1 /*- 2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* 28 * This file implements the ULE scheduler. ULE supports independent CPU 29 * run queues and fine grain locking. It has superior interactive 30 * performance under load even on uni-processor systems. 31 * 32 * etymology: 33 * ULE is the last three letters in schedule. It owes its name to a 34 * generic user created for a scheduling system by Paul Mikesell at 35 * Isilon Systems and a general lack of creativity on the part of the author. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_hwpmc_hooks.h" 42 #include "opt_kdtrace.h" 43 #include "opt_sched.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/kdb.h> 48 #include <sys/kernel.h> 49 #include <sys/ktr.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/proc.h> 53 #include <sys/resource.h> 54 #include <sys/resourcevar.h> 55 #include <sys/sched.h> 56 #include <sys/sdt.h> 57 #include <sys/smp.h> 58 #include <sys/sx.h> 59 #include <sys/sysctl.h> 60 #include <sys/sysproto.h> 61 #include <sys/turnstile.h> 62 #include <sys/umtx.h> 63 #include <sys/vmmeter.h> 64 #include <sys/cpuset.h> 65 #include <sys/sbuf.h> 66 67 #ifdef HWPMC_HOOKS 68 #include <sys/pmckern.h> 69 #endif 70 71 #ifdef KDTRACE_HOOKS 72 #include <sys/dtrace_bsd.h> 73 int dtrace_vtime_active; 74 dtrace_vtime_switch_func_t dtrace_vtime_switch_func; 75 #endif 76 77 #include <machine/cpu.h> 78 #include <machine/smp.h> 79 80 #if defined(__powerpc__) && defined(BOOKE_E500) 81 #error "This architecture is not currently compatible with ULE" 82 #endif 83 84 #define KTR_ULE 0 85 86 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX))) 87 #define TDQ_NAME_LEN (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU))) 88 #define TDQ_LOADNAME_LEN (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load")) 89 90 /* 91 * Thread scheduler specific section. All fields are protected 92 * by the thread lock. 93 */ 94 struct td_sched { 95 struct runq *ts_runq; /* Run-queue we're queued on. */ 96 short ts_flags; /* TSF_* flags. */ 97 u_char ts_cpu; /* CPU that we have affinity for. */ 98 int ts_rltick; /* Real last tick, for affinity. */ 99 int ts_slice; /* Ticks of slice remaining. */ 100 u_int ts_slptime; /* Number of ticks we vol. slept */ 101 u_int ts_runtime; /* Number of ticks we were running */ 102 int ts_ltick; /* Last tick that we were running on */ 103 int ts_ftick; /* First tick that we were running on */ 104 int ts_ticks; /* Tick count */ 105 #ifdef KTR 106 char ts_name[TS_NAME_LEN]; 107 #endif 108 }; 109 /* flags kept in ts_flags */ 110 #define TSF_BOUND 0x0001 /* Thread can not migrate. */ 111 #define TSF_XFERABLE 0x0002 /* Thread was added as transferable. */ 112 113 static struct td_sched td_sched0; 114 115 #define THREAD_CAN_MIGRATE(td) ((td)->td_pinned == 0) 116 #define THREAD_CAN_SCHED(td, cpu) \ 117 CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask) 118 119 /* 120 * Priority ranges used for interactive and non-interactive timeshare 121 * threads. The timeshare priorities are split up into four ranges. 122 * The first range handles interactive threads. The last three ranges 123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer 124 * ranges supporting nice values. 125 */ 126 #define PRI_TIMESHARE_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1) 127 #define PRI_INTERACT_RANGE ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2) 128 #define PRI_BATCH_RANGE (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE) 129 130 #define PRI_MIN_INTERACT PRI_MIN_TIMESHARE 131 #define PRI_MAX_INTERACT (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1) 132 #define PRI_MIN_BATCH (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE) 133 #define PRI_MAX_BATCH PRI_MAX_TIMESHARE 134 135 /* 136 * Cpu percentage computation macros and defines. 137 * 138 * SCHED_TICK_SECS: Number of seconds to average the cpu usage across. 139 * SCHED_TICK_TARG: Number of hz ticks to average the cpu usage across. 140 * SCHED_TICK_MAX: Maximum number of ticks before scaling back. 141 * SCHED_TICK_SHIFT: Shift factor to avoid rounding away results. 142 * SCHED_TICK_HZ: Compute the number of hz ticks for a given ticks count. 143 * SCHED_TICK_TOTAL: Gives the amount of time we've been recording ticks. 144 */ 145 #define SCHED_TICK_SECS 10 146 #define SCHED_TICK_TARG (hz * SCHED_TICK_SECS) 147 #define SCHED_TICK_MAX (SCHED_TICK_TARG + hz) 148 #define SCHED_TICK_SHIFT 10 149 #define SCHED_TICK_HZ(ts) ((ts)->ts_ticks >> SCHED_TICK_SHIFT) 150 #define SCHED_TICK_TOTAL(ts) (max((ts)->ts_ltick - (ts)->ts_ftick, hz)) 151 152 /* 153 * These macros determine priorities for non-interactive threads. They are 154 * assigned a priority based on their recent cpu utilization as expressed 155 * by the ratio of ticks to the tick total. NHALF priorities at the start 156 * and end of the MIN to MAX timeshare range are only reachable with negative 157 * or positive nice respectively. 158 * 159 * PRI_RANGE: Priority range for utilization dependent priorities. 160 * PRI_NRESV: Number of nice values. 161 * PRI_TICKS: Compute a priority in PRI_RANGE from the ticks count and total. 162 * PRI_NICE: Determines the part of the priority inherited from nice. 163 */ 164 #define SCHED_PRI_NRESV (PRIO_MAX - PRIO_MIN) 165 #define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2) 166 #define SCHED_PRI_MIN (PRI_MIN_BATCH + SCHED_PRI_NHALF) 167 #define SCHED_PRI_MAX (PRI_MAX_BATCH - SCHED_PRI_NHALF) 168 #define SCHED_PRI_RANGE (SCHED_PRI_MAX - SCHED_PRI_MIN + 1) 169 #define SCHED_PRI_TICKS(ts) \ 170 (SCHED_TICK_HZ((ts)) / \ 171 (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE)) 172 #define SCHED_PRI_NICE(nice) (nice) 173 174 /* 175 * These determine the interactivity of a process. Interactivity differs from 176 * cpu utilization in that it expresses the voluntary time slept vs time ran 177 * while cpu utilization includes all time not running. This more accurately 178 * models the intent of the thread. 179 * 180 * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate 181 * before throttling back. 182 * SLP_RUN_FORK: Maximum slp+run time to inherit at fork time. 183 * INTERACT_MAX: Maximum interactivity value. Smaller is better. 184 * INTERACT_THRESH: Threshold for placement on the current runq. 185 */ 186 #define SCHED_SLP_RUN_MAX ((hz * 5) << SCHED_TICK_SHIFT) 187 #define SCHED_SLP_RUN_FORK ((hz / 2) << SCHED_TICK_SHIFT) 188 #define SCHED_INTERACT_MAX (100) 189 #define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2) 190 #define SCHED_INTERACT_THRESH (30) 191 192 /* 193 * These parameters determine the slice behavior for batch work. 194 */ 195 #define SCHED_SLICE_DEFAULT_DIVISOR 10 /* ~94 ms, 12 stathz ticks. */ 196 #define SCHED_SLICE_MIN_DIVISOR 6 /* DEFAULT/MIN = ~16 ms. */ 197 198 /* Flags kept in td_flags. */ 199 #define TDF_SLICEEND TDF_SCHED2 /* Thread time slice is over. */ 200 201 /* 202 * tickincr: Converts a stathz tick into a hz domain scaled by 203 * the shift factor. Without the shift the error rate 204 * due to rounding would be unacceptably high. 205 * realstathz: stathz is sometimes 0 and run off of hz. 206 * sched_slice: Runtime of each thread before rescheduling. 207 * preempt_thresh: Priority threshold for preemption and remote IPIs. 208 */ 209 static int sched_interact = SCHED_INTERACT_THRESH; 210 static int tickincr = 8 << SCHED_TICK_SHIFT; 211 static int realstathz = 127; /* reset during boot. */ 212 static int sched_slice = 10; /* reset during boot. */ 213 static int sched_slice_min = 1; /* reset during boot. */ 214 #ifdef PREEMPTION 215 #ifdef FULL_PREEMPTION 216 static int preempt_thresh = PRI_MAX_IDLE; 217 #else 218 static int preempt_thresh = PRI_MIN_KERN; 219 #endif 220 #else 221 static int preempt_thresh = 0; 222 #endif 223 static int static_boost = PRI_MIN_BATCH; 224 static int sched_idlespins = 10000; 225 static int sched_idlespinthresh = -1; 226 227 /* 228 * tdq - per processor runqs and statistics. All fields are protected by the 229 * tdq_lock. The load and lowpri may be accessed without to avoid excess 230 * locking in sched_pickcpu(); 231 */ 232 struct tdq { 233 /* 234 * Ordered to improve efficiency of cpu_search() and switch(). 235 * tdq_lock is padded to avoid false sharing with tdq_load and 236 * tdq_cpu_idle. 237 */ 238 struct mtx_padalign tdq_lock; /* run queue lock. */ 239 struct cpu_group *tdq_cg; /* Pointer to cpu topology. */ 240 volatile int tdq_load; /* Aggregate load. */ 241 volatile int tdq_cpu_idle; /* cpu_idle() is active. */ 242 int tdq_sysload; /* For loadavg, !ITHD load. */ 243 int tdq_transferable; /* Transferable thread count. */ 244 short tdq_switchcnt; /* Switches this tick. */ 245 short tdq_oldswitchcnt; /* Switches last tick. */ 246 u_char tdq_lowpri; /* Lowest priority thread. */ 247 u_char tdq_ipipending; /* IPI pending. */ 248 u_char tdq_idx; /* Current insert index. */ 249 u_char tdq_ridx; /* Current removal index. */ 250 struct runq tdq_realtime; /* real-time run queue. */ 251 struct runq tdq_timeshare; /* timeshare run queue. */ 252 struct runq tdq_idle; /* Queue of IDLE threads. */ 253 char tdq_name[TDQ_NAME_LEN]; 254 #ifdef KTR 255 char tdq_loadname[TDQ_LOADNAME_LEN]; 256 #endif 257 } __aligned(64); 258 259 /* Idle thread states and config. */ 260 #define TDQ_RUNNING 1 261 #define TDQ_IDLE 2 262 263 #ifdef SMP 264 struct cpu_group *cpu_top; /* CPU topology */ 265 266 #define SCHED_AFFINITY_DEFAULT (max(1, hz / 1000)) 267 #define SCHED_AFFINITY(ts, t) ((ts)->ts_rltick > ticks - ((t) * affinity)) 268 269 /* 270 * Run-time tunables. 271 */ 272 static int rebalance = 1; 273 static int balance_interval = 128; /* Default set in sched_initticks(). */ 274 static int affinity; 275 static int steal_idle = 1; 276 static int steal_thresh = 2; 277 278 /* 279 * One thread queue per processor. 