xref: /freebsd/sys/kern/sched_ule.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 2002-2005, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_hwpmc_hooks.h"
31 #include "opt_sched.h"
32 
33 #define kse td_sched
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kdb.h>
38 #include <sys/kernel.h>
39 #include <sys/ktr.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/resource.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/sx.h>
48 #include <sys/sysctl.h>
49 #include <sys/sysproto.h>
50 #include <sys/turnstile.h>
51 #include <sys/vmmeter.h>
52 #ifdef KTRACE
53 #include <sys/uio.h>
54 #include <sys/ktrace.h>
55 #endif
56 
57 #ifdef HWPMC_HOOKS
58 #include <sys/pmckern.h>
59 #endif
60 
61 #include <machine/cpu.h>
62 #include <machine/smp.h>
63 
64 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
65 /* XXX This is bogus compatability crap for ps */
66 static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
67 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
68 
69 static void sched_setup(void *dummy);
70 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
71 
72 static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
73 
74 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0,
75     "Scheduler name");
76 
77 static int slice_min = 1;
78 SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
79 
80 static int slice_max = 10;
81 SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
82 
83 int realstathz;
84 int tickincr = 1;
85 
86 /*
87  * The following datastructures are allocated within their parent structure
88  * but are scheduler specific.
89  */
90 /*
91  * The schedulable entity that can be given a context to run.  A process may
92  * have several of these.
93  */
94 struct kse {
95 	TAILQ_ENTRY(kse) ke_procq;	/* (j/z) Run queue. */
96 	int		ke_flags;	/* (j) KEF_* flags. */
97 	struct thread	*ke_thread;	/* (*) Active associated thread. */
98 	fixpt_t		ke_pctcpu;	/* (j) %cpu during p_swtime. */
99 	char		ke_rqindex;	/* (j) Run queue index. */
100 	enum {
101 		KES_THREAD = 0x0,	/* slaved to thread state */
102 		KES_ONRUNQ
103 	} ke_state;			/* (j) thread sched specific status. */
104 	int		ke_slptime;
105 	int		ke_slice;
106 	struct runq	*ke_runq;
107 	u_char		ke_cpu;		/* CPU that we have affinity for. */
108 	/* The following variables are only used for pctcpu calculation */
109 	int		ke_ltick;	/* Last tick that we were running on */
110 	int		ke_ftick;	/* First tick that we were running on */
111 	int		ke_ticks;	/* Tick count */
112 
113 };
114 #define	td_kse			td_sched
115 #define	td_slptime		td_kse->ke_slptime
116 #define ke_proc			ke_thread->td_proc
117 #define ke_ksegrp		ke_thread->td_ksegrp
118 #define	ke_assign		ke_procq.tqe_next
119 /* flags kept in ke_flags */
120 #define	KEF_ASSIGNED	0x0001		/* Thread is being migrated. */
121 #define	KEF_BOUND	0x0002		/* Thread can not migrate. */
122 #define	KEF_XFERABLE	0x0004		/* Thread was added as transferable. */
123 #define	KEF_HOLD	0x0008		/* Thread is temporarily bound. */
124 #define	KEF_REMOVED	0x0010		/* Thread was removed while ASSIGNED */
125 #define	KEF_INTERNAL	0x0020		/* Thread added due to migration. */
126 #define	KEF_PREEMPTED	0x0040		/* Thread was preempted */
127 #define	KEF_DIDRUN	0x02000		/* Thread actually ran. */
128 #define	KEF_EXIT	0x04000		/* Thread is being killed. */
129 
130 struct kg_sched {
131 	struct thread	*skg_last_assigned; /* (j) Last thread assigned to */
132 					   /* the system scheduler */
133 	int	skg_slptime;		/* Number of ticks we vol. slept */
134 	int	skg_runtime;		/* Number of ticks we were running */
135 	int	skg_avail_opennings;	/* (j) Num unfilled slots in group.*/
136 	int	skg_concurrency;	/* (j) Num threads requested in group.*/
137 };
138 #define kg_last_assigned	kg_sched->skg_last_assigned
139 #define kg_avail_opennings	kg_sched->skg_avail_opennings
140 #define kg_concurrency		kg_sched->skg_concurrency
141 #define kg_runtime		kg_sched->skg_runtime
142 #define kg_slptime		kg_sched->skg_slptime
143 
144 #define SLOT_RELEASE(kg)	(kg)->kg_avail_opennings++
145 #define	SLOT_USE(kg)		(kg)->kg_avail_opennings--
146 
147 static struct kse kse0;
148 static struct kg_sched kg_sched0;
149 
150 /*
151  * The priority is primarily determined by the interactivity score.  Thus, we
152  * give lower(better) priorities to kse groups that use less CPU.  The nice
153  * value is then directly added to this to allow nice to have some effect
154  * on latency.
155  *
156  * PRI_RANGE:	Total priority range for timeshare threads.
157  * PRI_NRESV:	Number of nice values.
158  * PRI_BASE:	The start of the dynamic range.
159  */
160 #define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
161 #define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
162 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
163 #define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
164 #define	SCHED_PRI_INTERACT(score)					\
165     ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
166 
167 /*
168  * These determine the interactivity of a process.
169  *
170  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
171  *		before throttling back.
172  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
173  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
174  * INTERACT_THRESH:	Threshhold for placement on the current runq.
175  */
176 #define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
177 #define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
178 #define	SCHED_INTERACT_MAX	(100)
179 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
180 #define	SCHED_INTERACT_THRESH	(30)
181 
182 /*
183  * These parameters and macros determine the size of the time slice that is
184  * granted to each thread.
185  *
186  * SLICE_MIN:	Minimum time slice granted, in units of ticks.
187  * SLICE_MAX:	Maximum time slice granted.
188  * SLICE_RANGE:	Range of available time slices scaled by hz.
189  * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
190  * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
191  * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
192  */
193 #define	SCHED_SLICE_MIN			(slice_min)
194 #define	SCHED_SLICE_MAX			(slice_max)
195 #define	SCHED_SLICE_INTERACTIVE		(slice_max)
196 #define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
197 #define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
198 #define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
199 #define	SCHED_SLICE_NICE(nice)						\
200     (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
201 
202 /*
203  * This macro determines whether or not the thread belongs on the current or
204  * next run queue.
205  */
206 #define	SCHED_INTERACTIVE(kg)						\
207     (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
208 #define	SCHED_CURR(kg, ke)						\
209     ((ke->ke_thread->td_flags & TDF_BORROWING) ||			\
210      (ke->ke_flags & KEF_PREEMPTED) || SCHED_INTERACTIVE(kg))
211 
212 /*
213  * Cpu percentage computation macros and defines.
214  *
215  * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
216  * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
217  */
218 
219 #define	SCHED_CPU_TIME	10
220 #define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
221 
222 /*
223  * kseq - per processor runqs and statistics.
224  */
225 struct kseq {
226 	struct runq	ksq_idle;		/* Queue of IDLE threads. */
227 	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
228 	struct runq	*ksq_next;		/* Next timeshare queue. */
229 	struct runq	*ksq_curr;		/* Current queue. */
230 	int		ksq_load_timeshare;	/* Load for timeshare. */
231 	int		ksq_load;		/* Aggregate load. */
232 	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
233 	short		ksq_nicemin;		/* Least nice. */
234 #ifdef SMP
235 	int			ksq_transferable;
236 	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
237 	struct kseq_group	*ksq_group;	/* Our processor group. */
238 	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
239 #else
240 	int		ksq_sysload;		/* For loadavg, !ITHD load. */
241 #endif
242 };
243 
244 #ifdef SMP
245 /*
246  * kseq groups are groups of processors which can cheaply share threads.  When
247  * one processor in the group goes idle it will check the runqs of the other
248  * processors in its group prior to halting and waiting for an interrupt.
249  * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
250  * In a numa environment we'd want an idle bitmap per group and a two tiered
251  * load balancer.
252  */
253 struct kseq_group {
254 	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
255 	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
256 	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
257 	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
258 	int	ksg_load;		/* Total load of this group. */
259 	int	ksg_transferable;	/* Transferable load of this group. */
260 	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
261 };
262 #endif
263 
264 /*
265  * One kse queue per processor.
