xref: /freebsd/sys/kern/sched_ule.c (revision 3ef51c5fb9163f2aafb1c14729e06a8bf0c4d113)
1 /*-
2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * This file implements the ULE scheduler.  ULE supports independent CPU
29  * run queues and fine grain locking.  It has superior interactive
30  * performance under load even on uni-processor systems.
31  *
32  * etymology:
33  *   ULE is the last three letters in schedule.  It owes its name to a
34  * generic user created for a scheduling system by Paul Mikesell at
35  * Isilon Systems and a general lack of creativity on the part of the author.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_kdtrace.h"
43 #include "opt_sched.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resource.h>
54 #include <sys/resourcevar.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/turnstile.h>
61 #include <sys/umtx.h>
62 #include <sys/vmmeter.h>
63 #include <sys/cpuset.h>
64 #include <sys/sbuf.h>
65 
66 #ifdef HWPMC_HOOKS
67 #include <sys/pmckern.h>
68 #endif
69 
70 #ifdef KDTRACE_HOOKS
71 #include <sys/dtrace_bsd.h>
72 int				dtrace_vtime_active;
73 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
74 #endif
75 
76 #include <machine/cpu.h>
77 #include <machine/smp.h>
78 
79 #if defined(__powerpc__) && defined(E500)
80 #error "This architecture is not currently compatible with ULE"
81 #endif
82 
83 #define	KTR_ULE	0
84 
85 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
86 #define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
87 #define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
88 
89 /*
90  * Thread scheduler specific section.  All fields are protected
91  * by the thread lock.
92  */
93 struct td_sched {
94 	struct runq	*ts_runq;	/* Run-queue we're queued on. */
95 	short		ts_flags;	/* TSF_* flags. */
96 	u_char		ts_cpu;		/* CPU that we have affinity for. */
97 	int		ts_rltick;	/* Real last tick, for affinity. */
98 	int		ts_slice;	/* Ticks of slice remaining. */
99 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
100 	u_int		ts_runtime;	/* Number of ticks we were running */
101 	int		ts_ltick;	/* Last tick that we were running on */
102 	int		ts_ftick;	/* First tick that we were running on */
103 	int		ts_ticks;	/* Tick count */
104 #ifdef KTR
105 	char		ts_name[TS_NAME_LEN];
106 #endif
107 };
108 /* flags kept in ts_flags */
109 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
110 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
111 
112 static struct td_sched td_sched0;
113 
114 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
115 #define	THREAD_CAN_SCHED(td, cpu)	\
116     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
117 
118 /*
119  * Priority ranges used for interactive and non-interactive timeshare
120  * threads.  The timeshare priorities are split up into four ranges.
121  * The first range handles interactive threads.  The last three ranges
122  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
123  * ranges supporting nice values.
124  */
125 #define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
126 #define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
127 #define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
128 
129 #define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
130 #define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
131 #define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
132 #define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
133 
134 /*
135  * Cpu percentage computation macros and defines.
136  *
137  * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
138  * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
139  * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
140  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
141  * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
142  * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
143  */
144 #define	SCHED_TICK_SECS		10
145 #define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
146 #define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
147 #define	SCHED_TICK_SHIFT	10
148 #define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
149 #define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
150 
151 /*
152  * These macros determine priorities for non-interactive threads.  They are
153  * assigned a priority based on their recent cpu utilization as expressed
154  * by the ratio of ticks to the tick total.  NHALF priorities at the start
155  * and end of the MIN to MAX timeshare range are only reachable with negative
156  * or positive nice respectively.
157  *
158  * PRI_RANGE:	Priority range for utilization dependent priorities.
159  * PRI_NRESV:	Number of nice values.
160  * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
161  * PRI_NICE:	Determines the part of the priority inherited from nice.
162  */
163 #define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
164 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
165 #define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
166 #define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
167 #define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
168 #define	SCHED_PRI_TICKS(ts)						\
169     (SCHED_TICK_HZ((ts)) /						\
170     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
171 #define	SCHED_PRI_NICE(nice)	(nice)
172 
173 /*
174  * These determine the interactivity of a process.  Interactivity differs from
175  * cpu utilization in that it expresses the voluntary time slept vs time ran
176  * while cpu utilization includes all time not running.  This more accurately
177  * models the intent of the thread.
178  *
179  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
180  *		before throttling back.
181  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
182  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
183  * INTERACT_THRESH:	Threshold for placement on the current runq.
184  */
185 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
186 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
187 #define	SCHED_INTERACT_MAX	(100)
188 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
189 #define	SCHED_INTERACT_THRESH	(30)
190 
191 /*
192  * tickincr:		Converts a stathz tick into a hz domain scaled by
193  *			the shift factor.  Without the shift the error rate
194  *			due to rounding would be unacceptably high.
195  * realstathz:		stathz is sometimes 0 and run off of hz.
196  * sched_slice:		Runtime of each thread before rescheduling.
197  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
198  */
199 static int sched_interact = SCHED_INTERACT_THRESH;
200 static int realstathz;
201 static int tickincr;
202 static int sched_slice = 1;
203 #ifdef PREEMPTION
204 #ifdef FULL_PREEMPTION
205 static int preempt_thresh = PRI_MAX_IDLE;
206 #else
207 static int preempt_thresh = PRI_MIN_KERN;
208 #endif
209 #else
210 static int preempt_thresh = 0;
211 #endif
212 static int static_boost = PRI_MIN_BATCH;
213 static int sched_idlespins = 10000;
214 static int sched_idlespinthresh = -1;
215 
216 /*
217  * tdq - per processor runqs and statistics.  All fields are protected by the
218  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
219  * locking in sched_pickcpu();
220  */
221 struct tdq {
222 	/* Ordered to improve efficiency of cpu_search() and switch(). */
223 	struct mtx	tdq_lock;		/* run queue lock. */
224 	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
225 	volatile int	tdq_load;		/* Aggregate load. */
226 	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
227 	int		tdq_sysload;		/* For loadavg, !ITHD load. */
228 	int		tdq_transferable;	/* Transferable thread count. */
229 	short		tdq_switchcnt;		/* Switches this tick. */
230 	short		tdq_oldswitchcnt;	/* Switches last tick. */
231 	u_char		tdq_lowpri;		/* Lowest priority thread. */
232 	u_char		tdq_ipipending;		/* IPI pending. */
233 	u_char		tdq_idx;		/* Current insert index. */
234 	u_char		tdq_ridx;		/* Current removal index. */
235 	struct runq	tdq_realtime;		/* real-time run queue. */
236 	struct runq	tdq_timeshare;		/* timeshare run queue. */
237 	struct runq	tdq_idle;		/* Queue of IDLE threads. */
238 	char		tdq_name[TDQ_NAME_LEN];
239 #ifdef KTR
240 	char		tdq_loadname[TDQ_LOADNAME_LEN];
241 #endif
242 } __aligned(64);
243 
244 /* Idle thread states and config. */
245 #define	TDQ_RUNNING	1
246 #define	TDQ_IDLE	2
247 
248 #ifdef SMP
249 struct cpu_group *cpu_top;		/* CPU topology */
250 
251 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
252 #define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
253 
254 /*
255  * Run-time tunables.
256  */
257 static int rebalance = 1;
258 static int balance_interval = 128;	/* Default set in sched_initticks(). */
259 static int affinity;
260 static int steal_idle = 1;
261 static int steal_thresh = 2;
262 
263 /*
264  * One thread queue per processor.
265  */
266 static struct tdq	tdq_cpu[MAXCPU];
267 static struct tdq	*balance_tdq;
268 static int balance_ticks;
269 static DPCPU_DEFINE(uint32_t, randomval);
270 
271 #define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
272 #define	TDQ_CPU(x)	(&tdq_cpu[(x)])
273 #define	TDQ_ID(x)	((int)((x) - tdq_cpu))
274 #else	/* !SMP */
275 static struct tdq	tdq_cpu;
276 
277 #define	TDQ_ID(x)	(0)
278 #define	TDQ_SELF()	(&tdq_cpu)
279 #define	TDQ_CPU(x)	(&tdq_cpu)
280 #endif
281 
282 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
283 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
284 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
285 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
286 #define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
287 
288 static void sched_priority(struct thread *);
289 static void sched_thread_priority(struct thread *, u_char);
290 static int sched_interact_score(struct thread *);
291 static void sched_interact_update(struct thread *);
292 static void sched_interact_fork(struct thread *);
293 static void sched_pctcpu_update(struct td_sched *, int);
294 
295 /* Operations on per processor queues */
296 static struct thread *tdq_choose(struct tdq *);
297 static void tdq_setup(struct tdq *);
298 static void tdq_load_add(struct tdq *, struct thread *);
299 static void tdq_load_rem(struct tdq *, struct thread *);
300 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
301 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
302 static inline int sched_shouldpreempt(int, int, int);
303 void tdq_print(int cpu);
304 static void runq_print(struct runq *rq);
305 static void tdq_add(struct tdq *, struct thread *, int);
306 #ifdef SMP
307 static int tdq_move(struct tdq *, struct tdq *);
308 static int tdq_idled(struct tdq *);
309 static void tdq_notify(struct tdq *, struct thread *);
310 static struct thread *tdq_steal(struct tdq *, int);
311 static struct thread *runq_steal(struct runq *, int);
312 static int sched_pickcpu(struct thread *, int);
313 static void sched_balance(void);
314 static int sched_balance_pair(struct tdq *, struct tdq *);
315 static inline struct tdq *sched_setcpu(struct thread *, int, int);
316 static inline void thread_unblock_switch(struct thread *, struct mtx *);
317 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
318 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
319 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
320     struct cpu_group *cg, int indent);
321 #endif
322 
323 static void sched_setup(void *dummy);
324 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
325 
326 static void sched_initticks(void *dummy);
327 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
328     NULL);
329 
330 /*
331  * Print the threads waiting on a run-queue.
332  */
333 static void
334 runq_print(struct runq *rq)
335 {
336 	struct rqhead *rqh;
337 	struct thread *td;
338 	int pri;
339 	int j;
340 	int i;
341 
342 	for (i = 0; i < RQB_LEN; i++) {
343 		printf("\t\trunq bits %d 0x%zx\n",
344 		    i, rq->rq_status.rqb_bits[i]);
345 		for (j = 0; j < RQB_BPW; j++)
346 			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
347 				pri = j + (i << RQB_L2BPW);
348 				rqh = &rq->rq_queues[pri];
349 				TAILQ_FOREACH(td, rqh, td_runq) {
350 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
351 					    td, td->td_name, td->td_priority,
352 					    td->td_rqindex, pri);
353 				}
354 			}
355 	}
356 }
357 
358 /*
359  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
360  */
361 void
362 tdq_print(int cpu)
363 {
364 	struct tdq *tdq;
365 
366 	tdq = TDQ_CPU(cpu);
367 
368 	printf("tdq %d:\n", TDQ_ID(tdq));
369 	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
370 	printf("\tLock name:      %s\n", tdq->tdq_name);
371 	printf("\tload:           %d\n", tdq->tdq_load);
372 	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
373 	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
374 	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
375 	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
376 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
377 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
378 	printf("\trealtime runq:\n");
379 	runq_print(&tdq->tdq_realtime);
380 	printf("\ttimeshare runq:\n");
381 	runq_print(&tdq->tdq_timeshare);
382 	printf("\tidle runq:\n");
383 	runq_print(&tdq->tdq_idle);
384 }
385 
386 static inline int
387 sched_shouldpreempt(int pri, int cpri, int remote)
388 {
389 	/*
390 	 * If the new priority is not better than the current priority there is
391 	 * nothing to do.