280 */ 281 static struct tdq tdq_cpu[MAXCPU]; 282 static struct tdq *balance_tdq; 283 static int balance_ticks; 284 static DPCPU_DEFINE(uint32_t, randomval); 285 286 #define TDQ_SELF() (&tdq_cpu[PCPU_GET(cpuid)]) 287 #define TDQ_CPU(x) (&tdq_cpu[(x)]) 288 #define TDQ_ID(x) ((int)((x) - tdq_cpu)) 289 #else /* !SMP */ 290 static struct tdq tdq_cpu; 291 292 #define TDQ_ID(x) (0) 293 #define TDQ_SELF() (&tdq_cpu) 294 #define TDQ_CPU(x) (&tdq_cpu) 295 #endif 296 297 #define TDQ_LOCK_ASSERT(t, type) mtx_assert(TDQ_LOCKPTR((t)), (type)) 298 #define TDQ_LOCK(t) mtx_lock_spin(TDQ_LOCKPTR((t))) 299 #define TDQ_LOCK_FLAGS(t, f) mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f)) 300 #define TDQ_UNLOCK(t) mtx_unlock_spin(TDQ_LOCKPTR((t))) 301 #define TDQ_LOCKPTR(t) ((struct mtx *)(&(t)->tdq_lock)) 302 303 static void sched_priority(struct thread *); 304 static void sched_thread_priority(struct thread *, u_char); 305 static int sched_interact_score(struct thread *); 306 static void sched_interact_update(struct thread *); 307 static void sched_interact_fork(struct thread *); 308 static void sched_pctcpu_update(struct td_sched *, int); 309 310 /* Operations on per processor queues */ 311 static struct thread *tdq_choose(struct tdq *); 312 static void tdq_setup(struct tdq *); 313 static void tdq_load_add(struct tdq *, struct thread *); 314 static void tdq_load_rem(struct tdq *, struct thread *); 315 static __inline void tdq_runq_add(struct tdq *, struct thread *, int); 316 static __inline void tdq_runq_rem(struct tdq *, struct thread *); 317 static inline int sched_shouldpreempt(int, int, int); 318 void tdq_print(int cpu); 319 static void runq_print(struct runq *rq); 320 static void tdq_add(struct tdq *, struct thread *, int); 321 #ifdef SMP 322 static int tdq_move(struct tdq *, struct tdq *); 323 static int tdq_idled(struct tdq *); 324 static void tdq_notify(struct tdq *, struct thread *); 325 static struct thread *tdq_steal(struct tdq *, int); 326 static struct thread *runq_steal(struct runq *, int); 327 static int sched_pickcpu(struct thread *, int); 328 static void sched_balance(void); 329 static int sched_balance_pair(struct tdq *, struct tdq *); 330 static inline struct tdq *sched_setcpu(struct thread *, int, int); 331 static inline void thread_unblock_switch(struct thread *, struct mtx *); 332 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int); 333 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS); 334 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 335 struct cpu_group *cg, int indent); 336 #endif 337 338 static void sched_setup(void *dummy); 339 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL); 340 341 static void sched_initticks(void *dummy); 342 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, 343 NULL); 344 345 SDT_PROVIDER_DEFINE(sched); 346 347 SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *", 348 "struct proc *", "uint8_t"); 349 SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *", 350 "struct proc *", "void *"); 351 SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *", 352 "struct proc *", "void *", "int"); 353 SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *", 354 "struct proc *", "uint8_t", "struct thread *"); 355 SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int"); 356 SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *", 357 "struct proc *"); 358 SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu); 359 SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu); 360 SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *", 361 "struct proc *"); 362 363 /* 364 * Print the threads waiting on a run-queue. 365 */ 366 static void 367 runq_print(struct runq *rq) 368 { 369 struct rqhead *rqh; 370 struct thread *td; 371 int pri; 372 int j; 373 int i; 374 375 for (i = 0; i < RQB_LEN; i++) { 376 printf("\t\trunq bits %d 0x%zx\n", 377 i, rq->rq_status.rqb_bits[i]); 378 for (j = 0; j < RQB_BPW; j++) 379 if (rq->rq_status.rqb_bits[i] & (1ul << j)) { 380 pri = j + (i << RQB_L2BPW); 381 rqh = &rq->rq_queues[pri]; 382 TAILQ_FOREACH(td, rqh, td_runq) { 383 printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n", 384 td, td->td_name, td->td_priority, 385 td->td_rqindex, pri); 386 } 387 } 388 } 389 } 390 391 /* 392 * Print the status of a per-cpu thread queue. Should be a ddb show cmd. 393 */ 394 void 395 tdq_print(int cpu) 396 { 397 struct tdq *tdq; 398 399 tdq = TDQ_CPU(cpu); 400 401 printf("tdq %d:\n", TDQ_ID(tdq)); 402 printf("\tlock %p\n", TDQ_LOCKPTR(tdq)); 403 printf("\tLock name: %s\n", tdq->tdq_name); 404 printf("\tload: %d\n", tdq->tdq_load); 405 printf("\tswitch cnt: %d\n", tdq->tdq_switchcnt); 406 printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt); 407 printf("\ttimeshare idx: %d\n", tdq->tdq_idx); 408 printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx); 409 printf("\tload transferable: %d\n", tdq->tdq_transferable); 410 printf("\tlowest priority: %d\n", tdq->tdq_lowpri); 411 printf("\trealtime runq:\n"); 412 runq_print(&tdq->tdq_realtime); 413 printf("\ttimeshare runq:\n"); 414 runq_print(&tdq->tdq_timeshare); 415 printf("\tidle runq:\n"); 416 runq_print(&tdq->tdq_idle); 417 } 418 419 static inline int 420 sched_shouldpreempt(int pri, int cpri, int remote) 421 { 422 /* 423 * If the new priority is not better than the current priority there is 424 * nothing to do. 425 */ 426 if (pri >= cpri) 427 return (0); 428 /* 429 * Always preempt idle. 430 */ 431 if (cpri >= PRI_MIN_IDLE) 432 return (1); 433 /* 434 * If preemption is disabled don't preempt others. 435 */ 436 if (preempt_thresh == 0) 437 return (0); 438 /* 439 * Preempt if we exceed the threshold. 440 */ 441 if (pri <= preempt_thresh) 442 return (1); 443 /* 444 * If we're interactive or better and there is non-interactive 445 * or worse running preempt only remote processors. 446 */ 447 if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT) 448 return (1); 449 return (0); 450 } 451 452 /* 453 * Add a thread to the actual run-queue. Keeps transferable counts up to 454 * date with what is actually on the run-queue. Selects the correct 455 * queue position for timeshare threads. 456 */ 457 static __inline void 458 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags) 459 { 460 struct td_sched *ts; 461 u_char pri; 462 463 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 464 THREAD_LOCK_ASSERT(td, MA_OWNED); 465 466 pri = td->td_priority; 467 ts = td->td_sched; 468 TD_SET_RUNQ(td); 469 if (THREAD_CAN_MIGRATE(td)) { 470 tdq->tdq_transferable++; 471 ts->ts_flags |= TSF_XFERABLE; 472 } 473 if (pri < PRI_MIN_BATCH) { 474 ts->ts_runq = &tdq->tdq_realtime; 475 } else if (pri <= PRI_MAX_BATCH) { 476 ts->ts_runq = &tdq->tdq_timeshare; 477 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH, 478 ("Invalid priority %d on timeshare runq", pri)); 479 /* 480 * This queue contains only priorities between MIN and MAX 481 * realtime. Use the whole queue to represent these values. 482 */ 483 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) { 484 pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE; 485 pri = (pri + tdq->tdq_idx) % RQ_NQS; 486 /* 487 * This effectively shortens the queue by one so we 488 * can have a one slot difference between idx and 489 * ridx while we wait for threads to drain. 490 */ 491 if (tdq->tdq_ridx != tdq->tdq_idx && 492 pri == tdq->tdq_ridx) 493 pri = (unsigned char)(pri - 1) % RQ_NQS; 494 } else 495 pri = tdq->tdq_ridx; 496 runq_add_pri(ts->ts_runq, td, pri, flags); 497 return; 498 } else 499 ts->ts_runq = &tdq->tdq_idle; 500 runq_add(ts->ts_runq, td, flags); 501 } 502 503 /* 504 * Remove a thread from a run-queue. This typically happens when a thread 505 * is selected to run. Running threads are not on the queue and the 506 * transferable count does not reflect them. 507 */ 508 static __inline void 509 tdq_runq_rem(struct tdq *tdq, struct thread *td) 510 { 511 struct td_sched *ts; 512 513 ts = td->td_sched; 514 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 515 KASSERT(ts->ts_runq != NULL, 516 ("tdq_runq_remove: thread %p null ts_runq", td)); 517 if (ts->ts_flags & TSF_XFERABLE) { 518 tdq->tdq_transferable--; 519 ts->ts_flags &= ~TSF_XFERABLE; 520 } 521 if (ts->ts_runq == &tdq->tdq_timeshare) { 522 if (tdq->tdq_idx != tdq->tdq_ridx) 523 runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx); 524 else 525 runq_remove_idx(ts->ts_runq, td, NULL); 526 } else 527 runq_remove(ts->ts_runq, td); 528 } 529 530 /* 531 * Load is maintained for all threads RUNNING and ON_RUNQ. Add the load 532 * for this thread to the referenced thread queue. 533 */ 534 static void 535 tdq_load_add(struct tdq *tdq, struct thread *td) 536 { 537 538 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 539 THREAD_LOCK_ASSERT(td, MA_OWNED); 540 541 tdq->tdq_load++; 542 if ((td->td_flags & TDF_NOLOAD) == 0) 543 tdq->tdq_sysload++; 544 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 545 SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load); 546 } 547 548 /* 549 * Remove the load from a thread that is transitioning to a sleep state or 550 * exiting. 551 */ 552 static void 553 tdq_load_rem(struct tdq *tdq, struct thread *td) 554 { 555 556 THREAD_LOCK_ASSERT(td, MA_OWNED); 557 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 558 KASSERT(tdq->tdq_load != 0, 559 ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq))); 560 561 tdq->tdq_load--; 562 if ((td->td_flags & TDF_NOLOAD) == 0) 563 tdq->tdq_sysload--; 564 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 565 SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load); 566 } 567 568 /* 569 * Bound timeshare latency by decreasing slice size as load increases. We 570 * consider the maximum latency as the sum of the threads waiting to run 571 * aside from curthread and target no more than sched_slice latency but 572 * no less than sched_slice_min runtime. 573 */ 574 static inline int 575 tdq_slice(struct tdq *tdq) 576 { 577 int load; 578 579 /* 580 * It is safe to use sys_load here because this is called from 581 * contexts where timeshare threads are running and so there 582 * cannot be higher priority load in the system. 583 */ 584 load = tdq->tdq_sysload - 1; 585 if (load >= SCHED_SLICE_MIN_DIVISOR) 586 return (sched_slice_min); 587 if (load <= 1) 588 return (sched_slice); 589 return (sched_slice / load); 590 } 591 592 /* 593 * Set lowpri to its exact value by searching the run-queue and 594 * evaluating curthread. curthread may be passed as an optimization. 595 */ 596 static void 597 tdq_setlowpri(struct tdq *tdq, struct thread *ctd) 598 { 599 struct thread *td; 600 601 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 602 if (ctd == NULL) 603 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread; 604 td = tdq_choose(tdq); 605 if (td == NULL || td->td_priority > ctd->td_priority) 606 tdq->tdq_lowpri = ctd->td_priority; 607 else 608 tdq->tdq_lowpri = td->td_priority; 609 } 610 611 #ifdef SMP 612 struct cpu_search { 613 cpuset_t cs_mask; 614 u_int cs_prefer; 615 int cs_pri; /* Min priority for low. */ 616 int cs_limit; /* Max load for low, min load for high. */ 617 int cs_cpu; 618 int cs_load; 619 }; 620 621 #define CPU_SEARCH_LOWEST 0x1 622 #define CPU_SEARCH_HIGHEST 0x2 623 #define CPU_SEARCH_BOTH (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST) 624 625 #define CPUSET_FOREACH(cpu, mask) \ 626 for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++) \ 627 if (CPU_ISSET(cpu, &mask)) 628 629 static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low, 630 struct cpu_search *high, const int match); 631 int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low); 632 int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high); 633 int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low, 634 struct cpu_search *high); 635 636 /* 637 * Search the tree of cpu_groups for the lowest or highest loaded cpu 638 * according to the match argument. This routine actually compares the 639 * load on all paths through the tree and finds the least loaded cpu on 640 * the least loaded path, which may differ from the least loaded cpu in 641 * the system. This balances work among caches and busses. 