xref: /freebsd/sys/kern/sched_ule.c (revision 02f27f1cfa619cdf9509c65366f55f7c8803de5c)
1 /*-
2  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * This file implements the ULE scheduler.  ULE supports independent CPU
29  * run queues and fine grain locking.  It has superior interactive
30  * performance under load even on uni-processor systems.
31  *
32  * etymology:
33  *   ULE is the last three letters in schedule.  It owes its name to a
34  * generic user created for a scheduling system by Paul Mikesell at
35  * Isilon Systems and a general lack of creativity on the part of the author.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_sched.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kdb.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resource.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/smp.h>
56 #include <sys/sx.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysproto.h>
59 #include <sys/turnstile.h>
60 #include <sys/umtx.h>
61 #include <sys/vmmeter.h>
62 #include <sys/cpuset.h>
63 #ifdef KTRACE
64 #include <sys/uio.h>
65 #include <sys/ktrace.h>
66 #endif
67 
68 #ifdef HWPMC_HOOKS
69 #include <sys/pmckern.h>
70 #endif
71 
72 #include <machine/cpu.h>
73 #include <machine/smp.h>
74 
75 #if !defined(__i386__) && !defined(__amd64__) && !defined(__powerpc__) && !defined(__arm__)
76 #error "This architecture is not currently compatible with ULE"
77 #endif
78 
79 #define	KTR_ULE	0
80 
81 /*
82  * Thread scheduler specific section.  All fields are protected
83  * by the thread lock.
84  */
85 struct td_sched {
86 	TAILQ_ENTRY(td_sched) ts_procq;	/* Run queue. */
87 	struct thread	*ts_thread;	/* Active associated thread. */
88 	struct runq	*ts_runq;	/* Run-queue we're queued on. */
89 	short		ts_flags;	/* TSF_* flags. */
90 	u_char		ts_rqindex;	/* Run queue index. */
91 	u_char		ts_cpu;		/* CPU that we have affinity for. */
92 	int		ts_slice;	/* Ticks of slice remaining. */
93 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
94 	u_int		ts_runtime;	/* Number of ticks we were running */
95 	/* The following variables are only used for pctcpu calculation */
96 	int		ts_ltick;	/* Last tick that we were running on */
97 	int		ts_ftick;	/* First tick that we were running on */
98 	int		ts_ticks;	/* Tick count */
99 	int		ts_rltick;	/* Real last tick, for affinity. */
100 };
101 /* flags kept in ts_flags */
102 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
103 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
104 
105 static struct td_sched td_sched0;
106 
107 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
108 #define	THREAD_CAN_SCHED(td, cpu)	\
109     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
110 
111 /*
112  * Cpu percentage computation macros and defines.
113  *
114  * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
115  * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
116  * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
117  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
118  * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
119  * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
120  */
121 #define	SCHED_TICK_SECS		10
122 #define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
123 #define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
124 #define	SCHED_TICK_SHIFT	10
125 #define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
126 #define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
127 
128 /*
129  * These macros determine priorities for non-interactive threads.  They are
130  * assigned a priority based on their recent cpu utilization as expressed
131  * by the ratio of ticks to the tick total.  NHALF priorities at the start
132  * and end of the MIN to MAX timeshare range are only reachable with negative
133  * or positive nice respectively.
134  *
135  * PRI_RANGE:	Priority range for utilization dependent priorities.
136  * PRI_NRESV:	Number of nice values.
137  * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
138  * PRI_NICE:	Determines the part of the priority inherited from nice.
139  */
140 #define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
141 #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
142 #define	SCHED_PRI_MIN		(PRI_MIN_TIMESHARE + SCHED_PRI_NHALF)
143 #define	SCHED_PRI_MAX		(PRI_MAX_TIMESHARE - SCHED_PRI_NHALF)
144 #define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN)
145 #define	SCHED_PRI_TICKS(ts)						\
146     (SCHED_TICK_HZ((ts)) /						\
147     (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
148 #define	SCHED_PRI_NICE(nice)	(nice)
149 
150 /*
151  * These determine the interactivity of a process.  Interactivity differs from
152  * cpu utilization in that it expresses the voluntary time slept vs time ran
153  * while cpu utilization includes all time not running.  This more accurately
154  * models the intent of the thread.