392 	 */
393 	if (pri >= cpri)
394 		return (0);
395 	/*
396 	 * Always preempt idle.
397 	 */
398 	if (cpri >= PRI_MIN_IDLE)
399 		return (1);
400 	/*
401 	 * If preemption is disabled don't preempt others.
402 	 */
403 	if (preempt_thresh == 0)
404 		return (0);
405 	/*
406 	 * Preempt if we exceed the threshold.
407 	 */
408 	if (pri <= preempt_thresh)
409 		return (1);
410 	/*
411 	 * If we're interactive or better and there is non-interactive
412 	 * or worse running preempt only remote processors.
413 	 */
414 	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
415 		return (1);
416 	return (0);
417 }
418 
419 /*
420  * Add a thread to the actual run-queue.  Keeps transferable counts up to
421  * date with what is actually on the run-queue.  Selects the correct
422  * queue position for timeshare threads.
423  */
424 static __inline void
425 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
426 {
427 	struct td_sched *ts;
428 	u_char pri;
429 
430 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
431 	THREAD_LOCK_ASSERT(td, MA_OWNED);
432 
433 	pri = td->td_priority;
434 	ts = td->td_sched;
435 	TD_SET_RUNQ(td);
436 	if (THREAD_CAN_MIGRATE(td)) {
437 		tdq->tdq_transferable++;
438 		ts->ts_flags |= TSF_XFERABLE;
439 	}
440 	if (pri < PRI_MIN_BATCH) {
441 		ts->ts_runq = &tdq->tdq_realtime;
442 	} else if (pri <= PRI_MAX_BATCH) {
443 		ts->ts_runq = &tdq->tdq_timeshare;
444 		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
445 			("Invalid priority %d on timeshare runq", pri));
446 		/*
447 		 * This queue contains only priorities between MIN and MAX
448 		 * realtime.  Use the whole queue to represent these values.
449 		 */
450 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
451 			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
452 			pri = (pri + tdq->tdq_idx) % RQ_NQS;
453 			/*
454 			 * This effectively shortens the queue by one so we
455 			 * can have a one slot difference between idx and
456 			 * ridx while we wait for threads to drain.
457 			 */
458 			if (tdq->tdq_ridx != tdq->tdq_idx &&
459 			    pri == tdq->tdq_ridx)
460 				pri = (unsigned char)(pri - 1) % RQ_NQS;
461 		} else
462 			pri = tdq->tdq_ridx;
463 		runq_add_pri(ts->ts_runq, td, pri, flags);
464 		return;
465 	} else
466 		ts->ts_runq = &tdq->tdq_idle;
467 	runq_add(ts->ts_runq, td, flags);
468 }
469 
470 /*
471  * Remove a thread from a run-queue.  This typically happens when a thread
472  * is selected to run.  Running threads are not on the queue and the
473  * transferable count does not reflect them.
474  */
475 static __inline void
476 tdq_runq_rem(struct tdq *tdq, struct thread *td)
477 {
478 	struct td_sched *ts;
479 
480 	ts = td->td_sched;
481 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
482 	KASSERT(ts->ts_runq != NULL,
483 	    ("tdq_runq_remove: thread %p null ts_runq", td));
484 	if (ts->ts_flags & TSF_XFERABLE) {
485 		tdq->tdq_transferable--;
486 		ts->ts_flags &= ~TSF_XFERABLE;
487 	}
488 	if (ts->ts_runq == &tdq->tdq_timeshare) {
489 		if (tdq->tdq_idx != tdq->tdq_ridx)
490 			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
491 		else
492 			runq_remove_idx(ts->ts_runq, td, NULL);
493 	} else
494 		runq_remove(ts->ts_runq, td);
495 }
496 
497 /*
498  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
499  * for this thread to the referenced thread queue.
500  */
501 static void
502 tdq_load_add(struct tdq *tdq, struct thread *td)
503 {
504 
505 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
506 	THREAD_LOCK_ASSERT(td, MA_OWNED);
507 
508 	tdq->tdq_load++;
509 	if ((td->td_flags & TDF_NOLOAD) == 0)
510 		tdq->tdq_sysload++;
511 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
512 }
513 
514 /*
515  * Remove the load from a thread that is transitioning to a sleep state or
516  * exiting.
517  */
518 static void
519 tdq_load_rem(struct tdq *tdq, struct thread *td)
520 {
521 
522 	THREAD_LOCK_ASSERT(td, MA_OWNED);
523 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
524 	KASSERT(tdq->tdq_load != 0,
525 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
526 
527 	tdq->tdq_load--;
528 	if ((td->td_flags & TDF_NOLOAD) == 0)
529 		tdq->tdq_sysload--;
530 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
531 }
532 
533 /*
534  * Set lowpri to its exact value by searching the run-queue and
535  * evaluating curthread.  curthread may be passed as an optimization.
536  */
537 static void
538 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
539 {
540 	struct thread *td;
541 
542 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
543 	if (ctd == NULL)
544 		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
545 	td = tdq_choose(tdq);
546 	if (td == NULL || td->td_priority > ctd->td_priority)
547 		tdq->tdq_lowpri = ctd->td_priority;
548 	else
549 		tdq->tdq_lowpri = td->td_priority;
550 }
551 
552 #ifdef SMP
553 struct cpu_search {
554 	cpuset_t cs_mask;
555 	u_int	cs_prefer;
556 	int	cs_pri;		/* Min priority for low. */
557 	int	cs_limit;	/* Max load for low, min load for high. */
558 	int	cs_cpu;
559 	int	cs_load;
560 };
561 
562 #define	CPU_SEARCH_LOWEST	0x1
563 #define	CPU_SEARCH_HIGHEST	0x2
564 #define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
565 
566 #define	CPUSET_FOREACH(cpu, mask)				\
567 	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
568 		if (CPU_ISSET(cpu, &mask))
569 
570 static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
571     struct cpu_search *high, const int match);
572 int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
573 int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
574 int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
575     struct cpu_search *high);
576 
577 /*
578  * Search the tree of cpu_groups for the lowest or highest loaded cpu
579  * according to the match argument.  This routine actually compares the
580  * load on all paths through the tree and finds the least loaded cpu on
581  * the least loaded path, which may differ from the least loaded cpu in
582  * the system.  This balances work among caches and busses.
583  *
584  * This inline is instantiated in three forms below using constants for the
585  * match argument.  It is reduced to the minimum set for each case.  It is
586  * also recursive to the depth of the tree.
587  */
588 static __inline int
589 cpu_search(const struct cpu_group *cg, struct cpu_search *low,
590     struct cpu_search *high, const int match)
591 {
592 	struct cpu_search lgroup;
593 	struct cpu_search hgroup;
594 	cpuset_t cpumask;
595 	struct cpu_group *child;
596 	struct tdq *tdq;
597 	int cpu, i, hload, lload, load, total, rnd;
598 
599 	total = 0;
600 	cpumask = cg->cg_mask;
601 	if (match & CPU_SEARCH_LOWEST) {
602 		lload = INT_MAX;
603 		low->cs_load = INT_MAX;
604 		lgroup = *low;
605 	}
606 	if (match & CPU_SEARCH_HIGHEST) {
607 		hload = -1;
608 		high->cs_load = -1;
609 		hgroup = *high;
610 	}
611 
612 	/* Iterate through the child CPU groups and then remaining CPUs. */
613 	for (i = 0, cpu = 0; i <= cg->cg_children; ) {
614 		if (i >= cg->cg_children) {
615 			while (cpu <= mp_maxid && !CPU_ISSET(cpu, &cpumask))
616 				cpu++;
617 			if (cpu > mp_maxid)
618 				break;
619 			child = NULL;
620 		} else
621 			child = &cg->cg_child[i];
622 
623 		if (child) {			/* Handle child CPU group. */
624 			CPU_NAND(&cpumask, &child->cg_mask);
625 			switch (match) {
626 			case CPU_SEARCH_LOWEST:
627 				load = cpu_search_lowest(child, &lgroup);
628 				break;
629 			case CPU_SEARCH_HIGHEST:
630 				load = cpu_search_highest(child, &hgroup);
631 				break;
632 			case CPU_SEARCH_BOTH:
633 				load = cpu_search_both(child, &lgroup, &hgroup);
634 				break;
635 			}
636 		} else {			/* Handle child CPU. */
637 			tdq = TDQ_CPU(cpu);
638 			load = tdq->tdq_load * 256;
639 			rnd = DPCPU_SET(randomval,
640 			    DPCPU_GET(randomval) * 69069 + 5) >> 26;
641 			if (match & CPU_SEARCH_LOWEST) {
642 				if (cpu == low->cs_prefer)
643 					load -= 64;
644 				/* If that CPU is allowed and get data. */
645 				if (CPU_ISSET(cpu, &lgroup.cs_mask) &&
646 				    tdq->tdq_lowpri > lgroup.cs_pri &&
647 				    tdq->tdq_load <= lgroup.cs_limit) {
648 					lgroup.cs_cpu = cpu;
649 					lgroup.cs_load = load - rnd;
650 				}
651 			}
652 			if (match & CPU_SEARCH_HIGHEST)
653 				if (CPU_ISSET(cpu, &hgroup.cs_mask) &&
654 				    tdq->tdq_load >= hgroup.cs_limit &&
655 				    tdq->tdq_transferable) {
656 					hgroup.cs_cpu = cpu;
657 					hgroup.cs_load = load - rnd;
658 				}
659 		}
660 		total += load;
661 
662 		/* We have info about child item. Compare it. */
663 		if (match & CPU_SEARCH_LOWEST) {
664 			if (lgroup.cs_load != INT_MAX &&
665 			    (load < lload ||
666 			     (load == lload && lgroup.cs_load < low->cs_load))) {
667 				lload = load;
668 				low->cs_cpu = lgroup.cs_cpu;
669 				low->cs_load = lgroup.cs_load;
670 			}
671 		}
672 		if (match & CPU_SEARCH_HIGHEST)
673 			if (hgroup.cs_load >= 0 &&
674 			    (load > hload ||
675 			     (load == hload && hgroup.cs_load > high->cs_load))) {
676 				hload = load;
677 				high->cs_cpu = hgroup.cs_cpu;
678 				high->cs_load = hgroup.cs_load;
679 			}
680 		if (child)
681 			i++;
682 		else
683 			cpu++;
684 	}
685 	return (total);
686 }
687 
688 /*
689  * cpu_search instantiations must pass constants to maintain the inline
690  * optimization.
