xref: /freebsd/sys/kern/sched_ule.c (revision 3e0efd2ec4fcb4cd68fb8ccf8aea6fc6151c454b)
1 /*-
2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * This file implements the ULE scheduler.  ULE supports independent CPU
29  * run queues and fine grain locking.  It has superior interactive
30  * performance under load even on uni-processor systems.
31  *
32  * etymology:
33  *   ULE is the last three letters in schedule.  It owes its name to a
34  * generic user created for a scheduling system by Paul Mikesell at
35  * Isilon Systems and a general lack of creativity on the part of the author.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_kdtrace.h"
43 #include "opt_sched.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resource.h>
54 #include <sys/resourcevar.h>
55 #include <sys/sched.h>
56 #include <sys/sdt.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/turnstile.h>
62 #include <sys/umtx.h>
63 #include <sys/vmmeter.h>
64 #include <sys/cpuset.h>
65 #include <sys/sbuf.h>
66 
67 #ifdef HWPMC_HOOKS
68 #include <sys/pmckern.h>
69 #endif
70 
71 #ifdef KDTRACE_HOOKS
72 #include <sys/dtrace_bsd.h>
73 int				dtrace_vtime_active;
74 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75 #endif
76 
77 #include <machine/cpu.h>
78 #include <machine/smp.h>
79 
80 #if defined(__powerpc__) && defined(BOOKE_E500)
81 #error "This architecture is not currently compatible with ULE"
82 #endif
83 
84 #define	KTR_ULE	0
85 
86 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87 #define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
88 #define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
89 
90 /*
91  * Thread scheduler specific section.  All fields are protected
92  * by the thread lock.
93  */
94 struct td_sched {
95 	struct runq	*ts_runq;	/* Run-queue we're queued on. */
96 	short		ts_flags;	/* TSF_* flags. */
97 	u_char		ts_cpu;		/* CPU that we have affinity for. */
98 	int		ts_rltick;	/* Real last tick, for affinity. */
99 	int		ts_slice;	/* Ticks of slice remaining. */
100 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
101 	u_int		ts_runtime;	/* Number of ticks we were running */
102 	int		ts_ltick;	/* Last tick that we were running on */
103 	int		ts_ftick;	/* First tick that we were running on */
104 	int		ts_ticks;	/* Tick count */
105 #ifdef KTR
106 	char		ts_name[TS_NAME_LEN];
107 #endif
108 };
109 /* flags kept in ts_flags */
110 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112 
113 static struct td_sched td_sched0;
114 
115 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116 #define	THREAD_CAN_SCHED(td, cpu)	\
117     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118 
119 /*
120  * Priority ranges used for interactive and non-interactive timeshare
121  * threads.  The timeshare priorities are split up into four ranges.
122  * The first range handles interactive threads.  The last three ranges
123  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124  * ranges supporting nice values.
125  */
126 #define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127 #define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128 #define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129 
130 #define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131 #define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132 #define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133 #define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134 
135 /*
136  * Cpu percentage computation macros and defines.
137  *
138  * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139  * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140  * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142  * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143  * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144  */
145 #define	SCHED_TICK_SECS		10
146 #define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147 #define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148 #define	SCHED_TICK_SHIFT	10
149 #define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150 #define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151 
152 /*
153  * These macros determine priorities for non-interactive threads.  They are
154  * assigned a priority based on their recent cpu utilization as expressed
155  * by the ratio of ticks to the tick total.  NHALF priorities at the start
156  * and end of the MIN to MAX timeshare range are only reachable with negative
157  * or positive nice respectively.
158  *
159  * PRI_RANGE:	Priority range for utilization dependent priorities.
160  * PRI_NRESV:	Number of nice values.
161  * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162  * PRI_NICE:	Determines the part of the priority inherited from nice.
163  */
164 #define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166 #define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167 #define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168 #define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169 #define	SCHED_PRI_TICKS(ts)						\
170     (SCHED_TICK_HZ((ts)) /						\
171     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172 #define	SCHED_PRI_NICE(nice)	(nice)
173 
174 /*
175  * These determine the interactivity of a process.  Interactivity differs from
176  * cpu utilization in that it expresses the voluntary time slept vs time ran
177  * while cpu utilization includes all time not running.  This more accurately
178  * models the intent of the thread.
179  *
180  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181  *		before throttling back.
182  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184  * INTERACT_THRESH:	Threshold for placement on the current runq.
185  */
186 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188 #define	SCHED_INTERACT_MAX	(100)
189 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190 #define	SCHED_INTERACT_THRESH	(30)
191 
192 /*
193  * tickincr:		Converts a stathz tick into a hz domain scaled by
194  *			the shift factor.  Without the shift the error rate
195  *			due to rounding would be unacceptably high.
196  * realstathz:		stathz is sometimes 0 and run off of hz.
197  * sched_slice:		Runtime of each thread before rescheduling.
198  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
199  */
200 static int sched_interact = SCHED_INTERACT_THRESH;
201 static int realstathz;
202 static int tickincr;
203 static int sched_slice = 1;
204 #ifdef PREEMPTION
205 #ifdef FULL_PREEMPTION
206 static int preempt_thresh = PRI_MAX_IDLE;
207 #else
208 static int preempt_thresh = PRI_MIN_KERN;
209 #endif
210 #else
211 static int preempt_thresh = 0;
212 #endif
213 static int static_boost = PRI_MIN_BATCH;
214 static int sched_idlespins = 10000;
215 static int sched_idlespinthresh = -1;
216 
217 /*
218  * tdq - per processor runqs and statistics.  All fields are protected by the
219  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
220  * locking in sched_pickcpu();
221  */
222 struct tdq {
223 	/* Ordered to improve efficiency of cpu_search() and switch(). */
224 	struct mtx	tdq_lock;		/* run queue lock. */
225 	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
226 	volatile int	tdq_load;		/* Aggregate load. */
227 	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
228 	int		tdq_sysload;		/* For loadavg, !ITHD load. */
229 	int		tdq_transferable;	/* Transferable thread count. */
230 	short		tdq_switchcnt;		/* Switches this tick. */
231 	short		tdq_oldswitchcnt;	/* Switches last tick. */
232 	u_char		tdq_lowpri;		/* Lowest priority thread. */
233 	u_char		tdq_ipipending;		/* IPI pending. */
234 	u_char		tdq_idx;		/* Current insert index. */
235 	u_char		tdq_ridx;		/* Current removal index. */
236 	struct runq	tdq_realtime;		/* real-time run queue. */
237 	struct runq	tdq_timeshare;		/* timeshare run queue. */
238 	struct runq	tdq_idle;		/* Queue of IDLE threads. */
239 	char		tdq_name[TDQ_NAME_LEN];
240 #ifdef KTR
241 	char		tdq_loadname[TDQ_LOADNAME_LEN];
242 #endif
243 } __aligned(64);
244 
245 /* Idle thread states and config. */
246 #define	TDQ_RUNNING	1
247 #define	TDQ_IDLE	2
248 
249 #ifdef SMP
250 struct cpu_group *cpu_top;		/* CPU topology */
251 
252 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
253 #define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
254 
255 /*
256  * Run-time tunables.
257  */
258 static int rebalance = 1;
259 static int balance_interval = 128;	/* Default set in sched_initticks(). */
260 static int affinity;
261 static int steal_idle = 1;
262 static int steal_thresh = 2;
263 
264 /*
265  * One thread queue per processor.
266  */
267 static struct tdq	tdq_cpu[MAXCPU];
268 static struct tdq	*balance_tdq;
269 static int balance_ticks;
270 static DPCPU_DEFINE(uint32_t, randomval);
271 
272 #define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
273 #define	TDQ_CPU(x)	(&tdq_cpu[(x)])
274 #define	TDQ_ID(x)	((int)((x) - tdq_cpu))
275 #else	/* !SMP */
276 static struct tdq	tdq_cpu;
277 
278 #define	TDQ_ID(x)	(0)
279 #define	TDQ_SELF()	(&tdq_cpu)
280 #define	TDQ_CPU(x)	(&tdq_cpu)
281 #endif
282 
283 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
284 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
285 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
286 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
287 #define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
288 
289 static void sched_priority(struct thread *);
290 static void sched_thread_priority(struct thread *, u_char);
291 static int sched_interact_score(struct thread *);
292 static void sched_interact_update(struct thread *);
293 static void sched_interact_fork(struct thread *);
294 static void sched_pctcpu_update(struct td_sched *, int);
295 
296 /* Operations on per processor queues */
297 static struct thread *tdq_choose(struct tdq *);
298 static void tdq_setup(struct tdq *);
299 static void tdq_load_add(struct tdq *, struct thread *);
300 static void tdq_load_rem(struct tdq *, struct thread *);
301 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
302 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
303 static inline int sched_shouldpreempt(int, int, int);
304 void tdq_print(int cpu);
305 static void runq_print(struct runq *rq);
306 static void tdq_add(struct tdq *, struct thread *, int);
307 #ifdef SMP
308 static int tdq_move(struct tdq *, struct tdq *);
309 static int tdq_idled(struct tdq *);
310 static void tdq_notify(struct tdq *, struct thread *);
311 static struct thread *tdq_steal(struct tdq *, int);
312 static struct thread *runq_steal(struct runq *, int);
313 static int sched_pickcpu(struct thread *, int);
314 static void sched_balance(void);
315 static int sched_balance_pair(struct tdq *, struct tdq *);
316 static inline struct tdq *sched_setcpu(struct thread *, int, int);
317 static inline void thread_unblock_switch(struct thread *, struct mtx *);
318 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
319 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
320 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
321     struct cpu_group *cg, int indent);
322 #endif
323 
324 static void sched_setup(void *dummy);
325 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
326 
327 static void sched_initticks(void *dummy);
328 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
329     NULL);
330 
331 SDT_PROVIDER_DEFINE(sched);
332 
333 SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *",
334     "struct proc *", "uint8_t");
335 SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *",
336     "struct proc *", "void *");
337 SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *",
338     "struct proc *", "void *", "int");
339 SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *",
340     "struct proc *", "uint8_t", "struct thread *");
341 SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
342 SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
343     "struct proc *");
344 SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
345 SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
346 SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
347     "struct proc *");
348 
349 /*
350  * Print the threads waiting on a run-queue.