155  *
156  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
157  *		before throttling back.
158  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
159  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
160  * INTERACT_THRESH:	Threshhold for placement on the current runq.
161  */
162 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
163 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
164 #define	SCHED_INTERACT_MAX	(100)
165 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
166 #define	SCHED_INTERACT_THRESH	(30)
167 
168 /*
169  * tickincr:		Converts a stathz tick into a hz domain scaled by
170  *			the shift factor.  Without the shift the error rate
171  *			due to rounding would be unacceptably high.
172  * realstathz:		stathz is sometimes 0 and run off of hz.
173  * sched_slice:		Runtime of each thread before rescheduling.
174  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
175  */
176 static int sched_interact = SCHED_INTERACT_THRESH;
177 static int realstathz;
178 static int tickincr;
179 static int sched_slice;
180 #ifdef PREEMPTION
181 #ifdef FULL_PREEMPTION
182 static int preempt_thresh = PRI_MAX_IDLE;
183 #else
184 static int preempt_thresh = PRI_MIN_KERN;
185 #endif
186 #else
187 static int preempt_thresh = 0;
188 #endif
189 static int lowpri_userret = 1;
190 
191 /*
192  * tdq - per processor runqs and statistics.  All fields are protected by the
193  * tdq_lock.  The load and lowpri may be accessed without to avoid excess
194  * locking in sched_pickcpu();
195  */
196 struct tdq {
197 	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
198 	struct mtx	tdq_lock;		/* run queue lock. */
199 	struct runq	tdq_realtime;		/* real-time run queue. */
200 	struct runq	tdq_timeshare;		/* timeshare run queue. */
201 	struct runq	tdq_idle;		/* Queue of IDLE threads. */
202 	int		tdq_load;		/* Aggregate load. */
203 	int		tdq_sysload;		/* For loadavg, !ITHD load. */
204 	u_char		tdq_idx;		/* Current insert index. */
205 	u_char		tdq_ridx;		/* Current removal index. */
206 	u_char		tdq_lowpri;		/* Lowest priority thread. */
207 	int		tdq_transferable;	/* Transferable thread count. */
208 	char		tdq_name[sizeof("sched lock") + 6];
209 } __aligned(64);
210 
211 
212 #ifdef SMP
213 struct cpu_group *cpu_top;
214 
215 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
216 #define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
217 
218 /*
219  * Run-time tunables.
220  */
221 static int rebalance = 1;
222 static int balance_interval = 128;	/* Default set in sched_initticks(). */
223 static int pick_pri = 1;
224 static int affinity;
225 static int tryself = 1;
226 static int oldtryself = 0;
227 static int steal_htt = 1;
228 static int steal_idle = 1;
229 static int steal_thresh = 2;
230 
231 /*
232  * One thread queue per processor.
233  */
234 static struct tdq	tdq_cpu[MAXCPU];
235 static struct tdq	*balance_tdq;
236 static int balance_ticks;
237 
238 #define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
239 #define	TDQ_CPU(x)	(&tdq_cpu[(x)])
240 #define	TDQ_ID(x)	((int)((x) - tdq_cpu))
241 #else	/* !SMP */
242 static struct tdq	tdq_cpu;
243 
244 #define	TDQ_ID(x)	(0)
245 #define	TDQ_SELF()	(&tdq_cpu)
246 #define	TDQ_CPU(x)	(&tdq_cpu)
247 #endif
248 
249 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
250 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
251 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
252 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
253 #define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
254 
255 static void sched_priority(struct thread *);
256 static void sched_thread_priority(struct thread *, u_char);
257 static int sched_interact_score(struct thread *);
258 static void sched_interact_update(struct thread *);
259 static void sched_interact_fork(struct thread *);
260 static void sched_pctcpu_update(struct td_sched *);
261 
262 /* Operations on per processor queues */
263 static struct td_sched * tdq_choose(struct tdq *);
264 static void tdq_setup(struct tdq *);
265 static void tdq_load_add(struct tdq *, struct td_sched *);
266 static void tdq_load_rem(struct tdq *, struct td_sched *);
267 static __inline void tdq_runq_add(struct tdq *, struct td_sched *, int);
268 static __inline void tdq_runq_rem(struct tdq *, struct td_sched *);
269 void tdq_print(int cpu);
270 static void runq_print(struct runq *rq);
271 static void tdq_add(struct tdq *, struct thread *, int);
272 #ifdef SMP
273 static int tdq_move(struct tdq *, struct tdq *);
274 static int tdq_idled(struct tdq *);
275 static void tdq_notify(struct td_sched *);
276 static struct td_sched *tdq_steal(struct tdq *, int);
277 static struct td_sched *runq_steal(struct runq *, int);
278 static int sched_pickcpu(struct td_sched *, int);
279 static void sched_balance(void);
280 static int sched_balance_pair(struct tdq *, struct tdq *);
281 static inline struct tdq *sched_setcpu(struct td_sched *, int, int);
282 static inline struct mtx *thread_block_switch(struct thread *);
283 static inline void thread_unblock_switch(struct thread *, struct mtx *);
284 static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
285 #endif
286 
287 static void sched_setup(void *dummy);
288 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
289 
290 static void sched_initticks(void *dummy);
291 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, NULL)
292 
293 /*
294  * Print the threads waiting on a run-queue.