691  */
692 int
693 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
694 {
695 	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
696 }
697 
698 int
699 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
700 {
701 	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
702 }
703 
704 int
705 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
706     struct cpu_search *high)
707 {
708 	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
709 }
710 
711 /*
712  * Find the cpu with the least load via the least loaded path that has a
713  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
714  * acceptable.
715  */
716 static inline int
717 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
718     int prefer)
719 {
720 	struct cpu_search low;
721 
722 	low.cs_cpu = -1;
723 	low.cs_prefer = prefer;
724 	low.cs_mask = mask;
725 	low.cs_pri = pri;
726 	low.cs_limit = maxload;
727 	cpu_search_lowest(cg, &low);
728 	return low.cs_cpu;
729 }
730 
731 /*
732  * Find the cpu with the highest load via the highest loaded path.
733  */
734 static inline int
735 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
736 {
737 	struct cpu_search high;
738 
739 	high.cs_cpu = -1;
740 	high.cs_mask = mask;
741 	high.cs_limit = minload;
742 	cpu_search_highest(cg, &high);
743 	return high.cs_cpu;
744 }
745 
746 /*
747  * Simultaneously find the highest and lowest loaded cpu reachable via
748  * cg.
749  */
750 static inline void
751 sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
752 {
753 	struct cpu_search high;
754 	struct cpu_search low;
755 
756 	low.cs_cpu = -1;
757 	low.cs_prefer = -1;
758 	low.cs_pri = -1;
759 	low.cs_limit = INT_MAX;
760 	low.cs_mask = mask;
761 	high.cs_cpu = -1;
762 	high.cs_limit = -1;
763 	high.cs_mask = mask;
764 	cpu_search_both(cg, &low, &high);
765 	*lowcpu = low.cs_cpu;
766 	*highcpu = high.cs_cpu;
767 	return;
768 }
769 
770 static void
771 sched_balance_group(struct cpu_group *cg)
772 {
773 	cpuset_t hmask, lmask;
774 	int high, low, anylow;
775 
776 	CPU_FILL(&hmask);
777 	for (;;) {
778 		high = sched_highest(cg, hmask, 1);
779 		/* Stop if there is no more CPU with transferrable threads. */
780 		if (high == -1)
781 			break;
782 		CPU_CLR(high, &hmask);
783 		CPU_COPY(&hmask, &lmask);
784 		/* Stop if there is no more CPU left for low. */
785 		if (CPU_EMPTY(&lmask))
786 			break;
787 		anylow = 1;
788 nextlow:
789 		low = sched_lowest(cg, lmask, -1,
790 		    TDQ_CPU(high)->tdq_load - 1, high);
791 		/* Stop if we looked well and found no less loaded CPU. */
792 		if (anylow && low == -1)
793 			break;
794 		/* Go to next high if we found no less loaded CPU. */
795 		if (low == -1)
796 			continue;
797 		/* Transfer thread from high to low. */
798 		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
799 			/* CPU that got thread can no longer be a donor. */
800 			CPU_CLR(low, &hmask);
801 		} else {
802 			/*
803 			 * If failed, then there is no threads on high
804 			 * that can run on this low. Drop low from low
805 			 * mask and look for different one.
806 			 */
807 			CPU_CLR(low, &lmask);
808 			anylow = 0;
809 			goto nextlow;
810 		}
811 	}
812 }
813 
814 static void
815 sched_balance(void)
816 {
817 	struct tdq *tdq;
818 
819 	/*
820 	 * Select a random time between .5 * balance_interval and
821 	 * 1.5 * balance_interval.
822 	 */
823 	balance_ticks = max(balance_interval / 2, 1);
824 	balance_ticks += random() % balance_interval;
825 	if (smp_started == 0 || rebalance == 0)
826 		return;
827 	tdq = TDQ_SELF();
828 	TDQ_UNLOCK(tdq);
829 	sched_balance_group(cpu_top);
830 	TDQ_LOCK(tdq);
831 }
832 
833 /*
834  * Lock two thread queues using their address to maintain lock order.
835  */
836 static void
837 tdq_lock_pair(struct tdq *one, struct tdq *two)
838 {
839 	if (one < two) {
840 		TDQ_LOCK(one);
841 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
842 	} else {
843 		TDQ_LOCK(two);
844 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
845 	}
846 }
847 
848 /*
849  * Unlock two thread queues.  Order is not important here.
850  */
851 static void
852 tdq_unlock_pair(struct tdq *one, struct tdq *two)
853 {
854 	TDQ_UNLOCK(one);
855 	TDQ_UNLOCK(two);
856 }
857 
858 /*
859  * Transfer load between two imbalanced thread queues.
860  */
861 static int
862 sched_balance_pair(struct tdq *high, struct tdq *low)
863 {
864 	int moved;
865 	int cpu;
866 
867 	tdq_lock_pair(high, low);
868 	moved = 0;
869 	/*
870 	 * Determine what the imbalance is and then adjust that to how many
871 	 * threads we actually have to give up (transferable).
872 	 */
873 	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
874 	    (moved = tdq_move(high, low)) > 0) {
875 		/*
876 		 * In case the target isn't the current cpu IPI it to force a
877 		 * reschedule with the new workload.
878 		 */
879 		cpu = TDQ_ID(low);
880 		sched_pin();
881 		if (cpu != PCPU_GET(cpuid))
882 			ipi_cpu(cpu, IPI_PREEMPT);
883 		sched_unpin();
884 	}
885 	tdq_unlock_pair(high, low);
886 	return (moved);
887 }
888 
889 /*
890  * Move a thread from one thread queue to another.
891  */
892 static int
893 tdq_move(struct tdq *from, struct tdq *to)
894 {
895 	struct td_sched *ts;
896 	struct thread *td;
897 	struct tdq *tdq;
898 	int cpu;
899 
900 	TDQ_LOCK_ASSERT(from, MA_OWNED);
901 	TDQ_LOCK_ASSERT(to, MA_OWNED);
902 
903 	tdq = from;
904 	cpu = TDQ_ID(to);
905 	td = tdq_steal(tdq, cpu);
906 	if (td == NULL)
907 		return (0);
908 	ts = td->td_sched;
909 	/*
910 	 * Although the run queue is locked the thread may be blocked.  Lock
911 	 * it to clear this and acquire the run-queue lock.
912 	 */
913 	thread_lock(td);
914 	/* Drop recursive lock on from acquired via thread_lock(). */
915 	TDQ_UNLOCK(from);
916 	sched_rem(td);
917 	ts->ts_cpu = cpu;
918 	td->td_lock = TDQ_LOCKPTR(to);
919 	tdq_add(to, td, SRQ_YIELDING);
920 	return (1);
921 }
922 
923 /*
924  * This tdq has idled.  Try to steal a thread from another cpu and switch
925  * to it.
926  */
927 static int
928 tdq_idled(struct tdq *tdq)
929 {
930 	struct cpu_group *cg;
931 	struct tdq *steal;
932 	cpuset_t mask;
933 	int thresh;
934 	int cpu;
935 
936 	if (smp_started == 0 || steal_idle == 0)
937 		return (1);
938 	CPU_FILL(&mask);
939 	CPU_CLR(PCPU_GET(cpuid), &mask);
940 	/* We don't want to be preempted while we're iterating. */
941 	spinlock_enter();
942 	for (cg = tdq->tdq_cg; cg != NULL; ) {
943 		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
944 			thresh = steal_thresh;
945 		else
946 			thresh = 1;
947 		cpu = sched_highest(cg, mask, thresh);
948 		if (cpu == -1) {
949 			cg = cg->cg_parent;
950 			continue;
951 		}
952 		steal = TDQ_CPU(cpu);
953 		CPU_CLR(cpu, &mask);
954 		tdq_lock_pair(tdq, steal);
955 		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
956 			tdq_unlock_pair(tdq, steal);
957 			continue;
958 		}
959 		/*
960 		 * If a thread was added while interrupts were disabled don't
961 		 * steal one here.  If we fail to acquire one due to affinity
962 		 * restrictions loop again with this cpu removed from the
963 		 * set.
964 		 */
965 		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
966 			tdq_unlock_pair(tdq, steal);
967 			continue;
968 		}
969 		spinlock_exit();
970 		TDQ_UNLOCK(steal);
971 		mi_switch(SW_VOL | SWT_IDLE, NULL);
972 		thread_unlock(curthread);
973 
974 		return (0);
975 	}
976 	spinlock_exit();
977 	return (1);
978 }
979 
980 /*
981  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
982  */
983 static void
984 tdq_notify(struct tdq *tdq, struct thread *td)
985 {
986 	struct thread *ctd;
987 	int pri;
988 	int cpu;
989 
990 	if (tdq->tdq_ipipending)
991 		return;
992 	cpu = td->td_sched->ts_cpu;
993 	pri = td->td_priority;
994 	ctd = pcpu_find(cpu)->pc_curthread;
995 	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
996 		return;
997 	if (TD_IS_IDLETHREAD(ctd)) {
998 		/*
999 		 * If the MD code has an idle wakeup routine try that before
1000 		 * falling back to IPI.
1001 		 */
1002 		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1003 			return;
1004 	}
1005 	tdq->tdq_ipipending = 1;
1006 	ipi_cpu(cpu, IPI_PREEMPT);
1007 }
1008 
1009 /*
1010  * Steals load from a timeshare queue.  Honors the rotating queue head
1011  * index.
1012  */
1013 static struct thread *
1014 runq_steal_from(struct runq *rq, int cpu, u_char start)
1015 {
1016 	struct rqbits *rqb;
1017 	struct rqhead *rqh;
1018 	struct thread *td, *first;
1019 	int bit;
1020 	int pri;
1021 	int i;
1022 
1023 	rqb = &rq->rq_status;
1024 	bit = start & (RQB_BPW -1);
1025 	pri = 0;
1026 	first = NULL;
1027 again:
1028 	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1029 		if (rqb->rqb_bits[i] == 0)
1030 			continue;
1031 		if (bit != 0) {
1032 			for (pri = bit; pri < RQB_BPW; pri++)
1033 				if (rqb->rqb_bits[i] & (1ul << pri))
1034 					break;
1035 			if (pri >= RQB_BPW)
1036 				continue;
1037 		} else
1038 			pri = RQB_FFS(rqb->rqb_bits[i]);
1039 		pri += (i << RQB_L2BPW);
1040 		rqh = &rq->rq_queues[pri];
1041 		TAILQ_FOREACH(td, rqh, td_runq) {
1042 			if (first && THREAD_CAN_MIGRATE(td) &&
1043 			    THREAD_CAN_SCHED(td, cpu))
1044 				return (td);
1045 			first = td;
1046 		}
1047 	}
1048 	if (start != 0) {
1049 		start = 0;
1050 		goto again;
1051 	}
1052 
1053 	if (first && THREAD_CAN_MIGRATE(first) &&
1054 	    THREAD_CAN_SCHED(first, cpu))
1055 		return (first);
1056 	return (NULL);
1057 }
1058 
1059 /*
1060  * Steals load from a standard linear queue.