351  */
352 static void
353 runq_print(struct runq *rq)
354 {
355 	struct rqhead *rqh;
356 	struct thread *td;
357 	int pri;
358 	int j;
359 	int i;
360 
361 	for (i = 0; i < RQB_LEN; i++) {
362 		printf("\t\trunq bits %d 0x%zx\n",
363 		    i, rq->rq_status.rqb_bits[i]);
364 		for (j = 0; j < RQB_BPW; j++)
365 			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
366 				pri = j + (i << RQB_L2BPW);
367 				rqh = &rq->rq_queues[pri];
368 				TAILQ_FOREACH(td, rqh, td_runq) {
369 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
370 					    td, td->td_name, td->td_priority,
371 					    td->td_rqindex, pri);
372 				}
373 			}
374 	}
375 }
376 
377 /*
378  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
379  */
380 void
381 tdq_print(int cpu)
382 {
383 	struct tdq *tdq;
384 
385 	tdq = TDQ_CPU(cpu);
386 
387 	printf("tdq %d:\n", TDQ_ID(tdq));
388 	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
389 	printf("\tLock name:      %s\n", tdq->tdq_name);
390 	printf("\tload:           %d\n", tdq->tdq_load);
391 	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
392 	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
393 	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
394 	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
395 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
396 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
397 	printf("\trealtime runq:\n");
398 	runq_print(&tdq->tdq_realtime);
399 	printf("\ttimeshare runq:\n");
400 	runq_print(&tdq->tdq_timeshare);
401 	printf("\tidle runq:\n");
402 	runq_print(&tdq->tdq_idle);
403 }
404 
405 static inline int
406 sched_shouldpreempt(int pri, int cpri, int remote)
407 {
408 	/*
409 	 * If the new priority is not better than the current priority there is
410 	 * nothing to do.
411 	 */
412 	if (pri >= cpri)
413 		return (0);
414 	/*
415 	 * Always preempt idle.
416 	 */
417 	if (cpri >= PRI_MIN_IDLE)
418 		return (1);
419 	/*
420 	 * If preemption is disabled don't preempt others.
421 	 */
422 	if (preempt_thresh == 0)
423 		return (0);
424 	/*
425 	 * Preempt if we exceed the threshold.
426 	 */
427 	if (pri <= preempt_thresh)
428 		return (1);
429 	/*
430 	 * If we're interactive or better and there is non-interactive
431 	 * or worse running preempt only remote processors.
432 	 */
433 	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
434 		return (1);
435 	return (0);
436 }
437 
438 /*
439  * Add a thread to the actual run-queue.  Keeps transferable counts up to
440  * date with what is actually on the run-queue.  Selects the correct
441  * queue position for timeshare threads.
442  */
443 static __inline void
444 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
445 {
446 	struct td_sched *ts;
447 	u_char pri;
448 
449 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
450 	THREAD_LOCK_ASSERT(td, MA_OWNED);
451 
452 	pri = td->td_priority;
453 	ts = td->td_sched;
454 	TD_SET_RUNQ(td);
455 	if (THREAD_CAN_MIGRATE(td)) {
456 		tdq->tdq_transferable++;
457 		ts->ts_flags |= TSF_XFERABLE;
458 	}
459 	if (pri < PRI_MIN_BATCH) {
460 		ts->ts_runq = &tdq->tdq_realtime;
461 	} else if (pri <= PRI_MAX_BATCH) {
462 		ts->ts_runq = &tdq->tdq_timeshare;
463 		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
464 			("Invalid priority %d on timeshare runq", pri));
465 		/*
466 		 * This queue contains only priorities between MIN and MAX
467 		 * realtime.  Use the whole queue to represent these values.
468 		 */
469 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
470 			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
471 			pri = (pri + tdq->tdq_idx) % RQ_NQS;
472 			/*
473 			 * This effectively shortens the queue by one so we
474 			 * can have a one slot difference between idx and
475 			 * ridx while we wait for threads to drain.
476 			 */
477 			if (tdq->tdq_ridx != tdq->tdq_idx &&
478 			    pri == tdq->tdq_ridx)
479 				pri = (unsigned char)(pri - 1) % RQ_NQS;
480 		} else
481 			pri = tdq->tdq_ridx;
482 		runq_add_pri(ts->ts_runq, td, pri, flags);
483 		return;
484 	} else
485 		ts->ts_runq = &tdq->tdq_idle;
486 	runq_add(ts->ts_runq, td, flags);
487 }
488 
489 /*
490  * Remove a thread from a run-queue.  This typically happens when a thread
491  * is selected to run.  Running threads are not on the queue and the
492  * transferable count does not reflect them.
493  */
494 static __inline void
495 tdq_runq_rem(struct tdq *tdq, struct thread *td)
496 {
497 	struct td_sched *ts;
498 
499 	ts = td->td_sched;
500 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
501 	KASSERT(ts->ts_runq != NULL,
502 	    ("tdq_runq_remove: thread %p null ts_runq", td));
503 	if (ts->ts_flags & TSF_XFERABLE) {
504 		tdq->tdq_transferable--;
505 		ts->ts_flags &= ~TSF_XFERABLE;
506 	}
507 	if (ts->ts_runq == &tdq->tdq_timeshare) {
508 		if (tdq->tdq_idx != tdq->tdq_ridx)
509 			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
510 		else
511 			runq_remove_idx(ts->ts_runq, td, NULL);
512 	} else
513 		runq_remove(ts->ts_runq, td);
514 }
515 
516 /*
517  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
518  * for this thread to the referenced thread queue.
519  */
520 static void
521 tdq_load_add(struct tdq *tdq, struct thread *td)
522 {
523 
524 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
525 	THREAD_LOCK_ASSERT(td, MA_OWNED);
526 
527 	tdq->tdq_load++;
528 	if ((td->td_flags & TDF_NOLOAD) == 0)
529 		tdq->tdq_sysload++;
530 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
531 	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
532 }
533 
534 /*
535  * Remove the load from a thread that is transitioning to a sleep state or
536  * exiting.
537  */
538 static void
539 tdq_load_rem(struct tdq *tdq, struct thread *td)
540 {
541 
542 	THREAD_LOCK_ASSERT(td, MA_OWNED);
543 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
544 	KASSERT(tdq->tdq_load != 0,
545 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
546 
547 	tdq->tdq_load--;
548 	if ((td->td_flags & TDF_NOLOAD) == 0)
549 		tdq->tdq_sysload--;
550 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
551 	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
552 }
553 
554 /*
555  * Set lowpri to its exact value by searching the run-queue and
556  * evaluating curthread.  curthread may be passed as an optimization.
557  */
558 static void
559 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
560 {
561 	struct thread *td;
562 
563 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
564 	if (ctd == NULL)
565 		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
566 	td = tdq_choose(tdq);
567 	if (td == NULL || td->td_priority > ctd->td_priority)
568 		tdq->tdq_lowpri = ctd->td_priority;
569 	else
570 		tdq->tdq_lowpri = td->td_priority;
571 }
572 
573 #ifdef SMP
574 struct cpu_search {
575 	cpuset_t cs_mask;
576 	u_int	cs_prefer;
577 	int	cs_pri;		/* Min priority for low. */
578 	int	cs_limit;	/* Max load for low, min load for high. */
579 	int	cs_cpu;
580 	int	cs_load;
581 };
582 
583 #define	CPU_SEARCH_LOWEST	0x1
584 #define	CPU_SEARCH_HIGHEST	0x2
585 #define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
586 
587 #define	CPUSET_FOREACH(cpu, mask)				\
588 	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
589 		if (CPU_ISSET(cpu, &mask))
590 
591 static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
592     struct cpu_search *high, const int match);
593 int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
594 int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
595 int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
596     struct cpu_search *high);
597 
598 /*
599  * Search the tree of cpu_groups for the lowest or highest loaded cpu
600  * according to the match argument.  This routine actually compares the
601  * load on all paths through the tree and finds the least loaded cpu on
602  * the least loaded path, which may differ from the least loaded cpu in
603  * the system.  This balances work among caches and busses.
604  *
605  * This inline is instantiated in three forms below using constants for the
606  * match argument.  It is reduced to the minimum set for each case.  It is
607  * also recursive to the depth of the tree.
608  */
609 static __inline int
610 cpu_search(const struct cpu_group *cg, struct cpu_search *low,
611     struct cpu_search *high, const int match)
612 {
613 	struct cpu_search lgroup;
614 	struct cpu_search hgroup;
615 	cpuset_t cpumask;
616 	struct cpu_group *child;
617 	struct tdq *tdq;
618 	int cpu, i, hload, lload, load, total, rnd, *rndptr;
619 
620 	total = 0;
621 	cpumask = cg->cg_mask;
622 	if (match & CPU_SEARCH_LOWEST) {
623 		lload = INT_MAX;
624 		lgroup = *low;
625 	}
626 	if (match & CPU_SEARCH_HIGHEST) {
627 		hload = INT_MIN;
628 		hgroup = *high;
629 	}
630 
631 	/* Iterate through the child CPU groups and then remaining CPUs. */
632 	for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) {
633 		if (i == 0) {
634 			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
635 				cpu--;
636 			if (cpu < 0)
637 				break;
638 			child = NULL;
639 		} else
640 			child = &cg->cg_child[i - 1];
641 
642 		if (match & CPU_SEARCH_LOWEST)
643 			lgroup.cs_cpu = -1;
644 		if (match & CPU_SEARCH_HIGHEST)
645 			hgroup.cs_cpu = -1;
646 		if (child) {			/* Handle child CPU group. */
647 			CPU_NAND(&cpumask, &child->cg_mask);
648 			switch (match) {
649 			case CPU_SEARCH_LOWEST:
650 				load = cpu_search_lowest(child, &lgroup);
651 				break;
652 			case CPU_SEARCH_HIGHEST:
653 				load = cpu_search_highest(child, &hgroup);
654 				break;
655 			case CPU_SEARCH_BOTH:
656 				load = cpu_search_both(child, &lgroup, &hgroup);
657 				break;
658 			}
659 		} else {			/* Handle child CPU. */
660 			tdq = TDQ_CPU(cpu);
661 			load = tdq->tdq_load * 256;
662 			rndptr = DPCPU_PTR(randomval);
663 			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
664 			if (match & CPU_SEARCH_LOWEST) {
665 				if (cpu == low->cs_prefer)
666 					load -= 64;
667 				/* If that CPU is allowed and get data. */
668 				if (tdq->tdq_lowpri > lgroup.cs_pri &&
669 				    tdq->tdq_load <= lgroup.cs_limit &&
670 				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
671 					lgroup.cs_cpu = cpu;
672 					lgroup.cs_load = load - rnd;
673 				}
674 			}
675 			if (match & CPU_SEARCH_HIGHEST)
676 				if (tdq->tdq_load >= hgroup.cs_limit &&
677 				    tdq->tdq_transferable &&
678 				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
679 					hgroup.cs_cpu = cpu;
680 					hgroup.cs_load = load - rnd;
681 				}
682 		}
683 		total += load;
684 
685 		/* We have info about child item. Compare it. */
686 		if (match & CPU_SEARCH_LOWEST) {
687 			if (lgroup.cs_cpu >= 0 &&
688 			    (load < lload ||
689 			     (load == lload && lgroup.cs_load < low->cs_load))) {
690 				lload = load;
691 				low->cs_cpu = lgroup.cs_cpu;
692 				low->cs_load = lgroup.cs_load;
693 			}
694 		}
695 		if (match & CPU_SEARCH_HIGHEST)
696 			if (hgroup.cs_cpu >= 0 &&
697 			    (load > hload ||
698 			     (load == hload && hgroup.cs_load > high->cs_load))) {
699 				hload = load;
700 				high->cs_cpu = hgroup.cs_cpu;
701 				high->cs_load = hgroup.cs_load;
702 			}
703 		if (child) {
704 			i--;
705 			if (i == 0 && CPU_EMPTY(&cpumask))
706 				break;
707 		} else
708 			cpu--;
709 	}
710 	return (total);
711 }
712 
713 /*
714  * cpu_search instantiations must pass constants to maintain the inline
715  * optimization.
