1 /*- 2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* 28 * This file implements the ULE scheduler. ULE supports independent CPU 29 * run queues and fine grain locking. It has superior interactive 30 * performance under load even on uni-processor systems. 31 * 32 * etymology: 33 * ULE is the last three letters in schedule. It owes its name to a 34 * generic user created for a scheduling system by Paul Mikesell at 35 * Isilon Systems and a general lack of creativity on the part of the author. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_hwpmc_hooks.h" 42 #include "opt_kdtrace.h" 43 #include "opt_sched.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/kdb.h> 48 #include <sys/kernel.h> 49 #include <sys/ktr.h> 50 #include <sys/lock.h> 51 #include <sys/mutex.h> 52 #include <sys/proc.h> 53 #include <sys/resource.h> 54 #include <sys/resourcevar.h> 55 #include <sys/sched.h> 56 #include <sys/smp.h> 57 #include <sys/sx.h> 58 #include <sys/sysctl.h> 59 #include <sys/sysproto.h> 60 #include <sys/turnstile.h> 61 #include <sys/umtx.h> 62 #include <sys/vmmeter.h> 63 #include <sys/cpuset.h> 64 #include <sys/sbuf.h> 65 66 #ifdef HWPMC_HOOKS 67 #include <sys/pmckern.h> 68 #endif 69 70 #ifdef KDTRACE_HOOKS 71 #include <sys/dtrace_bsd.h> 72 int dtrace_vtime_active; 73 dtrace_vtime_switch_func_t dtrace_vtime_switch_func; 74 #endif 75 76 #include <machine/cpu.h> 77 #include <machine/smp.h> 78 79 #if defined(__powerpc__) && defined(E500) 80 #error "This architecture is not currently compatible with ULE" 81 #endif 82 83 #define KTR_ULE 0 84 85 #define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX))) 86 #define TDQ_NAME_LEN (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU))) 87 #define TDQ_LOADNAME_LEN (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load")) 88 89 /* 90 * Thread scheduler specific section. All fields are protected 91 * by the thread lock. 92 */ 93 struct td_sched { 94 struct runq *ts_runq; /* Run-queue we're queued on. */ 95 short ts_flags; /* TSF_* flags. */ 96 u_char ts_cpu; /* CPU that we have affinity for. */ 97 int ts_rltick; /* Real last tick, for affinity. */ 98 int ts_slice; /* Ticks of slice remaining. */ 99 u_int ts_slptime; /* Number of ticks we vol. slept */ 100 u_int ts_runtime; /* Number of ticks we were running */ 101 int ts_ltick; /* Last tick that we were running on */ 102 int ts_ftick; /* First tick that we were running on */ 103 int ts_ticks; /* Tick count */ 104 #ifdef KTR 105 char ts_name[TS_NAME_LEN]; 106 #endif 107 }; 108 /* flags kept in ts_flags */ 109 #define TSF_BOUND 0x0001 /* Thread can not migrate. */ 110 #define TSF_XFERABLE 0x0002 /* Thread was added as transferable. */ 111 112 static struct td_sched td_sched0; 113 114 #define THREAD_CAN_MIGRATE(td) ((td)->td_pinned == 0) 115 #define THREAD_CAN_SCHED(td, cpu) \ 116 CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask) 117 118 /* 119 * Priority ranges used for interactive and non-interactive timeshare 120 * threads. The timeshare priorities are split up into four ranges. 121 * The first range handles interactive threads. The last three ranges 122 * (NHALF, x, and NHALF) handle non-interactive threads with the outer 123 * ranges supporting nice values. 124 */ 125 #define PRI_TIMESHARE_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1) 126 #define PRI_INTERACT_RANGE ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2) 127 #define PRI_BATCH_RANGE (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE) 128 129 #define PRI_MIN_INTERACT PRI_MIN_TIMESHARE 130 #define PRI_MAX_INTERACT (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1) 131 #define PRI_MIN_BATCH (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE) 132 #define PRI_MAX_BATCH PRI_MAX_TIMESHARE 133 134 /* 135 * Cpu percentage computation macros and defines. 136 * 137 * SCHED_TICK_SECS: Number of seconds to average the cpu usage across. 138 * SCHED_TICK_TARG: Number of hz ticks to average the cpu usage across. 139 * SCHED_TICK_MAX: Maximum number of ticks before scaling back. 140 * SCHED_TICK_SHIFT: Shift factor to avoid rounding away results. 141 * SCHED_TICK_HZ: Compute the number of hz ticks for a given ticks count. 142 * SCHED_TICK_TOTAL: Gives the amount of time we've been recording ticks. 143 */ 144 #define SCHED_TICK_SECS 10 145 #define SCHED_TICK_TARG (hz * SCHED_TICK_SECS) 146 #define SCHED_TICK_MAX (SCHED_TICK_TARG + hz) 147 #define SCHED_TICK_SHIFT 10 148 #define SCHED_TICK_HZ(ts) ((ts)->ts_ticks >> SCHED_TICK_SHIFT) 149 #define SCHED_TICK_TOTAL(ts) (max((ts)->ts_ltick - (ts)->ts_ftick, hz)) 150 151 /* 152 * These macros determine priorities for non-interactive threads. They are 153 * assigned a priority based on their recent cpu utilization as expressed 154 * by the ratio of ticks to the tick total. NHALF priorities at the start 155 * and end of the MIN to MAX timeshare range are only reachable with negative 156 * or positive nice respectively. 157 * 158 * PRI_RANGE: Priority range for utilization dependent priorities. 159 * PRI_NRESV: Number of nice values. 160 * PRI_TICKS: Compute a priority in PRI_RANGE from the ticks count and total. 161 * PRI_NICE: Determines the part of the priority inherited from nice. 162 */ 163 #define SCHED_PRI_NRESV (PRIO_MAX - PRIO_MIN) 164 #define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2) 165 #define SCHED_PRI_MIN (PRI_MIN_BATCH + SCHED_PRI_NHALF) 166 #define SCHED_PRI_MAX (PRI_MAX_BATCH - SCHED_PRI_NHALF) 167 #define SCHED_PRI_RANGE (SCHED_PRI_MAX - SCHED_PRI_MIN + 1) 168 #define SCHED_PRI_TICKS(ts) \ 169 (SCHED_TICK_HZ((ts)) / \ 170 (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE)) 171 #define SCHED_PRI_NICE(nice) (nice) 172 173 /* 174 * These determine the interactivity of a process. Interactivity differs from 175 * cpu utilization in that it expresses the voluntary time slept vs time ran 176 * while cpu utilization includes all time not running. This more accurately 177 * models the intent of the thread. 178 * 179 * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate 180 * before throttling back. 181 * SLP_RUN_FORK: Maximum slp+run time to inherit at fork time. 182 * INTERACT_MAX: Maximum interactivity value. Smaller is better. 183 * INTERACT_THRESH: Threshold for placement on the current runq. 184 */ 185 #define SCHED_SLP_RUN_MAX ((hz * 5) << SCHED_TICK_SHIFT) 186 #define SCHED_SLP_RUN_FORK ((hz / 2) << SCHED_TICK_SHIFT) 187 #define SCHED_INTERACT_MAX (100) 188 #define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2) 189 #define SCHED_INTERACT_THRESH (30) 190 191 /* 192 * tickincr: Converts a stathz tick into a hz domain scaled by 193 * the shift factor. Without the shift the error rate 194 * due to rounding would be unacceptably high. 195 * realstathz: stathz is sometimes 0 and run off of hz. 196 * sched_slice: Runtime of each thread before rescheduling. 197 * preempt_thresh: Priority threshold for preemption and remote IPIs. 198 */ 199 static int sched_interact = SCHED_INTERACT_THRESH; 200 static int realstathz; 201 static int tickincr; 202 static int sched_slice = 1; 203 #ifdef PREEMPTION 204 #ifdef FULL_PREEMPTION 205 static int preempt_thresh = PRI_MAX_IDLE; 206 #else 207 static int preempt_thresh = PRI_MIN_KERN; 208 #endif 209 #else 210 static int preempt_thresh = 0; 211 #endif 212 static int static_boost = PRI_MIN_BATCH; 213 static int sched_idlespins = 10000; 214 static int sched_idlespinthresh = -1; 215 216 /* 217 * tdq - per processor runqs and statistics. All fields are protected by the 218 * tdq_lock. The load and lowpri may be accessed without to avoid excess 219 * locking in sched_pickcpu(); 220 */ 221 struct tdq { 222 /* Ordered to improve efficiency of cpu_search() and switch(). */ 223 struct mtx tdq_lock; /* run queue lock. */ 224 struct cpu_group *tdq_cg; /* Pointer to cpu topology. */ 225 volatile int tdq_load; /* Aggregate load. */ 226 volatile int tdq_cpu_idle; /* cpu_idle() is active. */ 227 int tdq_sysload; /* For loadavg, !ITHD load. */ 228 int tdq_transferable; /* Transferable thread count. */ 229 short tdq_switchcnt; /* Switches this tick. */ 230 short tdq_oldswitchcnt; /* Switches last tick. */ 231 u_char tdq_lowpri; /* Lowest priority thread. */ 232 u_char tdq_ipipending; /* IPI pending. */ 233 u_char tdq_idx; /* Current insert index. */ 234 u_char tdq_ridx; /* Current removal index. */ 235 struct runq tdq_realtime; /* real-time run queue. */ 236 struct runq tdq_timeshare; /* timeshare run queue. */ 237 struct runq tdq_idle; /* Queue of IDLE threads. */ 238 char tdq_name[TDQ_NAME_LEN]; 239 #ifdef KTR 240 char tdq_loadname[TDQ_LOADNAME_LEN]; 241 #endif 242 } __aligned(64); 243 244 /* Idle thread states and config. */ 245 #define TDQ_RUNNING 1 246 #define TDQ_IDLE 2 247 248 #ifdef SMP 249 struct cpu_group *cpu_top; /* CPU topology */ 250 251 #define SCHED_AFFINITY_DEFAULT (max(1, hz / 1000)) 252 #define SCHED_AFFINITY(ts, t) ((ts)->ts_rltick > ticks - ((t) * affinity)) 253 254 /* 255 * Run-time tunables. 256 */ 257 static int rebalance = 1; 258 static int balance_interval = 128; /* Default set in sched_initticks(). */ 259 static int affinity; 260 static int steal_idle = 1; 261 static int steal_thresh = 2; 262 263 /* 264 * One thread queue per processor. 