295  */
296 static void
297 runq_print(struct runq *rq)
298 {
299 	struct rqhead *rqh;
300 	struct td_sched *ts;
301 	int pri;
302 	int j;
303 	int i;
304 
305 	for (i = 0; i < RQB_LEN; i++) {
306 		printf("\t\trunq bits %d 0x%zx\n",
307 		    i, rq->rq_status.rqb_bits[i]);
308 		for (j = 0; j < RQB_BPW; j++)
309 			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
310 				pri = j + (i << RQB_L2BPW);
311 				rqh = &rq->rq_queues[pri];
312 				TAILQ_FOREACH(ts, rqh, ts_procq) {
313 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
314 					    ts->ts_thread, ts->ts_thread->td_name, ts->ts_thread->td_priority, ts->ts_rqindex, pri);
315 				}
316 			}
317 	}
318 }
319 
320 /*
321  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
322  */
323 void
324 tdq_print(int cpu)
325 {
326 	struct tdq *tdq;
327 
328 	tdq = TDQ_CPU(cpu);
329 
330 	printf("tdq %d:\n", TDQ_ID(tdq));
331 	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
332 	printf("\tLock name:      %s\n", tdq->tdq_name);
333 	printf("\tload:           %d\n", tdq->tdq_load);
334 	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
335 	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
336 	printf("\trealtime runq:\n");
337 	runq_print(&tdq->tdq_realtime);
338 	printf("\ttimeshare runq:\n");
339 	runq_print(&tdq->tdq_timeshare);
340 	printf("\tidle runq:\n");
341 	runq_print(&tdq->tdq_idle);
342 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
343 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
344 }
345 
346 #define	TS_RQ_PPQ	(((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS)
347 /*
348  * Add a thread to the actual run-queue.  Keeps transferable counts up to
349  * date with what is actually on the run-queue.  Selects the correct
350  * queue position for timeshare threads.
351  */
352 static __inline void
353 tdq_runq_add(struct tdq *tdq, struct td_sched *ts, int flags)
354 {
355 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
356 	THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
357 	if (THREAD_CAN_MIGRATE(ts->ts_thread)) {
358 		tdq->tdq_transferable++;
359 		ts->ts_flags |= TSF_XFERABLE;
360 	}
361 	if (ts->ts_runq == &tdq->tdq_timeshare) {
362 		u_char pri;
363 
364 		pri = ts->ts_thread->td_priority;
365 		KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE,
366 			("Invalid priority %d on timeshare runq", pri));
367 		/*
368 		 * This queue contains only priorities between MIN and MAX
369 		 * realtime.  Use the whole queue to represent these values.
370 		 */
371 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
372 			pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ;
373 			pri = (pri + tdq->tdq_idx) % RQ_NQS;
374 			/*
375 			 * This effectively shortens the queue by one so we
376 			 * can have a one slot difference between idx and
377 			 * ridx while we wait for threads to drain.
378 			 */
379 			if (tdq->tdq_ridx != tdq->tdq_idx &&
380 			    pri == tdq->tdq_ridx)
381 				pri = (unsigned char)(pri - 1) % RQ_NQS;
382 		} else
383 			pri = tdq->tdq_ridx;
384 		runq_add_pri(ts->ts_runq, ts, pri, flags);
385 	} else
386 		runq_add(ts->ts_runq, ts, flags);
387 }
388 
389 /*
390  * Remove a thread from a run-queue.  This typically happens when a thread
391  * is selected to run.  Running threads are not on the queue and the
392  * transferable count does not reflect them.