1061  */
1062 static struct thread *
1063 runq_steal(struct runq *rq, int cpu)
1064 {
1065 	struct rqhead *rqh;
1066 	struct rqbits *rqb;
1067 	struct thread *td;
1068 	int word;
1069 	int bit;
1070 
1071 	rqb = &rq->rq_status;
1072 	for (word = 0; word < RQB_LEN; word++) {
1073 		if (rqb->rqb_bits[word] == 0)
1074 			continue;
1075 		for (bit = 0; bit < RQB_BPW; bit++) {
1076 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1077 				continue;
1078 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1079 			TAILQ_FOREACH(td, rqh, td_runq)
1080 				if (THREAD_CAN_MIGRATE(td) &&
1081 				    THREAD_CAN_SCHED(td, cpu))
1082 					return (td);
1083 		}
1084 	}
1085 	return (NULL);
1086 }
1087 
1088 /*
1089  * Attempt to steal a thread in priority order from a thread queue.
1090  */
1091 static struct thread *
1092 tdq_steal(struct tdq *tdq, int cpu)
1093 {
1094 	struct thread *td;
1095 
1096 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1097 	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1098 		return (td);
1099 	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1100 	    cpu, tdq->tdq_ridx)) != NULL)
1101 		return (td);
1102 	return (runq_steal(&tdq->tdq_idle, cpu));
1103 }
1104 
1105 /*
1106  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1107  * current lock and returns with the assigned queue locked.
1108  */
1109 static inline struct tdq *
1110 sched_setcpu(struct thread *td, int cpu, int flags)
1111 {
1112 
1113 	struct tdq *tdq;
1114 
1115 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1116 	tdq = TDQ_CPU(cpu);
1117 	td->td_sched->ts_cpu = cpu;
1118 	/*
1119 	 * If the lock matches just return the queue.
1120 	 */
1121 	if (td->td_lock == TDQ_LOCKPTR(tdq))
1122 		return (tdq);
1123 #ifdef notyet
1124 	/*
1125 	 * If the thread isn't running its lockptr is a
1126 	 * turnstile or a sleepqueue.  We can just lock_set without
1127 	 * blocking.
1128 	 */
1129 	if (TD_CAN_RUN(td)) {
1130 		TDQ_LOCK(tdq);
1131 		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1132 		return (tdq);
1133 	}
1134 #endif
1135 	/*
1136 	 * The hard case, migration, we need to block the thread first to
1137 	 * prevent order reversals with other cpus locks.
1138 	 */
1139 	spinlock_enter();
1140 	thread_lock_block(td);
1141 	TDQ_LOCK(tdq);
1142 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1143 	spinlock_exit();
1144 	return (tdq);
1145 }
1146 
1147 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1148 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1149 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1150 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1151 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1152 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1153 
1154 static int
1155 sched_pickcpu(struct thread *td, int flags)
1156 {
1157 	struct cpu_group *cg, *ccg;
1158 	struct td_sched *ts;
1159 	struct tdq *tdq;
1160 	cpuset_t mask;
1161 	int cpu, pri, self;
1162 
1163 	self = PCPU_GET(cpuid);
1164 	ts = td->td_sched;
1165 	if (smp_started == 0)
1166 		return (self);
1167 	/*
1168 	 * Don't migrate a running thread from sched_switch().
1169 	 */
1170 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1171 		return (ts->ts_cpu);
1172 	/*
1173 	 * Prefer to run interrupt threads on the processors that generate
1174 	 * the interrupt.
1175 	 */
1176 	pri = td->td_priority;
1177 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1178 	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1179 		SCHED_STAT_INC(pickcpu_intrbind);
1180 		ts->ts_cpu = self;
1181 		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1182 			SCHED_STAT_INC(pickcpu_affinity);
1183 			return (ts->ts_cpu);
1184 		}
1185 	}
1186 	/*
1187 	 * If the thread can run on the last cpu and the affinity has not
1188 	 * expired or it is idle run it there.
1189 	 */
1190 	tdq = TDQ_CPU(ts->ts_cpu);
1191 	cg = tdq->tdq_cg;
1192 	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1193 	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1194 	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1195 		if (cg->cg_flags & CG_FLAG_THREAD) {
1196 			CPUSET_FOREACH(cpu, cg->cg_mask) {
1197 				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1198 					break;
1199 			}
1200 		} else
1201 			cpu = INT_MAX;
1202 		if (cpu > mp_maxid) {
1203 			SCHED_STAT_INC(pickcpu_idle_affinity);
1204 			return (ts->ts_cpu);
1205 		}
1206 	}
1207 	/*
1208 	 * Search for the last level cache CPU group in the tree.
1209 	 * Skip caches with expired affinity time and SMT groups.
1210 	 * Affinity to higher level caches will be handled less aggressively.
1211 	 */
1212 	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1213 		if (cg->cg_flags & CG_FLAG_THREAD)
1214 			continue;
1215 		if (!SCHED_AFFINITY(ts, cg->cg_level))
1216 			continue;
1217 		ccg = cg;
1218 	}
1219 	if (ccg != NULL)
1220 		cg = ccg;
1221 	cpu = -1;
1222 	/* Search the group for the less loaded idle CPU we can run now. */
1223 	mask = td->td_cpuset->cs_mask;
1224 	if (cg != NULL && cg != cpu_top &&
1225 	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1226 		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1227 		    INT_MAX, ts->ts_cpu);
1228 	/* Search globally for the less loaded CPU we can run now. */
1229 	if (cpu == -1)
1230 		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1231 	/* Search globally for the less loaded CPU. */
1232 	if (cpu == -1)
1233 		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1234 	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1235 	/*
1236 	 * Compare the lowest loaded cpu to current cpu.
1237 	 */
1238 	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1239 	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1240 	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1241 		SCHED_STAT_INC(pickcpu_local);
1242 		cpu = self;
1243 	} else
1244 		SCHED_STAT_INC(pickcpu_lowest);
1245 	if (cpu != ts->ts_cpu)
1246 		SCHED_STAT_INC(pickcpu_migration);
1247 	return (cpu);
1248 }
1249 #endif
1250 
1251 /*
1252  * Pick the highest priority task we have and return it.
1253  */
1254 static struct thread *
1255 tdq_choose(struct tdq *tdq)
1256 {
1257 	struct thread *td;
1258 
1259 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1260 	td = runq_choose(&tdq->tdq_realtime);
1261 	if (td != NULL)
1262 		return (td);
1263 	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1264 	if (td != NULL) {
1265 		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1266 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1267 		    td->td_priority));
1268 		return (td);
1269 	}
1270 	td = runq_choose(&tdq->tdq_idle);
1271 	if (td != NULL) {
1272 		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1273 		    ("tdq_choose: Invalid priority on idle queue %d",
1274 		    td->td_priority));
1275 		return (td);
1276 	}
1277 
1278 	return (NULL);
1279 }
1280 
1281 /*
1282  * Initialize a thread queue.
1283  */
1284 static void
1285 tdq_setup(struct tdq *tdq)
1286 {
1287 
1288 	if (bootverbose)
1289 		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1290 	runq_init(&tdq->tdq_realtime);
1291 	runq_init(&tdq->tdq_timeshare);
1292 	runq_init(&tdq->tdq_idle);
1293 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1294 	    "sched lock %d", (int)TDQ_ID(tdq));
1295 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1296 	    MTX_SPIN | MTX_RECURSE);
1297 #ifdef KTR
1298 	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1299 	    "CPU %d load", (int)TDQ_ID(tdq));
1300 #endif
1301 }
1302 
1303 #ifdef SMP
1304 static void
1305 sched_setup_smp(void)
1306 {
1307 	struct tdq *tdq;
1308 	int i;
1309 
1310 	cpu_top = smp_topo();
1311 	CPU_FOREACH(i) {
1312 		tdq = TDQ_CPU(i);
1313 		tdq_setup(tdq);
1314 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1315 		if (tdq->tdq_cg == NULL)
1316 			panic("Can't find cpu group for %d\n", i);
1317 	}
1318 	balance_tdq = TDQ_SELF();
1319 	sched_balance();
1320 }
1321 #endif
1322 
1323 /*
1324  * Setup the thread queues and initialize the topology based on MD
1325  * information.
1326  */
1327 static void
1328 sched_setup(void *dummy)
1329 {
1330 	struct tdq *tdq;
1331 
1332 	tdq = TDQ_SELF();
1333 #ifdef SMP
1334 	sched_setup_smp();
1335 #else
1336 	tdq_setup(tdq);
1337 #endif
1338 	/*
1339 	 * To avoid divide-by-zero, we set realstathz a dummy value
1340 	 * in case which sched_clock() called before sched_initticks().
1341 	 */
1342 	realstathz = hz;
1343 	sched_slice = (realstathz/10);	/* ~100ms */
1344 	tickincr = 1 << SCHED_TICK_SHIFT;
1345 
1346 	/* Add thread0's load since it's running. */
1347 	TDQ_LOCK(tdq);
1348 	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1349 	tdq_load_add(tdq, &thread0);
1350 	tdq->tdq_lowpri = thread0.td_priority;
1351 	TDQ_UNLOCK(tdq);
1352 }
1353 
1354 /*
1355  * This routine determines the tickincr after stathz and hz are setup.
1356  */
1357 /* ARGSUSED */
1358 static void
1359 sched_initticks(void *dummy)
1360 {
1361 	int incr;
1362 
1363 	realstathz = stathz ? stathz : hz;
1364 	sched_slice = (realstathz/10);	/* ~100ms */
1365 
1366 	/*
1367 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1368 	 * hz not being evenly divisible by stathz on all platforms.
1369 	 */
1370 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1371 	/*
1372 	 * This does not work for values of stathz that are more than
1373 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1374 	 */
1375 	if (incr == 0)
1376 		incr = 1;
1377 	tickincr = incr;
1378 #ifdef SMP
1379 	/*
1380 	 * Set the default balance interval now that we know
1381 	 * what realstathz is.
1382 	 */
1383 	balance_interval = realstathz;
1384 	/*
1385 	 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4.
1386 	 * This prevents excess thrashing on large machines and excess idle
1387 	 * on smaller machines.
1388 	 */
1389 	steal_thresh = min(fls(mp_ncpus) - 1, 3);
1390 	affinity = SCHED_AFFINITY_DEFAULT;
1391 #endif
1392 	if (sched_idlespinthresh < 0)
1393 		sched_idlespinthresh = max(16, 2 * hz / realstathz);
1394 }
1395 
1396 
1397 /*
1398  * This is the core of the interactivity algorithm.  Determines a score based
1399  * on past behavior.  It is the ratio of sleep time to run time scaled to
1400  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1401  * differs from the cpu usage because it does not account for time spent
1402  * waiting on a run-queue.  Would be prettier if we had floating point.