266  */
267 #ifdef SMP
268 static cpumask_t kseq_idle;
269 static int ksg_maxid;
270 static struct kseq	kseq_cpu[MAXCPU];
271 static struct kseq_group kseq_groups[MAXCPU];
272 static int bal_tick;
273 static int gbal_tick;
274 static int balance_groups;
275 
276 #define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
277 #define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
278 #define	KSEQ_ID(x)	((x) - kseq_cpu)
279 #define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
280 #else	/* !SMP */
281 static struct kseq	kseq_cpu;
282 
283 #define	KSEQ_SELF()	(&kseq_cpu)
284 #define	KSEQ_CPU(x)	(&kseq_cpu)
285 #endif
286 
287 static void slot_fill(struct ksegrp *);
288 static struct kse *sched_choose(void);		/* XXX Should be thread * */
289 static void sched_slice(struct kse *);
290 static void sched_priority(struct ksegrp *);
291 static void sched_thread_priority(struct thread *, u_char);
292 static int sched_interact_score(struct ksegrp *);
293 static void sched_interact_update(struct ksegrp *);
294 static void sched_interact_fork(struct ksegrp *);
295 static void sched_pctcpu_update(struct kse *);
296 
297 /* Operations on per processor queues */
298 static struct kse * kseq_choose(struct kseq *);
299 static void kseq_setup(struct kseq *);
300 static void kseq_load_add(struct kseq *, struct kse *);
301 static void kseq_load_rem(struct kseq *, struct kse *);
302 static __inline void kseq_runq_add(struct kseq *, struct kse *, int);
303 static __inline void kseq_runq_rem(struct kseq *, struct kse *);
304 static void kseq_nice_add(struct kseq *, int);
305 static void kseq_nice_rem(struct kseq *, int);
306 void kseq_print(int cpu);
307 #ifdef SMP
308 static int kseq_transfer(struct kseq *, struct kse *, int);
309 static struct kse *runq_steal(struct runq *);
310 static void sched_balance(void);
311 static void sched_balance_groups(void);
312 static void sched_balance_group(struct kseq_group *);
313 static void sched_balance_pair(struct kseq *, struct kseq *);
314 static void kseq_move(struct kseq *, int);
315 static int kseq_idled(struct kseq *);
316 static void kseq_notify(struct kse *, int);
317 static void kseq_assign(struct kseq *);
318 static struct kse *kseq_steal(struct kseq *, int);
319 #define	KSE_CAN_MIGRATE(ke)						\
320     ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
321 #endif
322 
323 void
324 kseq_print(int cpu)
325 {
326 	struct kseq *kseq;
327 	int i;
328 
329 	kseq = KSEQ_CPU(cpu);
330 
331 	printf("kseq:\n");
332 	printf("\tload:           %d\n", kseq->ksq_load);
333 	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
334 #ifdef SMP
335 	printf("\tload transferable: %d\n", kseq->ksq_transferable);
336 #endif
337 	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
338 	printf("\tnice counts:\n");
339 	for (i = 0; i < SCHED_PRI_NRESV; i++)
340 		if (kseq->ksq_nice[i])
341 			printf("\t\t%d = %d\n",
342 			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
343 }
344 
345 static __inline void
346 kseq_runq_add(struct kseq *kseq, struct kse *ke, int flags)
347 {
348 #ifdef SMP
349 	if (KSE_CAN_MIGRATE(ke)) {
350 		kseq->ksq_transferable++;
351 		kseq->ksq_group->ksg_transferable++;
352 		ke->ke_flags |= KEF_XFERABLE;
353 	}
354 #endif
355 	if (ke->ke_flags & KEF_PREEMPTED)
356 		flags |= SRQ_PREEMPTED;
357 	runq_add(ke->ke_runq, ke, flags);
358 }
359 
360 static __inline void
361 kseq_runq_rem(struct kseq *kseq, struct kse *ke)
362 {
363 #ifdef SMP
364 	if (ke->ke_flags & KEF_XFERABLE) {
365 		kseq->ksq_transferable--;
366 		kseq->ksq_group->ksg_transferable--;
367 		ke->ke_flags &= ~KEF_XFERABLE;
368 	}
369 #endif
370 	runq_remove(ke->ke_runq, ke);
371 }
372 
373 static void
374 kseq_load_add(struct kseq *kseq, struct kse *ke)
375 {
376 	int class;
377 	mtx_assert(&sched_lock, MA_OWNED);
378 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
379 	if (class == PRI_TIMESHARE)
380 		kseq->ksq_load_timeshare++;
381 	kseq->ksq_load++;
382 	CTR1(KTR_SCHED, "load: %d", kseq->ksq_load);
383 	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
384 #ifdef SMP
385 		kseq->ksq_group->ksg_load++;
386 #else
387 		kseq->ksq_sysload++;
388 #endif
389 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
390 		kseq_nice_add(kseq, ke->ke_proc->p_nice);
391 }
392 
393 static void
394 kseq_load_rem(struct kseq *kseq, struct kse *ke)
395 {
396 	int class;
397 	mtx_assert(&sched_lock, MA_OWNED);
398 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
399 	if (class == PRI_TIMESHARE)
400 		kseq->ksq_load_timeshare--;
401 	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
402 #ifdef SMP
403 		kseq->ksq_group->ksg_load--;
404 #else
405 		kseq->ksq_sysload--;
406 #endif
407 	kseq->ksq_load--;
408 	CTR1(KTR_SCHED, "load: %d", kseq->ksq_load);
409 	ke->ke_runq = NULL;
410 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
411 		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
412 }
413 
414 static void
415 kseq_nice_add(struct kseq *kseq, int nice)
416 {
417 	mtx_assert(&sched_lock, MA_OWNED);
418 	/* Normalize to zero. */
419 	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
420 	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
421 		kseq->ksq_nicemin = nice;
422 }
423 
424 static void
425 kseq_nice_rem(struct kseq *kseq, int nice)
426 {
427 	int n;
428 
429 	mtx_assert(&sched_lock, MA_OWNED);
430 	/* Normalize to zero. */
431 	n = nice + SCHED_PRI_NHALF;
432 	kseq->ksq_nice[n]--;
433 	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
434 
435 	/*
436 	 * If this wasn't the smallest nice value or there are more in
437 	 * this bucket we can just return.  Otherwise we have to recalculate
438 	 * the smallest nice.
439 	 */
440 	if (nice != kseq->ksq_nicemin ||
441 	    kseq->ksq_nice[n] != 0 ||
442 	    kseq->ksq_load_timeshare == 0)
443 		return;
444 
445 	for (; n < SCHED_PRI_NRESV; n++)
446 		if (kseq->ksq_nice[n]) {
447 			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
448 			return;
449 		}
450 }
451 
452 #ifdef SMP
453 /*
454  * sched_balance is a simple CPU load balancing algorithm.  It operates by
455  * finding the least loaded and most loaded cpu and equalizing their load
456  * by migrating some processes.
457  *
458  * Dealing only with two CPUs at a time has two advantages.  Firstly, most
459  * installations will only have 2 cpus.  Secondly, load balancing too much at
460  * once can have an unpleasant effect on the system.  The scheduler rarely has
461  * enough information to make perfect decisions.  So this algorithm chooses
462  * algorithm simplicity and more gradual effects on load in larger systems.
463  *
464  * It could be improved by considering the priorities and slices assigned to
465  * each task prior to balancing them.  There are many pathological cases with
466  * any approach and so the semi random algorithm below may work as well as any.
467  *
468  */
469 static void
470 sched_balance(void)
471 {
472 	struct kseq_group *high;
473 	struct kseq_group *low;
474 	struct kseq_group *ksg;
475 	int cnt;
476 	int i;
477 
478 	bal_tick = ticks + (random() % (hz * 2));
479 	if (smp_started == 0)
480 		return;
481 	low = high = NULL;
482 	i = random() % (ksg_maxid + 1);
483 	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
484 		ksg = KSEQ_GROUP(i);
485 		/*
486 		 * Find the CPU with the highest load that has some
487 		 * threads to transfer.
488 		 */
489 		if ((high == NULL || ksg->ksg_load > high->ksg_load)
490 		    && ksg->ksg_transferable)
491 			high = ksg;
492 		if (low == NULL || ksg->ksg_load < low->ksg_load)
493 			low = ksg;
494 		if (++i > ksg_maxid)
495 			i = 0;
496 	}
497 	if (low != NULL && high != NULL && high != low)
498 		sched_balance_pair(LIST_FIRST(&high->ksg_members),
499 		    LIST_FIRST(&low->ksg_members));
500 }
501 
502 static void
503 sched_balance_groups(void)
504 {
505 	int i;
506 
507 	gbal_tick = ticks + (random() % (hz * 2));
508 	mtx_assert(&sched_lock, MA_OWNED);
509 	if (smp_started)
510 		for (i = 0; i <= ksg_maxid; i++)
511 			sched_balance_group(KSEQ_GROUP(i));
512 }
513 
514 static void
515 sched_balance_group(struct kseq_group *ksg)
516 {
517 	struct kseq *kseq;
518 	struct kseq *high;
519 	struct kseq *low;
520 	int load;
521 
522 	if (ksg->ksg_transferable == 0)
523 		return;
524 	low = NULL;
525 	high = NULL;
526 	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
527 		load = kseq->ksq_load;
528 		if (high == NULL || load > high->ksq_load)
529 			high = kseq;
530 		if (low == NULL || load < low->ksq_load)
531 			low = kseq;
532 	}
533 	if (high != NULL && low != NULL && high != low)
534 		sched_balance_pair(high, low);
535 }
536 
537 static void
538 sched_balance_pair(struct kseq *high, struct kseq *low)
539 {
540 	int transferable;
541 	int high_load;
542 	int low_load;
543 	int move;
544 	int diff;
545 	int i;
546 
547 	/*
548 	 * If we're transfering within a group we have to use this specific
549 	 * kseq's transferable count, otherwise we can steal from other members
550 	 * of the group.
