct thread *); 316 static void tdq_load_rem(struct tdq *, struct thread *); 317 static __inline void tdq_runq_add(struct tdq *, struct thread *, int); 318 static __inline void tdq_runq_rem(struct tdq *, struct thread *); 319 static inline int sched_shouldpreempt(int, int, int); 320 void tdq_print(int cpu); 321 static void runq_print(struct runq *rq); 322 static void tdq_add(struct tdq *, struct thread *, int); 323 #ifdef SMP 324 static struct thread *tdq_move(struct tdq *, struct tdq *); 325 static int tdq_idled(struct tdq *); 326 static void tdq_notify(struct tdq *, struct thread *); 327 static struct thread *tdq_steal(struct tdq *, int); 328 static struct thread *runq_steal(struct runq *, int); 329 static int sched_pickcpu(struct thread *, int); 330 static void sched_balance(void); 331 static int sched_balance_pair(struct tdq *, struct tdq *); 332 static inline struct tdq *sched_setcpu(struct thread *, int, int); 333 static inline void thread_unblock_switch(struct thread *, struct mtx *); 334 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int); 335 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS); 336 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 337 struct cpu_group *cg, int indent); 338 #endif 339 340 static void sched_setup(void *dummy); 341 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL); 342 343 static void sched_initticks(void *dummy); 344 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, 345 NULL); 346 347 SDT_PROVIDER_DEFINE(sched); 348 349 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *", 350 "struct proc *", "uint8_t"); 351 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *", 352 "struct proc *", "void *"); 353 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *", 354 "struct proc *", "void *", "int"); 355 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *", 356 "struct proc *", "uint8_t", "struct thread *"); 357 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int"); 358 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *", 359 "struct proc *"); 360 SDT_PROBE_DEFINE(sched, , , on__cpu); 361 SDT_PROBE_DEFINE(sched, , , remain__cpu); 362 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *", 363 "struct proc *"); 364 365 /* 366 * Print the threads waiting on a run-queue. 367 */ 368 static void 369 runq_print(struct runq *rq) 370 { 371 struct rqhead *rqh; 372 struct thread *td; 373 int pri; 374 int j; 375 int i; 376 377 for (i = 0; i < RQB_LEN; i++) { 378 printf("\t\trunq bits %d 0x%zx\n", 379 i, rq->rq_status.rqb_bits[i]); 380 for (j = 0; j < RQB_BPW; j++) 381 if (rq->rq_status.rqb_bits[i] & (1ul << j)) { 382 pri = j + (i << RQB_L2BPW); 383 rqh = &rq->rq_queues[pri]; 384 TAILQ_FOREACH(td, rqh, td_runq) { 385 printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n", 386 td, td->td_name, td->td_priority, 387 td->td_rqindex, pri); 388 } 389 } 390 } 391 } 392 393 /* 394 * Print the status of a per-cpu thread queue. Should be a ddb show cmd. 395 */ 396 void 397 tdq_print(int cpu) 398 { 399 struct tdq *tdq; 400 401 tdq = TDQ_CPU(cpu); 402 403 printf("tdq %d:\n", TDQ_ID(tdq)); 404 printf("\tlock %p\n", TDQ_LOCKPTR(tdq)); 405 printf("\tLock name: %s\n", tdq->tdq_name); 406 printf("\tload: %d\n", tdq->tdq_load); 407 printf("\tswitch cnt: %d\n", tdq->tdq_switchcnt); 408 printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt); 409 printf("\ttimeshare idx: %d\n", tdq->tdq_idx); 410 printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx); 411 printf("\tload transferable: %d\n", tdq->tdq_transferable); 412 printf("\tlowest priority: %d\n", tdq->tdq_lowpri); 413 printf("\trealtime runq:\n"); 414 runq_print(&tdq->tdq_realtime); 415 printf("\ttimeshare runq:\n"); 416 runq_print(&tdq->tdq_timeshare); 417 printf("\tidle runq:\n"); 418 runq_print(&tdq->tdq_idle); 419 } 420 421 static inline int 422 sched_shouldpreempt(int pri, int cpri, int remote) 423 { 424 /* 425 * If the new priority is not better than the current priority there is 426 * nothing to do. 427 */ 428 if (pri >= cpri) 429 return (0); 430 /* 431 * Always preempt idle. 432 */ 433 if (cpri >= PRI_MIN_IDLE) 434 return (1); 435 /* 436 * If preemption is disabled don't preempt others. 437 */ 438 if (preempt_thresh == 0) 439 return (0); 440 /* 441 * Preempt if we exceed the threshold. 442 */ 443 if (pri <= preempt_thresh) 444 return (1); 445 /* 446 * If we're interactive or better and there is non-interactive 447 * or worse running preempt only remote processors. 448 */ 449 if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT) 450 return (1); 451 return (0); 452 } 453 454 /* 455 * Add a thread to the actual run-queue. Keeps transferable counts up to 456 * date with what is actually on the run-queue. Selects the correct 457 * queue position for timeshare threads. 458 */ 459 static __inline void 460 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags) 461 { 462 struct td_sched *ts; 463 u_char pri; 464 465 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 466 THREAD_LOCK_ASSERT(td, MA_OWNED); 467 468 pri = td->td_priority; 469 ts = td_get_sched(td); 470 TD_SET_RUNQ(td); 471 if (THREAD_CAN_MIGRATE(td)) { 472 tdq->tdq_transferable++; 473 ts->ts_flags |= TSF_XFERABLE; 474 } 475 if (pri < PRI_MIN_BATCH) { 476 ts->ts_runq = &tdq->tdq_realtime; 477 } else if (pri <= PRI_MAX_BATCH) { 478 ts->ts_runq = &tdq->tdq_timeshare; 479 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH, 480 ("Invalid priority %d on timeshare runq", pri)); 481 /* 482 * This queue contains only priorities between MIN and MAX 483 * realtime. Use the whole queue to represent these values. 484 */ 485 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) { 486 pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE; 487 pri = (pri + tdq->tdq_idx) % RQ_NQS; 488 /* 489 * This effectively shortens the queue by one so we 490 * can have a one slot difference between idx and 491 * ridx while we wait for threads to drain. 492 */ 493 if (tdq->tdq_ridx != tdq->tdq_idx && 494 pri == tdq->tdq_ridx) 495 pri = (unsigned char)(pri - 1) % RQ_NQS; 496 } else 497 pri = tdq->tdq_ridx; 498 runq_add_pri(ts->ts_runq, td, pri, flags); 499 return; 500 } else 501 ts->ts_runq = &tdq->tdq_idle; 502 runq_add(ts->ts_runq, td, flags); 503 } 504 505 /* 506 * Remove a thread from a run-queue. This typically happens when a thread 507 * is selected to run. Running threads are not on the queue and the 508 * transferable count does not reflect them. 509 */ 510 static __inline void 511 tdq_runq_rem(struct tdq *tdq, struct thread *td) 512 { 513 struct td_sched *ts; 514 515 ts = td_get_sched(td); 516 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 517 KASSERT(ts->ts_runq != NULL, 518 ("tdq_runq_remove: thread %p null ts_runq", td)); 519 if (ts->ts_flags & TSF_XFERABLE) { 520 tdq->tdq_transferable--; 521 ts->ts_flags &= ~TSF_XFERABLE; 522 } 523 if (ts->ts_runq == &tdq->tdq_timeshare) { 524 if (tdq->tdq_idx != tdq->tdq_ridx) 525 runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx); 526 else 527 runq_remove_idx(ts->ts_runq, td, NULL); 528 } else 529 runq_remove(ts->ts_runq, td); 530 } 531 532 /* 533 * Load is maintained for all threads RUNNING and ON_RUNQ. Add the load 534 * for this thread to the referenced thread queue. 535 */ 536 static void 537 tdq_load_add(struct tdq *tdq, struct thread *td) 538 { 539 540 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 541 THREAD_LOCK_ASSERT(td, MA_OWNED); 542 543 tdq->tdq_load++; 544 if ((td->td_flags & TDF_NOLOAD) == 0) 545 tdq->tdq_sysload++; 546 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 547 SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load); 548 } 549 550 /* 551 * Remove the load from a thread that is transitioning to a sleep state or 552 * exiting. 553 */ 554 static void 555 tdq_load_rem(struct tdq *tdq, struct thread *td) 556 { 557 558 THREAD_LOCK_ASSERT(td, MA_OWNED); 559 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 560 KASSERT(tdq->tdq_load != 0, 561 ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq))); 562 563 tdq->tdq_load--; 564 if ((td->td_flags & TDF_NOLOAD) == 0) 565 tdq->tdq_sysload--; 566 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 567 SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load); 568 } 569 570 /* 571 * Bound timeshare latency by decreasing slice size as load increases. We 572 * consider the maximum latency as the sum of the threads waiting to run 573 * aside from curthread and target no more than sched_slice latency but 574 * no less than sched_slice_min runtime. 575 */ 576 static inline int 577 tdq_slice(struct tdq *tdq) 578 { 579 int load; 580 581 /* 582 * It is safe to use sys_load here because this is called from 583 * contexts where timeshare threads are running and so there 584 * cannot be higher priority load in the system. 585 */ 586 load = tdq->tdq_sysload - 1; 587 if (load >= SCHED_SLICE_MIN_DIVISOR) 588 return (sched_slice_min); 589 if (load <= 1) 590 return (sched_slice); 591 return (sched_slice / load); 592 } 593 594 /* 595 * Set lowpri to its exact value by searching the run-queue and 596 * evaluating curthread. curthread may be passed as an optimization. 597 */ 598 static void 599 tdq_setlowpri(struct tdq *tdq, struct thread *ctd) 600 { 601 struct thread *td; 602 603 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 604 if (ctd == NULL) 605 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread; 606 td = tdq_choose(tdq); 607 if (td == NULL || td->td_priority > ctd->td_priority) 608 tdq->tdq_lowpri = ctd->td_priority; 609 else 610 tdq->tdq_lowpri = td->td_priority; 611 } 612 613 #ifdef SMP 614 /* 615 * We need some randomness. Implement a classic Linear Congruential 616 * Generator X_{n+1}=(aX_n+c) mod m. These values are optimized for 617 * m = 2^32, a = 69069 and c = 5. We only return the upper 16 bits 618 * of the random state (in the low bits of our answer) to keep 619 * the maximum randomness. 