xref: /freebsd/sys/kern/sched_ule.c (revision 10f0bcab61ef441cb5af32fb706688d8cbd55dc0)
1 /*-
2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * This file implements the ULE scheduler.  ULE supports independent CPU
29  * run queues and fine grain locking.  It has superior interactive
30  * performance under load even on uni-processor systems.
31  *
32  * etymology:
33  *   ULE is the last three letters in schedule.  It owes its name to a
34  * generic user created for a scheduling system by Paul Mikesell at
35  * Isilon Systems and a general lack of creativity on the part of the author.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_sched.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resource.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/smp.h>
56 #include <sys/sx.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysproto.h>
59 #include <sys/turnstile.h>
60 #include <sys/umtx.h>
61 #include <sys/vmmeter.h>
62 #include <sys/cpuset.h>
63 #ifdef KTRACE
64 #include <sys/uio.h>
65 #include <sys/ktrace.h>
66 #endif
67 
68 #ifdef HWPMC_HOOKS
69 #include <sys/pmckern.h>
70 #endif
71 
72 #include <machine/cpu.h>
73 #include <machine/smp.h>
74 
75 #if !defined(__i386__) && !defined(__amd64__) && !defined(__powerpc__) && !defined(__arm__)
76 #error "This architecture is not currently compatible with ULE"
77 #endif
78 
79 #define	KTR_ULE	0
80 
81 /*
82  * Thread scheduler specific section.  All fields are protected
83  * by the thread lock.
84  */
85 struct td_sched {
86 	struct runq	*ts_runq;	/* Run-queue we're queued on. */
87 	short		ts_flags;	/* TSF_* flags. */
88 	u_char		ts_cpu;		/* CPU that we have affinity for. */
89 	int		ts_rltick;	/* Real last tick, for affinity. */
90 	int		ts_slice;	/* Ticks of slice remaining. */
91 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
92 	u_int		ts_runtime;	/* Number of ticks we were running */
93 	int		ts_ltick;	/* Last tick that we were running on */
94 	int		ts_ftick;	/* First tick that we were running on */
95 	int		ts_ticks;	/* Tick count */
96 };
97 /* flags kept in ts_flags */
98 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
99 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
100 
101 static struct td_sched td_sched0;
102 
103 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
104 #define	THREAD_CAN_SCHED(td, cpu)	\
105     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
106 
107 /*
108  * Cpu percentage computation macros and defines.
109  *
110  * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
111  * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
112  * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
113  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
114  * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
115  * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
116  */
117 #define	SCHED_TICK_SECS		10
118 #define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
119 #define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
120 #define	SCHED_TICK_SHIFT	10
121 #define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
122 #define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
123 
124 /*
125  * These macros determine priorities for non-interactive threads.  They are
126  * assigned a priority based on their recent cpu utilization as expressed
127  * by the ratio of ticks to the tick total.  NHALF priorities at the start
128  * and end of the MIN to MAX timeshare range are only reachable with negative
129  * or positive nice respectively.
130  *
131  * PRI_RANGE:	Priority range for utilization dependent priorities.
132  * PRI_NRESV:	Number of nice values.
133  * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
134  * PRI_NICE:	Determines the part of the priority inherited from nice.
135  */
136 #define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
137 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
138 #define	SCHED_PRI_MIN		(PRI_MIN_TIMESHARE + SCHED_PRI_NHALF)
139 #define	SCHED_PRI_MAX		(PRI_MAX_TIMESHARE - SCHED_PRI_NHALF)
140 #define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN)
141 #define	SCHED_PRI_TICKS(ts)						\
142     (SCHED_TICK_HZ((ts)) /						\
143     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
144 #define	SCHED_PRI_NICE(nice)	(nice)
145 
146 /*
147  * These determine the interactivity of a process.  Interactivity differs from
148  * cpu utilization in that it expresses the voluntary time slept vs time ran
149  * while cpu utilization includes all time not running.  This more accurately
150  * models the intent of the thread.
151  *
152  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
153  *		before throttling back.
154  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
155  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
156  * INTERACT_THRESH:	Threshhold for placement on the current runq.
157  */
158 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
159 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
160 #define	SCHED_INTERACT_MAX	(100)
161 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
162 #define	SCHED_INTERACT_THRESH	(30)
163 
164 /*
165  * tickincr:		Converts a stathz tick into a hz domain scaled by
166  *			the shift factor.  Without the shift the error rate
167  *			due to rounding would be unacceptably high.
168  * realstathz:		stathz is sometimes 0 and run off of hz.
169  * sched_slice:		Runtime of each thread before rescheduling.
170  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
171  */
172 static int sched_interact = SCHED_INTERACT_THRESH;
173 static int realstathz;
174 static int tickincr;
175 static int sched_slice = 1;
176 #ifdef PREEMPTION
177 #ifdef FULL_PREEMPTION
178 static int preempt_thresh = PRI_MAX_IDLE;
179 #else
180 static int preempt_thresh = PRI_MIN_KERN;
181 #endif
182 #else
183 static int preempt_thresh = 0;
184 #endif
185 static int static_boost = 1;
186 
187 /*
188  * tdq - per processor runqs and statistics.  All fields are protected by the
189  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
190  * locking in sched_pickcpu();
191  */
192 struct tdq {
193 	/* Ordered to improve efficiency of cpu_search() and switch(). */
194 	struct mtx	tdq_lock;		/* run queue lock. */
195 	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
196 	int		tdq_load;		/* Aggregate load. */
197 	int		tdq_sysload;		/* For loadavg, !ITHD load. */
198 	int		tdq_transferable;	/* Transferable thread count. */
199 	u_char		tdq_lowpri;		/* Lowest priority thread. */
200 	u_char		tdq_ipipending;		/* IPI pending. */
201 	u_char		tdq_idx;		/* Current insert index. */
202 	u_char		tdq_ridx;		/* Current removal index. */
203 	struct runq	tdq_realtime;		/* real-time run queue. */
204 	struct runq	tdq_timeshare;		/* timeshare run queue. */
205 	struct runq	tdq_idle;		/* Queue of IDLE threads. */
206 	char		tdq_name[sizeof("sched lock") + 6];
207 } __aligned(64);
208 
209 
210 #ifdef SMP
211 struct cpu_group *cpu_top;
212 
213 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
214 #define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
215 
216 /*
217  * Run-time tunables.
218  */
219 static int rebalance = 1;
220 static int balance_interval = 128;	/* Default set in sched_initticks(). */
221 static int affinity;
222 static int steal_htt = 1;
223 static int steal_idle = 1;
224 static int steal_thresh = 2;
225 
226 /*
227  * One thread queue per processor.
228  */
229 static struct tdq	tdq_cpu[MAXCPU];
230 static struct tdq	*balance_tdq;
231 static int balance_ticks;
232 
233 #define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
234 #define	TDQ_CPU(x)	(&tdq_cpu[(x)])
235 #define	TDQ_ID(x)	((int)((x) - tdq_cpu))
236 #else	/* !SMP */
237 static struct tdq	tdq_cpu;
238 
239 #define	TDQ_ID(x)	(0)
240 #define	TDQ_SELF()	(&tdq_cpu)
241 #define	TDQ_CPU(x)	(&tdq_cpu)
242 #endif
243 
244 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
245 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
246 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
247 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
248 #define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
249 
250 static void sched_priority(struct thread *);
251 static void sched_thread_priority(struct thread *, u_char);
252 static int sched_interact_score(struct thread *);
253 static void sched_interact_update(struct thread *);
254 static void sched_interact_fork(struct thread *);
255 static void sched_pctcpu_update(struct td_sched *);
256 
257 /* Operations on per processor queues */
258 static struct thread *tdq_choose(struct tdq *);
259 static void tdq_setup(struct tdq *);
260 static void tdq_load_add(struct tdq *, struct thread *);
261 static void tdq_load_rem(struct tdq *, struct thread *);
262 static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
263 static __inline void tdq_runq_rem(struct tdq *, struct thread *);
264 static inline int sched_shouldpreempt(int, int, int);
265 void tdq_print(int cpu);
266 static void runq_print(struct runq *rq);
267 static void tdq_add(struct tdq *, struct thread *, int);
268 #ifdef SMP
269 static int tdq_move(struct tdq *, struct tdq *);
270 static int tdq_idled(struct tdq *);
271 static void tdq_notify(struct tdq *, struct thread *);
272 static struct thread *tdq_steal(struct tdq *, int);
273 static struct thread *runq_steal(struct runq *, int);
274 static int sched_pickcpu(struct thread *, int);
275 static void sched_balance(void);
276 static int sched_balance_pair(struct tdq *, struct tdq *);
277 static inline struct tdq *sched_setcpu(struct thread *, int, int);
278 static inline struct mtx *thread_block_switch(struct thread *);
279 static inline void thread_unblock_switch(struct thread *, struct mtx *);
280 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
281 #endif
282 
283 static void sched_setup(void *dummy);
284 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
285 
286 static void sched_initticks(void *dummy);
287 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
288     NULL);
289 
290 /*
291  * Print the threads waiting on a run-queue.
292  */
293 static void
294 runq_print(struct runq *rq)
295 {
296 	struct rqhead *rqh;
297 	struct thread *td;
298 	int pri;
299 	int j;
300 	int i;
301 
302 	for (i = 0; i < RQB_LEN; i++) {
303 		printf("\t\trunq bits %d 0x%zx\n",
304 		    i, rq->rq_status.rqb_bits[i]);
305 		for (j = 0; j < RQB_BPW; j++)
306 			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
307 				pri = j + (i << RQB_L2BPW);
308 				rqh = &rq->rq_queues[pri];
309 				TAILQ_FOREACH(td, rqh, td_runq) {
310 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
311 					    td, td->td_name, td->td_priority,
312 					    td->td_rqindex, pri);
313 				}
314 			}
315 	}
316 }
317 
318 /*
319  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
320  */
321 void
322 tdq_print(int cpu)
323 {
324 	struct tdq *tdq;
325 
326 	tdq = TDQ_CPU(cpu);
327 
328 	printf("tdq %d:\n", TDQ_ID(tdq));
329 	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
330 	printf("\tLock name:      %s\n", tdq->tdq_name);
331 	printf("\tload:           %d\n", tdq->tdq_load);
332 	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
333 	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
334 	printf("\trealtime runq:\n");
335 	runq_print(&tdq->tdq_realtime);
336 	printf("\ttimeshare runq:\n");
337 	runq_print(&tdq->tdq_timeshare);
338 	printf("\tidle runq:\n");
339 	runq_print(&tdq->tdq_idle);
340 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
341 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
342 }
343 
344 static inline int
345 sched_shouldpreempt(int pri, int cpri, int remote)
346 {
347 	/*
348 	 * If the new priority is not better than the current priority there is
349 	 * nothing to do.