1403  */
1404 static int
1405 sched_interact_score(struct thread *td)
1406 {
1407 	struct td_sched *ts;
1408 	int div;
1409 
1410 	ts = td->td_sched;
1411 	/*
1412 	 * The score is only needed if this is likely to be an interactive
1413 	 * task.  Don't go through the expense of computing it if there's
1414 	 * no chance.
1415 	 */
1416 	if (sched_interact <= SCHED_INTERACT_HALF &&
1417 		ts->ts_runtime >= ts->ts_slptime)
1418 			return (SCHED_INTERACT_HALF);
1419 
1420 	if (ts->ts_runtime > ts->ts_slptime) {
1421 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1422 		return (SCHED_INTERACT_HALF +
1423 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1424 	}
1425 	if (ts->ts_slptime > ts->ts_runtime) {
1426 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1427 		return (ts->ts_runtime / div);
1428 	}
1429 	/* runtime == slptime */
1430 	if (ts->ts_runtime)
1431 		return (SCHED_INTERACT_HALF);
1432 
1433 	/*
1434 	 * This can happen if slptime and runtime are 0.
1435 	 */
1436 	return (0);
1437 
1438 }
1439 
1440 /*
1441  * Scale the scheduling priority according to the "interactivity" of this
1442  * process.
1443  */
1444 static void
1445 sched_priority(struct thread *td)
1446 {
1447 	int score;
1448 	int pri;
1449 
1450 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1451 		return;
1452 	/*
1453 	 * If the score is interactive we place the thread in the realtime
1454 	 * queue with a priority that is less than kernel and interrupt
1455 	 * priorities.  These threads are not subject to nice restrictions.
1456 	 *
1457 	 * Scores greater than this are placed on the normal timeshare queue
1458 	 * where the priority is partially decided by the most recent cpu
1459 	 * utilization and the rest is decided by nice value.
1460 	 *
1461 	 * The nice value of the process has a linear effect on the calculated
1462 	 * score.  Negative nice values make it easier for a thread to be
1463 	 * considered interactive.
1464 	 */
1465 	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1466 	if (score < sched_interact) {
1467 		pri = PRI_MIN_INTERACT;
1468 		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1469 		    sched_interact) * score;
1470 		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1471 		    ("sched_priority: invalid interactive priority %d score %d",
1472 		    pri, score));
1473 	} else {
1474 		pri = SCHED_PRI_MIN;
1475 		if (td->td_sched->ts_ticks)
1476 			pri += min(SCHED_PRI_TICKS(td->td_sched),
1477 			    SCHED_PRI_RANGE);
1478 		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1479 		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1480 		    ("sched_priority: invalid priority %d: nice %d, "
1481 		    "ticks %d ftick %d ltick %d tick pri %d",
1482 		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1483 		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1484 		    SCHED_PRI_TICKS(td->td_sched)));
1485 	}
1486 	sched_user_prio(td, pri);
1487 
1488 	return;
1489 }
1490 
1491 /*
1492  * This routine enforces a maximum limit on the amount of scheduling history
1493  * kept.  It is called after either the slptime or runtime is adjusted.  This
1494  * function is ugly due to integer math.
1495  */
1496 static void
1497 sched_interact_update(struct thread *td)
1498 {
1499 	struct td_sched *ts;
1500 	u_int sum;
1501 
1502 	ts = td->td_sched;
1503 	sum = ts->ts_runtime + ts->ts_slptime;
1504 	if (sum < SCHED_SLP_RUN_MAX)
1505 		return;
1506 	/*
1507 	 * This only happens from two places:
1508 	 * 1) We have added an unusual amount of run time from fork_exit.
1509 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1510 	 */
1511 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1512 		if (ts->ts_runtime > ts->ts_slptime) {
1513 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1514 			ts->ts_slptime = 1;
1515 		} else {
1516 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1517 			ts->ts_runtime = 1;
1518 		}
1519 		return;
1520 	}
1521 	/*
1522 	 * If we have exceeded by more than 1/5th then the algorithm below
1523 	 * will not bring us back into range.  Dividing by two here forces
1524 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1525 	 */
1526 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1527 		ts->ts_runtime /= 2;
1528 		ts->ts_slptime /= 2;
1529 		return;
1530 	}
1531 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1532 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1533 }
1534 
1535 /*
1536  * Scale back the interactivity history when a child thread is created.  The
1537  * history is inherited from the parent but the thread may behave totally
1538  * differently.  For example, a shell spawning a compiler process.  We want
1539  * to learn that the compiler is behaving badly very quickly.
1540  */
1541 static void
1542 sched_interact_fork(struct thread *td)
1543 {
1544 	int ratio;
1545 	int sum;
1546 
1547 	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1548 	if (sum > SCHED_SLP_RUN_FORK) {
1549 		ratio = sum / SCHED_SLP_RUN_FORK;
1550 		td->td_sched->ts_runtime /= ratio;
1551 		td->td_sched->ts_slptime /= ratio;
1552 	}
1553 }
1554 
1555 /*
1556  * Called from proc0_init() to setup the scheduler fields.
1557  */
1558 void
1559 schedinit(void)
1560 {
1561 
1562 	/*
1563 	 * Set up the scheduler specific parts of proc0.
1564 	 */
1565 	proc0.p_sched = NULL; /* XXX */
1566 	thread0.td_sched = &td_sched0;
1567 	td_sched0.ts_ltick = ticks;
1568 	td_sched0.ts_ftick = ticks;
1569 	td_sched0.ts_slice = sched_slice;
1570 }
1571 
1572 /*
1573  * This is only somewhat accurate since given many processes of the same
1574  * priority they will switch when their slices run out, which will be
1575  * at most sched_slice stathz ticks.
1576  */
1577 int
1578 sched_rr_interval(void)
1579 {
1580 
1581 	/* Convert sched_slice to hz */
1582 	return (hz/(realstathz/sched_slice));
1583 }
1584 
1585 /*
1586  * Update the percent cpu tracking information when it is requested or
1587  * the total history exceeds the maximum.  We keep a sliding history of
1588  * tick counts that slowly decays.  This is less precise than the 4BSD
1589  * mechanism since it happens with less regular and frequent events.
1590  */
1591 static void
1592 sched_pctcpu_update(struct td_sched *ts, int run)
1593 {
1594 	int t = ticks;
1595 
1596 	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1597 		ts->ts_ticks = 0;
1598 		ts->ts_ftick = t - SCHED_TICK_TARG;
1599 	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1600 		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1601 		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1602 		ts->ts_ftick = t - SCHED_TICK_TARG;
1603 	}
1604 	if (run)
1605 		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1606 	ts->ts_ltick = t;
1607 }
1608 
1609 /*
1610  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1611  * if necessary.  This is the back-end for several priority related
1612  * functions.
1613  */
1614 static void
1615 sched_thread_priority(struct thread *td, u_char prio)
1616 {
1617 	struct td_sched *ts;
1618 	struct tdq *tdq;
1619 	int oldpri;
1620 
1621 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1622 	    "prio:%d", td->td_priority, "new prio:%d", prio,
1623 	    KTR_ATTR_LINKED, sched_tdname(curthread));
1624 	if (td != curthread && prio > td->td_priority) {
1625 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1626 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1627 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1628 	}
1629 	ts = td->td_sched;
1630 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1631 	if (td->td_priority == prio)
1632 		return;
1633 	/*
1634 	 * If the priority has been elevated due to priority
1635 	 * propagation, we may have to move ourselves to a new
1636 	 * queue.  This could be optimized to not re-add in some
1637 	 * cases.
1638 	 */
1639 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1640 		sched_rem(td);
1641 		td->td_priority = prio;
1642 		sched_add(td, SRQ_BORROWING);
1643 		return;
1644 	}
1645 	/*
1646 	 * If the thread is currently running we may have to adjust the lowpri
1647 	 * information so other cpus are aware of our current priority.
1648 	 */
1649 	if (TD_IS_RUNNING(td)) {
1650 		tdq = TDQ_CPU(ts->ts_cpu);
1651 		oldpri = td->td_priority;
1652 		td->td_priority = prio;
1653 		if (prio < tdq->tdq_lowpri)
1654 			tdq->tdq_lowpri = prio;
1655 		else if (tdq->tdq_lowpri == oldpri)
1656 			tdq_setlowpri(tdq, td);
1657 		return;
1658 	}
1659 	td->td_priority = prio;
1660 }
1661 
1662 /*
1663  * Update a thread's priority when it is lent another thread's
1664  * priority.
1665  */
1666 void
1667 sched_lend_prio(struct thread *td, u_char prio)
1668 {
1669 
1670 	td->td_flags |= TDF_BORROWING;
1671 	sched_thread_priority(td, prio);
1672 }
1673 
1674 /*
1675  * Restore a thread's priority when priority propagation is
1676  * over.  The prio argument is the minimum priority the thread
1677  * needs to have to satisfy other possible priority lending
1678  * requests.  If the thread's regular priority is less
1679  * important than prio, the thread will keep a priority boost
1680  * of prio.
1681  */
1682 void
1683 sched_unlend_prio(struct thread *td, u_char prio)
1684 {
1685 	u_char base_pri;
1686 
1687 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1688 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1689 		base_pri = td->td_user_pri;
1690 	else
1691 		base_pri = td->td_base_pri;
1692 	if (prio >= base_pri) {
1693 		td->td_flags &= ~TDF_BORROWING;
1694 		sched_thread_priority(td, base_pri);
1695 	} else
1696 		sched_lend_prio(td, prio);
1697 }
1698 
1699 /*
1700  * Standard entry for setting the priority to an absolute value.
1701  */
1702 void
1703 sched_prio(struct thread *td, u_char prio)
1704 {
1705 	u_char oldprio;
1706 
1707 	/* First, update the base priority. */
1708 	td->td_base_pri = prio;
1709 
1710 	/*
1711 	 * If the thread is borrowing another thread's priority, don't
1712 	 * ever lower the priority.
1713 	 */
1714 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1715 		return;
1716 
1717 	/* Change the real priority. */
1718 	oldprio = td->td_priority;
1719 	sched_thread_priority(td, prio);
1720 
1721 	/*
1722 	 * If the thread is on a turnstile, then let the turnstile update
1723 	 * its state.
1724 	 */
1725 	if (TD_ON_LOCK(td) && oldprio != prio)
1726 		turnstile_adjust(td, oldprio);
1727 }
1728 
1729 /*
1730  * Set the base user priority, does not effect current running priority.
