xref: /freebsd/sys/kern/sched_ule.c (revision 3fc9e2c36555140de248a0b4def91bbfa44d7c2c)
1 /*-
2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * This file implements the ULE scheduler.  ULE supports independent CPU
29  * run queues and fine grain locking.  It has superior interactive
30  * performance under load even on uni-processor systems.
31  *
32  * etymology:
33  *   ULE is the last three letters in schedule.  It owes its name to a
34  * generic user created for a scheduling system by Paul Mikesell at
35  * Isilon Systems and a general lack of creativity on the part of the author.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_kdtrace.h"
43 #include "opt_sched.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resource.h>
54 #include <sys/resourcevar.h>
55 #include <sys/sched.h>
56 #include <sys/sdt.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/turnstile.h>
62 #include <sys/umtx.h>
63 #include <sys/vmmeter.h>
64 #include <sys/cpuset.h>
65 #include <sys/sbuf.h>
66 
67 #ifdef HWPMC_HOOKS
68 #include <sys/pmckern.h>
69 #endif
70 
71 #ifdef KDTRACE_HOOKS
72 #include <sys/dtrace_bsd.h>
73 int				dtrace_vtime_active;
74 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75 #endif
76 
77 #include <machine/cpu.h>
78 #include <machine/smp.h>
79 
80 #if defined(__powerpc__) && defined(BOOKE_E500)
81 #error "This architecture is not currently compatible with ULE"
82 #endif
83 
84 #define	KTR_ULE	0
85 
86 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87 #define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
88 #define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
89 
90 /*
91  * Thread scheduler specific section.  All fields are protected
92  * by the thread lock.
93  */
94 struct td_sched {
95 	struct runq	*ts_runq;	/* Run-queue we're queued on. */
96 	short		ts_flags;	/* TSF_* flags. */
97 	u_char		ts_cpu;		/* CPU that we have affinity for. */
98 	int		ts_rltick;	/* Real last tick, for affinity. */
99 	int		ts_slice;	/* Ticks of slice remaining. */
100 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
101 	u_int		ts_runtime;	/* Number of ticks we were running */
102 	int		ts_ltick;	/* Last tick that we were running on */
103 	int		ts_ftick;	/* First tick that we were running on */
104 	int		ts_ticks;	/* Tick count */
105 #ifdef KTR
106 	char		ts_name[TS_NAME_LEN];
107 #endif
108 };
109 /* flags kept in ts_flags */
110 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112 
113 static struct td_sched td_sched0;
114 
115 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116 #define	THREAD_CAN_SCHED(td, cpu)	\
117     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118 
119 /*
120  * Priority ranges used for interactive and non-interactive timeshare
121  * threads.  The timeshare priorities are split up into four ranges.
122  * The first range handles interactive threads.  The last three ranges
123  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124  * ranges supporting nice values.
125  */
126 #define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127 #define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128 #define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129 
130 #define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131 #define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132 #define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133 #define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134 
135 /*
136  * Cpu percentage computation macros and defines.
137  *
138  * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139  * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140  * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142  * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143  * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144  */
145 #define	SCHED_TICK_SECS		10
146 #define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147 #define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148 #define	SCHED_TICK_SHIFT	10
149 #define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150 #define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151 
152 /*
153  * These macros determine priorities for non-interactive threads.  They are
154  * assigned a priority based on their recent cpu utilization as expressed
155  * by the ratio of ticks to the tick total.  NHALF priorities at the start
156  * and end of the MIN to MAX timeshare range are only reachable with negative
157  * or positive nice respectively.
158  *
159  * PRI_RANGE:	Priority range for utilization dependent priorities.
160  * PRI_NRESV:	Number of nice values.
161  * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162  * PRI_NICE:	Determines the part of the priority inherited from nice.
163  */
164 #define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166 #define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167 #define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168 #define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169 #define	SCHED_PRI_TICKS(ts)						\
170     (SCHED_TICK_HZ((ts)) /						\
171     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172 #define	SCHED_PRI_NICE(nice)	(nice)
173 
174 /*
175  * These determine the interactivity of a process.  Interactivity differs from
176  * cpu utilization in that it expresses the voluntary time slept vs time ran
177  * while cpu utilization includes all time not running.  This more accurately
178  * models the intent of the thread.
179  *
180  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181  *		before throttling back.
182  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184  * INTERACT_THRESH:	Threshold for placement on the current runq.
185  */
186 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188 #define	SCHED_INTERACT_MAX	(100)
189 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190 #define	SCHED_INTERACT_THRESH	(30)
191 
192 /*
193  * These parameters determine the slice behavior for batch work.
194  */
195 #define	SCHED_SLICE_DEFAULT_DIVISOR	10	/* ~94 ms, 12 stathz ticks. */
196 #define	SCHED_SLICE_MIN_DIVISOR		6	/* DEFAULT/MIN = ~16 ms. */
197 
198 /* Flags kept in td_flags. */
199 #define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
200 
201 /*
202  * tickincr:		Converts a stathz tick into a hz domain scaled by
203  *			the shift factor.  Without the shift the error rate
204  *			due to rounding would be unacceptably high.
205  * realstathz:		stathz is sometimes 0 and run off of hz.
206  * sched_slice:		Runtime of each thread before rescheduling.
207  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
208  */
209 static int sched_interact = SCHED_INTERACT_THRESH;
210 static int tickincr = 8 << SCHED_TICK_SHIFT;
211 static int realstathz = 127;	/* reset during boot. */
212 static int sched_slice = 10;	/* reset during boot. */
213 static int sched_slice_min = 1;	/* reset during boot. */
214 #ifdef PREEMPTION
215 #ifdef FULL_PREEMPTION
216 static int preempt_thresh = PRI_MAX_IDLE;
217 #else
218 static int preempt_thresh = PRI_MIN_KERN;
219 #endif
220 #else
221 static int preempt_thresh = 0;
222 #endif
223 static int static_boost = PRI_MIN_BATCH;
224 static int sched_idlespins = 10000;
225 static int sched_idlespinthresh = -1;
226 
227 /*
228  * tdq - per processor runqs and statistics.  All fields are protected by the
229  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
230  * locking in sched_pickcpu();
231  */
232 struct tdq {
233 	/*
234 	 * Ordered to improve efficiency of cpu_search() and switch().
235 	 * tdq_lock is padded to avoid false sharing with tdq_load and
236 	 * tdq_cpu_idle.
237 	 */
238 	struct mtx_padalign tdq_lock;		/* run queue lock. */
239 	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
240 	volatile int	tdq_load;		/* Aggregate load. */
241 	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
242 	int		tdq_sysload;		/* For loadavg, !ITHD load. */
243 	int		tdq_transferable;	/* Transferable thread count. */
244 	short		tdq_switchcnt;		/* Switches this tick. */
245 	short		tdq_oldswitchcnt;	/* Switches last tick. */
246 	u_char		tdq_lowpri;		/* Lowest priority thread. */
247 	u_char		tdq_ipipending;		/* IPI pending. */
248 	u_char		tdq_idx;		/* Current insert index. */
249 	u_char		tdq_ridx;		/* Current removal index. */
250 	struct runq	tdq_realtime;		/* real-time run queue. */
251 	struct runq	tdq_timeshare;		/* timeshare run queue. */
252 	struct runq	tdq_idle;		/* Queue of IDLE threads. */
253 	char		tdq_name[TDQ_NAME_LEN];
254 #ifdef KTR
255 	char		tdq_loadname[TDQ_LOADNAME_LEN];
256 #endif
257 } __aligned(64);
258 
259 /* Idle thread states and config. */
260 #define	TDQ_RUNNING	1
261 #define	TDQ_IDLE	2
262 
263 #ifdef SMP
264 struct cpu_group *cpu_top;		/* CPU topology */
265 
266 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
267 #define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
268 
269 /*
270  * Run-time tunables.
271  */
272 static int rebalance = 1;
273 static int balance_interval = 128;	/* Default set in sched_initticks(). */
274 static int affinity;
275 static int steal_idle = 1;
276 static int steal_thresh = 2;
277 
278 /*
279  * One thread queue per processor.
280  */
281 static struct tdq	tdq_cpu[MAXCPU];
282 static struct tdq	*balance_tdq;
283 static int balance_ticks;
284 static DPCPU_DEFINE(uint32_t, randomval);
285 
286 #define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
287 #define	TDQ_CPU(x)	(&tdq_cpu[(x)])
288 #define	TDQ_ID(x)	((int)((x) - tdq_cpu))
289 #else	/* !SMP */
290 static struct tdq	tdq_cpu;
291 
292 #define	TDQ_ID(x)	(0)
293 #define	TDQ_SELF()	(&tdq_cpu)
294 #define	TDQ_CPU(x)	(&tdq_cpu)
295 #endif
296 
297 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
298 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
299 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
300 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
301 #define	TDQ_LOCKPTR(t)		((struct mtx *)(&(t)->tdq_lock))
302 
303 static void sched_priority(struct thread *);
304 static void sched_thread_priority(struct thread *, u_char);
305 static int sched_interact_score(struct thread *);
306 static void sched_interact_update(struct thread *);
307 static void sched_interact_fork(struct thread *);
308 static void sched_pctcpu_update(struct td_sched *, int);
309 
310 /* Operations on per processor queues */
311 static struct thread *tdq_choose(struct tdq *);
312 static void tdq_setup(struct tdq *);
313 static void tdq_load_add(struct tdq *, struct thread *);
314 static void tdq_load_rem(struct tdq *, struct thread *);
315 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
316 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
317 static inline int sched_shouldpreempt(int, int, int);
318 void tdq_print(int cpu);
319 static void runq_print(struct runq *rq);
320 static void tdq_add(struct tdq *, struct thread *, int);
321 #ifdef SMP
322 static int tdq_move(struct tdq *, struct tdq *);
323 static int tdq_idled(struct tdq *);
324 static void tdq_notify(struct tdq *, struct thread *);
325 static struct thread *tdq_steal(struct tdq *, int);
326 static struct thread *runq_steal(struct runq *, int);
327 static int sched_pickcpu(struct thread *, int);
328 static void sched_balance(void);
329 static int sched_balance_pair(struct tdq *, struct tdq *);
330 static inline struct tdq *sched_setcpu(struct thread *, int, int);
331 static inline void thread_unblock_switch(struct thread *, struct mtx *);
332 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
333 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
334 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
335     struct cpu_group *cg, int indent);
336 #endif
337 
338 static void sched_setup(void *dummy);
339 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
340 
341 static void sched_initticks(void *dummy);
342 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
343     NULL);
344 
345 SDT_PROVIDER_DEFINE(sched);
346 
347 SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *",
348     "struct proc *", "uint8_t");
349 SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *",
350     "struct proc *", "void *");
351 SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *",
352     "struct proc *", "void *", "int");
353 SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *",
354     "struct proc *", "uint8_t", "struct thread *");
355 SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
356 SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
357     "struct proc *");
358 SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
359 SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
360 SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
361     "struct proc *");
362 
363 /*
364  * Print the threads waiting on a run-queue.