642 * 643 * This inline is instantiated in three forms below using constants for the 644 * match argument. It is reduced to the minimum set for each case. It is 645 * also recursive to the depth of the tree. 646 */ 647 static __inline int 648 cpu_search(const struct cpu_group *cg, struct cpu_search *low, 649 struct cpu_search *high, const int match) 650 { 651 struct cpu_search lgroup; 652 struct cpu_search hgroup; 653 cpuset_t cpumask; 654 struct cpu_group *child; 655 struct tdq *tdq; 656 int cpu, i, hload, lload, load, total, rnd, *rndptr; 657 658 total = 0; 659 cpumask = cg->cg_mask; 660 if (match & CPU_SEARCH_LOWEST) { 661 lload = INT_MAX; 662 lgroup = *low; 663 } 664 if (match & CPU_SEARCH_HIGHEST) { 665 hload = INT_MIN; 666 hgroup = *high; 667 } 668 669 /* Iterate through the child CPU groups and then remaining CPUs. */ 670 for (i = cg->cg_children, cpu = mp_maxid; ; ) { 671 if (i == 0) { 672 #ifdef HAVE_INLINE_FFSL 673 cpu = CPU_FFS(&cpumask) - 1; 674 #else 675 while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask)) 676 cpu--; 677 #endif 678 if (cpu < 0) 679 break; 680 child = NULL; 681 } else 682 child = &cg->cg_child[i - 1]; 683 684 if (match & CPU_SEARCH_LOWEST) 685 lgroup.cs_cpu = -1; 686 if (match & CPU_SEARCH_HIGHEST) 687 hgroup.cs_cpu = -1; 688 if (child) { /* Handle child CPU group. */ 689 CPU_NAND(&cpumask, &child->cg_mask); 690 switch (match) { 691 case CPU_SEARCH_LOWEST: 692 load = cpu_search_lowest(child, &lgroup); 693 break; 694 case CPU_SEARCH_HIGHEST: 695 load = cpu_search_highest(child, &hgroup); 696 break; 697 case CPU_SEARCH_BOTH: 698 load = cpu_search_both(child, &lgroup, &hgroup); 699 break; 700 } 701 } else { /* Handle child CPU. */ 702 CPU_CLR(cpu, &cpumask); 703 tdq = TDQ_CPU(cpu); 704 load = tdq->tdq_load * 256; 705 rndptr = DPCPU_PTR(randomval); 706 rnd = (*rndptr = *rndptr * 69069 + 5) >> 26; 707 if (match & CPU_SEARCH_LOWEST) { 708 if (cpu == low->cs_prefer) 709 load -= 64; 710 /* If that CPU is allowed and get data. */ 711 if (tdq->tdq_lowpri > lgroup.cs_pri && 712 tdq->tdq_load <= lgroup.cs_limit && 713 CPU_ISSET(cpu, &lgroup.cs_mask)) { 714 lgroup.cs_cpu = cpu; 715 lgroup.cs_load = load - rnd; 716 } 717 } 718 if (match & CPU_SEARCH_HIGHEST) 719 if (tdq->tdq_load >= hgroup.cs_limit && 720 tdq->tdq_transferable && 721 CPU_ISSET(cpu, &hgroup.cs_mask)) { 722 hgroup.cs_cpu = cpu; 723 hgroup.cs_load = load - rnd; 724 } 725 } 726 total += load; 727 728 /* We have info about child item. Compare it. */ 729 if (match & CPU_SEARCH_LOWEST) { 730 if (lgroup.cs_cpu >= 0 && 731 (load < lload || 732 (load == lload && lgroup.cs_load < low->cs_load))) { 733 lload = load; 734 low->cs_cpu = lgroup.cs_cpu; 735 low->cs_load = lgroup.cs_load; 736 } 737 } 738 if (match & CPU_SEARCH_HIGHEST) 739 if (hgroup.cs_cpu >= 0 && 740 (load > hload || 741 (load == hload && hgroup.cs_load > high->cs_load))) { 742 hload = load; 743 high->cs_cpu = hgroup.cs_cpu; 744 high->cs_load = hgroup.cs_load; 745 } 746 if (child) { 747 i--; 748 if (i == 0 && CPU_EMPTY(&cpumask)) 749 break; 750 } 751 #ifndef HAVE_INLINE_FFSL 752 else 753 cpu--; 754 #endif 755 } 756 return (total); 757 } 758 759 /* 760 * cpu_search instantiations must pass constants to maintain the inline 761 * optimization. 762 */ 763 int 764 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low) 765 { 766 return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST); 767 } 768 769 int 770 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high) 771 { 772 return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST); 773 } 774 775 int 776 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low, 777 struct cpu_search *high) 778 { 779 return cpu_search(cg, low, high, CPU_SEARCH_BOTH); 780 } 781 782 /* 783 * Find the cpu with the least load via the least loaded path that has a 784 * lowpri greater than pri pri. A pri of -1 indicates any priority is 785 * acceptable. 786 */ 787 static inline int 788 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload, 789 int prefer) 790 { 791 struct cpu_search low; 792 793 low.cs_cpu = -1; 794 low.cs_prefer = prefer; 795 low.cs_mask = mask; 796 low.cs_pri = pri; 797 low.cs_limit = maxload; 798 cpu_search_lowest(cg, &low); 799 return low.cs_cpu; 800 } 801 802 /* 803 * Find the cpu with the highest load via the highest loaded path. 804 */ 805 static inline int 806 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload) 807 { 808 struct cpu_search high; 809 810 high.cs_cpu = -1; 811 high.cs_mask = mask; 812 high.cs_limit = minload; 813 cpu_search_highest(cg, &high); 814 return high.cs_cpu; 815 } 816 817 /* 818 * Simultaneously find the highest and lowest loaded cpu reachable via 819 * cg. 820 */ 821 static inline void 822 sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu) 823 { 824 struct cpu_search high; 825 struct cpu_search low; 826 827 low.cs_cpu = -1; 828 low.cs_prefer = -1; 829 low.cs_pri = -1; 830 low.cs_limit = INT_MAX; 831 low.cs_mask = mask; 832 high.cs_cpu = -1; 833 high.cs_limit = -1; 834 high.cs_mask = mask; 835 cpu_search_both(cg, &low, &high); 836 *lowcpu = low.cs_cpu; 837 *highcpu = high.cs_cpu; 838 return; 839 } 840 841 static void 842 sched_balance_group(struct cpu_group *cg) 843 { 844 cpuset_t hmask, lmask; 845 int high, low, anylow; 846 847 CPU_FILL(&hmask); 848 for (;;) { 849 high = sched_highest(cg, hmask, 1); 850 /* Stop if there is no more CPU with transferrable threads. */ 851 if (high == -1) 852 break; 853 CPU_CLR(high, &hmask); 854 CPU_COPY(&hmask, &lmask); 855 /* Stop if there is no more CPU left for low. */ 856 if (CPU_EMPTY(&lmask)) 857 break; 858 anylow = 1; 859 nextlow: 860 low = sched_lowest(cg, lmask, -1, 861 TDQ_CPU(high)->tdq_load - 1, high); 862 /* Stop if we looked well and found no less loaded CPU. */ 863 if (anylow && low == -1) 864 break; 865 /* Go to next high if we found no less loaded CPU. */ 866 if (low == -1) 867 continue; 868 /* Transfer thread from high to low. */ 869 if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) { 870 /* CPU that got thread can no longer be a donor. */ 871 CPU_CLR(low, &hmask); 872 } else { 873 /* 874 * If failed, then there is no threads on high 875 * that can run on this low. Drop low from low 876 * mask and look for different one. 877 */ 878 CPU_CLR(low, &lmask); 879 anylow = 0; 880 goto nextlow; 881 } 882 } 883 } 884 885 static void 886 sched_balance(void) 887 { 888 struct tdq *tdq; 889 890 /* 891 * Select a random time between .5 * balance_interval and 892 * 1.5 * balance_interval. 893 */ 894 balance_ticks = max(balance_interval / 2, 1); 895 balance_ticks += random() % balance_interval; 896 if (smp_started == 0 || rebalance == 0) 897 return; 898 tdq = TDQ_SELF(); 899 TDQ_UNLOCK(tdq); 900 sched_balance_group(cpu_top); 901 TDQ_LOCK(tdq); 902 } 903 904 /* 905 * Lock two thread queues using their address to maintain lock order. 906 */ 907 static void 908 tdq_lock_pair(struct tdq *one, struct tdq *two) 909 { 910 if (one < two) { 911 TDQ_LOCK(one); 912 TDQ_LOCK_FLAGS(two, MTX_DUPOK); 913 } else { 914 TDQ_LOCK(two); 915 TDQ_LOCK_FLAGS(one, MTX_DUPOK); 916 } 917 } 918 919 /* 920 * Unlock two thread queues. Order is not important here. 921 */ 922 static void 923 tdq_unlock_pair(struct tdq *one, struct tdq *two) 924 { 925 TDQ_UNLOCK(one); 926 TDQ_UNLOCK(two); 927 } 928 929 /* 930 * Transfer load between two imbalanced thread queues. 931 */ 932 static int 933 sched_balance_pair(struct tdq *high, struct tdq *low) 934 { 935 int moved; 936 int cpu; 937 938 tdq_lock_pair(high, low); 939 moved = 0; 940 /* 941 * Determine what the imbalance is and then adjust that to how many 942 * threads we actually have to give up (transferable). 943 */ 944 if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load && 945 (moved = tdq_move(high, low)) > 0) { 946 /* 947 * In case the target isn't the current cpu IPI it to force a 948 * reschedule with the new workload. 949 */ 950 cpu = TDQ_ID(low); 951 if (cpu != PCPU_GET(cpuid)) 952 ipi_cpu(cpu, IPI_PREEMPT); 953 } 954 tdq_unlock_pair(high, low); 955 return (moved); 956 } 957 958 /* 959 * Move a thread from one thread queue to another. 960 */ 961 static int 962 tdq_move(struct tdq *from, struct tdq *to) 963 { 964 struct td_sched *ts; 965 struct thread *td; 966 struct tdq *tdq; 967 int cpu; 968 969 TDQ_LOCK_ASSERT(from, MA_OWNED); 970 TDQ_LOCK_ASSERT(to, MA_OWNED); 971 972 tdq = from; 973 cpu = TDQ_ID(to); 974 td = tdq_steal(tdq, cpu); 975 if (td == NULL) 976 return (0); 977 ts = td->td_sched; 978 /* 979 * Although the run queue is locked the thread may be blocked. Lock 980 * it to clear this and acquire the run-queue lock. 981 */ 982 thread_lock(td); 983 /* Drop recursive lock on from acquired via thread_lock(). */ 984 TDQ_UNLOCK(from); 985 sched_rem(td); 986 ts->ts_cpu = cpu; 987 td->td_lock = TDQ_LOCKPTR(to); 988 tdq_add(to, td, SRQ_YIELDING); 989 return (1); 990 } 991 992 /* 993 * This tdq has idled. Try to steal a thread from another cpu and switch 994 * to it. 995 */ 996 static int 997 tdq_idled(struct tdq *tdq) 998 { 999 struct cpu_group *cg; 1000 struct tdq *steal; 1001 cpuset_t mask; 1002 int thresh; 1003 int cpu; 1004 1005 if (smp_started == 0 || steal_idle == 0) 1006 return (1); 1007 CPU_FILL(&mask); 1008 CPU_CLR(PCPU_GET(cpuid), &mask); 1009 /* We don't want to be preempted while we're iterating. */ 1010 spinlock_enter(); 1011 for (cg = tdq->tdq_cg; cg != NULL; ) { 1012 if ((cg->cg_flags & CG_FLAG_THREAD) == 0) 1013 thresh = steal_thresh; 1014 else 1015 thresh = 1; 1016 cpu = sched_highest(cg, mask, thresh); 1017 if (cpu == -1) { 1018 cg = cg->cg_parent; 1019 continue; 1020 } 1021 steal = TDQ_CPU(cpu); 1022 CPU_CLR(cpu, &mask); 1023 tdq_lock_pair(tdq, steal); 1024 if (steal->tdq_load < thresh || steal->tdq_transferable == 0) { 1025 tdq_unlock_pair(tdq, steal); 1026 continue; 1027 } 1028 /* 1029 * If a thread was added while interrupts were disabled don't 1030 * steal one here. If we fail to acquire one due to affinity 1031 * restrictions loop again with this cpu removed from the 1032 * set. 1033 */ 1034 if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) { 1035 tdq_unlock_pair(tdq, steal); 1036 continue; 1037 } 1038 spinlock_exit(); 1039 TDQ_UNLOCK(steal); 1040 mi_switch(SW_VOL | SWT_IDLE, NULL); 1041 thread_unlock(curthread); 1042 1043 return (0); 1044 } 1045 spinlock_exit(); 1046 return (1); 1047 } 1048 1049 /* 1050 * Notify a remote cpu of new work. Sends an IPI if criteria are met. 1051 */ 1052 static void 1053 tdq_notify(struct tdq *tdq, struct thread *td) 1054 { 1055 struct thread *ctd; 1056 int pri; 1057 int cpu; 1058 1059 if (tdq->tdq_ipipending) 1060 return; 1061 cpu = td->td_sched->ts_cpu; 1062 pri = td->td_priority; 1063 ctd = pcpu_find(cpu)->pc_curthread; 1064 if (!sched_shouldpreempt(pri, ctd->td_priority, 1)) 1065 return; 1066 if (TD_IS_IDLETHREAD(ctd)) { 1067 /* 1068 * If the MD code has an idle wakeup routine try that before 1069 * falling back to IPI. 1070 */ 1071 if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu)) 1072 return; 1073 } 1074 tdq->tdq_ipipending = 1; 1075 ipi_cpu(cpu, IPI_PREEMPT); 1076 } 1077 1078 /* 1079 * Steals load from a timeshare queue. Honors the rotating queue head 1080 * index. 