551 	 */
552 	if (high->ksq_group == low->ksq_group) {
553 		transferable = high->ksq_transferable;
554 		high_load = high->ksq_load;
555 		low_load = low->ksq_load;
556 	} else {
557 		transferable = high->ksq_group->ksg_transferable;
558 		high_load = high->ksq_group->ksg_load;
559 		low_load = low->ksq_group->ksg_load;
560 	}
561 	if (transferable == 0)
562 		return;
563 	/*
564 	 * Determine what the imbalance is and then adjust that to how many
565 	 * kses we actually have to give up (transferable).
566 	 */
567 	diff = high_load - low_load;
568 	move = diff / 2;
569 	if (diff & 0x1)
570 		move++;
571 	move = min(move, transferable);
572 	for (i = 0; i < move; i++)
573 		kseq_move(high, KSEQ_ID(low));
574 	return;
575 }
576 
577 static void
578 kseq_move(struct kseq *from, int cpu)
579 {
580 	struct kseq *kseq;
581 	struct kseq *to;
582 	struct kse *ke;
583 
584 	kseq = from;
585 	to = KSEQ_CPU(cpu);
586 	ke = kseq_steal(kseq, 1);
587 	if (ke == NULL) {
588 		struct kseq_group *ksg;
589 
590 		ksg = kseq->ksq_group;
591 		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
592 			if (kseq == from || kseq->ksq_transferable == 0)
593 				continue;
594 			ke = kseq_steal(kseq, 1);
595 			break;
596 		}
597 		if (ke == NULL)
598 			panic("kseq_move: No KSEs available with a "
599 			    "transferable count of %d\n",
600 			    ksg->ksg_transferable);
601 	}
602 	if (kseq == to)
603 		return;
604 	ke->ke_state = KES_THREAD;
605 	kseq_runq_rem(kseq, ke);
606 	kseq_load_rem(kseq, ke);
607 	kseq_notify(ke, cpu);
608 }
609 
610 static int
611 kseq_idled(struct kseq *kseq)
612 {
613 	struct kseq_group *ksg;
614 	struct kseq *steal;
615 	struct kse *ke;
616 
617 	ksg = kseq->ksq_group;
618 	/*
619 	 * If we're in a cpu group, try and steal kses from another cpu in
620 	 * the group before idling.
621 	 */
622 	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
623 		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
624 			if (steal == kseq || steal->ksq_transferable == 0)
625 				continue;
626 			ke = kseq_steal(steal, 0);
627 			if (ke == NULL)
628 				continue;
629 			ke->ke_state = KES_THREAD;
630 			kseq_runq_rem(steal, ke);
631 			kseq_load_rem(steal, ke);
632 			ke->ke_cpu = PCPU_GET(cpuid);
633 			ke->ke_flags |= KEF_INTERNAL | KEF_HOLD;
634 			sched_add(ke->ke_thread, SRQ_YIELDING);
635 			return (0);
636 		}
637 	}
638 	/*
639 	 * We only set the idled bit when all of the cpus in the group are
640 	 * idle.  Otherwise we could get into a situation where a KSE bounces
641 	 * back and forth between two idle cores on seperate physical CPUs.
642 	 */
643 	ksg->ksg_idlemask |= PCPU_GET(cpumask);
644 	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
645 		return (1);
646 	atomic_set_int(&kseq_idle, ksg->ksg_mask);
647 	return (1);
648 }
649 
650 static void
651 kseq_assign(struct kseq *kseq)
652 {
653 	struct kse *nke;
654 	struct kse *ke;
655 
656 	do {
657 		*(volatile struct kse **)&ke = kseq->ksq_assigned;
658 	} while(!atomic_cmpset_ptr((volatile uintptr_t *)&kseq->ksq_assigned,
659 		(uintptr_t)ke, (uintptr_t)NULL));
660 	for (; ke != NULL; ke = nke) {
661 		nke = ke->ke_assign;
662 		kseq->ksq_group->ksg_load--;
663 		kseq->ksq_load--;
664 		ke->ke_flags &= ~KEF_ASSIGNED;
665 		if (ke->ke_flags & KEF_REMOVED) {
666 			ke->ke_flags &= ~KEF_REMOVED;
667 			continue;
668 		}
669 		ke->ke_flags |= KEF_INTERNAL | KEF_HOLD;
670 		sched_add(ke->ke_thread, SRQ_YIELDING);
671 	}
672 }
673 
674 static void
675 kseq_notify(struct kse *ke, int cpu)
676 {
677 	struct kseq *kseq;
678 	struct thread *td;
679 	struct pcpu *pcpu;
680 	int class;
681 	int prio;
682 
683 	kseq = KSEQ_CPU(cpu);
684 	/* XXX */
685 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
686 	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
687 	    (kseq_idle & kseq->ksq_group->ksg_mask))
688 		atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
689 	kseq->ksq_group->ksg_load++;
690 	kseq->ksq_load++;
691 	ke->ke_cpu = cpu;
692 	ke->ke_flags |= KEF_ASSIGNED;
693 	prio = ke->ke_thread->td_priority;
694 
695 	/*
696 	 * Place a KSE on another cpu's queue and force a resched.
697 	 */
698 	do {
699 		*(volatile struct kse **)&ke->ke_assign = kseq->ksq_assigned;
700 	} while(!atomic_cmpset_ptr((volatile uintptr_t *)&kseq->ksq_assigned,
701 		(uintptr_t)ke->ke_assign, (uintptr_t)ke));
702 	/*
703 	 * Without sched_lock we could lose a race where we set NEEDRESCHED
704 	 * on a thread that is switched out before the IPI is delivered.  This
705 	 * would lead us to miss the resched.  This will be a problem once
706 	 * sched_lock is pushed down.
707 	 */
708 	pcpu = pcpu_find(cpu);
709 	td = pcpu->pc_curthread;
710 	if (ke->ke_thread->td_priority < td->td_priority ||
711 	    td == pcpu->pc_idlethread) {
712 		td->td_flags |= TDF_NEEDRESCHED;
713 		ipi_selected(1 << cpu, IPI_AST);
714 	}
715 }
716 
717 static struct kse *
718 runq_steal(struct runq *rq)
719 {
720 	struct rqhead *rqh;
721 	struct rqbits *rqb;
722 	struct kse *ke;
723 	int word;
724 	int bit;
725 
726 	mtx_assert(&sched_lock, MA_OWNED);
727 	rqb = &rq->rq_status;
728 	for (word = 0; word < RQB_LEN; word++) {
729 		if (rqb->rqb_bits[word] == 0)
730 			continue;
731 		for (bit = 0; bit < RQB_BPW; bit++) {
732 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
733 				continue;
734 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
735 			TAILQ_FOREACH(ke, rqh, ke_procq) {
736 				if (KSE_CAN_MIGRATE(ke))
737 					return (ke);
738 			}
739 		}
740 	}
741 	return (NULL);
742 }
743 
744 static struct kse *
745 kseq_steal(struct kseq *kseq, int stealidle)
746 {
747 	struct kse *ke;
748 
749 	/*
750 	 * Steal from next first to try to get a non-interactive task that
751 	 * may not have run for a while.
752 	 */
753 	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
754 		return (ke);
755 	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
756 		return (ke);
757 	if (stealidle)
758 		return (runq_steal(&kseq->ksq_idle));
759 	return (NULL);
760 }
761 
762 int
763 kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
764 {
765 	struct kseq_group *nksg;
766 	struct kseq_group *ksg;
767 	struct kseq *old;
768 	int cpu;
769 	int idx;
770 
771 	if (smp_started == 0)
772 		return (0);
773 	cpu = 0;
774 	/*
775 	 * If our load exceeds a certain threshold we should attempt to
776 	 * reassign this thread.  The first candidate is the cpu that
777 	 * originally ran the thread.  If it is idle, assign it there,
778 	 * otherwise, pick an idle cpu.
779 	 *
780 	 * The threshold at which we start to reassign kses has a large impact
781 	 * on the overall performance of the system.  Tuned too high and
782 	 * some CPUs may idle.  Too low and there will be excess migration
783 	 * and context switches.
