xref: /freebsd/sys/kern/sched_ule.c (revision 2824088536acef4b85fc0ad93c595deccbedb3af)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * This file implements the ULE scheduler.  ULE supports independent CPU
31  * run queues and fine grain locking.  It has superior interactive
32  * performance under load even on uni-processor systems.
33  *
34  * etymology:
35  *   ULE is the last three letters in schedule.  It owes its name to a
36  * generic user created for a scheduling system by Paul Mikesell at
37  * Isilon Systems and a general lack of creativity on the part of the author.
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_hwpmc_hooks.h"
44 #include "opt_sched.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kdb.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/limits.h>
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/resource.h>
56 #include <sys/resourcevar.h>
57 #include <sys/sched.h>
58 #include <sys/sdt.h>
59 #include <sys/smp.h>
60 #include <sys/sx.h>
61 #include <sys/sysctl.h>
62 #include <sys/sysproto.h>
63 #include <sys/turnstile.h>
64 #include <sys/umtx.h>
65 #include <sys/vmmeter.h>
66 #include <sys/cpuset.h>
67 #include <sys/sbuf.h>
68 
69 #ifdef HWPMC_HOOKS
70 #include <sys/pmckern.h>
71 #endif
72 
73 #ifdef KDTRACE_HOOKS
74 #include <sys/dtrace_bsd.h>
75 int				dtrace_vtime_active;
76 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
77 #endif
78 
79 #include <machine/cpu.h>
80 #include <machine/smp.h>
81 
82 #define	KTR_ULE	0
83 
84 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
85 #define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
86 #define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
87 
88 /*
89  * Thread scheduler specific section.  All fields are protected
90  * by the thread lock.
91  */
92 struct td_sched {
93 	struct runq	*ts_runq;	/* Run-queue we're queued on. */
94 	short		ts_flags;	/* TSF_* flags. */
95 	int		ts_cpu;		/* CPU that we have affinity for. */
96 	int		ts_rltick;	/* Real last tick, for affinity. */
97 	int		ts_slice;	/* Ticks of slice remaining. */
98 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
99 	u_int		ts_runtime;	/* Number of ticks we were running */
100 	int		ts_ltick;	/* Last tick that we were running on */
101 	int		ts_ftick;	/* First tick that we were running on */
102 	int		ts_ticks;	/* Tick count */
103 #ifdef KTR
104 	char		ts_name[TS_NAME_LEN];
105 #endif
106 };
107 /* flags kept in ts_flags */
108 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
109 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
110 
111 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
112 #define	THREAD_CAN_SCHED(td, cpu)	\
113     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
114 
115 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
116     sizeof(struct thread0_storage),
117     "increase struct thread0_storage.t0st_sched size");
118 
119 /*
120  * Priority ranges used for interactive and non-interactive timeshare
121  * threads.  The timeshare priorities are split up into four ranges.
122  * The first range handles interactive threads.  The last three ranges
123  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124  * ranges supporting nice values.
125  */
126 #define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127 #define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128 #define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129 
130 #define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131 #define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132 #define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133 #define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134 
135 /*
136  * Cpu percentage computation macros and defines.
137  *
138  * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139  * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140  * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142  * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143  * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144  */
145 #define	SCHED_TICK_SECS		10
146 #define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147 #define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148 #define	SCHED_TICK_SHIFT	10
149 #define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150 #define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151 
152 /*
153  * These macros determine priorities for non-interactive threads.  They are
154  * assigned a priority based on their recent cpu utilization as expressed
155  * by the ratio of ticks to the tick total.  NHALF priorities at the start
156  * and end of the MIN to MAX timeshare range are only reachable with negative
157  * or positive nice respectively.
158  *
159  * PRI_RANGE:	Priority range for utilization dependent priorities.
160  * PRI_NRESV:	Number of nice values.
161  * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162  * PRI_NICE:	Determines the part of the priority inherited from nice.
163  */
164 #define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166 #define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167 #define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168 #define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169 #define	SCHED_PRI_TICKS(ts)						\
170     (SCHED_TICK_HZ((ts)) /						\
171     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172 #define	SCHED_PRI_NICE(nice)	(nice)
173 
174 /*
175  * These determine the interactivity of a process.  Interactivity differs from
176  * cpu utilization in that it expresses the voluntary time slept vs time ran
177  * while cpu utilization includes all time not running.  This more accurately
178  * models the intent of the thread.
179  *
180  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181  *		before throttling back.
182  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184  * INTERACT_THRESH:	Threshold for placement on the current runq.
185  */
186 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188 #define	SCHED_INTERACT_MAX	(100)
189 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190 #define	SCHED_INTERACT_THRESH	(30)
191 
192 /*
193  * These parameters determine the slice behavior for batch work.
194  */
195 #define	SCHED_SLICE_DEFAULT_DIVISOR	10	/* ~94 ms, 12 stathz ticks. */
196 #define	SCHED_SLICE_MIN_DIVISOR		6	/* DEFAULT/MIN = ~16 ms. */
197 
198 /* Flags kept in td_flags. */
199 #define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
200 
201 /*
202  * tickincr:		Converts a stathz tick into a hz domain scaled by
203  *			the shift factor.  Without the shift the error rate
204  *			due to rounding would be unacceptably high.
205  * realstathz:		stathz is sometimes 0 and run off of hz.
206  * sched_slice:		Runtime of each thread before rescheduling.
207  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
208  */
209 static int sched_interact = SCHED_INTERACT_THRESH;
210 static int tickincr = 8 << SCHED_TICK_SHIFT;
211 static int realstathz = 127;	/* reset during boot. */
212 static int sched_slice = 10;	/* reset during boot. */
213 static int sched_slice_min = 1;	/* reset during boot. */
214 #ifdef PREEMPTION
215 #ifdef FULL_PREEMPTION
216 static int preempt_thresh = PRI_MAX_IDLE;
217 #else
218 static int preempt_thresh = PRI_MIN_KERN;
219 #endif
220 #else
221 static int preempt_thresh = 0;
222 #endif
223 static int static_boost = PRI_MIN_BATCH;
224 static int sched_idlespins = 10000;
225 static int sched_idlespinthresh = -1;
226 
227 /*
228  * tdq - per processor runqs and statistics.  All fields are protected by the
229  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
230  * locking in sched_pickcpu();
231  */
232 struct tdq {
233 	/*
234 	 * Ordered to improve efficiency of cpu_search() and switch().
235 	 * tdq_lock is padded to avoid false sharing with tdq_load and
236 	 * tdq_cpu_idle.
237 	 */
238 	struct mtx_padalign tdq_lock;		/* run queue lock. */
239 	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
240 	volatile int	tdq_load;		/* Aggregate load. */
241 	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
242 	int		tdq_sysload;		/* For loadavg, !ITHD load. */
243 	volatile int	tdq_transferable;	/* Transferable thread count. */
244 	volatile short	tdq_switchcnt;		/* Switches this tick. */
245 	volatile short	tdq_oldswitchcnt;	/* Switches last tick. */
246 	u_char		tdq_lowpri;		/* Lowest priority thread. */
247 	u_char		tdq_ipipending;		/* IPI pending. */
248 	u_char		tdq_idx;		/* Current insert index. */
249 	u_char		tdq_ridx;		/* Current removal index. */
250 	struct runq	tdq_realtime;		/* real-time run queue. */
251 	struct runq	tdq_timeshare;		/* timeshare run queue. */
252 	struct runq	tdq_idle;		/* Queue of IDLE threads. */
253 	char		tdq_name[TDQ_NAME_LEN];
254 #ifdef KTR
255 	char		tdq_loadname[TDQ_LOADNAME_LEN];
256 #endif
257 } __aligned(64);
258 
259 /* Idle thread states and config. */
260 #define	TDQ_RUNNING	1
261 #define	TDQ_IDLE	2
262 
263 #ifdef SMP
264 struct cpu_group *cpu_top;		/* CPU topology */
265 
266 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
267 #define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
268 
269 /*
270  * Run-time tunables.
271  */
272 static int rebalance = 1;
273 static int balance_interval = 128;	/* Default set in sched_initticks(). */
274 static int affinity;
275 static int steal_idle = 1;
276 static int steal_thresh = 2;
277 static int always_steal = 0;
278 static int trysteal_limit = 2;
279 
280 /*
281  * One thread queue per processor.
282  */
283 static struct tdq	tdq_cpu[MAXCPU];
284 static struct tdq	*balance_tdq;
285 static int balance_ticks;
286 static DPCPU_DEFINE(uint32_t, randomval);
287 
288 #define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
289 #define	TDQ_CPU(x)	(&tdq_cpu[(x)])
290 #define	TDQ_ID(x)	((int)((x) - tdq_cpu))
291 #else	/* !SMP */
292 static struct tdq	tdq_cpu;
293 
294 #define	TDQ_ID(x)	(0)
295 #define	TDQ_SELF()	(&tdq_cpu)
296 #define	TDQ_CPU(x)	(&tdq_cpu)
297 #endif
298 
299 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
300 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
301 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
302 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
303 #define	TDQ_LOCKPTR(t)		((struct mtx *)(&(t)->tdq_lock))
304 
305 static void sched_priority(struct thread *);
306 static void sched_thread_priority(struct thread *, u_char);
307 static int sched_interact_score(struct thread *);
308 static void sched_interact_update(struct thread *);
309 static void sched_interact_fork(struct thread *);
310 static void sched_pctcpu_update(struct td_sched *, int);
311 
312 /* Operations on per processor queues */
313 static struct thread *tdq_choose(struct tdq *);
314 static void tdq_setup(struct tdq *);
315 static void tdq_load_add(struct tdq *, struct thread *);
316 static void tdq_load_rem(struct tdq *, struct thread *);
317 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
318 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
319 static inline int sched_shouldpreempt(int, int, int);
320 void tdq_print(int cpu);
321 static void runq_print(struct runq *rq);
322 static void tdq_add(struct tdq *, struct thread *, int);
323 #ifdef SMP
324 static struct thread *tdq_move(struct tdq *, struct tdq *);
325 static int tdq_idled(struct tdq *);
326 static void tdq_notify(struct tdq *, struct thread *);
327 static struct thread *tdq_steal(struct tdq *, int);
328 static struct thread *runq_steal(struct runq *, int);
329 static int sched_pickcpu(struct thread *, int);
330 static void sched_balance(void);
331 static int sched_balance_pair(struct tdq *, struct tdq *);
332 static inline struct tdq *sched_setcpu(struct thread *, int, int);
333 static inline void thread_unblock_switch(struct thread *, struct mtx *);
334 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
335 static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
336 static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
337     struct cpu_group *cg, int indent);
338 #endif
339 
340 static void sched_setup(void *dummy);
341 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
342 
343 static void sched_initticks(void *dummy);
344 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
345     NULL);
346 
347 SDT_PROVIDER_DEFINE(sched);
348 
349 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
350     "struct proc *", "uint8_t");
351 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
352     "struct proc *", "void *");
353 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
354     "struct proc *", "void *", "int");
355 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
356     "struct proc *", "uint8_t", "struct thread *");
357 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
358 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
359     "struct proc *");
360 SDT_PROBE_DEFINE(sched, , , on__cpu);
361 SDT_PROBE_DEFINE(sched, , , remain__cpu);
362 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
363     "struct proc *");
364 
365 /*
366  * Print the threads waiting on a run-queue.
367  */
368 static void
369 runq_print(struct runq *rq)
370 {
371 	struct rqhead *rqh;
372 	struct thread *td;
373 	int pri;
374 	int j;
375 	int i;
376 
377 	for (i = 0; i < RQB_LEN; i++) {
378 		printf("\t\trunq bits %d 0x%zx\n",
379 		    i, rq->rq_status.rqb_bits[i]);
380 		for (j = 0; j < RQB_BPW; j++)
381 			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
382 				pri = j + (i << RQB_L2BPW);
383 				rqh = &rq->rq_queues[pri];
384 				TAILQ_FOREACH(td, rqh, td_runq) {
385 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
386 					    td, td->td_name, td->td_priority,
387 					    td->td_rqindex, pri);
388 				}
389 			}
390 	}
391 }
392 
393 /*
394  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
395  */
396 void
397 tdq_print(int cpu)
398 {
399 	struct tdq *tdq;
400 
401 	tdq = TDQ_CPU(cpu);
402 
403 	printf("tdq %d:\n", TDQ_ID(tdq));
404 	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
405 	printf("\tLock name:      %s\n", tdq->tdq_name);
406 	printf("\tload:           %d\n", tdq->tdq_load);
407 	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
408 	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
409 	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
410 	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
411 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
412 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
413 	printf("\trealtime runq:\n");
414 	runq_print(&tdq->tdq_realtime);
415 	printf("\ttimeshare runq:\n");
416 	runq_print(&tdq->tdq_timeshare);
417 	printf("\tidle runq:\n");
418 	runq_print(&tdq->tdq_idle);
419 }
420 
421 static inline int
422 sched_shouldpreempt(int pri, int cpri, int remote)
423 {
424 	/*
425 	 * If the new priority is not better than the current priority there is
426 	 * nothing to do.
