1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * This file implements the ULE scheduler. ULE supports independent CPU 31 * run queues and fine grain locking. It has superior interactive 32 * performance under load even on uni-processor systems. 33 * 34 * etymology: 35 * ULE is the last three letters in schedule. It owes its name to a 36 * generic user created for a scheduling system by Paul Mikesell at 37 * Isilon Systems and a general lack of creativity on the part of the author. 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_hwpmc_hooks.h" 44 #include "opt_sched.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kdb.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/limits.h> 52 #include <sys/lock.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/resource.h> 56 #include <sys/resourcevar.h> 57 #include <sys/sched.h> 58 #include <sys/sdt.h> 59 #include <sys/smp.h> 60 #include <sys/sx.h> 61 #include <sys/sysctl.h> 62 #include <sys/sysproto.h> 63 #include <sys/turnstile.h> 64 #include <sys/umtxvar.h> 65 #include <sys/vmmeter.h> 66 #include <sys/cpuset.h> 67 #include <sys/sbuf.h> 68 69 #ifdef HWPMC_HOOKS 70 #include <sys/pmckern.h> 71 #endif 72 73 #ifdef KDTRACE_HOOKS 74 #include <sys/dtrace_bsd.h> 75 int __read_mostly dtrace_vtime_active; 76 dtrace_vtime_switch_func_t dtrace_vtime_switch_func; 77 #endif 78 79 #include <machine/cpu.h> 80 #include <machine/smp.h> 81 82 #define KTR_ULE 0 83 84 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX))) 85 #define TDQ_NAME_LEN (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU))) 86 #define TDQ_LOADNAME_LEN (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load")) 87 88 /* 89 * Thread scheduler specific section. All fields are protected 90 * by the thread lock. 91 */ 92 struct td_sched { 93 struct runq *ts_runq; /* Run-queue we're queued on. */ 94 short ts_flags; /* TSF_* flags. */ 95 int ts_cpu; /* CPU that we have affinity for. */ 96 int ts_rltick; /* Real last tick, for affinity. */ 97 int ts_slice; /* Ticks of slice remaining. */ 98 u_int ts_slptime; /* Number of ticks we vol. slept */ 99 u_int ts_runtime; /* Number of ticks we were running */ 100 int ts_ltick; /* Last tick that we were running on */ 101 int ts_ftick; /* First tick that we were running on */ 102 int ts_ticks; /* Tick count */ 103 #ifdef KTR 104 char ts_name[TS_NAME_LEN]; 105 #endif 106 }; 107 /* flags kept in ts_flags */ 108 #define TSF_BOUND 0x0001 /* Thread can not migrate. */ 109 #define TSF_XFERABLE 0x0002 /* Thread was added as transferable. */ 110 111 #define THREAD_CAN_MIGRATE(td) ((td)->td_pinned == 0) 112 #define THREAD_CAN_SCHED(td, cpu) \ 113 CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask) 114 115 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <= 116 sizeof(struct thread0_storage), 117 "increase struct thread0_storage.t0st_sched size"); 118 119 /* 120 * Priority ranges used for interactive and non-interactive timeshare 121 * threads. The timeshare priorities are split up into four ranges. 122 * The first range handles interactive threads. The last three ranges 123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer 124 * ranges supporting nice values. 125 */ 126 #define PRI_TIMESHARE_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1) 127 #define PRI_INTERACT_RANGE ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2) 128 #define PRI_BATCH_RANGE (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE) 129 130 #define PRI_MIN_INTERACT PRI_MIN_TIMESHARE 131 #define PRI_MAX_INTERACT (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1) 132 #define PRI_MIN_BATCH (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE) 133 #define PRI_MAX_BATCH PRI_MAX_TIMESHARE 134 135 /* 136 * Cpu percentage computation macros and defines. 137 * 138 * SCHED_TICK_SECS: Number of seconds to average the cpu usage across. 139 * SCHED_TICK_TARG: Number of hz ticks to average the cpu usage across. 140 * SCHED_TICK_MAX: Maximum number of ticks before scaling back. 141 * SCHED_TICK_SHIFT: Shift factor to avoid rounding away results. 142 * SCHED_TICK_HZ: Compute the number of hz ticks for a given ticks count. 143 * SCHED_TICK_TOTAL: Gives the amount of time we've been recording ticks. 144 */ 145 #define SCHED_TICK_SECS 10 146 #define SCHED_TICK_TARG (hz * SCHED_TICK_SECS) 147 #define SCHED_TICK_MAX (SCHED_TICK_TARG + hz) 148 #define SCHED_TICK_SHIFT 10 149 #define SCHED_TICK_HZ(ts) ((ts)->ts_ticks >> SCHED_TICK_SHIFT) 150 #define SCHED_TICK_TOTAL(ts) (max((ts)->ts_ltick - (ts)->ts_ftick, hz)) 151 152 /* 153 * These macros determine priorities for non-interactive threads. They are 154 * assigned a priority based on their recent cpu utilization as expressed 155 * by the ratio of ticks to the tick total. NHALF priorities at the start 156 * and end of the MIN to MAX timeshare range are only reachable with negative 157 * or positive nice respectively. 158 * 159 * PRI_RANGE: Priority range for utilization dependent priorities. 160 * PRI_NRESV: Number of nice values. 161 * PRI_TICKS: Compute a priority in PRI_RANGE from the ticks count and total. 162 * PRI_NICE: Determines the part of the priority inherited from nice. 163 */ 164 #define SCHED_PRI_NRESV (PRIO_MAX - PRIO_MIN) 165 #define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2) 166 #define SCHED_PRI_MIN (PRI_MIN_BATCH + SCHED_PRI_NHALF) 167 #define SCHED_PRI_MAX (PRI_MAX_BATCH - SCHED_PRI_NHALF) 168 #define SCHED_PRI_RANGE (SCHED_PRI_MAX - SCHED_PRI_MIN + 1) 169 #define SCHED_PRI_TICKS(ts) \ 170 (SCHED_TICK_HZ((ts)) / \ 171 (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE)) 172 #define SCHED_PRI_NICE(nice) (nice) 173 174 /* 175 * These determine the interactivity of a process. Interactivity differs from 176 * cpu utilization in that it expresses the voluntary time slept vs time ran 177 * while cpu utilization includes all time not running. This more accurately 178 * models the intent of the thread. 179 * 180 * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate 181 * before throttling back. 182 * SLP_RUN_FORK: Maximum slp+run time to inherit at fork time. 183 * INTERACT_MAX: Maximum interactivity value. Smaller is better. 184 * INTERACT_THRESH: Threshold for placement on the current runq. 185 */ 186 #define SCHED_SLP_RUN_MAX ((hz * 5) << SCHED_TICK_SHIFT) 187 #define SCHED_SLP_RUN_FORK ((hz / 2) << SCHED_TICK_SHIFT) 188 #define SCHED_INTERACT_MAX (100) 189 #define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2) 190 #define SCHED_INTERACT_THRESH (30) 191 192 /* 193 * These parameters determine the slice behavior for batch work. 194 */ 195 #define SCHED_SLICE_DEFAULT_DIVISOR 10 /* ~94 ms, 12 stathz ticks. */ 196 #define SCHED_SLICE_MIN_DIVISOR 6 /* DEFAULT/MIN = ~16 ms. */ 197 198 /* Flags kept in td_flags. */ 199 #define TDF_SLICEEND TDF_SCHED2 /* Thread time slice is over. */ 200 201 /* 202 * tickincr: Converts a stathz tick into a hz domain scaled by 203 * the shift factor. Without the shift the error rate 204 * due to rounding would be unacceptably high. 205 * realstathz: stathz is sometimes 0 and run off of hz. 206 * sched_slice: Runtime of each thread before rescheduling. 207 * preempt_thresh: Priority threshold for preemption and remote IPIs. 208 */ 209 static int __read_mostly sched_interact = SCHED_INTERACT_THRESH; 210 static int __read_mostly tickincr = 8 << SCHED_TICK_SHIFT; 211 static int __read_mostly realstathz = 127; /* reset during boot. */ 212 static int __read_mostly sched_slice = 10; /* reset during boot. */ 213 static int __read_mostly sched_slice_min = 1; /* reset during boot. */ 214 #ifdef PREEMPTION 215 #ifdef FULL_PREEMPTION 216 static int __read_mostly preempt_thresh = PRI_MAX_IDLE; 217 #else 218 static int __read_mostly preempt_thresh = PRI_MIN_KERN; 219 #endif 220 #else 221 static int __read_mostly preempt_thresh = 0; 222 #endif 223 static int __read_mostly static_boost = PRI_MIN_BATCH; 224 static int __read_mostly sched_idlespins = 10000; 225 static int __read_mostly sched_idlespinthresh = -1; 226 227 /* 228 * tdq - per processor runqs and statistics. All fields are protected by the 229 * tdq_lock. The load and lowpri may be accessed without to avoid excess 230 * locking in sched_pickcpu(); 231 */ 232 struct tdq { 233 /* 234 * Ordered to improve efficiency of cpu_search() and switch(). 235 * tdq_lock is padded to avoid false sharing with tdq_load and 236 * tdq_cpu_idle. 237 */ 238 struct mtx_padalign tdq_lock; /* run queue lock. */ 239 struct cpu_group *tdq_cg; /* Pointer to cpu topology. */ 240 volatile int tdq_load; /* Aggregate load. */ 241 volatile int tdq_cpu_idle; /* cpu_idle() is active. */ 242 int tdq_sysload; /* For loadavg, !ITHD load. */ 243 volatile int tdq_transferable; /* Transferable thread count. */ 244 volatile short tdq_switchcnt; /* Switches this tick. */ 245 volatile short tdq_oldswitchcnt; /* Switches last tick. */ 246 u_char tdq_lowpri; /* Lowest priority thread. */ 247 u_char tdq_owepreempt; /* Remote preemption pending. */ 248 u_char tdq_idx; /* Current insert index. */ 249 u_char tdq_ridx; /* Current removal index. */ 250 int tdq_id; /* cpuid. */ 251 struct runq tdq_realtime; /* real-time run queue. */ 252 struct runq tdq_timeshare; /* timeshare run queue. */ 253 struct runq tdq_idle; /* Queue of IDLE threads. */ 254 char tdq_name[TDQ_NAME_LEN]; 255 #ifdef KTR 256 char tdq_loadname[TDQ_LOADNAME_LEN]; 257 #endif 258 } __aligned(64); 259 260 /* Idle thread states and config. */ 261 #define TDQ_RUNNING 1 262 #define TDQ_IDLE 2 263 264 #ifdef SMP 265 struct cpu_group __read_mostly *cpu_top; /* CPU topology */ 266 267 #define SCHED_AFFINITY_DEFAULT (max(1, hz / 1000)) 268 #define SCHED_AFFINITY(ts, t) ((ts)->ts_rltick > ticks - ((t) * affinity)) 269 270 /* 271 * Run-time tunables. 272 */ 273 static int rebalance = 1; 274 static int balance_interval = 128; /* Default set in sched_initticks(). */ 275 static int __read_mostly affinity; 276 static int __read_mostly steal_idle = 1; 277 static int __read_mostly steal_thresh = 2; 278 static int __read_mostly always_steal = 0; 279 static int __read_mostly trysteal_limit = 2; 280 281 /* 282 * One thread queue per processor. 