784 	 */
785 	old = KSEQ_CPU(ke->ke_cpu);
786 	nksg = old->ksq_group;
787 	ksg = kseq->ksq_group;
788 	if (kseq_idle) {
789 		if (kseq_idle & nksg->ksg_mask) {
790 			cpu = ffs(nksg->ksg_idlemask);
791 			if (cpu) {
792 				CTR2(KTR_SCHED,
793 				    "kseq_transfer: %p found old cpu %X "
794 				    "in idlemask.", ke, cpu);
795 				goto migrate;
796 			}
797 		}
798 		/*
799 		 * Multiple cpus could find this bit simultaneously
800 		 * but the race shouldn't be terrible.
801 		 */
802 		cpu = ffs(kseq_idle);
803 		if (cpu) {
804 			CTR2(KTR_SCHED, "kseq_transfer: %p found %X "
805 			    "in idlemask.", ke, cpu);
806 			goto migrate;
807 		}
808 	}
809 	idx = 0;
810 #if 0
811 	if (old->ksq_load < kseq->ksq_load) {
812 		cpu = ke->ke_cpu + 1;
813 		CTR2(KTR_SCHED, "kseq_transfer: %p old cpu %X "
814 		    "load less than ours.", ke, cpu);
815 		goto migrate;
816 	}
817 	/*
818 	 * No new CPU was found, look for one with less load.
819 	 */
820 	for (idx = 0; idx <= ksg_maxid; idx++) {
821 		nksg = KSEQ_GROUP(idx);
822 		if (nksg->ksg_load /*+ (nksg->ksg_cpus  * 2)*/ < ksg->ksg_load) {
823 			cpu = ffs(nksg->ksg_cpumask);
824 			CTR2(KTR_SCHED, "kseq_transfer: %p cpu %X load less "
825 			    "than ours.", ke, cpu);
826 			goto migrate;
827 		}
828 	}
829 #endif
830 	/*
831 	 * If another cpu in this group has idled, assign a thread over
832 	 * to them after checking to see if there are idled groups.
833 	 */
834 	if (ksg->ksg_idlemask) {
835 		cpu = ffs(ksg->ksg_idlemask);
836 		if (cpu) {
837 			CTR2(KTR_SCHED, "kseq_transfer: %p cpu %X idle in "
838 			    "group.", ke, cpu);
839 			goto migrate;
840 		}
841 	}
842 	return (0);
843 migrate:
844 	/*
845 	 * Now that we've found an idle CPU, migrate the thread.
846 	 */
847 	cpu--;
848 	ke->ke_runq = NULL;
849 	kseq_notify(ke, cpu);
850 
851 	return (1);
852 }
853 
854 #endif	/* SMP */
855 
856 /*
857  * Pick the highest priority task we have and return it.
858  */
859 
860 static struct kse *
861 kseq_choose(struct kseq *kseq)
862 {
863 	struct runq *swap;
864 	struct kse *ke;
865 	int nice;
866 
867 	mtx_assert(&sched_lock, MA_OWNED);
868 	swap = NULL;
869 
870 	for (;;) {
871 		ke = runq_choose(kseq->ksq_curr);
872 		if (ke == NULL) {
873 			/*
874 			 * We already swapped once and didn't get anywhere.
875 			 */
876 			if (swap)
877 				break;
878 			swap = kseq->ksq_curr;
879 			kseq->ksq_curr = kseq->ksq_next;
880 			kseq->ksq_next = swap;
881 			continue;
882 		}
883 		/*
884 		 * If we encounter a slice of 0 the kse is in a
885 		 * TIMESHARE kse group and its nice was too far out
886 		 * of the range that receives slices.
887 		 */
888 		nice = ke->ke_proc->p_nice + (0 - kseq->ksq_nicemin);
889 #if 0
890 		if (ke->ke_slice == 0 || (nice > SCHED_SLICE_NTHRESH &&
891 		    ke->ke_proc->p_nice != 0)) {
892 			runq_remove(ke->ke_runq, ke);
893 			sched_slice(ke);
894 			ke->ke_runq = kseq->ksq_next;
895 			runq_add(ke->ke_runq, ke, 0);
896 			continue;
897 		}
898 #endif
899 		return (ke);
900 	}
901 
902 	return (runq_choose(&kseq->ksq_idle));
903 }
904 
905 static void
906 kseq_setup(struct kseq *kseq)
907 {
908 	runq_init(&kseq->ksq_timeshare[0]);
909 	runq_init(&kseq->ksq_timeshare[1]);
910 	runq_init(&kseq->ksq_idle);
911 	kseq->ksq_curr = &kseq->ksq_timeshare[0];
912 	kseq->ksq_next = &kseq->ksq_timeshare[1];
913 	kseq->ksq_load = 0;
914 	kseq->ksq_load_timeshare = 0;
915 }
916 
917 static void
918 sched_setup(void *dummy)
919 {
920 #ifdef SMP
921 	int i;
922 #endif
923 
924 	slice_min = (hz/100);	/* 10ms */
925 	slice_max = (hz/7);	/* ~140ms */
926 
927 #ifdef SMP
928 	balance_groups = 0;
929 	/*
930 	 * Initialize the kseqs.
931 	 */
932 	for (i = 0; i < MAXCPU; i++) {
933 		struct kseq *ksq;
934 
935 		ksq = &kseq_cpu[i];
936 		ksq->ksq_assigned = NULL;
937 		kseq_setup(&kseq_cpu[i]);
938 	}
939 	if (smp_topology == NULL) {
940 		struct kseq_group *ksg;
941 		struct kseq *ksq;
942 		int cpus;
943 
944 		for (cpus = 0, i = 0; i < MAXCPU; i++) {
945 			if (CPU_ABSENT(i))
946 				continue;
947 			ksq = &kseq_cpu[cpus];
948 			ksg = &kseq_groups[cpus];
949 			/*
950 			 * Setup a kseq group with one member.
951 			 */
952 			ksq->ksq_transferable = 0;
953 			ksq->ksq_group = ksg;
954 			ksg->ksg_cpus = 1;
955 			ksg->ksg_idlemask = 0;
956 			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
957 			ksg->ksg_load = 0;
958 			ksg->ksg_transferable = 0;
959 			LIST_INIT(&ksg->ksg_members);
960 			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
961 			cpus++;
962 		}
963 		ksg_maxid = cpus - 1;
964 	} else {
965 		struct kseq_group *ksg;
966 		struct cpu_group *cg;
967 		int j;
968 
969 		for (i = 0; i < smp_topology->ct_count; i++) {
970 			cg = &smp_topology->ct_group[i];
971 			ksg = &kseq_groups[i];
972 			/*
973 			 * Initialize the group.
974 			 */
975 			ksg->ksg_idlemask = 0;
976 			ksg->ksg_load = 0;
977 			ksg->ksg_transferable = 0;
978 			ksg->ksg_cpus = cg->cg_count;
979 			ksg->ksg_cpumask = cg->cg_mask;
980 			LIST_INIT(&ksg->ksg_members);
981 			/*
982 			 * Find all of the group members and add them.
983 			 */
984 			for (j = 0; j < MAXCPU; j++) {
985 				if ((cg->cg_mask & (1 << j)) != 0) {
986 					if (ksg->ksg_mask == 0)
987 						ksg->ksg_mask = 1 << j;
988 					kseq_cpu[j].ksq_transferable = 0;
989 					kseq_cpu[j].ksq_group = ksg;
990 					LIST_INSERT_HEAD(&ksg->ksg_members,
991 					    &kseq_cpu[j], ksq_siblings);
992 				}
993 			}
994 			if (ksg->ksg_cpus > 1)
995 				balance_groups = 1;
996 		}
997 		ksg_maxid = smp_topology->ct_count - 1;
998 	}
999 	/*
1000 	 * Stagger the group and global load balancer so they do not
1001 	 * interfere with each other.
1002 	 */
1003 	bal_tick = ticks + hz;
1004 	if (balance_groups)
1005 		gbal_tick = ticks + (hz / 2);
1006 #else
1007 	kseq_setup(KSEQ_SELF());
1008 #endif
1009 	mtx_lock_spin(&sched_lock);
1010 	kseq_load_add(KSEQ_SELF(), &kse0);
1011 	mtx_unlock_spin(&sched_lock);
1012 }
1013 
1014 /*
1015  * Scale the scheduling priority according to the "interactivity" of this
1016  * process.