427 	 */
428 	if (pri >= cpri)
429 		return (0);
430 	/*
431 	 * Always preempt idle.
432 	 */
433 	if (cpri >= PRI_MIN_IDLE)
434 		return (1);
435 	/*
436 	 * If preemption is disabled don't preempt others.
437 	 */
438 	if (preempt_thresh == 0)
439 		return (0);
440 	/*
441 	 * Preempt if we exceed the threshold.
442 	 */
443 	if (pri <= preempt_thresh)
444 		return (1);
445 	/*
446 	 * If we're interactive or better and there is non-interactive
447 	 * or worse running preempt only remote processors.
448 	 */
449 	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
450 		return (1);
451 	return (0);
452 }
453 
454 /*
455  * Add a thread to the actual run-queue.  Keeps transferable counts up to
456  * date with what is actually on the run-queue.  Selects the correct
457  * queue position for timeshare threads.
458  */
459 static __inline void
460 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
461 {
462 	struct td_sched *ts;
463 	u_char pri;
464 
465 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
466 	THREAD_LOCK_ASSERT(td, MA_OWNED);
467 
468 	pri = td->td_priority;
469 	ts = td_get_sched(td);
470 	TD_SET_RUNQ(td);
471 	if (THREAD_CAN_MIGRATE(td)) {
472 		tdq->tdq_transferable++;
473 		ts->ts_flags |= TSF_XFERABLE;
474 	}
475 	if (pri < PRI_MIN_BATCH) {
476 		ts->ts_runq = &tdq->tdq_realtime;
477 	} else if (pri <= PRI_MAX_BATCH) {
478 		ts->ts_runq = &tdq->tdq_timeshare;
479 		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
480 			("Invalid priority %d on timeshare runq", pri));
481 		/*
482 		 * This queue contains only priorities between MIN and MAX
483 		 * realtime.  Use the whole queue to represent these values.
484 		 */
485 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
486 			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
487 			pri = (pri + tdq->tdq_idx) % RQ_NQS;
488 			/*
489 			 * This effectively shortens the queue by one so we
490 			 * can have a one slot difference between idx and
491 			 * ridx while we wait for threads to drain.
492 			 */
493 			if (tdq->tdq_ridx != tdq->tdq_idx &&
494 			    pri == tdq->tdq_ridx)
495 				pri = (unsigned char)(pri - 1) % RQ_NQS;
496 		} else
497 			pri = tdq->tdq_ridx;
498 		runq_add_pri(ts->ts_runq, td, pri, flags);
499 		return;
500 	} else
501 		ts->ts_runq = &tdq->tdq_idle;
502 	runq_add(ts->ts_runq, td, flags);
503 }
504 
505 /*
506  * Remove a thread from a run-queue.  This typically happens when a thread
507  * is selected to run.  Running threads are not on the queue and the
508  * transferable count does not reflect them.
509  */
510 static __inline void
511 tdq_runq_rem(struct tdq *tdq, struct thread *td)
512 {
513 	struct td_sched *ts;
514 
515 	ts = td_get_sched(td);
516 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
517 	KASSERT(ts->ts_runq != NULL,
518 	    ("tdq_runq_remove: thread %p null ts_runq", td));
519 	if (ts->ts_flags & TSF_XFERABLE) {
520 		tdq->tdq_transferable--;
521 		ts->ts_flags &= ~TSF_XFERABLE;
522 	}
523 	if (ts->ts_runq == &tdq->tdq_timeshare) {
524 		if (tdq->tdq_idx != tdq->tdq_ridx)
525 			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
526 		else
527 			runq_remove_idx(ts->ts_runq, td, NULL);
528 	} else
529 		runq_remove(ts->ts_runq, td);
530 }
531 
532 /*
533  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
534  * for this thread to the referenced thread queue.
535  */
536 static void
537 tdq_load_add(struct tdq *tdq, struct thread *td)
538 {
539 
540 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
541 	THREAD_LOCK_ASSERT(td, MA_OWNED);
542 
543 	tdq->tdq_load++;
544 	if ((td->td_flags & TDF_NOLOAD) == 0)
545 		tdq->tdq_sysload++;
546 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
547 	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
548 }
549 
550 /*
551  * Remove the load from a thread that is transitioning to a sleep state or
552  * exiting.
553  */
554 static void
555 tdq_load_rem(struct tdq *tdq, struct thread *td)
556 {
557 
558 	THREAD_LOCK_ASSERT(td, MA_OWNED);
559 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
560 	KASSERT(tdq->tdq_load != 0,
561 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
562 
563 	tdq->tdq_load--;
564 	if ((td->td_flags & TDF_NOLOAD) == 0)
565 		tdq->tdq_sysload--;
566 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
567 	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
568 }
569 
570 /*
571  * Bound timeshare latency by decreasing slice size as load increases.  We
572  * consider the maximum latency as the sum of the threads waiting to run
573  * aside from curthread and target no more than sched_slice latency but
574  * no less than sched_slice_min runtime.
575  */
576 static inline int
577 tdq_slice(struct tdq *tdq)
578 {
579 	int load;
580 
581 	/*
582 	 * It is safe to use sys_load here because this is called from
583 	 * contexts where timeshare threads are running and so there
584 	 * cannot be higher priority load in the system.
585 	 */
586 	load = tdq->tdq_sysload - 1;
587 	if (load >= SCHED_SLICE_MIN_DIVISOR)
588 		return (sched_slice_min);
589 	if (load <= 1)
590 		return (sched_slice);
591 	return (sched_slice / load);
592 }
593 
594 /*
595  * Set lowpri to its exact value by searching the run-queue and
596  * evaluating curthread.  curthread may be passed as an optimization.
597  */
598 static void
599 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
600 {
601 	struct thread *td;
602 
603 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
604 	if (ctd == NULL)
605 		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
606 	td = tdq_choose(tdq);
607 	if (td == NULL || td->td_priority > ctd->td_priority)
608 		tdq->tdq_lowpri = ctd->td_priority;
609 	else
610 		tdq->tdq_lowpri = td->td_priority;
611 }
612 
613 #ifdef SMP
614 /*
615  * We need some randomness. Implement a classic Linear Congruential
616  * Generator X_{n+1}=(aX_n+c) mod m. These values are optimized for
617  * m = 2^32, a = 69069 and c = 5. We only return the upper 16 bits
618  * of the random state (in the low bits of our answer) to keep
619  * the maximum randomness.
620  */
621 static uint32_t
622 sched_random(void)
623 {
624 	uint32_t *rndptr;
625 
626 	rndptr = DPCPU_PTR(randomval);
627 	*rndptr = *rndptr * 69069 + 5;
628 
629 	return (*rndptr >> 16);
630 }
631 
632 struct cpu_search {
633 	cpuset_t cs_mask;
634 	u_int	cs_prefer;
635 	int	cs_pri;		/* Min priority for low. */
636 	int	cs_limit;	/* Max load for low, min load for high. */
637 	int	cs_cpu;
638 	int	cs_load;
639 };
640 
641 #define	CPU_SEARCH_LOWEST	0x1
642 #define	CPU_SEARCH_HIGHEST	0x2
643 #define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
644 
645 #define	CPUSET_FOREACH(cpu, mask)				\
646 	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
647 		if (CPU_ISSET(cpu, &mask))
648 
649 static __always_inline int cpu_search(const struct cpu_group *cg,
650     struct cpu_search *low, struct cpu_search *high, const int match);
651 int __noinline cpu_search_lowest(const struct cpu_group *cg,
652     struct cpu_search *low);
653 int __noinline cpu_search_highest(const struct cpu_group *cg,
654     struct cpu_search *high);
655 int __noinline cpu_search_both(const struct cpu_group *cg,
656     struct cpu_search *low, struct cpu_search *high);
657 
658 /*
659  * Search the tree of cpu_groups for the lowest or highest loaded cpu
660  * according to the match argument.  This routine actually compares the
661  * load on all paths through the tree and finds the least loaded cpu on
662  * the least loaded path, which may differ from the least loaded cpu in
663  * the system.  This balances work among caches and buses.
664  *
665  * This inline is instantiated in three forms below using constants for the
666  * match argument.  It is reduced to the minimum set for each case.  It is
667  * also recursive to the depth of the tree.
668  */
669 static __always_inline int
670 cpu_search(const struct cpu_group *cg, struct cpu_search *low,
671     struct cpu_search *high, const int match)
672 {
673 	struct cpu_search lgroup;
674 	struct cpu_search hgroup;
675 	cpuset_t cpumask;
676 	struct cpu_group *child;
677 	struct tdq *tdq;
678 	int cpu, i, hload, lload, load, total, rnd;
679 
680 	total = 0;
681 	cpumask = cg->cg_mask;
682 	if (match & CPU_SEARCH_LOWEST) {
683 		lload = INT_MAX;
684 		lgroup = *low;
685 	}
686 	if (match & CPU_SEARCH_HIGHEST) {
687 		hload = INT_MIN;
688 		hgroup = *high;
689 	}
690 
691 	/* Iterate through the child CPU groups and then remaining CPUs. */
692 	for (i = cg->cg_children, cpu = mp_maxid; ; ) {
693 		if (i == 0) {
694 #ifdef HAVE_INLINE_FFSL
695 			cpu = CPU_FFS(&cpumask) - 1;
696 #else
697 			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
698 				cpu--;
699 #endif
700 			if (cpu < 0)
701 				break;
702 			child = NULL;
703 		} else
704 			child = &cg->cg_child[i - 1];
705 
706 		if (match & CPU_SEARCH_LOWEST)
707 			lgroup.cs_cpu = -1;
708 		if (match & CPU_SEARCH_HIGHEST)
709 			hgroup.cs_cpu = -1;
710 		if (child) {			/* Handle child CPU group. */
711 			CPU_NAND(&cpumask, &child->cg_mask);
712 			switch (match) {
713 			case CPU_SEARCH_LOWEST:
714 				load = cpu_search_lowest(child, &lgroup);
715 				break;
716 			case CPU_SEARCH_HIGHEST:
717 				load = cpu_search_highest(child, &hgroup);
718 				break;
719 			case CPU_SEARCH_BOTH:
720 				load = cpu_search_both(child, &lgroup, &hgroup);
721 				break;
722 			}
723 		} else {			/* Handle child CPU. */
724 			CPU_CLR(cpu, &cpumask);
725 			tdq = TDQ_CPU(cpu);
726 			load = tdq->tdq_load * 256;
727 			rnd = sched_random() % 32;
728 			if (match & CPU_SEARCH_LOWEST) {
729 				if (cpu == low->cs_prefer)
730 					load -= 64;
731 				/* If that CPU is allowed and get data. */
732 				if (tdq->tdq_lowpri > lgroup.cs_pri &&
733 				    tdq->tdq_load <= lgroup.cs_limit &&
734 				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
735 					lgroup.cs_cpu = cpu;
736 					lgroup.cs_load = load - rnd;
737 				}
738 			}
739 			if (match & CPU_SEARCH_HIGHEST)
740 				if (tdq->tdq_load >= hgroup.cs_limit &&
741 				    tdq->tdq_transferable &&
742 				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
743 					hgroup.cs_cpu = cpu;
744 					hgroup.cs_load = load - rnd;
745 				}
746 		}
747 		total += load;
748 
749 		/* We have info about child item. Compare it. */
750 		if (match & CPU_SEARCH_LOWEST) {
751 			if (lgroup.cs_cpu >= 0 &&
752 			    (load < lload ||
753 			     (load == lload && lgroup.cs_load < low->cs_load))) {
754 				lload = load;
755 				low->cs_cpu = lgroup.cs_cpu;
756 				low->cs_load = lgroup.cs_load;
757 			}
758 		}
759 		if (match & CPU_SEARCH_HIGHEST)
760 			if (hgroup.cs_cpu >= 0 &&
761 			    (load > hload ||
762 			     (load == hload && hgroup.cs_load > high->cs_load))) {
763 				hload = load;
764 				high->cs_cpu = hgroup.cs_cpu;
765 				high->cs_load = hgroup.cs_load;
766 			}
767 		if (child) {
768 			i--;
769 			if (i == 0 && CPU_EMPTY(&cpumask))
770 				break;
771 		}
772 #ifndef HAVE_INLINE_FFSL
773 		else
774 			cpu--;
775 #endif
776 	}
777 	return (total);
778 }
779 
780 /*
781  * cpu_search instantiations must pass constants to maintain the inline
782  * optimization.