1731  */
1732 void
1733 sched_user_prio(struct thread *td, u_char prio)
1734 {
1735 
1736 	td->td_base_user_pri = prio;
1737 	if (td->td_lend_user_pri <= prio)
1738 		return;
1739 	td->td_user_pri = prio;
1740 }
1741 
1742 void
1743 sched_lend_user_prio(struct thread *td, u_char prio)
1744 {
1745 
1746 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1747 	td->td_lend_user_pri = prio;
1748 	td->td_user_pri = min(prio, td->td_base_user_pri);
1749 	if (td->td_priority > td->td_user_pri)
1750 		sched_prio(td, td->td_user_pri);
1751 	else if (td->td_priority != td->td_user_pri)
1752 		td->td_flags |= TDF_NEEDRESCHED;
1753 }
1754 
1755 /*
1756  * Handle migration from sched_switch().  This happens only for
1757  * cpu binding.
1758  */
1759 static struct mtx *
1760 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1761 {
1762 	struct tdq *tdn;
1763 
1764 	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1765 #ifdef SMP
1766 	tdq_load_rem(tdq, td);
1767 	/*
1768 	 * Do the lock dance required to avoid LOR.  We grab an extra
1769 	 * spinlock nesting to prevent preemption while we're
1770 	 * not holding either run-queue lock.
1771 	 */
1772 	spinlock_enter();
1773 	thread_lock_block(td);	/* This releases the lock on tdq. */
1774 
1775 	/*
1776 	 * Acquire both run-queue locks before placing the thread on the new
1777 	 * run-queue to avoid deadlocks created by placing a thread with a
1778 	 * blocked lock on the run-queue of a remote processor.  The deadlock
1779 	 * occurs when a third processor attempts to lock the two queues in
1780 	 * question while the target processor is spinning with its own
1781 	 * run-queue lock held while waiting for the blocked lock to clear.
1782 	 */
1783 	tdq_lock_pair(tdn, tdq);
1784 	tdq_add(tdn, td, flags);
1785 	tdq_notify(tdn, td);
1786 	TDQ_UNLOCK(tdn);
1787 	spinlock_exit();
1788 #endif
1789 	return (TDQ_LOCKPTR(tdn));
1790 }
1791 
1792 /*
1793  * Variadic version of thread_lock_unblock() that does not assume td_lock
1794  * is blocked.
1795  */
1796 static inline void
1797 thread_unblock_switch(struct thread *td, struct mtx *mtx)
1798 {
1799 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1800 	    (uintptr_t)mtx);
1801 }
1802 
1803 /*
1804  * Switch threads.  This function has to handle threads coming in while
1805  * blocked for some reason, running, or idle.  It also must deal with
1806  * migrating a thread from one queue to another as running threads may
1807  * be assigned elsewhere via binding.
1808  */
1809 void
1810 sched_switch(struct thread *td, struct thread *newtd, int flags)
1811 {
1812 	struct tdq *tdq;
1813 	struct td_sched *ts;
1814 	struct mtx *mtx;
1815 	int srqflag;
1816 	int cpuid;
1817 
1818 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1819 	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1820 
1821 	cpuid = PCPU_GET(cpuid);
1822 	tdq = TDQ_CPU(cpuid);
1823 	ts = td->td_sched;
1824 	mtx = td->td_lock;
1825 	sched_pctcpu_update(ts, 1);
1826 	ts->ts_rltick = ticks;
1827 	td->td_lastcpu = td->td_oncpu;
1828 	td->td_oncpu = NOCPU;
1829 	if (!(flags & SW_PREEMPT))
1830 		td->td_flags &= ~TDF_NEEDRESCHED;
1831 	td->td_owepreempt = 0;
1832 	tdq->tdq_switchcnt++;
1833 	/*
1834 	 * The lock pointer in an idle thread should never change.  Reset it
1835 	 * to CAN_RUN as well.
1836 	 */
1837 	if (TD_IS_IDLETHREAD(td)) {
1838 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1839 		TD_SET_CAN_RUN(td);
1840 	} else if (TD_IS_RUNNING(td)) {
1841 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1842 		srqflag = (flags & SW_PREEMPT) ?
1843 		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1844 		    SRQ_OURSELF|SRQ_YIELDING;
1845 #ifdef SMP
1846 		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1847 			ts->ts_cpu = sched_pickcpu(td, 0);
1848 #endif
1849 		if (ts->ts_cpu == cpuid)
1850 			tdq_runq_add(tdq, td, srqflag);
1851 		else {
1852 			KASSERT(THREAD_CAN_MIGRATE(td) ||
1853 			    (ts->ts_flags & TSF_BOUND) != 0,
1854 			    ("Thread %p shouldn't migrate", td));
1855 			mtx = sched_switch_migrate(tdq, td, srqflag);
1856 		}
1857 	} else {
1858 		/* This thread must be going to sleep. */
1859 		TDQ_LOCK(tdq);
1860 		mtx = thread_lock_block(td);
1861 		tdq_load_rem(tdq, td);
1862 	}
1863 	/*
1864 	 * We enter here with the thread blocked and assigned to the
1865 	 * appropriate cpu run-queue or sleep-queue and with the current
1866 	 * thread-queue locked.
1867 	 */
1868 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1869 	newtd = choosethread();
1870 	/*
1871 	 * Call the MD code to switch contexts if necessary.
1872 	 */
1873 	if (td != newtd) {
1874 #ifdef	HWPMC_HOOKS
1875 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1876 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1877 #endif
1878 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1879 		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1880 		sched_pctcpu_update(newtd->td_sched, 0);
1881 
1882 #ifdef KDTRACE_HOOKS
1883 		/*
1884 		 * If DTrace has set the active vtime enum to anything
1885 		 * other than INACTIVE (0), then it should have set the
1886 		 * function to call.
1887 		 */
1888 		if (dtrace_vtime_active)
1889 			(*dtrace_vtime_switch_func)(newtd);
1890 #endif
1891 
1892 		cpu_switch(td, newtd, mtx);
1893 		/*
1894 		 * We may return from cpu_switch on a different cpu.  However,
1895 		 * we always return with td_lock pointing to the current cpu's
1896 		 * run queue lock.
1897 		 */
1898 		cpuid = PCPU_GET(cpuid);
1899 		tdq = TDQ_CPU(cpuid);
1900 		lock_profile_obtain_lock_success(
1901 		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1902 #ifdef	HWPMC_HOOKS
1903 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1904 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1905 #endif
1906 	} else
1907 		thread_unblock_switch(td, mtx);
1908 	/*
1909 	 * Assert that all went well and return.
1910 	 */
1911 	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1912 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1913 	td->td_oncpu = cpuid;
1914 }
1915 
1916 /*
1917  * Adjust thread priorities as a result of a nice request.
1918  */
1919 void
1920 sched_nice(struct proc *p, int nice)
1921 {
1922 	struct thread *td;
1923 
1924 	PROC_LOCK_ASSERT(p, MA_OWNED);
1925 
1926 	p->p_nice = nice;
1927 	FOREACH_THREAD_IN_PROC(p, td) {
1928 		thread_lock(td);
1929 		sched_priority(td);
1930 		sched_prio(td, td->td_base_user_pri);
1931 		thread_unlock(td);
1932 	}
1933 }
1934 
1935 /*
1936  * Record the sleep time for the interactivity scorer.
1937  */
1938 void
1939 sched_sleep(struct thread *td, int prio)
1940 {
1941 
1942 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1943 
1944 	td->td_slptick = ticks;
1945 	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1946 		td->td_flags |= TDF_CANSWAP;
1947 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1948 		return;
1949 	if (static_boost == 1 && prio)
1950 		sched_prio(td, prio);
1951 	else if (static_boost && td->td_priority > static_boost)
1952 		sched_prio(td, static_boost);
1953 }
1954 
1955 /*
1956  * Schedule a thread to resume execution and record how long it voluntarily
1957  * slept.  We also update the pctcpu, interactivity, and priority.
1958  */
1959 void
1960 sched_wakeup(struct thread *td)
1961 {
1962 	struct td_sched *ts;
1963 	int slptick;
1964 
1965 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1966 	ts = td->td_sched;
1967 	td->td_flags &= ~TDF_CANSWAP;
1968 	/*
1969 	 * If we slept for more than a tick update our interactivity and
1970 	 * priority.
1971 	 */
1972 	slptick = td->td_slptick;
1973 	td->td_slptick = 0;
1974 	if (slptick && slptick != ticks) {
1975 		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
1976 		sched_interact_update(td);
1977 		sched_pctcpu_update(ts, 0);
1978 	}
1979 	/* Reset the slice value after we sleep. */
1980 	ts->ts_slice = sched_slice;
1981 	sched_add(td, SRQ_BORING);
1982 }
1983 
1984 /*
1985  * Penalize the parent for creating a new child and initialize the child's
1986  * priority.
1987  */
1988 void
1989 sched_fork(struct thread *td, struct thread *child)
1990 {
1991 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1992 	sched_pctcpu_update(td->td_sched, 1);
1993 	sched_fork_thread(td, child);
1994 	/*
1995 	 * Penalize the parent and child for forking.
1996 	 */
1997 	sched_interact_fork(child);
1998 	sched_priority(child);
1999 	td->td_sched->ts_runtime += tickincr;
2000 	sched_interact_update(td);
2001 	sched_priority(td);
2002 }
2003 
2004 /*
2005  * Fork a new thread, may be within the same process.
2006  */
2007 void
2008 sched_fork_thread(struct thread *td, struct thread *child)
2009 {
2010 	struct td_sched *ts;
2011 	struct td_sched *ts2;
2012 
2013 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2014 	/*
2015 	 * Initialize child.
2016 	 */
2017 	ts = td->td_sched;
2018 	ts2 = child->td_sched;
2019 	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2020 	child->td_cpuset = cpuset_ref(td->td_cpuset);
2021 	ts2->ts_cpu = ts->ts_cpu;
2022 	ts2->ts_flags = 0;
2023 	/*
2024 	 * Grab our parents cpu estimation information.
2025 	 */
2026 	ts2->ts_ticks = ts->ts_ticks;
2027 	ts2->ts_ltick = ts->ts_ltick;
2028 	ts2->ts_ftick = ts->ts_ftick;
2029 	/*
2030 	 * Do not inherit any borrowed priority from the parent.
2031 	 */
2032 	child->td_priority = child->td_base_pri;
2033 	/*
2034 	 * And update interactivity score.
2035 	 */
2036 	ts2->ts_slptime = ts->ts_slptime;
2037 	ts2->ts_runtime = ts->ts_runtime;
2038 	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2039 #ifdef KTR
2040 	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2041 #endif
2042 }
2043 
2044 /*
2045  * Adjust the priority class of a thread.
2046  */
2047 void
2048 sched_class(struct thread *td, int class)
2049 {
2050 
2051 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2052 	if (td->td_pri_class == class)
2053 		return;
2054 	td->td_pri_class = class;
2055 }
2056 
2057 /*
2058  * Return some of the child's priority and interactivity to the parent.