1017  */
1018 static void
1019 sched_priority(struct ksegrp *kg)
1020 {
1021 	int pri;
1022 
1023 	if (kg->kg_pri_class != PRI_TIMESHARE)
1024 		return;
1025 
1026 	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
1027 	pri += SCHED_PRI_BASE;
1028 	pri += kg->kg_proc->p_nice;
1029 
1030 	if (pri > PRI_MAX_TIMESHARE)
1031 		pri = PRI_MAX_TIMESHARE;
1032 	else if (pri < PRI_MIN_TIMESHARE)
1033 		pri = PRI_MIN_TIMESHARE;
1034 
1035 	kg->kg_user_pri = pri;
1036 
1037 	return;
1038 }
1039 
1040 /*
1041  * Calculate a time slice based on the properties of the kseg and the runq
1042  * that we're on.  This is only for PRI_TIMESHARE ksegrps.
1043  */
1044 static void
1045 sched_slice(struct kse *ke)
1046 {
1047 	struct kseq *kseq;
1048 	struct ksegrp *kg;
1049 
1050 	kg = ke->ke_ksegrp;
1051 	kseq = KSEQ_CPU(ke->ke_cpu);
1052 
1053 	if (ke->ke_thread->td_flags & TDF_BORROWING) {
1054 		ke->ke_slice = SCHED_SLICE_MIN;
1055 		return;
1056 	}
1057 
1058 	/*
1059 	 * Rationale:
1060 	 * KSEs in interactive ksegs get a minimal slice so that we
1061 	 * quickly notice if it abuses its advantage.
1062 	 *
1063 	 * KSEs in non-interactive ksegs are assigned a slice that is
1064 	 * based on the ksegs nice value relative to the least nice kseg
1065 	 * on the run queue for this cpu.
1066 	 *
1067 	 * If the KSE is less nice than all others it gets the maximum
1068 	 * slice and other KSEs will adjust their slice relative to
1069 	 * this when they first expire.
1070 	 *
1071 	 * There is 20 point window that starts relative to the least
1072 	 * nice kse on the run queue.  Slice size is determined by
1073 	 * the kse distance from the last nice ksegrp.
1074 	 *
1075 	 * If the kse is outside of the window it will get no slice
1076 	 * and will be reevaluated each time it is selected on the
1077 	 * run queue.  The exception to this is nice 0 ksegs when
1078 	 * a nice -20 is running.  They are always granted a minimum
1079 	 * slice.
1080 	 */
1081 	if (!SCHED_INTERACTIVE(kg)) {
1082 		int nice;
1083 
1084 		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
1085 		if (kseq->ksq_load_timeshare == 0 ||
1086 		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
1087 			ke->ke_slice = SCHED_SLICE_MAX;
1088 		else if (nice <= SCHED_SLICE_NTHRESH)
1089 			ke->ke_slice = SCHED_SLICE_NICE(nice);
1090 		else if (kg->kg_proc->p_nice == 0)
1091 			ke->ke_slice = SCHED_SLICE_MIN;
1092 		else
1093 			ke->ke_slice = SCHED_SLICE_MIN; /* 0 */
1094 	} else
1095 		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
1096 
1097 	return;
1098 }
1099 
1100 /*
1101  * This routine enforces a maximum limit on the amount of scheduling history
1102  * kept.  It is called after either the slptime or runtime is adjusted.
1103  * This routine will not operate correctly when slp or run times have been
1104  * adjusted to more than double their maximum.
1105  */
1106 static void
1107 sched_interact_update(struct ksegrp *kg)
1108 {
1109 	int sum;
1110 
1111 	sum = kg->kg_runtime + kg->kg_slptime;
1112 	if (sum < SCHED_SLP_RUN_MAX)
1113 		return;
1114 	/*
1115 	 * If we have exceeded by more than 1/5th then the algorithm below
1116 	 * will not bring us back into range.  Dividing by two here forces
1117 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1118 	 */
1119 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1120 		kg->kg_runtime /= 2;
1121 		kg->kg_slptime /= 2;
1122 		return;
1123 	}
1124 	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1125 	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1126 }
1127 
1128 static void
1129 sched_interact_fork(struct ksegrp *kg)
1130 {
1131 	int ratio;
1132 	int sum;
1133 
1134 	sum = kg->kg_runtime + kg->kg_slptime;
1135 	if (sum > SCHED_SLP_RUN_FORK) {
1136 		ratio = sum / SCHED_SLP_RUN_FORK;
1137 		kg->kg_runtime /= ratio;
1138 		kg->kg_slptime /= ratio;
1139 	}
1140 }
1141 
1142 static int
1143 sched_interact_score(struct ksegrp *kg)
1144 {
1145 	int div;
1146 
1147 	if (kg->kg_runtime > kg->kg_slptime) {
1148 		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1149 		return (SCHED_INTERACT_HALF +
1150 		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1151 	} if (kg->kg_slptime > kg->kg_runtime) {
1152 		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1153 		return (kg->kg_runtime / div);
1154 	}
1155 
1156 	/*
1157 	 * This can happen if slptime and runtime are 0.
1158 	 */
1159 	return (0);
1160 
1161 }
1162 
1163 /*
1164  * Very early in the boot some setup of scheduler-specific
1165  * parts of proc0 and of soem scheduler resources needs to be done.
1166  * Called from:
1167  *  proc0_init()
1168  */
1169 void
1170 schedinit(void)
1171 {
1172 	/*
1173 	 * Set up the scheduler specific parts of proc0.
1174 	 */
1175 	proc0.p_sched = NULL; /* XXX */
1176 	ksegrp0.kg_sched = &kg_sched0;
1177 	thread0.td_sched = &kse0;
1178 	kse0.ke_thread = &thread0;
1179 	kse0.ke_state = KES_THREAD;
1180 	kg_sched0.skg_concurrency = 1;
1181 	kg_sched0.skg_avail_opennings = 0; /* we are already running */
1182 }
1183 
1184 /*
1185  * This is only somewhat accurate since given many processes of the same
1186  * priority they will switch when their slices run out, which will be
1187  * at most SCHED_SLICE_MAX.
1188  */
1189 int
1190 sched_rr_interval(void)
1191 {
1192 	return (SCHED_SLICE_MAX);
1193 }
1194 
1195 static void
1196 sched_pctcpu_update(struct kse *ke)
1197 {
1198 	/*
1199 	 * Adjust counters and watermark for pctcpu calc.
1200 	 */
1201 	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1202 		/*
1203 		 * Shift the tick count out so that the divide doesn't
1204 		 * round away our results.
1205 		 */
1206 		ke->ke_ticks <<= 10;
1207 		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1208 			    SCHED_CPU_TICKS;
1209 		ke->ke_ticks >>= 10;
1210 	} else
1211 		ke->ke_ticks = 0;
1212 	ke->ke_ltick = ticks;
1213 	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1214 }
1215 
1216 void
1217 sched_thread_priority(struct thread *td, u_char prio)
1218 {
1219 	struct kse *ke;
1220 
1221 	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
1222 	    td, td->td_proc->p_comm, td->td_priority, prio, curthread,
1223 	    curthread->td_proc->p_comm);
1224 	ke = td->td_kse;
1225 	mtx_assert(&sched_lock, MA_OWNED);
1226 	if (td->td_priority == prio)
1227 		return;
1228 	if (TD_ON_RUNQ(td)) {
1229 		/*
1230 		 * If the priority has been elevated due to priority
1231 		 * propagation, we may have to move ourselves to a new
1232 		 * queue.  We still call adjustrunqueue below in case kse
1233 		 * needs to fix things up.
1234 		 */
1235 		if (prio < td->td_priority && ke->ke_runq != NULL &&
1236 		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1237 		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1238 			runq_remove(ke->ke_runq, ke);
1239 			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1240 			runq_add(ke->ke_runq, ke, 0);
1241 		}
1242 		/*
1243 		 * Hold this kse on this cpu so that sched_prio() doesn't
1244 		 * cause excessive migration.  We only want migration to
1245 		 * happen as the result of a wakeup.
1246 		 */
1247 		ke->ke_flags |= KEF_HOLD;
1248 		adjustrunqueue(td, prio);
1249 		ke->ke_flags &= ~KEF_HOLD;
1250 	} else
1251 		td->td_priority = prio;
1252 }
1253 
1254 /*
1255  * Update a thread's priority when it is lent another thread's
1256  * priority.
1257  */
1258 void
1259 sched_lend_prio(struct thread *td, u_char prio)
1260 {
1261 
1262 	td->td_flags |= TDF_BORROWING;
1263 	sched_thread_priority(td, prio);
1264 }
1265 
1266 /*
1267  * Restore a thread's priority when priority propagation is
1268  * over.  The prio argument is the minimum priority the thread
1269  * needs to have to satisfy other possible priority lending
1270  * requests.  If the thread's regular priority is less
1271  * important than prio, the thread will keep a priority boost
1272  * of prio.