620 */ 621 static uint32_t 622 sched_random(void) 623 { 624 uint32_t *rndptr; 625 626 rndptr = DPCPU_PTR(randomval); 627 *rndptr = *rndptr * 69069 + 5; 628 629 return (*rndptr >> 16); 630 } 631 632 struct cpu_search { 633 cpuset_t cs_mask; 634 u_int cs_prefer; 635 int cs_pri; /* Min priority for low. */ 636 int cs_limit; /* Max load for low, min load for high. */ 637 int cs_cpu; 638 int cs_load; 639 }; 640 641 #define CPU_SEARCH_LOWEST 0x1 642 #define CPU_SEARCH_HIGHEST 0x2 643 #define CPU_SEARCH_BOTH (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST) 644 645 #define CPUSET_FOREACH(cpu, mask) \ 646 for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++) \ 647 if (CPU_ISSET(cpu, &mask)) 648 649 static __always_inline int cpu_search(const struct cpu_group *cg, 650 struct cpu_search *low, struct cpu_search *high, const int match); 651 int __noinline cpu_search_lowest(const struct cpu_group *cg, 652 struct cpu_search *low); 653 int __noinline cpu_search_highest(const struct cpu_group *cg, 654 struct cpu_search *high); 655 int __noinline cpu_search_both(const struct cpu_group *cg, 656 struct cpu_search *low, struct cpu_search *high); 657 658 /* 659 * Search the tree of cpu_groups for the lowest or highest loaded cpu 660 * according to the match argument. This routine actually compares the 661 * load on all paths through the tree and finds the least loaded cpu on 662 * the least loaded path, which may differ from the least loaded cpu in 663 * the system. This balances work among caches and buses. 664 * 665 * This inline is instantiated in three forms below using constants for the 666 * match argument. It is reduced to the minimum set for each case. It is 667 * also recursive to the depth of the tree. 668 */ 669 static __always_inline int 670 cpu_search(const struct cpu_group *cg, struct cpu_search *low, 671 struct cpu_search *high, const int match) 672 { 673 struct cpu_search lgroup; 674 struct cpu_search hgroup; 675 cpuset_t cpumask; 676 struct cpu_group *child; 677 struct tdq *tdq; 678 int cpu, i, hload, lload, load, total, rnd; 679 680 total = 0; 681 cpumask = cg->cg_mask; 682 if (match & CPU_SEARCH_LOWEST) { 683 lload = INT_MAX; 684 lgroup = *low; 685 } 686 if (match & CPU_SEARCH_HIGHEST) { 687 hload = INT_MIN; 688 hgroup = *high; 689 } 690 691 /* Iterate through the child CPU groups and then remaining CPUs. */ 692 for (i = cg->cg_children, cpu = mp_maxid; ; ) { 693 if (i == 0) { 694 #ifdef HAVE_INLINE_FFSL 695 cpu = CPU_FFS(&cpumask) - 1; 696 #else 697 while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask)) 698 cpu--; 699 #endif 700 if (cpu < 0) 701 break; 702 child = NULL; 703 } else 704 child = &cg->cg_child[i - 1]; 705 706 if (match & CPU_SEARCH_LOWEST) 707 lgroup.cs_cpu = -1; 708 if (match & CPU_SEARCH_HIGHEST) 709 hgroup.cs_cpu = -1; 710 if (child) { /* Handle child CPU group. */ 711 CPU_NAND(&cpumask, &child->cg_mask); 712 switch (match) { 713 case CPU_SEARCH_LOWEST: 714 load = cpu_search_lowest(child, &lgroup); 715 break; 716 case CPU_SEARCH_HIGHEST: 717 load = cpu_search_highest(child, &hgroup); 718 break; 719 case CPU_SEARCH_BOTH: 720 load = cpu_search_both(child, &lgroup, &hgroup); 721 break; 722 } 723 } else { /* Handle child CPU. */ 724 CPU_CLR(cpu, &cpumask); 725 tdq = TDQ_CPU(cpu); 726 load = tdq->tdq_load * 256; 727 rnd = sched_random() % 32; 728 if (match & CPU_SEARCH_LOWEST) { 729 if (cpu == low->cs_prefer) 730 load -= 64; 731 /* If that CPU is allowed and get data. */ 732 if (tdq->tdq_lowpri > lgroup.cs_pri && 733 tdq->tdq_load <= lgroup.cs_limit && 734 CPU_ISSET(cpu, &lgroup.cs_mask)) { 735 lgroup.cs_cpu = cpu; 736 lgroup.cs_load = load - rnd; 737 } 738 } 739 if (match & CPU_SEARCH_HIGHEST) 740 if (tdq->tdq_load >= hgroup.cs_limit && 741 tdq->tdq_transferable && 742 CPU_ISSET(cpu, &hgroup.cs_mask)) { 743 hgroup.cs_cpu = cpu; 744 hgroup.cs_load = load - rnd; 745 } 746 } 747 total += load; 748 749 /* We have info about child item. Compare it. */ 750 if (match & CPU_SEARCH_LOWEST) { 751 if (lgroup.cs_cpu >= 0 && 752 (load < lload || 753 (load == lload && lgroup.cs_load < low->cs_load))) { 754 lload = load; 755 low->cs_cpu = lgroup.cs_cpu; 756 low->cs_load = lgroup.cs_load; 757 } 758 } 759 if (match & CPU_SEARCH_HIGHEST) 760 if (hgroup.cs_cpu >= 0 && 761 (load > hload || 762 (load == hload && hgroup.cs_load > high->cs_load))) { 763 hload = load; 764 high->cs_cpu = hgroup.cs_cpu; 765 high->cs_load = hgroup.cs_load; 766 } 767 if (child) { 768 i--; 769 if (i == 0 && CPU_EMPTY(&cpumask)) 770 break; 771 } 772 #ifndef HAVE_INLINE_FFSL 773 else 774 cpu--; 775 #endif 776 } 777 return (total); 778 } 779 780 /* 781 * cpu_search instantiations must pass constants to maintain the inline 782 * optimization. 783 */ 784 int 785 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low) 786 { 787 return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST); 788 } 789 790 int 791 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high) 792 { 793 return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST); 794 } 795 796 int 797 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low, 798 struct cpu_search *high) 799 { 800 return cpu_search(cg, low, high, CPU_SEARCH_BOTH); 801 } 802 803 /* 804 * Find the cpu with the least load via the least loaded path that has a 805 * lowpri greater than pri pri. A pri of -1 indicates any priority is 806 * acceptable. 807 */ 808 static inline int 809 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload, 810 int prefer) 811 { 812 struct cpu_search low; 813 814 low.cs_cpu = -1; 815 low.cs_prefer = prefer; 816 low.cs_mask = mask; 817 low.cs_pri = pri; 818 low.cs_limit = maxload; 819 cpu_search_lowest(cg, &low); 820 return low.cs_cpu; 821 } 822 823 /* 824 * Find the cpu with the highest load via the highest loaded path. 825 */ 826 static inline int 827 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload) 828 { 829 struct cpu_search high; 830 831 high.cs_cpu = -1; 832 high.cs_mask = mask; 833 high.cs_limit = minload; 834 cpu_search_highest(cg, &high); 835 return high.cs_cpu; 836 } 837 838 static void 839 sched_balance_group(struct cpu_group *cg) 840 { 841 cpuset_t hmask, lmask; 842 int high, low, anylow; 843 844 CPU_FILL(&hmask); 845 for (;;) { 846 high = sched_highest(cg, hmask, 2); 847 /* Stop if there is no more CPU with transferrable threads. */ 848 if (high == -1) 849 break; 850 CPU_CLR(high, &hmask); 851 CPU_COPY(&hmask, &lmask); 852 /* Stop if there is no more CPU left for low. */ 853 if (CPU_EMPTY(&lmask)) 854 break; 855 anylow = 1; 856 nextlow: 857 low = sched_lowest(cg, lmask, -1, 858 TDQ_CPU(high)->tdq_load - 1, high); 859 /* Stop if we looked well and found no less loaded CPU. */ 860 if (anylow && low == -1) 861 break; 862 /* Go to next high if we found no less loaded CPU. */ 863 if (low == -1) 864 continue; 865 /* Transfer thread from high to low. */ 866 if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) { 867 /* CPU that got thread can no longer be a donor. */ 868 CPU_CLR(low, &hmask); 869 } else { 870 /* 871 * If failed, then there is no threads on high 872 * that can run on this low. Drop low from low 873 * mask and look for different one. 874 */ 875 CPU_CLR(low, &lmask); 876 anylow = 0; 877 goto nextlow; 878 } 879 } 880 } 881 882 static void 883 sched_balance(void) 884 { 885 struct tdq *tdq; 886 887 if (smp_started == 0 || rebalance == 0) 888 return; 889 890 balance_ticks = max(balance_interval / 2, 1) + 891 (sched_random() % balance_interval); 892 tdq = TDQ_SELF(); 893 TDQ_UNLOCK(tdq); 894 sched_balance_group(cpu_top); 895 TDQ_LOCK(tdq); 896 } 897 898 /* 899 * Lock two thread queues using their address to maintain lock order. 900 */ 901 static void 902 tdq_lock_pair(struct tdq *one, struct tdq *two) 903 { 904 if (one < two) { 905 TDQ_LOCK(one); 906 TDQ_LOCK_FLAGS(two, MTX_DUPOK); 907 } else { 908 TDQ_LOCK(two); 909 TDQ_LOCK_FLAGS(one, MTX_DUPOK); 910 } 911 } 912 913 /* 914 * Unlock two thread queues. Order is not important here. 915 */ 916 static void 917 tdq_unlock_pair(struct tdq *one, struct tdq *two) 918 { 919 TDQ_UNLOCK(one); 920 TDQ_UNLOCK(two); 921 } 922 923 /* 924 * Transfer load between two imbalanced thread queues. 925 */ 926 static int 927 sched_balance_pair(struct tdq *high, struct tdq *low) 928 { 929 struct thread *td; 930 int cpu; 931 932 tdq_lock_pair(high, low); 933 td = NULL; 934 /* 935 * Transfer a thread from high to low. 936 */ 937 if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load && 938 (td = tdq_move(high, low)) != NULL) { 939 /* 940 * In case the target isn't the current cpu notify it of the 941 * new load, possibly sending an IPI to force it to reschedule. 942 */ 943 cpu = TDQ_ID(low); 944 if (cpu != PCPU_GET(cpuid)) 945 tdq_notify(low, td); 946 } 947 tdq_unlock_pair(high, low); 948 return (td != NULL); 949 } 950 951 /* 952 * Move a thread from one thread queue to another. 953 */ 954 static struct thread * 955 tdq_move(struct tdq *from, struct tdq *to) 956 { 957 struct td_sched *ts; 958 struct thread *td; 959 struct tdq *tdq; 960 int cpu; 961 962 TDQ_LOCK_ASSERT(from, MA_OWNED); 963 TDQ_LOCK_ASSERT(to, MA_OWNED); 964 965 tdq = from; 966 cpu = TDQ_ID(to); 967 td = tdq_steal(tdq, cpu); 968 if (td == NULL) 969 return (NULL); 970 ts = td_get_sched(td); 971 /* 972 * Although the run queue is locked the thread may be blocked. Lock 973 * it to clear this and acquire the run-queue lock. 974 */ 975 thread_lock(td); 976 /* Drop recursive lock on from acquired via thread_lock(). */ 977 TDQ_UNLOCK(from); 978 sched_rem(td); 979 ts->ts_cpu = cpu; 980 td->td_lock = TDQ_LOCKPTR(to); 981 tdq_add(to, td, SRQ_YIELDING); 982 return (td); 983 } 984 985 /* 986 * This tdq has idled. Try to steal a thread from another cpu and switch 987 * to it. 988 */ 989 static int 990 tdq_idled(struct tdq *tdq) 991 { 992 struct cpu_group *cg; 993 struct tdq *steal; 994 cpuset_t mask; 995 int cpu, switchcnt; 996 997 if (smp_started == 0 || steal_idle == 0 || tdq->tdq_cg == NULL) 998 return (1); 999 CPU_FILL(&mask); 1000 CPU_CLR(PCPU_GET(cpuid), &mask); 1001 restart: 1002 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 1003 for (cg = tdq->tdq_cg; ; ) { 1004 cpu = sched_highest(cg, mask, steal_thresh); 1005 /* 1006 * We were assigned a thread but not preempted. Returning 1007 * 0 here will cause our caller to switch to it. 1008 */ 1009 if (tdq->tdq_load) 1010 return (0); 1011 if (cpu == -1) { 1012 cg = cg->cg_parent; 1013 if (cg == NULL) 1014 return (1); 1015 continue; 1016 } 1017 steal = TDQ_CPU(cpu); 1018 /* 1019 * The data returned by sched_highest() is stale and 1020 * the chosen CPU no longer has an eligible thread. 