365  */
366 static void
367 runq_print(struct runq *rq)
368 {
369 	struct rqhead *rqh;
370 	struct thread *td;
371 	int pri;
372 	int j;
373 	int i;
374 
375 	for (i = 0; i < RQB_LEN; i++) {
376 		printf("\t\trunq bits %d 0x%zx\n",
377 		    i, rq->rq_status.rqb_bits[i]);
378 		for (j = 0; j < RQB_BPW; j++)
379 			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
380 				pri = j + (i << RQB_L2BPW);
381 				rqh = &rq->rq_queues[pri];
382 				TAILQ_FOREACH(td, rqh, td_runq) {
383 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
384 					    td, td->td_name, td->td_priority,
385 					    td->td_rqindex, pri);
386 				}
387 			}
388 	}
389 }
390 
391 /*
392  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
393  */
394 void
395 tdq_print(int cpu)
396 {
397 	struct tdq *tdq;
398 
399 	tdq = TDQ_CPU(cpu);
400 
401 	printf("tdq %d:\n", TDQ_ID(tdq));
402 	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
403 	printf("\tLock name:      %s\n", tdq->tdq_name);
404 	printf("\tload:           %d\n", tdq->tdq_load);
405 	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
406 	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
407 	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
408 	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
409 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
410 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
411 	printf("\trealtime runq:\n");
412 	runq_print(&tdq->tdq_realtime);
413 	printf("\ttimeshare runq:\n");
414 	runq_print(&tdq->tdq_timeshare);
415 	printf("\tidle runq:\n");
416 	runq_print(&tdq->tdq_idle);
417 }
418 
419 static inline int
420 sched_shouldpreempt(int pri, int cpri, int remote)
421 {
422 	/*
423 	 * If the new priority is not better than the current priority there is
424 	 * nothing to do.
425 	 */
426 	if (pri >= cpri)
427 		return (0);
428 	/*
429 	 * Always preempt idle.
430 	 */
431 	if (cpri >= PRI_MIN_IDLE)
432 		return (1);
433 	/*
434 	 * If preemption is disabled don't preempt others.
435 	 */
436 	if (preempt_thresh == 0)
437 		return (0);
438 	/*
439 	 * Preempt if we exceed the threshold.
440 	 */
441 	if (pri <= preempt_thresh)
442 		return (1);
443 	/*
444 	 * If we're interactive or better and there is non-interactive
445 	 * or worse running preempt only remote processors.
446 	 */
447 	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
448 		return (1);
449 	return (0);
450 }
451 
452 /*
453  * Add a thread to the actual run-queue.  Keeps transferable counts up to
454  * date with what is actually on the run-queue.  Selects the correct
455  * queue position for timeshare threads.
456  */
457 static __inline void
458 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
459 {
460 	struct td_sched *ts;
461 	u_char pri;
462 
463 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
464 	THREAD_LOCK_ASSERT(td, MA_OWNED);
465 
466 	pri = td->td_priority;
467 	ts = td->td_sched;
468 	TD_SET_RUNQ(td);
469 	if (THREAD_CAN_MIGRATE(td)) {
470 		tdq->tdq_transferable++;
471 		ts->ts_flags |= TSF_XFERABLE;
472 	}
473 	if (pri < PRI_MIN_BATCH) {
474 		ts->ts_runq = &tdq->tdq_realtime;
475 	} else if (pri <= PRI_MAX_BATCH) {
476 		ts->ts_runq = &tdq->tdq_timeshare;
477 		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
478 			("Invalid priority %d on timeshare runq", pri));
479 		/*
480 		 * This queue contains only priorities between MIN and MAX
481 		 * realtime.  Use the whole queue to represent these values.
482 		 */
483 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
484 			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
485 			pri = (pri + tdq->tdq_idx) % RQ_NQS;
486 			/*
487 			 * This effectively shortens the queue by one so we
488 			 * can have a one slot difference between idx and
489 			 * ridx while we wait for threads to drain.
490 			 */
491 			if (tdq->tdq_ridx != tdq->tdq_idx &&
492 			    pri == tdq->tdq_ridx)
493 				pri = (unsigned char)(pri - 1) % RQ_NQS;
494 		} else
495 			pri = tdq->tdq_ridx;
496 		runq_add_pri(ts->ts_runq, td, pri, flags);
497 		return;
498 	} else
499 		ts->ts_runq = &tdq->tdq_idle;
500 	runq_add(ts->ts_runq, td, flags);
501 }
502 
503 /*
504  * Remove a thread from a run-queue.  This typically happens when a thread
505  * is selected to run.  Running threads are not on the queue and the
506  * transferable count does not reflect them.
507  */
508 static __inline void
509 tdq_runq_rem(struct tdq *tdq, struct thread *td)
510 {
511 	struct td_sched *ts;
512 
513 	ts = td->td_sched;
514 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
515 	KASSERT(ts->ts_runq != NULL,
516 	    ("tdq_runq_remove: thread %p null ts_runq", td));
517 	if (ts->ts_flags & TSF_XFERABLE) {
518 		tdq->tdq_transferable--;
519 		ts->ts_flags &= ~TSF_XFERABLE;
520 	}
521 	if (ts->ts_runq == &tdq->tdq_timeshare) {
522 		if (tdq->tdq_idx != tdq->tdq_ridx)
523 			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
524 		else
525 			runq_remove_idx(ts->ts_runq, td, NULL);
526 	} else
527 		runq_remove(ts->ts_runq, td);
528 }
529 
530 /*
531  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
532  * for this thread to the referenced thread queue.
533  */
534 static void
535 tdq_load_add(struct tdq *tdq, struct thread *td)
536 {
537 
538 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
539 	THREAD_LOCK_ASSERT(td, MA_OWNED);
540 
541 	tdq->tdq_load++;
542 	if ((td->td_flags & TDF_NOLOAD) == 0)
543 		tdq->tdq_sysload++;
544 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
545 	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
546 }
547 
548 /*
549  * Remove the load from a thread that is transitioning to a sleep state or
550  * exiting.
551  */
552 static void
553 tdq_load_rem(struct tdq *tdq, struct thread *td)
554 {
555 
556 	THREAD_LOCK_ASSERT(td, MA_OWNED);
557 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
558 	KASSERT(tdq->tdq_load != 0,
559 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
560 
561 	tdq->tdq_load--;
562 	if ((td->td_flags & TDF_NOLOAD) == 0)
563 		tdq->tdq_sysload--;
564 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
565 	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
566 }
567 
568 /*
569  * Bound timeshare latency by decreasing slice size as load increases.  We
570  * consider the maximum latency as the sum of the threads waiting to run
571  * aside from curthread and target no more than sched_slice latency but
572  * no less than sched_slice_min runtime.
573  */
574 static inline int
575 tdq_slice(struct tdq *tdq)
576 {
577 	int load;
578 
579 	/*
580 	 * It is safe to use sys_load here because this is called from
581 	 * contexts where timeshare threads are running and so there
582 	 * cannot be higher priority load in the system.
583 	 */
584 	load = tdq->tdq_sysload - 1;
585 	if (load >= SCHED_SLICE_MIN_DIVISOR)
586 		return (sched_slice_min);
587 	if (load <= 1)
588 		return (sched_slice);
589 	return (sched_slice / load);
590 }
591 
592 /*
593  * Set lowpri to its exact value by searching the run-queue and
594  * evaluating curthread.  curthread may be passed as an optimization.
595  */
596 static void
597 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
598 {
599 	struct thread *td;
600 
601 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
602 	if (ctd == NULL)
603 		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
604 	td = tdq_choose(tdq);
605 	if (td == NULL || td->td_priority > ctd->td_priority)
606 		tdq->tdq_lowpri = ctd->td_priority;
607 	else
608 		tdq->tdq_lowpri = td->td_priority;
609 }
610 
611 #ifdef SMP
612 struct cpu_search {
613 	cpuset_t cs_mask;
614 	u_int	cs_prefer;
615 	int	cs_pri;		/* Min priority for low. */
616 	int	cs_limit;	/* Max load for low, min load for high. */
617 	int	cs_cpu;
618 	int	cs_load;
619 };
620 
621 #define	CPU_SEARCH_LOWEST	0x1
622 #define	CPU_SEARCH_HIGHEST	0x2
623 #define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
624 
625 #define	CPUSET_FOREACH(cpu, mask)				\
626 	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
627 		if (CPU_ISSET(cpu, &mask))
628 
629 static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
630     struct cpu_search *high, const int match);
631 int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
632 int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
633 int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
634     struct cpu_search *high);
635 
636 /*
637  * Search the tree of cpu_groups for the lowest or highest loaded cpu
638  * according to the match argument.  This routine actually compares the
639  * load on all paths through the tree and finds the least loaded cpu on
640  * the least loaded path, which may differ from the least loaded cpu in
641  * the system.  This balances work among caches and busses.
642  *
643  * This inline is instantiated in three forms below using constants for the
644  * match argument.  It is reduced to the minimum set for each case.  It is
645  * also recursive to the depth of the tree.
646  */
647 static __inline int
648 cpu_search(const struct cpu_group *cg, struct cpu_search *low,
649     struct cpu_search *high, const int match)
650 {
651 	struct cpu_search lgroup;
652 	struct cpu_search hgroup;
653 	cpuset_t cpumask;
654 	struct cpu_group *child;
655 	struct tdq *tdq;
656 	int cpu, i, hload, lload, load, total, rnd, *rndptr;
657 
658 	total = 0;
659 	cpumask = cg->cg_mask;
660 	if (match & CPU_SEARCH_LOWEST) {
661 		lload = INT_MAX;
662 		lgroup = *low;
663 	}
664 	if (match & CPU_SEARCH_HIGHEST) {
665 		hload = INT_MIN;
666 		hgroup = *high;
667 	}
668 
669 	/* Iterate through the child CPU groups and then remaining CPUs. */
670 	for (i = cg->cg_children, cpu = mp_maxid; ; ) {
671 		if (i == 0) {
672 #ifdef HAVE_INLINE_FFSL
673 			cpu = CPU_FFS(&cpumask) - 1;
674 #else
675 			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
676 				cpu--;
677 #endif
678 			if (cpu < 0)
679 				break;
680 			child = NULL;
681 		} else
682 			child = &cg->cg_child[i - 1];
683 
684 		if (match & CPU_SEARCH_LOWEST)
685 			lgroup.cs_cpu = -1;
686 		if (match & CPU_SEARCH_HIGHEST)
687 			hgroup.cs_cpu = -1;
688 		if (child) {			/* Handle child CPU group. */
689 			CPU_NAND(&cpumask, &child->cg_mask);
690 			switch (match) {
691 			case CPU_SEARCH_LOWEST:
692 				load = cpu_search_lowest(child, &lgroup);
693 				break;
694 			case CPU_SEARCH_HIGHEST:
695 				load = cpu_search_highest(child, &hgroup);
696 				break;
697 			case CPU_SEARCH_BOTH:
698 				load = cpu_search_both(child, &lgroup, &hgroup);
699 				break;
700 			}
701 		} else {			/* Handle child CPU. */
702 			CPU_CLR(cpu, &cpumask);
703 			tdq = TDQ_CPU(cpu);
704 			load = tdq->tdq_load * 256;
705 			rndptr = DPCPU_PTR(randomval);
706 			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
707 			if (match & CPU_SEARCH_LOWEST) {
708 				if (cpu == low->cs_prefer)
709 					load -= 64;
710 				/* If that CPU is allowed and get data. */
711 				if (tdq->tdq_lowpri > lgroup.cs_pri &&
712 				    tdq->tdq_load <= lgroup.cs_limit &&
713 				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
714 					lgroup.cs_cpu = cpu;
715 					lgroup.cs_load = load - rnd;
716 				}
717 			}
718 			if (match & CPU_SEARCH_HIGHEST)
719 				if (tdq->tdq_load >= hgroup.cs_limit &&
720 				    tdq->tdq_transferable &&
721 				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
722 					hgroup.cs_cpu = cpu;
723 					hgroup.cs_load = load - rnd;
724 				}
725 		}
726 		total += load;
727 
728 		/* We have info about child item. Compare it. */
729 		if (match & CPU_SEARCH_LOWEST) {
730 			if (lgroup.cs_cpu >= 0 &&
731 			    (load < lload ||
732 			     (load == lload && lgroup.cs_load < low->cs_load))) {
733 				lload = load;
734 				low->cs_cpu = lgroup.cs_cpu;
735 				low->cs_load = lgroup.cs_load;
736 			}
737 		}
738 		if (match & CPU_SEARCH_HIGHEST)
739 			if (hgroup.cs_cpu >= 0 &&
740 			    (load > hload ||
741 			     (load == hload && hgroup.cs_load > high->cs_load))) {
742 				hload = load;
743 				high->cs_cpu = hgroup.cs_cpu;
744 				high->cs_load = hgroup.cs_load;
745 			}
746 		if (child) {
747 			i--;
748 			if (i == 0 && CPU_EMPTY(&cpumask))
749 				break;
750 		}
751 #ifndef HAVE_INLINE_FFSL
752 		else
753 			cpu--;
754 #endif
755 	}
756 	return (total);
757 }
758 
759 /*
760  * cpu_search instantiations must pass constants to maintain the inline
761  * optimization.