283 */ 284 static struct tdq __read_mostly *balance_tdq; 285 static int balance_ticks; 286 DPCPU_DEFINE_STATIC(struct tdq, tdq); 287 DPCPU_DEFINE_STATIC(uint32_t, randomval); 288 289 #define TDQ_SELF() ((struct tdq *)PCPU_GET(sched)) 290 #define TDQ_CPU(x) (DPCPU_ID_PTR((x), tdq)) 291 #define TDQ_ID(x) ((x)->tdq_id) 292 #else /* !SMP */ 293 static struct tdq tdq_cpu; 294 295 #define TDQ_ID(x) (0) 296 #define TDQ_SELF() (&tdq_cpu) 297 #define TDQ_CPU(x) (&tdq_cpu) 298 #endif 299 300 #define TDQ_LOCK_ASSERT(t, type) mtx_assert(TDQ_LOCKPTR((t)), (type)) 301 #define TDQ_LOCK(t) mtx_lock_spin(TDQ_LOCKPTR((t))) 302 #define TDQ_LOCK_FLAGS(t, f) mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f)) 303 #define TDQ_TRYLOCK(t) mtx_trylock_spin(TDQ_LOCKPTR((t))) 304 #define TDQ_TRYLOCK_FLAGS(t, f) mtx_trylock_spin_flags(TDQ_LOCKPTR((t)), (f)) 305 #define TDQ_UNLOCK(t) mtx_unlock_spin(TDQ_LOCKPTR((t))) 306 #define TDQ_LOCKPTR(t) ((struct mtx *)(&(t)->tdq_lock)) 307 308 static void sched_priority(struct thread *); 309 static void sched_thread_priority(struct thread *, u_char); 310 static int sched_interact_score(struct thread *); 311 static void sched_interact_update(struct thread *); 312 static void sched_interact_fork(struct thread *); 313 static void sched_pctcpu_update(struct td_sched *, int); 314 315 /* Operations on per processor queues */ 316 static struct thread *tdq_choose(struct tdq *); 317 static void tdq_setup(struct tdq *, int i); 318 static void tdq_load_add(struct tdq *, struct thread *); 319 static void tdq_load_rem(struct tdq *, struct thread *); 320 static __inline void tdq_runq_add(struct tdq *, struct thread *, int); 321 static __inline void tdq_runq_rem(struct tdq *, struct thread *); 322 static inline int sched_shouldpreempt(int, int, int); 323 void tdq_print(int cpu); 324 static void runq_print(struct runq *rq); 325 static void tdq_add(struct tdq *, struct thread *, int); 326 #ifdef SMP 327 static struct thread *tdq_move(struct tdq *, struct tdq *); 328 static int tdq_idled(struct tdq *); 329 static void tdq_notify(struct tdq *, struct thread *); 330 static struct thread *tdq_steal(struct tdq *, int); 331 static struct thread *runq_steal(struct runq *, int); 332 static int sched_pickcpu(struct thread *, int); 333 static void sched_balance(void); 334 static int sched_balance_pair(struct tdq *, struct tdq *); 335 static inline struct tdq *sched_setcpu(struct thread *, int, int); 336 static inline void thread_unblock_switch(struct thread *, struct mtx *); 337 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS); 338 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 339 struct cpu_group *cg, int indent); 340 #endif 341 342 static void sched_setup(void *dummy); 343 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL); 344 345 static void sched_initticks(void *dummy); 346 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, 347 NULL); 348 349 SDT_PROVIDER_DEFINE(sched); 350 351 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *", 352 "struct proc *", "uint8_t"); 353 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *", 354 "struct proc *", "void *"); 355 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *", 356 "struct proc *", "void *", "int"); 357 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *", 358 "struct proc *", "uint8_t", "struct thread *"); 359 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int"); 360 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *", 361 "struct proc *"); 362 SDT_PROBE_DEFINE(sched, , , on__cpu); 363 SDT_PROBE_DEFINE(sched, , , remain__cpu); 364 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *", 365 "struct proc *"); 366 367 /* 368 * Print the threads waiting on a run-queue. 369 */ 370 static void 371 runq_print(struct runq *rq) 372 { 373 struct rqhead *rqh; 374 struct thread *td; 375 int pri; 376 int j; 377 int i; 378 379 for (i = 0; i < RQB_LEN; i++) { 380 printf("\t\trunq bits %d 0x%zx\n", 381 i, rq->rq_status.rqb_bits[i]); 382 for (j = 0; j < RQB_BPW; j++) 383 if (rq->rq_status.rqb_bits[i] & (1ul << j)) { 384 pri = j + (i << RQB_L2BPW); 385 rqh = &rq->rq_queues[pri]; 386 TAILQ_FOREACH(td, rqh, td_runq) { 387 printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n", 388 td, td->td_name, td->td_priority, 389 td->td_rqindex, pri); 390 } 391 } 392 } 393 } 394 395 /* 396 * Print the status of a per-cpu thread queue. Should be a ddb show cmd. 397 */ 398 void 399 tdq_print(int cpu) 400 { 401 struct tdq *tdq; 402 403 tdq = TDQ_CPU(cpu); 404 405 printf("tdq %d:\n", TDQ_ID(tdq)); 406 printf("\tlock %p\n", TDQ_LOCKPTR(tdq)); 407 printf("\tLock name: %s\n", tdq->tdq_name); 408 printf("\tload: %d\n", tdq->tdq_load); 409 printf("\tswitch cnt: %d\n", tdq->tdq_switchcnt); 410 printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt); 411 printf("\ttimeshare idx: %d\n", tdq->tdq_idx); 412 printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx); 413 printf("\tload transferable: %d\n", tdq->tdq_transferable); 414 printf("\tlowest priority: %d\n", tdq->tdq_lowpri); 415 printf("\trealtime runq:\n"); 416 runq_print(&tdq->tdq_realtime); 417 printf("\ttimeshare runq:\n"); 418 runq_print(&tdq->tdq_timeshare); 419 printf("\tidle runq:\n"); 420 runq_print(&tdq->tdq_idle); 421 } 422 423 static inline int 424 sched_shouldpreempt(int pri, int cpri, int remote) 425 { 426 /* 427 * If the new priority is not better than the current priority there is 428 * nothing to do. 429 */ 430 if (pri >= cpri) 431 return (0); 432 /* 433 * Always preempt idle. 434 */ 435 if (cpri >= PRI_MIN_IDLE) 436 return (1); 437 /* 438 * If preemption is disabled don't preempt others. 439 */ 440 if (preempt_thresh == 0) 441 return (0); 442 /* 443 * Preempt if we exceed the threshold. 444 */ 445 if (pri <= preempt_thresh) 446 return (1); 447 /* 448 * If we're interactive or better and there is non-interactive 449 * or worse running preempt only remote processors. 450 */ 451 if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT) 452 return (1); 453 return (0); 454 } 455 456 /* 457 * Add a thread to the actual run-queue. Keeps transferable counts up to 458 * date with what is actually on the run-queue. Selects the correct 459 * queue position for timeshare threads. 460 */ 461 static __inline void 462 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags) 463 { 464 struct td_sched *ts; 465 u_char pri; 466 467 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 468 THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED); 469 470 pri = td->td_priority; 471 ts = td_get_sched(td); 472 TD_SET_RUNQ(td); 473 if (THREAD_CAN_MIGRATE(td)) { 474 tdq->tdq_transferable++; 475 ts->ts_flags |= TSF_XFERABLE; 476 } 477 if (pri < PRI_MIN_BATCH) { 478 ts->ts_runq = &tdq->tdq_realtime; 479 } else if (pri <= PRI_MAX_BATCH) { 480 ts->ts_runq = &tdq->tdq_timeshare; 481 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH, 482 ("Invalid priority %d on timeshare runq", pri)); 483 /* 484 * This queue contains only priorities between MIN and MAX 485 * realtime. Use the whole queue to represent these values. 486 */ 487 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) { 488 pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE; 489 pri = (pri + tdq->tdq_idx) % RQ_NQS; 490 /* 491 * This effectively shortens the queue by one so we 492 * can have a one slot difference between idx and 493 * ridx while we wait for threads to drain. 494 */ 495 if (tdq->tdq_ridx != tdq->tdq_idx && 496 pri == tdq->tdq_ridx) 497 pri = (unsigned char)(pri - 1) % RQ_NQS; 498 } else 499 pri = tdq->tdq_ridx; 500 runq_add_pri(ts->ts_runq, td, pri, flags); 501 return; 502 } else 503 ts->ts_runq = &tdq->tdq_idle; 504 runq_add(ts->ts_runq, td, flags); 505 } 506 507 /* 508 * Remove a thread from a run-queue. This typically happens when a thread 509 * is selected to run. Running threads are not on the queue and the 510 * transferable count does not reflect them. 511 */ 512 static __inline void 513 tdq_runq_rem(struct tdq *tdq, struct thread *td) 514 { 515 struct td_sched *ts; 516 517 ts = td_get_sched(td); 518 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 519 THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED); 520 KASSERT(ts->ts_runq != NULL, 521 ("tdq_runq_remove: thread %p null ts_runq", td)); 522 if (ts->ts_flags & TSF_XFERABLE) { 523 tdq->tdq_transferable--; 524 ts->ts_flags &= ~TSF_XFERABLE; 525 } 526 if (ts->ts_runq == &tdq->tdq_timeshare) { 527 if (tdq->tdq_idx != tdq->tdq_ridx) 528 runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx); 529 else 530 runq_remove_idx(ts->ts_runq, td, NULL); 531 } else 532 runq_remove(ts->ts_runq, td); 533 } 534 535 /* 536 * Load is maintained for all threads RUNNING and ON_RUNQ. Add the load 537 * for this thread to the referenced thread queue. 538 */ 539 static void 540 tdq_load_add(struct tdq *tdq, struct thread *td) 541 { 542 543 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 544 THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED); 545 546 tdq->tdq_load++; 547 if ((td->td_flags & TDF_NOLOAD) == 0) 548 tdq->tdq_sysload++; 549 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 550 SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load); 551 } 552 553 /* 554 * Remove the load from a thread that is transitioning to a sleep state or 555 * exiting. 556 */ 557 static void 558 tdq_load_rem(struct tdq *tdq, struct thread *td) 559 { 560 561 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 562 THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED); 563 KASSERT(tdq->tdq_load != 0, 564 ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq))); 565 566 tdq->tdq_load--; 567 if ((td->td_flags & TDF_NOLOAD) == 0) 568 tdq->tdq_sysload--; 569 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 570 SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load); 571 } 572 573 /* 574 * Bound timeshare latency by decreasing slice size as load increases. We 575 * consider the maximum latency as the sum of the threads waiting to run 576 * aside from curthread and target no more than sched_slice latency but 577 * no less than sched_slice_min runtime. 578 */ 579 static inline int 580 tdq_slice(struct tdq *tdq) 581 { 582 int load; 583 584 /* 585 * It is safe to use sys_load here because this is called from 586 * contexts where timeshare threads are running and so there 587 * cannot be higher priority load in the system. 588 */ 589 load = tdq->tdq_sysload - 1; 590 if (load >= SCHED_SLICE_MIN_DIVISOR) 591 return (sched_slice_min); 592 if (load <= 1) 593 return (sched_slice); 594 return (sched_slice / load); 595 } 596 597 /* 598 * Set lowpri to its exact value by searching the run-queue and 599 * evaluating curthread. curthread may be passed as an optimization. 600 */ 601 static void 602 tdq_setlowpri(struct tdq *tdq, struct thread *ctd) 603 { 604 struct thread *td; 605 606 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 607 if (ctd == NULL) 608 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread; 609 td = tdq_choose(tdq); 610 if (td == NULL || td->td_priority > ctd->td_priority) 611 tdq->tdq_lowpri = ctd->td_priority; 612 else 613 tdq->tdq_lowpri = td->td_priority; 614 } 615 616 #ifdef SMP 617 /* 618 * We need some randomness. Implement a classic Linear Congruential 619 * Generator X_{n+1}=(aX_n+c) mod m. These values are optimized for 620 * m = 2^32, a = 69069 and c = 5. We only return the upper 16 bits 621 * of the random state (in the low bits of our answer) to keep 622 * the maximum randomness. 623 */ 624 static uint32_t 625 sched_random(void) 626 { 627 uint32_t *rndptr; 628 629 rndptr = DPCPU_PTR(randomval); 630 *rndptr = *rndptr * 69069 + 5; 631 632 return (*rndptr >> 16); 633 } 634 635 struct cpu_search { 636 cpuset_t *cs_mask; 637 u_int cs_prefer; 638 int cs_pri; /* Min priority for low. */ 639 int cs_limit; /* Max load for low, min load for high. */ 640 }; 641 642 struct cpu_search_res { 643 int cs_cpu; 644 int cs_load; 645 }; 646 647 /* 648 * Search the tree of cpu_groups for the lowest or highest loaded CPU. 649 * These routines actually compare the load on all paths through the tree 650 * and find the least loaded cpu on the least loaded path, which may differ 651 * from the least loaded cpu in the system. This balances work among caches 652 * and buses. 