1021 * 1022 * Testing this ahead of tdq_lock_pair() only catches 1023 * this situation about 20% of the time on an 8 core 1024 * 16 thread Ryzen 7, but it still helps performance. 1025 */ 1026 if (steal->tdq_load < steal_thresh || 1027 steal->tdq_transferable == 0) 1028 goto restart; 1029 tdq_lock_pair(tdq, steal); 1030 /* 1031 * We were assigned a thread while waiting for the locks. 1032 * Switch to it now instead of stealing a thread. 1033 */ 1034 if (tdq->tdq_load) 1035 break; 1036 /* 1037 * The data returned by sched_highest() is stale and 1038 * the chosen CPU no longer has an eligible thread, or 1039 * we were preempted and the CPU loading info may be out 1040 * of date. The latter is rare. In either case restart 1041 * the search. 1042 */ 1043 if (steal->tdq_load < steal_thresh || 1044 steal->tdq_transferable == 0 || 1045 switchcnt != tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt) { 1046 tdq_unlock_pair(tdq, steal); 1047 goto restart; 1048 } 1049 /* 1050 * Steal the thread and switch to it. 1051 */ 1052 if (tdq_move(steal, tdq) != NULL) 1053 break; 1054 /* 1055 * We failed to acquire a thread even though it looked 1056 * like one was available. This could be due to affinity 1057 * restrictions or for other reasons. Loop again after 1058 * removing this CPU from the set. The restart logic 1059 * above does not restore this CPU to the set due to the 1060 * likelyhood of failing here again. 1061 */ 1062 CPU_CLR(cpu, &mask); 1063 tdq_unlock_pair(tdq, steal); 1064 } 1065 TDQ_UNLOCK(steal); 1066 mi_switch(SW_VOL | SWT_IDLE, NULL); 1067 thread_unlock(curthread); 1068 return (0); 1069 } 1070 1071 /* 1072 * Notify a remote cpu of new work. Sends an IPI if criteria are met. 1073 */ 1074 static void 1075 tdq_notify(struct tdq *tdq, struct thread *td) 1076 { 1077 struct thread *ctd; 1078 int pri; 1079 int cpu; 1080 1081 if (tdq->tdq_ipipending) 1082 return; 1083 cpu = td_get_sched(td)->ts_cpu; 1084 pri = td->td_priority; 1085 ctd = pcpu_find(cpu)->pc_curthread; 1086 if (!sched_shouldpreempt(pri, ctd->td_priority, 1)) 1087 return; 1088 1089 /* 1090 * Make sure that our caller's earlier update to tdq_load is 1091 * globally visible before we read tdq_cpu_idle. Idle thread 1092 * accesses both of them without locks, and the order is important. 1093 */ 1094 atomic_thread_fence_seq_cst(); 1095 1096 if (TD_IS_IDLETHREAD(ctd)) { 1097 /* 1098 * If the MD code has an idle wakeup routine try that before 1099 * falling back to IPI. 1100 */ 1101 if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu)) 1102 return; 1103 } 1104 tdq->tdq_ipipending = 1; 1105 ipi_cpu(cpu, IPI_PREEMPT); 1106 } 1107 1108 /* 1109 * Steals load from a timeshare queue. Honors the rotating queue head 1110 * index. 1111 */ 1112 static struct thread * 1113 runq_steal_from(struct runq *rq, int cpu, u_char start) 1114 { 1115 struct rqbits *rqb; 1116 struct rqhead *rqh; 1117 struct thread *td, *first; 1118 int bit; 1119 int i; 1120 1121 rqb = &rq->rq_status; 1122 bit = start & (RQB_BPW -1); 1123 first = NULL; 1124 again: 1125 for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) { 1126 if (rqb->rqb_bits[i] == 0) 1127 continue; 1128 if (bit == 0) 1129 bit = RQB_FFS(rqb->rqb_bits[i]); 1130 for (; bit < RQB_BPW; bit++) { 1131 if ((rqb->rqb_bits[i] & (1ul << bit)) == 0) 1132 continue; 1133 rqh = &rq->rq_queues[bit + (i << RQB_L2BPW)]; 1134 TAILQ_FOREACH(td, rqh, td_runq) { 1135 if (first && THREAD_CAN_MIGRATE(td) && 1136 THREAD_CAN_SCHED(td, cpu)) 1137 return (td); 1138 first = td; 1139 } 1140 } 1141 } 1142 if (start != 0) { 1143 start = 0; 1144 goto again; 1145 } 1146 1147 if (first && THREAD_CAN_MIGRATE(first) && 1148 THREAD_CAN_SCHED(first, cpu)) 1149 return (first); 1150 return (NULL); 1151 } 1152 1153 /* 1154 * Steals load from a standard linear queue. 1155 */ 1156 static struct thread * 1157 runq_steal(struct runq *rq, int cpu) 1158 { 1159 struct rqhead *rqh; 1160 struct rqbits *rqb; 1161 struct thread *td; 1162 int word; 1163 int bit; 1164 1165 rqb = &rq->rq_status; 1166 for (word = 0; word < RQB_LEN; word++) { 1167 if (rqb->rqb_bits[word] == 0) 1168 continue; 1169 for (bit = 0; bit < RQB_BPW; bit++) { 1170 if ((rqb->rqb_bits[word] & (1ul << bit)) == 0) 1171 continue; 1172 rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)]; 1173 TAILQ_FOREACH(td, rqh, td_runq) 1174 if (THREAD_CAN_MIGRATE(td) && 1175 THREAD_CAN_SCHED(td, cpu)) 1176 return (td); 1177 } 1178 } 1179 return (NULL); 1180 } 1181 1182 /* 1183 * Attempt to steal a thread in priority order from a thread queue. 1184 */ 1185 static struct thread * 1186 tdq_steal(struct tdq *tdq, int cpu) 1187 { 1188 struct thread *td; 1189 1190 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1191 if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL) 1192 return (td); 1193 if ((td = runq_steal_from(&tdq->tdq_timeshare, 1194 cpu, tdq->tdq_ridx)) != NULL) 1195 return (td); 1196 return (runq_steal(&tdq->tdq_idle, cpu)); 1197 } 1198 1199 /* 1200 * Sets the thread lock and ts_cpu to match the requested cpu. Unlocks the 1201 * current lock and returns with the assigned queue locked. 1202 */ 1203 static inline struct tdq * 1204 sched_setcpu(struct thread *td, int cpu, int flags) 1205 { 1206 1207 struct tdq *tdq; 1208 1209 THREAD_LOCK_ASSERT(td, MA_OWNED); 1210 tdq = TDQ_CPU(cpu); 1211 td_get_sched(td)->ts_cpu = cpu; 1212 /* 1213 * If the lock matches just return the queue. 1214 */ 1215 if (td->td_lock == TDQ_LOCKPTR(tdq)) 1216 return (tdq); 1217 #ifdef notyet 1218 /* 1219 * If the thread isn't running its lockptr is a 1220 * turnstile or a sleepqueue. We can just lock_set without 1221 * blocking. 1222 */ 1223 if (TD_CAN_RUN(td)) { 1224 TDQ_LOCK(tdq); 1225 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 1226 return (tdq); 1227 } 1228 #endif 1229 /* 1230 * The hard case, migration, we need to block the thread first to 1231 * prevent order reversals with other cpus locks. 1232 */ 1233 spinlock_enter(); 1234 thread_lock_block(td); 1235 TDQ_LOCK(tdq); 1236 thread_lock_unblock(td, TDQ_LOCKPTR(tdq)); 1237 spinlock_exit(); 1238 return (tdq); 1239 } 1240 1241 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding"); 1242 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity"); 1243 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity"); 1244 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load"); 1245 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu"); 1246 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration"); 1247 1248 static int 1249 sched_pickcpu(struct thread *td, int flags) 1250 { 1251 struct cpu_group *cg, *ccg; 1252 struct td_sched *ts; 1253 struct tdq *tdq; 1254 cpuset_t mask; 1255 int cpu, pri, self; 1256 1257 self = PCPU_GET(cpuid); 1258 ts = td_get_sched(td); 1259 KASSERT(!CPU_ABSENT(ts->ts_cpu), ("sched_pickcpu: Start scheduler on " 1260 "absent CPU %d for thread %s.", ts->ts_cpu, td->td_name)); 1261 if (smp_started == 0) 1262 return (self); 1263 /* 1264 * Don't migrate a running thread from sched_switch(). 1265 */ 1266 if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td)) 1267 return (ts->ts_cpu); 1268 /* 1269 * Prefer to run interrupt threads on the processors that generate 1270 * the interrupt. 1271 */ 1272 pri = td->td_priority; 1273 if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) && 1274 curthread->td_intr_nesting_level && ts->ts_cpu != self) { 1275 SCHED_STAT_INC(pickcpu_intrbind); 1276 ts->ts_cpu = self; 1277 if (TDQ_CPU(self)->tdq_lowpri > pri) { 1278 SCHED_STAT_INC(pickcpu_affinity); 1279 return (ts->ts_cpu); 1280 } 1281 } 1282 /* 1283 * If the thread can run on the last cpu and the affinity has not 1284 * expired and it is idle, run it there. 1285 */ 1286 tdq = TDQ_CPU(ts->ts_cpu); 1287 cg = tdq->tdq_cg; 1288 if (THREAD_CAN_SCHED(td, ts->ts_cpu) && 1289 tdq->tdq_lowpri >= PRI_MIN_IDLE && 1290 SCHED_AFFINITY(ts, CG_SHARE_L2)) { 1291 if (cg->cg_flags & CG_FLAG_THREAD) { 1292 CPUSET_FOREACH(cpu, cg->cg_mask) { 1293 if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) 1294 break; 1295 } 1296 } else 1297 cpu = INT_MAX; 1298 if (cpu > mp_maxid) { 1299 SCHED_STAT_INC(pickcpu_idle_affinity); 1300 return (ts->ts_cpu); 1301 } 1302 } 1303 /* 1304 * Search for the last level cache CPU group in the tree. 1305 * Skip caches with expired affinity time and SMT groups. 1306 * Affinity to higher level caches will be handled less aggressively. 1307 */ 1308 for (ccg = NULL; cg != NULL; cg = cg->cg_parent) { 1309 if (cg->cg_flags & CG_FLAG_THREAD) 1310 continue; 1311 if (!SCHED_AFFINITY(ts, cg->cg_level)) 1312 continue; 1313 ccg = cg; 1314 } 1315 if (ccg != NULL) 1316 cg = ccg; 1317 cpu = -1; 1318 /* Search the group for the less loaded idle CPU we can run now. */ 1319 mask = td->td_cpuset->cs_mask; 1320 if (cg != NULL && cg != cpu_top && 1321 CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0) 1322 cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE), 1323 INT_MAX, ts->ts_cpu); 1324 /* Search globally for the less loaded CPU we can run now. */ 1325 if (cpu == -1) 1326 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu); 1327 /* Search globally for the less loaded CPU. */ 1328 if (cpu == -1) 1329 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu); 1330 KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu.")); 1331 KASSERT(!CPU_ABSENT(cpu), ("sched_pickcpu: Picked absent CPU %d.", cpu)); 1332 /* 1333 * Compare the lowest loaded cpu to current cpu. 1334 */ 1335 if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri && 1336 TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE && 1337 TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) { 1338 SCHED_STAT_INC(pickcpu_local); 1339 cpu = self; 1340 } else 1341 SCHED_STAT_INC(pickcpu_lowest); 1342 if (cpu != ts->ts_cpu) 1343 SCHED_STAT_INC(pickcpu_migration); 1344 return (cpu); 1345 } 1346 #endif 1347 1348 /* 1349 * Pick the highest priority task we have and return it. 1350 */ 1351 static struct thread * 1352 tdq_choose(struct tdq *tdq) 1353 { 1354 struct thread *td; 1355 1356 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1357 td = runq_choose(&tdq->tdq_realtime); 1358 if (td != NULL) 1359 return (td); 1360 td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx); 1361 if (td != NULL) { 1362 KASSERT(td->td_priority >= PRI_MIN_BATCH, 1363 ("tdq_choose: Invalid priority on timeshare queue %d", 1364 td->td_priority)); 1365 return (td); 1366 } 1367 td = runq_choose(&tdq->tdq_idle); 1368 if (td != NULL) { 1369 KASSERT(td->td_priority >= PRI_MIN_IDLE, 1370 ("tdq_choose: Invalid priority on idle queue %d", 1371 td->td_priority)); 1372 return (td); 1373 } 1374 1375 return (NULL); 1376 } 1377 1378 /* 1379 * Initialize a thread queue. 