783  */
784 int
785 cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
786 {
787 	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
788 }
789 
790 int
791 cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
792 {
793 	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
794 }
795 
796 int
797 cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
798     struct cpu_search *high)
799 {
800 	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
801 }
802 
803 /*
804  * Find the cpu with the least load via the least loaded path that has a
805  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
806  * acceptable.
807  */
808 static inline int
809 sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
810     int prefer)
811 {
812 	struct cpu_search low;
813 
814 	low.cs_cpu = -1;
815 	low.cs_prefer = prefer;
816 	low.cs_mask = mask;
817 	low.cs_pri = pri;
818 	low.cs_limit = maxload;
819 	cpu_search_lowest(cg, &low);
820 	return low.cs_cpu;
821 }
822 
823 /*
824  * Find the cpu with the highest load via the highest loaded path.
825  */
826 static inline int
827 sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
828 {
829 	struct cpu_search high;
830 
831 	high.cs_cpu = -1;
832 	high.cs_mask = mask;
833 	high.cs_limit = minload;
834 	cpu_search_highest(cg, &high);
835 	return high.cs_cpu;
836 }
837 
838 static void
839 sched_balance_group(struct cpu_group *cg)
840 {
841 	cpuset_t hmask, lmask;
842 	int high, low, anylow;
843 
844 	CPU_FILL(&hmask);
845 	for (;;) {
846 		high = sched_highest(cg, hmask, 2);
847 		/* Stop if there is no more CPU with transferrable threads. */
848 		if (high == -1)
849 			break;
850 		CPU_CLR(high, &hmask);
851 		CPU_COPY(&hmask, &lmask);
852 		/* Stop if there is no more CPU left for low. */
853 		if (CPU_EMPTY(&lmask))
854 			break;
855 		anylow = 1;
856 nextlow:
857 		low = sched_lowest(cg, lmask, -1,
858 		    TDQ_CPU(high)->tdq_load - 1, high);
859 		/* Stop if we looked well and found no less loaded CPU. */
860 		if (anylow && low == -1)
861 			break;
862 		/* Go to next high if we found no less loaded CPU. */
863 		if (low == -1)
864 			continue;
865 		/* Transfer thread from high to low. */
866 		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
867 			/* CPU that got thread can no longer be a donor. */
868 			CPU_CLR(low, &hmask);
869 		} else {
870 			/*
871 			 * If failed, then there is no threads on high
872 			 * that can run on this low. Drop low from low
873 			 * mask and look for different one.
874 			 */
875 			CPU_CLR(low, &lmask);
876 			anylow = 0;
877 			goto nextlow;
878 		}
879 	}
880 }
881 
882 static void
883 sched_balance(void)
884 {
885 	struct tdq *tdq;
886 
887 	if (smp_started == 0 || rebalance == 0)
888 		return;
889 
890 	balance_ticks = max(balance_interval / 2, 1) +
891 	    (sched_random() % balance_interval);
892 	tdq = TDQ_SELF();
893 	TDQ_UNLOCK(tdq);
894 	sched_balance_group(cpu_top);
895 	TDQ_LOCK(tdq);
896 }
897 
898 /*
899  * Lock two thread queues using their address to maintain lock order.
900  */
901 static void
902 tdq_lock_pair(struct tdq *one, struct tdq *two)
903 {
904 	if (one < two) {
905 		TDQ_LOCK(one);
906 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
907 	} else {
908 		TDQ_LOCK(two);
909 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
910 	}
911 }
912 
913 /*
914  * Unlock two thread queues.  Order is not important here.
915  */
916 static void
917 tdq_unlock_pair(struct tdq *one, struct tdq *two)
918 {
919 	TDQ_UNLOCK(one);
920 	TDQ_UNLOCK(two);
921 }
922 
923 /*
924  * Transfer load between two imbalanced thread queues.
925  */
926 static int
927 sched_balance_pair(struct tdq *high, struct tdq *low)
928 {
929 	struct thread *td;
930 	int cpu;
931 
932 	tdq_lock_pair(high, low);
933 	td = NULL;
934 	/*
935 	 * Transfer a thread from high to low.
936 	 */
937 	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
938 	    (td = tdq_move(high, low)) != NULL) {
939 		/*
940 		 * In case the target isn't the current cpu notify it of the
941 		 * new load, possibly sending an IPI to force it to reschedule.
942 		 */
943 		cpu = TDQ_ID(low);
944 		if (cpu != PCPU_GET(cpuid))
945 			tdq_notify(low, td);
946 	}
947 	tdq_unlock_pair(high, low);
948 	return (td != NULL);
949 }
950 
951 /*
952  * Move a thread from one thread queue to another.
953  */
954 static struct thread *
955 tdq_move(struct tdq *from, struct tdq *to)
956 {
957 	struct td_sched *ts;
958 	struct thread *td;
959 	struct tdq *tdq;
960 	int cpu;
961 
962 	TDQ_LOCK_ASSERT(from, MA_OWNED);
963 	TDQ_LOCK_ASSERT(to, MA_OWNED);
964 
965 	tdq = from;
966 	cpu = TDQ_ID(to);
967 	td = tdq_steal(tdq, cpu);
968 	if (td == NULL)
969 		return (NULL);
970 	ts = td_get_sched(td);
971 	/*
972 	 * Although the run queue is locked the thread may be blocked.  Lock
973 	 * it to clear this and acquire the run-queue lock.
974 	 */
975 	thread_lock(td);
976 	/* Drop recursive lock on from acquired via thread_lock(). */
977 	TDQ_UNLOCK(from);
978 	sched_rem(td);
979 	ts->ts_cpu = cpu;
980 	td->td_lock = TDQ_LOCKPTR(to);
981 	tdq_add(to, td, SRQ_YIELDING);
982 	return (td);
983 }
984 
985 /*
986  * This tdq has idled.  Try to steal a thread from another cpu and switch
987  * to it.
988  */
989 static int
990 tdq_idled(struct tdq *tdq)
991 {
992 	struct cpu_group *cg;
993 	struct tdq *steal;
994 	cpuset_t mask;
995 	int cpu, switchcnt;
996 
997 	if (smp_started == 0 || steal_idle == 0 || tdq->tdq_cg == NULL)
998 		return (1);
999 	CPU_FILL(&mask);
1000 	CPU_CLR(PCPU_GET(cpuid), &mask);
1001     restart:
1002 	switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
1003 	for (cg = tdq->tdq_cg; ; ) {
1004 		cpu = sched_highest(cg, mask, steal_thresh);
1005 		/*
1006 		 * We were assigned a thread but not preempted.  Returning
1007 		 * 0 here will cause our caller to switch to it.
1008 		 */
1009 		if (tdq->tdq_load)
1010 			return (0);
1011 		if (cpu == -1) {
1012 			cg = cg->cg_parent;
1013 			if (cg == NULL)
1014 				return (1);
1015 			continue;
1016 		}
1017 		steal = TDQ_CPU(cpu);
1018 		/*
1019 		 * The data returned by sched_highest() is stale and
1020 		 * the chosen CPU no longer has an eligible thread.
1021 		 *
1022 		 * Testing this ahead of tdq_lock_pair() only catches
1023 		 * this situation about 20% of the time on an 8 core
1024 		 * 16 thread Ryzen 7, but it still helps performance.
1025 		 */
1026 		if (steal->tdq_load < steal_thresh ||
1027 		    steal->tdq_transferable == 0)
1028 			goto restart;
1029 		tdq_lock_pair(tdq, steal);
1030 		/*
1031 		 * We were assigned a thread while waiting for the locks.
1032 		 * Switch to it now instead of stealing a thread.
1033 		 */
1034 		if (tdq->tdq_load)
1035 			break;
1036 		/*
1037 		 * The data returned by sched_highest() is stale and
1038 		 * the chosen CPU no longer has an eligible thread, or
1039 		 * we were preempted and the CPU loading info may be out
1040 		 * of date.  The latter is rare.  In either case restart
1041 		 * the search.
1042 		 */
1043 		if (steal->tdq_load < steal_thresh ||
1044 		    steal->tdq_transferable == 0 ||
1045 		    switchcnt != tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt) {
1046 			tdq_unlock_pair(tdq, steal);
1047 			goto restart;
1048 		}
1049 		/*
1050 		 * Steal the thread and switch to it.
1051 		 */
1052 		if (tdq_move(steal, tdq) != NULL)
1053 			break;
1054 		/*
1055 		 * We failed to acquire a thread even though it looked
1056 		 * like one was available.  This could be due to affinity
1057 		 * restrictions or for other reasons.  Loop again after
1058 		 * removing this CPU from the set.  The restart logic
1059 		 * above does not restore this CPU to the set due to the
1060 		 * likelyhood of failing here again.
1061 		 */
1062 		CPU_CLR(cpu, &mask);
1063 		tdq_unlock_pair(tdq, steal);
1064 	}
1065 	TDQ_UNLOCK(steal);
1066 	mi_switch(SW_VOL | SWT_IDLE, NULL);
1067 	thread_unlock(curthread);
1068 	return (0);
1069 }
1070 
1071 /*
1072  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1073  */
1074 static void
1075 tdq_notify(struct tdq *tdq, struct thread *td)
1076 {
1077 	struct thread *ctd;
1078 	int pri;
1079 	int cpu;
1080 
1081 	if (tdq->tdq_ipipending)
1082 		return;
1083 	cpu = td_get_sched(td)->ts_cpu;
1084 	pri = td->td_priority;
1085 	ctd = pcpu_find(cpu)->pc_curthread;
1086 	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1087 		return;
1088 
1089 	/*
1090 	 * Make sure that our caller's earlier update to tdq_load is
1091 	 * globally visible before we read tdq_cpu_idle.  Idle thread
1092 	 * accesses both of them without locks, and the order is important.
1093 	 */
1094 	atomic_thread_fence_seq_cst();
1095 
1096 	if (TD_IS_IDLETHREAD(ctd)) {
1097 		/*
1098 		 * If the MD code has an idle wakeup routine try that before
1099 		 * falling back to IPI.
1100 		 */
1101 		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1102 			return;
1103 	}
1104 	tdq->tdq_ipipending = 1;
1105 	ipi_cpu(cpu, IPI_PREEMPT);
1106 }
1107 
1108 /*
1109  * Steals load from a timeshare queue.  Honors the rotating queue head
1110  * index.
1111  */
1112 static struct thread *
1113 runq_steal_from(struct runq *rq, int cpu, u_char start)
1114 {
1115 	struct rqbits *rqb;
1116 	struct rqhead *rqh;
1117 	struct thread *td, *first;
1118 	int bit;
1119 	int i;
1120 
1121 	rqb = &rq->rq_status;
1122 	bit = start & (RQB_BPW -1);
1123 	first = NULL;
1124 again:
1125 	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1126 		if (rqb->rqb_bits[i] == 0)
1127 			continue;
1128 		if (bit == 0)
1129 			bit = RQB_FFS(rqb->rqb_bits[i]);
1130 		for (; bit < RQB_BPW; bit++) {
1131 			if ((rqb->rqb_bits[i] & (1ul << bit)) == 0)
1132 				continue;
1133 			rqh = &rq->rq_queues[bit + (i << RQB_L2BPW)];
1134 			TAILQ_FOREACH(td, rqh, td_runq) {
1135 				if (first && THREAD_CAN_MIGRATE(td) &&
1136 				    THREAD_CAN_SCHED(td, cpu))
1137 					return (td);
1138 				first = td;
1139 			}
1140 		}
1141 	}
1142 	if (start != 0) {
1143 		start = 0;
1144 		goto again;
1145 	}
1146 
1147 	if (first && THREAD_CAN_MIGRATE(first) &&
1148 	    THREAD_CAN_SCHED(first, cpu))
1149 		return (first);
1150 	return (NULL);
1151 }
1152 
1153 /*
1154  * Steals load from a standard linear queue.