653 */ 654 static int 655 cpu_search_lowest(const struct cpu_group *cg, const struct cpu_search *s, 656 struct cpu_search_res *r) 657 { 658 struct cpu_search_res lr; 659 struct tdq *tdq; 660 int c, bload, l, load, total; 661 662 total = 0; 663 bload = INT_MAX; 664 r->cs_cpu = -1; 665 666 /* Loop through children CPU groups if there are any. */ 667 if (cg->cg_children > 0) { 668 for (c = cg->cg_children - 1; c >= 0; c--) { 669 load = cpu_search_lowest(&cg->cg_child[c], s, &lr); 670 total += load; 671 if (lr.cs_cpu >= 0 && (load < bload || 672 (load == bload && lr.cs_load < r->cs_load))) { 673 bload = load; 674 r->cs_cpu = lr.cs_cpu; 675 r->cs_load = lr.cs_load; 676 } 677 } 678 return (total); 679 } 680 681 /* Loop through children CPUs otherwise. */ 682 for (c = cg->cg_last; c >= cg->cg_first; c--) { 683 if (!CPU_ISSET(c, &cg->cg_mask)) 684 continue; 685 tdq = TDQ_CPU(c); 686 l = tdq->tdq_load; 687 load = l * 256; 688 if (c == s->cs_prefer) 689 load -= 128; 690 total += load; 691 if (l > s->cs_limit || tdq->tdq_lowpri <= s->cs_pri || 692 !CPU_ISSET(c, s->cs_mask)) 693 continue; 694 load -= sched_random() % 128; 695 if (load < bload) { 696 bload = load; 697 r->cs_cpu = c; 698 } 699 } 700 r->cs_load = bload; 701 return (total); 702 } 703 704 static int 705 cpu_search_highest(const struct cpu_group *cg, const struct cpu_search *s, 706 struct cpu_search_res *r) 707 { 708 struct cpu_search_res lr; 709 struct tdq *tdq; 710 int c, bload, l, load, total; 711 712 total = 0; 713 bload = INT_MIN; 714 r->cs_cpu = -1; 715 716 /* Loop through children CPU groups if there are any. */ 717 if (cg->cg_children > 0) { 718 for (c = cg->cg_children - 1; c >= 0; c--) { 719 load = cpu_search_highest(&cg->cg_child[c], s, &lr); 720 total += load; 721 if (lr.cs_cpu >= 0 && (load > bload || 722 (load == bload && lr.cs_load > r->cs_load))) { 723 bload = load; 724 r->cs_cpu = lr.cs_cpu; 725 r->cs_load = lr.cs_load; 726 } 727 } 728 return (total); 729 } 730 731 /* Loop through children CPUs otherwise. */ 732 for (c = cg->cg_last; c >= cg->cg_first; c--) { 733 if (!CPU_ISSET(c, &cg->cg_mask)) 734 continue; 735 tdq = TDQ_CPU(c); 736 l = tdq->tdq_load; 737 load = l * 256; 738 total += load; 739 if (l < s->cs_limit || !tdq->tdq_transferable || 740 !CPU_ISSET(c, s->cs_mask)) 741 continue; 742 load -= sched_random() % 256; 743 if (load > bload) { 744 bload = load; 745 r->cs_cpu = c; 746 } 747 } 748 r->cs_load = bload; 749 return (total); 750 } 751 752 /* 753 * Find the cpu with the least load via the least loaded path that has a 754 * lowpri greater than pri pri. A pri of -1 indicates any priority is 755 * acceptable. 756 */ 757 static inline int 758 sched_lowest(const struct cpu_group *cg, cpuset_t *mask, int pri, int maxload, 759 int prefer) 760 { 761 struct cpu_search s; 762 struct cpu_search_res r; 763 764 s.cs_prefer = prefer; 765 s.cs_mask = mask; 766 s.cs_pri = pri; 767 s.cs_limit = maxload; 768 cpu_search_lowest(cg, &s, &r); 769 return (r.cs_cpu); 770 } 771 772 /* 773 * Find the cpu with the highest load via the highest loaded path. 774 */ 775 static inline int 776 sched_highest(const struct cpu_group *cg, cpuset_t *mask, int minload) 777 { 778 struct cpu_search s; 779 struct cpu_search_res r; 780 781 s.cs_mask = mask; 782 s.cs_limit = minload; 783 cpu_search_highest(cg, &s, &r); 784 return (r.cs_cpu); 785 } 786 787 static void 788 sched_balance_group(struct cpu_group *cg) 789 { 790 struct tdq *tdq; 791 cpuset_t hmask, lmask; 792 int high, low, anylow; 793 794 CPU_FILL(&hmask); 795 for (;;) { 796 high = sched_highest(cg, &hmask, 2); 797 /* Stop if there is no more CPU with transferrable threads. */ 798 if (high == -1) 799 break; 800 CPU_CLR(high, &hmask); 801 CPU_COPY(&hmask, &lmask); 802 /* Stop if there is no more CPU left for low. */ 803 if (CPU_EMPTY(&lmask)) 804 break; 805 anylow = 1; 806 tdq = TDQ_CPU(high); 807 nextlow: 808 low = sched_lowest(cg, &lmask, -1, tdq->tdq_load - 1, high); 809 /* Stop if we looked well and found no less loaded CPU. */ 810 if (anylow && low == -1) 811 break; 812 /* Go to next high if we found no less loaded CPU. */ 813 if (low == -1) 814 continue; 815 /* Transfer thread from high to low. */ 816 if (sched_balance_pair(tdq, TDQ_CPU(low))) { 817 /* CPU that got thread can no longer be a donor. */ 818 CPU_CLR(low, &hmask); 819 } else { 820 /* 821 * If failed, then there is no threads on high 822 * that can run on this low. Drop low from low 823 * mask and look for different one. 824 */ 825 CPU_CLR(low, &lmask); 826 anylow = 0; 827 goto nextlow; 828 } 829 } 830 } 831 832 static void 833 sched_balance(void) 834 { 835 struct tdq *tdq; 836 837 balance_ticks = max(balance_interval / 2, 1) + 838 (sched_random() % balance_interval); 839 tdq = TDQ_SELF(); 840 TDQ_UNLOCK(tdq); 841 sched_balance_group(cpu_top); 842 TDQ_LOCK(tdq); 843 } 844 845 /* 846 * Lock two thread queues using their address to maintain lock order. 847 */ 848 static void 849 tdq_lock_pair(struct tdq *one, struct tdq *two) 850 { 851 if (one < two) { 852 TDQ_LOCK(one); 853 TDQ_LOCK_FLAGS(two, MTX_DUPOK); 854 } else { 855 TDQ_LOCK(two); 856 TDQ_LOCK_FLAGS(one, MTX_DUPOK); 857 } 858 } 859 860 /* 861 * Unlock two thread queues. Order is not important here. 862 */ 863 static void 864 tdq_unlock_pair(struct tdq *one, struct tdq *two) 865 { 866 TDQ_UNLOCK(one); 867 TDQ_UNLOCK(two); 868 } 869 870 /* 871 * Transfer load between two imbalanced thread queues. 872 */ 873 static int 874 sched_balance_pair(struct tdq *high, struct tdq *low) 875 { 876 struct thread *td; 877 int cpu; 878 879 tdq_lock_pair(high, low); 880 td = NULL; 881 /* 882 * Transfer a thread from high to low. 883 */ 884 if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load && 885 (td = tdq_move(high, low)) != NULL) { 886 /* 887 * In case the target isn't the current cpu notify it of the 888 * new load, possibly sending an IPI to force it to reschedule. 889 */ 890 cpu = TDQ_ID(low); 891 if (cpu != PCPU_GET(cpuid)) 892 tdq_notify(low, td); 893 } 894 tdq_unlock_pair(high, low); 895 return (td != NULL); 896 } 897 898 /* 899 * Move a thread from one thread queue to another. 900 */ 901 static struct thread * 902 tdq_move(struct tdq *from, struct tdq *to) 903 { 904 struct thread *td; 905 struct tdq *tdq; 906 int cpu; 907 908 TDQ_LOCK_ASSERT(from, MA_OWNED); 909 TDQ_LOCK_ASSERT(to, MA_OWNED); 910 911 tdq = from; 912 cpu = TDQ_ID(to); 913 td = tdq_steal(tdq, cpu); 914 if (td == NULL) 915 return (NULL); 916 917 /* 918 * Although the run queue is locked the thread may be 919 * blocked. We can not set the lock until it is unblocked. 920 */ 921 thread_lock_block_wait(td); 922 sched_rem(td); 923 THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(from)); 924 td->td_lock = TDQ_LOCKPTR(to); 925 td_get_sched(td)->ts_cpu = cpu; 926 tdq_add(to, td, SRQ_YIELDING); 927 928 return (td); 929 } 930 931 /* 932 * This tdq has idled. Try to steal a thread from another cpu and switch 933 * to it. 934 */ 935 static int 936 tdq_idled(struct tdq *tdq) 937 { 938 struct cpu_group *cg, *parent; 939 struct tdq *steal; 940 cpuset_t mask; 941 int cpu, switchcnt, goup; 942 943 if (smp_started == 0 || steal_idle == 0 || tdq->tdq_cg == NULL) 944 return (1); 945 CPU_FILL(&mask); 946 CPU_CLR(PCPU_GET(cpuid), &mask); 947 restart: 948 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 949 for (cg = tdq->tdq_cg, goup = 0; ; ) { 950 cpu = sched_highest(cg, &mask, steal_thresh); 951 /* 952 * We were assigned a thread but not preempted. Returning 953 * 0 here will cause our caller to switch to it. 954 */ 955 if (tdq->tdq_load) 956 return (0); 957 958 /* 959 * We found no CPU to steal from in this group. Escalate to 960 * the parent and repeat. But if parent has only two children 961 * groups we can avoid searching this group again by searching 962 * the other one specifically and then escalating two levels. 963 */ 964 if (cpu == -1) { 965 if (goup) { 966 cg = cg->cg_parent; 967 goup = 0; 968 } 969 parent = cg->cg_parent; 970 if (parent == NULL) 971 return (1); 972 if (parent->cg_children == 2) { 973 if (cg == &parent->cg_child[0]) 974 cg = &parent->cg_child[1]; 975 else 976 cg = &parent->cg_child[0]; 977 goup = 1; 978 } else 979 cg = parent; 980 continue; 981 } 982 steal = TDQ_CPU(cpu); 983 /* 984 * The data returned by sched_highest() is stale and 985 * the chosen CPU no longer has an eligible thread. 986 * 987 * Testing this ahead of tdq_lock_pair() only catches 988 * this situation about 20% of the time on an 8 core 989 * 16 thread Ryzen 7, but it still helps performance. 990 */ 991 if (steal->tdq_load < steal_thresh || 992 steal->tdq_transferable == 0) 993 goto restart; 994 /* 995 * Try to lock both queues. If we are assigned a thread while 996 * waited for the lock, switch to it now instead of stealing. 997 * If we can't get the lock, then somebody likely got there 998 * first so continue searching. 999 */ 1000 TDQ_LOCK(tdq); 1001 if (tdq->tdq_load > 0) { 1002 mi_switch(SW_VOL | SWT_IDLE); 1003 return (0); 1004 } 1005 if (TDQ_TRYLOCK_FLAGS(steal, MTX_DUPOK) == 0) { 1006 TDQ_UNLOCK(tdq); 1007 CPU_CLR(cpu, &mask); 1008 continue; 1009 } 1010 /* 1011 * The data returned by sched_highest() is stale and 1012 * the chosen CPU no longer has an eligible thread, or 1013 * we were preempted and the CPU loading info may be out 1014 * of date. The latter is rare. In either case restart 1015 * the search. 1016 */ 1017 if (steal->tdq_load < steal_thresh || 1018 steal->tdq_transferable == 0 || 1019 switchcnt != tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt) { 1020 tdq_unlock_pair(tdq, steal); 1021 goto restart; 1022 } 1023 /* 1024 * Steal the thread and switch to it. 1025 */ 1026 if (tdq_move(steal, tdq) != NULL) 1027 break; 1028 /* 1029 * We failed to acquire a thread even though it looked 1030 * like one was available. This could be due to affinity 1031 * restrictions or for other reasons. Loop again after 1032 * removing this CPU from the set. The restart logic 1033 * above does not restore this CPU to the set due to the 1034 * likelyhood of failing here again. 1035 */ 1036 CPU_CLR(cpu, &mask); 1037 tdq_unlock_pair(tdq, steal); 1038 } 1039 TDQ_UNLOCK(steal); 1040 mi_switch(SW_VOL | SWT_IDLE); 1041 return (0); 1042 } 1043 1044 /* 1045 * Notify a remote cpu of new work. Sends an IPI if criteria are met. 1046 */ 1047 static void 1048 tdq_notify(struct tdq *tdq, struct thread *td) 1049 { 1050 struct thread *ctd; 1051 int pri; 1052 int cpu; 1053 1054 if (tdq->tdq_owepreempt) 1055 return; 1056 cpu = td_get_sched(td)->ts_cpu; 1057 pri = td->td_priority; 1058 ctd = pcpu_find(cpu)->pc_curthread; 1059 if (!sched_shouldpreempt(pri, ctd->td_priority, 1)) 1060 return; 1061 1062 /* 1063 * Make sure that our caller's earlier update to tdq_load is 1064 * globally visible before we read tdq_cpu_idle. Idle thread 1065 * accesses both of them without locks, and the order is important. 1066 */ 1067 atomic_thread_fence_seq_cst(); 1068 1069 if (TD_IS_IDLETHREAD(ctd)) { 1070 /* 1071 * If the MD code has an idle wakeup routine try that before 1072 * falling back to IPI. 1073 */ 1074 if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu)) 1075 return; 1076 } 1077 1078 /* 1079 * The run queues have been updated, so any switch on the remote CPU 1080 * will satisfy the preemption request. 1081 */ 1082 tdq->tdq_owepreempt = 1; 1083 ipi_cpu(cpu, IPI_PREEMPT); 1084 } 1085 1086 /* 1087 * Steals load from a timeshare queue. Honors the rotating queue head 1088 * index. 1089 */ 1090 static struct thread * 1091 runq_steal_from(struct runq *rq, int cpu, u_char start) 1092 { 1093 struct rqbits *rqb; 1094 struct rqhead *rqh; 1095 struct thread *td, *first; 1096 int bit; 1097 int i; 1098 1099 rqb = &rq->rq_status; 1100 bit = start & (RQB_BPW -1); 1101 first = NULL; 1102 again: 1103 for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) { 1104 if (rqb->rqb_bits[i] == 0) 1105 continue; 1106 if (bit == 0) 1107 bit = RQB_FFS(rqb->rqb_bits[i]); 1108 for (; bit < RQB_BPW; bit++) { 1109 if ((rqb->rqb_bits[i] & (1ul << bit)) == 0) 1110 continue; 1111 rqh = &rq->rq_queues[bit + (i << RQB_L2BPW)]; 1112 TAILQ_FOREACH(td, rqh, td_runq) { 1113 if (first && THREAD_CAN_MIGRATE(td) && 1114 THREAD_CAN_SCHED(td, cpu)) 1115 return (td); 1116 first = td; 1117 } 1118 } 1119 } 1120 if (start != 0) { 1121 start = 0; 1122 goto again; 1123 } 1124 1125 if (first && THREAD_CAN_MIGRATE(first) && 1126 THREAD_CAN_SCHED(first, cpu)) 1127 return (first); 1128 return (NULL); 1129 } 1130 1131 /* 1132 * Steals load from a standard linear queue. 