1380 */ 1381 static void 1382 tdq_setup(struct tdq *tdq) 1383 { 1384 1385 if (bootverbose) 1386 printf("ULE: setup cpu %d\n", TDQ_ID(tdq)); 1387 runq_init(&tdq->tdq_realtime); 1388 runq_init(&tdq->tdq_timeshare); 1389 runq_init(&tdq->tdq_idle); 1390 snprintf(tdq->tdq_name, sizeof(tdq->tdq_name), 1391 "sched lock %d", (int)TDQ_ID(tdq)); 1392 mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", 1393 MTX_SPIN | MTX_RECURSE); 1394 #ifdef KTR 1395 snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname), 1396 "CPU %d load", (int)TDQ_ID(tdq)); 1397 #endif 1398 } 1399 1400 #ifdef SMP 1401 static void 1402 sched_setup_smp(void) 1403 { 1404 struct tdq *tdq; 1405 int i; 1406 1407 cpu_top = smp_topo(); 1408 CPU_FOREACH(i) { 1409 tdq = TDQ_CPU(i); 1410 tdq_setup(tdq); 1411 tdq->tdq_cg = smp_topo_find(cpu_top, i); 1412 if (tdq->tdq_cg == NULL) 1413 panic("Can't find cpu group for %d\n", i); 1414 } 1415 balance_tdq = TDQ_SELF(); 1416 sched_balance(); 1417 } 1418 #endif 1419 1420 /* 1421 * Setup the thread queues and initialize the topology based on MD 1422 * information. 1423 */ 1424 static void 1425 sched_setup(void *dummy) 1426 { 1427 struct tdq *tdq; 1428 1429 tdq = TDQ_SELF(); 1430 #ifdef SMP 1431 sched_setup_smp(); 1432 #else 1433 tdq_setup(tdq); 1434 #endif 1435 1436 /* Add thread0's load since it's running. */ 1437 TDQ_LOCK(tdq); 1438 thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF()); 1439 tdq_load_add(tdq, &thread0); 1440 tdq->tdq_lowpri = thread0.td_priority; 1441 TDQ_UNLOCK(tdq); 1442 } 1443 1444 /* 1445 * This routine determines time constants after stathz and hz are setup. 1446 */ 1447 /* ARGSUSED */ 1448 static void 1449 sched_initticks(void *dummy) 1450 { 1451 int incr; 1452 1453 realstathz = stathz ? stathz : hz; 1454 sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR; 1455 sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR; 1456 hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) / 1457 realstathz); 1458 1459 /* 1460 * tickincr is shifted out by 10 to avoid rounding errors due to 1461 * hz not being evenly divisible by stathz on all platforms. 1462 */ 1463 incr = (hz << SCHED_TICK_SHIFT) / realstathz; 1464 /* 1465 * This does not work for values of stathz that are more than 1466 * 1 << SCHED_TICK_SHIFT * hz. In practice this does not happen. 1467 */ 1468 if (incr == 0) 1469 incr = 1; 1470 tickincr = incr; 1471 #ifdef SMP 1472 /* 1473 * Set the default balance interval now that we know 1474 * what realstathz is. 1475 */ 1476 balance_interval = realstathz; 1477 affinity = SCHED_AFFINITY_DEFAULT; 1478 #endif 1479 if (sched_idlespinthresh < 0) 1480 sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz; 1481 } 1482 1483 1484 /* 1485 * This is the core of the interactivity algorithm. Determines a score based 1486 * on past behavior. It is the ratio of sleep time to run time scaled to 1487 * a [0, 100] integer. This is the voluntary sleep time of a process, which 1488 * differs from the cpu usage because it does not account for time spent 1489 * waiting on a run-queue. Would be prettier if we had floating point. 1490 * 1491 * When a thread's sleep time is greater than its run time the 1492 * calculation is: 1493 * 1494 * scaling factor 1495 * interactivity score = --------------------- 1496 * sleep time / run time 1497 * 1498 * 1499 * When a thread's run time is greater than its sleep time the 1500 * calculation is: 1501 * 1502 * scaling factor 1503 * interactivity score = --------------------- + scaling factor 1504 * run time / sleep time 1505 */ 1506 static int 1507 sched_interact_score(struct thread *td) 1508 { 1509 struct td_sched *ts; 1510 int div; 1511 1512 ts = td_get_sched(td); 1513 /* 1514 * The score is only needed if this is likely to be an interactive 1515 * task. Don't go through the expense of computing it if there's 1516 * no chance. 1517 */ 1518 if (sched_interact <= SCHED_INTERACT_HALF && 1519 ts->ts_runtime >= ts->ts_slptime) 1520 return (SCHED_INTERACT_HALF); 1521 1522 if (ts->ts_runtime > ts->ts_slptime) { 1523 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF); 1524 return (SCHED_INTERACT_HALF + 1525 (SCHED_INTERACT_HALF - (ts->ts_slptime / div))); 1526 } 1527 if (ts->ts_slptime > ts->ts_runtime) { 1528 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF); 1529 return (ts->ts_runtime / div); 1530 } 1531 /* runtime == slptime */ 1532 if (ts->ts_runtime) 1533 return (SCHED_INTERACT_HALF); 1534 1535 /* 1536 * This can happen if slptime and runtime are 0. 1537 */ 1538 return (0); 1539 1540 } 1541 1542 /* 1543 * Scale the scheduling priority according to the "interactivity" of this 1544 * process. 1545 */ 1546 static void 1547 sched_priority(struct thread *td) 1548 { 1549 int score; 1550 int pri; 1551 1552 if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE) 1553 return; 1554 /* 1555 * If the score is interactive we place the thread in the realtime 1556 * queue with a priority that is less than kernel and interrupt 1557 * priorities. These threads are not subject to nice restrictions. 1558 * 1559 * Scores greater than this are placed on the normal timeshare queue 1560 * where the priority is partially decided by the most recent cpu 1561 * utilization and the rest is decided by nice value. 1562 * 1563 * The nice value of the process has a linear effect on the calculated 1564 * score. Negative nice values make it easier for a thread to be 1565 * considered interactive. 1566 */ 1567 score = imax(0, sched_interact_score(td) + td->td_proc->p_nice); 1568 if (score < sched_interact) { 1569 pri = PRI_MIN_INTERACT; 1570 pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) / 1571 sched_interact) * score; 1572 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT, 1573 ("sched_priority: invalid interactive priority %d score %d", 1574 pri, score)); 1575 } else { 1576 pri = SCHED_PRI_MIN; 1577 if (td_get_sched(td)->ts_ticks) 1578 pri += min(SCHED_PRI_TICKS(td_get_sched(td)), 1579 SCHED_PRI_RANGE - 1); 1580 pri += SCHED_PRI_NICE(td->td_proc->p_nice); 1581 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH, 1582 ("sched_priority: invalid priority %d: nice %d, " 1583 "ticks %d ftick %d ltick %d tick pri %d", 1584 pri, td->td_proc->p_nice, td_get_sched(td)->ts_ticks, 1585 td_get_sched(td)->ts_ftick, td_get_sched(td)->ts_ltick, 1586 SCHED_PRI_TICKS(td_get_sched(td)))); 1587 } 1588 sched_user_prio(td, pri); 1589 1590 return; 1591 } 1592 1593 /* 1594 * This routine enforces a maximum limit on the amount of scheduling history 1595 * kept. It is called after either the slptime or runtime is adjusted. This 1596 * function is ugly due to integer math. 1597 */ 1598 static void 1599 sched_interact_update(struct thread *td) 1600 { 1601 struct td_sched *ts; 1602 u_int sum; 1603 1604 ts = td_get_sched(td); 1605 sum = ts->ts_runtime + ts->ts_slptime; 1606 if (sum < SCHED_SLP_RUN_MAX) 1607 return; 1608 /* 1609 * This only happens from two places: 1610 * 1) We have added an unusual amount of run time from fork_exit. 1611 * 2) We have added an unusual amount of sleep time from sched_sleep(). 1612 */ 1613 if (sum > SCHED_SLP_RUN_MAX * 2) { 1614 if (ts->ts_runtime > ts->ts_slptime) { 1615 ts->ts_runtime = SCHED_SLP_RUN_MAX; 1616 ts->ts_slptime = 1; 1617 } else { 1618 ts->ts_slptime = SCHED_SLP_RUN_MAX; 1619 ts->ts_runtime = 1; 1620 } 1621 return; 1622 } 1623 /* 1624 * If we have exceeded by more than 1/5th then the algorithm below 1625 * will not bring us back into range. Dividing by two here forces 1626 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX] 1627 */ 1628 if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) { 1629 ts->ts_runtime /= 2; 1630 ts->ts_slptime /= 2; 1631 return; 1632 } 1633 ts->ts_runtime = (ts->ts_runtime / 5) * 4; 1634 ts->ts_slptime = (ts->ts_slptime / 5) * 4; 1635 } 1636 1637 /* 1638 * Scale back the interactivity history when a child thread is created. The 1639 * history is inherited from the parent but the thread may behave totally 1640 * differently. For example, a shell spawning a compiler process. We want 1641 * to learn that the compiler is behaving badly very quickly. 1642 */ 1643 static void 1644 sched_interact_fork(struct thread *td) 1645 { 1646 struct td_sched *ts; 1647 int ratio; 1648 int sum; 1649 1650 ts = td_get_sched(td); 1651 sum = ts->ts_runtime + ts->ts_slptime; 1652 if (sum > SCHED_SLP_RUN_FORK) { 1653 ratio = sum / SCHED_SLP_RUN_FORK; 1654 ts->ts_runtime /= ratio; 1655 ts->ts_slptime /= ratio; 1656 } 1657 } 1658 1659 /* 1660 * Called from proc0_init() to setup the scheduler fields. 1661 */ 1662 void 1663 schedinit(void) 1664 { 1665 struct td_sched *ts0; 1666 1667 /* 1668 * Set up the scheduler specific parts of thread0. 1669 */ 1670 ts0 = td_get_sched(&thread0); 1671 ts0->ts_ltick = ticks; 1672 ts0->ts_ftick = ticks; 1673 ts0->ts_slice = 0; 1674 ts0->ts_cpu = curcpu; /* set valid CPU number */ 1675 } 1676 1677 /* 1678 * This is only somewhat accurate since given many processes of the same 1679 * priority they will switch when their slices run out, which will be 1680 * at most sched_slice stathz ticks. 1681 */ 1682 int 1683 sched_rr_interval(void) 1684 { 1685 1686 /* Convert sched_slice from stathz to hz. */ 1687 return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz)); 1688 } 1689 1690 /* 1691 * Update the percent cpu tracking information when it is requested or 1692 * the total history exceeds the maximum. We keep a sliding history of 1693 * tick counts that slowly decays. This is less precise than the 4BSD 1694 * mechanism since it happens with less regular and frequent events. 