393  */
394 static __inline void
395 tdq_runq_rem(struct tdq *tdq, struct td_sched *ts)
396 {
397 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
398 	KASSERT(ts->ts_runq != NULL,
399 	    ("tdq_runq_remove: thread %p null ts_runq", ts->ts_thread));
400 	if (ts->ts_flags & TSF_XFERABLE) {
401 		tdq->tdq_transferable--;
402 		ts->ts_flags &= ~TSF_XFERABLE;
403 	}
404 	if (ts->ts_runq == &tdq->tdq_timeshare) {
405 		if (tdq->tdq_idx != tdq->tdq_ridx)
406 			runq_remove_idx(ts->ts_runq, ts, &tdq->tdq_ridx);
407 		else
408 			runq_remove_idx(ts->ts_runq, ts, NULL);
409 		/*
410 		 * For timeshare threads we update the priority here so
411 		 * the priority reflects the time we've been sleeping.
412 		 */
413 		ts->ts_ltick = ticks;
414 		sched_pctcpu_update(ts);
415 		sched_priority(ts->ts_thread);
416 	} else
417 		runq_remove(ts->ts_runq, ts);
418 }
419 
420 /*
421  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
422  * for this thread to the referenced thread queue.
423  */
424 static void
425 tdq_load_add(struct tdq *tdq, struct td_sched *ts)
426 {
427 	int class;
428 
429 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
430 	THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
431 	class = PRI_BASE(ts->ts_thread->td_pri_class);
432 	tdq->tdq_load++;
433 	CTR2(KTR_SCHED, "cpu %d load: %d", TDQ_ID(tdq), tdq->tdq_load);
434 	if (class != PRI_ITHD &&
435 	    (ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0)
436 		tdq->tdq_sysload++;
437 }
438 
439 /*
440  * Remove the load from a thread that is transitioning to a sleep state or
441  * exiting.
442  */
443 static void
444 tdq_load_rem(struct tdq *tdq, struct td_sched *ts)
445 {
446 	int class;
447 
448 	THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
449 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
450 	class = PRI_BASE(ts->ts_thread->td_pri_class);
451 	if (class != PRI_ITHD &&
452 	    (ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0)
453 		tdq->tdq_sysload--;
454 	KASSERT(tdq->tdq_load != 0,
455 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
456 	tdq->tdq_load--;
457 	CTR1(KTR_SCHED, "load: %d", tdq->tdq_load);
458 	ts->ts_runq = NULL;
459 }
460 
461 /*
462  * Set lowpri to its exact value by searching the run-queue and
463  * evaluating curthread.  curthread may be passed as an optimization.
464  */
465 static void
466 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
467 {
468 	struct td_sched *ts;
469 	struct thread *td;
470 
471 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
472 	if (ctd == NULL)
473 		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
474 	ts = tdq_choose(tdq);
475 	if (ts)
476 		td = ts->ts_thread;
477 	if (ts == NULL || td->td_priority > ctd->td_priority)
478 		tdq->tdq_lowpri = ctd->td_priority;
479 	else
480 		tdq->tdq_lowpri = td->td_priority;
481 }
482 
483 #ifdef SMP
484 struct cpu_search {
485 	cpumask_t cs_mask;	/* Mask of valid cpus. */
486 	u_int	cs_load;
487 	u_int	cs_cpu;
488 	int	cs_limit;	/* Min priority for low min load for high. */
489 };
490 
491 #define	CPU_SEARCH_LOWEST	0x1
492 #define	CPU_SEARCH_HIGHEST	0x2
493 #define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
494 
495 #define	CPUMASK_FOREACH(cpu, mask)				\
496 	for ((cpu) = 0; (cpu) < sizeof((mask)) * 8; (cpu)++)	\
497 		if ((mask) & 1 << (cpu))
498 
499 __inline int cpu_search(struct cpu_group *cg, struct cpu_search *low,
500     struct cpu_search *high, const int match);
501 int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low);
502 int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high);
503 int cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
504     struct cpu_search *high);
505 
506 /*
507  * This routine compares according to the match argument and should be
508  * reduced in actual instantiations via constant propagation and dead code
509  * elimination.