1133 */ 1134 static struct thread * 1135 runq_steal(struct runq *rq, int cpu) 1136 { 1137 struct rqhead *rqh; 1138 struct rqbits *rqb; 1139 struct thread *td; 1140 int word; 1141 int bit; 1142 1143 rqb = &rq->rq_status; 1144 for (word = 0; word < RQB_LEN; word++) { 1145 if (rqb->rqb_bits[word] == 0) 1146 continue; 1147 for (bit = 0; bit < RQB_BPW; bit++) { 1148 if ((rqb->rqb_bits[word] & (1ul << bit)) == 0) 1149 continue; 1150 rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)]; 1151 TAILQ_FOREACH(td, rqh, td_runq) 1152 if (THREAD_CAN_MIGRATE(td) && 1153 THREAD_CAN_SCHED(td, cpu)) 1154 return (td); 1155 } 1156 } 1157 return (NULL); 1158 } 1159 1160 /* 1161 * Attempt to steal a thread in priority order from a thread queue. 1162 */ 1163 static struct thread * 1164 tdq_steal(struct tdq *tdq, int cpu) 1165 { 1166 struct thread *td; 1167 1168 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1169 if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL) 1170 return (td); 1171 if ((td = runq_steal_from(&tdq->tdq_timeshare, 1172 cpu, tdq->tdq_ridx)) != NULL) 1173 return (td); 1174 return (runq_steal(&tdq->tdq_idle, cpu)); 1175 } 1176 1177 /* 1178 * Sets the thread lock and ts_cpu to match the requested cpu. Unlocks the 1179 * current lock and returns with the assigned queue locked. 1180 */ 1181 static inline struct tdq * 1182 sched_setcpu(struct thread *td, int cpu, int flags) 1183 { 1184 1185 struct tdq *tdq; 1186 struct mtx *mtx; 1187 1188 THREAD_LOCK_ASSERT(td, MA_OWNED); 1189 tdq = TDQ_CPU(cpu); 1190 td_get_sched(td)->ts_cpu = cpu; 1191 /* 1192 * If the lock matches just return the queue. 1193 */ 1194 if (td->td_lock == TDQ_LOCKPTR(tdq)) { 1195 KASSERT((flags & SRQ_HOLD) == 0, 1196 ("sched_setcpu: Invalid lock for SRQ_HOLD")); 1197 return (tdq); 1198 } 1199 1200 /* 1201 * The hard case, migration, we need to block the thread first to 1202 * prevent order reversals with other cpus locks. 1203 */ 1204 spinlock_enter(); 1205 mtx = thread_lock_block(td); 1206 if ((flags & SRQ_HOLD) == 0) 1207 mtx_unlock_spin(mtx); 1208 TDQ_LOCK(tdq); 1209 thread_lock_unblock(td, TDQ_LOCKPTR(tdq)); 1210 spinlock_exit(); 1211 return (tdq); 1212 } 1213 1214 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding"); 1215 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity"); 1216 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity"); 1217 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load"); 1218 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu"); 1219 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration"); 1220 1221 static int 1222 sched_pickcpu(struct thread *td, int flags) 1223 { 1224 struct cpu_group *cg, *ccg; 1225 struct td_sched *ts; 1226 struct tdq *tdq; 1227 cpuset_t *mask; 1228 int cpu, pri, self, intr; 1229 1230 self = PCPU_GET(cpuid); 1231 ts = td_get_sched(td); 1232 KASSERT(!CPU_ABSENT(ts->ts_cpu), ("sched_pickcpu: Start scheduler on " 1233 "absent CPU %d for thread %s.", ts->ts_cpu, td->td_name)); 1234 if (smp_started == 0) 1235 return (self); 1236 /* 1237 * Don't migrate a running thread from sched_switch(). 1238 */ 1239 if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td)) 1240 return (ts->ts_cpu); 1241 /* 1242 * Prefer to run interrupt threads on the processors that generate 1243 * the interrupt. 1244 */ 1245 if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) && 1246 curthread->td_intr_nesting_level) { 1247 tdq = TDQ_SELF(); 1248 if (tdq->tdq_lowpri >= PRI_MIN_IDLE) { 1249 SCHED_STAT_INC(pickcpu_idle_affinity); 1250 return (self); 1251 } 1252 ts->ts_cpu = self; 1253 intr = 1; 1254 cg = tdq->tdq_cg; 1255 goto llc; 1256 } else { 1257 intr = 0; 1258 tdq = TDQ_CPU(ts->ts_cpu); 1259 cg = tdq->tdq_cg; 1260 } 1261 /* 1262 * If the thread can run on the last cpu and the affinity has not 1263 * expired and it is idle, run it there. 1264 */ 1265 if (THREAD_CAN_SCHED(td, ts->ts_cpu) && 1266 tdq->tdq_lowpri >= PRI_MIN_IDLE && 1267 SCHED_AFFINITY(ts, CG_SHARE_L2)) { 1268 if (cg->cg_flags & CG_FLAG_THREAD) { 1269 /* Check all SMT threads for being idle. */ 1270 for (cpu = cg->cg_first; cpu <= cg->cg_last; cpu++) { 1271 if (CPU_ISSET(cpu, &cg->cg_mask) && 1272 TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) 1273 break; 1274 } 1275 if (cpu > cg->cg_last) { 1276 SCHED_STAT_INC(pickcpu_idle_affinity); 1277 return (ts->ts_cpu); 1278 } 1279 } else { 1280 SCHED_STAT_INC(pickcpu_idle_affinity); 1281 return (ts->ts_cpu); 1282 } 1283 } 1284 llc: 1285 /* 1286 * Search for the last level cache CPU group in the tree. 1287 * Skip SMT, identical groups and caches with expired affinity. 1288 * Interrupt threads affinity is explicit and never expires. 1289 */ 1290 for (ccg = NULL; cg != NULL; cg = cg->cg_parent) { 1291 if (cg->cg_flags & CG_FLAG_THREAD) 1292 continue; 1293 if (cg->cg_children == 1 || cg->cg_count == 1) 1294 continue; 1295 if (cg->cg_level == CG_SHARE_NONE || 1296 (!intr && !SCHED_AFFINITY(ts, cg->cg_level))) 1297 continue; 1298 ccg = cg; 1299 } 1300 /* Found LLC shared by all CPUs, so do a global search. */ 1301 if (ccg == cpu_top) 1302 ccg = NULL; 1303 cpu = -1; 1304 mask = &td->td_cpuset->cs_mask; 1305 pri = td->td_priority; 1306 /* 1307 * Try hard to keep interrupts within found LLC. Search the LLC for 1308 * the least loaded CPU we can run now. For NUMA systems it should 1309 * be within target domain, and it also reduces scheduling overhead. 1310 */ 1311 if (ccg != NULL && intr) { 1312 cpu = sched_lowest(ccg, mask, pri, INT_MAX, ts->ts_cpu); 1313 if (cpu >= 0) 1314 SCHED_STAT_INC(pickcpu_intrbind); 1315 } else 1316 /* Search the LLC for the least loaded idle CPU we can run now. */ 1317 if (ccg != NULL) { 1318 cpu = sched_lowest(ccg, mask, max(pri, PRI_MAX_TIMESHARE), 1319 INT_MAX, ts->ts_cpu); 1320 if (cpu >= 0) 1321 SCHED_STAT_INC(pickcpu_affinity); 1322 } 1323 /* Search globally for the least loaded CPU we can run now. */ 1324 if (cpu < 0) { 1325 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu); 1326 if (cpu >= 0) 1327 SCHED_STAT_INC(pickcpu_lowest); 1328 } 1329 /* Search globally for the least loaded CPU. */ 1330 if (cpu < 0) { 1331 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu); 1332 if (cpu >= 0) 1333 SCHED_STAT_INC(pickcpu_lowest); 1334 } 1335 KASSERT(cpu >= 0, ("sched_pickcpu: Failed to find a cpu.")); 1336 KASSERT(!CPU_ABSENT(cpu), ("sched_pickcpu: Picked absent CPU %d.", cpu)); 1337 /* 1338 * Compare the lowest loaded cpu to current cpu. 1339 */ 1340 tdq = TDQ_CPU(cpu); 1341 if (THREAD_CAN_SCHED(td, self) && TDQ_SELF()->tdq_lowpri > pri && 1342 tdq->tdq_lowpri < PRI_MIN_IDLE && 1343 TDQ_SELF()->tdq_load <= tdq->tdq_load + 1) { 1344 SCHED_STAT_INC(pickcpu_local); 1345 cpu = self; 1346 } 1347 if (cpu != ts->ts_cpu) 1348 SCHED_STAT_INC(pickcpu_migration); 1349 return (cpu); 1350 } 1351 #endif 1352 1353 /* 1354 * Pick the highest priority task we have and return it. 1355 */ 1356 static struct thread * 1357 tdq_choose(struct tdq *tdq) 1358 { 1359 struct thread *td; 1360 1361 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1362 td = runq_choose(&tdq->tdq_realtime); 1363 if (td != NULL) 1364 return (td); 1365 td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx); 1366 if (td != NULL) { 1367 KASSERT(td->td_priority >= PRI_MIN_BATCH, 1368 ("tdq_choose: Invalid priority on timeshare queue %d", 1369 td->td_priority)); 1370 return (td); 1371 } 1372 td = runq_choose(&tdq->tdq_idle); 1373 if (td != NULL) { 1374 KASSERT(td->td_priority >= PRI_MIN_IDLE, 1375 ("tdq_choose: Invalid priority on idle queue %d", 1376 td->td_priority)); 1377 return (td); 1378 } 1379 1380 return (NULL); 1381 } 1382 1383 /* 1384 * Initialize a thread queue. 1385 */ 1386 static void 1387 tdq_setup(struct tdq *tdq, int id) 1388 { 1389 1390 if (bootverbose) 1391 printf("ULE: setup cpu %d\n", id); 1392 runq_init(&tdq->tdq_realtime); 1393 runq_init(&tdq->tdq_timeshare); 1394 runq_init(&tdq->tdq_idle); 1395 tdq->tdq_id = id; 1396 snprintf(tdq->tdq_name, sizeof(tdq->tdq_name), 1397 "sched lock %d", (int)TDQ_ID(tdq)); 1398 mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", MTX_SPIN); 1399 #ifdef KTR 1400 snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname), 1401 "CPU %d load", (int)TDQ_ID(tdq)); 1402 #endif 1403 } 1404 1405 #ifdef SMP 1406 static void 1407 sched_setup_smp(void) 1408 { 1409 struct tdq *tdq; 1410 int i; 1411 1412 cpu_top = smp_topo(); 1413 CPU_FOREACH(i) { 1414 tdq = DPCPU_ID_PTR(i, tdq); 1415 tdq_setup(tdq, i); 1416 tdq->tdq_cg = smp_topo_find(cpu_top, i); 1417 if (tdq->tdq_cg == NULL) 1418 panic("Can't find cpu group for %d\n", i); 1419 DPCPU_ID_SET(i, randomval, i * 69069 + 5); 1420 } 1421 PCPU_SET(sched, DPCPU_PTR(tdq)); 1422 balance_tdq = TDQ_SELF(); 1423 } 1424 #endif 1425 1426 /* 1427 * Setup the thread queues and initialize the topology based on MD 1428 * information. 1429 */ 1430 static void 1431 sched_setup(void *dummy) 1432 { 1433 struct tdq *tdq; 1434 1435 #ifdef SMP 1436 sched_setup_smp(); 1437 #else 1438 tdq_setup(TDQ_SELF(), 0); 1439 #endif 1440 tdq = TDQ_SELF(); 1441 1442 /* Add thread0's load since it's running. */ 1443 TDQ_LOCK(tdq); 1444 thread0.td_lock = TDQ_LOCKPTR(tdq); 1445 tdq_load_add(tdq, &thread0); 1446 tdq->tdq_lowpri = thread0.td_priority; 1447 TDQ_UNLOCK(tdq); 1448 } 1449 1450 /* 1451 * This routine determines time constants after stathz and hz are setup. 1452 */ 1453 /* ARGSUSED */ 1454 static void 1455 sched_initticks(void *dummy) 1456 { 1457 int incr; 1458 1459 realstathz = stathz ? stathz : hz; 1460 sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR; 1461 sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR; 1462 hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) / 1463 realstathz); 1464 1465 /* 1466 * tickincr is shifted out by 10 to avoid rounding errors due to 1467 * hz not being evenly divisible by stathz on all platforms. 1468 */ 1469 incr = (hz << SCHED_TICK_SHIFT) / realstathz; 1470 /* 1471 * This does not work for values of stathz that are more than 1472 * 1 << SCHED_TICK_SHIFT * hz. In practice this does not happen. 1473 */ 1474 if (incr == 0) 1475 incr = 1; 1476 tickincr = incr; 1477 #ifdef SMP 1478 /* 1479 * Set the default balance interval now that we know 1480 * what realstathz is. 1481 */ 1482 balance_interval = realstathz; 1483 balance_ticks = balance_interval; 1484 affinity = SCHED_AFFINITY_DEFAULT; 1485 #endif 1486 if (sched_idlespinthresh < 0) 1487 sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz; 1488 } 1489 1490 /* 1491 * This is the core of the interactivity algorithm. Determines a score based 1492 * on past behavior. It is the ratio of sleep time to run time scaled to 1493 * a [0, 100] integer. This is the voluntary sleep time of a process, which 1494 * differs from the cpu usage because it does not account for time spent 1495 * waiting on a run-queue. Would be prettier if we had floating point. 1496 * 1497 * When a thread's sleep time is greater than its run time the 1498 * calculation is: 1499 * 1500 * scaling factor 1501 * interactivity score = --------------------- 1502 * sleep time / run time 1503 * 1504 * 1505 * When a thread's run time is greater than its sleep time the 1506 * calculation is: 1507 * 1508 * scaling factor 1509 * interactivity score = 2 * scaling factor - --------------------- 1510 * run time / sleep time 1511 */ 1512 static int 1513 sched_interact_score(struct thread *td) 1514 { 1515 struct td_sched *ts; 1516 int div; 1517 1518 ts = td_get_sched(td); 1519 /* 1520 * The score is only needed if this is likely to be an interactive 1521 * task. Don't go through the expense of computing it if there's 1522 * no chance. 