350 	 */
351 	if (pri >= cpri)
352 		return (0);
353 	/*
354 	 * Always preempt idle.
355 	 */
356 	if (cpri >= PRI_MIN_IDLE)
357 		return (1);
358 	/*
359 	 * If preemption is disabled don't preempt others.
360 	 */
361 	if (preempt_thresh == 0)
362 		return (0);
363 	/*
364 	 * Preempt if we exceed the threshold.
365 	 */
366 	if (pri <= preempt_thresh)
367 		return (1);
368 	/*
369 	 * If we're realtime or better and there is timeshare or worse running
370 	 * preempt only remote processors.
371 	 */
372 	if (remote && pri <= PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME)
373 		return (1);
374 	return (0);
375 }
376 
377 #define	TS_RQ_PPQ	(((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS)
378 /*
379  * Add a thread to the actual run-queue.  Keeps transferable counts up to
380  * date with what is actually on the run-queue.  Selects the correct
381  * queue position for timeshare threads.
382  */
383 static __inline void
384 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
385 {
386 	struct td_sched *ts;
387 	u_char pri;
388 
389 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
390 	THREAD_LOCK_ASSERT(td, MA_OWNED);
391 
392 	pri = td->td_priority;
393 	ts = td->td_sched;
394 	TD_SET_RUNQ(td);
395 	if (THREAD_CAN_MIGRATE(td)) {
396 		tdq->tdq_transferable++;
397 		ts->ts_flags |= TSF_XFERABLE;
398 	}
399 	if (pri <= PRI_MAX_REALTIME) {
400 		ts->ts_runq = &tdq->tdq_realtime;
401 	} else if (pri <= PRI_MAX_TIMESHARE) {
402 		ts->ts_runq = &tdq->tdq_timeshare;
403 		KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE,
404 			("Invalid priority %d on timeshare runq", pri));
405 		/*
406 		 * This queue contains only priorities between MIN and MAX
407 		 * realtime.  Use the whole queue to represent these values.
408 		 */
409 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
410 			pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ;
411 			pri = (pri + tdq->tdq_idx) % RQ_NQS;
412 			/*
413 			 * This effectively shortens the queue by one so we
414 			 * can have a one slot difference between idx and
415 			 * ridx while we wait for threads to drain.
416 			 */
417 			if (tdq->tdq_ridx != tdq->tdq_idx &&
418 			    pri == tdq->tdq_ridx)
419 				pri = (unsigned char)(pri - 1) % RQ_NQS;
420 		} else
421 			pri = tdq->tdq_ridx;
422 		runq_add_pri(ts->ts_runq, td, pri, flags);
423 		return;
424 	} else
425 		ts->ts_runq = &tdq->tdq_idle;
426 	runq_add(ts->ts_runq, td, flags);
427 }
428 
429 /*
430  * Remove a thread from a run-queue.  This typically happens when a thread
431  * is selected to run.  Running threads are not on the queue and the
432  * transferable count does not reflect them.
433  */
434 static __inline void
435 tdq_runq_rem(struct tdq *tdq, struct thread *td)
436 {
437 	struct td_sched *ts;
438 
439 	ts = td->td_sched;
440 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
441 	KASSERT(ts->ts_runq != NULL,
442 	    ("tdq_runq_remove: thread %p null ts_runq", td));
443 	if (ts->ts_flags & TSF_XFERABLE) {
444 		tdq->tdq_transferable--;
445 		ts->ts_flags &= ~TSF_XFERABLE;
446 	}
447 	if (ts->ts_runq == &tdq->tdq_timeshare) {
448 		if (tdq->tdq_idx != tdq->tdq_ridx)
449 			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
450 		else
451 			runq_remove_idx(ts->ts_runq, td, NULL);
452 	} else
453 		runq_remove(ts->ts_runq, td);
454 }
455 
456 /*
457  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
458  * for this thread to the referenced thread queue.
459  */
460 static void
461 tdq_load_add(struct tdq *tdq, struct thread *td)
462 {
463 	struct td_sched *ts;
464 	int class;
465 
466 	ts = td->td_sched;
467 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
468 	THREAD_LOCK_ASSERT(td, MA_OWNED);
469 	class = PRI_BASE(td->td_pri_class);
470 	tdq->tdq_load++;
471 	CTR2(KTR_SCHED, "cpu %d load: %d", TDQ_ID(tdq), tdq->tdq_load);
472 	if (class != PRI_ITHD && (td->td_proc->p_flag & P_NOLOAD) == 0)
473 		tdq->tdq_sysload++;
474 }
475 
476 /*
477  * Remove the load from a thread that is transitioning to a sleep state or
478  * exiting.
479  */
480 static void
481 tdq_load_rem(struct tdq *tdq, struct thread *td)
482 {
483 	struct td_sched *ts;
484 	int class;
485 
486 	ts = td->td_sched;
487 	THREAD_LOCK_ASSERT(td, MA_OWNED);
488 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
489 	class = PRI_BASE(td->td_pri_class);
490 	if (class != PRI_ITHD && (td->td_proc->p_flag & P_NOLOAD) == 0)
491 		tdq->tdq_sysload--;
492 	KASSERT(tdq->tdq_load != 0,
493 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
494 	tdq->tdq_load--;
495 	CTR1(KTR_SCHED, "load: %d", tdq->tdq_load);
496 }
497 
498 /*
499  * Set lowpri to its exact value by searching the run-queue and
500  * evaluating curthread.  curthread may be passed as an optimization.
501  */
502 static void
503 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
504 {
505 	struct thread *td;
506 
507 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
508 	if (ctd == NULL)
509 		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
510 	td = tdq_choose(tdq);
511 	if (td == NULL || td->td_priority > ctd->td_priority)
512 		tdq->tdq_lowpri = ctd->td_priority;
513 	else
514 		tdq->tdq_lowpri = td->td_priority;
515 }
516 
517 #ifdef SMP
518 struct cpu_search {
519 	cpumask_t cs_mask;	/* Mask of valid cpus. */
520 	u_int	cs_load;
521 	u_int	cs_cpu;
522 	int	cs_limit;	/* Min priority for low min load for high. */
523 };
524 
525 #define	CPU_SEARCH_LOWEST	0x1
526 #define	CPU_SEARCH_HIGHEST	0x2
527 #define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
528 
529 #define	CPUMASK_FOREACH(cpu, mask)				\
530 	for ((cpu) = 0; (cpu) < sizeof((mask)) * 8; (cpu)++)	\
531 		if ((mask) & 1 << (cpu))
532 
533 static __inline int cpu_search(struct cpu_group *cg, struct cpu_search *low,
534     struct cpu_search *high, const int match);
535 int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low);
536 int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high);
537 int cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
538     struct cpu_search *high);
539 
540 /*
541  * This routine compares according to the match argument and should be
542  * reduced in actual instantiations via constant propagation and dead code
543  * elimination.
544  */
545 static __inline int
546 cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high,
547     const int match)
548 {
549 	struct tdq *tdq;
550 
551 	tdq = TDQ_CPU(cpu);
552 	if (match & CPU_SEARCH_LOWEST)
553 		if (low->cs_mask & (1 << cpu) &&
554 		    tdq->tdq_load < low->cs_load &&
555 		    tdq->tdq_lowpri > low->cs_limit) {
556 			low->cs_cpu = cpu;
557 			low->cs_load = tdq->tdq_load;
558 		}
559 	if (match & CPU_SEARCH_HIGHEST)
560 		if (high->cs_mask & (1 << cpu) &&
561 		    tdq->tdq_load >= high->cs_limit &&
562 		    tdq->tdq_load > high->cs_load &&
563 		    tdq->tdq_transferable) {
564 			high->cs_cpu = cpu;
565 			high->cs_load = tdq->tdq_load;
566 		}
567 	return (tdq->tdq_load);
568 }
569 
570 /*
571  * Search the tree of cpu_groups for the lowest or highest loaded cpu
572  * according to the match argument.  This routine actually compares the
573  * load on all paths through the tree and finds the least loaded cpu on
574  * the least loaded path, which may differ from the least loaded cpu in
575  * the system.  This balances work among caches and busses.
576  *
577  * This inline is instantiated in three forms below using constants for the
578  * match argument.  It is reduced to the minimum set for each case.  It is
579  * also recursive to the depth of the tree.
580  */
581 static __inline int
582 cpu_search(struct cpu_group *cg, struct cpu_search *low,
583     struct cpu_search *high, const int match)
584 {
585 	int total;
586 
587 	total = 0;
588 	if (cg->cg_children) {
589 		struct cpu_search lgroup;
590 		struct cpu_search hgroup;
591 		struct cpu_group *child;
592 		u_int lload;
593 		int hload;
594 		int load;
595 		int i;
596 
597 		lload = -1;
598 		hload = -1;
599 		for (i = 0; i < cg->cg_children; i++) {
600 			child = &cg->cg_child[i];
601 			if (match & CPU_SEARCH_LOWEST) {
602 				lgroup = *low;
603 				lgroup.cs_load = -1;
604 			}
605 			if (match & CPU_SEARCH_HIGHEST) {
606 				hgroup = *high;
607 				lgroup.cs_load = 0;
608 			}
609 			switch (match) {
610 			case CPU_SEARCH_LOWEST:
611 				load = cpu_search_lowest(child, &lgroup);
612 				break;
613 			case CPU_SEARCH_HIGHEST:
614 				load = cpu_search_highest(child, &hgroup);
615 				break;
616 			case CPU_SEARCH_BOTH:
617 				load = cpu_search_both(child, &lgroup, &hgroup);
618 				break;
619 			}
620 			total += load;
621 			if (match & CPU_SEARCH_LOWEST)
622 				if (load < lload || low->cs_cpu == -1) {
623 					*low = lgroup;
624 					lload = load;
625 				}
626 			if (match & CPU_SEARCH_HIGHEST)
627 				if (load > hload || high->cs_cpu == -1) {
628 					hload = load;
629 					*high = hgroup;
630 				}
631 		}
632 	} else {
633 		int cpu;
634 
635 		CPUMASK_FOREACH(cpu, cg->cg_mask)
636 			total += cpu_compare(cpu, low, high, match);
637 	}
638 	return (total);
639 }
640 
641 /*
642  * cpu_search instantiations must pass constants to maintain the inline
643  * optimization.