762  */
763 int
764 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
765 {
766 	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
767 }
768 
769 int
770 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
771 {
772 	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
773 }
774 
775 int
776 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
777     struct cpu_search *high)
778 {
779 	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
780 }
781 
782 /*
783  * Find the cpu with the least load via the least loaded path that has a
784  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
785  * acceptable.
786  */
787 static inline int
788 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
789     int prefer)
790 {
791 	struct cpu_search low;
792 
793 	low.cs_cpu = -1;
794 	low.cs_prefer = prefer;
795 	low.cs_mask = mask;
796 	low.cs_pri = pri;
797 	low.cs_limit = maxload;
798 	cpu_search_lowest(cg, &low);
799 	return low.cs_cpu;
800 }
801 
802 /*
803  * Find the cpu with the highest load via the highest loaded path.
804  */
805 static inline int
806 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
807 {
808 	struct cpu_search high;
809 
810 	high.cs_cpu = -1;
811 	high.cs_mask = mask;
812 	high.cs_limit = minload;
813 	cpu_search_highest(cg, &high);
814 	return high.cs_cpu;
815 }
816 
817 /*
818  * Simultaneously find the highest and lowest loaded cpu reachable via
819  * cg.
820  */
821 static inline void
822 sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
823 {
824 	struct cpu_search high;
825 	struct cpu_search low;
826 
827 	low.cs_cpu = -1;
828 	low.cs_prefer = -1;
829 	low.cs_pri = -1;
830 	low.cs_limit = INT_MAX;
831 	low.cs_mask = mask;
832 	high.cs_cpu = -1;
833 	high.cs_limit = -1;
834 	high.cs_mask = mask;
835 	cpu_search_both(cg, &low, &high);
836 	*lowcpu = low.cs_cpu;
837 	*highcpu = high.cs_cpu;
838 	return;
839 }
840 
841 static void
842 sched_balance_group(struct cpu_group *cg)
843 {
844 	cpuset_t hmask, lmask;
845 	int high, low, anylow;
846 
847 	CPU_FILL(&hmask);
848 	for (;;) {
849 		high = sched_highest(cg, hmask, 1);
850 		/* Stop if there is no more CPU with transferrable threads. */
851 		if (high == -1)
852 			break;
853 		CPU_CLR(high, &hmask);
854 		CPU_COPY(&hmask, &lmask);
855 		/* Stop if there is no more CPU left for low. */
856 		if (CPU_EMPTY(&lmask))
857 			break;
858 		anylow = 1;
859 nextlow:
860 		low = sched_lowest(cg, lmask, -1,
861 		    TDQ_CPU(high)->tdq_load - 1, high);
862 		/* Stop if we looked well and found no less loaded CPU. */
863 		if (anylow && low == -1)
864 			break;
865 		/* Go to next high if we found no less loaded CPU. */
866 		if (low == -1)
867 			continue;
868 		/* Transfer thread from high to low. */
869 		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
870 			/* CPU that got thread can no longer be a donor. */
871 			CPU_CLR(low, &hmask);
872 		} else {
873 			/*
874 			 * If failed, then there is no threads on high
875 			 * that can run on this low. Drop low from low
876 			 * mask and look for different one.
877 			 */
878 			CPU_CLR(low, &lmask);
879 			anylow = 0;
880 			goto nextlow;
881 		}
882 	}
883 }
884 
885 static void
886 sched_balance(void)
887 {
888 	struct tdq *tdq;
889 
890 	/*
891 	 * Select a random time between .5 * balance_interval and
892 	 * 1.5 * balance_interval.
893 	 */
894 	balance_ticks = max(balance_interval / 2, 1);
895 	balance_ticks += random() % balance_interval;
896 	if (smp_started == 0 || rebalance == 0)
897 		return;
898 	tdq = TDQ_SELF();
899 	TDQ_UNLOCK(tdq);
900 	sched_balance_group(cpu_top);
901 	TDQ_LOCK(tdq);
902 }
903 
904 /*
905  * Lock two thread queues using their address to maintain lock order.
906  */
907 static void
908 tdq_lock_pair(struct tdq *one, struct tdq *two)
909 {
910 	if (one < two) {
911 		TDQ_LOCK(one);
912 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
913 	} else {
914 		TDQ_LOCK(two);
915 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
916 	}
917 }
918 
919 /*
920  * Unlock two thread queues.  Order is not important here.
921  */
922 static void
923 tdq_unlock_pair(struct tdq *one, struct tdq *two)
924 {
925 	TDQ_UNLOCK(one);
926 	TDQ_UNLOCK(two);
927 }
928 
929 /*
930  * Transfer load between two imbalanced thread queues.
931  */
932 static int
933 sched_balance_pair(struct tdq *high, struct tdq *low)
934 {
935 	int moved;
936 	int cpu;
937 
938 	tdq_lock_pair(high, low);
939 	moved = 0;
940 	/*
941 	 * Determine what the imbalance is and then adjust that to how many
942 	 * threads we actually have to give up (transferable).
943 	 */
944 	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
945 	    (moved = tdq_move(high, low)) > 0) {
946 		/*
947 		 * In case the target isn't the current cpu IPI it to force a
948 		 * reschedule with the new workload.
949 		 */
950 		cpu = TDQ_ID(low);
951 		if (cpu != PCPU_GET(cpuid))
952 			ipi_cpu(cpu, IPI_PREEMPT);
953 	}
954 	tdq_unlock_pair(high, low);
955 	return (moved);
956 }
957 
958 /*
959  * Move a thread from one thread queue to another.
960  */
961 static int
962 tdq_move(struct tdq *from, struct tdq *to)
963 {
964 	struct td_sched *ts;
965 	struct thread *td;
966 	struct tdq *tdq;
967 	int cpu;
968 
969 	TDQ_LOCK_ASSERT(from, MA_OWNED);
970 	TDQ_LOCK_ASSERT(to, MA_OWNED);
971 
972 	tdq = from;
973 	cpu = TDQ_ID(to);
974 	td = tdq_steal(tdq, cpu);
975 	if (td == NULL)
976 		return (0);
977 	ts = td->td_sched;
978 	/*
979 	 * Although the run queue is locked the thread may be blocked.  Lock
980 	 * it to clear this and acquire the run-queue lock.
981 	 */
982 	thread_lock(td);
983 	/* Drop recursive lock on from acquired via thread_lock(). */
984 	TDQ_UNLOCK(from);
985 	sched_rem(td);
986 	ts->ts_cpu = cpu;
987 	td->td_lock = TDQ_LOCKPTR(to);
988 	tdq_add(to, td, SRQ_YIELDING);
989 	return (1);
990 }
991 
992 /*
993  * This tdq has idled.  Try to steal a thread from another cpu and switch
994  * to it.
995  */
996 static int
997 tdq_idled(struct tdq *tdq)
998 {
999 	struct cpu_group *cg;
1000 	struct tdq *steal;
1001 	cpuset_t mask;
1002 	int thresh;
1003 	int cpu;
1004 
1005 	if (smp_started == 0 || steal_idle == 0)
1006 		return (1);
1007 	CPU_FILL(&mask);
1008 	CPU_CLR(PCPU_GET(cpuid), &mask);
1009 	/* We don't want to be preempted while we're iterating. */
1010 	spinlock_enter();
1011 	for (cg = tdq->tdq_cg; cg != NULL; ) {
1012 		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
1013 			thresh = steal_thresh;
1014 		else
1015 			thresh = 1;
1016 		cpu = sched_highest(cg, mask, thresh);
1017 		if (cpu == -1) {
1018 			cg = cg->cg_parent;
1019 			continue;
1020 		}
1021 		steal = TDQ_CPU(cpu);
1022 		CPU_CLR(cpu, &mask);
1023 		tdq_lock_pair(tdq, steal);
1024 		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
1025 			tdq_unlock_pair(tdq, steal);
1026 			continue;
1027 		}
1028 		/*
1029 		 * If a thread was added while interrupts were disabled don't
1030 		 * steal one here.  If we fail to acquire one due to affinity
1031 		 * restrictions loop again with this cpu removed from the
1032 		 * set.
1033 		 */
1034 		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
1035 			tdq_unlock_pair(tdq, steal);
1036 			continue;
1037 		}
1038 		spinlock_exit();
1039 		TDQ_UNLOCK(steal);
1040 		mi_switch(SW_VOL | SWT_IDLE, NULL);
1041 		thread_unlock(curthread);
1042 
1043 		return (0);
1044 	}
1045 	spinlock_exit();
1046 	return (1);
1047 }
1048 
1049 /*
1050  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1051  */
1052 static void
1053 tdq_notify(struct tdq *tdq, struct thread *td)
1054 {
1055 	struct thread *ctd;
1056 	int pri;
1057 	int cpu;
1058 
1059 	if (tdq->tdq_ipipending)
1060 		return;
1061 	cpu = td->td_sched->ts_cpu;
1062 	pri = td->td_priority;
1063 	ctd = pcpu_find(cpu)->pc_curthread;
1064 	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1065 		return;
1066 	if (TD_IS_IDLETHREAD(ctd)) {
1067 		/*
1068 		 * If the MD code has an idle wakeup routine try that before
1069 		 * falling back to IPI.
1070 		 */
1071 		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1072 			return;
1073 	}
1074 	tdq->tdq_ipipending = 1;
1075 	ipi_cpu(cpu, IPI_PREEMPT);
1076 }
1077 
1078 /*
1079  * Steals load from a timeshare queue.  Honors the rotating queue head
1080  * index.