716  */
717 int
718 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
719 {
720 	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
721 }
722 
723 int
724 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
725 {
726 	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
727 }
728 
729 int
730 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
731     struct cpu_search *high)
732 {
733 	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
734 }
735 
736 /*
737  * Find the cpu with the least load via the least loaded path that has a
738  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
739  * acceptable.
740  */
741 static inline int
742 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
743     int prefer)
744 {
745 	struct cpu_search low;
746 
747 	low.cs_cpu = -1;
748 	low.cs_prefer = prefer;
749 	low.cs_mask = mask;
750 	low.cs_pri = pri;
751 	low.cs_limit = maxload;
752 	cpu_search_lowest(cg, &low);
753 	return low.cs_cpu;
754 }
755 
756 /*
757  * Find the cpu with the highest load via the highest loaded path.
758  */
759 static inline int
760 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
761 {
762 	struct cpu_search high;
763 
764 	high.cs_cpu = -1;
765 	high.cs_mask = mask;
766 	high.cs_limit = minload;
767 	cpu_search_highest(cg, &high);
768 	return high.cs_cpu;
769 }
770 
771 /*
772  * Simultaneously find the highest and lowest loaded cpu reachable via
773  * cg.
774  */
775 static inline void
776 sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
777 {
778 	struct cpu_search high;
779 	struct cpu_search low;
780 
781 	low.cs_cpu = -1;
782 	low.cs_prefer = -1;
783 	low.cs_pri = -1;
784 	low.cs_limit = INT_MAX;
785 	low.cs_mask = mask;
786 	high.cs_cpu = -1;
787 	high.cs_limit = -1;
788 	high.cs_mask = mask;
789 	cpu_search_both(cg, &low, &high);
790 	*lowcpu = low.cs_cpu;
791 	*highcpu = high.cs_cpu;
792 	return;
793 }
794 
795 static void
796 sched_balance_group(struct cpu_group *cg)
797 {
798 	cpuset_t hmask, lmask;
799 	int high, low, anylow;
800 
801 	CPU_FILL(&hmask);
802 	for (;;) {
803 		high = sched_highest(cg, hmask, 1);
804 		/* Stop if there is no more CPU with transferrable threads. */
805 		if (high == -1)
806 			break;
807 		CPU_CLR(high, &hmask);
808 		CPU_COPY(&hmask, &lmask);
809 		/* Stop if there is no more CPU left for low. */
810 		if (CPU_EMPTY(&lmask))
811 			break;
812 		anylow = 1;
813 nextlow:
814 		low = sched_lowest(cg, lmask, -1,
815 		    TDQ_CPU(high)->tdq_load - 1, high);
816 		/* Stop if we looked well and found no less loaded CPU. */
817 		if (anylow && low == -1)
818 			break;
819 		/* Go to next high if we found no less loaded CPU. */
820 		if (low == -1)
821 			continue;
822 		/* Transfer thread from high to low. */
823 		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
824 			/* CPU that got thread can no longer be a donor. */
825 			CPU_CLR(low, &hmask);
826 		} else {
827 			/*
828 			 * If failed, then there is no threads on high
829 			 * that can run on this low. Drop low from low
830 			 * mask and look for different one.
831 			 */
832 			CPU_CLR(low, &lmask);
833 			anylow = 0;
834 			goto nextlow;
835 		}
836 	}
837 }
838 
839 static void
840 sched_balance(void)
841 {
842 	struct tdq *tdq;
843 
844 	/*
845 	 * Select a random time between .5 * balance_interval and
846 	 * 1.5 * balance_interval.
847 	 */
848 	balance_ticks = max(balance_interval / 2, 1);
849 	balance_ticks += random() % balance_interval;
850 	if (smp_started == 0 || rebalance == 0)
851 		return;
852 	tdq = TDQ_SELF();
853 	TDQ_UNLOCK(tdq);
854 	sched_balance_group(cpu_top);
855 	TDQ_LOCK(tdq);
856 }
857 
858 /*
859  * Lock two thread queues using their address to maintain lock order.
860  */
861 static void
862 tdq_lock_pair(struct tdq *one, struct tdq *two)
863 {
864 	if (one < two) {
865 		TDQ_LOCK(one);
866 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
867 	} else {
868 		TDQ_LOCK(two);
869 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
870 	}
871 }
872 
873 /*
874  * Unlock two thread queues.  Order is not important here.
875  */
876 static void
877 tdq_unlock_pair(struct tdq *one, struct tdq *two)
878 {
879 	TDQ_UNLOCK(one);
880 	TDQ_UNLOCK(two);
881 }
882 
883 /*
884  * Transfer load between two imbalanced thread queues.
885  */
886 static int
887 sched_balance_pair(struct tdq *high, struct tdq *low)
888 {
889 	int moved;
890 	int cpu;
891 
892 	tdq_lock_pair(high, low);
893 	moved = 0;
894 	/*
895 	 * Determine what the imbalance is and then adjust that to how many
896 	 * threads we actually have to give up (transferable).
897 	 */
898 	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
899 	    (moved = tdq_move(high, low)) > 0) {
900 		/*
901 		 * In case the target isn't the current cpu IPI it to force a
902 		 * reschedule with the new workload.
903 		 */
904 		cpu = TDQ_ID(low);
905 		sched_pin();
906 		if (cpu != PCPU_GET(cpuid))
907 			ipi_cpu(cpu, IPI_PREEMPT);
908 		sched_unpin();
909 	}
910 	tdq_unlock_pair(high, low);
911 	return (moved);
912 }
913 
914 /*
915  * Move a thread from one thread queue to another.
916  */
917 static int
918 tdq_move(struct tdq *from, struct tdq *to)
919 {
920 	struct td_sched *ts;
921 	struct thread *td;
922 	struct tdq *tdq;
923 	int cpu;
924 
925 	TDQ_LOCK_ASSERT(from, MA_OWNED);
926 	TDQ_LOCK_ASSERT(to, MA_OWNED);
927 
928 	tdq = from;
929 	cpu = TDQ_ID(to);
930 	td = tdq_steal(tdq, cpu);
931 	if (td == NULL)
932 		return (0);
933 	ts = td->td_sched;
934 	/*
935 	 * Although the run queue is locked the thread may be blocked.  Lock
936 	 * it to clear this and acquire the run-queue lock.
937 	 */
938 	thread_lock(td);
939 	/* Drop recursive lock on from acquired via thread_lock(). */
940 	TDQ_UNLOCK(from);
941 	sched_rem(td);
942 	ts->ts_cpu = cpu;
943 	td->td_lock = TDQ_LOCKPTR(to);
944 	tdq_add(to, td, SRQ_YIELDING);
945 	return (1);
946 }
947 
948 /*
949  * This tdq has idled.  Try to steal a thread from another cpu and switch
950  * to it.
951  */
952 static int
953 tdq_idled(struct tdq *tdq)
954 {
955 	struct cpu_group *cg;
956 	struct tdq *steal;
957 	cpuset_t mask;
958 	int thresh;
959 	int cpu;
960 
961 	if (smp_started == 0 || steal_idle == 0)
962 		return (1);
963 	CPU_FILL(&mask);
964 	CPU_CLR(PCPU_GET(cpuid), &mask);
965 	/* We don't want to be preempted while we're iterating. */
966 	spinlock_enter();
967 	for (cg = tdq->tdq_cg; cg != NULL; ) {
968 		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
969 			thresh = steal_thresh;
970 		else
971 			thresh = 1;
972 		cpu = sched_highest(cg, mask, thresh);
973 		if (cpu == -1) {
974 			cg = cg->cg_parent;
975 			continue;
976 		}
977 		steal = TDQ_CPU(cpu);
978 		CPU_CLR(cpu, &mask);
979 		tdq_lock_pair(tdq, steal);
980 		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
981 			tdq_unlock_pair(tdq, steal);
982 			continue;
983 		}
984 		/*
985 		 * If a thread was added while interrupts were disabled don't
986 		 * steal one here.  If we fail to acquire one due to affinity
987 		 * restrictions loop again with this cpu removed from the
988 		 * set.
989 		 */
990 		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
991 			tdq_unlock_pair(tdq, steal);
992 			continue;
993 		}
994 		spinlock_exit();
995 		TDQ_UNLOCK(steal);
996 		mi_switch(SW_VOL | SWT_IDLE, NULL);
997 		thread_unlock(curthread);
998 
999 		return (0);
1000 	}
1001 	spinlock_exit();
1002 	return (1);
1003 }
1004 
1005 /*
1006  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1007  */
1008 static void
1009 tdq_notify(struct tdq *tdq, struct thread *td)
1010 {
1011 	struct thread *ctd;
1012 	int pri;
1013 	int cpu;
1014 
1015 	if (tdq->tdq_ipipending)
1016 		return;
1017 	cpu = td->td_sched->ts_cpu;
1018 	pri = td->td_priority;
1019 	ctd = pcpu_find(cpu)->pc_curthread;
1020 	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1021 		return;
1022 	if (TD_IS_IDLETHREAD(ctd)) {
1023 		/*
1024 		 * If the MD code has an idle wakeup routine try that before
1025 		 * falling back to IPI.
1026 		 */
1027 		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1028 			return;
1029 	}
1030 	tdq->tdq_ipipending = 1;
1031 	ipi_cpu(cpu, IPI_PREEMPT);
1032 }
1033 
1034 /*
1035  * Steals load from a timeshare queue.  Honors the rotating queue head
1036  * index.
1037  */
1038 static struct thread *
1039 runq_steal_from(struct runq *rq, int cpu, u_char start)
1040 {
1041 	struct rqbits *rqb;
1042 	struct rqhead *rqh;
1043 	struct thread *td, *first;
1044 	int bit;
1045 	int pri;
1046 	int i;
1047 
1048 	rqb = &rq->rq_status;
1049 	bit = start & (RQB_BPW -1);
1050 	pri = 0;
1051 	first = NULL;
1052 again:
1053 	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1054 		if (rqb->rqb_bits[i] == 0)
1055 			continue;
1056 		if (bit != 0) {
1057 			for (pri = bit; pri < RQB_BPW; pri++)
1058 				if (rqb->rqb_bits[i] & (1ul << pri))
1059 					break;
1060 			if (pri >= RQB_BPW)
1061 				continue;
1062 		} else
1063 			pri = RQB_FFS(rqb->rqb_bits[i]);
1064 		pri += (i << RQB_L2BPW);
1065 		rqh = &rq->rq_queues[pri];
1066 		TAILQ_FOREACH(td, rqh, td_runq) {
1067 			if (first && THREAD_CAN_MIGRATE(td) &&
1068 			    THREAD_CAN_SCHED(td, cpu))
1069 				return (td);
1070 			first = td;
1071 		}
1072 	}
1073 	if (start != 0) {
1074 		start = 0;
1075 		goto again;
1076 	}
1077 
1078 	if (first && THREAD_CAN_MIGRATE(first) &&
1079 	    THREAD_CAN_SCHED(first, cpu))
1080 		return (first);
1081 	return (NULL);
1082 }
1083 
1084 /*
1085  * Steals load from a standard linear queue.