265 */ 266 static struct tdq tdq_cpu[MAXCPU]; 267 static struct tdq *balance_tdq; 268 static int balance_ticks; 269 static DPCPU_DEFINE(uint32_t, randomval); 270 271 #define TDQ_SELF() (&tdq_cpu[PCPU_GET(cpuid)]) 272 #define TDQ_CPU(x) (&tdq_cpu[(x)]) 273 #define TDQ_ID(x) ((int)((x) - tdq_cpu)) 274 #else /* !SMP */ 275 static struct tdq tdq_cpu; 276 277 #define TDQ_ID(x) (0) 278 #define TDQ_SELF() (&tdq_cpu) 279 #define TDQ_CPU(x) (&tdq_cpu) 280 #endif 281 282 #define TDQ_LOCK_ASSERT(t, type) mtx_assert(TDQ_LOCKPTR((t)), (type)) 283 #define TDQ_LOCK(t) mtx_lock_spin(TDQ_LOCKPTR((t))) 284 #define TDQ_LOCK_FLAGS(t, f) mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f)) 285 #define TDQ_UNLOCK(t) mtx_unlock_spin(TDQ_LOCKPTR((t))) 286 #define TDQ_LOCKPTR(t) (&(t)->tdq_lock) 287 288 static void sched_priority(struct thread *); 289 static void sched_thread_priority(struct thread *, u_char); 290 static int sched_interact_score(struct thread *); 291 static void sched_interact_update(struct thread *); 292 static void sched_interact_fork(struct thread *); 293 static void sched_pctcpu_update(struct td_sched *, int); 294 295 /* Operations on per processor queues */ 296 static struct thread *tdq_choose(struct tdq *); 297 static void tdq_setup(struct tdq *); 298 static void tdq_load_add(struct tdq *, struct thread *); 299 static void tdq_load_rem(struct tdq *, struct thread *); 300 static __inline void tdq_runq_add(struct tdq *, struct thread *, int); 301 static __inline void tdq_runq_rem(struct tdq *, struct thread *); 302 static inline int sched_shouldpreempt(int, int, int); 303 void tdq_print(int cpu); 304 static void runq_print(struct runq *rq); 305 static void tdq_add(struct tdq *, struct thread *, int); 306 #ifdef SMP 307 static int tdq_move(struct tdq *, struct tdq *); 308 static int tdq_idled(struct tdq *); 309 static void tdq_notify(struct tdq *, struct thread *); 310 static struct thread *tdq_steal(struct tdq *, int); 311 static struct thread *runq_steal(struct runq *, int); 312 static int sched_pickcpu(struct thread *, int); 313 static void sched_balance(void); 314 static int sched_balance_pair(struct tdq *, struct tdq *); 315 static inline struct tdq *sched_setcpu(struct thread *, int, int); 316 static inline void thread_unblock_switch(struct thread *, struct mtx *); 317 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int); 318 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS); 319 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, 320 struct cpu_group *cg, int indent); 321 #endif 322 323 static void sched_setup(void *dummy); 324 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL); 325 326 static void sched_initticks(void *dummy); 327 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, 328 NULL); 329 330 /* 331 * Print the threads waiting on a run-queue. 332 */ 333 static void 334 runq_print(struct runq *rq) 335 { 336 struct rqhead *rqh; 337 struct thread *td; 338 int pri; 339 int j; 340 int i; 341 342 for (i = 0; i < RQB_LEN; i++) { 343 printf("\t\trunq bits %d 0x%zx\n", 344 i, rq->rq_status.rqb_bits[i]); 345 for (j = 0; j < RQB_BPW; j++) 346 if (rq->rq_status.rqb_bits[i] & (1ul << j)) { 347 pri = j + (i << RQB_L2BPW); 348 rqh = &rq->rq_queues[pri]; 349 TAILQ_FOREACH(td, rqh, td_runq) { 350 printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n", 351 td, td->td_name, td->td_priority, 352 td->td_rqindex, pri); 353 } 354 } 355 } 356 } 357 358 /* 359 * Print the status of a per-cpu thread queue. Should be a ddb show cmd. 360 */ 361 void 362 tdq_print(int cpu) 363 { 364 struct tdq *tdq; 365 366 tdq = TDQ_CPU(cpu); 367 368 printf("tdq %d:\n", TDQ_ID(tdq)); 369 printf("\tlock %p\n", TDQ_LOCKPTR(tdq)); 370 printf("\tLock name: %s\n", tdq->tdq_name); 371 printf("\tload: %d\n", tdq->tdq_load); 372 printf("\tswitch cnt: %d\n", tdq->tdq_switchcnt); 373 printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt); 374 printf("\ttimeshare idx: %d\n", tdq->tdq_idx); 375 printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx); 376 printf("\tload transferable: %d\n", tdq->tdq_transferable); 377 printf("\tlowest priority: %d\n", tdq->tdq_lowpri); 378 printf("\trealtime runq:\n"); 379 runq_print(&tdq->tdq_realtime); 380 printf("\ttimeshare runq:\n"); 381 runq_print(&tdq->tdq_timeshare); 382 printf("\tidle runq:\n"); 383 runq_print(&tdq->tdq_idle); 384 } 385 386 static inline int 387 sched_shouldpreempt(int pri, int cpri, int remote) 388 { 389 /* 390 * If the new priority is not better than the current priority there is 391 * nothing to do. 392 */ 393 if (pri >= cpri) 394 return (0); 395 /* 396 * Always preempt idle. 397 */ 398 if (cpri >= PRI_MIN_IDLE) 399 return (1); 400 /* 401 * If preemption is disabled don't preempt others. 402 */ 403 if (preempt_thresh == 0) 404 return (0); 405 /* 406 * Preempt if we exceed the threshold. 407 */ 408 if (pri <= preempt_thresh) 409 return (1); 410 /* 411 * If we're interactive or better and there is non-interactive 412 * or worse running preempt only remote processors. 413 */ 414 if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT) 415 return (1); 416 return (0); 417 } 418 419 /* 420 * Add a thread to the actual run-queue. Keeps transferable counts up to 421 * date with what is actually on the run-queue. Selects the correct 422 * queue position for timeshare threads. 423 */ 424 static __inline void 425 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags) 426 { 427 struct td_sched *ts; 428 u_char pri; 429 430 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 431 THREAD_LOCK_ASSERT(td, MA_OWNED); 432 433 pri = td->td_priority; 434 ts = td->td_sched; 435 TD_SET_RUNQ(td); 436 if (THREAD_CAN_MIGRATE(td)) { 437 tdq->tdq_transferable++; 438 ts->ts_flags |= TSF_XFERABLE; 439 } 440 if (pri < PRI_MIN_BATCH) { 441 ts->ts_runq = &tdq->tdq_realtime; 442 } else if (pri <= PRI_MAX_BATCH) { 443 ts->ts_runq = &tdq->tdq_timeshare; 444 KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH, 445 ("Invalid priority %d on timeshare runq", pri)); 446 /* 447 * This queue contains only priorities between MIN and MAX 448 * realtime. Use the whole queue to represent these values. 449 */ 450 if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) { 451 pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE; 452 pri = (pri + tdq->tdq_idx) % RQ_NQS; 453 /* 454 * This effectively shortens the queue by one so we 455 * can have a one slot difference between idx and 456 * ridx while we wait for threads to drain. 457 */ 458 if (tdq->tdq_ridx != tdq->tdq_idx && 459 pri == tdq->tdq_ridx) 460 pri = (unsigned char)(pri - 1) % RQ_NQS; 461 } else 462 pri = tdq->tdq_ridx; 463 runq_add_pri(ts->ts_runq, td, pri, flags); 464 return; 465 } else 466 ts->ts_runq = &tdq->tdq_idle; 467 runq_add(ts->ts_runq, td, flags); 468 } 469 470 /* 471 * Remove a thread from a run-queue. This typically happens when a thread 472 * is selected to run. Running threads are not on the queue and the 473 * transferable count does not reflect them. 474 */ 475 static __inline void 476 tdq_runq_rem(struct tdq *tdq, struct thread *td) 477 { 478 struct td_sched *ts; 479 480 ts = td->td_sched; 481 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 482 KASSERT(ts->ts_runq != NULL, 483 ("tdq_runq_remove: thread %p null ts_runq", td)); 484 if (ts->ts_flags & TSF_XFERABLE) { 485 tdq->tdq_transferable--; 486 ts->ts_flags &= ~TSF_XFERABLE; 487 } 488 if (ts->ts_runq == &tdq->tdq_timeshare) { 489 if (tdq->tdq_idx != tdq->tdq_ridx) 490 runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx); 491 else 492 runq_remove_idx(ts->ts_runq, td, NULL); 493 } else 494 runq_remove(ts->ts_runq, td); 495 } 496 497 /* 498 * Load is maintained for all threads RUNNING and ON_RUNQ. Add the load 499 * for this thread to the referenced thread queue. 500 */ 501 static void 502 tdq_load_add(struct tdq *tdq, struct thread *td) 503 { 504 505 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 506 THREAD_LOCK_ASSERT(td, MA_OWNED); 507 508 tdq->tdq_load++; 509 if ((td->td_flags & TDF_NOLOAD) == 0) 510 tdq->tdq_sysload++; 511 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 512 } 513 514 /* 515 * Remove the load from a thread that is transitioning to a sleep state or 516 * exiting. 517 */ 518 static void 519 tdq_load_rem(struct tdq *tdq, struct thread *td) 520 { 521 522 THREAD_LOCK_ASSERT(td, MA_OWNED); 523 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 524 KASSERT(tdq->tdq_load != 0, 525 ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq))); 526 527 tdq->tdq_load--; 528 if ((td->td_flags & TDF_NOLOAD) == 0) 529 tdq->tdq_sysload--; 530 KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load); 531 } 532 533 /* 534 * Set lowpri to its exact value by searching the run-queue and 535 * evaluating curthread. curthread may be passed as an optimization. 536 */ 537 static void 538 tdq_setlowpri(struct tdq *tdq, struct thread *ctd) 539 { 540 struct thread *td; 541 542 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 543 if (ctd == NULL) 544 ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread; 545 td = tdq_choose(tdq); 546 if (td == NULL || td->td_priority > ctd->td_priority) 547 tdq->tdq_lowpri = ctd->td_priority; 548 else 549 tdq->tdq_lowpri = td->td_priority; 550 } 551 552 #ifdef SMP 553 struct cpu_search { 554 cpuset_t cs_mask; 555 u_int cs_prefer; 556 int cs_pri; /* Min priority for low. */ 557 int cs_limit; /* Max load for low, min load for high. */ 558 int cs_cpu; 559 int cs_load; 560 }; 561 562 #define CPU_SEARCH_LOWEST 0x1 563 #define CPU_SEARCH_HIGHEST 0x2 564 #define CPU_SEARCH_BOTH (CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST) 565 566 #define CPUSET_FOREACH(cpu, mask) \ 567 for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++) \ 568 if (CPU_ISSET(cpu, &mask)) 569 570 static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low, 571 struct cpu_search *high, const int match); 572 int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low); 573 int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high); 574 int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low, 575 struct cpu_search *high); 576 577 /* 578 * Search the tree of cpu_groups for the lowest or highest loaded cpu 579 * according to the match argument. This routine actually compares the 580 * load on all paths through the tree and finds the least loaded cpu on 581 * the least loaded path, which may differ from the least loaded cpu in 582 * the system. This balances work among caches and busses. 