1155  */
1156 static struct thread *
1157 runq_steal(struct runq *rq, int cpu)
1158 {
1159 	struct rqhead *rqh;
1160 	struct rqbits *rqb;
1161 	struct thread *td;
1162 	int word;
1163 	int bit;
1164 
1165 	rqb = &rq->rq_status;
1166 	for (word = 0; word < RQB_LEN; word++) {
1167 		if (rqb->rqb_bits[word] == 0)
1168 			continue;
1169 		for (bit = 0; bit < RQB_BPW; bit++) {
1170 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1171 				continue;
1172 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1173 			TAILQ_FOREACH(td, rqh, td_runq)
1174 				if (THREAD_CAN_MIGRATE(td) &&
1175 				    THREAD_CAN_SCHED(td, cpu))
1176 					return (td);
1177 		}
1178 	}
1179 	return (NULL);
1180 }
1181 
1182 /*
1183  * Attempt to steal a thread in priority order from a thread queue.
1184  */
1185 static struct thread *
1186 tdq_steal(struct tdq *tdq, int cpu)
1187 {
1188 	struct thread *td;
1189 
1190 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1191 	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1192 		return (td);
1193 	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1194 	    cpu, tdq->tdq_ridx)) != NULL)
1195 		return (td);
1196 	return (runq_steal(&tdq->tdq_idle, cpu));
1197 }
1198 
1199 /*
1200  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1201  * current lock and returns with the assigned queue locked.
1202  */
1203 static inline struct tdq *
1204 sched_setcpu(struct thread *td, int cpu, int flags)
1205 {
1206 
1207 	struct tdq *tdq;
1208 
1209 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1210 	tdq = TDQ_CPU(cpu);
1211 	td_get_sched(td)->ts_cpu = cpu;
1212 	/*
1213 	 * If the lock matches just return the queue.
1214 	 */
1215 	if (td->td_lock == TDQ_LOCKPTR(tdq))
1216 		return (tdq);
1217 #ifdef notyet
1218 	/*
1219 	 * If the thread isn't running its lockptr is a
1220 	 * turnstile or a sleepqueue.  We can just lock_set without
1221 	 * blocking.
1222 	 */
1223 	if (TD_CAN_RUN(td)) {
1224 		TDQ_LOCK(tdq);
1225 		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1226 		return (tdq);
1227 	}
1228 #endif
1229 	/*
1230 	 * The hard case, migration, we need to block the thread first to
1231 	 * prevent order reversals with other cpus locks.
1232 	 */
1233 	spinlock_enter();
1234 	thread_lock_block(td);
1235 	TDQ_LOCK(tdq);
1236 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1237 	spinlock_exit();
1238 	return (tdq);
1239 }
1240 
1241 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1242 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1243 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1244 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1245 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1246 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1247 
1248 static int
1249 sched_pickcpu(struct thread *td, int flags)
1250 {
1251 	struct cpu_group *cg, *ccg;
1252 	struct td_sched *ts;
1253 	struct tdq *tdq;
1254 	cpuset_t mask;
1255 	int cpu, pri, self;
1256 
1257 	self = PCPU_GET(cpuid);
1258 	ts = td_get_sched(td);
1259 	KASSERT(!CPU_ABSENT(ts->ts_cpu), ("sched_pickcpu: Start scheduler on "
1260 	    "absent CPU %d for thread %s.", ts->ts_cpu, td->td_name));
1261 	if (smp_started == 0)
1262 		return (self);
1263 	/*
1264 	 * Don't migrate a running thread from sched_switch().
1265 	 */
1266 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1267 		return (ts->ts_cpu);
1268 	/*
1269 	 * Prefer to run interrupt threads on the processors that generate
1270 	 * the interrupt.
1271 	 */
1272 	pri = td->td_priority;
1273 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1274 	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1275 		SCHED_STAT_INC(pickcpu_intrbind);
1276 		ts->ts_cpu = self;
1277 		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1278 			SCHED_STAT_INC(pickcpu_affinity);
1279 			return (ts->ts_cpu);
1280 		}
1281 	}
1282 	/*
1283 	 * If the thread can run on the last cpu and the affinity has not
1284 	 * expired and it is idle, run it there.
1285 	 */
1286 	tdq = TDQ_CPU(ts->ts_cpu);
1287 	cg = tdq->tdq_cg;
1288 	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1289 	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1290 	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1291 		if (cg->cg_flags & CG_FLAG_THREAD) {
1292 			CPUSET_FOREACH(cpu, cg->cg_mask) {
1293 				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1294 					break;
1295 			}
1296 		} else
1297 			cpu = INT_MAX;
1298 		if (cpu > mp_maxid) {
1299 			SCHED_STAT_INC(pickcpu_idle_affinity);
1300 			return (ts->ts_cpu);
1301 		}
1302 	}
1303 	/*
1304 	 * Search for the last level cache CPU group in the tree.
1305 	 * Skip caches with expired affinity time and SMT groups.
1306 	 * Affinity to higher level caches will be handled less aggressively.
1307 	 */
1308 	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1309 		if (cg->cg_flags & CG_FLAG_THREAD)
1310 			continue;
1311 		if (!SCHED_AFFINITY(ts, cg->cg_level))
1312 			continue;
1313 		ccg = cg;
1314 	}
1315 	if (ccg != NULL)
1316 		cg = ccg;
1317 	cpu = -1;
1318 	/* Search the group for the less loaded idle CPU we can run now. */
1319 	mask = td->td_cpuset->cs_mask;
1320 	if (cg != NULL && cg != cpu_top &&
1321 	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1322 		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1323 		    INT_MAX, ts->ts_cpu);
1324 	/* Search globally for the less loaded CPU we can run now. */
1325 	if (cpu == -1)
1326 		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1327 	/* Search globally for the less loaded CPU. */
1328 	if (cpu == -1)
1329 		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1330 	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1331 	KASSERT(!CPU_ABSENT(cpu), ("sched_pickcpu: Picked absent CPU %d.", cpu));
1332 	/*
1333 	 * Compare the lowest loaded cpu to current cpu.
1334 	 */
1335 	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1336 	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1337 	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1338 		SCHED_STAT_INC(pickcpu_local);
1339 		cpu = self;
1340 	} else
1341 		SCHED_STAT_INC(pickcpu_lowest);
1342 	if (cpu != ts->ts_cpu)
1343 		SCHED_STAT_INC(pickcpu_migration);
1344 	return (cpu);
1345 }
1346 #endif
1347 
1348 /*
1349  * Pick the highest priority task we have and return it.
1350  */
1351 static struct thread *
1352 tdq_choose(struct tdq *tdq)
1353 {
1354 	struct thread *td;
1355 
1356 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1357 	td = runq_choose(&tdq->tdq_realtime);
1358 	if (td != NULL)
1359 		return (td);
1360 	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1361 	if (td != NULL) {
1362 		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1363 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1364 		    td->td_priority));
1365 		return (td);
1366 	}
1367 	td = runq_choose(&tdq->tdq_idle);
1368 	if (td != NULL) {
1369 		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1370 		    ("tdq_choose: Invalid priority on idle queue %d",
1371 		    td->td_priority));
1372 		return (td);
1373 	}
1374 
1375 	return (NULL);
1376 }
1377 
1378 /*
1379  * Initialize a thread queue.
1380  */
1381 static void
1382 tdq_setup(struct tdq *tdq)
1383 {
1384 
1385 	if (bootverbose)
1386 		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1387 	runq_init(&tdq->tdq_realtime);
1388 	runq_init(&tdq->tdq_timeshare);
1389 	runq_init(&tdq->tdq_idle);
1390 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1391 	    "sched lock %d", (int)TDQ_ID(tdq));
1392 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1393 	    MTX_SPIN | MTX_RECURSE);
1394 #ifdef KTR
1395 	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1396 	    "CPU %d load", (int)TDQ_ID(tdq));
1397 #endif
1398 }
1399 
1400 #ifdef SMP
1401 static void
1402 sched_setup_smp(void)
1403 {
1404 	struct tdq *tdq;
1405 	int i;
1406 
1407 	cpu_top = smp_topo();
1408 	CPU_FOREACH(i) {
1409 		tdq = TDQ_CPU(i);
1410 		tdq_setup(tdq);
1411 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1412 		if (tdq->tdq_cg == NULL)
1413 			panic("Can't find cpu group for %d\n", i);
1414 	}
1415 	balance_tdq = TDQ_SELF();
1416 	sched_balance();
1417 }
1418 #endif
1419 
1420 /*
1421  * Setup the thread queues and initialize the topology based on MD
1422  * information.
1423  */
1424 static void
1425 sched_setup(void *dummy)
1426 {
1427 	struct tdq *tdq;
1428 
1429 	tdq = TDQ_SELF();
1430 #ifdef SMP
1431 	sched_setup_smp();
1432 #else
1433 	tdq_setup(tdq);
1434 #endif
1435 
1436 	/* Add thread0's load since it's running. */
1437 	TDQ_LOCK(tdq);
1438 	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1439 	tdq_load_add(tdq, &thread0);
1440 	tdq->tdq_lowpri = thread0.td_priority;
1441 	TDQ_UNLOCK(tdq);
1442 }
1443 
1444 /*
1445  * This routine determines time constants after stathz and hz are setup.
1446  */
1447 /* ARGSUSED */
1448 static void
1449 sched_initticks(void *dummy)
1450 {
1451 	int incr;
1452 
1453 	realstathz = stathz ? stathz : hz;
1454 	sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
1455 	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
1456 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1457 	    realstathz);
1458 
1459 	/*
1460 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1461 	 * hz not being evenly divisible by stathz on all platforms.
1462 	 */
1463 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1464 	/*
1465 	 * This does not work for values of stathz that are more than
1466 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1467 	 */
1468 	if (incr == 0)
1469 		incr = 1;
1470 	tickincr = incr;
1471 #ifdef SMP
1472 	/*
1473 	 * Set the default balance interval now that we know
1474 	 * what realstathz is.
1475 	 */
1476 	balance_interval = realstathz;
1477 	affinity = SCHED_AFFINITY_DEFAULT;
1478 #endif
1479 	if (sched_idlespinthresh < 0)
1480 		sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
1481 }
1482 
1483 
1484 /*
1485  * This is the core of the interactivity algorithm.  Determines a score based
1486  * on past behavior.  It is the ratio of sleep time to run time scaled to
1487  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1488  * differs from the cpu usage because it does not account for time spent
1489  * waiting on a run-queue.  Would be prettier if we had floating point.
1490  *
1491  * When a thread's sleep time is greater than its run time the
1492  * calculation is:
1493  *
1494  *                           scaling factor
1495  * interactivity score =  ---------------------
1496  *                        sleep time / run time
1497  *
1498  *
1499  * When a thread's run time is greater than its sleep time the
1500  * calculation is:
1501  *
1502  *                           scaling factor
1503  * interactivity score =  ---------------------    + scaling factor
1504  *                        run time / sleep time
1505  */
1506 static int
1507 sched_interact_score(struct thread *td)
1508 {
1509 	struct td_sched *ts;
1510 	int div;
1511 
1512 	ts = td_get_sched(td);
1513 	/*
1514 	 * The score is only needed if this is likely to be an interactive
1515 	 * task.  Don't go through the expense of computing it if there's
1516 	 * no chance.
1517 	 */
1518 	if (sched_interact <= SCHED_INTERACT_HALF &&
1519 		ts->ts_runtime >= ts->ts_slptime)
1520 			return (SCHED_INTERACT_HALF);
1521 
1522 	if (ts->ts_runtime > ts->ts_slptime) {
1523 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1524 		return (SCHED_INTERACT_HALF +
1525 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1526 	}
1527 	if (ts->ts_slptime > ts->ts_runtime) {
1528 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1529 		return (ts->ts_runtime / div);
1530 	}
1531 	/* runtime == slptime */
1532 	if (ts->ts_runtime)
1533 		return (SCHED_INTERACT_HALF);
1534 
1535 	/*
1536 	 * This can happen if slptime and runtime are 0.
1537 	 */
1538 	return (0);
1539 
1540 }
1541 
1542 /*
1543  * Scale the scheduling priority according to the "interactivity" of this
1544  * process.