1086  */
1087 static struct thread *
1088 runq_steal(struct runq *rq, int cpu)
1089 {
1090 	struct rqhead *rqh;
1091 	struct rqbits *rqb;
1092 	struct thread *td;
1093 	int word;
1094 	int bit;
1095 
1096 	rqb = &rq->rq_status;
1097 	for (word = 0; word < RQB_LEN; word++) {
1098 		if (rqb->rqb_bits[word] == 0)
1099 			continue;
1100 		for (bit = 0; bit < RQB_BPW; bit++) {
1101 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1102 				continue;
1103 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1104 			TAILQ_FOREACH(td, rqh, td_runq)
1105 				if (THREAD_CAN_MIGRATE(td) &&
1106 				    THREAD_CAN_SCHED(td, cpu))
1107 					return (td);
1108 		}
1109 	}
1110 	return (NULL);
1111 }
1112 
1113 /*
1114  * Attempt to steal a thread in priority order from a thread queue.
1115  */
1116 static struct thread *
1117 tdq_steal(struct tdq *tdq, int cpu)
1118 {
1119 	struct thread *td;
1120 
1121 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1122 	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1123 		return (td);
1124 	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1125 	    cpu, tdq->tdq_ridx)) != NULL)
1126 		return (td);
1127 	return (runq_steal(&tdq->tdq_idle, cpu));
1128 }
1129 
1130 /*
1131  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1132  * current lock and returns with the assigned queue locked.
1133  */
1134 static inline struct tdq *
1135 sched_setcpu(struct thread *td, int cpu, int flags)
1136 {
1137 
1138 	struct tdq *tdq;
1139 
1140 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1141 	tdq = TDQ_CPU(cpu);
1142 	td->td_sched->ts_cpu = cpu;
1143 	/*
1144 	 * If the lock matches just return the queue.
1145 	 */
1146 	if (td->td_lock == TDQ_LOCKPTR(tdq))
1147 		return (tdq);
1148 #ifdef notyet
1149 	/*
1150 	 * If the thread isn't running its lockptr is a
1151 	 * turnstile or a sleepqueue.  We can just lock_set without
1152 	 * blocking.
1153 	 */
1154 	if (TD_CAN_RUN(td)) {
1155 		TDQ_LOCK(tdq);
1156 		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1157 		return (tdq);
1158 	}
1159 #endif
1160 	/*
1161 	 * The hard case, migration, we need to block the thread first to
1162 	 * prevent order reversals with other cpus locks.
1163 	 */
1164 	spinlock_enter();
1165 	thread_lock_block(td);
1166 	TDQ_LOCK(tdq);
1167 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1168 	spinlock_exit();
1169 	return (tdq);
1170 }
1171 
1172 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1173 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1174 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1175 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1176 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1177 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1178 
1179 static int
1180 sched_pickcpu(struct thread *td, int flags)
1181 {
1182 	struct cpu_group *cg, *ccg;
1183 	struct td_sched *ts;
1184 	struct tdq *tdq;
1185 	cpuset_t mask;
1186 	int cpu, pri, self;
1187 
1188 	self = PCPU_GET(cpuid);
1189 	ts = td->td_sched;
1190 	if (smp_started == 0)
1191 		return (self);
1192 	/*
1193 	 * Don't migrate a running thread from sched_switch().
1194 	 */
1195 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1196 		return (ts->ts_cpu);
1197 	/*
1198 	 * Prefer to run interrupt threads on the processors that generate
1199 	 * the interrupt.
1200 	 */
1201 	pri = td->td_priority;
1202 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1203 	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1204 		SCHED_STAT_INC(pickcpu_intrbind);
1205 		ts->ts_cpu = self;
1206 		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1207 			SCHED_STAT_INC(pickcpu_affinity);
1208 			return (ts->ts_cpu);
1209 		}
1210 	}
1211 	/*
1212 	 * If the thread can run on the last cpu and the affinity has not
1213 	 * expired or it is idle run it there.
1214 	 */
1215 	tdq = TDQ_CPU(ts->ts_cpu);
1216 	cg = tdq->tdq_cg;
1217 	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1218 	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1219 	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1220 		if (cg->cg_flags & CG_FLAG_THREAD) {
1221 			CPUSET_FOREACH(cpu, cg->cg_mask) {
1222 				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1223 					break;
1224 			}
1225 		} else
1226 			cpu = INT_MAX;
1227 		if (cpu > mp_maxid) {
1228 			SCHED_STAT_INC(pickcpu_idle_affinity);
1229 			return (ts->ts_cpu);
1230 		}
1231 	}
1232 	/*
1233 	 * Search for the last level cache CPU group in the tree.
1234 	 * Skip caches with expired affinity time and SMT groups.
1235 	 * Affinity to higher level caches will be handled less aggressively.
1236 	 */
1237 	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1238 		if (cg->cg_flags & CG_FLAG_THREAD)
1239 			continue;
1240 		if (!SCHED_AFFINITY(ts, cg->cg_level))
1241 			continue;
1242 		ccg = cg;
1243 	}
1244 	if (ccg != NULL)
1245 		cg = ccg;
1246 	cpu = -1;
1247 	/* Search the group for the less loaded idle CPU we can run now. */
1248 	mask = td->td_cpuset->cs_mask;
1249 	if (cg != NULL && cg != cpu_top &&
1250 	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1251 		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1252 		    INT_MAX, ts->ts_cpu);
1253 	/* Search globally for the less loaded CPU we can run now. */
1254 	if (cpu == -1)
1255 		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1256 	/* Search globally for the less loaded CPU. */
1257 	if (cpu == -1)
1258 		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1259 	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1260 	/*
1261 	 * Compare the lowest loaded cpu to current cpu.
1262 	 */
1263 	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1264 	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1265 	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1266 		SCHED_STAT_INC(pickcpu_local);
1267 		cpu = self;
1268 	} else
1269 		SCHED_STAT_INC(pickcpu_lowest);
1270 	if (cpu != ts->ts_cpu)
1271 		SCHED_STAT_INC(pickcpu_migration);
1272 	return (cpu);
1273 }
1274 #endif
1275 
1276 /*
1277  * Pick the highest priority task we have and return it.
1278  */
1279 static struct thread *
1280 tdq_choose(struct tdq *tdq)
1281 {
1282 	struct thread *td;
1283 
1284 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1285 	td = runq_choose(&tdq->tdq_realtime);
1286 	if (td != NULL)
1287 		return (td);
1288 	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1289 	if (td != NULL) {
1290 		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1291 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1292 		    td->td_priority));
1293 		return (td);
1294 	}
1295 	td = runq_choose(&tdq->tdq_idle);
1296 	if (td != NULL) {
1297 		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1298 		    ("tdq_choose: Invalid priority on idle queue %d",
1299 		    td->td_priority));
1300 		return (td);
1301 	}
1302 
1303 	return (NULL);
1304 }
1305 
1306 /*
1307  * Initialize a thread queue.
1308  */
1309 static void
1310 tdq_setup(struct tdq *tdq)
1311 {
1312 
1313 	if (bootverbose)
1314 		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1315 	runq_init(&tdq->tdq_realtime);
1316 	runq_init(&tdq->tdq_timeshare);
1317 	runq_init(&tdq->tdq_idle);
1318 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1319 	    "sched lock %d", (int)TDQ_ID(tdq));
1320 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1321 	    MTX_SPIN | MTX_RECURSE);
1322 #ifdef KTR
1323 	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1324 	    "CPU %d load", (int)TDQ_ID(tdq));
1325 #endif
1326 }
1327 
1328 #ifdef SMP
1329 static void
1330 sched_setup_smp(void)
1331 {
1332 	struct tdq *tdq;
1333 	int i;
1334 
1335 	cpu_top = smp_topo();
1336 	CPU_FOREACH(i) {
1337 		tdq = TDQ_CPU(i);
1338 		tdq_setup(tdq);
1339 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1340 		if (tdq->tdq_cg == NULL)
1341 			panic("Can't find cpu group for %d\n", i);
1342 	}
1343 	balance_tdq = TDQ_SELF();
1344 	sched_balance();
1345 }
1346 #endif
1347 
1348 /*
1349  * Setup the thread queues and initialize the topology based on MD
1350  * information.
1351  */
1352 static void
1353 sched_setup(void *dummy)
1354 {
1355 	struct tdq *tdq;
1356 
1357 	tdq = TDQ_SELF();
1358 #ifdef SMP
1359 	sched_setup_smp();
1360 #else
1361 	tdq_setup(tdq);
1362 #endif
1363 	/*
1364 	 * To avoid divide-by-zero, we set realstathz a dummy value
1365 	 * in case which sched_clock() called before sched_initticks().
1366 	 */
1367 	realstathz = hz;
1368 	sched_slice = (realstathz/10);	/* ~100ms */
1369 	tickincr = 1 << SCHED_TICK_SHIFT;
1370 
1371 	/* Add thread0's load since it's running. */
1372 	TDQ_LOCK(tdq);
1373 	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1374 	tdq_load_add(tdq, &thread0);
1375 	tdq->tdq_lowpri = thread0.td_priority;
1376 	TDQ_UNLOCK(tdq);
1377 }
1378 
1379 /*
1380  * This routine determines the tickincr after stathz and hz are setup.
1381  */
1382 /* ARGSUSED */
1383 static void
1384 sched_initticks(void *dummy)
1385 {
1386 	int incr;
1387 
1388 	realstathz = stathz ? stathz : hz;
1389 	sched_slice = (realstathz/10);	/* ~100ms */
1390 
1391 	/*
1392 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1393 	 * hz not being evenly divisible by stathz on all platforms.
1394 	 */
1395 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1396 	/*
1397 	 * This does not work for values of stathz that are more than
1398 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1399 	 */
1400 	if (incr == 0)
1401 		incr = 1;
1402 	tickincr = incr;
1403 #ifdef SMP
1404 	/*
1405 	 * Set the default balance interval now that we know
1406 	 * what realstathz is.
1407 	 */
1408 	balance_interval = realstathz;
1409 	/*
1410 	 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4.
1411 	 * This prevents excess thrashing on large machines and excess idle
1412 	 * on smaller machines.
1413 	 */
1414 	steal_thresh = min(fls(mp_ncpus) - 1, 3);
1415 	affinity = SCHED_AFFINITY_DEFAULT;
1416 #endif
1417 	if (sched_idlespinthresh < 0)
1418 		sched_idlespinthresh = max(16, 2 * hz / realstathz);
1419 }
1420 
1421 
1422 /*
1423  * This is the core of the interactivity algorithm.  Determines a score based
1424  * on past behavior.  It is the ratio of sleep time to run time scaled to
1425  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1426  * differs from the cpu usage because it does not account for time spent
1427  * waiting on a run-queue.  Would be prettier if we had floating point.