583 * 584 * This inline is instantiated in three forms below using constants for the 585 * match argument. It is reduced to the minimum set for each case. It is 586 * also recursive to the depth of the tree. 587 */ 588 static __inline int 589 cpu_search(const struct cpu_group *cg, struct cpu_search *low, 590 struct cpu_search *high, const int match) 591 { 592 struct cpu_search lgroup; 593 struct cpu_search hgroup; 594 cpuset_t cpumask; 595 struct cpu_group *child; 596 struct tdq *tdq; 597 int cpu, i, hload, lload, load, total, rnd; 598 599 total = 0; 600 cpumask = cg->cg_mask; 601 if (match & CPU_SEARCH_LOWEST) { 602 lload = INT_MAX; 603 low->cs_load = INT_MAX; 604 lgroup = *low; 605 } 606 if (match & CPU_SEARCH_HIGHEST) { 607 hload = -1; 608 high->cs_load = -1; 609 hgroup = *high; 610 } 611 612 /* Iterate through the child CPU groups and then remaining CPUs. */ 613 for (i = 0, cpu = 0; i <= cg->cg_children; ) { 614 if (i >= cg->cg_children) { 615 while (cpu <= mp_maxid && !CPU_ISSET(cpu, &cpumask)) 616 cpu++; 617 if (cpu > mp_maxid) 618 break; 619 child = NULL; 620 } else 621 child = &cg->cg_child[i]; 622 623 if (child) { /* Handle child CPU group. */ 624 CPU_NAND(&cpumask, &child->cg_mask); 625 switch (match) { 626 case CPU_SEARCH_LOWEST: 627 load = cpu_search_lowest(child, &lgroup); 628 break; 629 case CPU_SEARCH_HIGHEST: 630 load = cpu_search_highest(child, &hgroup); 631 break; 632 case CPU_SEARCH_BOTH: 633 load = cpu_search_both(child, &lgroup, &hgroup); 634 break; 635 } 636 } else { /* Handle child CPU. */ 637 tdq = TDQ_CPU(cpu); 638 load = tdq->tdq_load * 256; 639 rnd = DPCPU_SET(randomval, 640 DPCPU_GET(randomval) * 69069 + 5) >> 26; 641 if (match & CPU_SEARCH_LOWEST) { 642 if (cpu == low->cs_prefer) 643 load -= 64; 644 /* If that CPU is allowed and get data. */ 645 if (CPU_ISSET(cpu, &lgroup.cs_mask) && 646 tdq->tdq_lowpri > lgroup.cs_pri && 647 tdq->tdq_load <= lgroup.cs_limit) { 648 lgroup.cs_cpu = cpu; 649 lgroup.cs_load = load - rnd; 650 } 651 } 652 if (match & CPU_SEARCH_HIGHEST) 653 if (CPU_ISSET(cpu, &hgroup.cs_mask) && 654 tdq->tdq_load >= hgroup.cs_limit && 655 tdq->tdq_transferable) { 656 hgroup.cs_cpu = cpu; 657 hgroup.cs_load = load - rnd; 658 } 659 } 660 total += load; 661 662 /* We have info about child item. Compare it. */ 663 if (match & CPU_SEARCH_LOWEST) { 664 if (lgroup.cs_load != INT_MAX && 665 (load < lload || 666 (load == lload && lgroup.cs_load < low->cs_load))) { 667 lload = load; 668 low->cs_cpu = lgroup.cs_cpu; 669 low->cs_load = lgroup.cs_load; 670 } 671 } 672 if (match & CPU_SEARCH_HIGHEST) 673 if (hgroup.cs_load >= 0 && 674 (load > hload || 675 (load == hload && hgroup.cs_load > high->cs_load))) { 676 hload = load; 677 high->cs_cpu = hgroup.cs_cpu; 678 high->cs_load = hgroup.cs_load; 679 } 680 if (child) 681 i++; 682 else 683 cpu++; 684 } 685 return (total); 686 } 687 688 /* 689 * cpu_search instantiations must pass constants to maintain the inline 690 * optimization. 691 */ 692 int 693 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low) 694 { 695 return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST); 696 } 697 698 int 699 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high) 700 { 701 return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST); 702 } 703 704 int 705 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low, 706 struct cpu_search *high) 707 { 708 return cpu_search(cg, low, high, CPU_SEARCH_BOTH); 709 } 710 711 /* 712 * Find the cpu with the least load via the least loaded path that has a 713 * lowpri greater than pri pri. A pri of -1 indicates any priority is 714 * acceptable. 715 */ 716 static inline int 717 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload, 718 int prefer) 719 { 720 struct cpu_search low; 721 722 low.cs_cpu = -1; 723 low.cs_prefer = prefer; 724 low.cs_mask = mask; 725 low.cs_pri = pri; 726 low.cs_limit = maxload; 727 cpu_search_lowest(cg, &low); 728 return low.cs_cpu; 729 } 730 731 /* 732 * Find the cpu with the highest load via the highest loaded path. 733 */ 734 static inline int 735 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload) 736 { 737 struct cpu_search high; 738 739 high.cs_cpu = -1; 740 high.cs_mask = mask; 741 high.cs_limit = minload; 742 cpu_search_highest(cg, &high); 743 return high.cs_cpu; 744 } 745 746 /* 747 * Simultaneously find the highest and lowest loaded cpu reachable via 748 * cg. 749 */ 750 static inline void 751 sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu) 752 { 753 struct cpu_search high; 754 struct cpu_search low; 755 756 low.cs_cpu = -1; 757 low.cs_prefer = -1; 758 low.cs_pri = -1; 759 low.cs_limit = INT_MAX; 760 low.cs_mask = mask; 761 high.cs_cpu = -1; 762 high.cs_limit = -1; 763 high.cs_mask = mask; 764 cpu_search_both(cg, &low, &high); 765 *lowcpu = low.cs_cpu; 766 *highcpu = high.cs_cpu; 767 return; 768 } 769 770 static void 771 sched_balance_group(struct cpu_group *cg) 772 { 773 cpuset_t hmask, lmask; 774 int high, low, anylow; 775 776 CPU_FILL(&hmask); 777 for (;;) { 778 high = sched_highest(cg, hmask, 1); 779 /* Stop if there is no more CPU with transferrable threads. */ 780 if (high == -1) 781 break; 782 CPU_CLR(high, &hmask); 783 CPU_COPY(&hmask, &lmask); 784 /* Stop if there is no more CPU left for low. */ 785 if (CPU_EMPTY(&lmask)) 786 break; 787 anylow = 1; 788 nextlow: 789 low = sched_lowest(cg, lmask, -1, 790 TDQ_CPU(high)->tdq_load - 1, high); 791 /* Stop if we looked well and found no less loaded CPU. */ 792 if (anylow && low == -1) 793 break; 794 /* Go to next high if we found no less loaded CPU. */ 795 if (low == -1) 796 continue; 797 /* Transfer thread from high to low. */ 798 if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) { 799 /* CPU that got thread can no longer be a donor. */ 800 CPU_CLR(low, &hmask); 801 } else { 802 /* 803 * If failed, then there is no threads on high 804 * that can run on this low. Drop low from low 805 * mask and look for different one. 806 */ 807 CPU_CLR(low, &lmask); 808 anylow = 0; 809 goto nextlow; 810 } 811 } 812 } 813 814 static void 815 sched_balance(void) 816 { 817 struct tdq *tdq; 818 819 /* 820 * Select a random time between .5 * balance_interval and 821 * 1.5 * balance_interval. 822 */ 823 balance_ticks = max(balance_interval / 2, 1); 824 balance_ticks += random() % balance_interval; 825 if (smp_started == 0 || rebalance == 0) 826 return; 827 tdq = TDQ_SELF(); 828 TDQ_UNLOCK(tdq); 829 sched_balance_group(cpu_top); 830 TDQ_LOCK(tdq); 831 } 832 833 /* 834 * Lock two thread queues using their address to maintain lock order. 835 */ 836 static void 837 tdq_lock_pair(struct tdq *one, struct tdq *two) 838 { 839 if (one < two) { 840 TDQ_LOCK(one); 841 TDQ_LOCK_FLAGS(two, MTX_DUPOK); 842 } else { 843 TDQ_LOCK(two); 844 TDQ_LOCK_FLAGS(one, MTX_DUPOK); 845 } 846 } 847 848 /* 849 * Unlock two thread queues. Order is not important here. 850 */ 851 static void 852 tdq_unlock_pair(struct tdq *one, struct tdq *two) 853 { 854 TDQ_UNLOCK(one); 855 TDQ_UNLOCK(two); 856 } 857 858 /* 859 * Transfer load between two imbalanced thread queues. 860 */ 861 static int 862 sched_balance_pair(struct tdq *high, struct tdq *low) 863 { 864 int moved; 865 int cpu; 866 867 tdq_lock_pair(high, low); 868 moved = 0; 869 /* 870 * Determine what the imbalance is and then adjust that to how many 871 * threads we actually have to give up (transferable). 872 */ 873 if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load && 874 (moved = tdq_move(high, low)) > 0) { 875 /* 876 * In case the target isn't the current cpu IPI it to force a 877 * reschedule with the new workload. 878 */ 879 cpu = TDQ_ID(low); 880 sched_pin(); 881 if (cpu != PCPU_GET(cpuid)) 882 ipi_cpu(cpu, IPI_PREEMPT); 883 sched_unpin(); 884 } 885 tdq_unlock_pair(high, low); 886 return (moved); 887 } 888 889 /* 890 * Move a thread from one thread queue to another. 891 */ 892 static int 893 tdq_move(struct tdq *from, struct tdq *to) 894 { 895 struct td_sched *ts; 896 struct thread *td; 897 struct tdq *tdq; 898 int cpu; 899 900 TDQ_LOCK_ASSERT(from, MA_OWNED); 901 TDQ_LOCK_ASSERT(to, MA_OWNED); 902 903 tdq = from; 904 cpu = TDQ_ID(to); 905 td = tdq_steal(tdq, cpu); 906 if (td == NULL) 907 return (0); 908 ts = td->td_sched; 909 /* 910 * Although the run queue is locked the thread may be blocked. Lock 911 * it to clear this and acquire the run-queue lock. 912 */ 913 thread_lock(td); 914 /* Drop recursive lock on from acquired via thread_lock(). */ 915 TDQ_UNLOCK(from); 916 sched_rem(td); 917 ts->ts_cpu = cpu; 918 td->td_lock = TDQ_LOCKPTR(to); 919 tdq_add(to, td, SRQ_YIELDING); 920 return (1); 921 } 922 923 /* 924 * This tdq has idled. Try to steal a thread from another cpu and switch 925 * to it. 926 */ 927 static int 928 tdq_idled(struct tdq *tdq) 929 { 930 struct cpu_group *cg; 931 struct tdq *steal; 932 cpuset_t mask; 933 int thresh; 934 int cpu; 935 936 if (smp_started == 0 || steal_idle == 0) 937 return (1); 938 CPU_FILL(&mask); 939 CPU_CLR(PCPU_GET(cpuid), &mask); 940 /* We don't want to be preempted while we're iterating. */ 941 spinlock_enter(); 942 for (cg = tdq->tdq_cg; cg != NULL; ) { 943 if ((cg->cg_flags & CG_FLAG_THREAD) == 0) 944 thresh = steal_thresh; 945 else 946 thresh = 1; 947 cpu = sched_highest(cg, mask, thresh); 948 if (cpu == -1) { 949 cg = cg->cg_parent; 950 continue; 951 } 952 steal = TDQ_CPU(cpu); 953 CPU_CLR(cpu, &mask); 954 tdq_lock_pair(tdq, steal); 955 if (steal->tdq_load < thresh || steal->tdq_transferable == 0) { 956 tdq_unlock_pair(tdq, steal); 957 continue; 958 } 959 /* 960 * If a thread was added while interrupts were disabled don't 961 * steal one here. If we fail to acquire one due to affinity 962 * restrictions loop again with this cpu removed from the 963 * set. 964 */ 965 if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) { 966 tdq_unlock_pair(tdq, steal); 967 continue; 968 } 969 spinlock_exit(); 970 TDQ_UNLOCK(steal); 971 mi_switch(SW_VOL | SWT_IDLE, NULL); 972 thread_unlock(curthread); 973 974 return (0); 975 } 976 spinlock_exit(); 977 return (1); 978 } 979 980 /* 981 * Notify a remote cpu of new work. Sends an IPI if criteria are met. 982 */ 983 static void 984 tdq_notify(struct tdq *tdq, struct thread *td) 985 { 986 struct thread *ctd; 987 int pri; 988 int cpu; 989 990 if (tdq->tdq_ipipending) 991 return; 992 cpu = td->td_sched->ts_cpu; 993 pri = td->td_priority; 994 ctd = pcpu_find(cpu)->pc_curthread; 995 if (!sched_shouldpreempt(pri, ctd->td_priority, 1)) 996 return; 997 if (TD_IS_IDLETHREAD(ctd)) { 998 /* 999 * If the MD code has an idle wakeup routine try that before 1000 * falling back to IPI. 1001 */ 1002 if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu)) 1003 return; 1004 } 1005 tdq->tdq_ipipending = 1; 1006 ipi_cpu(cpu, IPI_PREEMPT); 1007 } 1008 1009 /* 1010 * Steals load from a timeshare queue. Honors the rotating queue head 1011 * index. 