1081 */ 1082 static struct thread * 1083 runq_steal_from(struct runq *rq, int cpu, u_char start) 1084 { 1085 struct rqbits *rqb; 1086 struct rqhead *rqh; 1087 struct thread *td, *first; 1088 int bit; 1089 int pri; 1090 int i; 1091 1092 rqb = &rq->rq_status; 1093 bit = start & (RQB_BPW -1); 1094 pri = 0; 1095 first = NULL; 1096 again: 1097 for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) { 1098 if (rqb->rqb_bits[i] == 0) 1099 continue; 1100 if (bit != 0) { 1101 for (pri = bit; pri < RQB_BPW; pri++) 1102 if (rqb->rqb_bits[i] & (1ul << pri)) 1103 break; 1104 if (pri >= RQB_BPW) 1105 continue; 1106 } else 1107 pri = RQB_FFS(rqb->rqb_bits[i]); 1108 pri += (i << RQB_L2BPW); 1109 rqh = &rq->rq_queues[pri]; 1110 TAILQ_FOREACH(td, rqh, td_runq) { 1111 if (first && THREAD_CAN_MIGRATE(td) && 1112 THREAD_CAN_SCHED(td, cpu)) 1113 return (td); 1114 first = td; 1115 } 1116 } 1117 if (start != 0) { 1118 start = 0; 1119 goto again; 1120 } 1121 1122 if (first && THREAD_CAN_MIGRATE(first) && 1123 THREAD_CAN_SCHED(first, cpu)) 1124 return (first); 1125 return (NULL); 1126 } 1127 1128 /* 1129 * Steals load from a standard linear queue. 1130 */ 1131 static struct thread * 1132 runq_steal(struct runq *rq, int cpu) 1133 { 1134 struct rqhead *rqh; 1135 struct rqbits *rqb; 1136 struct thread *td; 1137 int word; 1138 int bit; 1139 1140 rqb = &rq->rq_status; 1141 for (word = 0; word < RQB_LEN; word++) { 1142 if (rqb->rqb_bits[word] == 0) 1143 continue; 1144 for (bit = 0; bit < RQB_BPW; bit++) { 1145 if ((rqb->rqb_bits[word] & (1ul << bit)) == 0) 1146 continue; 1147 rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)]; 1148 TAILQ_FOREACH(td, rqh, td_runq) 1149 if (THREAD_CAN_MIGRATE(td) && 1150 THREAD_CAN_SCHED(td, cpu)) 1151 return (td); 1152 } 1153 } 1154 return (NULL); 1155 } 1156 1157 /* 1158 * Attempt to steal a thread in priority order from a thread queue. 1159 */ 1160 static struct thread * 1161 tdq_steal(struct tdq *tdq, int cpu) 1162 { 1163 struct thread *td; 1164 1165 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1166 if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL) 1167 return (td); 1168 if ((td = runq_steal_from(&tdq->tdq_timeshare, 1169 cpu, tdq->tdq_ridx)) != NULL) 1170 return (td); 1171 return (runq_steal(&tdq->tdq_idle, cpu)); 1172 } 1173 1174 /* 1175 * Sets the thread lock and ts_cpu to match the requested cpu. Unlocks the 1176 * current lock and returns with the assigned queue locked. 1177 */ 1178 static inline struct tdq * 1179 sched_setcpu(struct thread *td, int cpu, int flags) 1180 { 1181 1182 struct tdq *tdq; 1183 1184 THREAD_LOCK_ASSERT(td, MA_OWNED); 1185 tdq = TDQ_CPU(cpu); 1186 td->td_sched->ts_cpu = cpu; 1187 /* 1188 * If the lock matches just return the queue. 1189 */ 1190 if (td->td_lock == TDQ_LOCKPTR(tdq)) 1191 return (tdq); 1192 #ifdef notyet 1193 /* 1194 * If the thread isn't running its lockptr is a 1195 * turnstile or a sleepqueue. We can just lock_set without 1196 * blocking. 1197 */ 1198 if (TD_CAN_RUN(td)) { 1199 TDQ_LOCK(tdq); 1200 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 1201 return (tdq); 1202 } 1203 #endif 1204 /* 1205 * The hard case, migration, we need to block the thread first to 1206 * prevent order reversals with other cpus locks. 1207 */ 1208 spinlock_enter(); 1209 thread_lock_block(td); 1210 TDQ_LOCK(tdq); 1211 thread_lock_unblock(td, TDQ_LOCKPTR(tdq)); 1212 spinlock_exit(); 1213 return (tdq); 1214 } 1215 1216 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding"); 1217 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity"); 1218 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity"); 1219 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load"); 1220 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu"); 1221 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration"); 1222 1223 static int 1224 sched_pickcpu(struct thread *td, int flags) 1225 { 1226 struct cpu_group *cg, *ccg; 1227 struct td_sched *ts; 1228 struct tdq *tdq; 1229 cpuset_t mask; 1230 int cpu, pri, self; 1231 1232 self = PCPU_GET(cpuid); 1233 ts = td->td_sched; 1234 if (smp_started == 0) 1235 return (self); 1236 /* 1237 * Don't migrate a running thread from sched_switch(). 1238 */ 1239 if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td)) 1240 return (ts->ts_cpu); 1241 /* 1242 * Prefer to run interrupt threads on the processors that generate 1243 * the interrupt. 1244 */ 1245 pri = td->td_priority; 1246 if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) && 1247 curthread->td_intr_nesting_level && ts->ts_cpu != self) { 1248 SCHED_STAT_INC(pickcpu_intrbind); 1249 ts->ts_cpu = self; 1250 if (TDQ_CPU(self)->tdq_lowpri > pri) { 1251 SCHED_STAT_INC(pickcpu_affinity); 1252 return (ts->ts_cpu); 1253 } 1254 } 1255 /* 1256 * If the thread can run on the last cpu and the affinity has not 1257 * expired or it is idle run it there. 1258 */ 1259 tdq = TDQ_CPU(ts->ts_cpu); 1260 cg = tdq->tdq_cg; 1261 if (THREAD_CAN_SCHED(td, ts->ts_cpu) && 1262 tdq->tdq_lowpri >= PRI_MIN_IDLE && 1263 SCHED_AFFINITY(ts, CG_SHARE_L2)) { 1264 if (cg->cg_flags & CG_FLAG_THREAD) { 1265 CPUSET_FOREACH(cpu, cg->cg_mask) { 1266 if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) 1267 break; 1268 } 1269 } else 1270 cpu = INT_MAX; 1271 if (cpu > mp_maxid) { 1272 SCHED_STAT_INC(pickcpu_idle_affinity); 1273 return (ts->ts_cpu); 1274 } 1275 } 1276 /* 1277 * Search for the last level cache CPU group in the tree. 1278 * Skip caches with expired affinity time and SMT groups. 1279 * Affinity to higher level caches will be handled less aggressively. 1280 */ 1281 for (ccg = NULL; cg != NULL; cg = cg->cg_parent) { 1282 if (cg->cg_flags & CG_FLAG_THREAD) 1283 continue; 1284 if (!SCHED_AFFINITY(ts, cg->cg_level)) 1285 continue; 1286 ccg = cg; 1287 } 1288 if (ccg != NULL) 1289 cg = ccg; 1290 cpu = -1; 1291 /* Search the group for the less loaded idle CPU we can run now. */ 1292 mask = td->td_cpuset->cs_mask; 1293 if (cg != NULL && cg != cpu_top && 1294 CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0) 1295 cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE), 1296 INT_MAX, ts->ts_cpu); 1297 /* Search globally for the less loaded CPU we can run now. */ 1298 if (cpu == -1) 1299 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu); 1300 /* Search globally for the less loaded CPU. */ 1301 if (cpu == -1) 1302 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu); 1303 KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu.")); 1304 /* 1305 * Compare the lowest loaded cpu to current cpu. 1306 */ 1307 if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri && 1308 TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE && 1309 TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) { 1310 SCHED_STAT_INC(pickcpu_local); 1311 cpu = self; 1312 } else 1313 SCHED_STAT_INC(pickcpu_lowest); 1314 if (cpu != ts->ts_cpu) 1315 SCHED_STAT_INC(pickcpu_migration); 1316 return (cpu); 1317 } 1318 #endif 1319 1320 /* 1321 * Pick the highest priority task we have and return it. 1322 */ 1323 static struct thread * 1324 tdq_choose(struct tdq *tdq) 1325 { 1326 struct thread *td; 1327 1328 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1329 td = runq_choose(&tdq->tdq_realtime); 1330 if (td != NULL) 1331 return (td); 1332 td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx); 1333 if (td != NULL) { 1334 KASSERT(td->td_priority >= PRI_MIN_BATCH, 1335 ("tdq_choose: Invalid priority on timeshare queue %d", 1336 td->td_priority)); 1337 return (td); 1338 } 1339 td = runq_choose(&tdq->tdq_idle); 1340 if (td != NULL) { 1341 KASSERT(td->td_priority >= PRI_MIN_IDLE, 1342 ("tdq_choose: Invalid priority on idle queue %d", 1343 td->td_priority)); 1344 return (td); 1345 } 1346 1347 return (NULL); 1348 } 1349 1350 /* 1351 * Initialize a thread queue. 1352 */ 1353 static void 1354 tdq_setup(struct tdq *tdq) 1355 { 1356 1357 if (bootverbose) 1358 printf("ULE: setup cpu %d\n", TDQ_ID(tdq)); 1359 runq_init(&tdq->tdq_realtime); 1360 runq_init(&tdq->tdq_timeshare); 1361 runq_init(&tdq->tdq_idle); 1362 snprintf(tdq->tdq_name, sizeof(tdq->tdq_name), 1363 "sched lock %d", (int)TDQ_ID(tdq)); 1364 mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", 1365 MTX_SPIN | MTX_RECURSE); 1366 #ifdef KTR 1367 snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname), 1368 "CPU %d load", (int)TDQ_ID(tdq)); 1369 #endif 1370 } 1371 1372 #ifdef SMP 1373 static void 1374 sched_setup_smp(void) 1375 { 1376 struct tdq *tdq; 1377 int i; 1378 1379 cpu_top = smp_topo(); 1380 CPU_FOREACH(i) { 1381 tdq = TDQ_CPU(i); 1382 tdq_setup(tdq); 1383 tdq->tdq_cg = smp_topo_find(cpu_top, i); 1384 if (tdq->tdq_cg == NULL) 1385 panic("Can't find cpu group for %d\n", i); 1386 } 1387 balance_tdq = TDQ_SELF(); 1388 sched_balance(); 1389 } 1390 #endif 1391 1392 /* 1393 * Setup the thread queues and initialize the topology based on MD 1394 * information. 1395 */ 1396 static void 1397 sched_setup(void *dummy) 1398 { 1399 struct tdq *tdq; 1400 1401 tdq = TDQ_SELF(); 1402 #ifdef SMP 1403 sched_setup_smp(); 1404 #else 1405 tdq_setup(tdq); 1406 #endif 1407 1408 /* Add thread0's load since it's running. */ 1409 TDQ_LOCK(tdq); 1410 thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF()); 1411 tdq_load_add(tdq, &thread0); 1412 tdq->tdq_lowpri = thread0.td_priority; 1413 TDQ_UNLOCK(tdq); 1414 } 1415 1416 /* 1417 * This routine determines time constants after stathz and hz are setup. 1418 */ 1419 /* ARGSUSED */ 1420 static void 1421 sched_initticks(void *dummy) 1422 { 1423 int incr; 1424 1425 realstathz = stathz ? stathz : hz; 1426 sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR; 1427 sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR; 1428 hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) / 1429 realstathz); 1430 1431 /* 1432 * tickincr is shifted out by 10 to avoid rounding errors due to 1433 * hz not being evenly divisible by stathz on all platforms. 1434 */ 1435 incr = (hz << SCHED_TICK_SHIFT) / realstathz; 1436 /* 1437 * This does not work for values of stathz that are more than 1438 * 1 << SCHED_TICK_SHIFT * hz. In practice this does not happen. 