1523 */ 1524 if (sched_interact <= SCHED_INTERACT_HALF && 1525 ts->ts_runtime >= ts->ts_slptime) 1526 return (SCHED_INTERACT_HALF); 1527 1528 if (ts->ts_runtime > ts->ts_slptime) { 1529 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF); 1530 return (SCHED_INTERACT_HALF + 1531 (SCHED_INTERACT_HALF - (ts->ts_slptime / div))); 1532 } 1533 if (ts->ts_slptime > ts->ts_runtime) { 1534 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF); 1535 return (ts->ts_runtime / div); 1536 } 1537 /* runtime == slptime */ 1538 if (ts->ts_runtime) 1539 return (SCHED_INTERACT_HALF); 1540 1541 /* 1542 * This can happen if slptime and runtime are 0. 1543 */ 1544 return (0); 1545 1546 } 1547 1548 /* 1549 * Scale the scheduling priority according to the "interactivity" of this 1550 * process. 1551 */ 1552 static void 1553 sched_priority(struct thread *td) 1554 { 1555 int score; 1556 int pri; 1557 1558 if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE) 1559 return; 1560 /* 1561 * If the score is interactive we place the thread in the realtime 1562 * queue with a priority that is less than kernel and interrupt 1563 * priorities. These threads are not subject to nice restrictions. 1564 * 1565 * Scores greater than this are placed on the normal timeshare queue 1566 * where the priority is partially decided by the most recent cpu 1567 * utilization and the rest is decided by nice value. 1568 * 1569 * The nice value of the process has a linear effect on the calculated 1570 * score. Negative nice values make it easier for a thread to be 1571 * considered interactive. 1572 */ 1573 score = imax(0, sched_interact_score(td) + td->td_proc->p_nice); 1574 if (score < sched_interact) { 1575 pri = PRI_MIN_INTERACT; 1576 pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) / 1577 sched_interact) * score; 1578 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT, 1579 ("sched_priority: invalid interactive priority %d score %d", 1580 pri, score)); 1581 } else { 1582 pri = SCHED_PRI_MIN; 1583 if (td_get_sched(td)->ts_ticks) 1584 pri += min(SCHED_PRI_TICKS(td_get_sched(td)), 1585 SCHED_PRI_RANGE - 1); 1586 pri += SCHED_PRI_NICE(td->td_proc->p_nice); 1587 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH, 1588 ("sched_priority: invalid priority %d: nice %d, " 1589 "ticks %d ftick %d ltick %d tick pri %d", 1590 pri, td->td_proc->p_nice, td_get_sched(td)->ts_ticks, 1591 td_get_sched(td)->ts_ftick, td_get_sched(td)->ts_ltick, 1592 SCHED_PRI_TICKS(td_get_sched(td)))); 1593 } 1594 sched_user_prio(td, pri); 1595 1596 return; 1597 } 1598 1599 /* 1600 * This routine enforces a maximum limit on the amount of scheduling history 1601 * kept. It is called after either the slptime or runtime is adjusted. This 1602 * function is ugly due to integer math. 1603 */ 1604 static void 1605 sched_interact_update(struct thread *td) 1606 { 1607 struct td_sched *ts; 1608 u_int sum; 1609 1610 ts = td_get_sched(td); 1611 sum = ts->ts_runtime + ts->ts_slptime; 1612 if (sum < SCHED_SLP_RUN_MAX) 1613 return; 1614 /* 1615 * This only happens from two places: 1616 * 1) We have added an unusual amount of run time from fork_exit. 1617 * 2) We have added an unusual amount of sleep time from sched_sleep(). 1618 */ 1619 if (sum > SCHED_SLP_RUN_MAX * 2) { 1620 if (ts->ts_runtime > ts->ts_slptime) { 1621 ts->ts_runtime = SCHED_SLP_RUN_MAX; 1622 ts->ts_slptime = 1; 1623 } else { 1624 ts->ts_slptime = SCHED_SLP_RUN_MAX; 1625 ts->ts_runtime = 1; 1626 } 1627 return; 1628 } 1629 /* 1630 * If we have exceeded by more than 1/5th then the algorithm below 1631 * will not bring us back into range. Dividing by two here forces 1632 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX] 1633 */ 1634 if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) { 1635 ts->ts_runtime /= 2; 1636 ts->ts_slptime /= 2; 1637 return; 1638 } 1639 ts->ts_runtime = (ts->ts_runtime / 5) * 4; 1640 ts->ts_slptime = (ts->ts_slptime / 5) * 4; 1641 } 1642 1643 /* 1644 * Scale back the interactivity history when a child thread is created. The 1645 * history is inherited from the parent but the thread may behave totally 1646 * differently. For example, a shell spawning a compiler process. We want 1647 * to learn that the compiler is behaving badly very quickly. 1648 */ 1649 static void 1650 sched_interact_fork(struct thread *td) 1651 { 1652 struct td_sched *ts; 1653 int ratio; 1654 int sum; 1655 1656 ts = td_get_sched(td); 1657 sum = ts->ts_runtime + ts->ts_slptime; 1658 if (sum > SCHED_SLP_RUN_FORK) { 1659 ratio = sum / SCHED_SLP_RUN_FORK; 1660 ts->ts_runtime /= ratio; 1661 ts->ts_slptime /= ratio; 1662 } 1663 } 1664 1665 /* 1666 * Called from proc0_init() to setup the scheduler fields. 1667 */ 1668 void 1669 schedinit(void) 1670 { 1671 struct td_sched *ts0; 1672 1673 /* 1674 * Set up the scheduler specific parts of thread0. 1675 */ 1676 ts0 = td_get_sched(&thread0); 1677 ts0->ts_ltick = ticks; 1678 ts0->ts_ftick = ticks; 1679 ts0->ts_slice = 0; 1680 ts0->ts_cpu = curcpu; /* set valid CPU number */ 1681 } 1682 1683 /* 1684 * This is only somewhat accurate since given many processes of the same 1685 * priority they will switch when their slices run out, which will be 1686 * at most sched_slice stathz ticks. 1687 */ 1688 int 1689 sched_rr_interval(void) 1690 { 1691 1692 /* Convert sched_slice from stathz to hz. */ 1693 return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz)); 1694 } 1695 1696 /* 1697 * Update the percent cpu tracking information when it is requested or 1698 * the total history exceeds the maximum. We keep a sliding history of 1699 * tick counts that slowly decays. This is less precise than the 4BSD 1700 * mechanism since it happens with less regular and frequent events. 1701 */ 1702 static void 1703 sched_pctcpu_update(struct td_sched *ts, int run) 1704 { 1705 int t = ticks; 1706 1707 /* 1708 * The signed difference may be negative if the thread hasn't run for 1709 * over half of the ticks rollover period. 1710 */ 1711 if ((u_int)(t - ts->ts_ltick) >= SCHED_TICK_TARG) { 1712 ts->ts_ticks = 0; 1713 ts->ts_ftick = t - SCHED_TICK_TARG; 1714 } else if (t - ts->ts_ftick >= SCHED_TICK_MAX) { 1715 ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) * 1716 (ts->ts_ltick - (t - SCHED_TICK_TARG)); 1717 ts->ts_ftick = t - SCHED_TICK_TARG; 1718 } 1719 if (run) 1720 ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT; 1721 ts->ts_ltick = t; 1722 } 1723 1724 /* 1725 * Adjust the priority of a thread. Move it to the appropriate run-queue 1726 * if necessary. This is the back-end for several priority related 1727 * functions. 1728 */ 1729 static void 1730 sched_thread_priority(struct thread *td, u_char prio) 1731 { 1732 struct td_sched *ts; 1733 struct tdq *tdq; 1734 int oldpri; 1735 1736 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio", 1737 "prio:%d", td->td_priority, "new prio:%d", prio, 1738 KTR_ATTR_LINKED, sched_tdname(curthread)); 1739 SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio); 1740 if (td != curthread && prio < td->td_priority) { 1741 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread), 1742 "lend prio", "prio:%d", td->td_priority, "new prio:%d", 1743 prio, KTR_ATTR_LINKED, sched_tdname(td)); 1744 SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio, 1745 curthread); 1746 } 1747 ts = td_get_sched(td); 1748 THREAD_LOCK_ASSERT(td, MA_OWNED); 1749 if (td->td_priority == prio) 1750 return; 1751 /* 1752 * If the priority has been elevated due to priority 1753 * propagation, we may have to move ourselves to a new 1754 * queue. This could be optimized to not re-add in some 1755 * cases. 1756 */ 1757 if (TD_ON_RUNQ(td) && prio < td->td_priority) { 1758 sched_rem(td); 1759 td->td_priority = prio; 1760 sched_add(td, SRQ_BORROWING | SRQ_HOLDTD); 1761 return; 1762 } 1763 /* 1764 * If the thread is currently running we may have to adjust the lowpri 1765 * information so other cpus are aware of our current priority. 1766 */ 1767 if (TD_IS_RUNNING(td)) { 1768 tdq = TDQ_CPU(ts->ts_cpu); 1769 oldpri = td->td_priority; 1770 td->td_priority = prio; 1771 if (prio < tdq->tdq_lowpri) 1772 tdq->tdq_lowpri = prio; 1773 else if (tdq->tdq_lowpri == oldpri) 1774 tdq_setlowpri(tdq, td); 1775 return; 1776 } 1777 td->td_priority = prio; 1778 } 1779 1780 /* 1781 * Update a thread's priority when it is lent another thread's 1782 * priority. 1783 */ 1784 void 1785 sched_lend_prio(struct thread *td, u_char prio) 1786 { 1787 1788 td->td_flags |= TDF_BORROWING; 1789 sched_thread_priority(td, prio); 1790 } 1791 1792 /* 1793 * Restore a thread's priority when priority propagation is 1794 * over. The prio argument is the minimum priority the thread 1795 * needs to have to satisfy other possible priority lending 1796 * requests. If the thread's regular priority is less 1797 * important than prio, the thread will keep a priority boost 1798 * of prio. 1799 */ 1800 void 1801 sched_unlend_prio(struct thread *td, u_char prio) 1802 { 1803 u_char base_pri; 1804 1805 if (td->td_base_pri >= PRI_MIN_TIMESHARE && 1806 td->td_base_pri <= PRI_MAX_TIMESHARE) 1807 base_pri = td->td_user_pri; 1808 else 1809 base_pri = td->td_base_pri; 1810 if (prio >= base_pri) { 1811 td->td_flags &= ~TDF_BORROWING; 1812 sched_thread_priority(td, base_pri); 1813 } else 1814 sched_lend_prio(td, prio); 1815 } 1816 1817 /* 1818 * Standard entry for setting the priority to an absolute value. 1819 */ 1820 void 1821 sched_prio(struct thread *td, u_char prio) 1822 { 1823 u_char oldprio; 1824 1825 /* First, update the base priority. */ 1826 td->td_base_pri = prio; 1827 1828 /* 1829 * If the thread is borrowing another thread's priority, don't 1830 * ever lower the priority. 1831 */ 1832 if (td->td_flags & TDF_BORROWING && td->td_priority < prio) 1833 return; 1834 1835 /* Change the real priority. */ 1836 oldprio = td->td_priority; 1837 sched_thread_priority(td, prio); 1838 1839 /* 1840 * If the thread is on a turnstile, then let the turnstile update 1841 * its state. 1842 */ 1843 if (TD_ON_LOCK(td) && oldprio != prio) 1844 turnstile_adjust(td, oldprio); 1845 } 1846 1847 /* 1848 * Set the base user priority, does not effect current running priority. 1849 */ 1850 void 1851 sched_user_prio(struct thread *td, u_char prio) 1852 { 1853 1854 td->td_base_user_pri = prio; 1855 if (td->td_lend_user_pri <= prio) 1856 return; 1857 td->td_user_pri = prio; 1858 } 1859 1860 void 1861 sched_lend_user_prio(struct thread *td, u_char prio) 1862 { 1863 1864 THREAD_LOCK_ASSERT(td, MA_OWNED); 1865 td->td_lend_user_pri = prio; 1866 td->td_user_pri = min(prio, td->td_base_user_pri); 1867 if (td->td_priority > td->td_user_pri) 1868 sched_prio(td, td->td_user_pri); 1869 else if (td->td_priority != td->td_user_pri) 1870 td->td_flags |= TDF_NEEDRESCHED; 1871 } 1872 1873 /* 1874 * Like the above but first check if there is anything to do. 1875 */ 1876 void 1877 sched_lend_user_prio_cond(struct thread *td, u_char prio) 1878 { 1879 1880 if (td->td_lend_user_pri != prio) 1881 goto lend; 1882 if (td->td_user_pri != min(prio, td->td_base_user_pri)) 1883 goto lend; 1884 if (td->td_priority != td->td_user_pri) 1885 goto lend; 1886 return; 1887 1888 lend: 1889 thread_lock(td); 1890 sched_lend_user_prio(td, prio); 1891 thread_unlock(td); 1892 } 1893 1894 #ifdef SMP 1895 /* 1896 * This tdq is about to idle. Try to steal a thread from another CPU before 1897 * choosing the idle thread. 1898 */ 1899 static void 1900 tdq_trysteal(struct tdq *tdq) 1901 { 1902 struct cpu_group *cg, *parent; 1903 struct tdq *steal; 1904 cpuset_t mask; 1905 int cpu, i, goup; 1906 1907 if (smp_started == 0 || trysteal_limit == 0 || tdq->tdq_cg == NULL) 1908 return; 1909 CPU_FILL(&mask); 1910 CPU_CLR(PCPU_GET(cpuid), &mask); 1911 /* We don't want to be preempted while we're iterating. */ 1912 spinlock_enter(); 1913 TDQ_UNLOCK(tdq); 1914 for (i = 1, cg = tdq->tdq_cg, goup = 0; ; ) { 1915 cpu = sched_highest(cg, &mask, steal_thresh); 1916 /* 1917 * If a thread was added while interrupts were disabled don't 1918 * steal one here. 1919 */ 1920 if (tdq->tdq_load > 0) { 1921 TDQ_LOCK(tdq); 1922 break; 1923 } 1924 1925 /* 1926 * We found no CPU to steal from in this group. Escalate to 1927 * the parent and repeat. But if parent has only two children 1928 * groups we can avoid searching this group again by searching 1929 * the other one specifically and then escalating two levels. 