2059  */
2060 void
2061 sched_exit(struct proc *p, struct thread *child)
2062 {
2063 	struct thread *td;
2064 
2065 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2066 	    "prio:%d", child->td_priority);
2067 	PROC_LOCK_ASSERT(p, MA_OWNED);
2068 	td = FIRST_THREAD_IN_PROC(p);
2069 	sched_exit_thread(td, child);
2070 }
2071 
2072 /*
2073  * Penalize another thread for the time spent on this one.  This helps to
2074  * worsen the priority and interactivity of processes which schedule batch
2075  * jobs such as make.  This has little effect on the make process itself but
2076  * causes new processes spawned by it to receive worse scores immediately.
2077  */
2078 void
2079 sched_exit_thread(struct thread *td, struct thread *child)
2080 {
2081 
2082 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2083 	    "prio:%d", child->td_priority);
2084 	/*
2085 	 * Give the child's runtime to the parent without returning the
2086 	 * sleep time as a penalty to the parent.  This causes shells that
2087 	 * launch expensive things to mark their children as expensive.
2088 	 */
2089 	thread_lock(td);
2090 	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2091 	sched_interact_update(td);
2092 	sched_priority(td);
2093 	thread_unlock(td);
2094 }
2095 
2096 void
2097 sched_preempt(struct thread *td)
2098 {
2099 	struct tdq *tdq;
2100 
2101 	thread_lock(td);
2102 	tdq = TDQ_SELF();
2103 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2104 	tdq->tdq_ipipending = 0;
2105 	if (td->td_priority > tdq->tdq_lowpri) {
2106 		int flags;
2107 
2108 		flags = SW_INVOL | SW_PREEMPT;
2109 		if (td->td_critnest > 1)
2110 			td->td_owepreempt = 1;
2111 		else if (TD_IS_IDLETHREAD(td))
2112 			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2113 		else
2114 			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2115 	}
2116 	thread_unlock(td);
2117 }
2118 
2119 /*
2120  * Fix priorities on return to user-space.  Priorities may be elevated due
2121  * to static priorities in msleep() or similar.
2122  */
2123 void
2124 sched_userret(struct thread *td)
2125 {
2126 	/*
2127 	 * XXX we cheat slightly on the locking here to avoid locking in
2128 	 * the usual case.  Setting td_priority here is essentially an
2129 	 * incomplete workaround for not setting it properly elsewhere.
2130 	 * Now that some interrupt handlers are threads, not setting it
2131 	 * properly elsewhere can clobber it in the window between setting
2132 	 * it here and returning to user mode, so don't waste time setting
2133 	 * it perfectly here.
2134 	 */
2135 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2136 	    ("thread with borrowed priority returning to userland"));
2137 	if (td->td_priority != td->td_user_pri) {
2138 		thread_lock(td);
2139 		td->td_priority = td->td_user_pri;
2140 		td->td_base_pri = td->td_user_pri;
2141 		tdq_setlowpri(TDQ_SELF(), td);
2142 		thread_unlock(td);
2143         }
2144 }
2145 
2146 /*
2147  * Handle a stathz tick.  This is really only relevant for timeshare
2148  * threads.
2149  */
2150 void
2151 sched_clock(struct thread *td)
2152 {
2153 	struct tdq *tdq;
2154 	struct td_sched *ts;
2155 
2156 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2157 	tdq = TDQ_SELF();
2158 #ifdef SMP
2159 	/*
2160 	 * We run the long term load balancer infrequently on the first cpu.
2161 	 */
2162 	if (balance_tdq == tdq) {
2163 		if (balance_ticks && --balance_ticks == 0)
2164 			sched_balance();
2165 	}
2166 #endif
2167 	/*
2168 	 * Save the old switch count so we have a record of the last ticks
2169 	 * activity.   Initialize the new switch count based on our load.
2170 	 * If there is some activity seed it to reflect that.
2171 	 */
2172 	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2173 	tdq->tdq_switchcnt = tdq->tdq_load;
2174 	/*
2175 	 * Advance the insert index once for each tick to ensure that all
2176 	 * threads get a chance to run.
2177 	 */
2178 	if (tdq->tdq_idx == tdq->tdq_ridx) {
2179 		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2180 		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2181 			tdq->tdq_ridx = tdq->tdq_idx;
2182 	}
2183 	ts = td->td_sched;
2184 	sched_pctcpu_update(ts, 1);
2185 	if (td->td_pri_class & PRI_FIFO_BIT)
2186 		return;
2187 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2188 		/*
2189 		 * We used a tick; charge it to the thread so
2190 		 * that we can compute our interactivity.
2191 		 */
2192 		td->td_sched->ts_runtime += tickincr;
2193 		sched_interact_update(td);
2194 		sched_priority(td);
2195 	}
2196 	/*
2197 	 * We used up one time slice.
2198 	 */
2199 	if (--ts->ts_slice > 0)
2200 		return;
2201 	/*
2202 	 * We're out of time, force a requeue at userret().
2203 	 */
2204 	ts->ts_slice = sched_slice;
2205 	td->td_flags |= TDF_NEEDRESCHED;
2206 }
2207 
2208 /*
2209  * Called once per hz tick.
2210  */
2211 void
2212 sched_tick(int cnt)
2213 {
2214 
2215 }
2216 
2217 /*
2218  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2219  * cooperative idle threads.
2220  */
2221 int
2222 sched_runnable(void)
2223 {
2224 	struct tdq *tdq;
2225 	int load;
2226 
2227 	load = 1;
2228 
2229 	tdq = TDQ_SELF();
2230 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2231 		if (tdq->tdq_load > 0)
2232 			goto out;
2233 	} else
2234 		if (tdq->tdq_load - 1 > 0)
2235 			goto out;
2236 	load = 0;
2237 out:
2238 	return (load);
2239 }
2240 
2241 /*
2242  * Choose the highest priority thread to run.  The thread is removed from
2243  * the run-queue while running however the load remains.  For SMP we set
2244  * the tdq in the global idle bitmask if it idles here.
2245  */
2246 struct thread *
2247 sched_choose(void)
2248 {
2249 	struct thread *td;
2250 	struct tdq *tdq;
2251 
2252 	tdq = TDQ_SELF();
2253 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2254 	td = tdq_choose(tdq);
2255 	if (td) {
2256 		tdq_runq_rem(tdq, td);
2257 		tdq->tdq_lowpri = td->td_priority;
2258 		return (td);
2259 	}
2260 	tdq->tdq_lowpri = PRI_MAX_IDLE;
2261 	return (PCPU_GET(idlethread));
2262 }
2263 
2264 /*
2265  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2266  * we always request it once we exit a critical section.
2267  */
2268 static inline void
2269 sched_setpreempt(struct thread *td)
2270 {
2271 	struct thread *ctd;
2272 	int cpri;
2273 	int pri;
2274 
2275 	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2276 
2277 	ctd = curthread;
2278 	pri = td->td_priority;
2279 	cpri = ctd->td_priority;
2280 	if (pri < cpri)
2281 		ctd->td_flags |= TDF_NEEDRESCHED;
2282 	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2283 		return;
2284 	if (!sched_shouldpreempt(pri, cpri, 0))
2285 		return;
2286 	ctd->td_owepreempt = 1;
2287 }
2288 
2289 /*
2290  * Add a thread to a thread queue.  Select the appropriate runq and add the
2291  * thread to it.  This is the internal function called when the tdq is
2292  * predetermined.
2293  */
2294 void
2295 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2296 {
2297 
2298 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2299 	KASSERT((td->td_inhibitors == 0),
2300 	    ("sched_add: trying to run inhibited thread"));
2301 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2302 	    ("sched_add: bad thread state"));
2303 	KASSERT(td->td_flags & TDF_INMEM,
2304 	    ("sched_add: thread swapped out"));
2305 
2306 	if (td->td_priority < tdq->tdq_lowpri)
2307 		tdq->tdq_lowpri = td->td_priority;
2308 	tdq_runq_add(tdq, td, flags);
2309 	tdq_load_add(tdq, td);
2310 }
2311 
2312 /*
2313  * Select the target thread queue and add a thread to it.  Request
2314  * preemption or IPI a remote processor if required.
2315  */
2316 void
2317 sched_add(struct thread *td, int flags)
2318 {
2319 	struct tdq *tdq;
2320 #ifdef SMP
2321 	int cpu;
2322 #endif
2323 
2324 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2325 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2326 	    sched_tdname(curthread));
2327 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2328 	    KTR_ATTR_LINKED, sched_tdname(td));
2329 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2330 	/*
2331 	 * Recalculate the priority before we select the target cpu or
2332 	 * run-queue.
2333 	 */
2334 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2335 		sched_priority(td);
2336 #ifdef SMP
2337 	/*
2338 	 * Pick the destination cpu and if it isn't ours transfer to the
2339 	 * target cpu.
2340 	 */
2341 	cpu = sched_pickcpu(td, flags);
2342 	tdq = sched_setcpu(td, cpu, flags);
2343 	tdq_add(tdq, td, flags);
2344 	if (cpu != PCPU_GET(cpuid)) {
2345 		tdq_notify(tdq, td);
2346 		return;
2347 	}
2348 #else
2349 	tdq = TDQ_SELF();
2350 	TDQ_LOCK(tdq);
2351 	/*
2352 	 * Now that the thread is moving to the run-queue, set the lock
2353 	 * to the scheduler's lock.
2354 	 */
2355 	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2356 	tdq_add(tdq, td, flags);
2357 #endif
2358 	if (!(flags & SRQ_YIELDING))
2359 		sched_setpreempt(td);
2360 }
2361 
2362 /*
2363  * Remove a thread from a run-queue without running it.  This is used
2364  * when we're stealing a thread from a remote queue.  Otherwise all threads
2365  * exit by calling sched_exit_thread() and sched_throw() themselves.
2366  */
2367 void
2368 sched_rem(struct thread *td)
2369 {
2370 	struct tdq *tdq;
2371 
2372 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2373 	    "prio:%d", td->td_priority);
2374 	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2375 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2376 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2377 	KASSERT(TD_ON_RUNQ(td),
2378 	    ("sched_rem: thread not on run queue"));
2379 	tdq_runq_rem(tdq, td);
2380 	tdq_load_rem(tdq, td);
2381 	TD_SET_CAN_RUN(td);
2382 	if (td->td_priority == tdq->tdq_lowpri)
2383 		tdq_setlowpri(tdq, NULL);
2384 }
2385 
2386 /*
2387  * Fetch cpu utilization information.  Updates on demand.
2388  */
2389 fixpt_t
2390 sched_pctcpu(struct thread *td)
2391 {
2392 	fixpt_t pctcpu;
2393 	struct td_sched *ts;
2394 
2395 	pctcpu = 0;
2396 	ts = td->td_sched;
2397 	if (ts == NULL)
2398 		return (0);
2399 
2400 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2401 	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2402 	if (ts->ts_ticks) {
2403 		int rtick;
2404 
2405 		/* How many rtick per second ? */
2406 		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2407 		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2408 	}
2409 
2410 	return (pctcpu);
2411 }
2412 
2413 /*
2414  * Enforce affinity settings for a thread.  Called after adjustments to
2415  * cpumask.