1081  */
1082 static struct thread *
1083 runq_steal_from(struct runq *rq, int cpu, u_char start)
1084 {
1085 	struct rqbits *rqb;
1086 	struct rqhead *rqh;
1087 	struct thread *td, *first;
1088 	int bit;
1089 	int pri;
1090 	int i;
1091 
1092 	rqb = &rq->rq_status;
1093 	bit = start & (RQB_BPW -1);
1094 	pri = 0;
1095 	first = NULL;
1096 again:
1097 	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1098 		if (rqb->rqb_bits[i] == 0)
1099 			continue;
1100 		if (bit != 0) {
1101 			for (pri = bit; pri < RQB_BPW; pri++)
1102 				if (rqb->rqb_bits[i] & (1ul << pri))
1103 					break;
1104 			if (pri >= RQB_BPW)
1105 				continue;
1106 		} else
1107 			pri = RQB_FFS(rqb->rqb_bits[i]);
1108 		pri += (i << RQB_L2BPW);
1109 		rqh = &rq->rq_queues[pri];
1110 		TAILQ_FOREACH(td, rqh, td_runq) {
1111 			if (first && THREAD_CAN_MIGRATE(td) &&
1112 			    THREAD_CAN_SCHED(td, cpu))
1113 				return (td);
1114 			first = td;
1115 		}
1116 	}
1117 	if (start != 0) {
1118 		start = 0;
1119 		goto again;
1120 	}
1121 
1122 	if (first && THREAD_CAN_MIGRATE(first) &&
1123 	    THREAD_CAN_SCHED(first, cpu))
1124 		return (first);
1125 	return (NULL);
1126 }
1127 
1128 /*
1129  * Steals load from a standard linear queue.
1130  */
1131 static struct thread *
1132 runq_steal(struct runq *rq, int cpu)
1133 {
1134 	struct rqhead *rqh;
1135 	struct rqbits *rqb;
1136 	struct thread *td;
1137 	int word;
1138 	int bit;
1139 
1140 	rqb = &rq->rq_status;
1141 	for (word = 0; word < RQB_LEN; word++) {
1142 		if (rqb->rqb_bits[word] == 0)
1143 			continue;
1144 		for (bit = 0; bit < RQB_BPW; bit++) {
1145 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1146 				continue;
1147 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1148 			TAILQ_FOREACH(td, rqh, td_runq)
1149 				if (THREAD_CAN_MIGRATE(td) &&
1150 				    THREAD_CAN_SCHED(td, cpu))
1151 					return (td);
1152 		}
1153 	}
1154 	return (NULL);
1155 }
1156 
1157 /*
1158  * Attempt to steal a thread in priority order from a thread queue.
1159  */
1160 static struct thread *
1161 tdq_steal(struct tdq *tdq, int cpu)
1162 {
1163 	struct thread *td;
1164 
1165 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1166 	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1167 		return (td);
1168 	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1169 	    cpu, tdq->tdq_ridx)) != NULL)
1170 		return (td);
1171 	return (runq_steal(&tdq->tdq_idle, cpu));
1172 }
1173 
1174 /*
1175  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1176  * current lock and returns with the assigned queue locked.
1177  */
1178 static inline struct tdq *
1179 sched_setcpu(struct thread *td, int cpu, int flags)
1180 {
1181 
1182 	struct tdq *tdq;
1183 
1184 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1185 	tdq = TDQ_CPU(cpu);
1186 	td->td_sched->ts_cpu = cpu;
1187 	/*
1188 	 * If the lock matches just return the queue.
1189 	 */
1190 	if (td->td_lock == TDQ_LOCKPTR(tdq))
1191 		return (tdq);
1192 #ifdef notyet
1193 	/*
1194 	 * If the thread isn't running its lockptr is a
1195 	 * turnstile or a sleepqueue.  We can just lock_set without
1196 	 * blocking.
1197 	 */
1198 	if (TD_CAN_RUN(td)) {
1199 		TDQ_LOCK(tdq);
1200 		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1201 		return (tdq);
1202 	}
1203 #endif
1204 	/*
1205 	 * The hard case, migration, we need to block the thread first to
1206 	 * prevent order reversals with other cpus locks.
1207 	 */
1208 	spinlock_enter();
1209 	thread_lock_block(td);
1210 	TDQ_LOCK(tdq);
1211 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1212 	spinlock_exit();
1213 	return (tdq);
1214 }
1215 
1216 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1217 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1218 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1219 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1220 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1221 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1222 
1223 static int
1224 sched_pickcpu(struct thread *td, int flags)
1225 {
1226 	struct cpu_group *cg, *ccg;
1227 	struct td_sched *ts;
1228 	struct tdq *tdq;
1229 	cpuset_t mask;
1230 	int cpu, pri, self;
1231 
1232 	self = PCPU_GET(cpuid);
1233 	ts = td->td_sched;
1234 	if (smp_started == 0)
1235 		return (self);
1236 	/*
1237 	 * Don't migrate a running thread from sched_switch().
1238 	 */
1239 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1240 		return (ts->ts_cpu);
1241 	/*
1242 	 * Prefer to run interrupt threads on the processors that generate
1243 	 * the interrupt.
1244 	 */
1245 	pri = td->td_priority;
1246 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1247 	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1248 		SCHED_STAT_INC(pickcpu_intrbind);
1249 		ts->ts_cpu = self;
1250 		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1251 			SCHED_STAT_INC(pickcpu_affinity);
1252 			return (ts->ts_cpu);
1253 		}
1254 	}
1255 	/*
1256 	 * If the thread can run on the last cpu and the affinity has not
1257 	 * expired or it is idle run it there.
1258 	 */
1259 	tdq = TDQ_CPU(ts->ts_cpu);
1260 	cg = tdq->tdq_cg;
1261 	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1262 	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1263 	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1264 		if (cg->cg_flags & CG_FLAG_THREAD) {
1265 			CPUSET_FOREACH(cpu, cg->cg_mask) {
1266 				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1267 					break;
1268 			}
1269 		} else
1270 			cpu = INT_MAX;
1271 		if (cpu > mp_maxid) {
1272 			SCHED_STAT_INC(pickcpu_idle_affinity);
1273 			return (ts->ts_cpu);
1274 		}
1275 	}
1276 	/*
1277 	 * Search for the last level cache CPU group in the tree.
1278 	 * Skip caches with expired affinity time and SMT groups.
1279 	 * Affinity to higher level caches will be handled less aggressively.
1280 	 */
1281 	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1282 		if (cg->cg_flags & CG_FLAG_THREAD)
1283 			continue;
1284 		if (!SCHED_AFFINITY(ts, cg->cg_level))
1285 			continue;
1286 		ccg = cg;
1287 	}
1288 	if (ccg != NULL)
1289 		cg = ccg;
1290 	cpu = -1;
1291 	/* Search the group for the less loaded idle CPU we can run now. */
1292 	mask = td->td_cpuset->cs_mask;
1293 	if (cg != NULL && cg != cpu_top &&
1294 	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1295 		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1296 		    INT_MAX, ts->ts_cpu);
1297 	/* Search globally for the less loaded CPU we can run now. */
1298 	if (cpu == -1)
1299 		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1300 	/* Search globally for the less loaded CPU. */
1301 	if (cpu == -1)
1302 		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1303 	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1304 	/*
1305 	 * Compare the lowest loaded cpu to current cpu.
1306 	 */
1307 	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1308 	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1309 	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1310 		SCHED_STAT_INC(pickcpu_local);
1311 		cpu = self;
1312 	} else
1313 		SCHED_STAT_INC(pickcpu_lowest);
1314 	if (cpu != ts->ts_cpu)
1315 		SCHED_STAT_INC(pickcpu_migration);
1316 	return (cpu);
1317 }
1318 #endif
1319 
1320 /*
1321  * Pick the highest priority task we have and return it.
1322  */
1323 static struct thread *
1324 tdq_choose(struct tdq *tdq)
1325 {
1326 	struct thread *td;
1327 
1328 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1329 	td = runq_choose(&tdq->tdq_realtime);
1330 	if (td != NULL)
1331 		return (td);
1332 	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1333 	if (td != NULL) {
1334 		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1335 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1336 		    td->td_priority));
1337 		return (td);
1338 	}
1339 	td = runq_choose(&tdq->tdq_idle);
1340 	if (td != NULL) {
1341 		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1342 		    ("tdq_choose: Invalid priority on idle queue %d",
1343 		    td->td_priority));
1344 		return (td);
1345 	}
1346 
1347 	return (NULL);
1348 }
1349 
1350 /*
1351  * Initialize a thread queue.
1352  */
1353 static void
1354 tdq_setup(struct tdq *tdq)
1355 {
1356 
1357 	if (bootverbose)
1358 		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1359 	runq_init(&tdq->tdq_realtime);
1360 	runq_init(&tdq->tdq_timeshare);
1361 	runq_init(&tdq->tdq_idle);
1362 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1363 	    "sched lock %d", (int)TDQ_ID(tdq));
1364 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1365 	    MTX_SPIN | MTX_RECURSE);
1366 #ifdef KTR
1367 	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1368 	    "CPU %d load", (int)TDQ_ID(tdq));
1369 #endif
1370 }
1371 
1372 #ifdef SMP
1373 static void
1374 sched_setup_smp(void)
1375 {
1376 	struct tdq *tdq;
1377 	int i;
1378 
1379 	cpu_top = smp_topo();
1380 	CPU_FOREACH(i) {
1381 		tdq = TDQ_CPU(i);
1382 		tdq_setup(tdq);
1383 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1384 		if (tdq->tdq_cg == NULL)
1385 			panic("Can't find cpu group for %d\n", i);
1386 	}
1387 	balance_tdq = TDQ_SELF();
1388 	sched_balance();
1389 }
1390 #endif
1391 
1392 /*
1393  * Setup the thread queues and initialize the topology based on MD
1394  * information.
1395  */
1396 static void
1397 sched_setup(void *dummy)
1398 {
1399 	struct tdq *tdq;
1400 
1401 	tdq = TDQ_SELF();
1402 #ifdef SMP
1403 	sched_setup_smp();
1404 #else
1405 	tdq_setup(tdq);
1406 #endif
1407 
1408 	/* Add thread0's load since it's running. */
1409 	TDQ_LOCK(tdq);
1410 	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1411 	tdq_load_add(tdq, &thread0);
1412 	tdq->tdq_lowpri = thread0.td_priority;
1413 	TDQ_UNLOCK(tdq);
1414 }
1415 
1416 /*
1417  * This routine determines time constants after stathz and hz are setup.
1418  */
1419 /* ARGSUSED */
1420 static void
1421 sched_initticks(void *dummy)
1422 {
1423 	int incr;
1424 
1425 	realstathz = stathz ? stathz : hz;
1426 	sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
1427 	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
1428 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1429 	    realstathz);
1430 
1431 	/*
1432 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1433 	 * hz not being evenly divisible by stathz on all platforms.
1434 	 */
1435 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1436 	/*
1437 	 * This does not work for values of stathz that are more than
1438 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1439 	 */
1440 	if (incr == 0)
1441 		incr = 1;
1442 	tickincr = incr;
1443 #ifdef SMP
1444 	/*
1445 	 * Set the default balance interval now that we know
1446 	 * what realstathz is.
1447 	 */
1448 	balance_interval = realstathz;
1449 	affinity = SCHED_AFFINITY_DEFAULT;
1450 #endif
1451 	if (sched_idlespinthresh < 0)
1452 		sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
1453 }
1454 
1455 
1456 /*
1457  * This is the core of the interactivity algorithm.  Determines a score based
1458  * on past behavior.  It is the ratio of sleep time to run time scaled to
1459  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1460  * differs from the cpu usage because it does not account for time spent
1461  * waiting on a run-queue.  Would be prettier if we had floating point.