1695 */ 1696 static void 1697 sched_pctcpu_update(struct td_sched *ts, int run) 1698 { 1699 int t = ticks; 1700 1701 /* 1702 * The signed difference may be negative if the thread hasn't run for 1703 * over half of the ticks rollover period. 1704 */ 1705 if ((u_int)(t - ts->ts_ltick) >= SCHED_TICK_TARG) { 1706 ts->ts_ticks = 0; 1707 ts->ts_ftick = t - SCHED_TICK_TARG; 1708 } else if (t - ts->ts_ftick >= SCHED_TICK_MAX) { 1709 ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) * 1710 (ts->ts_ltick - (t - SCHED_TICK_TARG)); 1711 ts->ts_ftick = t - SCHED_TICK_TARG; 1712 } 1713 if (run) 1714 ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT; 1715 ts->ts_ltick = t; 1716 } 1717 1718 /* 1719 * Adjust the priority of a thread. Move it to the appropriate run-queue 1720 * if necessary. This is the back-end for several priority related 1721 * functions. 1722 */ 1723 static void 1724 sched_thread_priority(struct thread *td, u_char prio) 1725 { 1726 struct td_sched *ts; 1727 struct tdq *tdq; 1728 int oldpri; 1729 1730 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio", 1731 "prio:%d", td->td_priority, "new prio:%d", prio, 1732 KTR_ATTR_LINKED, sched_tdname(curthread)); 1733 SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio); 1734 if (td != curthread && prio < td->td_priority) { 1735 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread), 1736 "lend prio", "prio:%d", td->td_priority, "new prio:%d", 1737 prio, KTR_ATTR_LINKED, sched_tdname(td)); 1738 SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio, 1739 curthread); 1740 } 1741 ts = td_get_sched(td); 1742 THREAD_LOCK_ASSERT(td, MA_OWNED); 1743 if (td->td_priority == prio) 1744 return; 1745 /* 1746 * If the priority has been elevated due to priority 1747 * propagation, we may have to move ourselves to a new 1748 * queue. This could be optimized to not re-add in some 1749 * cases. 1750 */ 1751 if (TD_ON_RUNQ(td) && prio < td->td_priority) { 1752 sched_rem(td); 1753 td->td_priority = prio; 1754 sched_add(td, SRQ_BORROWING); 1755 return; 1756 } 1757 /* 1758 * If the thread is currently running we may have to adjust the lowpri 1759 * information so other cpus are aware of our current priority. 1760 */ 1761 if (TD_IS_RUNNING(td)) { 1762 tdq = TDQ_CPU(ts->ts_cpu); 1763 oldpri = td->td_priority; 1764 td->td_priority = prio; 1765 if (prio < tdq->tdq_lowpri) 1766 tdq->tdq_lowpri = prio; 1767 else if (tdq->tdq_lowpri == oldpri) 1768 tdq_setlowpri(tdq, td); 1769 return; 1770 } 1771 td->td_priority = prio; 1772 } 1773 1774 /* 1775 * Update a thread's priority when it is lent another thread's 1776 * priority. 1777 */ 1778 void 1779 sched_lend_prio(struct thread *td, u_char prio) 1780 { 1781 1782 td->td_flags |= TDF_BORROWING; 1783 sched_thread_priority(td, prio); 1784 } 1785 1786 /* 1787 * Restore a thread's priority when priority propagation is 1788 * over. The prio argument is the minimum priority the thread 1789 * needs to have to satisfy other possible priority lending 1790 * requests. If the thread's regular priority is less 1791 * important than prio, the thread will keep a priority boost 1792 * of prio. 1793 */ 1794 void 1795 sched_unlend_prio(struct thread *td, u_char prio) 1796 { 1797 u_char base_pri; 1798 1799 if (td->td_base_pri >= PRI_MIN_TIMESHARE && 1800 td->td_base_pri <= PRI_MAX_TIMESHARE) 1801 base_pri = td->td_user_pri; 1802 else 1803 base_pri = td->td_base_pri; 1804 if (prio >= base_pri) { 1805 td->td_flags &= ~TDF_BORROWING; 1806 sched_thread_priority(td, base_pri); 1807 } else 1808 sched_lend_prio(td, prio); 1809 } 1810 1811 /* 1812 * Standard entry for setting the priority to an absolute value. 1813 */ 1814 void 1815 sched_prio(struct thread *td, u_char prio) 1816 { 1817 u_char oldprio; 1818 1819 /* First, update the base priority. */ 1820 td->td_base_pri = prio; 1821 1822 /* 1823 * If the thread is borrowing another thread's priority, don't 1824 * ever lower the priority. 1825 */ 1826 if (td->td_flags & TDF_BORROWING && td->td_priority < prio) 1827 return; 1828 1829 /* Change the real priority. */ 1830 oldprio = td->td_priority; 1831 sched_thread_priority(td, prio); 1832 1833 /* 1834 * If the thread is on a turnstile, then let the turnstile update 1835 * its state. 1836 */ 1837 if (TD_ON_LOCK(td) && oldprio != prio) 1838 turnstile_adjust(td, oldprio); 1839 } 1840 1841 /* 1842 * Set the base user priority, does not effect current running priority. 1843 */ 1844 void 1845 sched_user_prio(struct thread *td, u_char prio) 1846 { 1847 1848 td->td_base_user_pri = prio; 1849 if (td->td_lend_user_pri <= prio) 1850 return; 1851 td->td_user_pri = prio; 1852 } 1853 1854 void 1855 sched_lend_user_prio(struct thread *td, u_char prio) 1856 { 1857 1858 THREAD_LOCK_ASSERT(td, MA_OWNED); 1859 td->td_lend_user_pri = prio; 1860 td->td_user_pri = min(prio, td->td_base_user_pri); 1861 if (td->td_priority > td->td_user_pri) 1862 sched_prio(td, td->td_user_pri); 1863 else if (td->td_priority != td->td_user_pri) 1864 td->td_flags |= TDF_NEEDRESCHED; 1865 } 1866 1867 #ifdef SMP 1868 /* 1869 * This tdq is about to idle. Try to steal a thread from another CPU before 1870 * choosing the idle thread. 1871 */ 1872 static void 1873 tdq_trysteal(struct tdq *tdq) 1874 { 1875 struct cpu_group *cg; 1876 struct tdq *steal; 1877 cpuset_t mask; 1878 int cpu, i; 1879 1880 if (smp_started == 0 || trysteal_limit == 0 || tdq->tdq_cg == NULL) 1881 return; 1882 CPU_FILL(&mask); 1883 CPU_CLR(PCPU_GET(cpuid), &mask); 1884 /* We don't want to be preempted while we're iterating. */ 1885 spinlock_enter(); 1886 TDQ_UNLOCK(tdq); 1887 for (i = 1, cg = tdq->tdq_cg; ; ) { 1888 cpu = sched_highest(cg, mask, steal_thresh); 1889 /* 1890 * If a thread was added while interrupts were disabled don't 1891 * steal one here. 1892 */ 1893 if (tdq->tdq_load > 0) { 1894 TDQ_LOCK(tdq); 1895 break; 1896 } 1897 if (cpu == -1) { 1898 i++; 1899 cg = cg->cg_parent; 1900 if (cg == NULL || i > trysteal_limit) { 1901 TDQ_LOCK(tdq); 1902 break; 1903 } 1904 continue; 1905 } 1906 steal = TDQ_CPU(cpu); 1907 /* 1908 * The data returned by sched_highest() is stale and 1909 * the chosen CPU no longer has an eligible thread. 1910 */ 1911 if (steal->tdq_load < steal_thresh || 1912 steal->tdq_transferable == 0) 1913 continue; 1914 tdq_lock_pair(tdq, steal); 1915 /* 1916 * If we get to this point, unconditonally exit the loop 1917 * to bound the time spent in the critcal section. 1918 * 1919 * If a thread was added while interrupts were disabled don't 1920 * steal one here. 1921 */ 1922 if (tdq->tdq_load > 0) { 1923 TDQ_UNLOCK(steal); 1924 break; 1925 } 1926 /* 1927 * The data returned by sched_highest() is stale and 1928 * the chosen CPU no longer has an eligible thread. 1929 */ 1930 if (steal->tdq_load < steal_thresh || 1931 steal->tdq_transferable == 0) { 1932 TDQ_UNLOCK(steal); 1933 break; 1934 } 1935 /* 1936 * If we fail to acquire one due to affinity restrictions, 1937 * bail out and let the idle thread to a more complete search 1938 * outside of a critical section. 1939 */ 1940 if (tdq_move(steal, tdq) == NULL) { 1941 TDQ_UNLOCK(steal); 1942 break; 1943 } 1944 TDQ_UNLOCK(steal); 1945 break; 1946 } 1947 spinlock_exit(); 1948 } 1949 #endif 1950 1951 /* 1952 * Handle migration from sched_switch(). This happens only for 1953 * cpu binding. 1954 */ 1955 static struct mtx * 1956 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags) 1957 { 1958 struct tdq *tdn; 1959 1960 KASSERT(!CPU_ABSENT(td_get_sched(td)->ts_cpu), ("sched_switch_migrate: " 1961 "thread %s queued on absent CPU %d.", td->td_name, 1962 td_get_sched(td)->ts_cpu)); 1963 tdn = TDQ_CPU(td_get_sched(td)->ts_cpu); 1964 #ifdef SMP 1965 tdq_load_rem(tdq, td); 1966 /* 1967 * Do the lock dance required to avoid LOR. We grab an extra 1968 * spinlock nesting to prevent preemption while we're 1969 * not holding either run-queue lock. 1970 */ 1971 spinlock_enter(); 1972 thread_lock_block(td); /* This releases the lock on tdq. */ 1973 1974 /* 1975 * Acquire both run-queue locks before placing the thread on the new 1976 * run-queue to avoid deadlocks created by placing a thread with a 1977 * blocked lock on the run-queue of a remote processor. The deadlock 1978 * occurs when a third processor attempts to lock the two queues in 1979 * question while the target processor is spinning with its own 1980 * run-queue lock held while waiting for the blocked lock to clear. 1981 */ 1982 tdq_lock_pair(tdn, tdq); 1983 tdq_add(tdn, td, flags); 1984 tdq_notify(tdn, td); 1985 TDQ_UNLOCK(tdn); 1986 spinlock_exit(); 1987 #endif 1988 return (TDQ_LOCKPTR(tdn)); 1989 } 1990 1991 /* 1992 * Variadic version of thread_lock_unblock() that does not assume td_lock 1993 * is blocked. 1994 */ 1995 static inline void 1996 thread_unblock_switch(struct thread *td, struct mtx *mtx) 1997 { 1998 atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock, 1999 (uintptr_t)mtx); 2000 } 2001 2002 /* 2003 * Switch threads. This function has to handle threads coming in while 2004 * blocked for some reason, running, or idle. It also must deal with 2005 * migrating a thread from one queue to another as running threads may 2006 * be assigned elsewhere via binding. 2007 */ 2008 void 2009 sched_switch(struct thread *td, struct thread *newtd, int flags) 2010 { 2011 struct tdq *tdq; 2012 struct td_sched *ts; 2013 struct mtx *mtx; 2014 int srqflag; 2015 int cpuid, preempted; 2016 2017 THREAD_LOCK_ASSERT(td, MA_OWNED); 2018 KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument")); 2019 2020 cpuid = PCPU_GET(cpuid); 2021 tdq = TDQ_CPU(cpuid); 2022 ts = td_get_sched(td); 2023 mtx = td->td_lock; 2024 sched_pctcpu_update(ts, 1); 2025 ts->ts_rltick = ticks; 2026 td->td_lastcpu = td->td_oncpu; 2027 td->td_oncpu = NOCPU; 2028 preempted = (td->td_flags & TDF_SLICEEND) == 0 && 2029 (flags & SW_PREEMPT) != 0; 2030 td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND); 2031 td->td_owepreempt = 0; 2032 if (!TD_IS_IDLETHREAD(td)) 2033 tdq->tdq_switchcnt++; 2034 /* 2035 * The lock pointer in an idle thread should never change. Reset it 2036 * to CAN_RUN as well. 2037 */ 2038 if (TD_IS_IDLETHREAD(td)) { 2039 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2040 TD_SET_CAN_RUN(td); 2041 } else if (TD_IS_RUNNING(td)) { 2042 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2043 srqflag = preempted ? 