1439 */ 1440 if (incr == 0) 1441 incr = 1; 1442 tickincr = incr; 1443 #ifdef SMP 1444 /* 1445 * Set the default balance interval now that we know 1446 * what realstathz is. 1447 */ 1448 balance_interval = realstathz; 1449 affinity = SCHED_AFFINITY_DEFAULT; 1450 #endif 1451 if (sched_idlespinthresh < 0) 1452 sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz; 1453 } 1454 1455 1456 /* 1457 * This is the core of the interactivity algorithm. Determines a score based 1458 * on past behavior. It is the ratio of sleep time to run time scaled to 1459 * a [0, 100] integer. This is the voluntary sleep time of a process, which 1460 * differs from the cpu usage because it does not account for time spent 1461 * waiting on a run-queue. Would be prettier if we had floating point. 1462 */ 1463 static int 1464 sched_interact_score(struct thread *td) 1465 { 1466 struct td_sched *ts; 1467 int div; 1468 1469 ts = td->td_sched; 1470 /* 1471 * The score is only needed if this is likely to be an interactive 1472 * task. Don't go through the expense of computing it if there's 1473 * no chance. 1474 */ 1475 if (sched_interact <= SCHED_INTERACT_HALF && 1476 ts->ts_runtime >= ts->ts_slptime) 1477 return (SCHED_INTERACT_HALF); 1478 1479 if (ts->ts_runtime > ts->ts_slptime) { 1480 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF); 1481 return (SCHED_INTERACT_HALF + 1482 (SCHED_INTERACT_HALF - (ts->ts_slptime / div))); 1483 } 1484 if (ts->ts_slptime > ts->ts_runtime) { 1485 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF); 1486 return (ts->ts_runtime / div); 1487 } 1488 /* runtime == slptime */ 1489 if (ts->ts_runtime) 1490 return (SCHED_INTERACT_HALF); 1491 1492 /* 1493 * This can happen if slptime and runtime are 0. 1494 */ 1495 return (0); 1496 1497 } 1498 1499 /* 1500 * Scale the scheduling priority according to the "interactivity" of this 1501 * process. 1502 */ 1503 static void 1504 sched_priority(struct thread *td) 1505 { 1506 int score; 1507 int pri; 1508 1509 if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE) 1510 return; 1511 /* 1512 * If the score is interactive we place the thread in the realtime 1513 * queue with a priority that is less than kernel and interrupt 1514 * priorities. These threads are not subject to nice restrictions. 1515 * 1516 * Scores greater than this are placed on the normal timeshare queue 1517 * where the priority is partially decided by the most recent cpu 1518 * utilization and the rest is decided by nice value. 1519 * 1520 * The nice value of the process has a linear effect on the calculated 1521 * score. Negative nice values make it easier for a thread to be 1522 * considered interactive. 1523 */ 1524 score = imax(0, sched_interact_score(td) + td->td_proc->p_nice); 1525 if (score < sched_interact) { 1526 pri = PRI_MIN_INTERACT; 1527 pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) / 1528 sched_interact) * score; 1529 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT, 1530 ("sched_priority: invalid interactive priority %d score %d", 1531 pri, score)); 1532 } else { 1533 pri = SCHED_PRI_MIN; 1534 if (td->td_sched->ts_ticks) 1535 pri += min(SCHED_PRI_TICKS(td->td_sched), 1536 SCHED_PRI_RANGE); 1537 pri += SCHED_PRI_NICE(td->td_proc->p_nice); 1538 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH, 1539 ("sched_priority: invalid priority %d: nice %d, " 1540 "ticks %d ftick %d ltick %d tick pri %d", 1541 pri, td->td_proc->p_nice, td->td_sched->ts_ticks, 1542 td->td_sched->ts_ftick, td->td_sched->ts_ltick, 1543 SCHED_PRI_TICKS(td->td_sched))); 1544 } 1545 sched_user_prio(td, pri); 1546 1547 return; 1548 } 1549 1550 /* 1551 * This routine enforces a maximum limit on the amount of scheduling history 1552 * kept. It is called after either the slptime or runtime is adjusted. This 1553 * function is ugly due to integer math. 1554 */ 1555 static void 1556 sched_interact_update(struct thread *td) 1557 { 1558 struct td_sched *ts; 1559 u_int sum; 1560 1561 ts = td->td_sched; 1562 sum = ts->ts_runtime + ts->ts_slptime; 1563 if (sum < SCHED_SLP_RUN_MAX) 1564 return; 1565 /* 1566 * This only happens from two places: 1567 * 1) We have added an unusual amount of run time from fork_exit. 1568 * 2) We have added an unusual amount of sleep time from sched_sleep(). 1569 */ 1570 if (sum > SCHED_SLP_RUN_MAX * 2) { 1571 if (ts->ts_runtime > ts->ts_slptime) { 1572 ts->ts_runtime = SCHED_SLP_RUN_MAX; 1573 ts->ts_slptime = 1; 1574 } else { 1575 ts->ts_slptime = SCHED_SLP_RUN_MAX; 1576 ts->ts_runtime = 1; 1577 } 1578 return; 1579 } 1580 /* 1581 * If we have exceeded by more than 1/5th then the algorithm below 1582 * will not bring us back into range. Dividing by two here forces 1583 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX] 1584 */ 1585 if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) { 1586 ts->ts_runtime /= 2; 1587 ts->ts_slptime /= 2; 1588 return; 1589 } 1590 ts->ts_runtime = (ts->ts_runtime / 5) * 4; 1591 ts->ts_slptime = (ts->ts_slptime / 5) * 4; 1592 } 1593 1594 /* 1595 * Scale back the interactivity history when a child thread is created. The 1596 * history is inherited from the parent but the thread may behave totally 1597 * differently. For example, a shell spawning a compiler process. We want 1598 * to learn that the compiler is behaving badly very quickly. 1599 */ 1600 static void 1601 sched_interact_fork(struct thread *td) 1602 { 1603 int ratio; 1604 int sum; 1605 1606 sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime; 1607 if (sum > SCHED_SLP_RUN_FORK) { 1608 ratio = sum / SCHED_SLP_RUN_FORK; 1609 td->td_sched->ts_runtime /= ratio; 1610 td->td_sched->ts_slptime /= ratio; 1611 } 1612 } 1613 1614 /* 1615 * Called from proc0_init() to setup the scheduler fields. 1616 */ 1617 void 1618 schedinit(void) 1619 { 1620 1621 /* 1622 * Set up the scheduler specific parts of proc0. 1623 */ 1624 proc0.p_sched = NULL; /* XXX */ 1625 thread0.td_sched = &td_sched0; 1626 td_sched0.ts_ltick = ticks; 1627 td_sched0.ts_ftick = ticks; 1628 td_sched0.ts_slice = 0; 1629 } 1630 1631 /* 1632 * This is only somewhat accurate since given many processes of the same 1633 * priority they will switch when their slices run out, which will be 1634 * at most sched_slice stathz ticks. 1635 */ 1636 int 1637 sched_rr_interval(void) 1638 { 1639 1640 /* Convert sched_slice from stathz to hz. */ 1641 return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz)); 1642 } 1643 1644 /* 1645 * Update the percent cpu tracking information when it is requested or 1646 * the total history exceeds the maximum. We keep a sliding history of 1647 * tick counts that slowly decays. This is less precise than the 4BSD 1648 * mechanism since it happens with less regular and frequent events. 1649 */ 1650 static void 1651 sched_pctcpu_update(struct td_sched *ts, int run) 1652 { 1653 int t = ticks; 1654 1655 if (t - ts->ts_ltick >= SCHED_TICK_TARG) { 1656 ts->ts_ticks = 0; 1657 ts->ts_ftick = t - SCHED_TICK_TARG; 1658 } else if (t - ts->ts_ftick >= SCHED_TICK_MAX) { 1659 ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) * 1660 (ts->ts_ltick - (t - SCHED_TICK_TARG)); 1661 ts->ts_ftick = t - SCHED_TICK_TARG; 1662 } 1663 if (run) 1664 ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT; 1665 ts->ts_ltick = t; 1666 } 1667 1668 /* 1669 * Adjust the priority of a thread. Move it to the appropriate run-queue 1670 * if necessary. This is the back-end for several priority related 1671 * functions. 1672 */ 1673 static void 1674 sched_thread_priority(struct thread *td, u_char prio) 1675 { 1676 struct td_sched *ts; 1677 struct tdq *tdq; 1678 int oldpri; 1679 1680 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio", 1681 "prio:%d", td->td_priority, "new prio:%d", prio, 1682 KTR_ATTR_LINKED, sched_tdname(curthread)); 1683 SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio); 1684 if (td != curthread && prio < td->td_priority) { 1685 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread), 1686 "lend prio", "prio:%d", td->td_priority, "new prio:%d", 1687 prio, KTR_ATTR_LINKED, sched_tdname(td)); 1688 SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio, 1689 curthread); 1690 } 1691 ts = td->td_sched; 1692 THREAD_LOCK_ASSERT(td, MA_OWNED); 1693 if (td->td_priority == prio) 1694 return; 1695 /* 1696 * If the priority has been elevated due to priority 1697 * propagation, we may have to move ourselves to a new 1698 * queue. This could be optimized to not re-add in some 1699 * cases. 1700 */ 1701 if (TD_ON_RUNQ(td) && prio < td->td_priority) { 1702 sched_rem(td); 1703 td->td_priority = prio; 1704 sched_add(td, SRQ_BORROWING); 1705 return; 1706 } 1707 /* 1708 * If the thread is currently running we may have to adjust the lowpri 1709 * information so other cpus are aware of our current priority. 1710 */ 1711 if (TD_IS_RUNNING(td)) { 1712 tdq = TDQ_CPU(ts->ts_cpu); 1713 oldpri = td->td_priority; 1714 td->td_priority = prio; 1715 if (prio < tdq->tdq_lowpri) 1716 tdq->tdq_lowpri = prio; 1717 else if (tdq->tdq_lowpri == oldpri) 1718 tdq_setlowpri(tdq, td); 1719 return; 1720 } 1721 td->td_priority = prio; 1722 } 1723 1724 /* 1725 * Update a thread's priority when it is lent another thread's 1726 * priority. 1727 */ 1728 void 1729 sched_lend_prio(struct thread *td, u_char prio) 1730 { 1731 1732 td->td_flags |= TDF_BORROWING; 1733 sched_thread_priority(td, prio); 1734 } 1735 1736 /* 1737 * Restore a thread's priority when priority propagation is 1738 * over. The prio argument is the minimum priority the thread 1739 * needs to have to satisfy other possible priority lending 1740 * requests. If the thread's regular priority is less 1741 * important than prio, the thread will keep a priority boost 1742 * of prio. 1743 */ 1744 void 1745 sched_unlend_prio(struct thread *td, u_char prio) 1746 { 1747 u_char base_pri; 1748 1749 if (td->td_base_pri >= PRI_MIN_TIMESHARE && 1750 td->td_base_pri <= PRI_MAX_TIMESHARE) 1751 base_pri = td->td_user_pri; 1752 else 1753 base_pri = td->td_base_pri; 1754 if (prio >= base_pri) { 1755 td->td_flags &= ~TDF_BORROWING; 1756 sched_thread_priority(td, base_pri); 1757 } else 1758 sched_lend_prio(td, prio); 1759 } 1760 1761 /* 1762 * Standard entry for setting the priority to an absolute value. 1763 */ 1764 void 1765 sched_prio(struct thread *td, u_char prio) 1766 { 1767 u_char oldprio; 1768 1769 /* First, update the base priority. */ 1770 td->td_base_pri = prio; 1771 1772 /* 1773 * If the thread is borrowing another thread's priority, don't 1774 * ever lower the priority. 1775 */ 1776 if (td->td_flags & TDF_BORROWING && td->td_priority < prio) 1777 return; 1778 1779 /* Change the real priority. */ 1780 oldprio = td->td_priority; 1781 sched_thread_priority(td, prio); 1782 1783 /* 1784 * If the thread is on a turnstile, then let the turnstile update 1785 * its state. 