1930 */ 1931 if (cpu == -1) { 1932 if (goup) { 1933 cg = cg->cg_parent; 1934 goup = 0; 1935 } 1936 if (++i > trysteal_limit) { 1937 TDQ_LOCK(tdq); 1938 break; 1939 } 1940 parent = cg->cg_parent; 1941 if (parent == NULL) { 1942 TDQ_LOCK(tdq); 1943 break; 1944 } 1945 if (parent->cg_children == 2) { 1946 if (cg == &parent->cg_child[0]) 1947 cg = &parent->cg_child[1]; 1948 else 1949 cg = &parent->cg_child[0]; 1950 goup = 1; 1951 } else 1952 cg = parent; 1953 continue; 1954 } 1955 steal = TDQ_CPU(cpu); 1956 /* 1957 * The data returned by sched_highest() is stale and 1958 * the chosen CPU no longer has an eligible thread. 1959 */ 1960 if (steal->tdq_load < steal_thresh || 1961 steal->tdq_transferable == 0) 1962 continue; 1963 /* 1964 * Try to lock both queues. If we are assigned a thread while 1965 * waited for the lock, switch to it now instead of stealing. 1966 * If we can't get the lock, then somebody likely got there 1967 * first. At this point unconditonally exit the loop to 1968 * bound the time spent in the critcal section. 1969 */ 1970 TDQ_LOCK(tdq); 1971 if (tdq->tdq_load > 0) 1972 break; 1973 if (TDQ_TRYLOCK_FLAGS(steal, MTX_DUPOK) == 0) 1974 break; 1975 /* 1976 * The data returned by sched_highest() is stale and 1977 * the chosen CPU no longer has an eligible thread. 1978 */ 1979 if (steal->tdq_load < steal_thresh || 1980 steal->tdq_transferable == 0) { 1981 TDQ_UNLOCK(steal); 1982 break; 1983 } 1984 /* 1985 * If we fail to acquire one due to affinity restrictions, 1986 * bail out and let the idle thread to a more complete search 1987 * outside of a critical section. 1988 */ 1989 if (tdq_move(steal, tdq) == NULL) { 1990 TDQ_UNLOCK(steal); 1991 break; 1992 } 1993 TDQ_UNLOCK(steal); 1994 break; 1995 } 1996 spinlock_exit(); 1997 } 1998 #endif 1999 2000 /* 2001 * Handle migration from sched_switch(). This happens only for 2002 * cpu binding. 2003 */ 2004 static struct mtx * 2005 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags) 2006 { 2007 struct tdq *tdn; 2008 2009 KASSERT(THREAD_CAN_MIGRATE(td) || 2010 (td_get_sched(td)->ts_flags & TSF_BOUND) != 0, 2011 ("Thread %p shouldn't migrate", td)); 2012 KASSERT(!CPU_ABSENT(td_get_sched(td)->ts_cpu), ("sched_switch_migrate: " 2013 "thread %s queued on absent CPU %d.", td->td_name, 2014 td_get_sched(td)->ts_cpu)); 2015 tdn = TDQ_CPU(td_get_sched(td)->ts_cpu); 2016 #ifdef SMP 2017 tdq_load_rem(tdq, td); 2018 /* 2019 * Do the lock dance required to avoid LOR. We have an 2020 * extra spinlock nesting from sched_switch() which will 2021 * prevent preemption while we're holding neither run-queue lock. 2022 */ 2023 TDQ_UNLOCK(tdq); 2024 TDQ_LOCK(tdn); 2025 tdq_add(tdn, td, flags); 2026 tdq_notify(tdn, td); 2027 TDQ_UNLOCK(tdn); 2028 TDQ_LOCK(tdq); 2029 #endif 2030 return (TDQ_LOCKPTR(tdn)); 2031 } 2032 2033 /* 2034 * thread_lock_unblock() that does not assume td_lock is blocked. 2035 */ 2036 static inline void 2037 thread_unblock_switch(struct thread *td, struct mtx *mtx) 2038 { 2039 atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock, 2040 (uintptr_t)mtx); 2041 } 2042 2043 /* 2044 * Switch threads. This function has to handle threads coming in while 2045 * blocked for some reason, running, or idle. It also must deal with 2046 * migrating a thread from one queue to another as running threads may 2047 * be assigned elsewhere via binding. 2048 */ 2049 void 2050 sched_switch(struct thread *td, int flags) 2051 { 2052 struct thread *newtd; 2053 struct tdq *tdq; 2054 struct td_sched *ts; 2055 struct mtx *mtx; 2056 int srqflag; 2057 int cpuid, preempted; 2058 2059 THREAD_LOCK_ASSERT(td, MA_OWNED); 2060 2061 cpuid = PCPU_GET(cpuid); 2062 tdq = TDQ_SELF(); 2063 ts = td_get_sched(td); 2064 sched_pctcpu_update(ts, 1); 2065 ts->ts_rltick = ticks; 2066 td->td_lastcpu = td->td_oncpu; 2067 preempted = (td->td_flags & TDF_SLICEEND) == 0 && 2068 (flags & SW_PREEMPT) != 0; 2069 td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND); 2070 td->td_owepreempt = 0; 2071 tdq->tdq_owepreempt = 0; 2072 if (!TD_IS_IDLETHREAD(td)) 2073 tdq->tdq_switchcnt++; 2074 2075 /* 2076 * Always block the thread lock so we can drop the tdq lock early. 2077 */ 2078 mtx = thread_lock_block(td); 2079 spinlock_enter(); 2080 if (TD_IS_IDLETHREAD(td)) { 2081 MPASS(mtx == TDQ_LOCKPTR(tdq)); 2082 TD_SET_CAN_RUN(td); 2083 } else if (TD_IS_RUNNING(td)) { 2084 MPASS(mtx == TDQ_LOCKPTR(tdq)); 2085 srqflag = preempted ? 2086 SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED : 2087 SRQ_OURSELF|SRQ_YIELDING; 2088 #ifdef SMP 2089 if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu)) 2090 ts->ts_cpu = sched_pickcpu(td, 0); 2091 #endif 2092 if (ts->ts_cpu == cpuid) 2093 tdq_runq_add(tdq, td, srqflag); 2094 else 2095 mtx = sched_switch_migrate(tdq, td, srqflag); 2096 } else { 2097 /* This thread must be going to sleep. */ 2098 if (mtx != TDQ_LOCKPTR(tdq)) { 2099 mtx_unlock_spin(mtx); 2100 TDQ_LOCK(tdq); 2101 } 2102 tdq_load_rem(tdq, td); 2103 #ifdef SMP 2104 if (tdq->tdq_load == 0) 2105 tdq_trysteal(tdq); 2106 #endif 2107 } 2108 2109 #if (KTR_COMPILE & KTR_SCHED) != 0 2110 if (TD_IS_IDLETHREAD(td)) 2111 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle", 2112 "prio:%d", td->td_priority); 2113 else 2114 KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td), 2115 "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg, 2116 "lockname:\"%s\"", td->td_lockname); 2117 #endif 2118 2119 /* 2120 * We enter here with the thread blocked and assigned to the 2121 * appropriate cpu run-queue or sleep-queue and with the current 2122 * thread-queue locked. 2123 */ 2124 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 2125 newtd = choosethread(); 2126 sched_pctcpu_update(td_get_sched(newtd), 0); 2127 TDQ_UNLOCK(tdq); 2128 2129 /* 2130 * Call the MD code to switch contexts if necessary. 2131 */ 2132 if (td != newtd) { 2133 #ifdef HWPMC_HOOKS 2134 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 2135 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 2136 #endif 2137 SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc); 2138 2139 #ifdef KDTRACE_HOOKS 2140 /* 2141 * If DTrace has set the active vtime enum to anything 2142 * other than INACTIVE (0), then it should have set the 2143 * function to call. 2144 */ 2145 if (dtrace_vtime_active) 2146 (*dtrace_vtime_switch_func)(newtd); 2147 #endif 2148 td->td_oncpu = NOCPU; 2149 cpu_switch(td, newtd, mtx); 2150 cpuid = td->td_oncpu = PCPU_GET(cpuid); 2151 2152 SDT_PROBE0(sched, , , on__cpu); 2153 #ifdef HWPMC_HOOKS 2154 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 2155 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN); 2156 #endif 2157 } else { 2158 thread_unblock_switch(td, mtx); 2159 SDT_PROBE0(sched, , , remain__cpu); 2160 } 2161 KASSERT(curthread->td_md.md_spinlock_count == 1, 2162 ("invalid count %d", curthread->td_md.md_spinlock_count)); 2163 2164 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running", 2165 "prio:%d", td->td_priority); 2166 } 2167 2168 /* 2169 * Adjust thread priorities as a result of a nice request. 2170 */ 2171 void 2172 sched_nice(struct proc *p, int nice) 2173 { 2174 struct thread *td; 2175 2176 PROC_LOCK_ASSERT(p, MA_OWNED); 2177 2178 p->p_nice = nice; 2179 FOREACH_THREAD_IN_PROC(p, td) { 2180 thread_lock(td); 2181 sched_priority(td); 2182 sched_prio(td, td->td_base_user_pri); 2183 thread_unlock(td); 2184 } 2185 } 2186 2187 /* 2188 * Record the sleep time for the interactivity scorer. 2189 */ 2190 void 2191 sched_sleep(struct thread *td, int prio) 2192 { 2193 2194 THREAD_LOCK_ASSERT(td, MA_OWNED); 2195 2196 td->td_slptick = ticks; 2197 if (TD_IS_SUSPENDED(td) || prio >= PSOCK) 2198 td->td_flags |= TDF_CANSWAP; 2199 if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE) 2200 return; 2201 if (static_boost == 1 && prio) 2202 sched_prio(td, prio); 2203 else if (static_boost && td->td_priority > static_boost) 2204 sched_prio(td, static_boost); 2205 } 2206 2207 /* 2208 * Schedule a thread to resume execution and record how long it voluntarily 2209 * slept. We also update the pctcpu, interactivity, and priority. 2210 * 2211 * Requires the thread lock on entry, drops on exit. 2212 */ 2213 void 2214 sched_wakeup(struct thread *td, int srqflags) 2215 { 2216 struct td_sched *ts; 2217 int slptick; 2218 2219 THREAD_LOCK_ASSERT(td, MA_OWNED); 2220 ts = td_get_sched(td); 2221 td->td_flags &= ~TDF_CANSWAP; 2222 2223 /* 2224 * If we slept for more than a tick update our interactivity and 2225 * priority. 2226 */ 2227 slptick = td->td_slptick; 2228 td->td_slptick = 0; 2229 if (slptick && slptick != ticks) { 2230 ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT; 2231 sched_interact_update(td); 2232 sched_pctcpu_update(ts, 0); 2233 } 2234 /* 2235 * Reset the slice value since we slept and advanced the round-robin. 2236 */ 2237 ts->ts_slice = 0; 2238 sched_add(td, SRQ_BORING | srqflags); 2239 } 2240 2241 /* 2242 * Penalize the parent for creating a new child and initialize the child's 2243 * priority. 2244 */ 2245 void 2246 sched_fork(struct thread *td, struct thread *child) 2247 { 2248 THREAD_LOCK_ASSERT(td, MA_OWNED); 2249 sched_pctcpu_update(td_get_sched(td), 1); 2250 sched_fork_thread(td, child); 2251 /* 2252 * Penalize the parent and child for forking. 2253 */ 2254 sched_interact_fork(child); 2255 sched_priority(child); 2256 td_get_sched(td)->ts_runtime += tickincr; 2257 sched_interact_update(td); 2258 sched_priority(td); 2259 } 2260 2261 /* 2262 * Fork a new thread, may be within the same process. 2263 */ 2264 void 2265 sched_fork_thread(struct thread *td, struct thread *child) 2266 { 2267 struct td_sched *ts; 2268 struct td_sched *ts2; 2269 struct tdq *tdq; 2270 2271 tdq = TDQ_SELF(); 2272 THREAD_LOCK_ASSERT(td, MA_OWNED); 2273 /* 2274 * Initialize child. 2275 */ 2276 ts = td_get_sched(td); 2277 ts2 = td_get_sched(child); 2278 child->td_oncpu = NOCPU; 2279 child->td_lastcpu = NOCPU; 2280 child->td_lock = TDQ_LOCKPTR(tdq); 2281 child->td_cpuset = cpuset_ref(td->td_cpuset); 2282 child->td_domain.dr_policy = td->td_cpuset->cs_domain; 2283 ts2->ts_cpu = ts->ts_cpu; 2284 ts2->ts_flags = 0; 2285 /* 2286 * Grab our parents cpu estimation information. 2287 */ 2288 ts2->ts_ticks = ts->ts_ticks; 2289 ts2->ts_ltick = ts->ts_ltick; 2290 ts2->ts_ftick = ts->ts_ftick; 2291 /* 2292 * Do not inherit any borrowed priority from the parent. 2293 */ 2294 child->td_priority = child->td_base_pri; 2295 /* 2296 * And update interactivity score. 2297 */ 2298 ts2->ts_slptime = ts->ts_slptime; 2299 ts2->ts_runtime = ts->ts_runtime; 2300 /* Attempt to quickly learn interactivity. */ 2301 ts2->ts_slice = tdq_slice(tdq) - sched_slice_min; 2302 #ifdef KTR 2303 bzero(ts2->ts_name, sizeof(ts2->ts_name)); 2304 #endif 2305 } 2306 2307 /* 2308 * Adjust the priority class of a thread. 2309 */ 2310 void 2311 sched_class(struct thread *td, int class) 2312 { 2313 2314 THREAD_LOCK_ASSERT(td, MA_OWNED); 2315 if (td->td_pri_class == class) 2316 return; 2317 td->td_pri_class = class; 2318 } 2319 2320 /* 2321 * Return some of the child's priority and interactivity to the parent. 