1273  */
1274 void
1275 sched_unlend_prio(struct thread *td, u_char prio)
1276 {
1277 	u_char base_pri;
1278 
1279 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1280 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1281 		base_pri = td->td_ksegrp->kg_user_pri;
1282 	else
1283 		base_pri = td->td_base_pri;
1284 	if (prio >= base_pri) {
1285 		td->td_flags &= ~TDF_BORROWING;
1286 		sched_thread_priority(td, base_pri);
1287 	} else
1288 		sched_lend_prio(td, prio);
1289 }
1290 
1291 void
1292 sched_prio(struct thread *td, u_char prio)
1293 {
1294 	u_char oldprio;
1295 
1296 	/* First, update the base priority. */
1297 	td->td_base_pri = prio;
1298 
1299 	/*
1300 	 * If the thread is borrowing another thread's priority, don't
1301 	 * ever lower the priority.
1302 	 */
1303 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1304 		return;
1305 
1306 	/* Change the real priority. */
1307 	oldprio = td->td_priority;
1308 	sched_thread_priority(td, prio);
1309 
1310 	/*
1311 	 * If the thread is on a turnstile, then let the turnstile update
1312 	 * its state.
1313 	 */
1314 	if (TD_ON_LOCK(td) && oldprio != prio)
1315 		turnstile_adjust(td, oldprio);
1316 }
1317 
1318 void
1319 sched_switch(struct thread *td, struct thread *newtd, int flags)
1320 {
1321 	struct kseq *ksq;
1322 	struct kse *ke;
1323 
1324 	mtx_assert(&sched_lock, MA_OWNED);
1325 
1326 	ke = td->td_kse;
1327 	ksq = KSEQ_SELF();
1328 
1329 	td->td_lastcpu = td->td_oncpu;
1330 	td->td_oncpu = NOCPU;
1331 	td->td_flags &= ~TDF_NEEDRESCHED;
1332 	td->td_owepreempt = 0;
1333 
1334 	/*
1335 	 * If the KSE has been assigned it may be in the process of switching
1336 	 * to the new cpu.  This is the case in sched_bind().
1337 	 */
1338 	if (td == PCPU_GET(idlethread)) {
1339 		TD_SET_CAN_RUN(td);
1340 	} else if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1341 		/* We are ending our run so make our slot available again */
1342 		SLOT_RELEASE(td->td_ksegrp);
1343 		kseq_load_rem(ksq, ke);
1344 		if (TD_IS_RUNNING(td)) {
1345 			/*
1346 			 * Don't allow the thread to migrate
1347 			 * from a preemption.
1348 			 */
1349 			ke->ke_flags |= KEF_HOLD;
1350 			setrunqueue(td, (flags & SW_PREEMPT) ?
1351 			    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1352 			    SRQ_OURSELF|SRQ_YIELDING);
1353 			ke->ke_flags &= ~KEF_HOLD;
1354 		} else if ((td->td_proc->p_flag & P_HADTHREADS) &&
1355 		    (newtd == NULL || newtd->td_ksegrp != td->td_ksegrp))
1356 			/*
1357 			 * We will not be on the run queue.
1358 			 * So we must be sleeping or similar.
1359 			 * Don't use the slot if we will need it
1360 			 * for newtd.
1361 			 */
1362 			slot_fill(td->td_ksegrp);
1363 	}
1364 	if (newtd != NULL) {
1365 		/*
1366 		 * If we bring in a thread account for it as if it had been
1367 		 * added to the run queue and then chosen.
1368 		 */
1369 		newtd->td_kse->ke_flags |= KEF_DIDRUN;
1370 		newtd->td_kse->ke_runq = ksq->ksq_curr;
1371 		TD_SET_RUNNING(newtd);
1372 		kseq_load_add(KSEQ_SELF(), newtd->td_kse);
1373 		/*
1374 		 * XXX When we preempt, we've already consumed a slot because
1375 		 * we got here through sched_add().  However, newtd can come
1376 		 * from thread_switchout() which can't SLOT_USE() because
1377 		 * the SLOT code is scheduler dependent.  We must use the
1378 		 * slot here otherwise.
1379 		 */
1380 		if ((flags & SW_PREEMPT) == 0)
1381 			SLOT_USE(newtd->td_ksegrp);
1382 	} else
1383 		newtd = choosethread();
1384 	if (td != newtd) {
1385 #ifdef	HWPMC_HOOKS
1386 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1387 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1388 #endif
1389 		cpu_switch(td, newtd);
1390 #ifdef	HWPMC_HOOKS
1391 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1392 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1393 #endif
1394 	}
1395 
1396 	sched_lock.mtx_lock = (uintptr_t)td;
1397 
1398 	td->td_oncpu = PCPU_GET(cpuid);
1399 }
1400 
1401 void
1402 sched_nice(struct proc *p, int nice)
1403 {
1404 	struct ksegrp *kg;
1405 	struct kse *ke;
1406 	struct thread *td;
1407 	struct kseq *kseq;
1408 
1409 	PROC_LOCK_ASSERT(p, MA_OWNED);
1410 	mtx_assert(&sched_lock, MA_OWNED);
1411 	/*
1412 	 * We need to adjust the nice counts for running KSEs.
1413 	 */
1414 	FOREACH_KSEGRP_IN_PROC(p, kg) {
1415 		if (kg->kg_pri_class == PRI_TIMESHARE) {
1416 			FOREACH_THREAD_IN_GROUP(kg, td) {
1417 				ke = td->td_kse;
1418 				if (ke->ke_runq == NULL)
1419 					continue;
1420 				kseq = KSEQ_CPU(ke->ke_cpu);
1421 				kseq_nice_rem(kseq, p->p_nice);
1422 				kseq_nice_add(kseq, nice);
1423 			}
1424 		}
1425 	}
1426 	p->p_nice = nice;
1427 	FOREACH_KSEGRP_IN_PROC(p, kg) {
1428 		sched_priority(kg);
1429 		FOREACH_THREAD_IN_GROUP(kg, td)
1430 			td->td_flags |= TDF_NEEDRESCHED;
1431 	}
1432 }
1433 
1434 void
1435 sched_sleep(struct thread *td)
1436 {
1437 	mtx_assert(&sched_lock, MA_OWNED);
1438 
1439 	td->td_slptime = ticks;
1440 }
1441 
1442 void
1443 sched_wakeup(struct thread *td)
1444 {
1445 	mtx_assert(&sched_lock, MA_OWNED);
1446 
1447 	/*
1448 	 * Let the kseg know how long we slept for.  This is because process
1449 	 * interactivity behavior is modeled in the kseg.
1450 	 */
1451 	if (td->td_slptime) {
1452 		struct ksegrp *kg;
1453 		int hzticks;
1454 
1455 		kg = td->td_ksegrp;
1456 		hzticks = (ticks - td->td_slptime) << 10;
1457 		if (hzticks >= SCHED_SLP_RUN_MAX) {
1458 			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1459 			kg->kg_runtime = 1;
1460 		} else {
1461 			kg->kg_slptime += hzticks;
1462 			sched_interact_update(kg);
1463 		}
1464 		sched_priority(kg);
1465 		sched_slice(td->td_kse);
1466 		td->td_slptime = 0;
1467 	}
1468 	setrunqueue(td, SRQ_BORING);
1469 }
1470 
1471 /*
1472  * Penalize the parent for creating a new child and initialize the child's
1473  * priority.
1474  */
1475 void
1476 sched_fork(struct thread *td, struct thread *childtd)
1477 {
1478 
1479 	mtx_assert(&sched_lock, MA_OWNED);
1480 
1481 	sched_fork_ksegrp(td, childtd->td_ksegrp);
1482 	sched_fork_thread(td, childtd);
1483 }
1484 
1485 void
1486 sched_fork_ksegrp(struct thread *td, struct ksegrp *child)
1487 {
1488 	struct ksegrp *kg = td->td_ksegrp;
1489 	mtx_assert(&sched_lock, MA_OWNED);
1490 
1491 	child->kg_slptime = kg->kg_slptime;
1492 	child->kg_runtime = kg->kg_runtime;
1493 	child->kg_user_pri = kg->kg_user_pri;
1494 	sched_interact_fork(child);
1495 	kg->kg_runtime += tickincr << 10;
1496 	sched_interact_update(kg);
1497 }
1498 
1499 void
1500 sched_fork_thread(struct thread *td, struct thread *child)
1501 {
1502 	struct kse *ke;
1503 	struct kse *ke2;
1504 
1505 	sched_newthread(child);
1506 	ke = td->td_kse;
1507 	ke2 = child->td_kse;
1508 	ke2->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1509 	ke2->ke_cpu = ke->ke_cpu;
1510 	ke2->ke_runq = NULL;
1511 
1512 	/* Grab our parents cpu estimation information. */
1513 	ke2->ke_ticks = ke->ke_ticks;
1514 	ke2->ke_ltick = ke->ke_ltick;
1515 	ke2->ke_ftick = ke->ke_ftick;
1516 }
1517 
1518 void
1519 sched_class(struct ksegrp *kg, int class)
1520 {
1521 	struct kseq *kseq;
1522 	struct kse *ke;
1523 	struct thread *td;
1524 	int nclass;
1525 	int oclass;
1526 
1527 	mtx_assert(&sched_lock, MA_OWNED);
1528 	if (kg->kg_pri_class == class)
1529 		return;
1530 
1531 	nclass = PRI_BASE(class);
1532 	oclass = PRI_BASE(kg->kg_pri_class);
1533 	FOREACH_THREAD_IN_GROUP(kg, td) {
1534 		ke = td->td_kse;
1535 		if ((ke->ke_state != KES_ONRUNQ &&
1536 		    ke->ke_state != KES_THREAD) || ke->ke_runq == NULL)
1537 			continue;
1538 		kseq = KSEQ_CPU(ke->ke_cpu);
1539 
1540 #ifdef SMP
1541 		/*
1542 		 * On SMP if we're on the RUNQ we must adjust the transferable
1543 		 * count because could be changing to or from an interrupt
1544 		 * class.