1786 */ 1787 if (TD_ON_LOCK(td) && oldprio != prio) 1788 turnstile_adjust(td, oldprio); 1789 } 1790 1791 /* 1792 * Set the base user priority, does not effect current running priority. 1793 */ 1794 void 1795 sched_user_prio(struct thread *td, u_char prio) 1796 { 1797 1798 td->td_base_user_pri = prio; 1799 if (td->td_lend_user_pri <= prio) 1800 return; 1801 td->td_user_pri = prio; 1802 } 1803 1804 void 1805 sched_lend_user_prio(struct thread *td, u_char prio) 1806 { 1807 1808 THREAD_LOCK_ASSERT(td, MA_OWNED); 1809 td->td_lend_user_pri = prio; 1810 td->td_user_pri = min(prio, td->td_base_user_pri); 1811 if (td->td_priority > td->td_user_pri) 1812 sched_prio(td, td->td_user_pri); 1813 else if (td->td_priority != td->td_user_pri) 1814 td->td_flags |= TDF_NEEDRESCHED; 1815 } 1816 1817 /* 1818 * Handle migration from sched_switch(). This happens only for 1819 * cpu binding. 1820 */ 1821 static struct mtx * 1822 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags) 1823 { 1824 struct tdq *tdn; 1825 1826 tdn = TDQ_CPU(td->td_sched->ts_cpu); 1827 #ifdef SMP 1828 tdq_load_rem(tdq, td); 1829 /* 1830 * Do the lock dance required to avoid LOR. We grab an extra 1831 * spinlock nesting to prevent preemption while we're 1832 * not holding either run-queue lock. 1833 */ 1834 spinlock_enter(); 1835 thread_lock_block(td); /* This releases the lock on tdq. */ 1836 1837 /* 1838 * Acquire both run-queue locks before placing the thread on the new 1839 * run-queue to avoid deadlocks created by placing a thread with a 1840 * blocked lock on the run-queue of a remote processor. The deadlock 1841 * occurs when a third processor attempts to lock the two queues in 1842 * question while the target processor is spinning with its own 1843 * run-queue lock held while waiting for the blocked lock to clear. 1844 */ 1845 tdq_lock_pair(tdn, tdq); 1846 tdq_add(tdn, td, flags); 1847 tdq_notify(tdn, td); 1848 TDQ_UNLOCK(tdn); 1849 spinlock_exit(); 1850 #endif 1851 return (TDQ_LOCKPTR(tdn)); 1852 } 1853 1854 /* 1855 * Variadic version of thread_lock_unblock() that does not assume td_lock 1856 * is blocked. 1857 */ 1858 static inline void 1859 thread_unblock_switch(struct thread *td, struct mtx *mtx) 1860 { 1861 atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock, 1862 (uintptr_t)mtx); 1863 } 1864 1865 /* 1866 * Switch threads. This function has to handle threads coming in while 1867 * blocked for some reason, running, or idle. It also must deal with 1868 * migrating a thread from one queue to another as running threads may 1869 * be assigned elsewhere via binding. 1870 */ 1871 void 1872 sched_switch(struct thread *td, struct thread *newtd, int flags) 1873 { 1874 struct tdq *tdq; 1875 struct td_sched *ts; 1876 struct mtx *mtx; 1877 int srqflag; 1878 int cpuid, preempted; 1879 1880 THREAD_LOCK_ASSERT(td, MA_OWNED); 1881 KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument")); 1882 1883 cpuid = PCPU_GET(cpuid); 1884 tdq = TDQ_CPU(cpuid); 1885 ts = td->td_sched; 1886 mtx = td->td_lock; 1887 sched_pctcpu_update(ts, 1); 1888 ts->ts_rltick = ticks; 1889 td->td_lastcpu = td->td_oncpu; 1890 td->td_oncpu = NOCPU; 1891 preempted = !(td->td_flags & TDF_SLICEEND); 1892 td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND); 1893 td->td_owepreempt = 0; 1894 if (!TD_IS_IDLETHREAD(td)) 1895 tdq->tdq_switchcnt++; 1896 /* 1897 * The lock pointer in an idle thread should never change. Reset it 1898 * to CAN_RUN as well. 1899 */ 1900 if (TD_IS_IDLETHREAD(td)) { 1901 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1902 TD_SET_CAN_RUN(td); 1903 } else if (TD_IS_RUNNING(td)) { 1904 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1905 srqflag = preempted ? 1906 SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED : 1907 SRQ_OURSELF|SRQ_YIELDING; 1908 #ifdef SMP 1909 if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu)) 1910 ts->ts_cpu = sched_pickcpu(td, 0); 1911 #endif 1912 if (ts->ts_cpu == cpuid) 1913 tdq_runq_add(tdq, td, srqflag); 1914 else { 1915 KASSERT(THREAD_CAN_MIGRATE(td) || 1916 (ts->ts_flags & TSF_BOUND) != 0, 1917 ("Thread %p shouldn't migrate", td)); 1918 mtx = sched_switch_migrate(tdq, td, srqflag); 1919 } 1920 } else { 1921 /* This thread must be going to sleep. */ 1922 TDQ_LOCK(tdq); 1923 mtx = thread_lock_block(td); 1924 tdq_load_rem(tdq, td); 1925 } 1926 /* 1927 * We enter here with the thread blocked and assigned to the 1928 * appropriate cpu run-queue or sleep-queue and with the current 1929 * thread-queue locked. 1930 */ 1931 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 1932 newtd = choosethread(); 1933 /* 1934 * Call the MD code to switch contexts if necessary. 1935 */ 1936 if (td != newtd) { 1937 #ifdef HWPMC_HOOKS 1938 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1939 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 1940 #endif 1941 SDT_PROBE2(sched, , , off_cpu, newtd, newtd->td_proc); 1942 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 1943 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 1944 sched_pctcpu_update(newtd->td_sched, 0); 1945 1946 #ifdef KDTRACE_HOOKS 1947 /* 1948 * If DTrace has set the active vtime enum to anything 1949 * other than INACTIVE (0), then it should have set the 1950 * function to call. 1951 */ 1952 if (dtrace_vtime_active) 1953 (*dtrace_vtime_switch_func)(newtd); 1954 #endif 1955 1956 cpu_switch(td, newtd, mtx); 1957 /* 1958 * We may return from cpu_switch on a different cpu. However, 1959 * we always return with td_lock pointing to the current cpu's 1960 * run queue lock. 1961 */ 1962 cpuid = PCPU_GET(cpuid); 1963 tdq = TDQ_CPU(cpuid); 1964 lock_profile_obtain_lock_success( 1965 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 1966 1967 SDT_PROBE0(sched, , , on_cpu); 1968 #ifdef HWPMC_HOOKS 1969 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1970 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN); 1971 #endif 1972 } else { 1973 thread_unblock_switch(td, mtx); 1974 SDT_PROBE0(sched, , , remain_cpu); 1975 } 1976 /* 1977 * Assert that all went well and return. 1978 */ 1979 TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED); 1980 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1981 td->td_oncpu = cpuid; 1982 } 1983 1984 /* 1985 * Adjust thread priorities as a result of a nice request. 1986 */ 1987 void 1988 sched_nice(struct proc *p, int nice) 1989 { 1990 struct thread *td; 1991 1992 PROC_LOCK_ASSERT(p, MA_OWNED); 1993 1994 p->p_nice = nice; 1995 FOREACH_THREAD_IN_PROC(p, td) { 1996 thread_lock(td); 1997 sched_priority(td); 1998 sched_prio(td, td->td_base_user_pri); 1999 thread_unlock(td); 2000 } 2001 } 2002 2003 /* 2004 * Record the sleep time for the interactivity scorer. 2005 */ 2006 void 2007 sched_sleep(struct thread *td, int prio) 2008 { 2009 2010 THREAD_LOCK_ASSERT(td, MA_OWNED); 2011 2012 td->td_slptick = ticks; 2013 if (TD_IS_SUSPENDED(td) || prio >= PSOCK) 2014 td->td_flags |= TDF_CANSWAP; 2015 if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE) 2016 return; 2017 if (static_boost == 1 && prio) 2018 sched_prio(td, prio); 2019 else if (static_boost && td->td_priority > static_boost) 2020 sched_prio(td, static_boost); 2021 } 2022 2023 /* 2024 * Schedule a thread to resume execution and record how long it voluntarily 2025 * slept. We also update the pctcpu, interactivity, and priority. 2026 */ 2027 void 2028 sched_wakeup(struct thread *td) 2029 { 2030 struct td_sched *ts; 2031 int slptick; 2032 2033 THREAD_LOCK_ASSERT(td, MA_OWNED); 2034 ts = td->td_sched; 2035 td->td_flags &= ~TDF_CANSWAP; 2036 /* 2037 * If we slept for more than a tick update our interactivity and 2038 * priority. 2039 */ 2040 slptick = td->td_slptick; 2041 td->td_slptick = 0; 2042 if (slptick && slptick != ticks) { 2043 ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT; 2044 sched_interact_update(td); 2045 sched_pctcpu_update(ts, 0); 2046 } 2047 /* 2048 * Reset the slice value since we slept and advanced the round-robin. 2049 */ 2050 ts->ts_slice = 0; 2051 sched_add(td, SRQ_BORING); 2052 } 2053 2054 /* 2055 * Penalize the parent for creating a new child and initialize the child's 2056 * priority. 2057 */ 2058 void 2059 sched_fork(struct thread *td, struct thread *child) 2060 { 2061 THREAD_LOCK_ASSERT(td, MA_OWNED); 2062 sched_pctcpu_update(td->td_sched, 1); 2063 sched_fork_thread(td, child); 2064 /* 2065 * Penalize the parent and child for forking. 2066 */ 2067 sched_interact_fork(child); 2068 sched_priority(child); 2069 td->td_sched->ts_runtime += tickincr; 2070 sched_interact_update(td); 2071 sched_priority(td); 2072 } 2073 2074 /* 2075 * Fork a new thread, may be within the same process. 2076 */ 2077 void 2078 sched_fork_thread(struct thread *td, struct thread *child) 2079 { 2080 struct td_sched *ts; 2081 struct td_sched *ts2; 2082 struct tdq *tdq; 2083 2084 tdq = TDQ_SELF(); 2085 THREAD_LOCK_ASSERT(td, MA_OWNED); 2086 /* 2087 * Initialize child. 2088 */ 2089 ts = td->td_sched; 2090 ts2 = child->td_sched; 2091 child->td_lock = TDQ_LOCKPTR(tdq); 2092 child->td_cpuset = cpuset_ref(td->td_cpuset); 2093 ts2->ts_cpu = ts->ts_cpu; 2094 ts2->ts_flags = 0; 2095 /* 2096 * Grab our parents cpu estimation information. 2097 */ 2098 ts2->ts_ticks = ts->ts_ticks; 2099 ts2->ts_ltick = ts->ts_ltick; 2100 ts2->ts_ftick = ts->ts_ftick; 2101 /* 2102 * Do not inherit any borrowed priority from the parent. 2103 */ 2104 child->td_priority = child->td_base_pri; 2105 /* 2106 * And update interactivity score. 2107 */ 2108 ts2->ts_slptime = ts->ts_slptime; 2109 ts2->ts_runtime = ts->ts_runtime; 2110 /* Attempt to quickly learn interactivity. */ 2111 ts2->ts_slice = tdq_slice(tdq) - sched_slice_min; 2112 #ifdef KTR 2113 bzero(ts2->ts_name, sizeof(ts2->ts_name)); 2114 #endif 2115 } 2116 2117 /* 2118 * Adjust the priority class of a thread. 2119 */ 2120 void 2121 sched_class(struct thread *td, int class) 2122 { 2123 2124 THREAD_LOCK_ASSERT(td, MA_OWNED); 2125 if (td->td_pri_class == class) 2126 return; 2127 td->td_pri_class = class; 2128 } 2129 2130 /* 2131 * Return some of the child's priority and interactivity to the parent. 2132 */ 2133 void 2134 sched_exit(struct proc *p, struct thread *child) 2135 { 2136 struct thread *td; 2137 2138 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit", 2139 "prio:%d", child->td_priority); 2140 PROC_LOCK_ASSERT(p, MA_OWNED); 2141 td = FIRST_THREAD_IN_PROC(p); 2142 sched_exit_thread(td, child); 2143 } 2144 2145 /* 2146 * Penalize another thread for the time spent on this one. This helps to 2147 * worsen the priority and interactivity of processes which schedule batch 2148 * jobs such as make. This has little effect on the make process itself but 2149 * causes new processes spawned by it to receive worse scores immediately. 