1545  */
1546 static void
1547 sched_priority(struct thread *td)
1548 {
1549 	int score;
1550 	int pri;
1551 
1552 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1553 		return;
1554 	/*
1555 	 * If the score is interactive we place the thread in the realtime
1556 	 * queue with a priority that is less than kernel and interrupt
1557 	 * priorities.  These threads are not subject to nice restrictions.
1558 	 *
1559 	 * Scores greater than this are placed on the normal timeshare queue
1560 	 * where the priority is partially decided by the most recent cpu
1561 	 * utilization and the rest is decided by nice value.
1562 	 *
1563 	 * The nice value of the process has a linear effect on the calculated
1564 	 * score.  Negative nice values make it easier for a thread to be
1565 	 * considered interactive.
1566 	 */
1567 	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1568 	if (score < sched_interact) {
1569 		pri = PRI_MIN_INTERACT;
1570 		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1571 		    sched_interact) * score;
1572 		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1573 		    ("sched_priority: invalid interactive priority %d score %d",
1574 		    pri, score));
1575 	} else {
1576 		pri = SCHED_PRI_MIN;
1577 		if (td_get_sched(td)->ts_ticks)
1578 			pri += min(SCHED_PRI_TICKS(td_get_sched(td)),
1579 			    SCHED_PRI_RANGE - 1);
1580 		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1581 		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1582 		    ("sched_priority: invalid priority %d: nice %d, "
1583 		    "ticks %d ftick %d ltick %d tick pri %d",
1584 		    pri, td->td_proc->p_nice, td_get_sched(td)->ts_ticks,
1585 		    td_get_sched(td)->ts_ftick, td_get_sched(td)->ts_ltick,
1586 		    SCHED_PRI_TICKS(td_get_sched(td))));
1587 	}
1588 	sched_user_prio(td, pri);
1589 
1590 	return;
1591 }
1592 
1593 /*
1594  * This routine enforces a maximum limit on the amount of scheduling history
1595  * kept.  It is called after either the slptime or runtime is adjusted.  This
1596  * function is ugly due to integer math.
1597  */
1598 static void
1599 sched_interact_update(struct thread *td)
1600 {
1601 	struct td_sched *ts;
1602 	u_int sum;
1603 
1604 	ts = td_get_sched(td);
1605 	sum = ts->ts_runtime + ts->ts_slptime;
1606 	if (sum < SCHED_SLP_RUN_MAX)
1607 		return;
1608 	/*
1609 	 * This only happens from two places:
1610 	 * 1) We have added an unusual amount of run time from fork_exit.
1611 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1612 	 */
1613 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1614 		if (ts->ts_runtime > ts->ts_slptime) {
1615 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1616 			ts->ts_slptime = 1;
1617 		} else {
1618 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1619 			ts->ts_runtime = 1;
1620 		}
1621 		return;
1622 	}
1623 	/*
1624 	 * If we have exceeded by more than 1/5th then the algorithm below
1625 	 * will not bring us back into range.  Dividing by two here forces
1626 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1627 	 */
1628 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1629 		ts->ts_runtime /= 2;
1630 		ts->ts_slptime /= 2;
1631 		return;
1632 	}
1633 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1634 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1635 }
1636 
1637 /*
1638  * Scale back the interactivity history when a child thread is created.  The
1639  * history is inherited from the parent but the thread may behave totally
1640  * differently.  For example, a shell spawning a compiler process.  We want
1641  * to learn that the compiler is behaving badly very quickly.
1642  */
1643 static void
1644 sched_interact_fork(struct thread *td)
1645 {
1646 	struct td_sched *ts;
1647 	int ratio;
1648 	int sum;
1649 
1650 	ts = td_get_sched(td);
1651 	sum = ts->ts_runtime + ts->ts_slptime;
1652 	if (sum > SCHED_SLP_RUN_FORK) {
1653 		ratio = sum / SCHED_SLP_RUN_FORK;
1654 		ts->ts_runtime /= ratio;
1655 		ts->ts_slptime /= ratio;
1656 	}
1657 }
1658 
1659 /*
1660  * Called from proc0_init() to setup the scheduler fields.
1661  */
1662 void
1663 schedinit(void)
1664 {
1665 	struct td_sched *ts0;
1666 
1667 	/*
1668 	 * Set up the scheduler specific parts of thread0.
1669 	 */
1670 	ts0 = td_get_sched(&thread0);
1671 	ts0->ts_ltick = ticks;
1672 	ts0->ts_ftick = ticks;
1673 	ts0->ts_slice = 0;
1674 	ts0->ts_cpu = curcpu;	/* set valid CPU number */
1675 }
1676 
1677 /*
1678  * This is only somewhat accurate since given many processes of the same
1679  * priority they will switch when their slices run out, which will be
1680  * at most sched_slice stathz ticks.
1681  */
1682 int
1683 sched_rr_interval(void)
1684 {
1685 
1686 	/* Convert sched_slice from stathz to hz. */
1687 	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1688 }
1689 
1690 /*
1691  * Update the percent cpu tracking information when it is requested or
1692  * the total history exceeds the maximum.  We keep a sliding history of
1693  * tick counts that slowly decays.  This is less precise than the 4BSD
1694  * mechanism since it happens with less regular and frequent events.
1695  */
1696 static void
1697 sched_pctcpu_update(struct td_sched *ts, int run)
1698 {
1699 	int t = ticks;
1700 
1701 	/*
1702 	 * The signed difference may be negative if the thread hasn't run for
1703 	 * over half of the ticks rollover period.
1704 	 */
1705 	if ((u_int)(t - ts->ts_ltick) >= SCHED_TICK_TARG) {
1706 		ts->ts_ticks = 0;
1707 		ts->ts_ftick = t - SCHED_TICK_TARG;
1708 	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1709 		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1710 		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1711 		ts->ts_ftick = t - SCHED_TICK_TARG;
1712 	}
1713 	if (run)
1714 		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1715 	ts->ts_ltick = t;
1716 }
1717 
1718 /*
1719  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1720  * if necessary.  This is the back-end for several priority related
1721  * functions.
1722  */
1723 static void
1724 sched_thread_priority(struct thread *td, u_char prio)
1725 {
1726 	struct td_sched *ts;
1727 	struct tdq *tdq;
1728 	int oldpri;
1729 
1730 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1731 	    "prio:%d", td->td_priority, "new prio:%d", prio,
1732 	    KTR_ATTR_LINKED, sched_tdname(curthread));
1733 	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
1734 	if (td != curthread && prio < td->td_priority) {
1735 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1736 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1737 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1738 		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
1739 		    curthread);
1740 	}
1741 	ts = td_get_sched(td);
1742 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1743 	if (td->td_priority == prio)
1744 		return;
1745 	/*
1746 	 * If the priority has been elevated due to priority
1747 	 * propagation, we may have to move ourselves to a new
1748 	 * queue.  This could be optimized to not re-add in some
1749 	 * cases.
1750 	 */
1751 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1752 		sched_rem(td);
1753 		td->td_priority = prio;
1754 		sched_add(td, SRQ_BORROWING);
1755 		return;
1756 	}
1757 	/*
1758 	 * If the thread is currently running we may have to adjust the lowpri
1759 	 * information so other cpus are aware of our current priority.
1760 	 */
1761 	if (TD_IS_RUNNING(td)) {
1762 		tdq = TDQ_CPU(ts->ts_cpu);
1763 		oldpri = td->td_priority;
1764 		td->td_priority = prio;
1765 		if (prio < tdq->tdq_lowpri)
1766 			tdq->tdq_lowpri = prio;
1767 		else if (tdq->tdq_lowpri == oldpri)
1768 			tdq_setlowpri(tdq, td);
1769 		return;
1770 	}
1771 	td->td_priority = prio;
1772 }
1773 
1774 /*
1775  * Update a thread's priority when it is lent another thread's
1776  * priority.
1777  */
1778 void
1779 sched_lend_prio(struct thread *td, u_char prio)
1780 {
1781 
1782 	td->td_flags |= TDF_BORROWING;
1783 	sched_thread_priority(td, prio);
1784 }
1785 
1786 /*
1787  * Restore a thread's priority when priority propagation is
1788  * over.  The prio argument is the minimum priority the thread
1789  * needs to have to satisfy other possible priority lending
1790  * requests.  If the thread's regular priority is less
1791  * important than prio, the thread will keep a priority boost
1792  * of prio.
1793  */
1794 void
1795 sched_unlend_prio(struct thread *td, u_char prio)
1796 {
1797 	u_char base_pri;
1798 
1799 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1800 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1801 		base_pri = td->td_user_pri;
1802 	else
1803 		base_pri = td->td_base_pri;
1804 	if (prio >= base_pri) {
1805 		td->td_flags &= ~TDF_BORROWING;
1806 		sched_thread_priority(td, base_pri);
1807 	} else
1808 		sched_lend_prio(td, prio);
1809 }
1810 
1811 /*
1812  * Standard entry for setting the priority to an absolute value.
1813  */
1814 void
1815 sched_prio(struct thread *td, u_char prio)
1816 {
1817 	u_char oldprio;
1818 
1819 	/* First, update the base priority. */
1820 	td->td_base_pri = prio;
1821 
1822 	/*
1823 	 * If the thread is borrowing another thread's priority, don't
1824 	 * ever lower the priority.
1825 	 */
1826 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1827 		return;
1828 
1829 	/* Change the real priority. */
1830 	oldprio = td->td_priority;
1831 	sched_thread_priority(td, prio);
1832 
1833 	/*
1834 	 * If the thread is on a turnstile, then let the turnstile update
1835 	 * its state.
1836 	 */
1837 	if (TD_ON_LOCK(td) && oldprio != prio)
1838 		turnstile_adjust(td, oldprio);
1839 }
1840 
1841 /*
1842  * Set the base user priority, does not effect current running priority.
1843  */
1844 void
1845 sched_user_prio(struct thread *td, u_char prio)
1846 {
1847 
1848 	td->td_base_user_pri = prio;
1849 	if (td->td_lend_user_pri <= prio)
1850 		return;
1851 	td->td_user_pri = prio;
1852 }
1853 
1854 void
1855 sched_lend_user_prio(struct thread *td, u_char prio)
1856 {
1857 
1858 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1859 	td->td_lend_user_pri = prio;
1860 	td->td_user_pri = min(prio, td->td_base_user_pri);
1861 	if (td->td_priority > td->td_user_pri)
1862 		sched_prio(td, td->td_user_pri);
1863 	else if (td->td_priority != td->td_user_pri)
1864 		td->td_flags |= TDF_NEEDRESCHED;
1865 }
1866 
1867 #ifdef SMP
1868 /*
1869  * This tdq is about to idle.  Try to steal a thread from another CPU before
1870  * choosing the idle thread.
1871  */
1872 static void
1873 tdq_trysteal(struct tdq *tdq)
1874 {
1875 	struct cpu_group *cg;
1876 	struct tdq *steal;
1877 	cpuset_t mask;
1878 	int cpu, i;
1879 
1880 	if (smp_started == 0 || trysteal_limit == 0 || tdq->tdq_cg == NULL)
1881 		return;
1882 	CPU_FILL(&mask);
1883 	CPU_CLR(PCPU_GET(cpuid), &mask);
1884 	/* We don't want to be preempted while we're iterating. */
1885 	spinlock_enter();
1886 	TDQ_UNLOCK(tdq);
1887 	for (i = 1, cg = tdq->tdq_cg; ; ) {
1888 		cpu = sched_highest(cg, mask, steal_thresh);
1889 		/*
1890 		 * If a thread was added while interrupts were disabled don't
1891 		 * steal one here.
1892 		 */
1893 		if (tdq->tdq_load > 0) {
1894 			TDQ_LOCK(tdq);
1895 			break;
1896 		}
1897 		if (cpu == -1) {
1898 			i++;
1899 			cg = cg->cg_parent;
1900 			if (cg == NULL || i > trysteal_limit) {
1901 				TDQ_LOCK(tdq);
1902 				break;
1903 			}
1904 			continue;
1905 		}
1906 		steal = TDQ_CPU(cpu);
1907 		/*
1908 		 * The data returned by sched_highest() is stale and
1909                  * the chosen CPU no longer has an eligible thread.
1910 		 */
1911 		if (steal->tdq_load < steal_thresh ||
1912 		    steal->tdq_transferable == 0)
1913 			continue;
1914 		tdq_lock_pair(tdq, steal);
1915 		/*
1916 		 * If we get to this point, unconditonally exit the loop
1917 		 * to bound the time spent in the critcal section.