1428  */
1429 static int
1430 sched_interact_score(struct thread *td)
1431 {
1432 	struct td_sched *ts;
1433 	int div;
1434 
1435 	ts = td->td_sched;
1436 	/*
1437 	 * The score is only needed if this is likely to be an interactive
1438 	 * task.  Don't go through the expense of computing it if there's
1439 	 * no chance.
1440 	 */
1441 	if (sched_interact <= SCHED_INTERACT_HALF &&
1442 		ts->ts_runtime >= ts->ts_slptime)
1443 			return (SCHED_INTERACT_HALF);
1444 
1445 	if (ts->ts_runtime > ts->ts_slptime) {
1446 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1447 		return (SCHED_INTERACT_HALF +
1448 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1449 	}
1450 	if (ts->ts_slptime > ts->ts_runtime) {
1451 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1452 		return (ts->ts_runtime / div);
1453 	}
1454 	/* runtime == slptime */
1455 	if (ts->ts_runtime)
1456 		return (SCHED_INTERACT_HALF);
1457 
1458 	/*
1459 	 * This can happen if slptime and runtime are 0.
1460 	 */
1461 	return (0);
1462 
1463 }
1464 
1465 /*
1466  * Scale the scheduling priority according to the "interactivity" of this
1467  * process.
1468  */
1469 static void
1470 sched_priority(struct thread *td)
1471 {
1472 	int score;
1473 	int pri;
1474 
1475 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1476 		return;
1477 	/*
1478 	 * If the score is interactive we place the thread in the realtime
1479 	 * queue with a priority that is less than kernel and interrupt
1480 	 * priorities.  These threads are not subject to nice restrictions.
1481 	 *
1482 	 * Scores greater than this are placed on the normal timeshare queue
1483 	 * where the priority is partially decided by the most recent cpu
1484 	 * utilization and the rest is decided by nice value.
1485 	 *
1486 	 * The nice value of the process has a linear effect on the calculated
1487 	 * score.  Negative nice values make it easier for a thread to be
1488 	 * considered interactive.
1489 	 */
1490 	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1491 	if (score < sched_interact) {
1492 		pri = PRI_MIN_INTERACT;
1493 		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1494 		    sched_interact) * score;
1495 		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1496 		    ("sched_priority: invalid interactive priority %d score %d",
1497 		    pri, score));
1498 	} else {
1499 		pri = SCHED_PRI_MIN;
1500 		if (td->td_sched->ts_ticks)
1501 			pri += min(SCHED_PRI_TICKS(td->td_sched),
1502 			    SCHED_PRI_RANGE);
1503 		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1504 		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1505 		    ("sched_priority: invalid priority %d: nice %d, "
1506 		    "ticks %d ftick %d ltick %d tick pri %d",
1507 		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1508 		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1509 		    SCHED_PRI_TICKS(td->td_sched)));
1510 	}
1511 	sched_user_prio(td, pri);
1512 
1513 	return;
1514 }
1515 
1516 /*
1517  * This routine enforces a maximum limit on the amount of scheduling history
1518  * kept.  It is called after either the slptime or runtime is adjusted.  This
1519  * function is ugly due to integer math.
1520  */
1521 static void
1522 sched_interact_update(struct thread *td)
1523 {
1524 	struct td_sched *ts;
1525 	u_int sum;
1526 
1527 	ts = td->td_sched;
1528 	sum = ts->ts_runtime + ts->ts_slptime;
1529 	if (sum < SCHED_SLP_RUN_MAX)
1530 		return;
1531 	/*
1532 	 * This only happens from two places:
1533 	 * 1) We have added an unusual amount of run time from fork_exit.
1534 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1535 	 */
1536 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1537 		if (ts->ts_runtime > ts->ts_slptime) {
1538 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1539 			ts->ts_slptime = 1;
1540 		} else {
1541 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1542 			ts->ts_runtime = 1;
1543 		}
1544 		return;
1545 	}
1546 	/*
1547 	 * If we have exceeded by more than 1/5th then the algorithm below
1548 	 * will not bring us back into range.  Dividing by two here forces
1549 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1550 	 */
1551 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1552 		ts->ts_runtime /= 2;
1553 		ts->ts_slptime /= 2;
1554 		return;
1555 	}
1556 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1557 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1558 }
1559 
1560 /*
1561  * Scale back the interactivity history when a child thread is created.  The
1562  * history is inherited from the parent but the thread may behave totally
1563  * differently.  For example, a shell spawning a compiler process.  We want
1564  * to learn that the compiler is behaving badly very quickly.
1565  */
1566 static void
1567 sched_interact_fork(struct thread *td)
1568 {
1569 	int ratio;
1570 	int sum;
1571 
1572 	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1573 	if (sum > SCHED_SLP_RUN_FORK) {
1574 		ratio = sum / SCHED_SLP_RUN_FORK;
1575 		td->td_sched->ts_runtime /= ratio;
1576 		td->td_sched->ts_slptime /= ratio;
1577 	}
1578 }
1579 
1580 /*
1581  * Called from proc0_init() to setup the scheduler fields.
1582  */
1583 void
1584 schedinit(void)
1585 {
1586 
1587 	/*
1588 	 * Set up the scheduler specific parts of proc0.
1589 	 */
1590 	proc0.p_sched = NULL; /* XXX */
1591 	thread0.td_sched = &td_sched0;
1592 	td_sched0.ts_ltick = ticks;
1593 	td_sched0.ts_ftick = ticks;
1594 	td_sched0.ts_slice = sched_slice;
1595 }
1596 
1597 /*
1598  * This is only somewhat accurate since given many processes of the same
1599  * priority they will switch when their slices run out, which will be
1600  * at most sched_slice stathz ticks.
1601  */
1602 int
1603 sched_rr_interval(void)
1604 {
1605 
1606 	/* Convert sched_slice to hz */
1607 	return (hz/(realstathz/sched_slice));
1608 }
1609 
1610 /*
1611  * Update the percent cpu tracking information when it is requested or
1612  * the total history exceeds the maximum.  We keep a sliding history of
1613  * tick counts that slowly decays.  This is less precise than the 4BSD
1614  * mechanism since it happens with less regular and frequent events.
1615  */
1616 static void
1617 sched_pctcpu_update(struct td_sched *ts, int run)
1618 {
1619 	int t = ticks;
1620 
1621 	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1622 		ts->ts_ticks = 0;
1623 		ts->ts_ftick = t - SCHED_TICK_TARG;
1624 	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1625 		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1626 		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1627 		ts->ts_ftick = t - SCHED_TICK_TARG;
1628 	}
1629 	if (run)
1630 		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1631 	ts->ts_ltick = t;
1632 }
1633 
1634 /*
1635  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1636  * if necessary.  This is the back-end for several priority related
1637  * functions.
1638  */
1639 static void
1640 sched_thread_priority(struct thread *td, u_char prio)
1641 {
1642 	struct td_sched *ts;
1643 	struct tdq *tdq;
1644 	int oldpri;
1645 
1646 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1647 	    "prio:%d", td->td_priority, "new prio:%d", prio,
1648 	    KTR_ATTR_LINKED, sched_tdname(curthread));
1649 	SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
1650 	if (td != curthread && prio > td->td_priority) {
1651 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1652 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1653 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1654 		SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio,
1655 		    curthread);
1656 	}
1657 	ts = td->td_sched;
1658 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1659 	if (td->td_priority == prio)
1660 		return;
1661 	/*
1662 	 * If the priority has been elevated due to priority
1663 	 * propagation, we may have to move ourselves to a new
1664 	 * queue.  This could be optimized to not re-add in some
1665 	 * cases.
1666 	 */
1667 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1668 		sched_rem(td);
1669 		td->td_priority = prio;
1670 		sched_add(td, SRQ_BORROWING);
1671 		return;
1672 	}
1673 	/*
1674 	 * If the thread is currently running we may have to adjust the lowpri
1675 	 * information so other cpus are aware of our current priority.
1676 	 */
1677 	if (TD_IS_RUNNING(td)) {
1678 		tdq = TDQ_CPU(ts->ts_cpu);
1679 		oldpri = td->td_priority;
1680 		td->td_priority = prio;
1681 		if (prio < tdq->tdq_lowpri)
1682 			tdq->tdq_lowpri = prio;
1683 		else if (tdq->tdq_lowpri == oldpri)
1684 			tdq_setlowpri(tdq, td);
1685 		return;
1686 	}
1687 	td->td_priority = prio;
1688 }
1689 
1690 /*
1691  * Update a thread's priority when it is lent another thread's
1692  * priority.
1693  */
1694 void
1695 sched_lend_prio(struct thread *td, u_char prio)
1696 {
1697 
1698 	td->td_flags |= TDF_BORROWING;
1699 	sched_thread_priority(td, prio);
1700 }
1701 
1702 /*
1703  * Restore a thread's priority when priority propagation is
1704  * over.  The prio argument is the minimum priority the thread
1705  * needs to have to satisfy other possible priority lending
1706  * requests.  If the thread's regular priority is less
1707  * important than prio, the thread will keep a priority boost
1708  * of prio.
1709  */
1710 void
1711 sched_unlend_prio(struct thread *td, u_char prio)
1712 {
1713 	u_char base_pri;
1714 
1715 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1716 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1717 		base_pri = td->td_user_pri;
1718 	else
1719 		base_pri = td->td_base_pri;
1720 	if (prio >= base_pri) {
1721 		td->td_flags &= ~TDF_BORROWING;
1722 		sched_thread_priority(td, base_pri);
1723 	} else
1724 		sched_lend_prio(td, prio);
1725 }
1726 
1727 /*
1728  * Standard entry for setting the priority to an absolute value.
1729  */
1730 void
1731 sched_prio(struct thread *td, u_char prio)
1732 {
1733 	u_char oldprio;
1734 
1735 	/* First, update the base priority. */
1736 	td->td_base_pri = prio;
1737 
1738 	/*
1739 	 * If the thread is borrowing another thread's priority, don't
1740 	 * ever lower the priority.
1741 	 */
1742 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1743 		return;
1744 
1745 	/* Change the real priority. */
1746 	oldprio = td->td_priority;
1747 	sched_thread_priority(td, prio);
1748 
1749 	/*
1750 	 * If the thread is on a turnstile, then let the turnstile update
1751 	 * its state.
1752 	 */
1753 	if (TD_ON_LOCK(td) && oldprio != prio)
1754 		turnstile_adjust(td, oldprio);
1755 }
1756 
1757 /*
1758  * Set the base user priority, does not effect current running priority.