2150 */ 2151 void 2152 sched_exit_thread(struct thread *td, struct thread *child) 2153 { 2154 2155 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit", 2156 "prio:%d", child->td_priority); 2157 /* 2158 * Give the child's runtime to the parent without returning the 2159 * sleep time as a penalty to the parent. This causes shells that 2160 * launch expensive things to mark their children as expensive. 2161 */ 2162 thread_lock(td); 2163 td->td_sched->ts_runtime += child->td_sched->ts_runtime; 2164 sched_interact_update(td); 2165 sched_priority(td); 2166 thread_unlock(td); 2167 } 2168 2169 void 2170 sched_preempt(struct thread *td) 2171 { 2172 struct tdq *tdq; 2173 2174 SDT_PROBE2(sched, , , surrender, td, td->td_proc); 2175 2176 thread_lock(td); 2177 tdq = TDQ_SELF(); 2178 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2179 tdq->tdq_ipipending = 0; 2180 if (td->td_priority > tdq->tdq_lowpri) { 2181 int flags; 2182 2183 flags = SW_INVOL | SW_PREEMPT; 2184 if (td->td_critnest > 1) 2185 td->td_owepreempt = 1; 2186 else if (TD_IS_IDLETHREAD(td)) 2187 mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL); 2188 else 2189 mi_switch(flags | SWT_REMOTEPREEMPT, NULL); 2190 } 2191 thread_unlock(td); 2192 } 2193 2194 /* 2195 * Fix priorities on return to user-space. Priorities may be elevated due 2196 * to static priorities in msleep() or similar. 2197 */ 2198 void 2199 sched_userret(struct thread *td) 2200 { 2201 /* 2202 * XXX we cheat slightly on the locking here to avoid locking in 2203 * the usual case. Setting td_priority here is essentially an 2204 * incomplete workaround for not setting it properly elsewhere. 2205 * Now that some interrupt handlers are threads, not setting it 2206 * properly elsewhere can clobber it in the window between setting 2207 * it here and returning to user mode, so don't waste time setting 2208 * it perfectly here. 2209 */ 2210 KASSERT((td->td_flags & TDF_BORROWING) == 0, 2211 ("thread with borrowed priority returning to userland")); 2212 if (td->td_priority != td->td_user_pri) { 2213 thread_lock(td); 2214 td->td_priority = td->td_user_pri; 2215 td->td_base_pri = td->td_user_pri; 2216 tdq_setlowpri(TDQ_SELF(), td); 2217 thread_unlock(td); 2218 } 2219 } 2220 2221 /* 2222 * Handle a stathz tick. This is really only relevant for timeshare 2223 * threads. 2224 */ 2225 void 2226 sched_clock(struct thread *td) 2227 { 2228 struct tdq *tdq; 2229 struct td_sched *ts; 2230 2231 THREAD_LOCK_ASSERT(td, MA_OWNED); 2232 tdq = TDQ_SELF(); 2233 #ifdef SMP 2234 /* 2235 * We run the long term load balancer infrequently on the first cpu. 2236 */ 2237 if (balance_tdq == tdq) { 2238 if (balance_ticks && --balance_ticks == 0) 2239 sched_balance(); 2240 } 2241 #endif 2242 /* 2243 * Save the old switch count so we have a record of the last ticks 2244 * activity. Initialize the new switch count based on our load. 2245 * If there is some activity seed it to reflect that. 2246 */ 2247 tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt; 2248 tdq->tdq_switchcnt = tdq->tdq_load; 2249 /* 2250 * Advance the insert index once for each tick to ensure that all 2251 * threads get a chance to run. 2252 */ 2253 if (tdq->tdq_idx == tdq->tdq_ridx) { 2254 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS; 2255 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx])) 2256 tdq->tdq_ridx = tdq->tdq_idx; 2257 } 2258 ts = td->td_sched; 2259 sched_pctcpu_update(ts, 1); 2260 if (td->td_pri_class & PRI_FIFO_BIT) 2261 return; 2262 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) { 2263 /* 2264 * We used a tick; charge it to the thread so 2265 * that we can compute our interactivity. 2266 */ 2267 td->td_sched->ts_runtime += tickincr; 2268 sched_interact_update(td); 2269 sched_priority(td); 2270 } 2271 2272 /* 2273 * Force a context switch if the current thread has used up a full 2274 * time slice (default is 100ms). 2275 */ 2276 if (!TD_IS_IDLETHREAD(td) && ++ts->ts_slice >= tdq_slice(tdq)) { 2277 ts->ts_slice = 0; 2278 td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND; 2279 } 2280 } 2281 2282 /* 2283 * Called once per hz tick. 2284 */ 2285 void 2286 sched_tick(int cnt) 2287 { 2288 2289 } 2290 2291 /* 2292 * Return whether the current CPU has runnable tasks. Used for in-kernel 2293 * cooperative idle threads. 2294 */ 2295 int 2296 sched_runnable(void) 2297 { 2298 struct tdq *tdq; 2299 int load; 2300 2301 load = 1; 2302 2303 tdq = TDQ_SELF(); 2304 if ((curthread->td_flags & TDF_IDLETD) != 0) { 2305 if (tdq->tdq_load > 0) 2306 goto out; 2307 } else 2308 if (tdq->tdq_load - 1 > 0) 2309 goto out; 2310 load = 0; 2311 out: 2312 return (load); 2313 } 2314 2315 /* 2316 * Choose the highest priority thread to run. The thread is removed from 2317 * the run-queue while running however the load remains. For SMP we set 2318 * the tdq in the global idle bitmask if it idles here. 2319 */ 2320 struct thread * 2321 sched_choose(void) 2322 { 2323 struct thread *td; 2324 struct tdq *tdq; 2325 2326 tdq = TDQ_SELF(); 2327 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2328 td = tdq_choose(tdq); 2329 if (td) { 2330 tdq_runq_rem(tdq, td); 2331 tdq->tdq_lowpri = td->td_priority; 2332 return (td); 2333 } 2334 tdq->tdq_lowpri = PRI_MAX_IDLE; 2335 return (PCPU_GET(idlethread)); 2336 } 2337 2338 /* 2339 * Set owepreempt if necessary. Preemption never happens directly in ULE, 2340 * we always request it once we exit a critical section. 2341 */ 2342 static inline void 2343 sched_setpreempt(struct thread *td) 2344 { 2345 struct thread *ctd; 2346 int cpri; 2347 int pri; 2348 2349 THREAD_LOCK_ASSERT(curthread, MA_OWNED); 2350 2351 ctd = curthread; 2352 pri = td->td_priority; 2353 cpri = ctd->td_priority; 2354 if (pri < cpri) 2355 ctd->td_flags |= TDF_NEEDRESCHED; 2356 if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd)) 2357 return; 2358 if (!sched_shouldpreempt(pri, cpri, 0)) 2359 return; 2360 ctd->td_owepreempt = 1; 2361 } 2362 2363 /* 2364 * Add a thread to a thread queue. Select the appropriate runq and add the 2365 * thread to it. This is the internal function called when the tdq is 2366 * predetermined. 2367 */ 2368 void 2369 tdq_add(struct tdq *tdq, struct thread *td, int flags) 2370 { 2371 2372 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2373 KASSERT((td->td_inhibitors == 0), 2374 ("sched_add: trying to run inhibited thread")); 2375 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 2376 ("sched_add: bad thread state")); 2377 KASSERT(td->td_flags & TDF_INMEM, 2378 ("sched_add: thread swapped out")); 2379 2380 if (td->td_priority < tdq->tdq_lowpri) 2381 tdq->tdq_lowpri = td->td_priority; 2382 tdq_runq_add(tdq, td, flags); 2383 tdq_load_add(tdq, td); 2384 } 2385 2386 /* 2387 * Select the target thread queue and add a thread to it. Request 2388 * preemption or IPI a remote processor if required. 2389 */ 2390 void 2391 sched_add(struct thread *td, int flags) 2392 { 2393 struct tdq *tdq; 2394 #ifdef SMP 2395 int cpu; 2396 #endif 2397 2398 KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add", 2399 "prio:%d", td->td_priority, KTR_ATTR_LINKED, 2400 sched_tdname(curthread)); 2401 KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup", 2402 KTR_ATTR_LINKED, sched_tdname(td)); 2403 SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL, 2404 flags & SRQ_PREEMPTED); 2405 THREAD_LOCK_ASSERT(td, MA_OWNED); 2406 /* 2407 * Recalculate the priority before we select the target cpu or 2408 * run-queue. 2409 */ 2410 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 2411 sched_priority(td); 2412 #ifdef SMP 2413 /* 2414 * Pick the destination cpu and if it isn't ours transfer to the 2415 * target cpu. 2416 */ 2417 cpu = sched_pickcpu(td, flags); 2418 tdq = sched_setcpu(td, cpu, flags); 2419 tdq_add(tdq, td, flags); 2420 if (cpu != PCPU_GET(cpuid)) { 2421 tdq_notify(tdq, td); 2422 return; 2423 } 2424 #else 2425 tdq = TDQ_SELF(); 2426 TDQ_LOCK(tdq); 2427 /* 2428 * Now that the thread is moving to the run-queue, set the lock 2429 * to the scheduler's lock. 2430 */ 2431 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 2432 tdq_add(tdq, td, flags); 2433 #endif 2434 if (!(flags & SRQ_YIELDING)) 2435 sched_setpreempt(td); 2436 } 2437 2438 /* 2439 * Remove a thread from a run-queue without running it. This is used 2440 * when we're stealing a thread from a remote queue. Otherwise all threads 2441 * exit by calling sched_exit_thread() and sched_throw() themselves. 2442 */ 2443 void 2444 sched_rem(struct thread *td) 2445 { 2446 struct tdq *tdq; 2447 2448 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem", 2449 "prio:%d", td->td_priority); 2450 SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL); 2451 tdq = TDQ_CPU(td->td_sched->ts_cpu); 2452 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2453 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2454 KASSERT(TD_ON_RUNQ(td), 2455 ("sched_rem: thread not on run queue")); 2456 tdq_runq_rem(tdq, td); 2457 tdq_load_rem(tdq, td); 2458 TD_SET_CAN_RUN(td); 2459 if (td->td_priority == tdq->tdq_lowpri) 2460 tdq_setlowpri(tdq, NULL); 2461 } 2462 2463 /* 2464 * Fetch cpu utilization information. Updates on demand. 2465 */ 2466 fixpt_t 2467 sched_pctcpu(struct thread *td) 2468 { 2469 fixpt_t pctcpu; 2470 struct td_sched *ts; 2471 2472 pctcpu = 0; 2473 ts = td->td_sched; 2474 if (ts == NULL) 2475 return (0); 2476 2477 THREAD_LOCK_ASSERT(td, MA_OWNED); 2478 sched_pctcpu_update(ts, TD_IS_RUNNING(td)); 2479 if (ts->ts_ticks) { 2480 int rtick; 2481 2482 /* How many rtick per second ? */ 2483 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz); 2484 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT; 2485 } 2486 2487 return (pctcpu); 2488 } 2489 2490 /* 2491 * Enforce affinity settings for a thread. Called after adjustments to 2492 * cpumask. 2493 */ 2494 void 2495 sched_affinity(struct thread *td) 2496 { 2497 #ifdef SMP 2498 struct td_sched *ts; 2499 2500 THREAD_LOCK_ASSERT(td, MA_OWNED); 2501 ts = td->td_sched; 2502 if (THREAD_CAN_SCHED(td, ts->ts_cpu)) 2503 return; 2504 if (TD_ON_RUNQ(td)) { 2505 sched_rem(td); 2506 sched_add(td, SRQ_BORING); 2507 return; 2508 } 2509 if (!TD_IS_RUNNING(td)) 2510 return; 2511 /* 2512 * Force a switch before returning to userspace. If the 2513 * target thread is not running locally send an ipi to force 2514 * the issue. 2515 */ 2516 td->td_flags |= TDF_NEEDRESCHED; 2517 if (td != curthread) 2518 ipi_cpu(ts->ts_cpu, IPI_PREEMPT); 2519 #endif 2520 } 2521 2522 /* 2523 * Bind a thread to a target cpu. 2524 */ 2525 void 2526 sched_bind(struct thread *td, int cpu) 2527 { 2528 struct td_sched *ts; 2529 2530 THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED); 2531 KASSERT(td == curthread, ("sched_bind: can only bind curthread")); 2532 ts = td->td_sched; 2533 if (ts->ts_flags & TSF_BOUND) 2534 sched_unbind(td); 2535 KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td)); 2536 ts->ts_flags |= TSF_BOUND; 2537 sched_pin(); 2538 if (PCPU_GET(cpuid) == cpu) 2539 return; 2540 ts->ts_cpu = cpu; 2541 /* When we return from mi_switch we'll be on the correct cpu. */ 2542 mi_switch(SW_VOL, NULL); 2543 } 2544 2545 /* 2546 * Release a bound thread. 