2044 SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED : 2045 SRQ_OURSELF|SRQ_YIELDING; 2046 #ifdef SMP 2047 if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu)) 2048 ts->ts_cpu = sched_pickcpu(td, 0); 2049 #endif 2050 if (ts->ts_cpu == cpuid) 2051 tdq_runq_add(tdq, td, srqflag); 2052 else { 2053 KASSERT(THREAD_CAN_MIGRATE(td) || 2054 (ts->ts_flags & TSF_BOUND) != 0, 2055 ("Thread %p shouldn't migrate", td)); 2056 mtx = sched_switch_migrate(tdq, td, srqflag); 2057 } 2058 } else { 2059 /* This thread must be going to sleep. */ 2060 TDQ_LOCK(tdq); 2061 mtx = thread_lock_block(td); 2062 tdq_load_rem(tdq, td); 2063 #ifdef SMP 2064 if (tdq->tdq_load == 0) 2065 tdq_trysteal(tdq); 2066 #endif 2067 } 2068 2069 #if (KTR_COMPILE & KTR_SCHED) != 0 2070 if (TD_IS_IDLETHREAD(td)) 2071 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle", 2072 "prio:%d", td->td_priority); 2073 else 2074 KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td), 2075 "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg, 2076 "lockname:\"%s\"", td->td_lockname); 2077 #endif 2078 2079 /* 2080 * We enter here with the thread blocked and assigned to the 2081 * appropriate cpu run-queue or sleep-queue and with the current 2082 * thread-queue locked. 2083 */ 2084 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 2085 newtd = choosethread(); 2086 /* 2087 * Call the MD code to switch contexts if necessary. 2088 */ 2089 if (td != newtd) { 2090 #ifdef HWPMC_HOOKS 2091 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 2092 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 2093 #endif 2094 SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc); 2095 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 2096 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 2097 sched_pctcpu_update(td_get_sched(newtd), 0); 2098 2099 #ifdef KDTRACE_HOOKS 2100 /* 2101 * If DTrace has set the active vtime enum to anything 2102 * other than INACTIVE (0), then it should have set the 2103 * function to call. 2104 */ 2105 if (dtrace_vtime_active) 2106 (*dtrace_vtime_switch_func)(newtd); 2107 #endif 2108 2109 cpu_switch(td, newtd, mtx); 2110 /* 2111 * We may return from cpu_switch on a different cpu. However, 2112 * we always return with td_lock pointing to the current cpu's 2113 * run queue lock. 2114 */ 2115 cpuid = PCPU_GET(cpuid); 2116 tdq = TDQ_CPU(cpuid); 2117 lock_profile_obtain_lock_success( 2118 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 2119 2120 SDT_PROBE0(sched, , , on__cpu); 2121 #ifdef HWPMC_HOOKS 2122 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 2123 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN); 2124 #endif 2125 } else { 2126 thread_unblock_switch(td, mtx); 2127 SDT_PROBE0(sched, , , remain__cpu); 2128 } 2129 2130 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running", 2131 "prio:%d", td->td_priority); 2132 2133 /* 2134 * Assert that all went well and return. 2135 */ 2136 TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED); 2137 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2138 td->td_oncpu = cpuid; 2139 } 2140 2141 /* 2142 * Adjust thread priorities as a result of a nice request. 2143 */ 2144 void 2145 sched_nice(struct proc *p, int nice) 2146 { 2147 struct thread *td; 2148 2149 PROC_LOCK_ASSERT(p, MA_OWNED); 2150 2151 p->p_nice = nice; 2152 FOREACH_THREAD_IN_PROC(p, td) { 2153 thread_lock(td); 2154 sched_priority(td); 2155 sched_prio(td, td->td_base_user_pri); 2156 thread_unlock(td); 2157 } 2158 } 2159 2160 /* 2161 * Record the sleep time for the interactivity scorer. 2162 */ 2163 void 2164 sched_sleep(struct thread *td, int prio) 2165 { 2166 2167 THREAD_LOCK_ASSERT(td, MA_OWNED); 2168 2169 td->td_slptick = ticks; 2170 if (TD_IS_SUSPENDED(td) || prio >= PSOCK) 2171 td->td_flags |= TDF_CANSWAP; 2172 if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE) 2173 return; 2174 if (static_boost == 1 && prio) 2175 sched_prio(td, prio); 2176 else if (static_boost && td->td_priority > static_boost) 2177 sched_prio(td, static_boost); 2178 } 2179 2180 /* 2181 * Schedule a thread to resume execution and record how long it voluntarily 2182 * slept. We also update the pctcpu, interactivity, and priority. 2183 */ 2184 void 2185 sched_wakeup(struct thread *td) 2186 { 2187 struct td_sched *ts; 2188 int slptick; 2189 2190 THREAD_LOCK_ASSERT(td, MA_OWNED); 2191 ts = td_get_sched(td); 2192 td->td_flags &= ~TDF_CANSWAP; 2193 /* 2194 * If we slept for more than a tick update our interactivity and 2195 * priority. 2196 */ 2197 slptick = td->td_slptick; 2198 td->td_slptick = 0; 2199 if (slptick && slptick != ticks) { 2200 ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT; 2201 sched_interact_update(td); 2202 sched_pctcpu_update(ts, 0); 2203 } 2204 /* 2205 * Reset the slice value since we slept and advanced the round-robin. 2206 */ 2207 ts->ts_slice = 0; 2208 sched_add(td, SRQ_BORING); 2209 } 2210 2211 /* 2212 * Penalize the parent for creating a new child and initialize the child's 2213 * priority. 2214 */ 2215 void 2216 sched_fork(struct thread *td, struct thread *child) 2217 { 2218 THREAD_LOCK_ASSERT(td, MA_OWNED); 2219 sched_pctcpu_update(td_get_sched(td), 1); 2220 sched_fork_thread(td, child); 2221 /* 2222 * Penalize the parent and child for forking. 2223 */ 2224 sched_interact_fork(child); 2225 sched_priority(child); 2226 td_get_sched(td)->ts_runtime += tickincr; 2227 sched_interact_update(td); 2228 sched_priority(td); 2229 } 2230 2231 /* 2232 * Fork a new thread, may be within the same process. 2233 */ 2234 void 2235 sched_fork_thread(struct thread *td, struct thread *child) 2236 { 2237 struct td_sched *ts; 2238 struct td_sched *ts2; 2239 struct tdq *tdq; 2240 2241 tdq = TDQ_SELF(); 2242 THREAD_LOCK_ASSERT(td, MA_OWNED); 2243 /* 2244 * Initialize child. 2245 */ 2246 ts = td_get_sched(td); 2247 ts2 = td_get_sched(child); 2248 child->td_oncpu = NOCPU; 2249 child->td_lastcpu = NOCPU; 2250 child->td_lock = TDQ_LOCKPTR(tdq); 2251 child->td_cpuset = cpuset_ref(td->td_cpuset); 2252 child->td_domain.dr_policy = td->td_cpuset->cs_domain; 2253 ts2->ts_cpu = ts->ts_cpu; 2254 ts2->ts_flags = 0; 2255 /* 2256 * Grab our parents cpu estimation information. 2257 */ 2258 ts2->ts_ticks = ts->ts_ticks; 2259 ts2->ts_ltick = ts->ts_ltick; 2260 ts2->ts_ftick = ts->ts_ftick; 2261 /* 2262 * Do not inherit any borrowed priority from the parent. 2263 */ 2264 child->td_priority = child->td_base_pri; 2265 /* 2266 * And update interactivity score. 2267 */ 2268 ts2->ts_slptime = ts->ts_slptime; 2269 ts2->ts_runtime = ts->ts_runtime; 2270 /* Attempt to quickly learn interactivity. */ 2271 ts2->ts_slice = tdq_slice(tdq) - sched_slice_min; 2272 #ifdef KTR 2273 bzero(ts2->ts_name, sizeof(ts2->ts_name)); 2274 #endif 2275 } 2276 2277 /* 2278 * Adjust the priority class of a thread. 2279 */ 2280 void 2281 sched_class(struct thread *td, int class) 2282 { 2283 2284 THREAD_LOCK_ASSERT(td, MA_OWNED); 2285 if (td->td_pri_class == class) 2286 return; 2287 td->td_pri_class = class; 2288 } 2289 2290 /* 2291 * Return some of the child's priority and interactivity to the parent. 2292 */ 2293 void 2294 sched_exit(struct proc *p, struct thread *child) 2295 { 2296 struct thread *td; 2297 2298 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit", 2299 "prio:%d", child->td_priority); 2300 PROC_LOCK_ASSERT(p, MA_OWNED); 2301 td = FIRST_THREAD_IN_PROC(p); 2302 sched_exit_thread(td, child); 2303 } 2304 2305 /* 2306 * Penalize another thread for the time spent on this one. This helps to 2307 * worsen the priority and interactivity of processes which schedule batch 2308 * jobs such as make. This has little effect on the make process itself but 2309 * causes new processes spawned by it to receive worse scores immediately. 2310 */ 2311 void 2312 sched_exit_thread(struct thread *td, struct thread *child) 2313 { 2314 2315 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit", 2316 "prio:%d", child->td_priority); 2317 /* 2318 * Give the child's runtime to the parent without returning the 2319 * sleep time as a penalty to the parent. This causes shells that 2320 * launch expensive things to mark their children as expensive. 2321 */ 2322 thread_lock(td); 2323 td_get_sched(td)->ts_runtime += td_get_sched(child)->ts_runtime; 2324 sched_interact_update(td); 2325 sched_priority(td); 2326 thread_unlock(td); 2327 } 2328 2329 void 2330 sched_preempt(struct thread *td) 2331 { 2332 struct tdq *tdq; 2333 2334 SDT_PROBE2(sched, , , surrender, td, td->td_proc); 2335 2336 thread_lock(td); 2337 tdq = TDQ_SELF(); 2338 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2339 tdq->tdq_ipipending = 0; 2340 if (td->td_priority > tdq->tdq_lowpri) { 2341 int flags; 2342 2343 flags = SW_INVOL | SW_PREEMPT; 2344 if (td->td_critnest > 1) 2345 td->td_owepreempt = 1; 2346 else if (TD_IS_IDLETHREAD(td)) 2347 mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL); 2348 else 2349 mi_switch(flags | SWT_REMOTEPREEMPT, NULL); 2350 } 2351 thread_unlock(td); 2352 } 2353 2354 /* 2355 * Fix priorities on return to user-space. Priorities may be elevated due 2356 * to static priorities in msleep() or similar. 2357 */ 2358 void 2359 sched_userret(struct thread *td) 2360 { 2361 /* 2362 * XXX we cheat slightly on the locking here to avoid locking in 2363 * the usual case. Setting td_priority here is essentially an 2364 * incomplete workaround for not setting it properly elsewhere. 2365 * Now that some interrupt handlers are threads, not setting it 2366 * properly elsewhere can clobber it in the window between setting 2367 * it here and returning to user mode, so don't waste time setting 2368 * it perfectly here. 2369 */ 2370 KASSERT((td->td_flags & TDF_BORROWING) == 0, 2371 ("thread with borrowed priority returning to userland")); 2372 if (td->td_priority != td->td_user_pri) { 2373 thread_lock(td); 2374 td->td_priority = td->td_user_pri; 2375 td->td_base_pri = td->td_user_pri; 2376 tdq_setlowpri(TDQ_SELF(), td); 2377 thread_unlock(td); 2378 } 2379 } 2380 2381 /* 2382 * Handle a stathz tick. This is really only relevant for timeshare 2383 * threads. 