644  */
645 int
646 cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low)
647 {
648 	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
649 }
650 
651 int
652 cpu_search_highest(struct cpu_group *cg, struct cpu_search *high)
653 {
654 	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
655 }
656 
657 int
658 cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
659     struct cpu_search *high)
660 {
661 	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
662 }
663 
664 /*
665  * Find the cpu with the least load via the least loaded path that has a
666  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
667  * acceptable.
668  */
669 static inline int
670 sched_lowest(struct cpu_group *cg, cpumask_t mask, int pri)
671 {
672 	struct cpu_search low;
673 
674 	low.cs_cpu = -1;
675 	low.cs_load = -1;
676 	low.cs_mask = mask;
677 	low.cs_limit = pri;
678 	cpu_search_lowest(cg, &low);
679 	return low.cs_cpu;
680 }
681 
682 /*
683  * Find the cpu with the highest load via the highest loaded path.
684  */
685 static inline int
686 sched_highest(struct cpu_group *cg, cpumask_t mask, int minload)
687 {
688 	struct cpu_search high;
689 
690 	high.cs_cpu = -1;
691 	high.cs_load = 0;
692 	high.cs_mask = mask;
693 	high.cs_limit = minload;
694 	cpu_search_highest(cg, &high);
695 	return high.cs_cpu;
696 }
697 
698 /*
699  * Simultaneously find the highest and lowest loaded cpu reachable via
700  * cg.
701  */
702 static inline void
703 sched_both(struct cpu_group *cg, cpumask_t mask, int *lowcpu, int *highcpu)
704 {
705 	struct cpu_search high;
706 	struct cpu_search low;
707 
708 	low.cs_cpu = -1;
709 	low.cs_limit = -1;
710 	low.cs_load = -1;
711 	low.cs_mask = mask;
712 	high.cs_load = 0;
713 	high.cs_cpu = -1;
714 	high.cs_limit = -1;
715 	high.cs_mask = mask;
716 	cpu_search_both(cg, &low, &high);
717 	*lowcpu = low.cs_cpu;
718 	*highcpu = high.cs_cpu;
719 	return;
720 }
721 
722 static void
723 sched_balance_group(struct cpu_group *cg)
724 {
725 	cpumask_t mask;
726 	int high;
727 	int low;
728 	int i;
729 
730 	mask = -1;
731 	for (;;) {
732 		sched_both(cg, mask, &low, &high);
733 		if (low == high || low == -1 || high == -1)
734 			break;
735 		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low)))
736 			break;
737 		/*
738 		 * If we failed to move any threads determine which cpu
739 		 * to kick out of the set and try again.
740 	 	 */
741 		if (TDQ_CPU(high)->tdq_transferable == 0)
742 			mask &= ~(1 << high);
743 		else
744 			mask &= ~(1 << low);
745 	}
746 
747 	for (i = 0; i < cg->cg_children; i++)
748 		sched_balance_group(&cg->cg_child[i]);
749 }
750 
751 static void
752 sched_balance()
753 {
754 	struct tdq *tdq;
755 
756 	/*
757 	 * Select a random time between .5 * balance_interval and
758 	 * 1.5 * balance_interval.
759 	 */
760 	balance_ticks = max(balance_interval / 2, 1);
761 	balance_ticks += random() % balance_interval;
762 	if (smp_started == 0 || rebalance == 0)
763 		return;
764 	tdq = TDQ_SELF();
765 	TDQ_UNLOCK(tdq);
766 	sched_balance_group(cpu_top);
767 	TDQ_LOCK(tdq);
768 }
769 
770 /*
771  * Lock two thread queues using their address to maintain lock order.
772  */
773 static void
774 tdq_lock_pair(struct tdq *one, struct tdq *two)
775 {
776 	if (one < two) {
777 		TDQ_LOCK(one);
778 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
779 	} else {
780 		TDQ_LOCK(two);
781 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
782 	}
783 }
784 
785 /*
786  * Unlock two thread queues.  Order is not important here.
787  */
788 static void
789 tdq_unlock_pair(struct tdq *one, struct tdq *two)
790 {
791 	TDQ_UNLOCK(one);
792 	TDQ_UNLOCK(two);
793 }
794 
795 /*
796  * Transfer load between two imbalanced thread queues.
797  */
798 static int
799 sched_balance_pair(struct tdq *high, struct tdq *low)
800 {
801 	int transferable;
802 	int high_load;
803 	int low_load;
804 	int moved;
805 	int move;
806 	int diff;
807 	int i;
808 
809 	tdq_lock_pair(high, low);
810 	transferable = high->tdq_transferable;
811 	high_load = high->tdq_load;
812 	low_load = low->tdq_load;
813 	moved = 0;
814 	/*
815 	 * Determine what the imbalance is and then adjust that to how many
816 	 * threads we actually have to give up (transferable).
817 	 */
818 	if (transferable != 0) {
819 		diff = high_load - low_load;
820 		move = diff / 2;
821 		if (diff & 0x1)
822 			move++;
823 		move = min(move, transferable);
824 		for (i = 0; i < move; i++)
825 			moved += tdq_move(high, low);
826 		/*
827 		 * IPI the target cpu to force it to reschedule with the new
828 		 * workload.
829 		 */
830 		ipi_selected(1 << TDQ_ID(low), IPI_PREEMPT);
831 	}
832 	tdq_unlock_pair(high, low);
833 	return (moved);
834 }
835 
836 /*
837  * Move a thread from one thread queue to another.
838  */
839 static int
840 tdq_move(struct tdq *from, struct tdq *to)
841 {
842 	struct td_sched *ts;
843 	struct thread *td;
844 	struct tdq *tdq;
845 	int cpu;
846 
847 	TDQ_LOCK_ASSERT(from, MA_OWNED);
848 	TDQ_LOCK_ASSERT(to, MA_OWNED);
849 
850 	tdq = from;
851 	cpu = TDQ_ID(to);
852 	td = tdq_steal(tdq, cpu);
853 	if (td == NULL)
854 		return (0);
855 	ts = td->td_sched;
856 	/*
857 	 * Although the run queue is locked the thread may be blocked.  Lock
858 	 * it to clear this and acquire the run-queue lock.
859 	 */
860 	thread_lock(td);
861 	/* Drop recursive lock on from acquired via thread_lock(). */
862 	TDQ_UNLOCK(from);
863 	sched_rem(td);
864 	ts->ts_cpu = cpu;
865 	td->td_lock = TDQ_LOCKPTR(to);
866 	tdq_add(to, td, SRQ_YIELDING);
867 	return (1);
868 }
869 
870 /*
871  * This tdq has idled.  Try to steal a thread from another cpu and switch
872  * to it.
873  */
874 static int
875 tdq_idled(struct tdq *tdq)
876 {
877 	struct cpu_group *cg;
878 	struct tdq *steal;
879 	cpumask_t mask;
880 	int thresh;
881 	int cpu;
882 
883 	if (smp_started == 0 || steal_idle == 0)
884 		return (1);
885 	mask = -1;
886 	mask &= ~PCPU_GET(cpumask);
887 	/* We don't want to be preempted while we're iterating. */
888 	spinlock_enter();
889 	for (cg = tdq->tdq_cg; cg != NULL; ) {
890 		if ((cg->cg_flags & (CG_FLAG_HTT | CG_FLAG_THREAD)) == 0)
891 			thresh = steal_thresh;
892 		else
893 			thresh = 1;
894 		cpu = sched_highest(cg, mask, thresh);
895 		if (cpu == -1) {
896 			cg = cg->cg_parent;
897 			continue;
898 		}
899 		steal = TDQ_CPU(cpu);
900 		mask &= ~(1 << cpu);
901 		tdq_lock_pair(tdq, steal);
902 		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
903 			tdq_unlock_pair(tdq, steal);
904 			continue;
905 		}
906 		/*
907 		 * If a thread was added while interrupts were disabled don't
908 		 * steal one here.  If we fail to acquire one due to affinity
909 		 * restrictions loop again with this cpu removed from the
910 		 * set.
911 		 */
912 		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
913 			tdq_unlock_pair(tdq, steal);
914 			continue;
915 		}
916 		spinlock_exit();
917 		TDQ_UNLOCK(steal);
918 		mi_switch(SW_VOL, NULL);
919 		thread_unlock(curthread);
920 
921 		return (0);
922 	}
923 	spinlock_exit();
924 	return (1);
925 }
926 
927 /*
928  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
929  */
930 static void
931 tdq_notify(struct tdq *tdq, struct thread *td)
932 {
933 	int cpri;
934 	int pri;
935 	int cpu;
936 
937 	if (tdq->tdq_ipipending)
938 		return;
939 	cpu = td->td_sched->ts_cpu;
940 	pri = td->td_priority;
941 	cpri = pcpu_find(cpu)->pc_curthread->td_priority;
942 	if (!sched_shouldpreempt(pri, cpri, 1))
943 		return;
944 	tdq->tdq_ipipending = 1;
945 	ipi_selected(1 << cpu, IPI_PREEMPT);
946 }
947 
948 /*
949  * Steals load from a timeshare queue.  Honors the rotating queue head
950  * index.