1462  */
1463 static int
1464 sched_interact_score(struct thread *td)
1465 {
1466 	struct td_sched *ts;
1467 	int div;
1468 
1469 	ts = td->td_sched;
1470 	/*
1471 	 * The score is only needed if this is likely to be an interactive
1472 	 * task.  Don't go through the expense of computing it if there's
1473 	 * no chance.
1474 	 */
1475 	if (sched_interact <= SCHED_INTERACT_HALF &&
1476 		ts->ts_runtime >= ts->ts_slptime)
1477 			return (SCHED_INTERACT_HALF);
1478 
1479 	if (ts->ts_runtime > ts->ts_slptime) {
1480 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1481 		return (SCHED_INTERACT_HALF +
1482 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1483 	}
1484 	if (ts->ts_slptime > ts->ts_runtime) {
1485 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1486 		return (ts->ts_runtime / div);
1487 	}
1488 	/* runtime == slptime */
1489 	if (ts->ts_runtime)
1490 		return (SCHED_INTERACT_HALF);
1491 
1492 	/*
1493 	 * This can happen if slptime and runtime are 0.
1494 	 */
1495 	return (0);
1496 
1497 }
1498 
1499 /*
1500  * Scale the scheduling priority according to the "interactivity" of this
1501  * process.
1502  */
1503 static void
1504 sched_priority(struct thread *td)
1505 {
1506 	int score;
1507 	int pri;
1508 
1509 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1510 		return;
1511 	/*
1512 	 * If the score is interactive we place the thread in the realtime
1513 	 * queue with a priority that is less than kernel and interrupt
1514 	 * priorities.  These threads are not subject to nice restrictions.
1515 	 *
1516 	 * Scores greater than this are placed on the normal timeshare queue
1517 	 * where the priority is partially decided by the most recent cpu
1518 	 * utilization and the rest is decided by nice value.
1519 	 *
1520 	 * The nice value of the process has a linear effect on the calculated
1521 	 * score.  Negative nice values make it easier for a thread to be
1522 	 * considered interactive.
1523 	 */
1524 	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1525 	if (score < sched_interact) {
1526 		pri = PRI_MIN_INTERACT;
1527 		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1528 		    sched_interact) * score;
1529 		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1530 		    ("sched_priority: invalid interactive priority %d score %d",
1531 		    pri, score));
1532 	} else {
1533 		pri = SCHED_PRI_MIN;
1534 		if (td->td_sched->ts_ticks)
1535 			pri += min(SCHED_PRI_TICKS(td->td_sched),
1536 			    SCHED_PRI_RANGE);
1537 		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1538 		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1539 		    ("sched_priority: invalid priority %d: nice %d, "
1540 		    "ticks %d ftick %d ltick %d tick pri %d",
1541 		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1542 		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1543 		    SCHED_PRI_TICKS(td->td_sched)));
1544 	}
1545 	sched_user_prio(td, pri);
1546 
1547 	return;
1548 }
1549 
1550 /*
1551  * This routine enforces a maximum limit on the amount of scheduling history
1552  * kept.  It is called after either the slptime or runtime is adjusted.  This
1553  * function is ugly due to integer math.
1554  */
1555 static void
1556 sched_interact_update(struct thread *td)
1557 {
1558 	struct td_sched *ts;
1559 	u_int sum;
1560 
1561 	ts = td->td_sched;
1562 	sum = ts->ts_runtime + ts->ts_slptime;
1563 	if (sum < SCHED_SLP_RUN_MAX)
1564 		return;
1565 	/*
1566 	 * This only happens from two places:
1567 	 * 1) We have added an unusual amount of run time from fork_exit.
1568 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1569 	 */
1570 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1571 		if (ts->ts_runtime > ts->ts_slptime) {
1572 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1573 			ts->ts_slptime = 1;
1574 		} else {
1575 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1576 			ts->ts_runtime = 1;
1577 		}
1578 		return;
1579 	}
1580 	/*
1581 	 * If we have exceeded by more than 1/5th then the algorithm below
1582 	 * will not bring us back into range.  Dividing by two here forces
1583 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1584 	 */
1585 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1586 		ts->ts_runtime /= 2;
1587 		ts->ts_slptime /= 2;
1588 		return;
1589 	}
1590 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1591 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1592 }
1593 
1594 /*
1595  * Scale back the interactivity history when a child thread is created.  The
1596  * history is inherited from the parent but the thread may behave totally
1597  * differently.  For example, a shell spawning a compiler process.  We want
1598  * to learn that the compiler is behaving badly very quickly.
1599  */
1600 static void
1601 sched_interact_fork(struct thread *td)
1602 {
1603 	int ratio;
1604 	int sum;
1605 
1606 	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1607 	if (sum > SCHED_SLP_RUN_FORK) {
1608 		ratio = sum / SCHED_SLP_RUN_FORK;
1609 		td->td_sched->ts_runtime /= ratio;
1610 		td->td_sched->ts_slptime /= ratio;
1611 	}
1612 }
1613 
1614 /*
1615  * Called from proc0_init() to setup the scheduler fields.
1616  */
1617 void
1618 schedinit(void)
1619 {
1620 
1621 	/*
1622 	 * Set up the scheduler specific parts of proc0.
1623 	 */
1624 	proc0.p_sched = NULL; /* XXX */
1625 	thread0.td_sched = &td_sched0;
1626 	td_sched0.ts_ltick = ticks;
1627 	td_sched0.ts_ftick = ticks;
1628 	td_sched0.ts_slice = 0;
1629 }
1630 
1631 /*
1632  * This is only somewhat accurate since given many processes of the same
1633  * priority they will switch when their slices run out, which will be
1634  * at most sched_slice stathz ticks.
1635  */
1636 int
1637 sched_rr_interval(void)
1638 {
1639 
1640 	/* Convert sched_slice from stathz to hz. */
1641 	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1642 }
1643 
1644 /*
1645  * Update the percent cpu tracking information when it is requested or
1646  * the total history exceeds the maximum.  We keep a sliding history of
1647  * tick counts that slowly decays.  This is less precise than the 4BSD
1648  * mechanism since it happens with less regular and frequent events.
1649  */
1650 static void
1651 sched_pctcpu_update(struct td_sched *ts, int run)
1652 {
1653 	int t = ticks;
1654 
1655 	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1656 		ts->ts_ticks = 0;
1657 		ts->ts_ftick = t - SCHED_TICK_TARG;
1658 	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1659 		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1660 		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1661 		ts->ts_ftick = t - SCHED_TICK_TARG;
1662 	}
1663 	if (run)
1664 		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1665 	ts->ts_ltick = t;
1666 }
1667 
1668 /*
1669  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1670  * if necessary.  This is the back-end for several priority related
1671  * functions.
1672  */
1673 static void
1674 sched_thread_priority(struct thread *td, u_char prio)
1675 {
1676 	struct td_sched *ts;
1677 	struct tdq *tdq;
1678 	int oldpri;
1679 
1680 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1681 	    "prio:%d", td->td_priority, "new prio:%d", prio,
1682 	    KTR_ATTR_LINKED, sched_tdname(curthread));
1683 	SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
1684 	if (td != curthread && prio < td->td_priority) {
1685 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1686 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1687 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1688 		SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio,
1689 		    curthread);
1690 	}
1691 	ts = td->td_sched;
1692 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1693 	if (td->td_priority == prio)
1694 		return;
1695 	/*
1696 	 * If the priority has been elevated due to priority
1697 	 * propagation, we may have to move ourselves to a new
1698 	 * queue.  This could be optimized to not re-add in some
1699 	 * cases.
1700 	 */
1701 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1702 		sched_rem(td);
1703 		td->td_priority = prio;
1704 		sched_add(td, SRQ_BORROWING);
1705 		return;
1706 	}
1707 	/*
1708 	 * If the thread is currently running we may have to adjust the lowpri
1709 	 * information so other cpus are aware of our current priority.
1710 	 */
1711 	if (TD_IS_RUNNING(td)) {
1712 		tdq = TDQ_CPU(ts->ts_cpu);
1713 		oldpri = td->td_priority;
1714 		td->td_priority = prio;
1715 		if (prio < tdq->tdq_lowpri)
1716 			tdq->tdq_lowpri = prio;
1717 		else if (tdq->tdq_lowpri == oldpri)
1718 			tdq_setlowpri(tdq, td);
1719 		return;
1720 	}
1721 	td->td_priority = prio;
1722 }
1723 
1724 /*
1725  * Update a thread's priority when it is lent another thread's
1726  * priority.
1727  */
1728 void
1729 sched_lend_prio(struct thread *td, u_char prio)
1730 {
1731 
1732 	td->td_flags |= TDF_BORROWING;
1733 	sched_thread_priority(td, prio);
1734 }
1735 
1736 /*
1737  * Restore a thread's priority when priority propagation is
1738  * over.  The prio argument is the minimum priority the thread
1739  * needs to have to satisfy other possible priority lending
1740  * requests.  If the thread's regular priority is less
1741  * important than prio, the thread will keep a priority boost
1742  * of prio.
1743  */
1744 void
1745 sched_unlend_prio(struct thread *td, u_char prio)
1746 {
1747 	u_char base_pri;
1748 
1749 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1750 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1751 		base_pri = td->td_user_pri;
1752 	else
1753 		base_pri = td->td_base_pri;
1754 	if (prio >= base_pri) {
1755 		td->td_flags &= ~TDF_BORROWING;
1756 		sched_thread_priority(td, base_pri);
1757 	} else
1758 		sched_lend_prio(td, prio);
1759 }
1760 
1761 /*
1762  * Standard entry for setting the priority to an absolute value.
1763  */
1764 void
1765 sched_prio(struct thread *td, u_char prio)
1766 {
1767 	u_char oldprio;
1768 
1769 	/* First, update the base priority. */
1770 	td->td_base_pri = prio;
1771 
1772 	/*
1773 	 * If the thread is borrowing another thread's priority, don't
1774 	 * ever lower the priority.
1775 	 */
1776 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1777 		return;
1778 
1779 	/* Change the real priority. */
1780 	oldprio = td->td_priority;
1781 	sched_thread_priority(td, prio);
1782 
1783 	/*
1784 	 * If the thread is on a turnstile, then let the turnstile update
1785 	 * its state.
1786 	 */
1787 	if (TD_ON_LOCK(td) && oldprio != prio)
1788 		turnstile_adjust(td, oldprio);
1789 }
1790 
1791 /*
1792  * Set the base user priority, does not effect current running priority.
1793  */
1794 void
1795 sched_user_prio(struct thread *td, u_char prio)
1796 {
1797 
1798 	td->td_base_user_pri = prio;
1799 	if (td->td_lend_user_pri <= prio)
1800 		return;
1801 	td->td_user_pri = prio;
1802 }
1803 
1804 void
1805 sched_lend_user_prio(struct thread *td, u_char prio)
1806 {
1807 
1808 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1809 	td->td_lend_user_pri = prio;
1810 	td->td_user_pri = min(prio, td->td_base_user_pri);
1811 	if (td->td_priority > td->td_user_pri)
1812 		sched_prio(td, td->td_user_pri);
1813 	else if (td->td_priority != td->td_user_pri)
1814 		td->td_flags |= TDF_NEEDRESCHED;
1815 }
1816 
1817 /*
1818  * Handle migration from sched_switch().  This happens only for
1819  * cpu binding.