2416  */
2417 void
2418 sched_affinity(struct thread *td)
2419 {
2420 #ifdef SMP
2421 	struct td_sched *ts;
2422 
2423 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2424 	ts = td->td_sched;
2425 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2426 		return;
2427 	if (TD_ON_RUNQ(td)) {
2428 		sched_rem(td);
2429 		sched_add(td, SRQ_BORING);
2430 		return;
2431 	}
2432 	if (!TD_IS_RUNNING(td))
2433 		return;
2434 	/*
2435 	 * Force a switch before returning to userspace.  If the
2436 	 * target thread is not running locally send an ipi to force
2437 	 * the issue.
2438 	 */
2439 	td->td_flags |= TDF_NEEDRESCHED;
2440 	if (td != curthread)
2441 		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2442 #endif
2443 }
2444 
2445 /*
2446  * Bind a thread to a target cpu.
2447  */
2448 void
2449 sched_bind(struct thread *td, int cpu)
2450 {
2451 	struct td_sched *ts;
2452 
2453 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2454 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2455 	ts = td->td_sched;
2456 	if (ts->ts_flags & TSF_BOUND)
2457 		sched_unbind(td);
2458 	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2459 	ts->ts_flags |= TSF_BOUND;
2460 	sched_pin();
2461 	if (PCPU_GET(cpuid) == cpu)
2462 		return;
2463 	ts->ts_cpu = cpu;
2464 	/* When we return from mi_switch we'll be on the correct cpu. */
2465 	mi_switch(SW_VOL, NULL);
2466 }
2467 
2468 /*
2469  * Release a bound thread.
2470  */
2471 void
2472 sched_unbind(struct thread *td)
2473 {
2474 	struct td_sched *ts;
2475 
2476 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2477 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2478 	ts = td->td_sched;
2479 	if ((ts->ts_flags & TSF_BOUND) == 0)
2480 		return;
2481 	ts->ts_flags &= ~TSF_BOUND;
2482 	sched_unpin();
2483 }
2484 
2485 int
2486 sched_is_bound(struct thread *td)
2487 {
2488 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2489 	return (td->td_sched->ts_flags & TSF_BOUND);
2490 }
2491 
2492 /*
2493  * Basic yield call.
2494  */
2495 void
2496 sched_relinquish(struct thread *td)
2497 {
2498 	thread_lock(td);
2499 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2500 	thread_unlock(td);
2501 }
2502 
2503 /*
2504  * Return the total system load.
2505  */
2506 int
2507 sched_load(void)
2508 {
2509 #ifdef SMP
2510 	int total;
2511 	int i;
2512 
2513 	total = 0;
2514 	CPU_FOREACH(i)
2515 		total += TDQ_CPU(i)->tdq_sysload;
2516 	return (total);
2517 #else
2518 	return (TDQ_SELF()->tdq_sysload);
2519 #endif
2520 }
2521 
2522 int
2523 sched_sizeof_proc(void)
2524 {
2525 	return (sizeof(struct proc));
2526 }
2527 
2528 int
2529 sched_sizeof_thread(void)
2530 {
2531 	return (sizeof(struct thread) + sizeof(struct td_sched));
2532 }
2533 
2534 #ifdef SMP
2535 #define	TDQ_IDLESPIN(tdq)						\
2536     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2537 #else
2538 #define	TDQ_IDLESPIN(tdq)	1
2539 #endif
2540 
2541 /*
2542  * The actual idle process.
2543  */
2544 void
2545 sched_idletd(void *dummy)
2546 {
2547 	struct thread *td;
2548 	struct tdq *tdq;
2549 	int switchcnt;
2550 	int i;
2551 
2552 	mtx_assert(&Giant, MA_NOTOWNED);
2553 	td = curthread;
2554 	tdq = TDQ_SELF();
2555 	for (;;) {
2556 #ifdef SMP
2557 		if (tdq_idled(tdq) == 0)
2558 			continue;
2559 #endif
2560 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2561 		/*
2562 		 * If we're switching very frequently, spin while checking
2563 		 * for load rather than entering a low power state that
2564 		 * may require an IPI.  However, don't do any busy
2565 		 * loops while on SMT machines as this simply steals
2566 		 * cycles from cores doing useful work.
2567 		 */
2568 		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2569 			for (i = 0; i < sched_idlespins; i++) {
2570 				if (tdq->tdq_load)
2571 					break;
2572 				cpu_spinwait();
2573 			}
2574 		}
2575 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2576 		if (tdq->tdq_load == 0) {
2577 			tdq->tdq_cpu_idle = 1;
2578 			if (tdq->tdq_load == 0) {
2579 				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2580 				tdq->tdq_switchcnt++;
2581 			}
2582 			tdq->tdq_cpu_idle = 0;
2583 		}
2584 		if (tdq->tdq_load) {
2585 			thread_lock(td);
2586 			mi_switch(SW_VOL | SWT_IDLE, NULL);
2587 			thread_unlock(td);
2588 		}
2589 	}
2590 }
2591 
2592 /*
2593  * A CPU is entering for the first time or a thread is exiting.
2594  */
2595 void
2596 sched_throw(struct thread *td)
2597 {
2598 	struct thread *newtd;
2599 	struct tdq *tdq;
2600 
2601 	tdq = TDQ_SELF();
2602 	if (td == NULL) {
2603 		/* Correct spinlock nesting and acquire the correct lock. */
2604 		TDQ_LOCK(tdq);
2605 		spinlock_exit();
2606 		PCPU_SET(switchtime, cpu_ticks());
2607 		PCPU_SET(switchticks, ticks);
2608 	} else {
2609 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2610 		tdq_load_rem(tdq, td);
2611 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2612 	}
2613 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2614 	newtd = choosethread();
2615 	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2616 	cpu_throw(td, newtd);		/* doesn't return */
2617 }
2618 
2619 /*
2620  * This is called from fork_exit().  Just acquire the correct locks and
2621  * let fork do the rest of the work.
2622  */
2623 void
2624 sched_fork_exit(struct thread *td)
2625 {
2626 	struct td_sched *ts;
2627 	struct tdq *tdq;
2628 	int cpuid;
2629 
2630 	/*
2631 	 * Finish setting up thread glue so that it begins execution in a
2632 	 * non-nested critical section with the scheduler lock held.
2633 	 */
2634 	cpuid = PCPU_GET(cpuid);
2635 	tdq = TDQ_CPU(cpuid);
2636 	ts = td->td_sched;
2637 	if (TD_IS_IDLETHREAD(td))
2638 		td->td_lock = TDQ_LOCKPTR(tdq);
2639 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2640 	td->td_oncpu = cpuid;
2641 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2642 	lock_profile_obtain_lock_success(
2643 	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2644 }
2645 
2646 /*
2647  * Create on first use to catch odd startup conditons.
2648  */
2649 char *
2650 sched_tdname(struct thread *td)
2651 {
2652 #ifdef KTR
2653 	struct td_sched *ts;
2654 
2655 	ts = td->td_sched;
2656 	if (ts->ts_name[0] == '\0')
2657 		snprintf(ts->ts_name, sizeof(ts->ts_name),
2658 		    "%s tid %d", td->td_name, td->td_tid);
2659 	return (ts->ts_name);
2660 #else
2661 	return (td->td_name);
2662 #endif
2663 }
2664 
2665 #ifdef KTR
2666 void
2667 sched_clear_tdname(struct thread *td)
2668 {
2669 	struct td_sched *ts;
2670 
2671 	ts = td->td_sched;
2672 	ts->ts_name[0] = '\0';
2673 }
2674 #endif
2675 
2676 #ifdef SMP
2677 
2678 /*
2679  * Build the CPU topology dump string. Is recursively called to collect
2680  * the topology tree.
2681  */
2682 static int
2683 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2684     int indent)
2685 {
2686 	char cpusetbuf[CPUSETBUFSIZ];
2687 	int i, first;
2688 
2689 	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2690 	    "", 1 + indent / 2, cg->cg_level);
2691 	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2692 	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2693 	first = TRUE;
2694 	for (i = 0; i < MAXCPU; i++) {
2695 		if (CPU_ISSET(i, &cg->cg_mask)) {
2696 			if (!first)
2697 				sbuf_printf(sb, ", ");
2698 			else
2699 				first = FALSE;
2700 			sbuf_printf(sb, "%d", i);
2701 		}
2702 	}
2703 	sbuf_printf(sb, "</cpu>\n");
2704 
2705 	if (cg->cg_flags != 0) {
2706 		sbuf_printf(sb, "%*s <flags>", indent, "");
2707 		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2708 			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2709 		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2710 			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2711 		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2712 			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2713 		sbuf_printf(sb, "</flags>\n");
2714 	}
2715 
2716 	if (cg->cg_children > 0) {
2717 		sbuf_printf(sb, "%*s <children>\n", indent, "");
2718 		for (i = 0; i < cg->cg_children; i++)
2719 			sysctl_kern_sched_topology_spec_internal(sb,
2720 			    &cg->cg_child[i], indent+2);
2721 		sbuf_printf(sb, "%*s </children>\n", indent, "");
2722 	}
2723 	sbuf_printf(sb, "%*s</group>\n", indent, "");
2724 	return (0);
2725 }
2726 
2727 /*
2728  * Sysctl handler for retrieving topology dump. It's a wrapper for
2729  * the recursive sysctl_kern_smp_topology_spec_internal().
2730  */
2731 static int
2732 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2733 {
2734 	struct sbuf *topo;
2735 	int err;
2736 
2737 	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2738 
2739 	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2740 	if (topo == NULL)
2741 		return (ENOMEM);
2742 
2743 	sbuf_printf(topo, "<groups>\n");
2744 	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2745 	sbuf_printf(topo, "</groups>\n");
2746 
2747 	if (err == 0) {
2748 		sbuf_finish(topo);
2749 		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2750 	}
2751 	sbuf_delete(topo);
2752 	return (err);
2753 }
2754 
2755 #endif
2756 
2757 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2758 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2759     "Scheduler name");
2760 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2761     "Slice size for timeshare threads");
2762 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2763      "Interactivity score threshold");
2764 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2765      0,"Min priority for preemption, lower priorities have greater precedence");
2766 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2767      0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2768 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2769      0,"Number of times idle will spin waiting for new work.");
2770 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2771      0,"Threshold before we will permit idle spinning.");
2772 #ifdef SMP
2773 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2774     "Number of hz ticks to keep thread affinity for");
2775 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2776     "Enables the long-term load balancer");
2777 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2778     &balance_interval, 0,
2779     "Average frequency in stathz ticks to run the long-term balancer");
2780 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2781     "Attempts to steal work from other cores before idling");
2782 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2783     "Minimum load on remote cpu before we'll steal");
2784 
2785 /* Retrieve SMP topology */
2786 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2787     CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2788     "XML dump of detected CPU topology");
2789 
2790 #endif
2791 
2792 /* ps compat.  All cpu percentages from ULE are weighted. */
2793 static int ccpu = 0;
2794 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2795