2322 */ 2323 void 2324 sched_exit(struct proc *p, struct thread *child) 2325 { 2326 struct thread *td; 2327 2328 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit", 2329 "prio:%d", child->td_priority); 2330 PROC_LOCK_ASSERT(p, MA_OWNED); 2331 td = FIRST_THREAD_IN_PROC(p); 2332 sched_exit_thread(td, child); 2333 } 2334 2335 /* 2336 * Penalize another thread for the time spent on this one. This helps to 2337 * worsen the priority and interactivity of processes which schedule batch 2338 * jobs such as make. This has little effect on the make process itself but 2339 * causes new processes spawned by it to receive worse scores immediately. 2340 */ 2341 void 2342 sched_exit_thread(struct thread *td, struct thread *child) 2343 { 2344 2345 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit", 2346 "prio:%d", child->td_priority); 2347 /* 2348 * Give the child's runtime to the parent without returning the 2349 * sleep time as a penalty to the parent. This causes shells that 2350 * launch expensive things to mark their children as expensive. 2351 */ 2352 thread_lock(td); 2353 td_get_sched(td)->ts_runtime += td_get_sched(child)->ts_runtime; 2354 sched_interact_update(td); 2355 sched_priority(td); 2356 thread_unlock(td); 2357 } 2358 2359 void 2360 sched_preempt(struct thread *td) 2361 { 2362 struct tdq *tdq; 2363 int flags; 2364 2365 SDT_PROBE2(sched, , , surrender, td, td->td_proc); 2366 2367 thread_lock(td); 2368 tdq = TDQ_SELF(); 2369 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2370 if (td->td_priority > tdq->tdq_lowpri) { 2371 if (td->td_critnest == 1) { 2372 flags = SW_INVOL | SW_PREEMPT; 2373 flags |= TD_IS_IDLETHREAD(td) ? SWT_REMOTEWAKEIDLE : 2374 SWT_REMOTEPREEMPT; 2375 mi_switch(flags); 2376 /* Switch dropped thread lock. */ 2377 return; 2378 } 2379 td->td_owepreempt = 1; 2380 } else { 2381 tdq->tdq_owepreempt = 0; 2382 } 2383 thread_unlock(td); 2384 } 2385 2386 /* 2387 * Fix priorities on return to user-space. Priorities may be elevated due 2388 * to static priorities in msleep() or similar. 2389 */ 2390 void 2391 sched_userret_slowpath(struct thread *td) 2392 { 2393 2394 thread_lock(td); 2395 td->td_priority = td->td_user_pri; 2396 td->td_base_pri = td->td_user_pri; 2397 tdq_setlowpri(TDQ_SELF(), td); 2398 thread_unlock(td); 2399 } 2400 2401 /* 2402 * Handle a stathz tick. This is really only relevant for timeshare 2403 * threads. 2404 */ 2405 void 2406 sched_clock(struct thread *td, int cnt) 2407 { 2408 struct tdq *tdq; 2409 struct td_sched *ts; 2410 2411 THREAD_LOCK_ASSERT(td, MA_OWNED); 2412 tdq = TDQ_SELF(); 2413 #ifdef SMP 2414 /* 2415 * We run the long term load balancer infrequently on the first cpu. 2416 */ 2417 if (balance_tdq == tdq && smp_started != 0 && rebalance != 0 && 2418 balance_ticks != 0) { 2419 balance_ticks -= cnt; 2420 if (balance_ticks <= 0) 2421 sched_balance(); 2422 } 2423 #endif 2424 /* 2425 * Save the old switch count so we have a record of the last ticks 2426 * activity. Initialize the new switch count based on our load. 2427 * If there is some activity seed it to reflect that. 2428 */ 2429 tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt; 2430 tdq->tdq_switchcnt = tdq->tdq_load; 2431 /* 2432 * Advance the insert index once for each tick to ensure that all 2433 * threads get a chance to run. 2434 */ 2435 if (tdq->tdq_idx == tdq->tdq_ridx) { 2436 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS; 2437 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx])) 2438 tdq->tdq_ridx = tdq->tdq_idx; 2439 } 2440 ts = td_get_sched(td); 2441 sched_pctcpu_update(ts, 1); 2442 if ((td->td_pri_class & PRI_FIFO_BIT) || TD_IS_IDLETHREAD(td)) 2443 return; 2444 2445 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) { 2446 /* 2447 * We used a tick; charge it to the thread so 2448 * that we can compute our interactivity. 2449 */ 2450 td_get_sched(td)->ts_runtime += tickincr * cnt; 2451 sched_interact_update(td); 2452 sched_priority(td); 2453 } 2454 2455 /* 2456 * Force a context switch if the current thread has used up a full 2457 * time slice (default is 100ms). 2458 */ 2459 ts->ts_slice += cnt; 2460 if (ts->ts_slice >= tdq_slice(tdq)) { 2461 ts->ts_slice = 0; 2462 td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND; 2463 } 2464 } 2465 2466 u_int 2467 sched_estcpu(struct thread *td __unused) 2468 { 2469 2470 return (0); 2471 } 2472 2473 /* 2474 * Return whether the current CPU has runnable tasks. Used for in-kernel 2475 * cooperative idle threads. 2476 */ 2477 int 2478 sched_runnable(void) 2479 { 2480 struct tdq *tdq; 2481 int load; 2482 2483 load = 1; 2484 2485 tdq = TDQ_SELF(); 2486 if ((curthread->td_flags & TDF_IDLETD) != 0) { 2487 if (tdq->tdq_load > 0) 2488 goto out; 2489 } else 2490 if (tdq->tdq_load - 1 > 0) 2491 goto out; 2492 load = 0; 2493 out: 2494 return (load); 2495 } 2496 2497 /* 2498 * Choose the highest priority thread to run. The thread is removed from 2499 * the run-queue while running however the load remains. For SMP we set 2500 * the tdq in the global idle bitmask if it idles here. 2501 */ 2502 struct thread * 2503 sched_choose(void) 2504 { 2505 struct thread *td; 2506 struct tdq *tdq; 2507 2508 tdq = TDQ_SELF(); 2509 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2510 td = tdq_choose(tdq); 2511 if (td) { 2512 tdq_runq_rem(tdq, td); 2513 tdq->tdq_lowpri = td->td_priority; 2514 return (td); 2515 } 2516 tdq->tdq_lowpri = PRI_MAX_IDLE; 2517 return (PCPU_GET(idlethread)); 2518 } 2519 2520 /* 2521 * Set owepreempt if necessary. Preemption never happens directly in ULE, 2522 * we always request it once we exit a critical section. 2523 */ 2524 static inline void 2525 sched_setpreempt(struct thread *td) 2526 { 2527 struct thread *ctd; 2528 int cpri; 2529 int pri; 2530 2531 THREAD_LOCK_ASSERT(curthread, MA_OWNED); 2532 2533 ctd = curthread; 2534 pri = td->td_priority; 2535 cpri = ctd->td_priority; 2536 if (pri < cpri) 2537 ctd->td_flags |= TDF_NEEDRESCHED; 2538 if (KERNEL_PANICKED() || pri >= cpri || cold || TD_IS_INHIBITED(ctd)) 2539 return; 2540 if (!sched_shouldpreempt(pri, cpri, 0)) 2541 return; 2542 ctd->td_owepreempt = 1; 2543 } 2544 2545 /* 2546 * Add a thread to a thread queue. Select the appropriate runq and add the 2547 * thread to it. This is the internal function called when the tdq is 2548 * predetermined. 2549 */ 2550 void 2551 tdq_add(struct tdq *tdq, struct thread *td, int flags) 2552 { 2553 2554 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2555 THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED); 2556 KASSERT((td->td_inhibitors == 0), 2557 ("sched_add: trying to run inhibited thread")); 2558 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 2559 ("sched_add: bad thread state")); 2560 KASSERT(td->td_flags & TDF_INMEM, 2561 ("sched_add: thread swapped out")); 2562 2563 if (td->td_priority < tdq->tdq_lowpri) 2564 tdq->tdq_lowpri = td->td_priority; 2565 tdq_runq_add(tdq, td, flags); 2566 tdq_load_add(tdq, td); 2567 } 2568 2569 /* 2570 * Select the target thread queue and add a thread to it. Request 2571 * preemption or IPI a remote processor if required. 2572 * 2573 * Requires the thread lock on entry, drops on exit. 2574 */ 2575 void 2576 sched_add(struct thread *td, int flags) 2577 { 2578 struct tdq *tdq; 2579 #ifdef SMP 2580 int cpu; 2581 #endif 2582 2583 KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add", 2584 "prio:%d", td->td_priority, KTR_ATTR_LINKED, 2585 sched_tdname(curthread)); 2586 KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup", 2587 KTR_ATTR_LINKED, sched_tdname(td)); 2588 SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 2589 flags & SRQ_PREEMPTED); 2590 THREAD_LOCK_ASSERT(td, MA_OWNED); 2591 /* 2592 * Recalculate the priority before we select the target cpu or 2593 * run-queue. 2594 */ 2595 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 2596 sched_priority(td); 2597 #ifdef SMP 2598 /* 2599 * Pick the destination cpu and if it isn't ours transfer to the 2600 * target cpu. 2601 */ 2602 cpu = sched_pickcpu(td, flags); 2603 tdq = sched_setcpu(td, cpu, flags); 2604 tdq_add(tdq, td, flags); 2605 if (cpu != PCPU_GET(cpuid)) 2606 tdq_notify(tdq, td); 2607 else if (!(flags & SRQ_YIELDING)) 2608 sched_setpreempt(td); 2609 #else 2610 tdq = TDQ_SELF(); 2611 /* 2612 * Now that the thread is moving to the run-queue, set the lock 2613 * to the scheduler's lock. 2614 */ 2615 if (td->td_lock != TDQ_LOCKPTR(tdq)) { 2616 TDQ_LOCK(tdq); 2617 if ((flags & SRQ_HOLD) != 0) 2618 td->td_lock = TDQ_LOCKPTR(tdq); 2619 else 2620 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 2621 } 2622 tdq_add(tdq, td, flags); 2623 if (!(flags & SRQ_YIELDING)) 2624 sched_setpreempt(td); 2625 #endif 2626 if (!(flags & SRQ_HOLDTD)) 2627 thread_unlock(td); 2628 } 2629 2630 /* 2631 * Remove a thread from a run-queue without running it. This is used 2632 * when we're stealing a thread from a remote queue. Otherwise all threads 2633 * exit by calling sched_exit_thread() and sched_throw() themselves. 2634 */ 2635 void 2636 sched_rem(struct thread *td) 2637 { 2638 struct tdq *tdq; 2639 2640 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem", 2641 "prio:%d", td->td_priority); 2642 SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL); 2643 tdq = TDQ_CPU(td_get_sched(td)->ts_cpu); 2644 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2645 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2646 KASSERT(TD_ON_RUNQ(td), 2647 ("sched_rem: thread not on run queue")); 2648 tdq_runq_rem(tdq, td); 2649 tdq_load_rem(tdq, td); 2650 TD_SET_CAN_RUN(td); 2651 if (td->td_priority == tdq->tdq_lowpri) 2652 tdq_setlowpri(tdq, NULL); 2653 } 2654 2655 /* 2656 * Fetch cpu utilization information. Updates on demand. 2657 */ 2658 fixpt_t 2659 sched_pctcpu(struct thread *td) 2660 { 2661 fixpt_t pctcpu; 2662 struct td_sched *ts; 2663 2664 pctcpu = 0; 2665 ts = td_get_sched(td); 2666 2667 THREAD_LOCK_ASSERT(td, MA_OWNED); 2668 sched_pctcpu_update(ts, TD_IS_RUNNING(td)); 2669 if (ts->ts_ticks) { 2670 int rtick; 2671 2672 /* How many rtick per second ? */ 2673 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz); 2674 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT; 2675 } 2676 2677 return (pctcpu); 2678 } 2679 2680 /* 2681 * Enforce affinity settings for a thread. Called after adjustments to 2682 * cpumask. 2683 */ 2684 void 2685 sched_affinity(struct thread *td) 2686 { 2687 #ifdef SMP 2688 struct td_sched *ts; 2689 2690 THREAD_LOCK_ASSERT(td, MA_OWNED); 2691 ts = td_get_sched(td); 2692 if (THREAD_CAN_SCHED(td, ts->ts_cpu)) 2693 return; 2694 if (TD_ON_RUNQ(td)) { 2695 sched_rem(td); 2696 sched_add(td, SRQ_BORING | SRQ_HOLDTD); 2697 return; 2698 } 2699 if (!TD_IS_RUNNING(td)) 2700 return; 2701 /* 2702 * Force a switch before returning to userspace. If the 2703 * target thread is not running locally send an ipi to force 2704 * the issue. 2705 */ 2706 td->td_flags |= TDF_NEEDRESCHED; 2707 if (td != curthread) 2708 ipi_cpu(ts->ts_cpu, IPI_PREEMPT); 2709 #endif 2710 } 2711 2712 /* 2713 * Bind a thread to a target cpu. 2714 */ 2715 void 2716 sched_bind(struct thread *td, int cpu) 2717 { 2718 struct td_sched *ts; 2719 2720 THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED); 2721 KASSERT(td == curthread, ("sched_bind: can only bind curthread")); 2722 ts = td_get_sched(td); 2723 if (ts->ts_flags & TSF_BOUND) 2724 sched_unbind(td); 2725 KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td)); 2726 ts->ts_flags |= TSF_BOUND; 2727 sched_pin(); 2728 if (PCPU_GET(cpuid) == cpu) 2729 return; 2730 ts->ts_cpu = cpu; 2731 /* When we return from mi_switch we'll be on the correct cpu. */ 2732 mi_switch(SW_VOL); 2733 thread_lock(td); 2734 } 2735 2736 /* 2737 * Release a bound thread. 