1820  */
1821 static struct mtx *
1822 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1823 {
1824 	struct tdq *tdn;
1825 
1826 	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1827 #ifdef SMP
1828 	tdq_load_rem(tdq, td);
1829 	/*
1830 	 * Do the lock dance required to avoid LOR.  We grab an extra
1831 	 * spinlock nesting to prevent preemption while we're
1832 	 * not holding either run-queue lock.
1833 	 */
1834 	spinlock_enter();
1835 	thread_lock_block(td);	/* This releases the lock on tdq. */
1836 
1837 	/*
1838 	 * Acquire both run-queue locks before placing the thread on the new
1839 	 * run-queue to avoid deadlocks created by placing a thread with a
1840 	 * blocked lock on the run-queue of a remote processor.  The deadlock
1841 	 * occurs when a third processor attempts to lock the two queues in
1842 	 * question while the target processor is spinning with its own
1843 	 * run-queue lock held while waiting for the blocked lock to clear.
1844 	 */
1845 	tdq_lock_pair(tdn, tdq);
1846 	tdq_add(tdn, td, flags);
1847 	tdq_notify(tdn, td);
1848 	TDQ_UNLOCK(tdn);
1849 	spinlock_exit();
1850 #endif
1851 	return (TDQ_LOCKPTR(tdn));
1852 }
1853 
1854 /*
1855  * Variadic version of thread_lock_unblock() that does not assume td_lock
1856  * is blocked.
1857  */
1858 static inline void
1859 thread_unblock_switch(struct thread *td, struct mtx *mtx)
1860 {
1861 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1862 	    (uintptr_t)mtx);
1863 }
1864 
1865 /*
1866  * Switch threads.  This function has to handle threads coming in while
1867  * blocked for some reason, running, or idle.  It also must deal with
1868  * migrating a thread from one queue to another as running threads may
1869  * be assigned elsewhere via binding.
1870  */
1871 void
1872 sched_switch(struct thread *td, struct thread *newtd, int flags)
1873 {
1874 	struct tdq *tdq;
1875 	struct td_sched *ts;
1876 	struct mtx *mtx;
1877 	int srqflag;
1878 	int cpuid, preempted;
1879 
1880 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1881 	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1882 
1883 	cpuid = PCPU_GET(cpuid);
1884 	tdq = TDQ_CPU(cpuid);
1885 	ts = td->td_sched;
1886 	mtx = td->td_lock;
1887 	sched_pctcpu_update(ts, 1);
1888 	ts->ts_rltick = ticks;
1889 	td->td_lastcpu = td->td_oncpu;
1890 	td->td_oncpu = NOCPU;
1891 	preempted = !(td->td_flags & TDF_SLICEEND);
1892 	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1893 	td->td_owepreempt = 0;
1894 	if (!TD_IS_IDLETHREAD(td))
1895 		tdq->tdq_switchcnt++;
1896 	/*
1897 	 * The lock pointer in an idle thread should never change.  Reset it
1898 	 * to CAN_RUN as well.
1899 	 */
1900 	if (TD_IS_IDLETHREAD(td)) {
1901 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1902 		TD_SET_CAN_RUN(td);
1903 	} else if (TD_IS_RUNNING(td)) {
1904 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1905 		srqflag = preempted ?
1906 		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1907 		    SRQ_OURSELF|SRQ_YIELDING;
1908 #ifdef SMP
1909 		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1910 			ts->ts_cpu = sched_pickcpu(td, 0);
1911 #endif
1912 		if (ts->ts_cpu == cpuid)
1913 			tdq_runq_add(tdq, td, srqflag);
1914 		else {
1915 			KASSERT(THREAD_CAN_MIGRATE(td) ||
1916 			    (ts->ts_flags & TSF_BOUND) != 0,
1917 			    ("Thread %p shouldn't migrate", td));
1918 			mtx = sched_switch_migrate(tdq, td, srqflag);
1919 		}
1920 	} else {
1921 		/* This thread must be going to sleep. */
1922 		TDQ_LOCK(tdq);
1923 		mtx = thread_lock_block(td);
1924 		tdq_load_rem(tdq, td);
1925 	}
1926 	/*
1927 	 * We enter here with the thread blocked and assigned to the
1928 	 * appropriate cpu run-queue or sleep-queue and with the current
1929 	 * thread-queue locked.
1930 	 */
1931 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1932 	newtd = choosethread();
1933 	/*
1934 	 * Call the MD code to switch contexts if necessary.
1935 	 */
1936 	if (td != newtd) {
1937 #ifdef	HWPMC_HOOKS
1938 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1939 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1940 #endif
1941 		SDT_PROBE2(sched, , , off_cpu, newtd, newtd->td_proc);
1942 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1943 		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1944 		sched_pctcpu_update(newtd->td_sched, 0);
1945 
1946 #ifdef KDTRACE_HOOKS
1947 		/*
1948 		 * If DTrace has set the active vtime enum to anything
1949 		 * other than INACTIVE (0), then it should have set the
1950 		 * function to call.
1951 		 */
1952 		if (dtrace_vtime_active)
1953 			(*dtrace_vtime_switch_func)(newtd);
1954 #endif
1955 
1956 		cpu_switch(td, newtd, mtx);
1957 		/*
1958 		 * We may return from cpu_switch on a different cpu.  However,
1959 		 * we always return with td_lock pointing to the current cpu's
1960 		 * run queue lock.
1961 		 */
1962 		cpuid = PCPU_GET(cpuid);
1963 		tdq = TDQ_CPU(cpuid);
1964 		lock_profile_obtain_lock_success(
1965 		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1966 
1967 		SDT_PROBE0(sched, , , on_cpu);
1968 #ifdef	HWPMC_HOOKS
1969 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1970 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1971 #endif
1972 	} else {
1973 		thread_unblock_switch(td, mtx);
1974 		SDT_PROBE0(sched, , , remain_cpu);
1975 	}
1976 	/*
1977 	 * Assert that all went well and return.
1978 	 */
1979 	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1980 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1981 	td->td_oncpu = cpuid;
1982 }
1983 
1984 /*
1985  * Adjust thread priorities as a result of a nice request.
1986  */
1987 void
1988 sched_nice(struct proc *p, int nice)
1989 {
1990 	struct thread *td;
1991 
1992 	PROC_LOCK_ASSERT(p, MA_OWNED);
1993 
1994 	p->p_nice = nice;
1995 	FOREACH_THREAD_IN_PROC(p, td) {
1996 		thread_lock(td);
1997 		sched_priority(td);
1998 		sched_prio(td, td->td_base_user_pri);
1999 		thread_unlock(td);
2000 	}
2001 }
2002 
2003 /*
2004  * Record the sleep time for the interactivity scorer.
2005  */
2006 void
2007 sched_sleep(struct thread *td, int prio)
2008 {
2009 
2010 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2011 
2012 	td->td_slptick = ticks;
2013 	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
2014 		td->td_flags |= TDF_CANSWAP;
2015 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
2016 		return;
2017 	if (static_boost == 1 && prio)
2018 		sched_prio(td, prio);
2019 	else if (static_boost && td->td_priority > static_boost)
2020 		sched_prio(td, static_boost);
2021 }
2022 
2023 /*
2024  * Schedule a thread to resume execution and record how long it voluntarily
2025  * slept.  We also update the pctcpu, interactivity, and priority.
2026  */
2027 void
2028 sched_wakeup(struct thread *td)
2029 {
2030 	struct td_sched *ts;
2031 	int slptick;
2032 
2033 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2034 	ts = td->td_sched;
2035 	td->td_flags &= ~TDF_CANSWAP;
2036 	/*
2037 	 * If we slept for more than a tick update our interactivity and
2038 	 * priority.
2039 	 */
2040 	slptick = td->td_slptick;
2041 	td->td_slptick = 0;
2042 	if (slptick && slptick != ticks) {
2043 		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2044 		sched_interact_update(td);
2045 		sched_pctcpu_update(ts, 0);
2046 	}
2047 	/*
2048 	 * Reset the slice value since we slept and advanced the round-robin.
2049 	 */
2050 	ts->ts_slice = 0;
2051 	sched_add(td, SRQ_BORING);
2052 }
2053 
2054 /*
2055  * Penalize the parent for creating a new child and initialize the child's
2056  * priority.
2057  */
2058 void
2059 sched_fork(struct thread *td, struct thread *child)
2060 {
2061 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2062 	sched_pctcpu_update(td->td_sched, 1);
2063 	sched_fork_thread(td, child);
2064 	/*
2065 	 * Penalize the parent and child for forking.
2066 	 */
2067 	sched_interact_fork(child);
2068 	sched_priority(child);
2069 	td->td_sched->ts_runtime += tickincr;
2070 	sched_interact_update(td);
2071 	sched_priority(td);
2072 }
2073 
2074 /*
2075  * Fork a new thread, may be within the same process.
2076  */
2077 void
2078 sched_fork_thread(struct thread *td, struct thread *child)
2079 {
2080 	struct td_sched *ts;
2081 	struct td_sched *ts2;
2082 	struct tdq *tdq;
2083 
2084 	tdq = TDQ_SELF();
2085 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2086 	/*
2087 	 * Initialize child.
2088 	 */
2089 	ts = td->td_sched;
2090 	ts2 = child->td_sched;
2091 	child->td_lock = TDQ_LOCKPTR(tdq);
2092 	child->td_cpuset = cpuset_ref(td->td_cpuset);
2093 	ts2->ts_cpu = ts->ts_cpu;
2094 	ts2->ts_flags = 0;
2095 	/*
2096 	 * Grab our parents cpu estimation information.
2097 	 */
2098 	ts2->ts_ticks = ts->ts_ticks;
2099 	ts2->ts_ltick = ts->ts_ltick;
2100 	ts2->ts_ftick = ts->ts_ftick;
2101 	/*
2102 	 * Do not inherit any borrowed priority from the parent.
2103 	 */
2104 	child->td_priority = child->td_base_pri;
2105 	/*
2106 	 * And update interactivity score.
2107 	 */
2108 	ts2->ts_slptime = ts->ts_slptime;
2109 	ts2->ts_runtime = ts->ts_runtime;
2110 	/* Attempt to quickly learn interactivity. */
2111 	ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
2112 #ifdef KTR
2113 	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2114 #endif
2115 }
2116 
2117 /*
2118  * Adjust the priority class of a thread.
2119  */
2120 void
2121 sched_class(struct thread *td, int class)
2122 {
2123 
2124 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2125 	if (td->td_pri_class == class)
2126 		return;
2127 	td->td_pri_class = class;
2128 }
2129 
2130 /*
2131  * Return some of the child's priority and interactivity to the parent.
2132  */
2133 void
2134 sched_exit(struct proc *p, struct thread *child)
2135 {
2136 	struct thread *td;
2137 
2138 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2139 	    "prio:%d", child->td_priority);
2140 	PROC_LOCK_ASSERT(p, MA_OWNED);
2141 	td = FIRST_THREAD_IN_PROC(p);
2142 	sched_exit_thread(td, child);
2143 }
2144 
2145 /*
2146  * Penalize another thread for the time spent on this one.  This helps to
2147  * worsen the priority and interactivity of processes which schedule batch
2148  * jobs such as make.  This has little effect on the make process itself but
2149  * causes new processes spawned by it to receive worse scores immediately.
2150  */
2151 void
2152 sched_exit_thread(struct thread *td, struct thread *child)
2153 {
2154 
2155 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2156 	    "prio:%d", child->td_priority);
2157 	/*
2158 	 * Give the child's runtime to the parent without returning the
2159 	 * sleep time as a penalty to the parent.  This causes shells that
2160 	 * launch expensive things to mark their children as expensive.