1759  */
1760 void
1761 sched_user_prio(struct thread *td, u_char prio)
1762 {
1763 
1764 	td->td_base_user_pri = prio;
1765 	if (td->td_lend_user_pri <= prio)
1766 		return;
1767 	td->td_user_pri = prio;
1768 }
1769 
1770 void
1771 sched_lend_user_prio(struct thread *td, u_char prio)
1772 {
1773 
1774 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1775 	td->td_lend_user_pri = prio;
1776 	td->td_user_pri = min(prio, td->td_base_user_pri);
1777 	if (td->td_priority > td->td_user_pri)
1778 		sched_prio(td, td->td_user_pri);
1779 	else if (td->td_priority != td->td_user_pri)
1780 		td->td_flags |= TDF_NEEDRESCHED;
1781 }
1782 
1783 /*
1784  * Handle migration from sched_switch().  This happens only for
1785  * cpu binding.
1786  */
1787 static struct mtx *
1788 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1789 {
1790 	struct tdq *tdn;
1791 
1792 	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1793 #ifdef SMP
1794 	tdq_load_rem(tdq, td);
1795 	/*
1796 	 * Do the lock dance required to avoid LOR.  We grab an extra
1797 	 * spinlock nesting to prevent preemption while we're
1798 	 * not holding either run-queue lock.
1799 	 */
1800 	spinlock_enter();
1801 	thread_lock_block(td);	/* This releases the lock on tdq. */
1802 
1803 	/*
1804 	 * Acquire both run-queue locks before placing the thread on the new
1805 	 * run-queue to avoid deadlocks created by placing a thread with a
1806 	 * blocked lock on the run-queue of a remote processor.  The deadlock
1807 	 * occurs when a third processor attempts to lock the two queues in
1808 	 * question while the target processor is spinning with its own
1809 	 * run-queue lock held while waiting for the blocked lock to clear.
1810 	 */
1811 	tdq_lock_pair(tdn, tdq);
1812 	tdq_add(tdn, td, flags);
1813 	tdq_notify(tdn, td);
1814 	TDQ_UNLOCK(tdn);
1815 	spinlock_exit();
1816 #endif
1817 	return (TDQ_LOCKPTR(tdn));
1818 }
1819 
1820 /*
1821  * Variadic version of thread_lock_unblock() that does not assume td_lock
1822  * is blocked.
1823  */
1824 static inline void
1825 thread_unblock_switch(struct thread *td, struct mtx *mtx)
1826 {
1827 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1828 	    (uintptr_t)mtx);
1829 }
1830 
1831 /*
1832  * Switch threads.  This function has to handle threads coming in while
1833  * blocked for some reason, running, or idle.  It also must deal with
1834  * migrating a thread from one queue to another as running threads may
1835  * be assigned elsewhere via binding.
1836  */
1837 void
1838 sched_switch(struct thread *td, struct thread *newtd, int flags)
1839 {
1840 	struct tdq *tdq;
1841 	struct td_sched *ts;
1842 	struct mtx *mtx;
1843 	int srqflag;
1844 	int cpuid;
1845 
1846 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1847 	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1848 
1849 	cpuid = PCPU_GET(cpuid);
1850 	tdq = TDQ_CPU(cpuid);
1851 	ts = td->td_sched;
1852 	mtx = td->td_lock;
1853 	sched_pctcpu_update(ts, 1);
1854 	ts->ts_rltick = ticks;
1855 	td->td_lastcpu = td->td_oncpu;
1856 	td->td_oncpu = NOCPU;
1857 	if (!(flags & SW_PREEMPT))
1858 		td->td_flags &= ~TDF_NEEDRESCHED;
1859 	td->td_owepreempt = 0;
1860 	tdq->tdq_switchcnt++;
1861 	/*
1862 	 * The lock pointer in an idle thread should never change.  Reset it
1863 	 * to CAN_RUN as well.
1864 	 */
1865 	if (TD_IS_IDLETHREAD(td)) {
1866 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1867 		TD_SET_CAN_RUN(td);
1868 	} else if (TD_IS_RUNNING(td)) {
1869 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1870 		srqflag = (flags & SW_PREEMPT) ?
1871 		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1872 		    SRQ_OURSELF|SRQ_YIELDING;
1873 #ifdef SMP
1874 		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1875 			ts->ts_cpu = sched_pickcpu(td, 0);
1876 #endif
1877 		if (ts->ts_cpu == cpuid)
1878 			tdq_runq_add(tdq, td, srqflag);
1879 		else {
1880 			KASSERT(THREAD_CAN_MIGRATE(td) ||
1881 			    (ts->ts_flags & TSF_BOUND) != 0,
1882 			    ("Thread %p shouldn't migrate", td));
1883 			mtx = sched_switch_migrate(tdq, td, srqflag);
1884 		}
1885 	} else {
1886 		/* This thread must be going to sleep. */
1887 		TDQ_LOCK(tdq);
1888 		mtx = thread_lock_block(td);
1889 		tdq_load_rem(tdq, td);
1890 	}
1891 	/*
1892 	 * We enter here with the thread blocked and assigned to the
1893 	 * appropriate cpu run-queue or sleep-queue and with the current
1894 	 * thread-queue locked.
1895 	 */
1896 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1897 	newtd = choosethread();
1898 	/*
1899 	 * Call the MD code to switch contexts if necessary.
1900 	 */
1901 	if (td != newtd) {
1902 #ifdef	HWPMC_HOOKS
1903 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1904 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1905 #endif
1906 		SDT_PROBE2(sched, , , off_cpu, td, td->td_proc);
1907 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1908 		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1909 		sched_pctcpu_update(newtd->td_sched, 0);
1910 
1911 #ifdef KDTRACE_HOOKS
1912 		/*
1913 		 * If DTrace has set the active vtime enum to anything
1914 		 * other than INACTIVE (0), then it should have set the
1915 		 * function to call.
1916 		 */
1917 		if (dtrace_vtime_active)
1918 			(*dtrace_vtime_switch_func)(newtd);
1919 #endif
1920 
1921 		cpu_switch(td, newtd, mtx);
1922 		/*
1923 		 * We may return from cpu_switch on a different cpu.  However,
1924 		 * we always return with td_lock pointing to the current cpu's
1925 		 * run queue lock.
1926 		 */
1927 		cpuid = PCPU_GET(cpuid);
1928 		tdq = TDQ_CPU(cpuid);
1929 		lock_profile_obtain_lock_success(
1930 		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1931 
1932 		SDT_PROBE0(sched, , , on_cpu);
1933 #ifdef	HWPMC_HOOKS
1934 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1935 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1936 #endif
1937 	} else {
1938 		thread_unblock_switch(td, mtx);
1939 		SDT_PROBE0(sched, , , remain_cpu);
1940 	}
1941 	/*
1942 	 * Assert that all went well and return.
1943 	 */
1944 	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1945 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1946 	td->td_oncpu = cpuid;
1947 }
1948 
1949 /*
1950  * Adjust thread priorities as a result of a nice request.
1951  */
1952 void
1953 sched_nice(struct proc *p, int nice)
1954 {
1955 	struct thread *td;
1956 
1957 	PROC_LOCK_ASSERT(p, MA_OWNED);
1958 
1959 	p->p_nice = nice;
1960 	FOREACH_THREAD_IN_PROC(p, td) {
1961 		thread_lock(td);
1962 		sched_priority(td);
1963 		sched_prio(td, td->td_base_user_pri);
1964 		thread_unlock(td);
1965 	}
1966 }
1967 
1968 /*
1969  * Record the sleep time for the interactivity scorer.
1970  */
1971 void
1972 sched_sleep(struct thread *td, int prio)
1973 {
1974 
1975 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1976 
1977 	td->td_slptick = ticks;
1978 	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1979 		td->td_flags |= TDF_CANSWAP;
1980 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1981 		return;
1982 	if (static_boost == 1 && prio)
1983 		sched_prio(td, prio);
1984 	else if (static_boost && td->td_priority > static_boost)
1985 		sched_prio(td, static_boost);
1986 }
1987 
1988 /*
1989  * Schedule a thread to resume execution and record how long it voluntarily
1990  * slept.  We also update the pctcpu, interactivity, and priority.
1991  */
1992 void
1993 sched_wakeup(struct thread *td)
1994 {
1995 	struct td_sched *ts;
1996 	int slptick;
1997 
1998 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1999 	ts = td->td_sched;
2000 	td->td_flags &= ~TDF_CANSWAP;
2001 	/*
2002 	 * If we slept for more than a tick update our interactivity and
2003 	 * priority.
2004 	 */
2005 	slptick = td->td_slptick;
2006 	td->td_slptick = 0;
2007 	if (slptick && slptick != ticks) {
2008 		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2009 		sched_interact_update(td);
2010 		sched_pctcpu_update(ts, 0);
2011 	}
2012 	/* Reset the slice value after we sleep. */
2013 	ts->ts_slice = sched_slice;
2014 	sched_add(td, SRQ_BORING);
2015 }
2016 
2017 /*
2018  * Penalize the parent for creating a new child and initialize the child's
2019  * priority.
2020  */
2021 void
2022 sched_fork(struct thread *td, struct thread *child)
2023 {
2024 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2025 	sched_pctcpu_update(td->td_sched, 1);
2026 	sched_fork_thread(td, child);
2027 	/*
2028 	 * Penalize the parent and child for forking.
2029 	 */
2030 	sched_interact_fork(child);
2031 	sched_priority(child);
2032 	td->td_sched->ts_runtime += tickincr;
2033 	sched_interact_update(td);
2034 	sched_priority(td);
2035 }
2036 
2037 /*
2038  * Fork a new thread, may be within the same process.
2039  */
2040 void
2041 sched_fork_thread(struct thread *td, struct thread *child)
2042 {
2043 	struct td_sched *ts;
2044 	struct td_sched *ts2;
2045 
2046 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2047 	/*
2048 	 * Initialize child.
2049 	 */
2050 	ts = td->td_sched;
2051 	ts2 = child->td_sched;
2052 	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2053 	child->td_cpuset = cpuset_ref(td->td_cpuset);
2054 	ts2->ts_cpu = ts->ts_cpu;
2055 	ts2->ts_flags = 0;
2056 	/*
2057 	 * Grab our parents cpu estimation information.
2058 	 */
2059 	ts2->ts_ticks = ts->ts_ticks;
2060 	ts2->ts_ltick = ts->ts_ltick;
2061 	ts2->ts_ftick = ts->ts_ftick;
2062 	/*
2063 	 * Do not inherit any borrowed priority from the parent.
2064 	 */
2065 	child->td_priority = child->td_base_pri;
2066 	/*
2067 	 * And update interactivity score.
2068 	 */
2069 	ts2->ts_slptime = ts->ts_slptime;
2070 	ts2->ts_runtime = ts->ts_runtime;
2071 	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2072 #ifdef KTR
2073 	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2074 #endif
2075 }
2076 
2077 /*
2078  * Adjust the priority class of a thread.
2079  */
2080 void
2081 sched_class(struct thread *td, int class)
2082 {
2083 
2084 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2085 	if (td->td_pri_class == class)
2086 		return;
2087 	td->td_pri_class = class;
2088 }
2089 
2090 /*
2091  * Return some of the child's priority and interactivity to the parent.