951  */
952 static struct thread *
953 runq_steal_from(struct runq *rq, int cpu, u_char start)
954 {
955 	struct rqbits *rqb;
956 	struct rqhead *rqh;
957 	struct thread *td;
958 	int first;
959 	int bit;
960 	int pri;
961 	int i;
962 
963 	rqb = &rq->rq_status;
964 	bit = start & (RQB_BPW -1);
965 	pri = 0;
966 	first = 0;
967 again:
968 	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
969 		if (rqb->rqb_bits[i] == 0)
970 			continue;
971 		if (bit != 0) {
972 			for (pri = bit; pri < RQB_BPW; pri++)
973 				if (rqb->rqb_bits[i] & (1ul << pri))
974 					break;
975 			if (pri >= RQB_BPW)
976 				continue;
977 		} else
978 			pri = RQB_FFS(rqb->rqb_bits[i]);
979 		pri += (i << RQB_L2BPW);
980 		rqh = &rq->rq_queues[pri];
981 		TAILQ_FOREACH(td, rqh, td_runq) {
982 			if (first && THREAD_CAN_MIGRATE(td) &&
983 			    THREAD_CAN_SCHED(td, cpu))
984 				return (td);
985 			first = 1;
986 		}
987 	}
988 	if (start != 0) {
989 		start = 0;
990 		goto again;
991 	}
992 
993 	return (NULL);
994 }
995 
996 /*
997  * Steals load from a standard linear queue.
998  */
999 static struct thread *
1000 runq_steal(struct runq *rq, int cpu)
1001 {
1002 	struct rqhead *rqh;
1003 	struct rqbits *rqb;
1004 	struct thread *td;
1005 	int word;
1006 	int bit;
1007 
1008 	rqb = &rq->rq_status;
1009 	for (word = 0; word < RQB_LEN; word++) {
1010 		if (rqb->rqb_bits[word] == 0)
1011 			continue;
1012 		for (bit = 0; bit < RQB_BPW; bit++) {
1013 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1014 				continue;
1015 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1016 			TAILQ_FOREACH(td, rqh, td_runq)
1017 				if (THREAD_CAN_MIGRATE(td) &&
1018 				    THREAD_CAN_SCHED(td, cpu))
1019 					return (td);
1020 		}
1021 	}
1022 	return (NULL);
1023 }
1024 
1025 /*
1026  * Attempt to steal a thread in priority order from a thread queue.
1027  */
1028 static struct thread *
1029 tdq_steal(struct tdq *tdq, int cpu)
1030 {
1031 	struct thread *td;
1032 
1033 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1034 	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1035 		return (td);
1036 	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1037 	    cpu, tdq->tdq_ridx)) != NULL)
1038 		return (td);
1039 	return (runq_steal(&tdq->tdq_idle, cpu));
1040 }
1041 
1042 /*
1043  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1044  * current lock and returns with the assigned queue locked.
1045  */
1046 static inline struct tdq *
1047 sched_setcpu(struct thread *td, int cpu, int flags)
1048 {
1049 
1050 	struct tdq *tdq;
1051 
1052 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1053 	tdq = TDQ_CPU(cpu);
1054 	td->td_sched->ts_cpu = cpu;
1055 	/*
1056 	 * If the lock matches just return the queue.
1057 	 */
1058 	if (td->td_lock == TDQ_LOCKPTR(tdq))
1059 		return (tdq);
1060 #ifdef notyet
1061 	/*
1062 	 * If the thread isn't running its lockptr is a
1063 	 * turnstile or a sleepqueue.  We can just lock_set without
1064 	 * blocking.
1065 	 */
1066 	if (TD_CAN_RUN(td)) {
1067 		TDQ_LOCK(tdq);
1068 		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1069 		return (tdq);
1070 	}
1071 #endif
1072 	/*
1073 	 * The hard case, migration, we need to block the thread first to
1074 	 * prevent order reversals with other cpus locks.
1075 	 */
1076 	thread_lock_block(td);
1077 	TDQ_LOCK(tdq);
1078 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1079 	return (tdq);
1080 }
1081 
1082 static int
1083 sched_pickcpu(struct thread *td, int flags)
1084 {
1085 	struct cpu_group *cg;
1086 	struct td_sched *ts;
1087 	struct tdq *tdq;
1088 	cpumask_t mask;
1089 	int self;
1090 	int pri;
1091 	int cpu;
1092 
1093 	self = PCPU_GET(cpuid);
1094 	ts = td->td_sched;
1095 	if (smp_started == 0)
1096 		return (self);
1097 	/*
1098 	 * Don't migrate a running thread from sched_switch().
1099 	 */
1100 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1101 		return (ts->ts_cpu);
1102 	/*
1103 	 * Prefer to run interrupt threads on the processors that generate
1104 	 * the interrupt.
1105 	 */
1106 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1107 	    curthread->td_intr_nesting_level)
1108 		ts->ts_cpu = self;
1109 	/*
1110 	 * If the thread can run on the last cpu and the affinity has not
1111 	 * expired or it is idle run it there.
1112 	 */
1113 	pri = td->td_priority;
1114 	tdq = TDQ_CPU(ts->ts_cpu);
1115 	if (THREAD_CAN_SCHED(td, ts->ts_cpu)) {
1116 		if (tdq->tdq_lowpri > PRI_MIN_IDLE)
1117 			return (ts->ts_cpu);
1118 		if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri)
1119 			return (ts->ts_cpu);
1120 	}
1121 	/*
1122 	 * Search for the highest level in the tree that still has affinity.
1123 	 */
1124 	cg = NULL;
1125 	for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent)
1126 		if (SCHED_AFFINITY(ts, cg->cg_level))
1127 			break;
1128 	cpu = -1;
1129 	mask = td->td_cpuset->cs_mask.__bits[0];
1130 	if (cg)
1131 		cpu = sched_lowest(cg, mask, pri);
1132 	if (cpu == -1)
1133 		cpu = sched_lowest(cpu_top, mask, -1);
1134 	/*
1135 	 * Compare the lowest loaded cpu to current cpu.
1136 	 */
1137 	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1138 	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1139 		cpu = self;
1140 	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1141 	return (cpu);
1142 }
1143 #endif
1144 
1145 /*
1146  * Pick the highest priority task we have and return it.
1147  */
1148 static struct thread *
1149 tdq_choose(struct tdq *tdq)
1150 {
1151 	struct thread *td;
1152 
1153 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1154 	td = runq_choose(&tdq->tdq_realtime);
1155 	if (td != NULL)
1156 		return (td);
1157 	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1158 	if (td != NULL) {
1159 		KASSERT(td->td_priority >= PRI_MIN_TIMESHARE,
1160 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1161 		    td->td_priority));
1162 		return (td);
1163 	}
1164 	td = runq_choose(&tdq->tdq_idle);
1165 	if (td != NULL) {
1166 		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1167 		    ("tdq_choose: Invalid priority on idle queue %d",
1168 		    td->td_priority));
1169 		return (td);
1170 	}
1171 
1172 	return (NULL);
1173 }
1174 
1175 /*
1176  * Initialize a thread queue.
1177  */
1178 static void
1179 tdq_setup(struct tdq *tdq)
1180 {
1181 
1182 	if (bootverbose)
1183 		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1184 	runq_init(&tdq->tdq_realtime);
1185 	runq_init(&tdq->tdq_timeshare);
1186 	runq_init(&tdq->tdq_idle);
1187 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1188 	    "sched lock %d", (int)TDQ_ID(tdq));
1189 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1190 	    MTX_SPIN | MTX_RECURSE);
1191 }
1192 
1193 #ifdef SMP
1194 static void
1195 sched_setup_smp(void)
1196 {
1197 	struct tdq *tdq;
1198 	int i;
1199 
1200 	cpu_top = smp_topo();
1201 	for (i = 0; i < MAXCPU; i++) {
1202 		if (CPU_ABSENT(i))
1203 			continue;
1204 		tdq = TDQ_CPU(i);
1205 		tdq_setup(tdq);
1206 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1207 		if (tdq->tdq_cg == NULL)
1208 			panic("Can't find cpu group for %d\n", i);
1209 	}
1210 	balance_tdq = TDQ_SELF();
1211 	sched_balance();
1212 }
1213 #endif
1214 
1215 /*
1216  * Setup the thread queues and initialize the topology based on MD
1217  * information.
1218  */
1219 static void
1220 sched_setup(void *dummy)
1221 {
1222 	struct tdq *tdq;
1223 
1224 	tdq = TDQ_SELF();
1225 #ifdef SMP
1226 	sched_setup_smp();
1227 #else
1228 	tdq_setup(tdq);
1229 #endif
1230 	/*
1231 	 * To avoid divide-by-zero, we set realstathz a dummy value
1232 	 * in case which sched_clock() called before sched_initticks().
1233 	 */
1234 	realstathz = hz;
1235 	sched_slice = (realstathz/10);	/* ~100ms */
1236 	tickincr = 1 << SCHED_TICK_SHIFT;
1237 
1238 	/* Add thread0's load since it's running. */
1239 	TDQ_LOCK(tdq);
1240 	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1241 	tdq_load_add(tdq, &thread0);
1242 	tdq->tdq_lowpri = thread0.td_priority;
1243 	TDQ_UNLOCK(tdq);
1244 }
1245 
1246 /*
1247  * This routine determines the tickincr after stathz and hz are setup.
1248  */
1249 /* ARGSUSED */
1250 static void
1251 sched_initticks(void *dummy)
1252 {
1253 	int incr;
1254 
1255 	realstathz = stathz ? stathz : hz;
1256 	sched_slice = (realstathz/10);	/* ~100ms */
1257 
1258 	/*
1259 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1260 	 * hz not being evenly divisible by stathz on all platforms.
1261 	 */
1262 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1263 	/*
1264 	 * This does not work for values of stathz that are more than
1265 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1266 	 */
1267 	if (incr == 0)
1268 		incr = 1;
1269 	tickincr = incr;
1270 #ifdef SMP
1271 	/*
1272 	 * Set the default balance interval now that we know
1273 	 * what realstathz is.