1012 */ 1013 static struct thread * 1014 runq_steal_from(struct runq *rq, int cpu, u_char start) 1015 { 1016 struct rqbits *rqb; 1017 struct rqhead *rqh; 1018 struct thread *td, *first; 1019 int bit; 1020 int pri; 1021 int i; 1022 1023 rqb = &rq->rq_status; 1024 bit = start & (RQB_BPW -1); 1025 pri = 0; 1026 first = NULL; 1027 again: 1028 for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) { 1029 if (rqb->rqb_bits[i] == 0) 1030 continue; 1031 if (bit != 0) { 1032 for (pri = bit; pri < RQB_BPW; pri++) 1033 if (rqb->rqb_bits[i] & (1ul << pri)) 1034 break; 1035 if (pri >= RQB_BPW) 1036 continue; 1037 } else 1038 pri = RQB_FFS(rqb->rqb_bits[i]); 1039 pri += (i << RQB_L2BPW); 1040 rqh = &rq->rq_queues[pri]; 1041 TAILQ_FOREACH(td, rqh, td_runq) { 1042 if (first && THREAD_CAN_MIGRATE(td) && 1043 THREAD_CAN_SCHED(td, cpu)) 1044 return (td); 1045 first = td; 1046 } 1047 } 1048 if (start != 0) { 1049 start = 0; 1050 goto again; 1051 } 1052 1053 if (first && THREAD_CAN_MIGRATE(first) && 1054 THREAD_CAN_SCHED(first, cpu)) 1055 return (first); 1056 return (NULL); 1057 } 1058 1059 /* 1060 * Steals load from a standard linear queue. 1061 */ 1062 static struct thread * 1063 runq_steal(struct runq *rq, int cpu) 1064 { 1065 struct rqhead *rqh; 1066 struct rqbits *rqb; 1067 struct thread *td; 1068 int word; 1069 int bit; 1070 1071 rqb = &rq->rq_status; 1072 for (word = 0; word < RQB_LEN; word++) { 1073 if (rqb->rqb_bits[word] == 0) 1074 continue; 1075 for (bit = 0; bit < RQB_BPW; bit++) { 1076 if ((rqb->rqb_bits[word] & (1ul << bit)) == 0) 1077 continue; 1078 rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)]; 1079 TAILQ_FOREACH(td, rqh, td_runq) 1080 if (THREAD_CAN_MIGRATE(td) && 1081 THREAD_CAN_SCHED(td, cpu)) 1082 return (td); 1083 } 1084 } 1085 return (NULL); 1086 } 1087 1088 /* 1089 * Attempt to steal a thread in priority order from a thread queue. 1090 */ 1091 static struct thread * 1092 tdq_steal(struct tdq *tdq, int cpu) 1093 { 1094 struct thread *td; 1095 1096 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1097 if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL) 1098 return (td); 1099 if ((td = runq_steal_from(&tdq->tdq_timeshare, 1100 cpu, tdq->tdq_ridx)) != NULL) 1101 return (td); 1102 return (runq_steal(&tdq->tdq_idle, cpu)); 1103 } 1104 1105 /* 1106 * Sets the thread lock and ts_cpu to match the requested cpu. Unlocks the 1107 * current lock and returns with the assigned queue locked. 1108 */ 1109 static inline struct tdq * 1110 sched_setcpu(struct thread *td, int cpu, int flags) 1111 { 1112 1113 struct tdq *tdq; 1114 1115 THREAD_LOCK_ASSERT(td, MA_OWNED); 1116 tdq = TDQ_CPU(cpu); 1117 td->td_sched->ts_cpu = cpu; 1118 /* 1119 * If the lock matches just return the queue. 1120 */ 1121 if (td->td_lock == TDQ_LOCKPTR(tdq)) 1122 return (tdq); 1123 #ifdef notyet 1124 /* 1125 * If the thread isn't running its lockptr is a 1126 * turnstile or a sleepqueue. We can just lock_set without 1127 * blocking. 1128 */ 1129 if (TD_CAN_RUN(td)) { 1130 TDQ_LOCK(tdq); 1131 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 1132 return (tdq); 1133 } 1134 #endif 1135 /* 1136 * The hard case, migration, we need to block the thread first to 1137 * prevent order reversals with other cpus locks. 1138 */ 1139 spinlock_enter(); 1140 thread_lock_block(td); 1141 TDQ_LOCK(tdq); 1142 thread_lock_unblock(td, TDQ_LOCKPTR(tdq)); 1143 spinlock_exit(); 1144 return (tdq); 1145 } 1146 1147 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding"); 1148 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity"); 1149 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity"); 1150 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load"); 1151 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu"); 1152 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration"); 1153 1154 static int 1155 sched_pickcpu(struct thread *td, int flags) 1156 { 1157 struct cpu_group *cg, *ccg; 1158 struct td_sched *ts; 1159 struct tdq *tdq; 1160 cpuset_t mask; 1161 int cpu, pri, self; 1162 1163 self = PCPU_GET(cpuid); 1164 ts = td->td_sched; 1165 if (smp_started == 0) 1166 return (self); 1167 /* 1168 * Don't migrate a running thread from sched_switch(). 1169 */ 1170 if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td)) 1171 return (ts->ts_cpu); 1172 /* 1173 * Prefer to run interrupt threads on the processors that generate 1174 * the interrupt. 1175 */ 1176 pri = td->td_priority; 1177 if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) && 1178 curthread->td_intr_nesting_level && ts->ts_cpu != self) { 1179 SCHED_STAT_INC(pickcpu_intrbind); 1180 ts->ts_cpu = self; 1181 if (TDQ_CPU(self)->tdq_lowpri > pri) { 1182 SCHED_STAT_INC(pickcpu_affinity); 1183 return (ts->ts_cpu); 1184 } 1185 } 1186 /* 1187 * If the thread can run on the last cpu and the affinity has not 1188 * expired or it is idle run it there. 1189 */ 1190 tdq = TDQ_CPU(ts->ts_cpu); 1191 cg = tdq->tdq_cg; 1192 if (THREAD_CAN_SCHED(td, ts->ts_cpu) && 1193 tdq->tdq_lowpri >= PRI_MIN_IDLE && 1194 SCHED_AFFINITY(ts, CG_SHARE_L2)) { 1195 if (cg->cg_flags & CG_FLAG_THREAD) { 1196 CPUSET_FOREACH(cpu, cg->cg_mask) { 1197 if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) 1198 break; 1199 } 1200 } else 1201 cpu = INT_MAX; 1202 if (cpu > mp_maxid) { 1203 SCHED_STAT_INC(pickcpu_idle_affinity); 1204 return (ts->ts_cpu); 1205 } 1206 } 1207 /* 1208 * Search for the last level cache CPU group in the tree. 1209 * Skip caches with expired affinity time and SMT groups. 1210 * Affinity to higher level caches will be handled less aggressively. 1211 */ 1212 for (ccg = NULL; cg != NULL; cg = cg->cg_parent) { 1213 if (cg->cg_flags & CG_FLAG_THREAD) 1214 continue; 1215 if (!SCHED_AFFINITY(ts, cg->cg_level)) 1216 continue; 1217 ccg = cg; 1218 } 1219 if (ccg != NULL) 1220 cg = ccg; 1221 cpu = -1; 1222 /* Search the group for the less loaded idle CPU we can run now. */ 1223 mask = td->td_cpuset->cs_mask; 1224 if (cg != NULL && cg != cpu_top && 1225 CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0) 1226 cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE), 1227 INT_MAX, ts->ts_cpu); 1228 /* Search globally for the less loaded CPU we can run now. */ 1229 if (cpu == -1) 1230 cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu); 1231 /* Search globally for the less loaded CPU. */ 1232 if (cpu == -1) 1233 cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu); 1234 KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu.")); 1235 /* 1236 * Compare the lowest loaded cpu to current cpu. 1237 */ 1238 if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri && 1239 TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE && 1240 TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) { 1241 SCHED_STAT_INC(pickcpu_local); 1242 cpu = self; 1243 } else 1244 SCHED_STAT_INC(pickcpu_lowest); 1245 if (cpu != ts->ts_cpu) 1246 SCHED_STAT_INC(pickcpu_migration); 1247 return (cpu); 1248 } 1249 #endif 1250 1251 /* 1252 * Pick the highest priority task we have and return it. 1253 */ 1254 static struct thread * 1255 tdq_choose(struct tdq *tdq) 1256 { 1257 struct thread *td; 1258 1259 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 1260 td = runq_choose(&tdq->tdq_realtime); 1261 if (td != NULL) 1262 return (td); 1263 td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx); 1264 if (td != NULL) { 1265 KASSERT(td->td_priority >= PRI_MIN_BATCH, 1266 ("tdq_choose: Invalid priority on timeshare queue %d", 1267 td->td_priority)); 1268 return (td); 1269 } 1270 td = runq_choose(&tdq->tdq_idle); 1271 if (td != NULL) { 1272 KASSERT(td->td_priority >= PRI_MIN_IDLE, 1273 ("tdq_choose: Invalid priority on idle queue %d", 1274 td->td_priority)); 1275 return (td); 1276 } 1277 1278 return (NULL); 1279 } 1280 1281 /* 1282 * Initialize a thread queue. 1283 */ 1284 static void 1285 tdq_setup(struct tdq *tdq) 1286 { 1287 1288 if (bootverbose) 1289 printf("ULE: setup cpu %d\n", TDQ_ID(tdq)); 1290 runq_init(&tdq->tdq_realtime); 1291 runq_init(&tdq->tdq_timeshare); 1292 runq_init(&tdq->tdq_idle); 1293 snprintf(tdq->tdq_name, sizeof(tdq->tdq_name), 1294 "sched lock %d", (int)TDQ_ID(tdq)); 1295 mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", 1296 MTX_SPIN | MTX_RECURSE); 1297 #ifdef KTR 1298 snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname), 1299 "CPU %d load", (int)TDQ_ID(tdq)); 1300 #endif 1301 } 1302 1303 #ifdef SMP 1304 static void 1305 sched_setup_smp(void) 1306 { 1307 struct tdq *tdq; 1308 int i; 1309 1310 cpu_top = smp_topo(); 1311 CPU_FOREACH(i) { 1312 tdq = TDQ_CPU(i); 1313 tdq_setup(tdq); 1314 tdq->tdq_cg = smp_topo_find(cpu_top, i); 1315 if (tdq->tdq_cg == NULL) 1316 panic("Can't find cpu group for %d\n", i); 1317 } 1318 balance_tdq = TDQ_SELF(); 1319 sched_balance(); 1320 } 1321 #endif 1322 1323 /* 1324 * Setup the thread queues and initialize the topology based on MD 1325 * information. 1326 */ 1327 static void 1328 sched_setup(void *dummy) 1329 { 1330 struct tdq *tdq; 1331 1332 tdq = TDQ_SELF(); 1333 #ifdef SMP 1334 sched_setup_smp(); 1335 #else 1336 tdq_setup(tdq); 1337 #endif 1338 /* 1339 * To avoid divide-by-zero, we set realstathz a dummy value 1340 * in case which sched_clock() called before sched_initticks(). 1341 */ 1342 realstathz = hz; 1343 sched_slice = (realstathz/10); /* ~100ms */ 1344 tickincr = 1 << SCHED_TICK_SHIFT; 1345 1346 /* Add thread0's load since it's running. */ 1347 TDQ_LOCK(tdq); 1348 thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF()); 1349 tdq_load_add(tdq, &thread0); 1350 tdq->tdq_lowpri = thread0.td_priority; 1351 TDQ_UNLOCK(tdq); 1352 } 1353 1354 /* 1355 * This routine determines the tickincr after stathz and hz are setup. 1356 */ 1357 /* ARGSUSED */ 1358 static void 1359 sched_initticks(void *dummy) 1360 { 1361 int incr; 1362 1363 realstathz = stathz ? stathz : hz; 1364 sched_slice = (realstathz/10); /* ~100ms */ 1365 1366 /* 1367 * tickincr is shifted out by 10 to avoid rounding errors due to 1368 * hz not being evenly divisible by stathz on all platforms. 1369 */ 1370 incr = (hz << SCHED_TICK_SHIFT) / realstathz; 1371 /* 1372 * This does not work for values of stathz that are more than 1373 * 1 << SCHED_TICK_SHIFT * hz. In practice this does not happen. 1374 */ 1375 if (incr == 0) 1376 incr = 1; 1377 tickincr = incr; 1378 #ifdef SMP 1379 /* 1380 * Set the default balance interval now that we know 1381 * what realstathz is. 1382 */ 1383 balance_interval = realstathz; 1384 /* 1385 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4. 