2384 */ 2385 void 2386 sched_clock(struct thread *td) 2387 { 2388 struct tdq *tdq; 2389 struct td_sched *ts; 2390 2391 THREAD_LOCK_ASSERT(td, MA_OWNED); 2392 tdq = TDQ_SELF(); 2393 #ifdef SMP 2394 /* 2395 * We run the long term load balancer infrequently on the first cpu. 2396 */ 2397 if (balance_tdq == tdq) { 2398 if (balance_ticks && --balance_ticks == 0) 2399 sched_balance(); 2400 } 2401 #endif 2402 /* 2403 * Save the old switch count so we have a record of the last ticks 2404 * activity. Initialize the new switch count based on our load. 2405 * If there is some activity seed it to reflect that. 2406 */ 2407 tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt; 2408 tdq->tdq_switchcnt = tdq->tdq_load; 2409 /* 2410 * Advance the insert index once for each tick to ensure that all 2411 * threads get a chance to run. 2412 */ 2413 if (tdq->tdq_idx == tdq->tdq_ridx) { 2414 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS; 2415 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx])) 2416 tdq->tdq_ridx = tdq->tdq_idx; 2417 } 2418 ts = td_get_sched(td); 2419 sched_pctcpu_update(ts, 1); 2420 if (td->td_pri_class & PRI_FIFO_BIT) 2421 return; 2422 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) { 2423 /* 2424 * We used a tick; charge it to the thread so 2425 * that we can compute our interactivity. 2426 */ 2427 td_get_sched(td)->ts_runtime += tickincr; 2428 sched_interact_update(td); 2429 sched_priority(td); 2430 } 2431 2432 /* 2433 * Force a context switch if the current thread has used up a full 2434 * time slice (default is 100ms). 2435 */ 2436 if (!TD_IS_IDLETHREAD(td) && ++ts->ts_slice >= tdq_slice(tdq)) { 2437 ts->ts_slice = 0; 2438 td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND; 2439 } 2440 } 2441 2442 u_int 2443 sched_estcpu(struct thread *td __unused) 2444 { 2445 2446 return (0); 2447 } 2448 2449 /* 2450 * Return whether the current CPU has runnable tasks. Used for in-kernel 2451 * cooperative idle threads. 2452 */ 2453 int 2454 sched_runnable(void) 2455 { 2456 struct tdq *tdq; 2457 int load; 2458 2459 load = 1; 2460 2461 tdq = TDQ_SELF(); 2462 if ((curthread->td_flags & TDF_IDLETD) != 0) { 2463 if (tdq->tdq_load > 0) 2464 goto out; 2465 } else 2466 if (tdq->tdq_load - 1 > 0) 2467 goto out; 2468 load = 0; 2469 out: 2470 return (load); 2471 } 2472 2473 /* 2474 * Choose the highest priority thread to run. The thread is removed from 2475 * the run-queue while running however the load remains. For SMP we set 2476 * the tdq in the global idle bitmask if it idles here. 2477 */ 2478 struct thread * 2479 sched_choose(void) 2480 { 2481 struct thread *td; 2482 struct tdq *tdq; 2483 2484 tdq = TDQ_SELF(); 2485 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2486 td = tdq_choose(tdq); 2487 if (td) { 2488 tdq_runq_rem(tdq, td); 2489 tdq->tdq_lowpri = td->td_priority; 2490 return (td); 2491 } 2492 tdq->tdq_lowpri = PRI_MAX_IDLE; 2493 return (PCPU_GET(idlethread)); 2494 } 2495 2496 /* 2497 * Set owepreempt if necessary. Preemption never happens directly in ULE, 2498 * we always request it once we exit a critical section. 2499 */ 2500 static inline void 2501 sched_setpreempt(struct thread *td) 2502 { 2503 struct thread *ctd; 2504 int cpri; 2505 int pri; 2506 2507 THREAD_LOCK_ASSERT(curthread, MA_OWNED); 2508 2509 ctd = curthread; 2510 pri = td->td_priority; 2511 cpri = ctd->td_priority; 2512 if (pri < cpri) 2513 ctd->td_flags |= TDF_NEEDRESCHED; 2514 if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd)) 2515 return; 2516 if (!sched_shouldpreempt(pri, cpri, 0)) 2517 return; 2518 ctd->td_owepreempt = 1; 2519 } 2520 2521 /* 2522 * Add a thread to a thread queue. Select the appropriate runq and add the 2523 * thread to it. This is the internal function called when the tdq is 2524 * predetermined. 2525 */ 2526 void 2527 tdq_add(struct tdq *tdq, struct thread *td, int flags) 2528 { 2529 2530 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2531 KASSERT((td->td_inhibitors == 0), 2532 ("sched_add: trying to run inhibited thread")); 2533 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 2534 ("sched_add: bad thread state")); 2535 KASSERT(td->td_flags & TDF_INMEM, 2536 ("sched_add: thread swapped out")); 2537 2538 if (td->td_priority < tdq->tdq_lowpri) 2539 tdq->tdq_lowpri = td->td_priority; 2540 tdq_runq_add(tdq, td, flags); 2541 tdq_load_add(tdq, td); 2542 } 2543 2544 /* 2545 * Select the target thread queue and add a thread to it. Request 2546 * preemption or IPI a remote processor if required. 2547 */ 2548 void 2549 sched_add(struct thread *td, int flags) 2550 { 2551 struct tdq *tdq; 2552 #ifdef SMP 2553 int cpu; 2554 #endif 2555 2556 KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add", 2557 "prio:%d", td->td_priority, KTR_ATTR_LINKED, 2558 sched_tdname(curthread)); 2559 KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup", 2560 KTR_ATTR_LINKED, sched_tdname(td)); 2561 SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 2562 flags & SRQ_PREEMPTED); 2563 THREAD_LOCK_ASSERT(td, MA_OWNED); 2564 /* 2565 * Recalculate the priority before we select the target cpu or 2566 * run-queue. 2567 */ 2568 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 2569 sched_priority(td); 2570 #ifdef SMP 2571 /* 2572 * Pick the destination cpu and if it isn't ours transfer to the 2573 * target cpu. 2574 */ 2575 cpu = sched_pickcpu(td, flags); 2576 tdq = sched_setcpu(td, cpu, flags); 2577 tdq_add(tdq, td, flags); 2578 if (cpu != PCPU_GET(cpuid)) { 2579 tdq_notify(tdq, td); 2580 return; 2581 } 2582 #else 2583 tdq = TDQ_SELF(); 2584 TDQ_LOCK(tdq); 2585 /* 2586 * Now that the thread is moving to the run-queue, set the lock 2587 * to the scheduler's lock. 2588 */ 2589 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 2590 tdq_add(tdq, td, flags); 2591 #endif 2592 if (!(flags & SRQ_YIELDING)) 2593 sched_setpreempt(td); 2594 } 2595 2596 /* 2597 * Remove a thread from a run-queue without running it. This is used 2598 * when we're stealing a thread from a remote queue. Otherwise all threads 2599 * exit by calling sched_exit_thread() and sched_throw() themselves. 2600 */ 2601 void 2602 sched_rem(struct thread *td) 2603 { 2604 struct tdq *tdq; 2605 2606 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem", 2607 "prio:%d", td->td_priority); 2608 SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL); 2609 tdq = TDQ_CPU(td_get_sched(td)->ts_cpu); 2610 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2611 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2612 KASSERT(TD_ON_RUNQ(td), 2613 ("sched_rem: thread not on run queue")); 2614 tdq_runq_rem(tdq, td); 2615 tdq_load_rem(tdq, td); 2616 TD_SET_CAN_RUN(td); 2617 if (td->td_priority == tdq->tdq_lowpri) 2618 tdq_setlowpri(tdq, NULL); 2619 } 2620 2621 /* 2622 * Fetch cpu utilization information. Updates on demand. 2623 */ 2624 fixpt_t 2625 sched_pctcpu(struct thread *td) 2626 { 2627 fixpt_t pctcpu; 2628 struct td_sched *ts; 2629 2630 pctcpu = 0; 2631 ts = td_get_sched(td); 2632 2633 THREAD_LOCK_ASSERT(td, MA_OWNED); 2634 sched_pctcpu_update(ts, TD_IS_RUNNING(td)); 2635 if (ts->ts_ticks) { 2636 int rtick; 2637 2638 /* How many rtick per second ? */ 2639 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz); 2640 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT; 2641 } 2642 2643 return (pctcpu); 2644 } 2645 2646 /* 2647 * Enforce affinity settings for a thread. Called after adjustments to 2648 * cpumask. 2649 */ 2650 void 2651 sched_affinity(struct thread *td) 2652 { 2653 #ifdef SMP 2654 struct td_sched *ts; 2655 2656 THREAD_LOCK_ASSERT(td, MA_OWNED); 2657 ts = td_get_sched(td); 2658 if (THREAD_CAN_SCHED(td, ts->ts_cpu)) 2659 return; 2660 if (TD_ON_RUNQ(td)) { 2661 sched_rem(td); 2662 sched_add(td, SRQ_BORING); 2663 return; 2664 } 2665 if (!TD_IS_RUNNING(td)) 2666 return; 2667 /* 2668 * Force a switch before returning to userspace. If the 2669 * target thread is not running locally send an ipi to force 2670 * the issue. 2671 */ 2672 td->td_flags |= TDF_NEEDRESCHED; 2673 if (td != curthread) 2674 ipi_cpu(ts->ts_cpu, IPI_PREEMPT); 2675 #endif 2676 } 2677 2678 /* 2679 * Bind a thread to a target cpu. 2680 */ 2681 void 2682 sched_bind(struct thread *td, int cpu) 2683 { 2684 struct td_sched *ts; 2685 2686 THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED); 2687 KASSERT(td == curthread, ("sched_bind: can only bind curthread")); 2688 ts = td_get_sched(td); 2689 if (ts->ts_flags & TSF_BOUND) 2690 sched_unbind(td); 2691 KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td)); 2692 ts->ts_flags |= TSF_BOUND; 2693 sched_pin(); 2694 if (PCPU_GET(cpuid) == cpu) 2695 return; 2696 ts->ts_cpu = cpu; 2697 /* When we return from mi_switch we'll be on the correct cpu. */ 2698 mi_switch(SW_VOL, NULL); 2699 } 2700 2701 /* 2702 * Release a bound thread. 2703 */ 2704 void 2705 sched_unbind(struct thread *td) 2706 { 2707 struct td_sched *ts; 2708 2709 THREAD_LOCK_ASSERT(td, MA_OWNED); 2710 KASSERT(td == curthread, ("sched_unbind: can only bind curthread")); 2711 ts = td_get_sched(td); 2712 if ((ts->ts_flags & TSF_BOUND) == 0) 2713 return; 2714 ts->ts_flags &= ~TSF_BOUND; 2715 sched_unpin(); 2716 } 2717 2718 int 2719 sched_is_bound(struct thread *td) 2720 { 2721 THREAD_LOCK_ASSERT(td, MA_OWNED); 2722 return (td_get_sched(td)->ts_flags & TSF_BOUND); 2723 } 2724 2725 /* 2726 * Basic yield call. 2727 */ 2728 void 2729 sched_relinquish(struct thread *td) 2730 { 2731 thread_lock(td); 2732 mi_switch(SW_VOL | SWT_RELINQUISH, NULL); 2733 thread_unlock(td); 2734 } 2735 2736 /* 2737 * Return the total system load. 2738 */ 2739 int 2740 sched_load(void) 2741 { 2742 #ifdef SMP 2743 int total; 2744 int i; 2745 2746 total = 0; 2747 CPU_FOREACH(i) 2748 total += TDQ_CPU(i)->tdq_sysload; 2749 return (total); 2750 #else 2751 return (TDQ_SELF()->tdq_sysload); 2752 #endif 2753 } 2754 2755 int 2756 sched_sizeof_proc(void) 2757 { 2758 return (sizeof(struct proc)); 2759 } 2760 2761 int 2762 sched_sizeof_thread(void) 2763 { 2764 return (sizeof(struct thread) + sizeof(struct td_sched)); 2765 } 2766 2767 #ifdef SMP 2768 #define TDQ_IDLESPIN(tdq) \ 2769 ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0) 2770 #else 2771 #define TDQ_IDLESPIN(tdq) 1 2772 #endif 2773 2774 /* 2775 * The actual idle process. 