1274 	 */
1275 	balance_interval = realstathz;
1276 	/*
1277 	 * Set steal thresh to log2(mp_ncpu) but no greater than 4.  This
1278 	 * prevents excess thrashing on large machines and excess idle on
1279 	 * smaller machines.
1280 	 */
1281 	steal_thresh = min(ffs(mp_ncpus) - 1, 3);
1282 	affinity = SCHED_AFFINITY_DEFAULT;
1283 #endif
1284 }
1285 
1286 
1287 /*
1288  * This is the core of the interactivity algorithm.  Determines a score based
1289  * on past behavior.  It is the ratio of sleep time to run time scaled to
1290  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1291  * differs from the cpu usage because it does not account for time spent
1292  * waiting on a run-queue.  Would be prettier if we had floating point.
1293  */
1294 static int
1295 sched_interact_score(struct thread *td)
1296 {
1297 	struct td_sched *ts;
1298 	int div;
1299 
1300 	ts = td->td_sched;
1301 	/*
1302 	 * The score is only needed if this is likely to be an interactive
1303 	 * task.  Don't go through the expense of computing it if there's
1304 	 * no chance.
1305 	 */
1306 	if (sched_interact <= SCHED_INTERACT_HALF &&
1307 		ts->ts_runtime >= ts->ts_slptime)
1308 			return (SCHED_INTERACT_HALF);
1309 
1310 	if (ts->ts_runtime > ts->ts_slptime) {
1311 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1312 		return (SCHED_INTERACT_HALF +
1313 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1314 	}
1315 	if (ts->ts_slptime > ts->ts_runtime) {
1316 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1317 		return (ts->ts_runtime / div);
1318 	}
1319 	/* runtime == slptime */
1320 	if (ts->ts_runtime)
1321 		return (SCHED_INTERACT_HALF);
1322 
1323 	/*
1324 	 * This can happen if slptime and runtime are 0.
1325 	 */
1326 	return (0);
1327 
1328 }
1329 
1330 /*
1331  * Scale the scheduling priority according to the "interactivity" of this
1332  * process.
1333  */
1334 static void
1335 sched_priority(struct thread *td)
1336 {
1337 	int score;
1338 	int pri;
1339 
1340 	if (td->td_pri_class != PRI_TIMESHARE)
1341 		return;
1342 	/*
1343 	 * If the score is interactive we place the thread in the realtime
1344 	 * queue with a priority that is less than kernel and interrupt
1345 	 * priorities.  These threads are not subject to nice restrictions.
1346 	 *
1347 	 * Scores greater than this are placed on the normal timeshare queue
1348 	 * where the priority is partially decided by the most recent cpu
1349 	 * utilization and the rest is decided by nice value.
1350 	 *
1351 	 * The nice value of the process has a linear effect on the calculated
1352 	 * score.  Negative nice values make it easier for a thread to be
1353 	 * considered interactive.
1354 	 */
1355 	score = imax(0, sched_interact_score(td) - td->td_proc->p_nice);
1356 	if (score < sched_interact) {
1357 		pri = PRI_MIN_REALTIME;
1358 		pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact)
1359 		    * score;
1360 		KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME,
1361 		    ("sched_priority: invalid interactive priority %d score %d",
1362 		    pri, score));
1363 	} else {
1364 		pri = SCHED_PRI_MIN;
1365 		if (td->td_sched->ts_ticks)
1366 			pri += SCHED_PRI_TICKS(td->td_sched);
1367 		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1368 		KASSERT(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE,
1369 		    ("sched_priority: invalid priority %d: nice %d, "
1370 		    "ticks %d ftick %d ltick %d tick pri %d",
1371 		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1372 		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1373 		    SCHED_PRI_TICKS(td->td_sched)));
1374 	}
1375 	sched_user_prio(td, pri);
1376 
1377 	return;
1378 }
1379 
1380 /*
1381  * This routine enforces a maximum limit on the amount of scheduling history
1382  * kept.  It is called after either the slptime or runtime is adjusted.  This
1383  * function is ugly due to integer math.
1384  */
1385 static void
1386 sched_interact_update(struct thread *td)
1387 {
1388 	struct td_sched *ts;
1389 	u_int sum;
1390 
1391 	ts = td->td_sched;
1392 	sum = ts->ts_runtime + ts->ts_slptime;
1393 	if (sum < SCHED_SLP_RUN_MAX)
1394 		return;
1395 	/*
1396 	 * This only happens from two places:
1397 	 * 1) We have added an unusual amount of run time from fork_exit.
1398 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1399 	 */
1400 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1401 		if (ts->ts_runtime > ts->ts_slptime) {
1402 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1403 			ts->ts_slptime = 1;
1404 		} else {
1405 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1406 			ts->ts_runtime = 1;
1407 		}
1408 		return;
1409 	}
1410 	/*
1411 	 * If we have exceeded by more than 1/5th then the algorithm below
1412 	 * will not bring us back into range.  Dividing by two here forces
1413 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1414 	 */
1415 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1416 		ts->ts_runtime /= 2;
1417 		ts->ts_slptime /= 2;
1418 		return;
1419 	}
1420 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1421 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1422 }
1423 
1424 /*
1425  * Scale back the interactivity history when a child thread is created.  The
1426  * history is inherited from the parent but the thread may behave totally
1427  * differently.  For example, a shell spawning a compiler process.  We want
1428  * to learn that the compiler is behaving badly very quickly.
1429  */
1430 static void
1431 sched_interact_fork(struct thread *td)
1432 {
1433 	int ratio;
1434 	int sum;
1435 
1436 	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1437 	if (sum > SCHED_SLP_RUN_FORK) {
1438 		ratio = sum / SCHED_SLP_RUN_FORK;
1439 		td->td_sched->ts_runtime /= ratio;
1440 		td->td_sched->ts_slptime /= ratio;
1441 	}
1442 }
1443 
1444 /*
1445  * Called from proc0_init() to setup the scheduler fields.
1446  */
1447 void
1448 schedinit(void)
1449 {
1450 
1451 	/*
1452 	 * Set up the scheduler specific parts of proc0.
1453 	 */
1454 	proc0.p_sched = NULL; /* XXX */
1455 	thread0.td_sched = &td_sched0;
1456 	td_sched0.ts_ltick = ticks;
1457 	td_sched0.ts_ftick = ticks;
1458 	td_sched0.ts_slice = sched_slice;
1459 }
1460 
1461 /*
1462  * This is only somewhat accurate since given many processes of the same
1463  * priority they will switch when their slices run out, which will be
1464  * at most sched_slice stathz ticks.
1465  */
1466 int
1467 sched_rr_interval(void)
1468 {
1469 
1470 	/* Convert sched_slice to hz */
1471 	return (hz/(realstathz/sched_slice));
1472 }
1473 
1474 /*
1475  * Update the percent cpu tracking information when it is requested or
1476  * the total history exceeds the maximum.  We keep a sliding history of
1477  * tick counts that slowly decays.  This is less precise than the 4BSD
1478  * mechanism since it happens with less regular and frequent events.
1479  */
1480 static void
1481 sched_pctcpu_update(struct td_sched *ts)
1482 {
1483 
1484 	if (ts->ts_ticks == 0)
1485 		return;
1486 	if (ticks - (hz / 10) < ts->ts_ltick &&
1487 	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
1488 		return;
1489 	/*
1490 	 * Adjust counters and watermark for pctcpu calc.
1491 	 */
1492 	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
1493 		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
1494 			    SCHED_TICK_TARG;
1495 	else
1496 		ts->ts_ticks = 0;
1497 	ts->ts_ltick = ticks;
1498 	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
1499 }
1500 
1501 /*
1502  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1503  * if necessary.  This is the back-end for several priority related
1504  * functions.
1505  */
1506 static void
1507 sched_thread_priority(struct thread *td, u_char prio)
1508 {
1509 	struct td_sched *ts;
1510 	struct tdq *tdq;
1511 	int oldpri;
1512 
1513 	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
1514 	    td, td->td_name, td->td_priority, prio, curthread,
1515 	    curthread->td_name);
1516 	ts = td->td_sched;
1517 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1518 	if (td->td_priority == prio)
1519 		return;
1520 	/*
1521 	 * If the priority has been elevated due to priority
1522 	 * propagation, we may have to move ourselves to a new
1523 	 * queue.  This could be optimized to not re-add in some
1524 	 * cases.
1525 	 */
1526 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1527 		sched_rem(td);
1528 		td->td_priority = prio;
1529 		sched_add(td, SRQ_BORROWING);
1530 		return;
1531 	}
1532 	/*
1533 	 * If the thread is currently running we may have to adjust the lowpri
1534 	 * information so other cpus are aware of our current priority.
1535 	 */
1536 	if (TD_IS_RUNNING(td)) {
1537 		tdq = TDQ_CPU(ts->ts_cpu);
1538 		oldpri = td->td_priority;
1539 		td->td_priority = prio;
1540 		if (prio < tdq->tdq_lowpri)
1541 			tdq->tdq_lowpri = prio;
1542 		else if (tdq->tdq_lowpri == oldpri)
1543 			tdq_setlowpri(tdq, td);
1544 		return;
1545 	}
1546 	td->td_priority = prio;
1547 }
1548 
1549 /*
1550  * Update a thread's priority when it is lent another thread's
1551  * priority.
1552  */
1553 void
1554 sched_lend_prio(struct thread *td, u_char prio)
1555 {
1556 
1557 	td->td_flags |= TDF_BORROWING;
1558 	sched_thread_priority(td, prio);
1559 }
1560 
1561 /*
1562  * Restore a thread's priority when priority propagation is
1563  * over.  The prio argument is the minimum priority the thread
1564  * needs to have to satisfy other possible priority lending
1565  * requests.  If the thread's regular priority is less
1566  * important than prio, the thread will keep a priority boost
1567  * of prio.