1386 * This prevents excess thrashing on large machines and excess idle 1387 * on smaller machines. 1388 */ 1389 steal_thresh = min(fls(mp_ncpus) - 1, 3); 1390 affinity = SCHED_AFFINITY_DEFAULT; 1391 #endif 1392 if (sched_idlespinthresh < 0) 1393 sched_idlespinthresh = max(16, 2 * hz / realstathz); 1394 } 1395 1396 1397 /* 1398 * This is the core of the interactivity algorithm. Determines a score based 1399 * on past behavior. It is the ratio of sleep time to run time scaled to 1400 * a [0, 100] integer. This is the voluntary sleep time of a process, which 1401 * differs from the cpu usage because it does not account for time spent 1402 * waiting on a run-queue. Would be prettier if we had floating point. 1403 */ 1404 static int 1405 sched_interact_score(struct thread *td) 1406 { 1407 struct td_sched *ts; 1408 int div; 1409 1410 ts = td->td_sched; 1411 /* 1412 * The score is only needed if this is likely to be an interactive 1413 * task. Don't go through the expense of computing it if there's 1414 * no chance. 1415 */ 1416 if (sched_interact <= SCHED_INTERACT_HALF && 1417 ts->ts_runtime >= ts->ts_slptime) 1418 return (SCHED_INTERACT_HALF); 1419 1420 if (ts->ts_runtime > ts->ts_slptime) { 1421 div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF); 1422 return (SCHED_INTERACT_HALF + 1423 (SCHED_INTERACT_HALF - (ts->ts_slptime / div))); 1424 } 1425 if (ts->ts_slptime > ts->ts_runtime) { 1426 div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF); 1427 return (ts->ts_runtime / div); 1428 } 1429 /* runtime == slptime */ 1430 if (ts->ts_runtime) 1431 return (SCHED_INTERACT_HALF); 1432 1433 /* 1434 * This can happen if slptime and runtime are 0. 1435 */ 1436 return (0); 1437 1438 } 1439 1440 /* 1441 * Scale the scheduling priority according to the "interactivity" of this 1442 * process. 1443 */ 1444 static void 1445 sched_priority(struct thread *td) 1446 { 1447 int score; 1448 int pri; 1449 1450 if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE) 1451 return; 1452 /* 1453 * If the score is interactive we place the thread in the realtime 1454 * queue with a priority that is less than kernel and interrupt 1455 * priorities. These threads are not subject to nice restrictions. 1456 * 1457 * Scores greater than this are placed on the normal timeshare queue 1458 * where the priority is partially decided by the most recent cpu 1459 * utilization and the rest is decided by nice value. 1460 * 1461 * The nice value of the process has a linear effect on the calculated 1462 * score. Negative nice values make it easier for a thread to be 1463 * considered interactive. 1464 */ 1465 score = imax(0, sched_interact_score(td) + td->td_proc->p_nice); 1466 if (score < sched_interact) { 1467 pri = PRI_MIN_INTERACT; 1468 pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) / 1469 sched_interact) * score; 1470 KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT, 1471 ("sched_priority: invalid interactive priority %d score %d", 1472 pri, score)); 1473 } else { 1474 pri = SCHED_PRI_MIN; 1475 if (td->td_sched->ts_ticks) 1476 pri += min(SCHED_PRI_TICKS(td->td_sched), 1477 SCHED_PRI_RANGE); 1478 pri += SCHED_PRI_NICE(td->td_proc->p_nice); 1479 KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH, 1480 ("sched_priority: invalid priority %d: nice %d, " 1481 "ticks %d ftick %d ltick %d tick pri %d", 1482 pri, td->td_proc->p_nice, td->td_sched->ts_ticks, 1483 td->td_sched->ts_ftick, td->td_sched->ts_ltick, 1484 SCHED_PRI_TICKS(td->td_sched))); 1485 } 1486 sched_user_prio(td, pri); 1487 1488 return; 1489 } 1490 1491 /* 1492 * This routine enforces a maximum limit on the amount of scheduling history 1493 * kept. It is called after either the slptime or runtime is adjusted. This 1494 * function is ugly due to integer math. 1495 */ 1496 static void 1497 sched_interact_update(struct thread *td) 1498 { 1499 struct td_sched *ts; 1500 u_int sum; 1501 1502 ts = td->td_sched; 1503 sum = ts->ts_runtime + ts->ts_slptime; 1504 if (sum < SCHED_SLP_RUN_MAX) 1505 return; 1506 /* 1507 * This only happens from two places: 1508 * 1) We have added an unusual amount of run time from fork_exit. 1509 * 2) We have added an unusual amount of sleep time from sched_sleep(). 1510 */ 1511 if (sum > SCHED_SLP_RUN_MAX * 2) { 1512 if (ts->ts_runtime > ts->ts_slptime) { 1513 ts->ts_runtime = SCHED_SLP_RUN_MAX; 1514 ts->ts_slptime = 1; 1515 } else { 1516 ts->ts_slptime = SCHED_SLP_RUN_MAX; 1517 ts->ts_runtime = 1; 1518 } 1519 return; 1520 } 1521 /* 1522 * If we have exceeded by more than 1/5th then the algorithm below 1523 * will not bring us back into range. Dividing by two here forces 1524 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX] 1525 */ 1526 if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) { 1527 ts->ts_runtime /= 2; 1528 ts->ts_slptime /= 2; 1529 return; 1530 } 1531 ts->ts_runtime = (ts->ts_runtime / 5) * 4; 1532 ts->ts_slptime = (ts->ts_slptime / 5) * 4; 1533 } 1534 1535 /* 1536 * Scale back the interactivity history when a child thread is created. The 1537 * history is inherited from the parent but the thread may behave totally 1538 * differently. For example, a shell spawning a compiler process. We want 1539 * to learn that the compiler is behaving badly very quickly. 1540 */ 1541 static void 1542 sched_interact_fork(struct thread *td) 1543 { 1544 int ratio; 1545 int sum; 1546 1547 sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime; 1548 if (sum > SCHED_SLP_RUN_FORK) { 1549 ratio = sum / SCHED_SLP_RUN_FORK; 1550 td->td_sched->ts_runtime /= ratio; 1551 td->td_sched->ts_slptime /= ratio; 1552 } 1553 } 1554 1555 /* 1556 * Called from proc0_init() to setup the scheduler fields. 1557 */ 1558 void 1559 schedinit(void) 1560 { 1561 1562 /* 1563 * Set up the scheduler specific parts of proc0. 1564 */ 1565 proc0.p_sched = NULL; /* XXX */ 1566 thread0.td_sched = &td_sched0; 1567 td_sched0.ts_ltick = ticks; 1568 td_sched0.ts_ftick = ticks; 1569 td_sched0.ts_slice = sched_slice; 1570 } 1571 1572 /* 1573 * This is only somewhat accurate since given many processes of the same 1574 * priority they will switch when their slices run out, which will be 1575 * at most sched_slice stathz ticks. 1576 */ 1577 int 1578 sched_rr_interval(void) 1579 { 1580 1581 /* Convert sched_slice to hz */ 1582 return (hz/(realstathz/sched_slice)); 1583 } 1584 1585 /* 1586 * Update the percent cpu tracking information when it is requested or 1587 * the total history exceeds the maximum. We keep a sliding history of 1588 * tick counts that slowly decays. This is less precise than the 4BSD 1589 * mechanism since it happens with less regular and frequent events. 1590 */ 1591 static void 1592 sched_pctcpu_update(struct td_sched *ts, int run) 1593 { 1594 int t = ticks; 1595 1596 if (t - ts->ts_ltick >= SCHED_TICK_TARG) { 1597 ts->ts_ticks = 0; 1598 ts->ts_ftick = t - SCHED_TICK_TARG; 1599 } else if (t - ts->ts_ftick >= SCHED_TICK_MAX) { 1600 ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) * 1601 (ts->ts_ltick - (t - SCHED_TICK_TARG)); 1602 ts->ts_ftick = t - SCHED_TICK_TARG; 1603 } 1604 if (run) 1605 ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT; 1606 ts->ts_ltick = t; 1607 } 1608 1609 /* 1610 * Adjust the priority of a thread. Move it to the appropriate run-queue 1611 * if necessary. This is the back-end for several priority related 1612 * functions. 1613 */ 1614 static void 1615 sched_thread_priority(struct thread *td, u_char prio) 1616 { 1617 struct td_sched *ts; 1618 struct tdq *tdq; 1619 int oldpri; 1620 1621 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio", 1622 "prio:%d", td->td_priority, "new prio:%d", prio, 1623 KTR_ATTR_LINKED, sched_tdname(curthread)); 1624 if (td != curthread && prio > td->td_priority) { 1625 KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread), 1626 "lend prio", "prio:%d", td->td_priority, "new prio:%d", 1627 prio, KTR_ATTR_LINKED, sched_tdname(td)); 1628 } 1629 ts = td->td_sched; 1630 THREAD_LOCK_ASSERT(td, MA_OWNED); 1631 if (td->td_priority == prio) 1632 return; 1633 /* 1634 * If the priority has been elevated due to priority 1635 * propagation, we may have to move ourselves to a new 1636 * queue. This could be optimized to not re-add in some 1637 * cases. 1638 */ 1639 if (TD_ON_RUNQ(td) && prio < td->td_priority) { 1640 sched_rem(td); 1641 td->td_priority = prio; 1642 sched_add(td, SRQ_BORROWING); 1643 return; 1644 } 1645 /* 1646 * If the thread is currently running we may have to adjust the lowpri 1647 * information so other cpus are aware of our current priority. 1648 */ 1649 if (TD_IS_RUNNING(td)) { 1650 tdq = TDQ_CPU(ts->ts_cpu); 1651 oldpri = td->td_priority; 1652 td->td_priority = prio; 1653 if (prio < tdq->tdq_lowpri) 1654 tdq->tdq_lowpri = prio; 1655 else if (tdq->tdq_lowpri == oldpri) 1656 tdq_setlowpri(tdq, td); 1657 return; 1658 } 1659 td->td_priority = prio; 1660 } 1661 1662 /* 1663 * Update a thread's priority when it is lent another thread's 1664 * priority. 1665 */ 1666 void 1667 sched_lend_prio(struct thread *td, u_char prio) 1668 { 1669 1670 td->td_flags |= TDF_BORROWING; 1671 sched_thread_priority(td, prio); 1672 } 1673 1674 /* 1675 * Restore a thread's priority when priority propagation is 1676 * over. The prio argument is the minimum priority the thread 1677 * needs to have to satisfy other possible priority lending 1678 * requests. If the thread's regular priority is less 1679 * important than prio, the thread will keep a priority boost 1680 * of prio. 1681 */ 1682 void 1683 sched_unlend_prio(struct thread *td, u_char prio) 1684 { 1685 u_char base_pri; 1686 1687 if (td->td_base_pri >= PRI_MIN_TIMESHARE && 1688 td->td_base_pri <= PRI_MAX_TIMESHARE) 1689 base_pri = td->td_user_pri; 1690 else 1691 base_pri = td->td_base_pri; 1692 if (prio >= base_pri) { 1693 td->td_flags &= ~TDF_BORROWING; 1694 sched_thread_priority(td, base_pri); 1695 } else 1696 sched_lend_prio(td, prio); 1697 } 1698 1699 /* 1700 * Standard entry for setting the priority to an absolute value. 1701 */ 1702 void 1703 sched_prio(struct thread *td, u_char prio) 1704 { 1705 u_char oldprio; 1706 1707 /* First, update the base priority. */ 1708 td->td_base_pri = prio; 1709 1710 /* 1711 * If the thread is borrowing another thread's priority, don't 1712 * ever lower the priority. 