1918 		 *
1919 		 * If a thread was added while interrupts were disabled don't
1920 		 * steal one here.
1921 		 */
1922 		if (tdq->tdq_load > 0) {
1923 			TDQ_UNLOCK(steal);
1924 			break;
1925 		}
1926 		/*
1927 		 * The data returned by sched_highest() is stale and
1928                  * the chosen CPU no longer has an eligible thread.
1929 		 */
1930 		if (steal->tdq_load < steal_thresh ||
1931 		    steal->tdq_transferable == 0) {
1932 			TDQ_UNLOCK(steal);
1933 			break;
1934 		}
1935 		/*
1936 		 * If we fail to acquire one due to affinity restrictions,
1937 		 * bail out and let the idle thread to a more complete search
1938 		 * outside of a critical section.
1939 		 */
1940 		if (tdq_move(steal, tdq) == NULL) {
1941 			TDQ_UNLOCK(steal);
1942 			break;
1943 		}
1944 		TDQ_UNLOCK(steal);
1945 		break;
1946 	}
1947 	spinlock_exit();
1948 }
1949 #endif
1950 
1951 /*
1952  * Handle migration from sched_switch().  This happens only for
1953  * cpu binding.
1954  */
1955 static struct mtx *
1956 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1957 {
1958 	struct tdq *tdn;
1959 
1960 	KASSERT(!CPU_ABSENT(td_get_sched(td)->ts_cpu), ("sched_switch_migrate: "
1961 	    "thread %s queued on absent CPU %d.", td->td_name,
1962 	    td_get_sched(td)->ts_cpu));
1963 	tdn = TDQ_CPU(td_get_sched(td)->ts_cpu);
1964 #ifdef SMP
1965 	tdq_load_rem(tdq, td);
1966 	/*
1967 	 * Do the lock dance required to avoid LOR.  We grab an extra
1968 	 * spinlock nesting to prevent preemption while we're
1969 	 * not holding either run-queue lock.
1970 	 */
1971 	spinlock_enter();
1972 	thread_lock_block(td);	/* This releases the lock on tdq. */
1973 
1974 	/*
1975 	 * Acquire both run-queue locks before placing the thread on the new
1976 	 * run-queue to avoid deadlocks created by placing a thread with a
1977 	 * blocked lock on the run-queue of a remote processor.  The deadlock
1978 	 * occurs when a third processor attempts to lock the two queues in
1979 	 * question while the target processor is spinning with its own
1980 	 * run-queue lock held while waiting for the blocked lock to clear.
1981 	 */
1982 	tdq_lock_pair(tdn, tdq);
1983 	tdq_add(tdn, td, flags);
1984 	tdq_notify(tdn, td);
1985 	TDQ_UNLOCK(tdn);
1986 	spinlock_exit();
1987 #endif
1988 	return (TDQ_LOCKPTR(tdn));
1989 }
1990 
1991 /*
1992  * Variadic version of thread_lock_unblock() that does not assume td_lock
1993  * is blocked.
1994  */
1995 static inline void
1996 thread_unblock_switch(struct thread *td, struct mtx *mtx)
1997 {
1998 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1999 	    (uintptr_t)mtx);
2000 }
2001 
2002 /*
2003  * Switch threads.  This function has to handle threads coming in while
2004  * blocked for some reason, running, or idle.  It also must deal with
2005  * migrating a thread from one queue to another as running threads may
2006  * be assigned elsewhere via binding.
2007  */
2008 void
2009 sched_switch(struct thread *td, struct thread *newtd, int flags)
2010 {
2011 	struct tdq *tdq;
2012 	struct td_sched *ts;
2013 	struct mtx *mtx;
2014 	int srqflag;
2015 	int cpuid, preempted;
2016 
2017 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2018 	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
2019 
2020 	cpuid = PCPU_GET(cpuid);
2021 	tdq = TDQ_CPU(cpuid);
2022 	ts = td_get_sched(td);
2023 	mtx = td->td_lock;
2024 	sched_pctcpu_update(ts, 1);
2025 	ts->ts_rltick = ticks;
2026 	td->td_lastcpu = td->td_oncpu;
2027 	td->td_oncpu = NOCPU;
2028 	preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
2029 	    (flags & SW_PREEMPT) != 0;
2030 	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
2031 	td->td_owepreempt = 0;
2032 	if (!TD_IS_IDLETHREAD(td))
2033 		tdq->tdq_switchcnt++;
2034 	/*
2035 	 * The lock pointer in an idle thread should never change.  Reset it
2036 	 * to CAN_RUN as well.
2037 	 */
2038 	if (TD_IS_IDLETHREAD(td)) {
2039 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2040 		TD_SET_CAN_RUN(td);
2041 	} else if (TD_IS_RUNNING(td)) {
2042 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2043 		srqflag = preempted ?
2044 		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
2045 		    SRQ_OURSELF|SRQ_YIELDING;
2046 #ifdef SMP
2047 		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
2048 			ts->ts_cpu = sched_pickcpu(td, 0);
2049 #endif
2050 		if (ts->ts_cpu == cpuid)
2051 			tdq_runq_add(tdq, td, srqflag);
2052 		else {
2053 			KASSERT(THREAD_CAN_MIGRATE(td) ||
2054 			    (ts->ts_flags & TSF_BOUND) != 0,
2055 			    ("Thread %p shouldn't migrate", td));
2056 			mtx = sched_switch_migrate(tdq, td, srqflag);
2057 		}
2058 	} else {
2059 		/* This thread must be going to sleep. */
2060 		TDQ_LOCK(tdq);
2061 		mtx = thread_lock_block(td);
2062 		tdq_load_rem(tdq, td);
2063 #ifdef SMP
2064 		if (tdq->tdq_load == 0)
2065 			tdq_trysteal(tdq);
2066 #endif
2067 	}
2068 
2069 #if (KTR_COMPILE & KTR_SCHED) != 0
2070 	if (TD_IS_IDLETHREAD(td))
2071 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
2072 		    "prio:%d", td->td_priority);
2073 	else
2074 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
2075 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
2076 		    "lockname:\"%s\"", td->td_lockname);
2077 #endif
2078 
2079 	/*
2080 	 * We enter here with the thread blocked and assigned to the
2081 	 * appropriate cpu run-queue or sleep-queue and with the current
2082 	 * thread-queue locked.
2083 	 */
2084 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2085 	newtd = choosethread();
2086 	/*
2087 	 * Call the MD code to switch contexts if necessary.
2088 	 */
2089 	if (td != newtd) {
2090 #ifdef	HWPMC_HOOKS
2091 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
2092 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
2093 #endif
2094 		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
2095 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2096 		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2097 		sched_pctcpu_update(td_get_sched(newtd), 0);
2098 
2099 #ifdef KDTRACE_HOOKS
2100 		/*
2101 		 * If DTrace has set the active vtime enum to anything
2102 		 * other than INACTIVE (0), then it should have set the
2103 		 * function to call.
2104 		 */
2105 		if (dtrace_vtime_active)
2106 			(*dtrace_vtime_switch_func)(newtd);
2107 #endif
2108 
2109 		cpu_switch(td, newtd, mtx);
2110 		/*
2111 		 * We may return from cpu_switch on a different cpu.  However,
2112 		 * we always return with td_lock pointing to the current cpu's
2113 		 * run queue lock.
2114 		 */
2115 		cpuid = PCPU_GET(cpuid);
2116 		tdq = TDQ_CPU(cpuid);
2117 		lock_profile_obtain_lock_success(
2118 		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2119 
2120 		SDT_PROBE0(sched, , , on__cpu);
2121 #ifdef	HWPMC_HOOKS
2122 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
2123 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
2124 #endif
2125 	} else {
2126 		thread_unblock_switch(td, mtx);
2127 		SDT_PROBE0(sched, , , remain__cpu);
2128 	}
2129 
2130 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
2131 	    "prio:%d", td->td_priority);
2132 
2133 	/*
2134 	 * Assert that all went well and return.
2135 	 */
2136 	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
2137 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2138 	td->td_oncpu = cpuid;
2139 }
2140 
2141 /*
2142  * Adjust thread priorities as a result of a nice request.
2143  */
2144 void
2145 sched_nice(struct proc *p, int nice)
2146 {
2147 	struct thread *td;
2148 
2149 	PROC_LOCK_ASSERT(p, MA_OWNED);
2150 
2151 	p->p_nice = nice;
2152 	FOREACH_THREAD_IN_PROC(p, td) {
2153 		thread_lock(td);
2154 		sched_priority(td);
2155 		sched_prio(td, td->td_base_user_pri);
2156 		thread_unlock(td);
2157 	}
2158 }
2159 
2160 /*
2161  * Record the sleep time for the interactivity scorer.
2162  */
2163 void
2164 sched_sleep(struct thread *td, int prio)
2165 {
2166 
2167 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2168 
2169 	td->td_slptick = ticks;
2170 	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
2171 		td->td_flags |= TDF_CANSWAP;
2172 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
2173 		return;
2174 	if (static_boost == 1 && prio)
2175 		sched_prio(td, prio);
2176 	else if (static_boost && td->td_priority > static_boost)
2177 		sched_prio(td, static_boost);
2178 }
2179 
2180 /*
2181  * Schedule a thread to resume execution and record how long it voluntarily
2182  * slept.  We also update the pctcpu, interactivity, and priority.
2183  */
2184 void
2185 sched_wakeup(struct thread *td)
2186 {
2187 	struct td_sched *ts;
2188 	int slptick;
2189 
2190 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2191 	ts = td_get_sched(td);
2192 	td->td_flags &= ~TDF_CANSWAP;
2193 	/*
2194 	 * If we slept for more than a tick update our interactivity and
2195 	 * priority.
2196 	 */
2197 	slptick = td->td_slptick;
2198 	td->td_slptick = 0;
2199 	if (slptick && slptick != ticks) {
2200 		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2201 		sched_interact_update(td);
2202 		sched_pctcpu_update(ts, 0);
2203 	}
2204 	/*
2205 	 * Reset the slice value since we slept and advanced the round-robin.
2206 	 */
2207 	ts->ts_slice = 0;
2208 	sched_add(td, SRQ_BORING);
2209 }
2210 
2211 /*
2212  * Penalize the parent for creating a new child and initialize the child's
2213  * priority.
2214  */
2215 void
2216 sched_fork(struct thread *td, struct thread *child)
2217 {
2218 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2219 	sched_pctcpu_update(td_get_sched(td), 1);
2220 	sched_fork_thread(td, child);
2221 	/*
2222 	 * Penalize the parent and child for forking.
2223 	 */
2224 	sched_interact_fork(child);
2225 	sched_priority(child);
2226 	td_get_sched(td)->ts_runtime += tickincr;
2227 	sched_interact_update(td);
2228 	sched_priority(td);
2229 }
2230 
2231 /*
2232  * Fork a new thread, may be within the same process.
2233  */
2234 void
2235 sched_fork_thread(struct thread *td, struct thread *child)
2236 {
2237 	struct td_sched *ts;
2238 	struct td_sched *ts2;
2239 	struct tdq *tdq;
2240 
2241 	tdq = TDQ_SELF();
2242 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2243 	/*
2244 	 * Initialize child.
2245 	 */
2246 	ts = td_get_sched(td);
2247 	ts2 = td_get_sched(child);
2248 	child->td_oncpu = NOCPU;
2249 	child->td_lastcpu = NOCPU;
2250 	child->td_lock = TDQ_LOCKPTR(tdq);
2251 	child->td_cpuset = cpuset_ref(td->td_cpuset);
2252 	child->td_domain.dr_policy = td->td_cpuset->cs_domain;
2253 	ts2->ts_cpu = ts->ts_cpu;
2254 	ts2->ts_flags = 0;
2255 	/*
2256 	 * Grab our parents cpu estimation information.
2257 	 */
2258 	ts2->ts_ticks = ts->ts_ticks;
2259 	ts2->ts_ltick = ts->ts_ltick;
2260 	ts2->ts_ftick = ts->ts_ftick;
2261 	/*
2262 	 * Do not inherit any borrowed priority from the parent.
2263 	 */
2264 	child->td_priority = child->td_base_pri;
2265 	/*
2266 	 * And update interactivity score.
2267 	 */
2268 	ts2->ts_slptime = ts->ts_slptime;
2269 	ts2->ts_runtime = ts->ts_runtime;
2270 	/* Attempt to quickly learn interactivity. */
2271 	ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
2272 #ifdef KTR
2273 	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2274 #endif
2275 }
2276 
2277 /*
2278  * Adjust the priority class of a thread.