1568  */
1569 void
1570 sched_unlend_prio(struct thread *td, u_char prio)
1571 {
1572 	u_char base_pri;
1573 
1574 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1575 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1576 		base_pri = td->td_user_pri;
1577 	else
1578 		base_pri = td->td_base_pri;
1579 	if (prio >= base_pri) {
1580 		td->td_flags &= ~TDF_BORROWING;
1581 		sched_thread_priority(td, base_pri);
1582 	} else
1583 		sched_lend_prio(td, prio);
1584 }
1585 
1586 /*
1587  * Standard entry for setting the priority to an absolute value.
1588  */
1589 void
1590 sched_prio(struct thread *td, u_char prio)
1591 {
1592 	u_char oldprio;
1593 
1594 	/* First, update the base priority. */
1595 	td->td_base_pri = prio;
1596 
1597 	/*
1598 	 * If the thread is borrowing another thread's priority, don't
1599 	 * ever lower the priority.
1600 	 */
1601 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1602 		return;
1603 
1604 	/* Change the real priority. */
1605 	oldprio = td->td_priority;
1606 	sched_thread_priority(td, prio);
1607 
1608 	/*
1609 	 * If the thread is on a turnstile, then let the turnstile update
1610 	 * its state.
1611 	 */
1612 	if (TD_ON_LOCK(td) && oldprio != prio)
1613 		turnstile_adjust(td, oldprio);
1614 }
1615 
1616 /*
1617  * Set the base user priority, does not effect current running priority.
1618  */
1619 void
1620 sched_user_prio(struct thread *td, u_char prio)
1621 {
1622 	u_char oldprio;
1623 
1624 	td->td_base_user_pri = prio;
1625 	if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
1626                 return;
1627 	oldprio = td->td_user_pri;
1628 	td->td_user_pri = prio;
1629 }
1630 
1631 void
1632 sched_lend_user_prio(struct thread *td, u_char prio)
1633 {
1634 	u_char oldprio;
1635 
1636 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1637 	td->td_flags |= TDF_UBORROWING;
1638 	oldprio = td->td_user_pri;
1639 	td->td_user_pri = prio;
1640 }
1641 
1642 void
1643 sched_unlend_user_prio(struct thread *td, u_char prio)
1644 {
1645 	u_char base_pri;
1646 
1647 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1648 	base_pri = td->td_base_user_pri;
1649 	if (prio >= base_pri) {
1650 		td->td_flags &= ~TDF_UBORROWING;
1651 		sched_user_prio(td, base_pri);
1652 	} else {
1653 		sched_lend_user_prio(td, prio);
1654 	}
1655 }
1656 
1657 /*
1658  * Block a thread for switching.  Similar to thread_block() but does not
1659  * bump the spin count.
1660  */
1661 static inline struct mtx *
1662 thread_block_switch(struct thread *td)
1663 {
1664 	struct mtx *lock;
1665 
1666 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1667 	lock = td->td_lock;
1668 	td->td_lock = &blocked_lock;
1669 	mtx_unlock_spin(lock);
1670 
1671 	return (lock);
1672 }
1673 
1674 /*
1675  * Handle migration from sched_switch().  This happens only for
1676  * cpu binding.
1677  */
1678 static struct mtx *
1679 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1680 {
1681 	struct tdq *tdn;
1682 
1683 	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1684 #ifdef SMP
1685 	tdq_load_rem(tdq, td);
1686 	/*
1687 	 * Do the lock dance required to avoid LOR.  We grab an extra
1688 	 * spinlock nesting to prevent preemption while we're
1689 	 * not holding either run-queue lock.
1690 	 */
1691 	spinlock_enter();
1692 	thread_block_switch(td);	/* This releases the lock on tdq. */
1693 	TDQ_LOCK(tdn);
1694 	tdq_add(tdn, td, flags);
1695 	tdq_notify(tdn, td);
1696 	/*
1697 	 * After we unlock tdn the new cpu still can't switch into this
1698 	 * thread until we've unblocked it in cpu_switch().  The lock
1699 	 * pointers may match in the case of HTT cores.  Don't unlock here
1700 	 * or we can deadlock when the other CPU runs the IPI handler.
1701 	 */
1702 	if (TDQ_LOCKPTR(tdn) != TDQ_LOCKPTR(tdq)) {
1703 		TDQ_UNLOCK(tdn);
1704 		TDQ_LOCK(tdq);
1705 	}
1706 	spinlock_exit();
1707 #endif
1708 	return (TDQ_LOCKPTR(tdn));
1709 }
1710 
1711 /*
1712  * Release a thread that was blocked with thread_block_switch().
1713  */
1714 static inline void
1715 thread_unblock_switch(struct thread *td, struct mtx *mtx)
1716 {
1717 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1718 	    (uintptr_t)mtx);
1719 }
1720 
1721 /*
1722  * Switch threads.  This function has to handle threads coming in while
1723  * blocked for some reason, running, or idle.  It also must deal with
1724  * migrating a thread from one queue to another as running threads may
1725  * be assigned elsewhere via binding.
1726  */
1727 void
1728 sched_switch(struct thread *td, struct thread *newtd, int flags)
1729 {
1730 	struct tdq *tdq;
1731 	struct td_sched *ts;
1732 	struct mtx *mtx;
1733 	int srqflag;
1734 	int cpuid;
1735 
1736 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1737 	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1738 
1739 	cpuid = PCPU_GET(cpuid);
1740 	tdq = TDQ_CPU(cpuid);
1741 	ts = td->td_sched;
1742 	mtx = td->td_lock;
1743 	ts->ts_rltick = ticks;
1744 	td->td_lastcpu = td->td_oncpu;
1745 	td->td_oncpu = NOCPU;
1746 	td->td_flags &= ~TDF_NEEDRESCHED;
1747 	td->td_owepreempt = 0;
1748 	/*
1749 	 * The lock pointer in an idle thread should never change.  Reset it
1750 	 * to CAN_RUN as well.
1751 	 */
1752 	if (TD_IS_IDLETHREAD(td)) {
1753 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1754 		TD_SET_CAN_RUN(td);
1755 	} else if (TD_IS_RUNNING(td)) {
1756 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1757 		srqflag = (flags & SW_PREEMPT) ?
1758 		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1759 		    SRQ_OURSELF|SRQ_YIELDING;
1760 		if (ts->ts_cpu == cpuid)
1761 			tdq_runq_add(tdq, td, srqflag);
1762 		else
1763 			mtx = sched_switch_migrate(tdq, td, srqflag);
1764 	} else {
1765 		/* This thread must be going to sleep. */
1766 		TDQ_LOCK(tdq);
1767 		mtx = thread_block_switch(td);
1768 		tdq_load_rem(tdq, td);
1769 	}
1770 	/*
1771 	 * We enter here with the thread blocked and assigned to the
1772 	 * appropriate cpu run-queue or sleep-queue and with the current
1773 	 * thread-queue locked.
1774 	 */
1775 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1776 	newtd = choosethread();
1777 	/*
1778 	 * Call the MD code to switch contexts if necessary.
1779 	 */
1780 	if (td != newtd) {
1781 #ifdef	HWPMC_HOOKS
1782 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1783 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1784 #endif
1785 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1786 		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1787 		cpu_switch(td, newtd, mtx);
1788 		/*
1789 		 * We may return from cpu_switch on a different cpu.  However,
1790 		 * we always return with td_lock pointing to the current cpu's
1791 		 * run queue lock.
1792 		 */
1793 		cpuid = PCPU_GET(cpuid);
1794 		tdq = TDQ_CPU(cpuid);
1795 		lock_profile_obtain_lock_success(
1796 		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1797 #ifdef	HWPMC_HOOKS
1798 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1799 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1800 #endif
1801 	} else
1802 		thread_unblock_switch(td, mtx);
1803 	/*
1804 	 * Assert that all went well and return.
1805 	 */
1806 	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1807 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1808 	td->td_oncpu = cpuid;
1809 }
1810 
1811 /*
1812  * Adjust thread priorities as a result of a nice request.
1813  */
1814 void
1815 sched_nice(struct proc *p, int nice)
1816 {
1817 	struct thread *td;
1818 
1819 	PROC_LOCK_ASSERT(p, MA_OWNED);
1820 
1821 	p->p_nice = nice;
1822 	FOREACH_THREAD_IN_PROC(p, td) {
1823 		thread_lock(td);
1824 		sched_priority(td);
1825 		sched_prio(td, td->td_base_user_pri);
1826 		thread_unlock(td);
1827 	}
1828 }
1829 
1830 /*
1831  * Record the sleep time for the interactivity scorer.
1832  */
1833 void
1834 sched_sleep(struct thread *td, int prio)
1835 {
1836 
1837 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1838 
1839 	td->td_slptick = ticks;
1840 	if (TD_IS_SUSPENDED(td) || prio <= PSOCK)
1841 		td->td_flags |= TDF_CANSWAP;
1842 	if (static_boost && prio)
1843 		sched_prio(td, prio);
1844 }
1845 
1846 /*
1847  * Schedule a thread to resume execution and record how long it voluntarily
1848  * slept.  We also update the pctcpu, interactivity, and priority.
1849  */
1850 void
1851 sched_wakeup(struct thread *td)
1852 {
1853 	struct td_sched *ts;
1854 	int slptick;
1855 
1856 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1857 	ts = td->td_sched;
1858 	td->td_flags &= ~TDF_CANSWAP;
1859 	/*
1860 	 * If we slept for more than a tick update our interactivity and
1861 	 * priority.
1862 	 */
1863 	slptick = td->td_slptick;
1864 	td->td_slptick = 0;
1865 	if (slptick && slptick != ticks) {
1866 		u_int hzticks;
1867 
1868 		hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
1869 		ts->ts_slptime += hzticks;
1870 		sched_interact_update(td);
1871 		sched_pctcpu_update(ts);
1872 	}
1873 	/* Reset the slice value after we sleep. */
1874 	ts->ts_slice = sched_slice;
1875 	sched_add(td, SRQ_BORING);
1876 }
1877 
1878 /*
1879  * Penalize the parent for creating a new child and initialize the child's
1880  * priority.