2161 	 */
2162 	thread_lock(td);
2163 	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2164 	sched_interact_update(td);
2165 	sched_priority(td);
2166 	thread_unlock(td);
2167 }
2168 
2169 void
2170 sched_preempt(struct thread *td)
2171 {
2172 	struct tdq *tdq;
2173 
2174 	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2175 
2176 	thread_lock(td);
2177 	tdq = TDQ_SELF();
2178 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2179 	tdq->tdq_ipipending = 0;
2180 	if (td->td_priority > tdq->tdq_lowpri) {
2181 		int flags;
2182 
2183 		flags = SW_INVOL | SW_PREEMPT;
2184 		if (td->td_critnest > 1)
2185 			td->td_owepreempt = 1;
2186 		else if (TD_IS_IDLETHREAD(td))
2187 			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2188 		else
2189 			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2190 	}
2191 	thread_unlock(td);
2192 }
2193 
2194 /*
2195  * Fix priorities on return to user-space.  Priorities may be elevated due
2196  * to static priorities in msleep() or similar.
2197  */
2198 void
2199 sched_userret(struct thread *td)
2200 {
2201 	/*
2202 	 * XXX we cheat slightly on the locking here to avoid locking in
2203 	 * the usual case.  Setting td_priority here is essentially an
2204 	 * incomplete workaround for not setting it properly elsewhere.
2205 	 * Now that some interrupt handlers are threads, not setting it
2206 	 * properly elsewhere can clobber it in the window between setting
2207 	 * it here and returning to user mode, so don't waste time setting
2208 	 * it perfectly here.
2209 	 */
2210 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2211 	    ("thread with borrowed priority returning to userland"));
2212 	if (td->td_priority != td->td_user_pri) {
2213 		thread_lock(td);
2214 		td->td_priority = td->td_user_pri;
2215 		td->td_base_pri = td->td_user_pri;
2216 		tdq_setlowpri(TDQ_SELF(), td);
2217 		thread_unlock(td);
2218         }
2219 }
2220 
2221 /*
2222  * Handle a stathz tick.  This is really only relevant for timeshare
2223  * threads.
2224  */
2225 void
2226 sched_clock(struct thread *td)
2227 {
2228 	struct tdq *tdq;
2229 	struct td_sched *ts;
2230 
2231 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2232 	tdq = TDQ_SELF();
2233 #ifdef SMP
2234 	/*
2235 	 * We run the long term load balancer infrequently on the first cpu.
2236 	 */
2237 	if (balance_tdq == tdq) {
2238 		if (balance_ticks && --balance_ticks == 0)
2239 			sched_balance();
2240 	}
2241 #endif
2242 	/*
2243 	 * Save the old switch count so we have a record of the last ticks
2244 	 * activity.   Initialize the new switch count based on our load.
2245 	 * If there is some activity seed it to reflect that.
2246 	 */
2247 	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2248 	tdq->tdq_switchcnt = tdq->tdq_load;
2249 	/*
2250 	 * Advance the insert index once for each tick to ensure that all
2251 	 * threads get a chance to run.
2252 	 */
2253 	if (tdq->tdq_idx == tdq->tdq_ridx) {
2254 		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2255 		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2256 			tdq->tdq_ridx = tdq->tdq_idx;
2257 	}
2258 	ts = td->td_sched;
2259 	sched_pctcpu_update(ts, 1);
2260 	if (td->td_pri_class & PRI_FIFO_BIT)
2261 		return;
2262 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2263 		/*
2264 		 * We used a tick; charge it to the thread so
2265 		 * that we can compute our interactivity.
2266 		 */
2267 		td->td_sched->ts_runtime += tickincr;
2268 		sched_interact_update(td);
2269 		sched_priority(td);
2270 	}
2271 
2272 	/*
2273 	 * Force a context switch if the current thread has used up a full
2274 	 * time slice (default is 100ms).
2275 	 */
2276 	if (!TD_IS_IDLETHREAD(td) && ++ts->ts_slice >= tdq_slice(tdq)) {
2277 		ts->ts_slice = 0;
2278 		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2279 	}
2280 }
2281 
2282 /*
2283  * Called once per hz tick.
2284  */
2285 void
2286 sched_tick(int cnt)
2287 {
2288 
2289 }
2290 
2291 /*
2292  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2293  * cooperative idle threads.
2294  */
2295 int
2296 sched_runnable(void)
2297 {
2298 	struct tdq *tdq;
2299 	int load;
2300 
2301 	load = 1;
2302 
2303 	tdq = TDQ_SELF();
2304 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2305 		if (tdq->tdq_load > 0)
2306 			goto out;
2307 	} else
2308 		if (tdq->tdq_load - 1 > 0)
2309 			goto out;
2310 	load = 0;
2311 out:
2312 	return (load);
2313 }
2314 
2315 /*
2316  * Choose the highest priority thread to run.  The thread is removed from
2317  * the run-queue while running however the load remains.  For SMP we set
2318  * the tdq in the global idle bitmask if it idles here.
2319  */
2320 struct thread *
2321 sched_choose(void)
2322 {
2323 	struct thread *td;
2324 	struct tdq *tdq;
2325 
2326 	tdq = TDQ_SELF();
2327 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2328 	td = tdq_choose(tdq);
2329 	if (td) {
2330 		tdq_runq_rem(tdq, td);
2331 		tdq->tdq_lowpri = td->td_priority;
2332 		return (td);
2333 	}
2334 	tdq->tdq_lowpri = PRI_MAX_IDLE;
2335 	return (PCPU_GET(idlethread));
2336 }
2337 
2338 /*
2339  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2340  * we always request it once we exit a critical section.
2341  */
2342 static inline void
2343 sched_setpreempt(struct thread *td)
2344 {
2345 	struct thread *ctd;
2346 	int cpri;
2347 	int pri;
2348 
2349 	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2350 
2351 	ctd = curthread;
2352 	pri = td->td_priority;
2353 	cpri = ctd->td_priority;
2354 	if (pri < cpri)
2355 		ctd->td_flags |= TDF_NEEDRESCHED;
2356 	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2357 		return;
2358 	if (!sched_shouldpreempt(pri, cpri, 0))
2359 		return;
2360 	ctd->td_owepreempt = 1;
2361 }
2362 
2363 /*
2364  * Add a thread to a thread queue.  Select the appropriate runq and add the
2365  * thread to it.  This is the internal function called when the tdq is
2366  * predetermined.
2367  */
2368 void
2369 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2370 {
2371 
2372 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2373 	KASSERT((td->td_inhibitors == 0),
2374 	    ("sched_add: trying to run inhibited thread"));
2375 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2376 	    ("sched_add: bad thread state"));
2377 	KASSERT(td->td_flags & TDF_INMEM,
2378 	    ("sched_add: thread swapped out"));
2379 
2380 	if (td->td_priority < tdq->tdq_lowpri)
2381 		tdq->tdq_lowpri = td->td_priority;
2382 	tdq_runq_add(tdq, td, flags);
2383 	tdq_load_add(tdq, td);
2384 }
2385 
2386 /*
2387  * Select the target thread queue and add a thread to it.  Request
2388  * preemption or IPI a remote processor if required.
2389  */
2390 void
2391 sched_add(struct thread *td, int flags)
2392 {
2393 	struct tdq *tdq;
2394 #ifdef SMP
2395 	int cpu;
2396 #endif
2397 
2398 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2399 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2400 	    sched_tdname(curthread));
2401 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2402 	    KTR_ATTR_LINKED, sched_tdname(td));
2403 	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2404 	    flags & SRQ_PREEMPTED);
2405 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2406 	/*
2407 	 * Recalculate the priority before we select the target cpu or
2408 	 * run-queue.
2409 	 */
2410 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2411 		sched_priority(td);
2412 #ifdef SMP
2413 	/*
2414 	 * Pick the destination cpu and if it isn't ours transfer to the
2415 	 * target cpu.
2416 	 */
2417 	cpu = sched_pickcpu(td, flags);
2418 	tdq = sched_setcpu(td, cpu, flags);
2419 	tdq_add(tdq, td, flags);
2420 	if (cpu != PCPU_GET(cpuid)) {
2421 		tdq_notify(tdq, td);
2422 		return;
2423 	}
2424 #else
2425 	tdq = TDQ_SELF();
2426 	TDQ_LOCK(tdq);
2427 	/*
2428 	 * Now that the thread is moving to the run-queue, set the lock
2429 	 * to the scheduler's lock.
2430 	 */
2431 	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2432 	tdq_add(tdq, td, flags);
2433 #endif
2434 	if (!(flags & SRQ_YIELDING))
2435 		sched_setpreempt(td);
2436 }
2437 
2438 /*
2439  * Remove a thread from a run-queue without running it.  This is used
2440  * when we're stealing a thread from a remote queue.  Otherwise all threads
2441  * exit by calling sched_exit_thread() and sched_throw() themselves.
2442  */
2443 void
2444 sched_rem(struct thread *td)
2445 {
2446 	struct tdq *tdq;
2447 
2448 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2449 	    "prio:%d", td->td_priority);
2450 	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2451 	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2452 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2453 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2454 	KASSERT(TD_ON_RUNQ(td),
2455 	    ("sched_rem: thread not on run queue"));
2456 	tdq_runq_rem(tdq, td);
2457 	tdq_load_rem(tdq, td);
2458 	TD_SET_CAN_RUN(td);
2459 	if (td->td_priority == tdq->tdq_lowpri)
2460 		tdq_setlowpri(tdq, NULL);
2461 }
2462 
2463 /*
2464  * Fetch cpu utilization information.  Updates on demand.
2465  */
2466 fixpt_t
2467 sched_pctcpu(struct thread *td)
2468 {
2469 	fixpt_t pctcpu;
2470 	struct td_sched *ts;
2471 
2472 	pctcpu = 0;
2473 	ts = td->td_sched;
2474 	if (ts == NULL)
2475 		return (0);
2476 
2477 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2478 	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2479 	if (ts->ts_ticks) {
2480 		int rtick;
2481 
2482 		/* How many rtick per second ? */
2483 		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2484 		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2485 	}
2486 
2487 	return (pctcpu);
2488 }
2489 
2490 /*
2491  * Enforce affinity settings for a thread.  Called after adjustments to
2492  * cpumask.
2493  */
2494 void
2495 sched_affinity(struct thread *td)
2496 {
2497 #ifdef SMP
2498 	struct td_sched *ts;
2499 
2500 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2501 	ts = td->td_sched;
2502 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2503 		return;
2504 	if (TD_ON_RUNQ(td)) {
2505 		sched_rem(td);
2506 		sched_add(td, SRQ_BORING);
2507 		return;
2508 	}
2509 	if (!TD_IS_RUNNING(td))
2510 		return;
2511 	/*
2512 	 * Force a switch before returning to userspace.  If the
2513 	 * target thread is not running locally send an ipi to force
2514 	 * the issue.
2515 	 */
2516 	td->td_flags |= TDF_NEEDRESCHED;
2517 	if (td != curthread)
2518 		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2519 #endif
2520 }
2521 
2522 /*
2523  * Bind a thread to a target cpu.