1713 */ 1714 if (td->td_flags & TDF_BORROWING && td->td_priority < prio) 1715 return; 1716 1717 /* Change the real priority. */ 1718 oldprio = td->td_priority; 1719 sched_thread_priority(td, prio); 1720 1721 /* 1722 * If the thread is on a turnstile, then let the turnstile update 1723 * its state. 1724 */ 1725 if (TD_ON_LOCK(td) && oldprio != prio) 1726 turnstile_adjust(td, oldprio); 1727 } 1728 1729 /* 1730 * Set the base user priority, does not effect current running priority. 1731 */ 1732 void 1733 sched_user_prio(struct thread *td, u_char prio) 1734 { 1735 1736 td->td_base_user_pri = prio; 1737 if (td->td_lend_user_pri <= prio) 1738 return; 1739 td->td_user_pri = prio; 1740 } 1741 1742 void 1743 sched_lend_user_prio(struct thread *td, u_char prio) 1744 { 1745 1746 THREAD_LOCK_ASSERT(td, MA_OWNED); 1747 td->td_lend_user_pri = prio; 1748 td->td_user_pri = min(prio, td->td_base_user_pri); 1749 if (td->td_priority > td->td_user_pri) 1750 sched_prio(td, td->td_user_pri); 1751 else if (td->td_priority != td->td_user_pri) 1752 td->td_flags |= TDF_NEEDRESCHED; 1753 } 1754 1755 /* 1756 * Handle migration from sched_switch(). This happens only for 1757 * cpu binding. 1758 */ 1759 static struct mtx * 1760 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags) 1761 { 1762 struct tdq *tdn; 1763 1764 tdn = TDQ_CPU(td->td_sched->ts_cpu); 1765 #ifdef SMP 1766 tdq_load_rem(tdq, td); 1767 /* 1768 * Do the lock dance required to avoid LOR. We grab an extra 1769 * spinlock nesting to prevent preemption while we're 1770 * not holding either run-queue lock. 1771 */ 1772 spinlock_enter(); 1773 thread_lock_block(td); /* This releases the lock on tdq. */ 1774 1775 /* 1776 * Acquire both run-queue locks before placing the thread on the new 1777 * run-queue to avoid deadlocks created by placing a thread with a 1778 * blocked lock on the run-queue of a remote processor. The deadlock 1779 * occurs when a third processor attempts to lock the two queues in 1780 * question while the target processor is spinning with its own 1781 * run-queue lock held while waiting for the blocked lock to clear. 1782 */ 1783 tdq_lock_pair(tdn, tdq); 1784 tdq_add(tdn, td, flags); 1785 tdq_notify(tdn, td); 1786 TDQ_UNLOCK(tdn); 1787 spinlock_exit(); 1788 #endif 1789 return (TDQ_LOCKPTR(tdn)); 1790 } 1791 1792 /* 1793 * Variadic version of thread_lock_unblock() that does not assume td_lock 1794 * is blocked. 1795 */ 1796 static inline void 1797 thread_unblock_switch(struct thread *td, struct mtx *mtx) 1798 { 1799 atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock, 1800 (uintptr_t)mtx); 1801 } 1802 1803 /* 1804 * Switch threads. This function has to handle threads coming in while 1805 * blocked for some reason, running, or idle. It also must deal with 1806 * migrating a thread from one queue to another as running threads may 1807 * be assigned elsewhere via binding. 1808 */ 1809 void 1810 sched_switch(struct thread *td, struct thread *newtd, int flags) 1811 { 1812 struct tdq *tdq; 1813 struct td_sched *ts; 1814 struct mtx *mtx; 1815 int srqflag; 1816 int cpuid; 1817 1818 THREAD_LOCK_ASSERT(td, MA_OWNED); 1819 KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument")); 1820 1821 cpuid = PCPU_GET(cpuid); 1822 tdq = TDQ_CPU(cpuid); 1823 ts = td->td_sched; 1824 mtx = td->td_lock; 1825 sched_pctcpu_update(ts, 1); 1826 ts->ts_rltick = ticks; 1827 td->td_lastcpu = td->td_oncpu; 1828 td->td_oncpu = NOCPU; 1829 if (!(flags & SW_PREEMPT)) 1830 td->td_flags &= ~TDF_NEEDRESCHED; 1831 td->td_owepreempt = 0; 1832 tdq->tdq_switchcnt++; 1833 /* 1834 * The lock pointer in an idle thread should never change. Reset it 1835 * to CAN_RUN as well. 1836 */ 1837 if (TD_IS_IDLETHREAD(td)) { 1838 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1839 TD_SET_CAN_RUN(td); 1840 } else if (TD_IS_RUNNING(td)) { 1841 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1842 srqflag = (flags & SW_PREEMPT) ? 1843 SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED : 1844 SRQ_OURSELF|SRQ_YIELDING; 1845 #ifdef SMP 1846 if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu)) 1847 ts->ts_cpu = sched_pickcpu(td, 0); 1848 #endif 1849 if (ts->ts_cpu == cpuid) 1850 tdq_runq_add(tdq, td, srqflag); 1851 else { 1852 KASSERT(THREAD_CAN_MIGRATE(td) || 1853 (ts->ts_flags & TSF_BOUND) != 0, 1854 ("Thread %p shouldn't migrate", td)); 1855 mtx = sched_switch_migrate(tdq, td, srqflag); 1856 } 1857 } else { 1858 /* This thread must be going to sleep. */ 1859 TDQ_LOCK(tdq); 1860 mtx = thread_lock_block(td); 1861 tdq_load_rem(tdq, td); 1862 } 1863 /* 1864 * We enter here with the thread blocked and assigned to the 1865 * appropriate cpu run-queue or sleep-queue and with the current 1866 * thread-queue locked. 1867 */ 1868 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 1869 newtd = choosethread(); 1870 /* 1871 * Call the MD code to switch contexts if necessary. 1872 */ 1873 if (td != newtd) { 1874 #ifdef HWPMC_HOOKS 1875 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1876 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 1877 #endif 1878 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 1879 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 1880 sched_pctcpu_update(newtd->td_sched, 0); 1881 1882 #ifdef KDTRACE_HOOKS 1883 /* 1884 * If DTrace has set the active vtime enum to anything 1885 * other than INACTIVE (0), then it should have set the 1886 * function to call. 1887 */ 1888 if (dtrace_vtime_active) 1889 (*dtrace_vtime_switch_func)(newtd); 1890 #endif 1891 1892 cpu_switch(td, newtd, mtx); 1893 /* 1894 * We may return from cpu_switch on a different cpu. However, 1895 * we always return with td_lock pointing to the current cpu's 1896 * run queue lock. 1897 */ 1898 cpuid = PCPU_GET(cpuid); 1899 tdq = TDQ_CPU(cpuid); 1900 lock_profile_obtain_lock_success( 1901 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 1902 #ifdef HWPMC_HOOKS 1903 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 1904 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN); 1905 #endif 1906 } else 1907 thread_unblock_switch(td, mtx); 1908 /* 1909 * Assert that all went well and return. 1910 */ 1911 TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED); 1912 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 1913 td->td_oncpu = cpuid; 1914 } 1915 1916 /* 1917 * Adjust thread priorities as a result of a nice request. 1918 */ 1919 void 1920 sched_nice(struct proc *p, int nice) 1921 { 1922 struct thread *td; 1923 1924 PROC_LOCK_ASSERT(p, MA_OWNED); 1925 1926 p->p_nice = nice; 1927 FOREACH_THREAD_IN_PROC(p, td) { 1928 thread_lock(td); 1929 sched_priority(td); 1930 sched_prio(td, td->td_base_user_pri); 1931 thread_unlock(td); 1932 } 1933 } 1934 1935 /* 1936 * Record the sleep time for the interactivity scorer. 1937 */ 1938 void 1939 sched_sleep(struct thread *td, int prio) 1940 { 1941 1942 THREAD_LOCK_ASSERT(td, MA_OWNED); 1943 1944 td->td_slptick = ticks; 1945 if (TD_IS_SUSPENDED(td) || prio >= PSOCK) 1946 td->td_flags |= TDF_CANSWAP; 1947 if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE) 1948 return; 1949 if (static_boost == 1 && prio) 1950 sched_prio(td, prio); 1951 else if (static_boost && td->td_priority > static_boost) 1952 sched_prio(td, static_boost); 1953 } 1954 1955 /* 1956 * Schedule a thread to resume execution and record how long it voluntarily 1957 * slept. We also update the pctcpu, interactivity, and priority. 1958 */ 1959 void 1960 sched_wakeup(struct thread *td) 1961 { 1962 struct td_sched *ts; 1963 int slptick; 1964 1965 THREAD_LOCK_ASSERT(td, MA_OWNED); 1966 ts = td->td_sched; 1967 td->td_flags &= ~TDF_CANSWAP; 1968 /* 1969 * If we slept for more than a tick update our interactivity and 1970 * priority. 1971 */ 1972 slptick = td->td_slptick; 1973 td->td_slptick = 0; 1974 if (slptick && slptick != ticks) { 1975 ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT; 1976 sched_interact_update(td); 1977 sched_pctcpu_update(ts, 0); 1978 } 1979 /* Reset the slice value after we sleep. */ 1980 ts->ts_slice = sched_slice; 1981 sched_add(td, SRQ_BORING); 1982 } 1983 1984 /* 1985 * Penalize the parent for creating a new child and initialize the child's 1986 * priority. 1987 */ 1988 void 1989 sched_fork(struct thread *td, struct thread *child) 1990 { 1991 THREAD_LOCK_ASSERT(td, MA_OWNED); 1992 sched_pctcpu_update(td->td_sched, 1); 1993 sched_fork_thread(td, child); 1994 /* 1995 * Penalize the parent and child for forking. 1996 */ 1997 sched_interact_fork(child); 1998 sched_priority(child); 1999 td->td_sched->ts_runtime += tickincr; 2000 sched_interact_update(td); 2001 sched_priority(td); 2002 } 2003 2004 /* 2005 * Fork a new thread, may be within the same process. 2006 */ 2007 void 2008 sched_fork_thread(struct thread *td, struct thread *child) 2009 { 2010 struct td_sched *ts; 2011 struct td_sched *ts2; 2012 2013 THREAD_LOCK_ASSERT(td, MA_OWNED); 2014 /* 2015 * Initialize child. 2016 */ 2017 ts = td->td_sched; 2018 ts2 = child->td_sched; 2019 child->td_lock = TDQ_LOCKPTR(TDQ_SELF()); 2020 child->td_cpuset = cpuset_ref(td->td_cpuset); 2021 ts2->ts_cpu = ts->ts_cpu; 2022 ts2->ts_flags = 0; 2023 /* 2024 * Grab our parents cpu estimation information. 2025 */ 2026 ts2->ts_ticks = ts->ts_ticks; 2027 ts2->ts_ltick = ts->ts_ltick; 2028 ts2->ts_ftick = ts->ts_ftick; 2029 /* 2030 * Do not inherit any borrowed priority from the parent. 2031 */ 2032 child->td_priority = child->td_base_pri; 2033 /* 2034 * And update interactivity score. 2035 */ 2036 ts2->ts_slptime = ts->ts_slptime; 2037 ts2->ts_runtime = ts->ts_runtime; 2038 ts2->ts_slice = 1; /* Attempt to quickly learn interactivity. */ 2039 #ifdef KTR 2040 bzero(ts2->ts_name, sizeof(ts2->ts_name)); 2041 #endif 2042 } 2043 2044 /* 2045 * Adjust the priority class of a thread. 2046 */ 2047 void 2048 sched_class(struct thread *td, int class) 2049 { 2050 2051 THREAD_LOCK_ASSERT(td, MA_OWNED); 2052 if (td->td_pri_class == class) 2053 return; 2054 td->td_pri_class = class; 2055 } 2056 2057 /* 2058 * Return some of the child's priority and interactivity to the parent. 