1881  */
1882 void
1883 sched_fork(struct thread *td, struct thread *child)
1884 {
1885 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1886 	sched_fork_thread(td, child);
1887 	/*
1888 	 * Penalize the parent and child for forking.
1889 	 */
1890 	sched_interact_fork(child);
1891 	sched_priority(child);
1892 	td->td_sched->ts_runtime += tickincr;
1893 	sched_interact_update(td);
1894 	sched_priority(td);
1895 }
1896 
1897 /*
1898  * Fork a new thread, may be within the same process.
1899  */
1900 void
1901 sched_fork_thread(struct thread *td, struct thread *child)
1902 {
1903 	struct td_sched *ts;
1904 	struct td_sched *ts2;
1905 
1906 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1907 	/*
1908 	 * Initialize child.
1909 	 */
1910 	ts = td->td_sched;
1911 	ts2 = child->td_sched;
1912 	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1913 	child->td_cpuset = cpuset_ref(td->td_cpuset);
1914 	ts2->ts_cpu = ts->ts_cpu;
1915 	ts2->ts_flags = 0;
1916 	/*
1917 	 * Grab our parents cpu estimation information and priority.
1918 	 */
1919 	ts2->ts_ticks = ts->ts_ticks;
1920 	ts2->ts_ltick = ts->ts_ltick;
1921 	ts2->ts_ftick = ts->ts_ftick;
1922 	child->td_user_pri = td->td_user_pri;
1923 	child->td_base_user_pri = td->td_base_user_pri;
1924 	/*
1925 	 * And update interactivity score.
1926 	 */
1927 	ts2->ts_slptime = ts->ts_slptime;
1928 	ts2->ts_runtime = ts->ts_runtime;
1929 	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
1930 }
1931 
1932 /*
1933  * Adjust the priority class of a thread.
1934  */
1935 void
1936 sched_class(struct thread *td, int class)
1937 {
1938 
1939 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1940 	if (td->td_pri_class == class)
1941 		return;
1942 	td->td_pri_class = class;
1943 }
1944 
1945 /*
1946  * Return some of the child's priority and interactivity to the parent.
1947  */
1948 void
1949 sched_exit(struct proc *p, struct thread *child)
1950 {
1951 	struct thread *td;
1952 
1953 	CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
1954 	    child, child->td_name, child->td_priority);
1955 
1956 	PROC_LOCK_ASSERT(p, MA_OWNED);
1957 	td = FIRST_THREAD_IN_PROC(p);
1958 	sched_exit_thread(td, child);
1959 }
1960 
1961 /*
1962  * Penalize another thread for the time spent on this one.  This helps to
1963  * worsen the priority and interactivity of processes which schedule batch
1964  * jobs such as make.  This has little effect on the make process itself but
1965  * causes new processes spawned by it to receive worse scores immediately.
1966  */
1967 void
1968 sched_exit_thread(struct thread *td, struct thread *child)
1969 {
1970 
1971 	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
1972 	    child, child->td_name, child->td_priority);
1973 
1974 	/*
1975 	 * Give the child's runtime to the parent without returning the
1976 	 * sleep time as a penalty to the parent.  This causes shells that
1977 	 * launch expensive things to mark their children as expensive.
1978 	 */
1979 	thread_lock(td);
1980 	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
1981 	sched_interact_update(td);
1982 	sched_priority(td);
1983 	thread_unlock(td);
1984 }
1985 
1986 void
1987 sched_preempt(struct thread *td)
1988 {
1989 	struct tdq *tdq;
1990 
1991 	thread_lock(td);
1992 	tdq = TDQ_SELF();
1993 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1994 	tdq->tdq_ipipending = 0;
1995 	if (td->td_priority > tdq->tdq_lowpri) {
1996 		if (td->td_critnest > 1)
1997 			td->td_owepreempt = 1;
1998 		else
1999 			mi_switch(SW_INVOL | SW_PREEMPT, NULL);
2000 	}
2001 	thread_unlock(td);
2002 }
2003 
2004 /*
2005  * Fix priorities on return to user-space.  Priorities may be elevated due
2006  * to static priorities in msleep() or similar.
2007  */
2008 void
2009 sched_userret(struct thread *td)
2010 {
2011 	/*
2012 	 * XXX we cheat slightly on the locking here to avoid locking in
2013 	 * the usual case.  Setting td_priority here is essentially an
2014 	 * incomplete workaround for not setting it properly elsewhere.
2015 	 * Now that some interrupt handlers are threads, not setting it
2016 	 * properly elsewhere can clobber it in the window between setting
2017 	 * it here and returning to user mode, so don't waste time setting
2018 	 * it perfectly here.
2019 	 */
2020 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2021 	    ("thread with borrowed priority returning to userland"));
2022 	if (td->td_priority != td->td_user_pri) {
2023 		thread_lock(td);
2024 		td->td_priority = td->td_user_pri;
2025 		td->td_base_pri = td->td_user_pri;
2026 		tdq_setlowpri(TDQ_SELF(), td);
2027 		thread_unlock(td);
2028         }
2029 }
2030 
2031 /*
2032  * Handle a stathz tick.  This is really only relevant for timeshare
2033  * threads.
2034  */
2035 void
2036 sched_clock(struct thread *td)
2037 {
2038 	struct tdq *tdq;
2039 	struct td_sched *ts;
2040 
2041 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2042 	tdq = TDQ_SELF();
2043 #ifdef SMP
2044 	/*
2045 	 * We run the long term load balancer infrequently on the first cpu.
2046 	 */
2047 	if (balance_tdq == tdq) {
2048 		if (balance_ticks && --balance_ticks == 0)
2049 			sched_balance();
2050 	}
2051 #endif
2052 	/*
2053 	 * Advance the insert index once for each tick to ensure that all
2054 	 * threads get a chance to run.
2055 	 */
2056 	if (tdq->tdq_idx == tdq->tdq_ridx) {
2057 		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2058 		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2059 			tdq->tdq_ridx = tdq->tdq_idx;
2060 	}
2061 	ts = td->td_sched;
2062 	if (td->td_pri_class & PRI_FIFO_BIT)
2063 		return;
2064 	if (td->td_pri_class == PRI_TIMESHARE) {
2065 		/*
2066 		 * We used a tick; charge it to the thread so
2067 		 * that we can compute our interactivity.
2068 		 */
2069 		td->td_sched->ts_runtime += tickincr;
2070 		sched_interact_update(td);
2071 		sched_priority(td);
2072 	}
2073 	/*
2074 	 * We used up one time slice.
2075 	 */
2076 	if (--ts->ts_slice > 0)
2077 		return;
2078 	/*
2079 	 * We're out of time, force a requeue at userret().
2080 	 */
2081 	ts->ts_slice = sched_slice;
2082 	td->td_flags |= TDF_NEEDRESCHED;
2083 }
2084 
2085 /*
2086  * Called once per hz tick.  Used for cpu utilization information.  This
2087  * is easier than trying to scale based on stathz.
2088  */
2089 void
2090 sched_tick(void)
2091 {
2092 	struct td_sched *ts;
2093 
2094 	ts = curthread->td_sched;
2095 	/* Adjust ticks for pctcpu */
2096 	ts->ts_ticks += 1 << SCHED_TICK_SHIFT;
2097 	ts->ts_ltick = ticks;
2098 	/*
2099 	 * Update if we've exceeded our desired tick threshhold by over one
2100 	 * second.
2101 	 */
2102 	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
2103 		sched_pctcpu_update(ts);
2104 }
2105 
2106 /*
2107  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2108  * cooperative idle threads.
2109  */
2110 int
2111 sched_runnable(void)
2112 {
2113 	struct tdq *tdq;
2114 	int load;
2115 
2116 	load = 1;
2117 
2118 	tdq = TDQ_SELF();
2119 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2120 		if (tdq->tdq_load > 0)
2121 			goto out;
2122 	} else
2123 		if (tdq->tdq_load - 1 > 0)
2124 			goto out;
2125 	load = 0;
2126 out:
2127 	return (load);
2128 }
2129 
2130 /*
2131  * Choose the highest priority thread to run.  The thread is removed from
2132  * the run-queue while running however the load remains.  For SMP we set
2133  * the tdq in the global idle bitmask if it idles here.
2134  */
2135 struct thread *
2136 sched_choose(void)
2137 {
2138 	struct thread *td;
2139 	struct tdq *tdq;
2140 
2141 	tdq = TDQ_SELF();
2142 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2143 	td = tdq_choose(tdq);
2144 	if (td) {
2145 		td->td_sched->ts_ltick = ticks;
2146 		tdq_runq_rem(tdq, td);
2147 		return (td);
2148 	}
2149 	return (PCPU_GET(idlethread));
2150 }
2151 
2152 /*
2153  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2154  * we always request it once we exit a critical section.
2155  */
2156 static inline void
2157 sched_setpreempt(struct thread *td)
2158 {
2159 	struct thread *ctd;
2160 	int cpri;
2161 	int pri;
2162 
2163 	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2164 
2165 	ctd = curthread;
2166 	pri = td->td_priority;
2167 	cpri = ctd->td_priority;
2168 	if (pri < cpri)
2169 		ctd->td_flags |= TDF_NEEDRESCHED;
2170 	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2171 		return;
2172 	if (!sched_shouldpreempt(pri, cpri, 0))
2173 		return;
2174 	ctd->td_owepreempt = 1;
2175 }
2176 
2177 /*
2178  * Add a thread to a thread queue.  Select the appropriate runq and add the
2179  * thread to it.  This is the internal function called when the tdq is
2180  * predetermined.
2181  */
2182 void
2183 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2184 {
2185 
2186 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2187 	KASSERT((td->td_inhibitors == 0),
2188 	    ("sched_add: trying to run inhibited thread"));
2189 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2190 	    ("sched_add: bad thread state"));
2191 	KASSERT(td->td_flags & TDF_INMEM,
2192 	    ("sched_add: thread swapped out"));
2193 
2194 	if (td->td_priority < tdq->tdq_lowpri)
2195 		tdq->tdq_lowpri = td->td_priority;
2196 	tdq_runq_add(tdq, td, flags);
2197 	tdq_load_add(tdq, td);
2198 }
2199 
2200 /*
2201  * Select the target thread queue and add a thread to it.  Request
2202  * preemption or IPI a remote processor if required.