2524  */
2525 void
2526 sched_bind(struct thread *td, int cpu)
2527 {
2528 	struct td_sched *ts;
2529 
2530 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2531 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2532 	ts = td->td_sched;
2533 	if (ts->ts_flags & TSF_BOUND)
2534 		sched_unbind(td);
2535 	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2536 	ts->ts_flags |= TSF_BOUND;
2537 	sched_pin();
2538 	if (PCPU_GET(cpuid) == cpu)
2539 		return;
2540 	ts->ts_cpu = cpu;
2541 	/* When we return from mi_switch we'll be on the correct cpu. */
2542 	mi_switch(SW_VOL, NULL);
2543 }
2544 
2545 /*
2546  * Release a bound thread.
2547  */
2548 void
2549 sched_unbind(struct thread *td)
2550 {
2551 	struct td_sched *ts;
2552 
2553 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2554 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2555 	ts = td->td_sched;
2556 	if ((ts->ts_flags & TSF_BOUND) == 0)
2557 		return;
2558 	ts->ts_flags &= ~TSF_BOUND;
2559 	sched_unpin();
2560 }
2561 
2562 int
2563 sched_is_bound(struct thread *td)
2564 {
2565 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2566 	return (td->td_sched->ts_flags & TSF_BOUND);
2567 }
2568 
2569 /*
2570  * Basic yield call.
2571  */
2572 void
2573 sched_relinquish(struct thread *td)
2574 {
2575 	thread_lock(td);
2576 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2577 	thread_unlock(td);
2578 }
2579 
2580 /*
2581  * Return the total system load.
2582  */
2583 int
2584 sched_load(void)
2585 {
2586 #ifdef SMP
2587 	int total;
2588 	int i;
2589 
2590 	total = 0;
2591 	CPU_FOREACH(i)
2592 		total += TDQ_CPU(i)->tdq_sysload;
2593 	return (total);
2594 #else
2595 	return (TDQ_SELF()->tdq_sysload);
2596 #endif
2597 }
2598 
2599 int
2600 sched_sizeof_proc(void)
2601 {
2602 	return (sizeof(struct proc));
2603 }
2604 
2605 int
2606 sched_sizeof_thread(void)
2607 {
2608 	return (sizeof(struct thread) + sizeof(struct td_sched));
2609 }
2610 
2611 #ifdef SMP
2612 #define	TDQ_IDLESPIN(tdq)						\
2613     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2614 #else
2615 #define	TDQ_IDLESPIN(tdq)	1
2616 #endif
2617 
2618 /*
2619  * The actual idle process.
2620  */
2621 void
2622 sched_idletd(void *dummy)
2623 {
2624 	struct thread *td;
2625 	struct tdq *tdq;
2626 	int oldswitchcnt, switchcnt;
2627 	int i;
2628 
2629 	mtx_assert(&Giant, MA_NOTOWNED);
2630 	td = curthread;
2631 	tdq = TDQ_SELF();
2632 	THREAD_NO_SLEEPING();
2633 	oldswitchcnt = -1;
2634 	for (;;) {
2635 		if (tdq->tdq_load) {
2636 			thread_lock(td);
2637 			mi_switch(SW_VOL | SWT_IDLE, NULL);
2638 			thread_unlock(td);
2639 		}
2640 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2641 #ifdef SMP
2642 		if (switchcnt != oldswitchcnt) {
2643 			oldswitchcnt = switchcnt;
2644 			if (tdq_idled(tdq) == 0)
2645 				continue;
2646 		}
2647 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2648 #else
2649 		oldswitchcnt = switchcnt;
2650 #endif
2651 		/*
2652 		 * If we're switching very frequently, spin while checking
2653 		 * for load rather than entering a low power state that
2654 		 * may require an IPI.  However, don't do any busy
2655 		 * loops while on SMT machines as this simply steals
2656 		 * cycles from cores doing useful work.
2657 		 */
2658 		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2659 			for (i = 0; i < sched_idlespins; i++) {
2660 				if (tdq->tdq_load)
2661 					break;
2662 				cpu_spinwait();
2663 			}
2664 		}
2665 
2666 		/* If there was context switch during spin, restart it. */
2667 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2668 		if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
2669 			continue;
2670 
2671 		/* Run main MD idle handler. */
2672 		tdq->tdq_cpu_idle = 1;
2673 		cpu_idle(switchcnt * 4 > sched_idlespinthresh);
2674 		tdq->tdq_cpu_idle = 0;
2675 
2676 		/*
2677 		 * Account thread-less hardware interrupts and
2678 		 * other wakeup reasons equal to context switches.
2679 		 */
2680 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2681 		if (switchcnt != oldswitchcnt)
2682 			continue;
2683 		tdq->tdq_switchcnt++;
2684 		oldswitchcnt++;
2685 	}
2686 }
2687 
2688 /*
2689  * A CPU is entering for the first time or a thread is exiting.
2690  */
2691 void
2692 sched_throw(struct thread *td)
2693 {
2694 	struct thread *newtd;
2695 	struct tdq *tdq;
2696 
2697 	tdq = TDQ_SELF();
2698 	if (td == NULL) {
2699 		/* Correct spinlock nesting and acquire the correct lock. */
2700 		TDQ_LOCK(tdq);
2701 		spinlock_exit();
2702 		PCPU_SET(switchtime, cpu_ticks());
2703 		PCPU_SET(switchticks, ticks);
2704 	} else {
2705 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2706 		tdq_load_rem(tdq, td);
2707 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2708 	}
2709 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2710 	newtd = choosethread();
2711 	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2712 	cpu_throw(td, newtd);		/* doesn't return */
2713 }
2714 
2715 /*
2716  * This is called from fork_exit().  Just acquire the correct locks and
2717  * let fork do the rest of the work.
2718  */
2719 void
2720 sched_fork_exit(struct thread *td)
2721 {
2722 	struct td_sched *ts;
2723 	struct tdq *tdq;
2724 	int cpuid;
2725 
2726 	/*
2727 	 * Finish setting up thread glue so that it begins execution in a
2728 	 * non-nested critical section with the scheduler lock held.
2729 	 */
2730 	cpuid = PCPU_GET(cpuid);
2731 	tdq = TDQ_CPU(cpuid);
2732 	ts = td->td_sched;
2733 	if (TD_IS_IDLETHREAD(td))
2734 		td->td_lock = TDQ_LOCKPTR(tdq);
2735 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2736 	td->td_oncpu = cpuid;
2737 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2738 	lock_profile_obtain_lock_success(
2739 	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2740 }
2741 
2742 /*
2743  * Create on first use to catch odd startup conditons.
2744  */
2745 char *
2746 sched_tdname(struct thread *td)
2747 {
2748 #ifdef KTR
2749 	struct td_sched *ts;
2750 
2751 	ts = td->td_sched;
2752 	if (ts->ts_name[0] == '\0')
2753 		snprintf(ts->ts_name, sizeof(ts->ts_name),
2754 		    "%s tid %d", td->td_name, td->td_tid);
2755 	return (ts->ts_name);
2756 #else
2757 	return (td->td_name);
2758 #endif
2759 }
2760 
2761 #ifdef KTR
2762 void
2763 sched_clear_tdname(struct thread *td)
2764 {
2765 	struct td_sched *ts;
2766 
2767 	ts = td->td_sched;
2768 	ts->ts_name[0] = '\0';
2769 }
2770 #endif
2771 
2772 #ifdef SMP
2773 
2774 /*
2775  * Build the CPU topology dump string. Is recursively called to collect
2776  * the topology tree.
2777  */
2778 static int
2779 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2780     int indent)
2781 {
2782 	char cpusetbuf[CPUSETBUFSIZ];
2783 	int i, first;
2784 
2785 	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2786 	    "", 1 + indent / 2, cg->cg_level);
2787 	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2788 	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2789 	first = TRUE;
2790 	for (i = 0; i < MAXCPU; i++) {
2791 		if (CPU_ISSET(i, &cg->cg_mask)) {
2792 			if (!first)
2793 				sbuf_printf(sb, ", ");
2794 			else
2795 				first = FALSE;
2796 			sbuf_printf(sb, "%d", i);
2797 		}
2798 	}
2799 	sbuf_printf(sb, "</cpu>\n");
2800 
2801 	if (cg->cg_flags != 0) {
2802 		sbuf_printf(sb, "%*s <flags>", indent, "");
2803 		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2804 			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2805 		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2806 			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2807 		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2808 			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2809 		sbuf_printf(sb, "</flags>\n");
2810 	}
2811 
2812 	if (cg->cg_children > 0) {
2813 		sbuf_printf(sb, "%*s <children>\n", indent, "");
2814 		for (i = 0; i < cg->cg_children; i++)
2815 			sysctl_kern_sched_topology_spec_internal(sb,
2816 			    &cg->cg_child[i], indent+2);
2817 		sbuf_printf(sb, "%*s </children>\n", indent, "");
2818 	}
2819 	sbuf_printf(sb, "%*s</group>\n", indent, "");
2820 	return (0);
2821 }
2822 
2823 /*
2824  * Sysctl handler for retrieving topology dump. It's a wrapper for
2825  * the recursive sysctl_kern_smp_topology_spec_internal().
2826  */
2827 static int
2828 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2829 {
2830 	struct sbuf *topo;
2831 	int err;
2832 
2833 	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2834 
2835 	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2836 	if (topo == NULL)
2837 		return (ENOMEM);
2838 
2839 	sbuf_printf(topo, "<groups>\n");
2840 	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2841 	sbuf_printf(topo, "</groups>\n");
2842 
2843 	if (err == 0) {
2844 		sbuf_finish(topo);
2845 		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2846 	}
2847 	sbuf_delete(topo);
2848 	return (err);
2849 }
2850 
2851 #endif
2852 
2853 static int
2854 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
2855 {
2856 	int error, new_val, period;
2857 
2858 	period = 1000000 / realstathz;
2859 	new_val = period * sched_slice;
2860 	error = sysctl_handle_int(oidp, &new_val, 0, req);
2861 	if (error != 0 || req->newptr == NULL)
2862 		return (error);
2863 	if (new_val <= 0)
2864 		return (EINVAL);
2865 	sched_slice = imax(1, (new_val + period / 2) / period);
2866 	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
2867 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
2868 	    realstathz);
2869 	return (0);
2870 }
2871 
2872 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2873 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2874     "Scheduler name");
2875 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
2876     NULL, 0, sysctl_kern_quantum, "I",
2877     "Quantum for timeshare threads in microseconds");
2878 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2879     "Quantum for timeshare threads in stathz ticks");
2880 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2881     "Interactivity score threshold");
2882 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
2883     &preempt_thresh, 0,
2884     "Maximal (lowest) priority for preemption");
2885 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
2886     "Assign static kernel priorities to sleeping threads");
2887 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
2888     "Number of times idle thread will spin waiting for new work");
2889 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
2890     &sched_idlespinthresh, 0,
2891     "Threshold before we will permit idle thread spinning");
2892 #ifdef SMP
2893 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2894     "Number of hz ticks to keep thread affinity for");
2895 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2896     "Enables the long-term load balancer");
2897 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2898     &balance_interval, 0,
2899     "Average period in stathz ticks to run the long-term balancer");
2900 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2901     "Attempts to steal work from other cores before idling");
2902 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2903     "Minimum load on remote CPU before we'll steal");
2904 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2905     CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2906     "XML dump of detected CPU topology");
2907 #endif
2908 
2909 /* ps compat.  All cpu percentages from ULE are weighted. */
2910 static int ccpu = 0;
2911 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2912