2092  */
2093 void
2094 sched_exit(struct proc *p, struct thread *child)
2095 {
2096 	struct thread *td;
2097 
2098 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2099 	    "prio:%d", child->td_priority);
2100 	PROC_LOCK_ASSERT(p, MA_OWNED);
2101 	td = FIRST_THREAD_IN_PROC(p);
2102 	sched_exit_thread(td, child);
2103 }
2104 
2105 /*
2106  * Penalize another thread for the time spent on this one.  This helps to
2107  * worsen the priority and interactivity of processes which schedule batch
2108  * jobs such as make.  This has little effect on the make process itself but
2109  * causes new processes spawned by it to receive worse scores immediately.
2110  */
2111 void
2112 sched_exit_thread(struct thread *td, struct thread *child)
2113 {
2114 
2115 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2116 	    "prio:%d", child->td_priority);
2117 	/*
2118 	 * Give the child's runtime to the parent without returning the
2119 	 * sleep time as a penalty to the parent.  This causes shells that
2120 	 * launch expensive things to mark their children as expensive.
2121 	 */
2122 	thread_lock(td);
2123 	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2124 	sched_interact_update(td);
2125 	sched_priority(td);
2126 	thread_unlock(td);
2127 }
2128 
2129 void
2130 sched_preempt(struct thread *td)
2131 {
2132 	struct tdq *tdq;
2133 
2134 	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2135 
2136 	thread_lock(td);
2137 	tdq = TDQ_SELF();
2138 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2139 	tdq->tdq_ipipending = 0;
2140 	if (td->td_priority > tdq->tdq_lowpri) {
2141 		int flags;
2142 
2143 		flags = SW_INVOL | SW_PREEMPT;
2144 		if (td->td_critnest > 1)
2145 			td->td_owepreempt = 1;
2146 		else if (TD_IS_IDLETHREAD(td))
2147 			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2148 		else
2149 			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2150 	}
2151 	thread_unlock(td);
2152 }
2153 
2154 /*
2155  * Fix priorities on return to user-space.  Priorities may be elevated due
2156  * to static priorities in msleep() or similar.
2157  */
2158 void
2159 sched_userret(struct thread *td)
2160 {
2161 	/*
2162 	 * XXX we cheat slightly on the locking here to avoid locking in
2163 	 * the usual case.  Setting td_priority here is essentially an
2164 	 * incomplete workaround for not setting it properly elsewhere.
2165 	 * Now that some interrupt handlers are threads, not setting it
2166 	 * properly elsewhere can clobber it in the window between setting
2167 	 * it here and returning to user mode, so don't waste time setting
2168 	 * it perfectly here.
2169 	 */
2170 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2171 	    ("thread with borrowed priority returning to userland"));
2172 	if (td->td_priority != td->td_user_pri) {
2173 		thread_lock(td);
2174 		td->td_priority = td->td_user_pri;
2175 		td->td_base_pri = td->td_user_pri;
2176 		tdq_setlowpri(TDQ_SELF(), td);
2177 		thread_unlock(td);
2178         }
2179 }
2180 
2181 /*
2182  * Handle a stathz tick.  This is really only relevant for timeshare
2183  * threads.
2184  */
2185 void
2186 sched_clock(struct thread *td)
2187 {
2188 	struct tdq *tdq;
2189 	struct td_sched *ts;
2190 
2191 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2192 	tdq = TDQ_SELF();
2193 #ifdef SMP
2194 	/*
2195 	 * We run the long term load balancer infrequently on the first cpu.
2196 	 */
2197 	if (balance_tdq == tdq) {
2198 		if (balance_ticks && --balance_ticks == 0)
2199 			sched_balance();
2200 	}
2201 #endif
2202 	/*
2203 	 * Save the old switch count so we have a record of the last ticks
2204 	 * activity.   Initialize the new switch count based on our load.
2205 	 * If there is some activity seed it to reflect that.
2206 	 */
2207 	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2208 	tdq->tdq_switchcnt = tdq->tdq_load;
2209 	/*
2210 	 * Advance the insert index once for each tick to ensure that all
2211 	 * threads get a chance to run.
2212 	 */
2213 	if (tdq->tdq_idx == tdq->tdq_ridx) {
2214 		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2215 		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2216 			tdq->tdq_ridx = tdq->tdq_idx;
2217 	}
2218 	ts = td->td_sched;
2219 	sched_pctcpu_update(ts, 1);
2220 	if (td->td_pri_class & PRI_FIFO_BIT)
2221 		return;
2222 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2223 		/*
2224 		 * We used a tick; charge it to the thread so
2225 		 * that we can compute our interactivity.
2226 		 */
2227 		td->td_sched->ts_runtime += tickincr;
2228 		sched_interact_update(td);
2229 		sched_priority(td);
2230 	}
2231 	/*
2232 	 * We used up one time slice.
2233 	 */
2234 	if (--ts->ts_slice > 0)
2235 		return;
2236 	/*
2237 	 * We're out of time, force a requeue at userret().
2238 	 */
2239 	ts->ts_slice = sched_slice;
2240 	td->td_flags |= TDF_NEEDRESCHED;
2241 }
2242 
2243 /*
2244  * Called once per hz tick.
2245  */
2246 void
2247 sched_tick(int cnt)
2248 {
2249 
2250 }
2251 
2252 /*
2253  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2254  * cooperative idle threads.
2255  */
2256 int
2257 sched_runnable(void)
2258 {
2259 	struct tdq *tdq;
2260 	int load;
2261 
2262 	load = 1;
2263 
2264 	tdq = TDQ_SELF();
2265 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2266 		if (tdq->tdq_load > 0)
2267 			goto out;
2268 	} else
2269 		if (tdq->tdq_load - 1 > 0)
2270 			goto out;
2271 	load = 0;
2272 out:
2273 	return (load);
2274 }
2275 
2276 /*
2277  * Choose the highest priority thread to run.  The thread is removed from
2278  * the run-queue while running however the load remains.  For SMP we set
2279  * the tdq in the global idle bitmask if it idles here.
2280  */
2281 struct thread *
2282 sched_choose(void)
2283 {
2284 	struct thread *td;
2285 	struct tdq *tdq;
2286 
2287 	tdq = TDQ_SELF();
2288 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2289 	td = tdq_choose(tdq);
2290 	if (td) {
2291 		tdq_runq_rem(tdq, td);
2292 		tdq->tdq_lowpri = td->td_priority;
2293 		return (td);
2294 	}
2295 	tdq->tdq_lowpri = PRI_MAX_IDLE;
2296 	return (PCPU_GET(idlethread));
2297 }
2298 
2299 /*
2300  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2301  * we always request it once we exit a critical section.
2302  */
2303 static inline void
2304 sched_setpreempt(struct thread *td)
2305 {
2306 	struct thread *ctd;
2307 	int cpri;
2308 	int pri;
2309 
2310 	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2311 
2312 	ctd = curthread;
2313 	pri = td->td_priority;
2314 	cpri = ctd->td_priority;
2315 	if (pri < cpri)
2316 		ctd->td_flags |= TDF_NEEDRESCHED;
2317 	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2318 		return;
2319 	if (!sched_shouldpreempt(pri, cpri, 0))
2320 		return;
2321 	ctd->td_owepreempt = 1;
2322 }
2323 
2324 /*
2325  * Add a thread to a thread queue.  Select the appropriate runq and add the
2326  * thread to it.  This is the internal function called when the tdq is
2327  * predetermined.
2328  */
2329 void
2330 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2331 {
2332 
2333 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2334 	KASSERT((td->td_inhibitors == 0),
2335 	    ("sched_add: trying to run inhibited thread"));
2336 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2337 	    ("sched_add: bad thread state"));
2338 	KASSERT(td->td_flags & TDF_INMEM,
2339 	    ("sched_add: thread swapped out"));
2340 
2341 	if (td->td_priority < tdq->tdq_lowpri)
2342 		tdq->tdq_lowpri = td->td_priority;
2343 	tdq_runq_add(tdq, td, flags);
2344 	tdq_load_add(tdq, td);
2345 }
2346 
2347 /*
2348  * Select the target thread queue and add a thread to it.  Request
2349  * preemption or IPI a remote processor if required.
2350  */
2351 void
2352 sched_add(struct thread *td, int flags)
2353 {
2354 	struct tdq *tdq;
2355 #ifdef SMP
2356 	int cpu;
2357 #endif
2358 
2359 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2360 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2361 	    sched_tdname(curthread));
2362 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2363 	    KTR_ATTR_LINKED, sched_tdname(td));
2364 	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2365 	    flags & SRQ_PREEMPTED);
2366 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2367 	/*
2368 	 * Recalculate the priority before we select the target cpu or
2369 	 * run-queue.
2370 	 */
2371 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2372 		sched_priority(td);
2373 #ifdef SMP
2374 	/*
2375 	 * Pick the destination cpu and if it isn't ours transfer to the
2376 	 * target cpu.
2377 	 */
2378 	cpu = sched_pickcpu(td, flags);
2379 	tdq = sched_setcpu(td, cpu, flags);
2380 	tdq_add(tdq, td, flags);
2381 	if (cpu != PCPU_GET(cpuid)) {
2382 		tdq_notify(tdq, td);
2383 		return;
2384 	}
2385 #else
2386 	tdq = TDQ_SELF();
2387 	TDQ_LOCK(tdq);
2388 	/*
2389 	 * Now that the thread is moving to the run-queue, set the lock
2390 	 * to the scheduler's lock.
2391 	 */
2392 	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2393 	tdq_add(tdq, td, flags);
2394 #endif
2395 	if (!(flags & SRQ_YIELDING))
2396 		sched_setpreempt(td);
2397 }
2398 
2399 /*
2400  * Remove a thread from a run-queue without running it.  This is used
2401  * when we're stealing a thread from a remote queue.  Otherwise all threads
2402  * exit by calling sched_exit_thread() and sched_throw() themselves.
2403  */
2404 void
2405 sched_rem(struct thread *td)
2406 {
2407 	struct tdq *tdq;
2408 
2409 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2410 	    "prio:%d", td->td_priority);
2411 	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2412 	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2413 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2414 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2415 	KASSERT(TD_ON_RUNQ(td),
2416 	    ("sched_rem: thread not on run queue"));
2417 	tdq_runq_rem(tdq, td);
2418 	tdq_load_rem(tdq, td);
2419 	TD_SET_CAN_RUN(td);
2420 	if (td->td_priority == tdq->tdq_lowpri)
2421 		tdq_setlowpri(tdq, NULL);
2422 }
2423 
2424 /*
2425  * Fetch cpu utilization information.  Updates on demand.
2426  */
2427 fixpt_t
2428 sched_pctcpu(struct thread *td)
2429 {
2430 	fixpt_t pctcpu;
2431 	struct td_sched *ts;
2432 
2433 	pctcpu = 0;
2434 	ts = td->td_sched;
2435 	if (ts == NULL)
2436 		return (0);
2437 
2438 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2439 	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2440 	if (ts->ts_ticks) {
2441 		int rtick;
2442 
2443 		/* How many rtick per second ? */
2444 		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2445 		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2446 	}
2447 
2448 	return (pctcpu);
2449 }
2450 
2451 /*
2452  * Enforce affinity settings for a thread.  Called after adjustments to
2453  * cpumask.