1545 		 */
1546 		if (ke->ke_state == KES_ONRUNQ) {
1547 			if (KSE_CAN_MIGRATE(ke)) {
1548 				kseq->ksq_transferable--;
1549 				kseq->ksq_group->ksg_transferable--;
1550 			}
1551 			if (KSE_CAN_MIGRATE(ke)) {
1552 				kseq->ksq_transferable++;
1553 				kseq->ksq_group->ksg_transferable++;
1554 			}
1555 		}
1556 #endif
1557 		if (oclass == PRI_TIMESHARE) {
1558 			kseq->ksq_load_timeshare--;
1559 			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1560 		}
1561 		if (nclass == PRI_TIMESHARE) {
1562 			kseq->ksq_load_timeshare++;
1563 			kseq_nice_add(kseq, kg->kg_proc->p_nice);
1564 		}
1565 	}
1566 
1567 	kg->kg_pri_class = class;
1568 }
1569 
1570 /*
1571  * Return some of the child's priority and interactivity to the parent.
1572  */
1573 void
1574 sched_exit(struct proc *p, struct thread *childtd)
1575 {
1576 	mtx_assert(&sched_lock, MA_OWNED);
1577 	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), childtd);
1578 	sched_exit_thread(NULL, childtd);
1579 }
1580 
1581 void
1582 sched_exit_ksegrp(struct ksegrp *kg, struct thread *td)
1583 {
1584 	/* kg->kg_slptime += td->td_ksegrp->kg_slptime; */
1585 	kg->kg_runtime += td->td_ksegrp->kg_runtime;
1586 	sched_interact_update(kg);
1587 }
1588 
1589 void
1590 sched_exit_thread(struct thread *td, struct thread *childtd)
1591 {
1592 	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
1593 	    childtd, childtd->td_proc->p_comm, childtd->td_priority);
1594 	kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse);
1595 }
1596 
1597 void
1598 sched_clock(struct thread *td)
1599 {
1600 	struct kseq *kseq;
1601 	struct ksegrp *kg;
1602 	struct kse *ke;
1603 
1604 	mtx_assert(&sched_lock, MA_OWNED);
1605 	kseq = KSEQ_SELF();
1606 #ifdef SMP
1607 	if (ticks >= bal_tick)
1608 		sched_balance();
1609 	if (ticks >= gbal_tick && balance_groups)
1610 		sched_balance_groups();
1611 	/*
1612 	 * We could have been assigned a non real-time thread without an
1613 	 * IPI.
1614 	 */
1615 	if (kseq->ksq_assigned)
1616 		kseq_assign(kseq);	/* Potentially sets NEEDRESCHED */
1617 #endif
1618 	/*
1619 	 * sched_setup() apparently happens prior to stathz being set.  We
1620 	 * need to resolve the timers earlier in the boot so we can avoid
1621 	 * calculating this here.
1622 	 */
1623 	if (realstathz == 0) {
1624 		realstathz = stathz ? stathz : hz;
1625 		tickincr = hz / realstathz;
1626 		/*
1627 		 * XXX This does not work for values of stathz that are much
1628 		 * larger than hz.
1629 		 */
1630 		if (tickincr == 0)
1631 			tickincr = 1;
1632 	}
1633 
1634 	ke = td->td_kse;
1635 	kg = ke->ke_ksegrp;
1636 
1637 	/* Adjust ticks for pctcpu */
1638 	ke->ke_ticks++;
1639 	ke->ke_ltick = ticks;
1640 
1641 	/* Go up to one second beyond our max and then trim back down */
1642 	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1643 		sched_pctcpu_update(ke);
1644 
1645 	if (td->td_flags & TDF_IDLETD)
1646 		return;
1647 	/*
1648 	 * We only do slicing code for TIMESHARE ksegrps.
1649 	 */
1650 	if (kg->kg_pri_class != PRI_TIMESHARE)
1651 		return;
1652 	/*
1653 	 * We used a tick charge it to the ksegrp so that we can compute our
1654 	 * interactivity.
1655 	 */
1656 	kg->kg_runtime += tickincr << 10;
1657 	sched_interact_update(kg);
1658 
1659 	/*
1660 	 * We used up one time slice.
1661 	 */
1662 	if (--ke->ke_slice > 0)
1663 		return;
1664 	/*
1665 	 * We're out of time, recompute priorities and requeue.
1666 	 */
1667 	kseq_load_rem(kseq, ke);
1668 	sched_priority(kg);
1669 	sched_slice(ke);
1670 	if (SCHED_CURR(kg, ke))
1671 		ke->ke_runq = kseq->ksq_curr;
1672 	else
1673 		ke->ke_runq = kseq->ksq_next;
1674 	kseq_load_add(kseq, ke);
1675 	td->td_flags |= TDF_NEEDRESCHED;
1676 }
1677 
1678 int
1679 sched_runnable(void)
1680 {
1681 	struct kseq *kseq;
1682 	int load;
1683 
1684 	load = 1;
1685 
1686 	kseq = KSEQ_SELF();
1687 #ifdef SMP
1688 	if (kseq->ksq_assigned) {
1689 		mtx_lock_spin(&sched_lock);
1690 		kseq_assign(kseq);
1691 		mtx_unlock_spin(&sched_lock);
1692 	}
1693 #endif
1694 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1695 		if (kseq->ksq_load > 0)
1696 			goto out;
1697 	} else
1698 		if (kseq->ksq_load - 1 > 0)
1699 			goto out;
1700 	load = 0;
1701 out:
1702 	return (load);
1703 }
1704 
1705 void
1706 sched_userret(struct thread *td)
1707 {
1708 	struct ksegrp *kg;
1709 
1710 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
1711 	    ("thread with borrowed priority returning to userland"));
1712 	kg = td->td_ksegrp;
1713 	if (td->td_priority != kg->kg_user_pri) {
1714 		mtx_lock_spin(&sched_lock);
1715 		td->td_priority = kg->kg_user_pri;
1716 		td->td_base_pri = kg->kg_user_pri;
1717 		mtx_unlock_spin(&sched_lock);
1718 	}
1719 }
1720 
1721 struct kse *
1722 sched_choose(void)
1723 {
1724 	struct kseq *kseq;
1725 	struct kse *ke;
1726 
1727 	mtx_assert(&sched_lock, MA_OWNED);
1728 	kseq = KSEQ_SELF();
1729 #ifdef SMP
1730 restart:
1731 	if (kseq->ksq_assigned)
1732 		kseq_assign(kseq);
1733 #endif
1734 	ke = kseq_choose(kseq);
1735 	if (ke) {
1736 #ifdef SMP
1737 		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1738 			if (kseq_idled(kseq) == 0)
1739 				goto restart;
1740 #endif
1741 		kseq_runq_rem(kseq, ke);
1742 		ke->ke_state = KES_THREAD;
1743 		ke->ke_flags &= ~KEF_PREEMPTED;
1744 		return (ke);
1745 	}
1746 #ifdef SMP
1747 	if (kseq_idled(kseq) == 0)
1748 		goto restart;
1749 #endif
1750 	return (NULL);
1751 }
1752 
1753 void
1754 sched_add(struct thread *td, int flags)
1755 {
1756 	struct kseq *kseq;
1757 	struct ksegrp *kg;
1758 	struct kse *ke;
1759 	int preemptive;
1760 	int canmigrate;
1761 	int class;
1762 
1763 	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
1764 	    td, td->td_proc->p_comm, td->td_priority, curthread,
1765 	    curthread->td_proc->p_comm);
1766 	mtx_assert(&sched_lock, MA_OWNED);
1767 	ke = td->td_kse;
1768 	kg = td->td_ksegrp;
1769 	canmigrate = 1;
1770 	preemptive = !(flags & SRQ_YIELDING);
1771 	class = PRI_BASE(kg->kg_pri_class);
1772 	kseq = KSEQ_SELF();
1773 	if ((ke->ke_flags & KEF_INTERNAL) == 0)
1774 		SLOT_USE(td->td_ksegrp);
1775 	ke->ke_flags &= ~KEF_INTERNAL;
1776 #ifdef SMP
1777 	if (ke->ke_flags & KEF_ASSIGNED) {
1778 		if (ke->ke_flags & KEF_REMOVED)
1779 			ke->ke_flags &= ~KEF_REMOVED;
1780 		return;
1781 	}
1782 	canmigrate = KSE_CAN_MIGRATE(ke);
1783 	/*
1784 	 * Don't migrate running threads here.  Force the long term balancer
1785 	 * to do it.