2059 */ 2060 void 2061 sched_exit(struct proc *p, struct thread *child) 2062 { 2063 struct thread *td; 2064 2065 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit", 2066 "prio:%d", child->td_priority); 2067 PROC_LOCK_ASSERT(p, MA_OWNED); 2068 td = FIRST_THREAD_IN_PROC(p); 2069 sched_exit_thread(td, child); 2070 } 2071 2072 /* 2073 * Penalize another thread for the time spent on this one. This helps to 2074 * worsen the priority and interactivity of processes which schedule batch 2075 * jobs such as make. This has little effect on the make process itself but 2076 * causes new processes spawned by it to receive worse scores immediately. 2077 */ 2078 void 2079 sched_exit_thread(struct thread *td, struct thread *child) 2080 { 2081 2082 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit", 2083 "prio:%d", child->td_priority); 2084 /* 2085 * Give the child's runtime to the parent without returning the 2086 * sleep time as a penalty to the parent. This causes shells that 2087 * launch expensive things to mark their children as expensive. 2088 */ 2089 thread_lock(td); 2090 td->td_sched->ts_runtime += child->td_sched->ts_runtime; 2091 sched_interact_update(td); 2092 sched_priority(td); 2093 thread_unlock(td); 2094 } 2095 2096 void 2097 sched_preempt(struct thread *td) 2098 { 2099 struct tdq *tdq; 2100 2101 thread_lock(td); 2102 tdq = TDQ_SELF(); 2103 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2104 tdq->tdq_ipipending = 0; 2105 if (td->td_priority > tdq->tdq_lowpri) { 2106 int flags; 2107 2108 flags = SW_INVOL | SW_PREEMPT; 2109 if (td->td_critnest > 1) 2110 td->td_owepreempt = 1; 2111 else if (TD_IS_IDLETHREAD(td)) 2112 mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL); 2113 else 2114 mi_switch(flags | SWT_REMOTEPREEMPT, NULL); 2115 } 2116 thread_unlock(td); 2117 } 2118 2119 /* 2120 * Fix priorities on return to user-space. Priorities may be elevated due 2121 * to static priorities in msleep() or similar. 2122 */ 2123 void 2124 sched_userret(struct thread *td) 2125 { 2126 /* 2127 * XXX we cheat slightly on the locking here to avoid locking in 2128 * the usual case. Setting td_priority here is essentially an 2129 * incomplete workaround for not setting it properly elsewhere. 2130 * Now that some interrupt handlers are threads, not setting it 2131 * properly elsewhere can clobber it in the window between setting 2132 * it here and returning to user mode, so don't waste time setting 2133 * it perfectly here. 2134 */ 2135 KASSERT((td->td_flags & TDF_BORROWING) == 0, 2136 ("thread with borrowed priority returning to userland")); 2137 if (td->td_priority != td->td_user_pri) { 2138 thread_lock(td); 2139 td->td_priority = td->td_user_pri; 2140 td->td_base_pri = td->td_user_pri; 2141 tdq_setlowpri(TDQ_SELF(), td); 2142 thread_unlock(td); 2143 } 2144 } 2145 2146 /* 2147 * Handle a stathz tick. This is really only relevant for timeshare 2148 * threads. 2149 */ 2150 void 2151 sched_clock(struct thread *td) 2152 { 2153 struct tdq *tdq; 2154 struct td_sched *ts; 2155 2156 THREAD_LOCK_ASSERT(td, MA_OWNED); 2157 tdq = TDQ_SELF(); 2158 #ifdef SMP 2159 /* 2160 * We run the long term load balancer infrequently on the first cpu. 2161 */ 2162 if (balance_tdq == tdq) { 2163 if (balance_ticks && --balance_ticks == 0) 2164 sched_balance(); 2165 } 2166 #endif 2167 /* 2168 * Save the old switch count so we have a record of the last ticks 2169 * activity. Initialize the new switch count based on our load. 2170 * If there is some activity seed it to reflect that. 2171 */ 2172 tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt; 2173 tdq->tdq_switchcnt = tdq->tdq_load; 2174 /* 2175 * Advance the insert index once for each tick to ensure that all 2176 * threads get a chance to run. 2177 */ 2178 if (tdq->tdq_idx == tdq->tdq_ridx) { 2179 tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS; 2180 if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx])) 2181 tdq->tdq_ridx = tdq->tdq_idx; 2182 } 2183 ts = td->td_sched; 2184 sched_pctcpu_update(ts, 1); 2185 if (td->td_pri_class & PRI_FIFO_BIT) 2186 return; 2187 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) { 2188 /* 2189 * We used a tick; charge it to the thread so 2190 * that we can compute our interactivity. 2191 */ 2192 td->td_sched->ts_runtime += tickincr; 2193 sched_interact_update(td); 2194 sched_priority(td); 2195 } 2196 /* 2197 * We used up one time slice. 2198 */ 2199 if (--ts->ts_slice > 0) 2200 return; 2201 /* 2202 * We're out of time, force a requeue at userret(). 2203 */ 2204 ts->ts_slice = sched_slice; 2205 td->td_flags |= TDF_NEEDRESCHED; 2206 } 2207 2208 /* 2209 * Called once per hz tick. 2210 */ 2211 void 2212 sched_tick(int cnt) 2213 { 2214 2215 } 2216 2217 /* 2218 * Return whether the current CPU has runnable tasks. Used for in-kernel 2219 * cooperative idle threads. 2220 */ 2221 int 2222 sched_runnable(void) 2223 { 2224 struct tdq *tdq; 2225 int load; 2226 2227 load = 1; 2228 2229 tdq = TDQ_SELF(); 2230 if ((curthread->td_flags & TDF_IDLETD) != 0) { 2231 if (tdq->tdq_load > 0) 2232 goto out; 2233 } else 2234 if (tdq->tdq_load - 1 > 0) 2235 goto out; 2236 load = 0; 2237 out: 2238 return (load); 2239 } 2240 2241 /* 2242 * Choose the highest priority thread to run. The thread is removed from 2243 * the run-queue while running however the load remains. For SMP we set 2244 * the tdq in the global idle bitmask if it idles here. 2245 */ 2246 struct thread * 2247 sched_choose(void) 2248 { 2249 struct thread *td; 2250 struct tdq *tdq; 2251 2252 tdq = TDQ_SELF(); 2253 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2254 td = tdq_choose(tdq); 2255 if (td) { 2256 tdq_runq_rem(tdq, td); 2257 tdq->tdq_lowpri = td->td_priority; 2258 return (td); 2259 } 2260 tdq->tdq_lowpri = PRI_MAX_IDLE; 2261 return (PCPU_GET(idlethread)); 2262 } 2263 2264 /* 2265 * Set owepreempt if necessary. Preemption never happens directly in ULE, 2266 * we always request it once we exit a critical section. 2267 */ 2268 static inline void 2269 sched_setpreempt(struct thread *td) 2270 { 2271 struct thread *ctd; 2272 int cpri; 2273 int pri; 2274 2275 THREAD_LOCK_ASSERT(curthread, MA_OWNED); 2276 2277 ctd = curthread; 2278 pri = td->td_priority; 2279 cpri = ctd->td_priority; 2280 if (pri < cpri) 2281 ctd->td_flags |= TDF_NEEDRESCHED; 2282 if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd)) 2283 return; 2284 if (!sched_shouldpreempt(pri, cpri, 0)) 2285 return; 2286 ctd->td_owepreempt = 1; 2287 } 2288 2289 /* 2290 * Add a thread to a thread queue. Select the appropriate runq and add the 2291 * thread to it. This is the internal function called when the tdq is 2292 * predetermined. 2293 */ 2294 void 2295 tdq_add(struct tdq *tdq, struct thread *td, int flags) 2296 { 2297 2298 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2299 KASSERT((td->td_inhibitors == 0), 2300 ("sched_add: trying to run inhibited thread")); 2301 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 2302 ("sched_add: bad thread state")); 2303 KASSERT(td->td_flags & TDF_INMEM, 2304 ("sched_add: thread swapped out")); 2305 2306 if (td->td_priority < tdq->tdq_lowpri) 2307 tdq->tdq_lowpri = td->td_priority; 2308 tdq_runq_add(tdq, td, flags); 2309 tdq_load_add(tdq, td); 2310 } 2311 2312 /* 2313 * Select the target thread queue and add a thread to it. Request 2314 * preemption or IPI a remote processor if required. 2315 */ 2316 void 2317 sched_add(struct thread *td, int flags) 2318 { 2319 struct tdq *tdq; 2320 #ifdef SMP 2321 int cpu; 2322 #endif 2323 2324 KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add", 2325 "prio:%d", td->td_priority, KTR_ATTR_LINKED, 2326 sched_tdname(curthread)); 2327 KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup", 2328 KTR_ATTR_LINKED, sched_tdname(td)); 2329 THREAD_LOCK_ASSERT(td, MA_OWNED); 2330 /* 2331 * Recalculate the priority before we select the target cpu or 2332 * run-queue. 2333 */ 2334 if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 2335 sched_priority(td); 2336 #ifdef SMP 2337 /* 2338 * Pick the destination cpu and if it isn't ours transfer to the 2339 * target cpu. 2340 */ 2341 cpu = sched_pickcpu(td, flags); 2342 tdq = sched_setcpu(td, cpu, flags); 2343 tdq_add(tdq, td, flags); 2344 if (cpu != PCPU_GET(cpuid)) { 2345 tdq_notify(tdq, td); 2346 return; 2347 } 2348 #else 2349 tdq = TDQ_SELF(); 2350 TDQ_LOCK(tdq); 2351 /* 2352 * Now that the thread is moving to the run-queue, set the lock 2353 * to the scheduler's lock. 2354 */ 2355 thread_lock_set(td, TDQ_LOCKPTR(tdq)); 2356 tdq_add(tdq, td, flags); 2357 #endif 2358 if (!(flags & SRQ_YIELDING)) 2359 sched_setpreempt(td); 2360 } 2361 2362 /* 2363 * Remove a thread from a run-queue without running it. This is used 2364 * when we're stealing a thread from a remote queue. Otherwise all threads 2365 * exit by calling sched_exit_thread() and sched_throw() themselves. 2366 */ 2367 void 2368 sched_rem(struct thread *td) 2369 { 2370 struct tdq *tdq; 2371 2372 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem", 2373 "prio:%d", td->td_priority); 2374 tdq = TDQ_CPU(td->td_sched->ts_cpu); 2375 TDQ_LOCK_ASSERT(tdq, MA_OWNED); 2376 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2377 KASSERT(TD_ON_RUNQ(td), 2378 ("sched_rem: thread not on run queue")); 2379 tdq_runq_rem(tdq, td); 2380 tdq_load_rem(tdq, td); 2381 TD_SET_CAN_RUN(td); 2382 if (td->td_priority == tdq->tdq_lowpri) 2383 tdq_setlowpri(tdq, NULL); 2384 } 2385 2386 /* 2387 * Fetch cpu utilization information. Updates on demand. 2388 */ 2389 fixpt_t 2390 sched_pctcpu(struct thread *td) 2391 { 2392 fixpt_t pctcpu; 2393 struct td_sched *ts; 2394 2395 pctcpu = 0; 2396 ts = td->td_sched; 2397 if (ts == NULL) 2398 return (0); 2399 2400 THREAD_LOCK_ASSERT(td, MA_OWNED); 2401 sched_pctcpu_update(ts, TD_IS_RUNNING(td)); 2402 if (ts->ts_ticks) { 2403 int rtick; 2404 2405 /* How many rtick per second ? */ 2406 rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz); 2407 pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT; 2408 } 2409 2410 return (pctcpu); 2411 } 2412 2413 /* 2414 * Enforce affinity settings for a thread. Called after adjustments to 2415 * cpumask. 2416 */ 2417 void 2418 sched_affinity(struct thread *td) 2419 { 2420 #ifdef SMP 2421 struct td_sched *ts; 2422 2423 THREAD_LOCK_ASSERT(td, MA_OWNED); 2424 ts = td->td_sched; 2425 if (THREAD_CAN_SCHED(td, ts->ts_cpu)) 2426 return; 2427 if (TD_ON_RUNQ(td)) { 2428 sched_rem(td); 2429 sched_add(td, SRQ_BORING); 2430 return; 2431 } 2432 if (!TD_IS_RUNNING(td)) 2433 return; 2434 /* 2435 * Force a switch before returning to userspace. If the 2436 * target thread is not running locally send an ipi to force 2437 * the issue. 