2454  */
2455 void
2456 sched_affinity(struct thread *td)
2457 {
2458 #ifdef SMP
2459 	struct td_sched *ts;
2460 
2461 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2462 	ts = td->td_sched;
2463 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2464 		return;
2465 	if (TD_ON_RUNQ(td)) {
2466 		sched_rem(td);
2467 		sched_add(td, SRQ_BORING);
2468 		return;
2469 	}
2470 	if (!TD_IS_RUNNING(td))
2471 		return;
2472 	/*
2473 	 * Force a switch before returning to userspace.  If the
2474 	 * target thread is not running locally send an ipi to force
2475 	 * the issue.
2476 	 */
2477 	td->td_flags |= TDF_NEEDRESCHED;
2478 	if (td != curthread)
2479 		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2480 #endif
2481 }
2482 
2483 /*
2484  * Bind a thread to a target cpu.
2485  */
2486 void
2487 sched_bind(struct thread *td, int cpu)
2488 {
2489 	struct td_sched *ts;
2490 
2491 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2492 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2493 	ts = td->td_sched;
2494 	if (ts->ts_flags & TSF_BOUND)
2495 		sched_unbind(td);
2496 	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2497 	ts->ts_flags |= TSF_BOUND;
2498 	sched_pin();
2499 	if (PCPU_GET(cpuid) == cpu)
2500 		return;
2501 	ts->ts_cpu = cpu;
2502 	/* When we return from mi_switch we'll be on the correct cpu. */
2503 	mi_switch(SW_VOL, NULL);
2504 }
2505 
2506 /*
2507  * Release a bound thread.
2508  */
2509 void
2510 sched_unbind(struct thread *td)
2511 {
2512 	struct td_sched *ts;
2513 
2514 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2515 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2516 	ts = td->td_sched;
2517 	if ((ts->ts_flags & TSF_BOUND) == 0)
2518 		return;
2519 	ts->ts_flags &= ~TSF_BOUND;
2520 	sched_unpin();
2521 }
2522 
2523 int
2524 sched_is_bound(struct thread *td)
2525 {
2526 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2527 	return (td->td_sched->ts_flags & TSF_BOUND);
2528 }
2529 
2530 /*
2531  * Basic yield call.
2532  */
2533 void
2534 sched_relinquish(struct thread *td)
2535 {
2536 	thread_lock(td);
2537 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2538 	thread_unlock(td);
2539 }
2540 
2541 /*
2542  * Return the total system load.
2543  */
2544 int
2545 sched_load(void)
2546 {
2547 #ifdef SMP
2548 	int total;
2549 	int i;
2550 
2551 	total = 0;
2552 	CPU_FOREACH(i)
2553 		total += TDQ_CPU(i)->tdq_sysload;
2554 	return (total);
2555 #else
2556 	return (TDQ_SELF()->tdq_sysload);
2557 #endif
2558 }
2559 
2560 int
2561 sched_sizeof_proc(void)
2562 {
2563 	return (sizeof(struct proc));
2564 }
2565 
2566 int
2567 sched_sizeof_thread(void)
2568 {
2569 	return (sizeof(struct thread) + sizeof(struct td_sched));
2570 }
2571 
2572 #ifdef SMP
2573 #define	TDQ_IDLESPIN(tdq)						\
2574     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2575 #else
2576 #define	TDQ_IDLESPIN(tdq)	1
2577 #endif
2578 
2579 /*
2580  * The actual idle process.
2581  */
2582 void
2583 sched_idletd(void *dummy)
2584 {
2585 	struct thread *td;
2586 	struct tdq *tdq;
2587 	int switchcnt;
2588 	int i;
2589 
2590 	mtx_assert(&Giant, MA_NOTOWNED);
2591 	td = curthread;
2592 	tdq = TDQ_SELF();
2593 	for (;;) {
2594 #ifdef SMP
2595 		if (tdq_idled(tdq) == 0)
2596 			continue;
2597 #endif
2598 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2599 		/*
2600 		 * If we're switching very frequently, spin while checking
2601 		 * for load rather than entering a low power state that
2602 		 * may require an IPI.  However, don't do any busy
2603 		 * loops while on SMT machines as this simply steals
2604 		 * cycles from cores doing useful work.
2605 		 */
2606 		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2607 			for (i = 0; i < sched_idlespins; i++) {
2608 				if (tdq->tdq_load)
2609 					break;
2610 				cpu_spinwait();
2611 			}
2612 		}
2613 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2614 		if (tdq->tdq_load == 0) {
2615 			tdq->tdq_cpu_idle = 1;
2616 			if (tdq->tdq_load == 0) {
2617 				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2618 				tdq->tdq_switchcnt++;
2619 			}
2620 			tdq->tdq_cpu_idle = 0;
2621 		}
2622 		if (tdq->tdq_load) {
2623 			thread_lock(td);
2624 			mi_switch(SW_VOL | SWT_IDLE, NULL);
2625 			thread_unlock(td);
2626 		}
2627 	}
2628 }
2629 
2630 /*
2631  * A CPU is entering for the first time or a thread is exiting.
2632  */
2633 void
2634 sched_throw(struct thread *td)
2635 {
2636 	struct thread *newtd;
2637 	struct tdq *tdq;
2638 
2639 	tdq = TDQ_SELF();
2640 	if (td == NULL) {
2641 		/* Correct spinlock nesting and acquire the correct lock. */
2642 		TDQ_LOCK(tdq);
2643 		spinlock_exit();
2644 		PCPU_SET(switchtime, cpu_ticks());
2645 		PCPU_SET(switchticks, ticks);
2646 	} else {
2647 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2648 		tdq_load_rem(tdq, td);
2649 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2650 	}
2651 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2652 	newtd = choosethread();
2653 	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2654 	cpu_throw(td, newtd);		/* doesn't return */
2655 }
2656 
2657 /*
2658  * This is called from fork_exit().  Just acquire the correct locks and
2659  * let fork do the rest of the work.
2660  */
2661 void
2662 sched_fork_exit(struct thread *td)
2663 {
2664 	struct td_sched *ts;
2665 	struct tdq *tdq;
2666 	int cpuid;
2667 
2668 	/*
2669 	 * Finish setting up thread glue so that it begins execution in a
2670 	 * non-nested critical section with the scheduler lock held.
2671 	 */
2672 	cpuid = PCPU_GET(cpuid);
2673 	tdq = TDQ_CPU(cpuid);
2674 	ts = td->td_sched;
2675 	if (TD_IS_IDLETHREAD(td))
2676 		td->td_lock = TDQ_LOCKPTR(tdq);
2677 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2678 	td->td_oncpu = cpuid;
2679 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2680 	lock_profile_obtain_lock_success(
2681 	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2682 }
2683 
2684 /*
2685  * Create on first use to catch odd startup conditons.
2686  */
2687 char *
2688 sched_tdname(struct thread *td)
2689 {
2690 #ifdef KTR
2691 	struct td_sched *ts;
2692 
2693 	ts = td->td_sched;
2694 	if (ts->ts_name[0] == '\0')
2695 		snprintf(ts->ts_name, sizeof(ts->ts_name),
2696 		    "%s tid %d", td->td_name, td->td_tid);
2697 	return (ts->ts_name);
2698 #else
2699 	return (td->td_name);
2700 #endif
2701 }
2702 
2703 #ifdef KTR
2704 void
2705 sched_clear_tdname(struct thread *td)
2706 {
2707 	struct td_sched *ts;
2708 
2709 	ts = td->td_sched;
2710 	ts->ts_name[0] = '\0';
2711 }
2712 #endif
2713 
2714 #ifdef SMP
2715 
2716 /*
2717  * Build the CPU topology dump string. Is recursively called to collect
2718  * the topology tree.
2719  */
2720 static int
2721 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2722     int indent)
2723 {
2724 	char cpusetbuf[CPUSETBUFSIZ];
2725 	int i, first;
2726 
2727 	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2728 	    "", 1 + indent / 2, cg->cg_level);
2729 	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2730 	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2731 	first = TRUE;
2732 	for (i = 0; i < MAXCPU; i++) {
2733 		if (CPU_ISSET(i, &cg->cg_mask)) {
2734 			if (!first)
2735 				sbuf_printf(sb, ", ");
2736 			else
2737 				first = FALSE;
2738 			sbuf_printf(sb, "%d", i);
2739 		}
2740 	}
2741 	sbuf_printf(sb, "</cpu>\n");
2742 
2743 	if (cg->cg_flags != 0) {
2744 		sbuf_printf(sb, "%*s <flags>", indent, "");
2745 		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2746 			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2747 		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2748 			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2749 		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2750 			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2751 		sbuf_printf(sb, "</flags>\n");
2752 	}
2753 
2754 	if (cg->cg_children > 0) {
2755 		sbuf_printf(sb, "%*s <children>\n", indent, "");
2756 		for (i = 0; i < cg->cg_children; i++)
2757 			sysctl_kern_sched_topology_spec_internal(sb,
2758 			    &cg->cg_child[i], indent+2);
2759 		sbuf_printf(sb, "%*s </children>\n", indent, "");
2760 	}
2761 	sbuf_printf(sb, "%*s</group>\n", indent, "");
2762 	return (0);
2763 }
2764 
2765 /*
2766  * Sysctl handler for retrieving topology dump. It's a wrapper for
2767  * the recursive sysctl_kern_smp_topology_spec_internal().
2768  */
2769 static int
2770 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2771 {
2772 	struct sbuf *topo;
2773 	int err;
2774 
2775 	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2776 
2777 	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2778 	if (topo == NULL)
2779 		return (ENOMEM);
2780 
2781 	sbuf_printf(topo, "<groups>\n");
2782 	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2783 	sbuf_printf(topo, "</groups>\n");
2784 
2785 	if (err == 0) {
2786 		sbuf_finish(topo);
2787 		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2788 	}
2789 	sbuf_delete(topo);
2790 	return (err);
2791 }
2792 
2793 #endif
2794 
2795 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2796 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2797     "Scheduler name");
2798 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2799     "Slice size for timeshare threads");
2800 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2801      "Interactivity score threshold");
2802 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2803      0,"Min priority for preemption, lower priorities have greater precedence");
2804 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2805      0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2806 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2807      0,"Number of times idle will spin waiting for new work.");
2808 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2809      0,"Threshold before we will permit idle spinning.");
2810 #ifdef SMP
2811 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2812     "Number of hz ticks to keep thread affinity for");
2813 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2814     "Enables the long-term load balancer");
2815 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2816     &balance_interval, 0,
2817     "Average frequency in stathz ticks to run the long-term balancer");
2818 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2819     "Attempts to steal work from other cores before idling");
2820 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2821     "Minimum load on remote cpu before we'll steal");
2822 
2823 /* Retrieve SMP topology */
2824 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2825     CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2826     "XML dump of detected CPU topology");
2827 
2828 #endif
2829 
2830 /* ps compat.  All cpu percentages from ULE are weighted. */
2831 static int ccpu = 0;
2832 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2833