2547 */ 2548 void 2549 sched_unbind(struct thread *td) 2550 { 2551 struct td_sched *ts; 2552 2553 THREAD_LOCK_ASSERT(td, MA_OWNED); 2554 KASSERT(td == curthread, ("sched_unbind: can only bind curthread")); 2555 ts = td->td_sched; 2556 if ((ts->ts_flags & TSF_BOUND) == 0) 2557 return; 2558 ts->ts_flags &= ~TSF_BOUND; 2559 sched_unpin(); 2560 } 2561 2562 int 2563 sched_is_bound(struct thread *td) 2564 { 2565 THREAD_LOCK_ASSERT(td, MA_OWNED); 2566 return (td->td_sched->ts_flags & TSF_BOUND); 2567 } 2568 2569 /* 2570 * Basic yield call. 2571 */ 2572 void 2573 sched_relinquish(struct thread *td) 2574 { 2575 thread_lock(td); 2576 mi_switch(SW_VOL | SWT_RELINQUISH, NULL); 2577 thread_unlock(td); 2578 } 2579 2580 /* 2581 * Return the total system load. 2582 */ 2583 int 2584 sched_load(void) 2585 { 2586 #ifdef SMP 2587 int total; 2588 int i; 2589 2590 total = 0; 2591 CPU_FOREACH(i) 2592 total += TDQ_CPU(i)->tdq_sysload; 2593 return (total); 2594 #else 2595 return (TDQ_SELF()->tdq_sysload); 2596 #endif 2597 } 2598 2599 int 2600 sched_sizeof_proc(void) 2601 { 2602 return (sizeof(struct proc)); 2603 } 2604 2605 int 2606 sched_sizeof_thread(void) 2607 { 2608 return (sizeof(struct thread) + sizeof(struct td_sched)); 2609 } 2610 2611 #ifdef SMP 2612 #define TDQ_IDLESPIN(tdq) \ 2613 ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0) 2614 #else 2615 #define TDQ_IDLESPIN(tdq) 1 2616 #endif 2617 2618 /* 2619 * The actual idle process. 2620 */ 2621 void 2622 sched_idletd(void *dummy) 2623 { 2624 struct thread *td; 2625 struct tdq *tdq; 2626 int oldswitchcnt, switchcnt; 2627 int i; 2628 2629 mtx_assert(&Giant, MA_NOTOWNED); 2630 td = curthread; 2631 tdq = TDQ_SELF(); 2632 THREAD_NO_SLEEPING(); 2633 oldswitchcnt = -1; 2634 for (;;) { 2635 if (tdq->tdq_load) { 2636 thread_lock(td); 2637 mi_switch(SW_VOL | SWT_IDLE, NULL); 2638 thread_unlock(td); 2639 } 2640 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2641 #ifdef SMP 2642 if (switchcnt != oldswitchcnt) { 2643 oldswitchcnt = switchcnt; 2644 if (tdq_idled(tdq) == 0) 2645 continue; 2646 } 2647 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2648 #else 2649 oldswitchcnt = switchcnt; 2650 #endif 2651 /* 2652 * If we're switching very frequently, spin while checking 2653 * for load rather than entering a low power state that 2654 * may require an IPI. However, don't do any busy 2655 * loops while on SMT machines as this simply steals 2656 * cycles from cores doing useful work. 2657 */ 2658 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) { 2659 for (i = 0; i < sched_idlespins; i++) { 2660 if (tdq->tdq_load) 2661 break; 2662 cpu_spinwait(); 2663 } 2664 } 2665 2666 /* If there was context switch during spin, restart it. */ 2667 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2668 if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt) 2669 continue; 2670 2671 /* Run main MD idle handler. */ 2672 tdq->tdq_cpu_idle = 1; 2673 cpu_idle(switchcnt * 4 > sched_idlespinthresh); 2674 tdq->tdq_cpu_idle = 0; 2675 2676 /* 2677 * Account thread-less hardware interrupts and 2678 * other wakeup reasons equal to context switches. 2679 */ 2680 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2681 if (switchcnt != oldswitchcnt) 2682 continue; 2683 tdq->tdq_switchcnt++; 2684 oldswitchcnt++; 2685 } 2686 } 2687 2688 /* 2689 * A CPU is entering for the first time or a thread is exiting. 2690 */ 2691 void 2692 sched_throw(struct thread *td) 2693 { 2694 struct thread *newtd; 2695 struct tdq *tdq; 2696 2697 tdq = TDQ_SELF(); 2698 if (td == NULL) { 2699 /* Correct spinlock nesting and acquire the correct lock. */ 2700 TDQ_LOCK(tdq); 2701 spinlock_exit(); 2702 PCPU_SET(switchtime, cpu_ticks()); 2703 PCPU_SET(switchticks, ticks); 2704 } else { 2705 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2706 tdq_load_rem(tdq, td); 2707 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 2708 } 2709 KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count")); 2710 newtd = choosethread(); 2711 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 2712 cpu_throw(td, newtd); /* doesn't return */ 2713 } 2714 2715 /* 2716 * This is called from fork_exit(). Just acquire the correct locks and 2717 * let fork do the rest of the work. 2718 */ 2719 void 2720 sched_fork_exit(struct thread *td) 2721 { 2722 struct td_sched *ts; 2723 struct tdq *tdq; 2724 int cpuid; 2725 2726 /* 2727 * Finish setting up thread glue so that it begins execution in a 2728 * non-nested critical section with the scheduler lock held. 2729 */ 2730 cpuid = PCPU_GET(cpuid); 2731 tdq = TDQ_CPU(cpuid); 2732 ts = td->td_sched; 2733 if (TD_IS_IDLETHREAD(td)) 2734 td->td_lock = TDQ_LOCKPTR(tdq); 2735 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2736 td->td_oncpu = cpuid; 2737 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 2738 lock_profile_obtain_lock_success( 2739 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 2740 } 2741 2742 /* 2743 * Create on first use to catch odd startup conditons. 2744 */ 2745 char * 2746 sched_tdname(struct thread *td) 2747 { 2748 #ifdef KTR 2749 struct td_sched *ts; 2750 2751 ts = td->td_sched; 2752 if (ts->ts_name[0] == '\0') 2753 snprintf(ts->ts_name, sizeof(ts->ts_name), 2754 "%s tid %d", td->td_name, td->td_tid); 2755 return (ts->ts_name); 2756 #else 2757 return (td->td_name); 2758 #endif 2759 } 2760 2761 #ifdef KTR 2762 void 2763 sched_clear_tdname(struct thread *td) 2764 { 2765 struct td_sched *ts; 2766 2767 ts = td->td_sched; 2768 ts->ts_name[0] = '\0'; 2769 } 2770 #endif 2771 2772 #ifdef SMP 2773 2774 /* 2775 * Build the CPU topology dump string. Is recursively called to collect 2776 * the topology tree. 2777 */ 2778 static int 2779 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg, 2780 int indent) 2781 { 2782 char cpusetbuf[CPUSETBUFSIZ]; 2783 int i, first; 2784 2785 sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent, 2786 "", 1 + indent / 2, cg->cg_level); 2787 sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "", 2788 cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask)); 2789 first = TRUE; 2790 for (i = 0; i < MAXCPU; i++) { 2791 if (CPU_ISSET(i, &cg->cg_mask)) { 2792 if (!first) 2793 sbuf_printf(sb, ", "); 2794 else 2795 first = FALSE; 2796 sbuf_printf(sb, "%d", i); 2797 } 2798 } 2799 sbuf_printf(sb, "</cpu>\n"); 2800 2801 if (cg->cg_flags != 0) { 2802 sbuf_printf(sb, "%*s <flags>", indent, ""); 2803 if ((cg->cg_flags & CG_FLAG_HTT) != 0) 2804 sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>"); 2805 if ((cg->cg_flags & CG_FLAG_THREAD) != 0) 2806 sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>"); 2807 if ((cg->cg_flags & CG_FLAG_SMT) != 0) 2808 sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>"); 2809 sbuf_printf(sb, "</flags>\n"); 2810 } 2811 2812 if (cg->cg_children > 0) { 2813 sbuf_printf(sb, "%*s <children>\n", indent, ""); 2814 for (i = 0; i < cg->cg_children; i++) 2815 sysctl_kern_sched_topology_spec_internal(sb, 2816 &cg->cg_child[i], indent+2); 2817 sbuf_printf(sb, "%*s </children>\n", indent, ""); 2818 } 2819 sbuf_printf(sb, "%*s</group>\n", indent, ""); 2820 return (0); 2821 } 2822 2823 /* 2824 * Sysctl handler for retrieving topology dump. It's a wrapper for 2825 * the recursive sysctl_kern_smp_topology_spec_internal(). 2826 */ 2827 static int 2828 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS) 2829 { 2830 struct sbuf *topo; 2831 int err; 2832 2833 KASSERT(cpu_top != NULL, ("cpu_top isn't initialized")); 2834 2835 topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND); 2836 if (topo == NULL) 2837 return (ENOMEM); 2838 2839 sbuf_printf(topo, "<groups>\n"); 2840 err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1); 2841 sbuf_printf(topo, "</groups>\n"); 2842 2843 if (err == 0) { 2844 sbuf_finish(topo); 2845 err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo)); 2846 } 2847 sbuf_delete(topo); 2848 return (err); 2849 } 2850 2851 #endif 2852 2853 static int 2854 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS) 2855 { 2856 int error, new_val, period; 2857 2858 period = 1000000 / realstathz; 2859 new_val = period * sched_slice; 2860 error = sysctl_handle_int(oidp, &new_val, 0, req); 2861 if (error != 0 || req->newptr == NULL) 2862 return (error); 2863 if (new_val <= 0) 2864 return (EINVAL); 2865 sched_slice = imax(1, (new_val + period / 2) / period); 2866 sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR; 2867 hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) / 2868 realstathz); 2869 return (0); 2870 } 2871 2872 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler"); 2873 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0, 2874 "Scheduler name"); 2875 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW, 2876 NULL, 0, sysctl_kern_quantum, "I", 2877 "Quantum for timeshare threads in microseconds"); 2878 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0, 2879 "Quantum for timeshare threads in stathz ticks"); 2880 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0, 2881 "Interactivity score threshold"); 2882 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, 2883 &preempt_thresh, 0, 2884 "Maximal (lowest) priority for preemption"); 2885 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0, 2886 "Assign static kernel priorities to sleeping threads"); 2887 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0, 2888 "Number of times idle thread will spin waiting for new work"); 2889 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, 2890 &sched_idlespinthresh, 0, 2891 "Threshold before we will permit idle thread spinning"); 2892 #ifdef SMP 2893 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0, 2894 "Number of hz ticks to keep thread affinity for"); 2895 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0, 2896 "Enables the long-term load balancer"); 2897 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW, 2898 &balance_interval, 0, 2899 "Average period in stathz ticks to run the long-term balancer"); 2900 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0, 2901 "Attempts to steal work from other cores before idling"); 2902 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0, 2903 "Minimum load on remote CPU before we'll steal"); 2904 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING | 2905 CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A", 2906 "XML dump of detected CPU topology"); 2907 #endif 2908 2909 /* ps compat. All cpu percentages from ULE are weighted. */ 2910 static int ccpu = 0; 2911 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 2912