2438 */ 2439 td->td_flags |= TDF_NEEDRESCHED; 2440 if (td != curthread) 2441 ipi_cpu(ts->ts_cpu, IPI_PREEMPT); 2442 #endif 2443 } 2444 2445 /* 2446 * Bind a thread to a target cpu. 2447 */ 2448 void 2449 sched_bind(struct thread *td, int cpu) 2450 { 2451 struct td_sched *ts; 2452 2453 THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED); 2454 KASSERT(td == curthread, ("sched_bind: can only bind curthread")); 2455 ts = td->td_sched; 2456 if (ts->ts_flags & TSF_BOUND) 2457 sched_unbind(td); 2458 KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td)); 2459 ts->ts_flags |= TSF_BOUND; 2460 sched_pin(); 2461 if (PCPU_GET(cpuid) == cpu) 2462 return; 2463 ts->ts_cpu = cpu; 2464 /* When we return from mi_switch we'll be on the correct cpu. */ 2465 mi_switch(SW_VOL, NULL); 2466 } 2467 2468 /* 2469 * Release a bound thread. 2470 */ 2471 void 2472 sched_unbind(struct thread *td) 2473 { 2474 struct td_sched *ts; 2475 2476 THREAD_LOCK_ASSERT(td, MA_OWNED); 2477 KASSERT(td == curthread, ("sched_unbind: can only bind curthread")); 2478 ts = td->td_sched; 2479 if ((ts->ts_flags & TSF_BOUND) == 0) 2480 return; 2481 ts->ts_flags &= ~TSF_BOUND; 2482 sched_unpin(); 2483 } 2484 2485 int 2486 sched_is_bound(struct thread *td) 2487 { 2488 THREAD_LOCK_ASSERT(td, MA_OWNED); 2489 return (td->td_sched->ts_flags & TSF_BOUND); 2490 } 2491 2492 /* 2493 * Basic yield call. 2494 */ 2495 void 2496 sched_relinquish(struct thread *td) 2497 { 2498 thread_lock(td); 2499 mi_switch(SW_VOL | SWT_RELINQUISH, NULL); 2500 thread_unlock(td); 2501 } 2502 2503 /* 2504 * Return the total system load. 2505 */ 2506 int 2507 sched_load(void) 2508 { 2509 #ifdef SMP 2510 int total; 2511 int i; 2512 2513 total = 0; 2514 CPU_FOREACH(i) 2515 total += TDQ_CPU(i)->tdq_sysload; 2516 return (total); 2517 #else 2518 return (TDQ_SELF()->tdq_sysload); 2519 #endif 2520 } 2521 2522 int 2523 sched_sizeof_proc(void) 2524 { 2525 return (sizeof(struct proc)); 2526 } 2527 2528 int 2529 sched_sizeof_thread(void) 2530 { 2531 return (sizeof(struct thread) + sizeof(struct td_sched)); 2532 } 2533 2534 #ifdef SMP 2535 #define TDQ_IDLESPIN(tdq) \ 2536 ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0) 2537 #else 2538 #define TDQ_IDLESPIN(tdq) 1 2539 #endif 2540 2541 /* 2542 * The actual idle process. 2543 */ 2544 void 2545 sched_idletd(void *dummy) 2546 { 2547 struct thread *td; 2548 struct tdq *tdq; 2549 int switchcnt; 2550 int i; 2551 2552 mtx_assert(&Giant, MA_NOTOWNED); 2553 td = curthread; 2554 tdq = TDQ_SELF(); 2555 for (;;) { 2556 #ifdef SMP 2557 if (tdq_idled(tdq) == 0) 2558 continue; 2559 #endif 2560 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2561 /* 2562 * If we're switching very frequently, spin while checking 2563 * for load rather than entering a low power state that 2564 * may require an IPI. However, don't do any busy 2565 * loops while on SMT machines as this simply steals 2566 * cycles from cores doing useful work. 2567 */ 2568 if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) { 2569 for (i = 0; i < sched_idlespins; i++) { 2570 if (tdq->tdq_load) 2571 break; 2572 cpu_spinwait(); 2573 } 2574 } 2575 switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt; 2576 if (tdq->tdq_load == 0) { 2577 tdq->tdq_cpu_idle = 1; 2578 if (tdq->tdq_load == 0) { 2579 cpu_idle(switchcnt > sched_idlespinthresh * 4); 2580 tdq->tdq_switchcnt++; 2581 } 2582 tdq->tdq_cpu_idle = 0; 2583 } 2584 if (tdq->tdq_load) { 2585 thread_lock(td); 2586 mi_switch(SW_VOL | SWT_IDLE, NULL); 2587 thread_unlock(td); 2588 } 2589 } 2590 } 2591 2592 /* 2593 * A CPU is entering for the first time or a thread is exiting. 2594 */ 2595 void 2596 sched_throw(struct thread *td) 2597 { 2598 struct thread *newtd; 2599 struct tdq *tdq; 2600 2601 tdq = TDQ_SELF(); 2602 if (td == NULL) { 2603 /* Correct spinlock nesting and acquire the correct lock. */ 2604 TDQ_LOCK(tdq); 2605 spinlock_exit(); 2606 PCPU_SET(switchtime, cpu_ticks()); 2607 PCPU_SET(switchticks, ticks); 2608 } else { 2609 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2610 tdq_load_rem(tdq, td); 2611 lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object); 2612 } 2613 KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count")); 2614 newtd = choosethread(); 2615 TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd; 2616 cpu_throw(td, newtd); /* doesn't return */ 2617 } 2618 2619 /* 2620 * This is called from fork_exit(). Just acquire the correct locks and 2621 * let fork do the rest of the work. 2622 */ 2623 void 2624 sched_fork_exit(struct thread *td) 2625 { 2626 struct td_sched *ts; 2627 struct tdq *tdq; 2628 int cpuid; 2629 2630 /* 2631 * Finish setting up thread glue so that it begins execution in a 2632 * non-nested critical section with the scheduler lock held. 2633 */ 2634 cpuid = PCPU_GET(cpuid); 2635 tdq = TDQ_CPU(cpuid); 2636 ts = td->td_sched; 2637 if (TD_IS_IDLETHREAD(td)) 2638 td->td_lock = TDQ_LOCKPTR(tdq); 2639 MPASS(td->td_lock == TDQ_LOCKPTR(tdq)); 2640 td->td_oncpu = cpuid; 2641 TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED); 2642 lock_profile_obtain_lock_success( 2643 &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__); 2644 } 2645 2646 /* 2647 * Create on first use to catch odd startup conditons. 2648 */ 2649 char * 2650 sched_tdname(struct thread *td) 2651 { 2652 #ifdef KTR 2653 struct td_sched *ts; 2654 2655 ts = td->td_sched; 2656 if (ts->ts_name[0] == '\0') 2657 snprintf(ts->ts_name, sizeof(ts->ts_name), 2658 "%s tid %d", td->td_name, td->td_tid); 2659 return (ts->ts_name); 2660 #else 2661 return (td->td_name); 2662 #endif 2663 } 2664 2665 #ifdef KTR 2666 void 2667 sched_clear_tdname(struct thread *td) 2668 { 2669 struct td_sched *ts; 2670 2671 ts = td->td_sched; 2672 ts->ts_name[0] = '\0'; 2673 } 2674 #endif 2675 2676 #ifdef SMP 2677 2678 /* 2679 * Build the CPU topology dump string. Is recursively called to collect 2680 * the topology tree. 2681 */ 2682 static int 2683 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg, 2684 int indent) 2685 { 2686 char cpusetbuf[CPUSETBUFSIZ]; 2687 int i, first; 2688 2689 sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent, 2690 "", 1 + indent / 2, cg->cg_level); 2691 sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "", 2692 cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask)); 2693 first = TRUE; 2694 for (i = 0; i < MAXCPU; i++) { 2695 if (CPU_ISSET(i, &cg->cg_mask)) { 2696 if (!first) 2697 sbuf_printf(sb, ", "); 2698 else 2699 first = FALSE; 2700 sbuf_printf(sb, "%d", i); 2701 } 2702 } 2703 sbuf_printf(sb, "</cpu>\n"); 2704 2705 if (cg->cg_flags != 0) { 2706 sbuf_printf(sb, "%*s <flags>", indent, ""); 2707 if ((cg->cg_flags & CG_FLAG_HTT) != 0) 2708 sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>"); 2709 if ((cg->cg_flags & CG_FLAG_THREAD) != 0) 2710 sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>"); 2711 if ((cg->cg_flags & CG_FLAG_SMT) != 0) 2712 sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>"); 2713 sbuf_printf(sb, "</flags>\n"); 2714 } 2715 2716 if (cg->cg_children > 0) { 2717 sbuf_printf(sb, "%*s <children>\n", indent, ""); 2718 for (i = 0; i < cg->cg_children; i++) 2719 sysctl_kern_sched_topology_spec_internal(sb, 2720 &cg->cg_child[i], indent+2); 2721 sbuf_printf(sb, "%*s </children>\n", indent, ""); 2722 } 2723 sbuf_printf(sb, "%*s</group>\n", indent, ""); 2724 return (0); 2725 } 2726 2727 /* 2728 * Sysctl handler for retrieving topology dump. It's a wrapper for 2729 * the recursive sysctl_kern_smp_topology_spec_internal(). 2730 */ 2731 static int 2732 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS) 2733 { 2734 struct sbuf *topo; 2735 int err; 2736 2737 KASSERT(cpu_top != NULL, ("cpu_top isn't initialized")); 2738 2739 topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND); 2740 if (topo == NULL) 2741 return (ENOMEM); 2742 2743 sbuf_printf(topo, "<groups>\n"); 2744 err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1); 2745 sbuf_printf(topo, "</groups>\n"); 2746 2747 if (err == 0) { 2748 sbuf_finish(topo); 2749 err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo)); 2750 } 2751 sbuf_delete(topo); 2752 return (err); 2753 } 2754 2755 #endif 2756 2757 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler"); 2758 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0, 2759 "Scheduler name"); 2760 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0, 2761 "Slice size for timeshare threads"); 2762 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0, 2763 "Interactivity score threshold"); 2764 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh, 2765 0,"Min priority for preemption, lower priorities have greater precedence"); 2766 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 2767 0,"Controls whether static kernel priorities are assigned to sleeping threads."); 2768 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 2769 0,"Number of times idle will spin waiting for new work."); 2770 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh, 2771 0,"Threshold before we will permit idle spinning."); 2772 #ifdef SMP 2773 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0, 2774 "Number of hz ticks to keep thread affinity for"); 2775 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0, 2776 "Enables the long-term load balancer"); 2777 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW, 2778 &balance_interval, 0, 2779 "Average frequency in stathz ticks to run the long-term balancer"); 2780 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0, 2781 "Attempts to steal work from other cores before idling"); 2782 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0, 2783 "Minimum load on remote cpu before we'll steal"); 2784 2785 /* Retrieve SMP topology */ 2786 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING | 2787 CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A", 2788 "XML dump of detected CPU topology"); 2789 2790 #endif 2791 2792 /* ps compat. All cpu percentages from ULE are weighted. */ 2793 static int ccpu = 0; 2794 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 2795