2203  */
2204 void
2205 sched_add(struct thread *td, int flags)
2206 {
2207 	struct tdq *tdq;
2208 #ifdef SMP
2209 	int cpu;
2210 #endif
2211 	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
2212 	    td, td->td_name, td->td_priority, curthread,
2213 	    curthread->td_name);
2214 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2215 	/*
2216 	 * Recalculate the priority before we select the target cpu or
2217 	 * run-queue.
2218 	 */
2219 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2220 		sched_priority(td);
2221 #ifdef SMP
2222 	/*
2223 	 * Pick the destination cpu and if it isn't ours transfer to the
2224 	 * target cpu.
2225 	 */
2226 	cpu = sched_pickcpu(td, flags);
2227 	tdq = sched_setcpu(td, cpu, flags);
2228 	tdq_add(tdq, td, flags);
2229 	if (cpu != PCPU_GET(cpuid)) {
2230 		tdq_notify(tdq, td);
2231 		return;
2232 	}
2233 #else
2234 	tdq = TDQ_SELF();
2235 	TDQ_LOCK(tdq);
2236 	/*
2237 	 * Now that the thread is moving to the run-queue, set the lock
2238 	 * to the scheduler's lock.
2239 	 */
2240 	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2241 	tdq_add(tdq, td, flags);
2242 #endif
2243 	if (!(flags & SRQ_YIELDING))
2244 		sched_setpreempt(td);
2245 }
2246 
2247 /*
2248  * Remove a thread from a run-queue without running it.  This is used
2249  * when we're stealing a thread from a remote queue.  Otherwise all threads
2250  * exit by calling sched_exit_thread() and sched_throw() themselves.
2251  */
2252 void
2253 sched_rem(struct thread *td)
2254 {
2255 	struct tdq *tdq;
2256 
2257 	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
2258 	    td, td->td_name, td->td_priority, curthread,
2259 	    curthread->td_name);
2260 	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2261 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2262 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2263 	KASSERT(TD_ON_RUNQ(td),
2264 	    ("sched_rem: thread not on run queue"));
2265 	tdq_runq_rem(tdq, td);
2266 	tdq_load_rem(tdq, td);
2267 	TD_SET_CAN_RUN(td);
2268 	if (td->td_priority == tdq->tdq_lowpri)
2269 		tdq_setlowpri(tdq, NULL);
2270 }
2271 
2272 /*
2273  * Fetch cpu utilization information.  Updates on demand.
2274  */
2275 fixpt_t
2276 sched_pctcpu(struct thread *td)
2277 {
2278 	fixpt_t pctcpu;
2279 	struct td_sched *ts;
2280 
2281 	pctcpu = 0;
2282 	ts = td->td_sched;
2283 	if (ts == NULL)
2284 		return (0);
2285 
2286 	thread_lock(td);
2287 	if (ts->ts_ticks) {
2288 		int rtick;
2289 
2290 		sched_pctcpu_update(ts);
2291 		/* How many rtick per second ? */
2292 		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2293 		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2294 	}
2295 	thread_unlock(td);
2296 
2297 	return (pctcpu);
2298 }
2299 
2300 /*
2301  * Enforce affinity settings for a thread.  Called after adjustments to
2302  * cpumask.
2303  */
2304 void
2305 sched_affinity(struct thread *td)
2306 {
2307 #ifdef SMP
2308 	struct td_sched *ts;
2309 	int cpu;
2310 
2311 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2312 	ts = td->td_sched;
2313 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2314 		return;
2315 	if (!TD_IS_RUNNING(td))
2316 		return;
2317 	td->td_flags |= TDF_NEEDRESCHED;
2318 	if (!THREAD_CAN_MIGRATE(td))
2319 		return;
2320 	/*
2321 	 * Assign the new cpu and force a switch before returning to
2322 	 * userspace.  If the target thread is not running locally send
2323 	 * an ipi to force the issue.
2324 	 */
2325 	cpu = ts->ts_cpu;
2326 	ts->ts_cpu = sched_pickcpu(td, 0);
2327 	if (cpu != PCPU_GET(cpuid))
2328 		ipi_selected(1 << cpu, IPI_PREEMPT);
2329 #endif
2330 }
2331 
2332 /*
2333  * Bind a thread to a target cpu.
2334  */
2335 void
2336 sched_bind(struct thread *td, int cpu)
2337 {
2338 	struct td_sched *ts;
2339 
2340 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2341 	ts = td->td_sched;
2342 	if (ts->ts_flags & TSF_BOUND)
2343 		sched_unbind(td);
2344 	ts->ts_flags |= TSF_BOUND;
2345 	sched_pin();
2346 	if (PCPU_GET(cpuid) == cpu)
2347 		return;
2348 	ts->ts_cpu = cpu;
2349 	/* When we return from mi_switch we'll be on the correct cpu. */
2350 	mi_switch(SW_VOL, NULL);
2351 }
2352 
2353 /*
2354  * Release a bound thread.
2355  */
2356 void
2357 sched_unbind(struct thread *td)
2358 {
2359 	struct td_sched *ts;
2360 
2361 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2362 	ts = td->td_sched;
2363 	if ((ts->ts_flags & TSF_BOUND) == 0)
2364 		return;
2365 	ts->ts_flags &= ~TSF_BOUND;
2366 	sched_unpin();
2367 }
2368 
2369 int
2370 sched_is_bound(struct thread *td)
2371 {
2372 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2373 	return (td->td_sched->ts_flags & TSF_BOUND);
2374 }
2375 
2376 /*
2377  * Basic yield call.
2378  */
2379 void
2380 sched_relinquish(struct thread *td)
2381 {
2382 	thread_lock(td);
2383 	SCHED_STAT_INC(switch_relinquish);
2384 	mi_switch(SW_VOL, NULL);
2385 	thread_unlock(td);
2386 }
2387 
2388 /*
2389  * Return the total system load.
2390  */
2391 int
2392 sched_load(void)
2393 {
2394 #ifdef SMP
2395 	int total;
2396 	int i;
2397 
2398 	total = 0;
2399 	for (i = 0; i <= mp_maxid; i++)
2400 		total += TDQ_CPU(i)->tdq_sysload;
2401 	return (total);
2402 #else
2403 	return (TDQ_SELF()->tdq_sysload);
2404 #endif
2405 }
2406 
2407 int
2408 sched_sizeof_proc(void)
2409 {
2410 	return (sizeof(struct proc));
2411 }
2412 
2413 int
2414 sched_sizeof_thread(void)
2415 {
2416 	return (sizeof(struct thread) + sizeof(struct td_sched));
2417 }
2418 
2419 /*
2420  * The actual idle process.
2421  */
2422 void
2423 sched_idletd(void *dummy)
2424 {
2425 	struct thread *td;
2426 	struct tdq *tdq;
2427 
2428 	td = curthread;
2429 	tdq = TDQ_SELF();
2430 	mtx_assert(&Giant, MA_NOTOWNED);
2431 	/* ULE relies on preemption for idle interruption. */
2432 	for (;;) {
2433 #ifdef SMP
2434 		if (tdq_idled(tdq))
2435 			cpu_idle();
2436 #else
2437 		cpu_idle();
2438 #endif
2439 	}
2440 }
2441 
2442 /*
2443  * A CPU is entering for the first time or a thread is exiting.
2444  */
2445 void
2446 sched_throw(struct thread *td)
2447 {
2448 	struct thread *newtd;
2449 	struct tdq *tdq;
2450 
2451 	tdq = TDQ_SELF();
2452 	if (td == NULL) {
2453 		/* Correct spinlock nesting and acquire the correct lock. */
2454 		TDQ_LOCK(tdq);
2455 		spinlock_exit();
2456 	} else {
2457 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2458 		tdq_load_rem(tdq, td);
2459 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2460 	}
2461 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2462 	newtd = choosethread();
2463 	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2464 	PCPU_SET(switchtime, cpu_ticks());
2465 	PCPU_SET(switchticks, ticks);
2466 	cpu_throw(td, newtd);		/* doesn't return */
2467 }
2468 
2469 /*
2470  * This is called from fork_exit().  Just acquire the correct locks and
2471  * let fork do the rest of the work.
2472  */
2473 void
2474 sched_fork_exit(struct thread *td)
2475 {
2476 	struct td_sched *ts;
2477 	struct tdq *tdq;
2478 	int cpuid;
2479 
2480 	/*
2481 	 * Finish setting up thread glue so that it begins execution in a
2482 	 * non-nested critical section with the scheduler lock held.
2483 	 */
2484 	cpuid = PCPU_GET(cpuid);
2485 	tdq = TDQ_CPU(cpuid);
2486 	ts = td->td_sched;
2487 	if (TD_IS_IDLETHREAD(td))
2488 		td->td_lock = TDQ_LOCKPTR(tdq);
2489 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2490 	td->td_oncpu = cpuid;
2491 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2492 	lock_profile_obtain_lock_success(
2493 	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2494 }
2495 
2496 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2497 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2498     "Scheduler name");
2499 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2500     "Slice size for timeshare threads");
2501 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2502      "Interactivity score threshold");
2503 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2504      0,"Min priority for preemption, lower priorities have greater precedence");
2505 SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2506      0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2507 #ifdef SMP
2508 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2509     "Number of hz ticks to keep thread affinity for");
2510 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2511     "Enables the long-term load balancer");
2512 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2513     &balance_interval, 0,
2514     "Average frequency in stathz ticks to run the long-term balancer");
2515 SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0,
2516     "Steals work from another hyper-threaded core on idle");
2517 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2518     "Attempts to steal work from other cores before idling");
2519 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2520     "Minimum load on remote cpu before we'll steal");
2521 #endif
2522 
2523 /* ps compat.  All cpu percentages from ULE are weighted. */
2524 static int ccpu = 0;
2525 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2526