2279  */
2280 void
2281 sched_class(struct thread *td, int class)
2282 {
2283 
2284 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2285 	if (td->td_pri_class == class)
2286 		return;
2287 	td->td_pri_class = class;
2288 }
2289 
2290 /*
2291  * Return some of the child's priority and interactivity to the parent.
2292  */
2293 void
2294 sched_exit(struct proc *p, struct thread *child)
2295 {
2296 	struct thread *td;
2297 
2298 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2299 	    "prio:%d", child->td_priority);
2300 	PROC_LOCK_ASSERT(p, MA_OWNED);
2301 	td = FIRST_THREAD_IN_PROC(p);
2302 	sched_exit_thread(td, child);
2303 }
2304 
2305 /*
2306  * Penalize another thread for the time spent on this one.  This helps to
2307  * worsen the priority and interactivity of processes which schedule batch
2308  * jobs such as make.  This has little effect on the make process itself but
2309  * causes new processes spawned by it to receive worse scores immediately.
2310  */
2311 void
2312 sched_exit_thread(struct thread *td, struct thread *child)
2313 {
2314 
2315 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2316 	    "prio:%d", child->td_priority);
2317 	/*
2318 	 * Give the child's runtime to the parent without returning the
2319 	 * sleep time as a penalty to the parent.  This causes shells that
2320 	 * launch expensive things to mark their children as expensive.
2321 	 */
2322 	thread_lock(td);
2323 	td_get_sched(td)->ts_runtime += td_get_sched(child)->ts_runtime;
2324 	sched_interact_update(td);
2325 	sched_priority(td);
2326 	thread_unlock(td);
2327 }
2328 
2329 void
2330 sched_preempt(struct thread *td)
2331 {
2332 	struct tdq *tdq;
2333 
2334 	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2335 
2336 	thread_lock(td);
2337 	tdq = TDQ_SELF();
2338 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2339 	tdq->tdq_ipipending = 0;
2340 	if (td->td_priority > tdq->tdq_lowpri) {
2341 		int flags;
2342 
2343 		flags = SW_INVOL | SW_PREEMPT;
2344 		if (td->td_critnest > 1)
2345 			td->td_owepreempt = 1;
2346 		else if (TD_IS_IDLETHREAD(td))
2347 			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2348 		else
2349 			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2350 	}
2351 	thread_unlock(td);
2352 }
2353 
2354 /*
2355  * Fix priorities on return to user-space.  Priorities may be elevated due
2356  * to static priorities in msleep() or similar.
2357  */
2358 void
2359 sched_userret_slowpath(struct thread *td)
2360 {
2361 
2362 	thread_lock(td);
2363 	td->td_priority = td->td_user_pri;
2364 	td->td_base_pri = td->td_user_pri;
2365 	tdq_setlowpri(TDQ_SELF(), td);
2366 	thread_unlock(td);
2367 }
2368 
2369 /*
2370  * Handle a stathz tick.  This is really only relevant for timeshare
2371  * threads.
2372  */
2373 void
2374 sched_clock(struct thread *td)
2375 {
2376 	struct tdq *tdq;
2377 	struct td_sched *ts;
2378 
2379 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2380 	tdq = TDQ_SELF();
2381 #ifdef SMP
2382 	/*
2383 	 * We run the long term load balancer infrequently on the first cpu.
2384 	 */
2385 	if (balance_tdq == tdq) {
2386 		if (balance_ticks && --balance_ticks == 0)
2387 			sched_balance();
2388 	}
2389 #endif
2390 	/*
2391 	 * Save the old switch count so we have a record of the last ticks
2392 	 * activity.   Initialize the new switch count based on our load.
2393 	 * If there is some activity seed it to reflect that.
2394 	 */
2395 	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2396 	tdq->tdq_switchcnt = tdq->tdq_load;
2397 	/*
2398 	 * Advance the insert index once for each tick to ensure that all
2399 	 * threads get a chance to run.
2400 	 */
2401 	if (tdq->tdq_idx == tdq->tdq_ridx) {
2402 		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2403 		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2404 			tdq->tdq_ridx = tdq->tdq_idx;
2405 	}
2406 	ts = td_get_sched(td);
2407 	sched_pctcpu_update(ts, 1);
2408 	if (td->td_pri_class & PRI_FIFO_BIT)
2409 		return;
2410 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2411 		/*
2412 		 * We used a tick; charge it to the thread so
2413 		 * that we can compute our interactivity.
2414 		 */
2415 		td_get_sched(td)->ts_runtime += tickincr;
2416 		sched_interact_update(td);
2417 		sched_priority(td);
2418 	}
2419 
2420 	/*
2421 	 * Force a context switch if the current thread has used up a full
2422 	 * time slice (default is 100ms).
2423 	 */
2424 	if (!TD_IS_IDLETHREAD(td) && ++ts->ts_slice >= tdq_slice(tdq)) {
2425 		ts->ts_slice = 0;
2426 		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2427 	}
2428 }
2429 
2430 u_int
2431 sched_estcpu(struct thread *td __unused)
2432 {
2433 
2434 	return (0);
2435 }
2436 
2437 /*
2438  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2439  * cooperative idle threads.
2440  */
2441 int
2442 sched_runnable(void)
2443 {
2444 	struct tdq *tdq;
2445 	int load;
2446 
2447 	load = 1;
2448 
2449 	tdq = TDQ_SELF();
2450 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2451 		if (tdq->tdq_load > 0)
2452 			goto out;
2453 	} else
2454 		if (tdq->tdq_load - 1 > 0)
2455 			goto out;
2456 	load = 0;
2457 out:
2458 	return (load);
2459 }
2460 
2461 /*
2462  * Choose the highest priority thread to run.  The thread is removed from
2463  * the run-queue while running however the load remains.  For SMP we set
2464  * the tdq in the global idle bitmask if it idles here.
2465  */
2466 struct thread *
2467 sched_choose(void)
2468 {
2469 	struct thread *td;
2470 	struct tdq *tdq;
2471 
2472 	tdq = TDQ_SELF();
2473 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2474 	td = tdq_choose(tdq);
2475 	if (td) {
2476 		tdq_runq_rem(tdq, td);
2477 		tdq->tdq_lowpri = td->td_priority;
2478 		return (td);
2479 	}
2480 	tdq->tdq_lowpri = PRI_MAX_IDLE;
2481 	return (PCPU_GET(idlethread));
2482 }
2483 
2484 /*
2485  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2486  * we always request it once we exit a critical section.
2487  */
2488 static inline void
2489 sched_setpreempt(struct thread *td)
2490 {
2491 	struct thread *ctd;
2492 	int cpri;
2493 	int pri;
2494 
2495 	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2496 
2497 	ctd = curthread;
2498 	pri = td->td_priority;
2499 	cpri = ctd->td_priority;
2500 	if (pri < cpri)
2501 		ctd->td_flags |= TDF_NEEDRESCHED;
2502 	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2503 		return;
2504 	if (!sched_shouldpreempt(pri, cpri, 0))
2505 		return;
2506 	ctd->td_owepreempt = 1;
2507 }
2508 
2509 /*
2510  * Add a thread to a thread queue.  Select the appropriate runq and add the
2511  * thread to it.  This is the internal function called when the tdq is
2512  * predetermined.
2513  */
2514 void
2515 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2516 {
2517 
2518 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2519 	KASSERT((td->td_inhibitors == 0),
2520 	    ("sched_add: trying to run inhibited thread"));
2521 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2522 	    ("sched_add: bad thread state"));
2523 	KASSERT(td->td_flags & TDF_INMEM,
2524 	    ("sched_add: thread swapped out"));
2525 
2526 	if (td->td_priority < tdq->tdq_lowpri)
2527 		tdq->tdq_lowpri = td->td_priority;
2528 	tdq_runq_add(tdq, td, flags);
2529 	tdq_load_add(tdq, td);
2530 }
2531 
2532 /*
2533  * Select the target thread queue and add a thread to it.  Request
2534  * preemption or IPI a remote processor if required.
2535  */
2536 void
2537 sched_add(struct thread *td, int flags)
2538 {
2539 	struct tdq *tdq;
2540 #ifdef SMP
2541 	int cpu;
2542 #endif
2543 
2544 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2545 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2546 	    sched_tdname(curthread));
2547 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2548 	    KTR_ATTR_LINKED, sched_tdname(td));
2549 	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2550 	    flags & SRQ_PREEMPTED);
2551 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2552 	/*
2553 	 * Recalculate the priority before we select the target cpu or
2554 	 * run-queue.
2555 	 */
2556 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2557 		sched_priority(td);
2558 #ifdef SMP
2559 	/*
2560 	 * Pick the destination cpu and if it isn't ours transfer to the
2561 	 * target cpu.
2562 	 */
2563 	cpu = sched_pickcpu(td, flags);
2564 	tdq = sched_setcpu(td, cpu, flags);
2565 	tdq_add(tdq, td, flags);
2566 	if (cpu != PCPU_GET(cpuid)) {
2567 		tdq_notify(tdq, td);
2568 		return;
2569 	}
2570 #else
2571 	tdq = TDQ_SELF();
2572 	TDQ_LOCK(tdq);
2573 	/*
2574 	 * Now that the thread is moving to the run-queue, set the lock
2575 	 * to the scheduler's lock.
2576 	 */
2577 	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2578 	tdq_add(tdq, td, flags);
2579 #endif
2580 	if (!(flags & SRQ_YIELDING))
2581 		sched_setpreempt(td);
2582 }
2583 
2584 /*
2585  * Remove a thread from a run-queue without running it.  This is used
2586  * when we're stealing a thread from a remote queue.  Otherwise all threads
2587  * exit by calling sched_exit_thread() and sched_throw() themselves.
2588  */
2589 void
2590 sched_rem(struct thread *td)
2591 {
2592 	struct tdq *tdq;
2593 
2594 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2595 	    "prio:%d", td->td_priority);
2596 	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2597 	tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
2598 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2599 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2600 	KASSERT(TD_ON_RUNQ(td),
2601 	    ("sched_rem: thread not on run queue"));
2602 	tdq_runq_rem(tdq, td);
2603 	tdq_load_rem(tdq, td);
2604 	TD_SET_CAN_RUN(td);
2605 	if (td->td_priority == tdq->tdq_lowpri)
2606 		tdq_setlowpri(tdq, NULL);
2607 }
2608 
2609 /*
2610  * Fetch cpu utilization information.  Updates on demand.
2611  */
2612 fixpt_t
2613 sched_pctcpu(struct thread *td)
2614 {
2615 	fixpt_t pctcpu;
2616 	struct td_sched *ts;
2617 
2618 	pctcpu = 0;
2619 	ts = td_get_sched(td);
2620 
2621 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2622 	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2623 	if (ts->ts_ticks) {
2624 		int rtick;
2625 
2626 		/* How many rtick per second ? */
2627 		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2628 		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2629 	}
2630 
2631 	return (pctcpu);
2632 }
2633 
2634 /*
2635  * Enforce affinity settings for a thread.  Called after adjustments to
2636  * cpumask.
2637  */
2638 void
2639 sched_affinity(struct thread *td)
2640 {
2641 #ifdef SMP
2642 	struct td_sched *ts;
2643 
2644 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2645 	ts = td_get_sched(td);
2646 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2647 		return;
2648 	if (TD_ON_RUNQ(td)) {
2649 		sched_rem(td);
2650 		sched_add(td, SRQ_BORING);
2651 		return;
2652 	}
2653 	if (!TD_IS_RUNNING(td))
2654 		return;
2655 	/*
2656 	 * Force a switch before returning to userspace.  If the
2657 	 * target thread is not running locally send an ipi to force
2658 	 * the issue.
2659 	 */
2660 	td->td_flags |= TDF_NEEDRESCHED;
2661 	if (td != curthread)
2662 		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2663 #endif
2664 }
2665 
2666 /*
2667  * Bind a thread to a target cpu.
2668  */
2669 void
2670 sched_bind(struct thread *td, int cpu)
2671 {
2672 	struct td_sched *ts;
2673 
2674 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2675 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2676 	ts = td_get_sched(td);
2677 	if (ts->ts_flags & TSF_BOUND)
2678 		sched_unbind(td);
2679 	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2680 	ts->ts_flags |= TSF_BOUND;
2681 	sched_pin();
2682 	if (PCPU_GET(cpuid) == cpu)
2683 		return;
2684 	ts->ts_cpu = cpu;
2685 	/* When we return from mi_switch we'll be on the correct cpu. */
2686 	mi_switch(SW_VOL, NULL);
2687 }
2688 
2689 /*
2690  * Release a bound thread.