2738 */ 2739 void 2740 sched_unbind(struct thread *td) 2741 { 2742 struct td_sched *ts; 2743 2744 THREAD_LOCK_ASSERT(td, MA_OWNED); 2745 KASSERT(td == curthread, ("sched_unbind: can only bind curthread")); 2746 ts = td_get_sched(td); 2747 if ((ts->ts_flags & TSF_BOUND) == 0) 2748 return; 2749 ts->ts_flags &= ~TSF_BOUND; 2750 sched_unpin(); 2751 } 2752 2753 int 2754 sched_is_bound(struct thread *td) 2755 { 2756 THREAD_LOCK_ASSERT(td, MA_OWNED); 2757 return (td_get_sched(td)->ts_flags & TSF_BOUND); 2758 } 2759 2760 /* 2761 * Basic yield call. 2762 */ 2763 void 2764 sched_relinquish(struct thread *td) 2765 { 2766 thread_lock(td); 2767 mi_switch(SW_VOL | SWT_RELINQUISH); 2768 } 2769 2770 /* 2771 * Return the total system load. 2772 */ 2773 int 2774 sched_load(void) 2775 { 2776 #ifdef SMP 2777 int total; 2778 int i; 2779 2780 total = 0; 2781 CPU_FOREACH(i) 2782 total += TDQ_CPU(i)->tdq_sysload; 2783 return (total); 2784 #else 2785 return (TDQ_SELF()->tdq_sysload); 2786 #endif 2787 } 2788 2789 int 2790 sched_sizeof_proc(void) 2791 { 2792 return (sizeof(struct proc)); 2793 } 2794 2795 int 2796 sched_sizeof_thread(void) 2797 { 2798 return (sizeof(struct thread) + sizeof(struct td_sched)); 2799 } 2800 2801 #ifdef SMP 2802 #define TDQ_IDLESPIN(tdq) \ 2803 ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0) 2804 #else 2805 #define TDQ_IDLESPIN(tdq) 1 2806 #endif 2807 2808 /* 2809 * The actual idle process. 2810 */ 2811 void 2812 sched_idletd(void *dummy) 2813 { 2814 struct thread *td; 2815 struct tdq *tdq; 2816 int oldswitchcnt, switchcnt; 2817 int i; 2818 2819 mtx_assert(&Giant, MA_NOTOWNED); 2820 td = curthread; 2821 tdq = TDQ_SELF(); 2822 THREAD_NO_SLEEPING(); 2823 oldswitchcnt = -1; 2824 for (;;) { 2825 if (tdq->tdq_load) { 2826 thread_lock(td); 2827 mi_switch(SW_VOL | SWT_IDLE); 2828 } 2829 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2830 #ifdef SMP 2831 if (always_steal || switchcnt != oldswitchcnt) { 2832 oldswitchcnt = switchcnt; 2833 if (tdq_idled(tdq) == 0) 2834 continue; 2835 } 2836 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2837 #else 2838 oldswitchcnt = switchcnt; 2839 #endif 2840 /* 2841 * If we're switching very frequently, spin while checking 2842 * for load rather than entering a low power state that 2843 * may require an IPI. However, don't do any busy 2844 * loops while on SMT machines as this simply steals 2845 * cycles from cores doing useful work. 2846 */ 2847 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) { 2848 for (i = 0; i < sched_idlespins; i++) { 2849 if (tdq->tdq_load) 2850 break; 2851 cpu_spinwait(); 2852 } 2853 } 2854 2855 /* If there was context switch during spin, restart it. */ 2856 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2857 if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt) 2858 continue; 2859 2860 /* Run main MD idle handler. */ 2861 tdq->tdq_cpu_idle = 1; 2862 /* 2863 * Make sure that tdq_cpu_idle update is globally visible 2864 * before cpu_idle() read tdq_load. The order is important 2865 * to avoid race with tdq_notify. 2866 */ 2867 atomic_thread_fence_seq_cst(); 2868 /* 2869 * Checking for again after the fence picks up assigned 2870 * threads often enough to make it worthwhile to do so in 2871 * order to avoid calling cpu_idle(). 2872 */ 2873 if (tdq->tdq_load != 0) { 2874 tdq->tdq_cpu_idle = 0; 2875 continue; 2876 } 2877 cpu_idle(switchcnt * 4 > sched_idlespinthresh); 2878 tdq->tdq_cpu_idle = 0; 2879 2880 /* 2881 * Account thread-less hardware interrupts and 2882 * other wakeup reasons equal to context switches. 2883 */ 2884 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2885 if (switchcnt != oldswitchcnt) 2886 continue; 2887 tdq->tdq_switchcnt++; 2888 oldswitchcnt++; 2889 } 2890 } 2891 2892 /* 2893 * A CPU is entering for the first time or a thread is exiting. 2894 */ 2895 void 2896 sched_throw(struct thread *td) 2897 { 2898 struct thread *newtd; 2899 struct tdq *tdq; 2900 2901 if (__predict_false(td == NULL)) { 2902 #ifdef SMP 2903 PCPU_SET(sched, DPCPU_PTR(tdq)); 2904 #endif 2905 /* Correct spinlock nesting and acquire the correct lock. */ 2906 tdq = TDQ_SELF(); 2907 TDQ_LOCK(tdq); 2908 spinlock_exit(); 2909 PCPU_SET(switchtime, cpu_ticks()); 2910 PCPU_SET(switchticks, ticks); 2911 PCPU_GET(idlethread)->td_lock = TDQ_LOCKPTR(tdq); 2912 } else { 2913 tdq = TDQ_SELF(); 2914 THREAD_LOCK_ASSERT(td, MA_OWNED); 2915 THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(tdq)); 2916 tdq_load_rem(tdq, td); 2917 td->td_lastcpu = td->td_oncpu; 2918 td->td_oncpu = NOCPU; 2919 thread_lock_block(td); 2920 } 2921 newtd = choosethread(); 2922 spinlock_enter(); 2923 TDQ_UNLOCK(tdq); 2924 KASSERT(curthread->td_md.md_spinlock_count == 1, 2925 ("invalid count %d", curthread->td_md.md_spinlock_count)); 2926 /* doesn't return */ 2927 if (__predict_false(td == NULL)) 2928 cpu_throw(td, newtd); /* doesn't return */ 2929 else 2930 cpu_switch(td, newtd, TDQ_LOCKPTR(tdq)); 2931 } 2932 2933 /* 2934 * This is called from fork_exit(). Just acquire the correct locks and 2935 * let fork do the rest of the work. 2936 */ 2937 void 2938 sched_fork_exit(struct thread *td) 2939 { 2940 struct tdq *tdq; 2941 int cpuid; 2942 2943 /* 2944 * Finish setting up thread glue so that it begins execution in a 2945 * non-nested critical section with the scheduler lock held. 2946 */ 2947 KASSERT(curthread->td_md.md_spinlock_count == 1, 2948 ("invalid count %d", curthread->td_md.md_spinlock_count)); 2949 cpuid = PCPU_GET(cpuid); 2950 tdq = TDQ_SELF(); 2951 TDQ_LOCK(tdq); 2952 spinlock_exit(); 2953 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2954 td->td_oncpu = cpuid; 2955 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running", 2956 "prio:%d", td->td_priority); 2957 SDT_PROBE0(sched, , , on__cpu); 2958 } 2959 2960 /* 2961 * Create on first use to catch odd startup conditons. 2962 */ 2963 char * 2964 sched_tdname(struct thread *td) 2965 { 2966 #ifdef KTR 2967 struct td_sched *ts; 2968 2969 ts = td_get_sched(td); 2970 if (ts->ts_name[0] == '\0') 2971 snprintf(ts->ts_name, sizeof(ts->ts_name), 2972 "%s tid %d", td->td_name, td->td_tid); 2973 return (ts->ts_name); 2974 #else 2975 return (td->td_name); 2976 #endif 2977 } 2978 2979 #ifdef KTR 2980 void 2981 sched_clear_tdname(struct thread *td) 2982 { 2983 struct td_sched *ts; 2984 2985 ts = td_get_sched(td); 2986 ts->ts_name[0] = '\0'; 2987 } 2988 #endif 2989 2990 #ifdef SMP 2991 2992 /* 2993 * Build the CPU topology dump string. Is recursively called to collect 2994 * the topology tree. 2995 */ 2996 static int 2997 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg, 2998 int indent) 2999 { 3000 char cpusetbuf[CPUSETBUFSIZ]; 3001 int i, first; 3002 3003 sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent, 3004 "", 1 + indent / 2, cg->cg_level); 3005 sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "", 3006 cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask)); 3007 first = TRUE; 3008 for (i = cg->cg_first; i <= cg->cg_last; i++) { 3009 if (CPU_ISSET(i, &cg->cg_mask)) { 3010 if (!first) 3011 sbuf_printf(sb, ", "); 3012 else 3013 first = FALSE; 3014 sbuf_printf(sb, "%d", i); 3015 } 3016 } 3017 sbuf_printf(sb, "</cpu>\n"); 3018 3019 if (cg->cg_flags != 0) { 3020 sbuf_printf(sb, "%*s <flags>", indent, ""); 3021 if ((cg->cg_flags & CG_FLAG_HTT) != 0) 3022 sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>"); 3023 if ((cg->cg_flags & CG_FLAG_THREAD) != 0) 3024 sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>"); 3025 if ((cg->cg_flags & CG_FLAG_SMT) != 0) 3026 sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>"); 3027 sbuf_printf(sb, "</flags>\n"); 3028 } 3029 3030 if (cg->cg_children > 0) { 3031 sbuf_printf(sb, "%*s <children>\n", indent, ""); 3032 for (i = 0; i < cg->cg_children; i++) 3033 sysctl_kern_sched_topology_spec_internal(sb, 3034 &cg->cg_child[i], indent+2); 3035 sbuf_printf(sb, "%*s </children>\n", indent, ""); 3036 } 3037 sbuf_printf(sb, "%*s</group>\n", indent, ""); 3038 return (0); 3039 } 3040 3041 /* 3042 * Sysctl handler for retrieving topology dump. It's a wrapper for 3043 * the recursive sysctl_kern_smp_topology_spec_internal(). 3044 */ 3045 static int 3046 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS) 3047 { 3048 struct sbuf *topo; 3049 int err; 3050 3051 KASSERT(cpu_top != NULL, ("cpu_top isn't initialized")); 3052 3053 topo = sbuf_new_for_sysctl(NULL, NULL, 512, req); 3054 if (topo == NULL) 3055 return (ENOMEM); 3056 3057 sbuf_printf(topo, "<groups>\n"); 3058 err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1); 3059 sbuf_printf(topo, "</groups>\n"); 3060 3061 if (err == 0) { 3062 err = sbuf_finish(topo); 3063 } 3064 sbuf_delete(topo); 3065 return (err); 3066 } 3067 3068 #endif 3069 3070 static int 3071 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS) 3072 { 3073 int error, new_val, period; 3074 3075 period = 1000000 / realstathz; 3076 new_val = period * sched_slice; 3077 error = sysctl_handle_int(oidp, &new_val, 0, req); 3078 if (error != 0 || req->newptr == NULL) 3079 return (error); 3080 if (new_val <= 0) 3081 return (EINVAL); 3082 sched_slice = imax(1, (new_val + period / 2) / period); 3083 sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR; 3084 hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) / 3085 realstathz); 3086 return (0); 3087 } 3088 3089 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 3090 "Scheduler"); 3091 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0, 3092 "Scheduler name"); 3093 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, 3094 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, 3095 sysctl_kern_quantum, "I", 3096 "Quantum for timeshare threads in microseconds"); 3097 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0, 3098 "Quantum for timeshare threads in stathz ticks"); 3099 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0, 3100 "Interactivity score threshold"); 3101 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, 3102 &preempt_thresh, 0, 3103 "Maximal (lowest) priority for preemption"); 3104 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0, 3105 "Assign static kernel priorities to sleeping threads"); 3106 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0, 3107 "Number of times idle thread will spin waiting for new work"); 3108 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, 3109 &sched_idlespinthresh, 0, 3110 "Threshold before we will permit idle thread spinning"); 3111 #ifdef SMP 3112 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0, 3113 "Number of hz ticks to keep thread affinity for"); 3114 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0, 3115 "Enables the long-term load balancer"); 3116 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW, 3117 &balance_interval, 0, 3118 "Average period in stathz ticks to run the long-term balancer"); 3119 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0, 3120 "Attempts to steal work from other cores before idling"); 3121 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0, 3122 "Minimum load on remote CPU before we'll steal"); 3123 SYSCTL_INT(_kern_sched, OID_AUTO, trysteal_limit, CTLFLAG_RW, &trysteal_limit, 3124 0, "Topological distance limit for stealing threads in sched_switch()"); 3125 SYSCTL_INT(_kern_sched, OID_AUTO, always_steal, CTLFLAG_RW, &always_steal, 0, 3126 "Always run the stealer from the idle thread"); 3127 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING | 3128 CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A", 3129 "XML dump of detected CPU topology"); 3130 #endif 3131 3132 /* ps compat. All cpu percentages from ULE are weighted. */ 3133 static int ccpu = 0; 3134 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, 3135 "Decay factor used for updating %CPU in 4BSD scheduler"); 3136