2776 */ 2777 void 2778 sched_idletd(void *dummy) 2779 { 2780 struct thread *td; 2781 struct tdq *tdq; 2782 int oldswitchcnt, switchcnt; 2783 int i; 2784 2785 mtx_assert(&Giant, MA_NOTOWNED); 2786 td = curthread; 2787 tdq = TDQ_SELF(); 2788 THREAD_NO_SLEEPING(); 2789 oldswitchcnt = -1; 2790 for (;;) { 2791 if (tdq->tdq_load) { 2792 thread_lock(td); 2793 mi_switch(SW_VOL | SWT_IDLE, NULL); 2794 thread_unlock(td); 2795 } 2796 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2797 #ifdef SMP 2798 if (always_steal || switchcnt != oldswitchcnt) { 2799 oldswitchcnt = switchcnt; 2800 if (tdq_idled(tdq) == 0) 2801 continue; 2802 } 2803 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2804 #else 2805 oldswitchcnt = switchcnt; 2806 #endif 2807 /* 2808 * If we're switching very frequently, spin while checking 2809 * for load rather than entering a low power state that 2810 * may require an IPI. However, don't do any busy 2811 * loops while on SMT machines as this simply steals 2812 * cycles from cores doing useful work. 2813 */ 2814 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) { 2815 for (i = 0; i < sched_idlespins; i++) { 2816 if (tdq->tdq_load) 2817 break; 2818 cpu_spinwait(); 2819 } 2820 } 2821 2822 /* If there was context switch during spin, restart it. */ 2823 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2824 if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt) 2825 continue; 2826 2827 /* Run main MD idle handler. */ 2828 tdq->tdq_cpu_idle = 1; 2829 /* 2830 * Make sure that tdq_cpu_idle update is globally visible 2831 * before cpu_idle() read tdq_load. The order is important 2832 * to avoid race with tdq_notify. 2833 */ 2834 atomic_thread_fence_seq_cst(); 2835 /* 2836 * Checking for again after the fence picks up assigned 2837 * threads often enough to make it worthwhile to do so in 2838 * order to avoid calling cpu_idle(). 2839 */ 2840 if (tdq->tdq_load != 0) { 2841 tdq->tdq_cpu_idle = 0; 2842 continue; 2843 } 2844 cpu_idle(switchcnt * 4 > sched_idlespinthresh); 2845 tdq->tdq_cpu_idle = 0; 2846 2847 /* 2848 * Account thread-less hardware interrupts and 2849 * other wakeup reasons equal to context switches. 2850 */ 2851 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2852 if (switchcnt != oldswitchcnt) 2853 continue; 2854 tdq->tdq_switchcnt++; 2855 oldswitchcnt++; 2856 } 2857 } 2858 2859 /* 2860 * A CPU is entering for the first time or a thread is exiting. 2861 */ 2862 void 2863 sched_throw(struct thread *td) 2864 { 2865 struct thread *newtd; 2866 struct tdq *tdq; 2867 2868 tdq = TDQ_SELF(); 2869 if (td == NULL) { 2870 /* Correct spinlock nesting and acquire the correct lock. */ 2871 TDQ_LOCK(tdq); 2872 spinlock_exit(); 2873 PCPU_SET(switchtime, cpu_ticks()); 2874 PCPU_SET(switchticks, ticks); 2875 } else { 2876 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2877 tdq_load_rem(tdq, td); 2878 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 2879 td->td_lastcpu = td->td_oncpu; 2880 td->td_oncpu = NOCPU; 2881 } 2882 KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count")); 2883 newtd = choosethread(); 2884 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 2885 cpu_throw(td, newtd); /* doesn't return */ 2886 } 2887 2888 /* 2889 * This is called from fork_exit(). Just acquire the correct locks and 2890 * let fork do the rest of the work. 2891 */ 2892 void 2893 sched_fork_exit(struct thread *td) 2894 { 2895 struct tdq *tdq; 2896 int cpuid; 2897 2898 /* 2899 * Finish setting up thread glue so that it begins execution in a 2900 * non-nested critical section with the scheduler lock held. 2901 */ 2902 cpuid = PCPU_GET(cpuid); 2903 tdq = TDQ_CPU(cpuid); 2904 if (TD_IS_IDLETHREAD(td)) 2905 td->td_lock = TDQ_LOCKPTR(tdq); 2906 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2907 td->td_oncpu = cpuid; 2908 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 2909 lock_profile_obtain_lock_success( 2910 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 2911 2912 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running", 2913 "prio:%d", td->td_priority); 2914 SDT_PROBE0(sched, , , on__cpu); 2915 } 2916 2917 /* 2918 * Create on first use to catch odd startup conditons. 2919 */ 2920 char * 2921 sched_tdname(struct thread *td) 2922 { 2923 #ifdef KTR 2924 struct td_sched *ts; 2925 2926 ts = td_get_sched(td); 2927 if (ts->ts_name[0] == '\0') 2928 snprintf(ts->ts_name, sizeof(ts->ts_name), 2929 "%s tid %d", td->td_name, td->td_tid); 2930 return (ts->ts_name); 2931 #else 2932 return (td->td_name); 2933 #endif 2934 } 2935 2936 #ifdef KTR 2937 void 2938 sched_clear_tdname(struct thread *td) 2939 { 2940 struct td_sched *ts; 2941 2942 ts = td_get_sched(td); 2943 ts->ts_name[0] = '\0'; 2944 } 2945 #endif 2946 2947 #ifdef SMP 2948 2949 /* 2950 * Build the CPU topology dump string. Is recursively called to collect 2951 * the topology tree. 2952 */ 2953 static int 2954 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg, 2955 int indent) 2956 { 2957 char cpusetbuf[CPUSETBUFSIZ]; 2958 int i, first; 2959 2960 sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent, 2961 "", 1 + indent / 2, cg->cg_level); 2962 sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "", 2963 cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask)); 2964 first = TRUE; 2965 for (i = 0; i < MAXCPU; i++) { 2966 if (CPU_ISSET(i, &cg->cg_mask)) { 2967 if (!first) 2968 sbuf_printf(sb, ", "); 2969 else 2970 first = FALSE; 2971 sbuf_printf(sb, "%d", i); 2972 } 2973 } 2974 sbuf_printf(sb, "</cpu>\n"); 2975 2976 if (cg->cg_flags != 0) { 2977 sbuf_printf(sb, "%*s <flags>", indent, ""); 2978 if ((cg->cg_flags & CG_FLAG_HTT) != 0) 2979 sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>"); 2980 if ((cg->cg_flags & CG_FLAG_THREAD) != 0) 2981 sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>"); 2982 if ((cg->cg_flags & CG_FLAG_SMT) != 0) 2983 sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>"); 2984 sbuf_printf(sb, "</flags>\n"); 2985 } 2986 2987 if (cg->cg_children > 0) { 2988 sbuf_printf(sb, "%*s <children>\n", indent, ""); 2989 for (i = 0; i < cg->cg_children; i++) 2990 sysctl_kern_sched_topology_spec_internal(sb, 2991 &cg->cg_child[i], indent+2); 2992 sbuf_printf(sb, "%*s </children>\n", indent, ""); 2993 } 2994 sbuf_printf(sb, "%*s</group>\n", indent, ""); 2995 return (0); 2996 } 2997 2998 /* 2999 * Sysctl handler for retrieving topology dump. It's a wrapper for 3000 * the recursive sysctl_kern_smp_topology_spec_internal(). 3001 */ 3002 static int 3003 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS) 3004 { 3005 struct sbuf *topo; 3006 int err; 3007 3008 KASSERT(cpu_top != NULL, ("cpu_top isn't initialized")); 3009 3010 topo = sbuf_new_for_sysctl(NULL, NULL, 512, req); 3011 if (topo == NULL) 3012 return (ENOMEM); 3013 3014 sbuf_printf(topo, "<groups>\n"); 3015 err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1); 3016 sbuf_printf(topo, "</groups>\n"); 3017 3018 if (err == 0) { 3019 err = sbuf_finish(topo); 3020 } 3021 sbuf_delete(topo); 3022 return (err); 3023 } 3024 3025 #endif 3026 3027 static int 3028 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS) 3029 { 3030 int error, new_val, period; 3031 3032 period = 1000000 / realstathz; 3033 new_val = period * sched_slice; 3034 error = sysctl_handle_int(oidp, &new_val, 0, req); 3035 if (error != 0 || req->newptr == NULL) 3036 return (error); 3037 if (new_val <= 0) 3038 return (EINVAL); 3039 sched_slice = imax(1, (new_val + period / 2) / period); 3040 sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR; 3041 hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) / 3042 realstathz); 3043 return (0); 3044 } 3045 3046 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler"); 3047 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0, 3048 "Scheduler name"); 3049 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW, 3050 NULL, 0, sysctl_kern_quantum, "I", 3051 "Quantum for timeshare threads in microseconds"); 3052 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0, 3053 "Quantum for timeshare threads in stathz ticks"); 3054 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0, 3055 "Interactivity score threshold"); 3056 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, 3057 &preempt_thresh, 0, 3058 "Maximal (lowest) priority for preemption"); 3059 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0, 3060 "Assign static kernel priorities to sleeping threads"); 3061 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0, 3062 "Number of times idle thread will spin waiting for new work"); 3063 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, 3064 &sched_idlespinthresh, 0, 3065 "Threshold before we will permit idle thread spinning"); 3066 #ifdef SMP 3067 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0, 3068 "Number of hz ticks to keep thread affinity for"); 3069 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0, 3070 "Enables the long-term load balancer"); 3071 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW, 3072 &balance_interval, 0, 3073 "Average period in stathz ticks to run the long-term balancer"); 3074 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0, 3075 "Attempts to steal work from other cores before idling"); 3076 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0, 3077 "Minimum load on remote CPU before we'll steal"); 3078 SYSCTL_INT(_kern_sched, OID_AUTO, trysteal_limit, CTLFLAG_RW, &trysteal_limit, 3079 0, "Topological distance limit for stealing threads in sched_switch()"); 3080 SYSCTL_INT(_kern_sched, OID_AUTO, always_steal, CTLFLAG_RW, &always_steal, 0, 3081 "Always run the stealer from the idle thread"); 3082 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING | 3083 CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A", 3084 "XML dump of detected CPU topology"); 3085 #endif 3086 3087 /* ps compat. All cpu percentages from ULE are weighted. */ 3088 static int ccpu = 0; 3089 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 3090