2691  */
2692 void
2693 sched_unbind(struct thread *td)
2694 {
2695 	struct td_sched *ts;
2696 
2697 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2698 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2699 	ts = td_get_sched(td);
2700 	if ((ts->ts_flags & TSF_BOUND) == 0)
2701 		return;
2702 	ts->ts_flags &= ~TSF_BOUND;
2703 	sched_unpin();
2704 }
2705 
2706 int
2707 sched_is_bound(struct thread *td)
2708 {
2709 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2710 	return (td_get_sched(td)->ts_flags & TSF_BOUND);
2711 }
2712 
2713 /*
2714  * Basic yield call.
2715  */
2716 void
2717 sched_relinquish(struct thread *td)
2718 {
2719 	thread_lock(td);
2720 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2721 	thread_unlock(td);
2722 }
2723 
2724 /*
2725  * Return the total system load.
2726  */
2727 int
2728 sched_load(void)
2729 {
2730 #ifdef SMP
2731 	int total;
2732 	int i;
2733 
2734 	total = 0;
2735 	CPU_FOREACH(i)
2736 		total += TDQ_CPU(i)->tdq_sysload;
2737 	return (total);
2738 #else
2739 	return (TDQ_SELF()->tdq_sysload);
2740 #endif
2741 }
2742 
2743 int
2744 sched_sizeof_proc(void)
2745 {
2746 	return (sizeof(struct proc));
2747 }
2748 
2749 int
2750 sched_sizeof_thread(void)
2751 {
2752 	return (sizeof(struct thread) + sizeof(struct td_sched));
2753 }
2754 
2755 #ifdef SMP
2756 #define	TDQ_IDLESPIN(tdq)						\
2757     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2758 #else
2759 #define	TDQ_IDLESPIN(tdq)	1
2760 #endif
2761 
2762 /*
2763  * The actual idle process.
2764  */
2765 void
2766 sched_idletd(void *dummy)
2767 {
2768 	struct thread *td;
2769 	struct tdq *tdq;
2770 	int oldswitchcnt, switchcnt;
2771 	int i;
2772 
2773 	mtx_assert(&Giant, MA_NOTOWNED);
2774 	td = curthread;
2775 	tdq = TDQ_SELF();
2776 	THREAD_NO_SLEEPING();
2777 	oldswitchcnt = -1;
2778 	for (;;) {
2779 		if (tdq->tdq_load) {
2780 			thread_lock(td);
2781 			mi_switch(SW_VOL | SWT_IDLE, NULL);
2782 			thread_unlock(td);
2783 		}
2784 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2785 #ifdef SMP
2786 		if (always_steal || switchcnt != oldswitchcnt) {
2787 			oldswitchcnt = switchcnt;
2788 			if (tdq_idled(tdq) == 0)
2789 				continue;
2790 		}
2791 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2792 #else
2793 		oldswitchcnt = switchcnt;
2794 #endif
2795 		/*
2796 		 * If we're switching very frequently, spin while checking
2797 		 * for load rather than entering a low power state that
2798 		 * may require an IPI.  However, don't do any busy
2799 		 * loops while on SMT machines as this simply steals
2800 		 * cycles from cores doing useful work.
2801 		 */
2802 		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2803 			for (i = 0; i < sched_idlespins; i++) {
2804 				if (tdq->tdq_load)
2805 					break;
2806 				cpu_spinwait();
2807 			}
2808 		}
2809 
2810 		/* If there was context switch during spin, restart it. */
2811 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2812 		if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
2813 			continue;
2814 
2815 		/* Run main MD idle handler. */
2816 		tdq->tdq_cpu_idle = 1;
2817 		/*
2818 		 * Make sure that tdq_cpu_idle update is globally visible
2819 		 * before cpu_idle() read tdq_load.  The order is important
2820 		 * to avoid race with tdq_notify.
2821 		 */
2822 		atomic_thread_fence_seq_cst();
2823 		/*
2824 		 * Checking for again after the fence picks up assigned
2825 		 * threads often enough to make it worthwhile to do so in
2826 		 * order to avoid calling cpu_idle().
2827 		 */
2828 		if (tdq->tdq_load != 0) {
2829 			tdq->tdq_cpu_idle = 0;
2830 			continue;
2831 		}
2832 		cpu_idle(switchcnt * 4 > sched_idlespinthresh);
2833 		tdq->tdq_cpu_idle = 0;
2834 
2835 		/*
2836 		 * Account thread-less hardware interrupts and
2837 		 * other wakeup reasons equal to context switches.
2838 		 */
2839 		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2840 		if (switchcnt != oldswitchcnt)
2841 			continue;
2842 		tdq->tdq_switchcnt++;
2843 		oldswitchcnt++;
2844 	}
2845 }
2846 
2847 /*
2848  * A CPU is entering for the first time or a thread is exiting.
2849  */
2850 void
2851 sched_throw(struct thread *td)
2852 {
2853 	struct thread *newtd;
2854 	struct tdq *tdq;
2855 
2856 	tdq = TDQ_SELF();
2857 	if (td == NULL) {
2858 		/* Correct spinlock nesting and acquire the correct lock. */
2859 		TDQ_LOCK(tdq);
2860 		spinlock_exit();
2861 		PCPU_SET(switchtime, cpu_ticks());
2862 		PCPU_SET(switchticks, ticks);
2863 	} else {
2864 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2865 		tdq_load_rem(tdq, td);
2866 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2867 		td->td_lastcpu = td->td_oncpu;
2868 		td->td_oncpu = NOCPU;
2869 	}
2870 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2871 	newtd = choosethread();
2872 	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2873 	cpu_throw(td, newtd);		/* doesn't return */
2874 }
2875 
2876 /*
2877  * This is called from fork_exit().  Just acquire the correct locks and
2878  * let fork do the rest of the work.
2879  */
2880 void
2881 sched_fork_exit(struct thread *td)
2882 {
2883 	struct tdq *tdq;
2884 	int cpuid;
2885 
2886 	/*
2887 	 * Finish setting up thread glue so that it begins execution in a
2888 	 * non-nested critical section with the scheduler lock held.
2889 	 */
2890 	cpuid = PCPU_GET(cpuid);
2891 	tdq = TDQ_CPU(cpuid);
2892 	if (TD_IS_IDLETHREAD(td))
2893 		td->td_lock = TDQ_LOCKPTR(tdq);
2894 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2895 	td->td_oncpu = cpuid;
2896 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2897 	lock_profile_obtain_lock_success(
2898 	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2899 
2900 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
2901 	    "prio:%d", td->td_priority);
2902 	SDT_PROBE0(sched, , , on__cpu);
2903 }
2904 
2905 /*
2906  * Create on first use to catch odd startup conditons.
2907  */
2908 char *
2909 sched_tdname(struct thread *td)
2910 {
2911 #ifdef KTR
2912 	struct td_sched *ts;
2913 
2914 	ts = td_get_sched(td);
2915 	if (ts->ts_name[0] == '\0')
2916 		snprintf(ts->ts_name, sizeof(ts->ts_name),
2917 		    "%s tid %d", td->td_name, td->td_tid);
2918 	return (ts->ts_name);
2919 #else
2920 	return (td->td_name);
2921 #endif
2922 }
2923 
2924 #ifdef KTR
2925 void
2926 sched_clear_tdname(struct thread *td)
2927 {
2928 	struct td_sched *ts;
2929 
2930 	ts = td_get_sched(td);
2931 	ts->ts_name[0] = '\0';
2932 }
2933 #endif
2934 
2935 #ifdef SMP
2936 
2937 /*
2938  * Build the CPU topology dump string. Is recursively called to collect
2939  * the topology tree.
2940  */
2941 static int
2942 sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2943     int indent)
2944 {
2945 	char cpusetbuf[CPUSETBUFSIZ];
2946 	int i, first;
2947 
2948 	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2949 	    "", 1 + indent / 2, cg->cg_level);
2950 	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2951 	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2952 	first = TRUE;
2953 	for (i = 0; i < MAXCPU; i++) {
2954 		if (CPU_ISSET(i, &cg->cg_mask)) {
2955 			if (!first)
2956 				sbuf_printf(sb, ", ");
2957 			else
2958 				first = FALSE;
2959 			sbuf_printf(sb, "%d", i);
2960 		}
2961 	}
2962 	sbuf_printf(sb, "</cpu>\n");
2963 
2964 	if (cg->cg_flags != 0) {
2965 		sbuf_printf(sb, "%*s <flags>", indent, "");
2966 		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2967 			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2968 		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2969 			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2970 		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2971 			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2972 		sbuf_printf(sb, "</flags>\n");
2973 	}
2974 
2975 	if (cg->cg_children > 0) {
2976 		sbuf_printf(sb, "%*s <children>\n", indent, "");
2977 		for (i = 0; i < cg->cg_children; i++)
2978 			sysctl_kern_sched_topology_spec_internal(sb,
2979 			    &cg->cg_child[i], indent+2);
2980 		sbuf_printf(sb, "%*s </children>\n", indent, "");
2981 	}
2982 	sbuf_printf(sb, "%*s</group>\n", indent, "");
2983 	return (0);
2984 }
2985 
2986 /*
2987  * Sysctl handler for retrieving topology dump. It's a wrapper for
2988  * the recursive sysctl_kern_smp_topology_spec_internal().
2989  */
2990 static int
2991 sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2992 {
2993 	struct sbuf *topo;
2994 	int err;
2995 
2996 	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2997 
2998 	topo = sbuf_new_for_sysctl(NULL, NULL, 512, req);
2999 	if (topo == NULL)
3000 		return (ENOMEM);
3001 
3002 	sbuf_printf(topo, "<groups>\n");
3003 	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
3004 	sbuf_printf(topo, "</groups>\n");
3005 
3006 	if (err == 0) {
3007 		err = sbuf_finish(topo);
3008 	}
3009 	sbuf_delete(topo);
3010 	return (err);
3011 }
3012 
3013 #endif
3014 
3015 static int
3016 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
3017 {
3018 	int error, new_val, period;
3019 
3020 	period = 1000000 / realstathz;
3021 	new_val = period * sched_slice;
3022 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3023 	if (error != 0 || req->newptr == NULL)
3024 		return (error);
3025 	if (new_val <= 0)
3026 		return (EINVAL);
3027 	sched_slice = imax(1, (new_val + period / 2) / period);
3028 	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
3029 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
3030 	    realstathz);
3031 	return (0);
3032 }
3033 
3034 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
3035 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
3036     "Scheduler name");
3037 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
3038     NULL, 0, sysctl_kern_quantum, "I",
3039     "Quantum for timeshare threads in microseconds");
3040 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
3041     "Quantum for timeshare threads in stathz ticks");
3042 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
3043     "Interactivity score threshold");
3044 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
3045     &preempt_thresh, 0,
3046     "Maximal (lowest) priority for preemption");
3047 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
3048     "Assign static kernel priorities to sleeping threads");
3049 SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
3050     "Number of times idle thread will spin waiting for new work");
3051 SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
3052     &sched_idlespinthresh, 0,
3053     "Threshold before we will permit idle thread spinning");
3054 #ifdef SMP
3055 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
3056     "Number of hz ticks to keep thread affinity for");
3057 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
3058     "Enables the long-term load balancer");
3059 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
3060     &balance_interval, 0,
3061     "Average period in stathz ticks to run the long-term balancer");
3062 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
3063     "Attempts to steal work from other cores before idling");
3064 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
3065     "Minimum load on remote CPU before we'll steal");
3066 SYSCTL_INT(_kern_sched, OID_AUTO, trysteal_limit, CTLFLAG_RW, &trysteal_limit,
3067     0, "Topological distance limit for stealing threads in sched_switch()");
3068 SYSCTL_INT(_kern_sched, OID_AUTO, always_steal, CTLFLAG_RW, &always_steal, 0,
3069     "Always run the stealer from the idle thread");
3070 SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
3071     CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
3072     "XML dump of detected CPU topology");
3073 #endif
3074 
3075 /* ps compat.  All cpu percentages from ULE are weighted. */
3076 static int ccpu = 0;
3077 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
3078