1786 	 */
1787 	if (ke->ke_flags & KEF_HOLD) {
1788 		ke->ke_flags &= ~KEF_HOLD;
1789 		canmigrate = 0;
1790 	}
1791 #endif
1792 	KASSERT(ke->ke_state != KES_ONRUNQ,
1793 	    ("sched_add: kse %p (%s) already in run queue", ke,
1794 	    ke->ke_proc->p_comm));
1795 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1796 	    ("sched_add: process swapped out"));
1797 	KASSERT(ke->ke_runq == NULL,
1798 	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1799 	if (flags & SRQ_PREEMPTED)
1800 		ke->ke_flags |= KEF_PREEMPTED;
1801 	switch (class) {
1802 	case PRI_ITHD:
1803 	case PRI_REALTIME:
1804 		ke->ke_runq = kseq->ksq_curr;
1805 		ke->ke_slice = SCHED_SLICE_MAX;
1806 		if (canmigrate)
1807 			ke->ke_cpu = PCPU_GET(cpuid);
1808 		break;
1809 	case PRI_TIMESHARE:
1810 		if (SCHED_CURR(kg, ke))
1811 			ke->ke_runq = kseq->ksq_curr;
1812 		else
1813 			ke->ke_runq = kseq->ksq_next;
1814 		break;
1815 	case PRI_IDLE:
1816 		/*
1817 		 * This is for priority prop.
1818 		 */
1819 		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1820 			ke->ke_runq = kseq->ksq_curr;
1821 		else
1822 			ke->ke_runq = &kseq->ksq_idle;
1823 		ke->ke_slice = SCHED_SLICE_MIN;
1824 		break;
1825 	default:
1826 		panic("Unknown pri class.");
1827 		break;
1828 	}
1829 #ifdef SMP
1830 	/*
1831 	 * If this thread is pinned or bound, notify the target cpu.
1832 	 */
1833 	if (!canmigrate && ke->ke_cpu != PCPU_GET(cpuid) ) {
1834 		ke->ke_runq = NULL;
1835 		kseq_notify(ke, ke->ke_cpu);
1836 		return;
1837 	}
1838 	/*
1839 	 * If we had been idle, clear our bit in the group and potentially
1840 	 * the global bitmap.  If not, see if we should transfer this thread.
1841 	 */
1842 	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1843 	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1844 		/*
1845 		 * Check to see if our group is unidling, and if so, remove it
1846 		 * from the global idle mask.
1847 		 */
1848 		if (kseq->ksq_group->ksg_idlemask ==
1849 		    kseq->ksq_group->ksg_cpumask)
1850 			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1851 		/*
1852 		 * Now remove ourselves from the group specific idle mask.
1853 		 */
1854 		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1855 	} else if (canmigrate && kseq->ksq_load > 1 && class != PRI_ITHD)
1856 		if (kseq_transfer(kseq, ke, class))
1857 			return;
1858 	ke->ke_cpu = PCPU_GET(cpuid);
1859 #endif
1860 	if (td->td_priority < curthread->td_priority &&
1861 	    ke->ke_runq == kseq->ksq_curr)
1862 		curthread->td_flags |= TDF_NEEDRESCHED;
1863 	if (preemptive && maybe_preempt(td))
1864 		return;
1865 	ke->ke_state = KES_ONRUNQ;
1866 
1867 	kseq_runq_add(kseq, ke, flags);
1868 	kseq_load_add(kseq, ke);
1869 }
1870 
1871 void
1872 sched_rem(struct thread *td)
1873 {
1874 	struct kseq *kseq;
1875 	struct kse *ke;
1876 
1877 	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
1878 	    td, td->td_proc->p_comm, td->td_priority, curthread,
1879 	    curthread->td_proc->p_comm);
1880 	mtx_assert(&sched_lock, MA_OWNED);
1881 	ke = td->td_kse;
1882 	SLOT_RELEASE(td->td_ksegrp);
1883 	ke->ke_flags &= ~KEF_PREEMPTED;
1884 	if (ke->ke_flags & KEF_ASSIGNED) {
1885 		ke->ke_flags |= KEF_REMOVED;
1886 		return;
1887 	}
1888 	KASSERT((ke->ke_state == KES_ONRUNQ),
1889 	    ("sched_rem: KSE not on run queue"));
1890 
1891 	ke->ke_state = KES_THREAD;
1892 	kseq = KSEQ_CPU(ke->ke_cpu);
1893 	kseq_runq_rem(kseq, ke);
1894 	kseq_load_rem(kseq, ke);
1895 }
1896 
1897 fixpt_t
1898 sched_pctcpu(struct thread *td)
1899 {
1900 	fixpt_t pctcpu;
1901 	struct kse *ke;
1902 
1903 	pctcpu = 0;
1904 	ke = td->td_kse;
1905 	if (ke == NULL)
1906 		return (0);
1907 
1908 	mtx_lock_spin(&sched_lock);
1909 	if (ke->ke_ticks) {
1910 		int rtick;
1911 
1912 		/*
1913 		 * Don't update more frequently than twice a second.  Allowing
1914 		 * this causes the cpu usage to decay away too quickly due to
1915 		 * rounding errors.
1916 		 */
1917 		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1918 		    ke->ke_ltick < (ticks - (hz / 2)))
1919 			sched_pctcpu_update(ke);
1920 		/* How many rtick per second ? */
1921 		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1922 		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1923 	}
1924 
1925 	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1926 	mtx_unlock_spin(&sched_lock);
1927 
1928 	return (pctcpu);
1929 }
1930 
1931 void
1932 sched_bind(struct thread *td, int cpu)
1933 {
1934 	struct kse *ke;
1935 
1936 	mtx_assert(&sched_lock, MA_OWNED);
1937 	ke = td->td_kse;
1938 	ke->ke_flags |= KEF_BOUND;
1939 #ifdef SMP
1940 	if (PCPU_GET(cpuid) == cpu)
1941 		return;
1942 	/* sched_rem without the runq_remove */
1943 	ke->ke_state = KES_THREAD;
1944 	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1945 	kseq_notify(ke, cpu);
1946 	/* When we return from mi_switch we'll be on the correct cpu. */
1947 	mi_switch(SW_VOL, NULL);
1948 #endif
1949 }
1950 
1951 void
1952 sched_unbind(struct thread *td)
1953 {
1954 	mtx_assert(&sched_lock, MA_OWNED);
1955 	td->td_kse->ke_flags &= ~KEF_BOUND;
1956 }
1957 
1958 int
1959 sched_is_bound(struct thread *td)
1960 {
1961 	mtx_assert(&sched_lock, MA_OWNED);
1962 	return (td->td_kse->ke_flags & KEF_BOUND);
1963 }
1964 
1965 int
1966 sched_load(void)
1967 {
1968 #ifdef SMP
1969 	int total;
1970 	int i;
1971 
1972 	total = 0;
1973 	for (i = 0; i <= ksg_maxid; i++)
1974 		total += KSEQ_GROUP(i)->ksg_load;
1975 	return (total);
1976 #else
1977 	return (KSEQ_SELF()->ksq_sysload);
1978 #endif
1979 }
1980 
1981 int
1982 sched_sizeof_ksegrp(void)
1983 {
1984 	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1985 }
1986 
1987 int
1988 sched_sizeof_proc(void)
1989 {
1990 	return (sizeof(struct proc));
1991 }
1992 
1993 int
1994 sched_sizeof_thread(void)
1995 {
1996 	return (sizeof(struct thread) + sizeof(struct td_sched));
1997 }
1998 #define KERN_SWITCH_INCLUDE 1
1999 #include "kern/kern_switch.c"
2000