510  */
511 static __inline int
512 cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high,
513     const int match)
514 {
515 	struct tdq *tdq;
516 
517 	tdq = TDQ_CPU(cpu);
518 	if (match & CPU_SEARCH_LOWEST)
519 		if (low->cs_mask & (1 << cpu) &&
520 		    tdq->tdq_load < low->cs_load &&
521 		    tdq->tdq_lowpri > low->cs_limit) {
522 			low->cs_cpu = cpu;
523 			low->cs_load = tdq->tdq_load;
524 		}
525 	if (match & CPU_SEARCH_HIGHEST)
526 		if (high->cs_mask & (1 << cpu) &&
527 		    tdq->tdq_load >= high->cs_limit &&
528 		    tdq->tdq_load > high->cs_load &&
529 		    tdq->tdq_transferable) {
530 			high->cs_cpu = cpu;
531 			high->cs_load = tdq->tdq_load;
532 		}
533 	return (tdq->tdq_load);
534 }
535 
536 /*
537  * Search the tree of cpu_groups for the lowest or highest loaded cpu
538  * according to the match argument.  This routine actually compares the
539  * load on all paths through the tree and finds the least loaded cpu on
540  * the least loaded path, which may differ from the least loaded cpu in
541  * the system.  This balances work among caches and busses.
542  *
543  * This inline is instantiated in three forms below using constants for the
544  * match argument.  It is reduced to the minimum set for each case.  It is
545  * also recursive to the depth of the tree.
546  */
547 static inline int
548 cpu_search(struct cpu_group *cg, struct cpu_search *low,
549     struct cpu_search *high, const int match)
550 {
551 	int total;
552 
553 	total = 0;
554 	if (cg->cg_children) {
555 		struct cpu_search lgroup;
556 		struct cpu_search hgroup;
557 		struct cpu_group *child;
558 		u_int lload;
559 		int hload;
560 		int load;
561 		int i;
562 
563 		lload = -1;
564 		hload = -1;
565 		for (i = 0; i < cg->cg_children; i++) {
566 			child = &cg->cg_child[i];
567 			if (match & CPU_SEARCH_LOWEST) {
568 				lgroup = *low;
569 				lgroup.cs_load = -1;
570 			}
571 			if (match & CPU_SEARCH_HIGHEST) {
572 				hgroup = *high;
573 				lgroup.cs_load = 0;
574 			}
575 			switch (match) {
576 			case CPU_SEARCH_LOWEST:
577 				load = cpu_search_lowest(child, &lgroup);
578 				break;
579 			case CPU_SEARCH_HIGHEST:
580 				load = cpu_search_highest(child, &hgroup);
581 				break;
582 			case CPU_SEARCH_BOTH:
583 				load = cpu_search_both(child, &lgroup, &hgroup);
584 				break;
585 			}
586 			total += load;
587 			if (match & CPU_SEARCH_LOWEST)
588 				if (load < lload || low->cs_cpu == -1) {
589 					*low = lgroup;
590 					lload = load;
591 				}
592 			if (match & CPU_SEARCH_HIGHEST)
593 				if (load > hload || high->cs_cpu == -1) {
594 					hload = load;
595 					*high = hgroup;
596 				}
597 		}
598 	} else {
599 		int cpu;
600 
601 		CPUMASK_FOREACH(cpu, cg->cg_mask)
602 			total += cpu_compare(cpu, low, high, match);
603 	}
604 	return (total);
605 }
606 
607 /*
608  * cpu_search instantiations must pass constants to maintain the inline
609  * optimization.
610  */
611 int
612 cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low)
613 {
614 	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
615 }
616 
617 int
618 cpu_search_highest(struct cpu_group *cg, struct cpu_search *high)
619 {
620 	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
621 }
622 
623 int
624 cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
625     struct cpu_search *high)
626 {
627 	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
628 }
629 
630 /*
631  * Find the cpu with the least load via the least loaded path that has a
632  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
633  * acceptable.
634  */
635 static inline int
636 sched_lowest(struct cpu_group *cg, cpumask_t mask, int pri)
637 {
638 	struct cpu_search low;
639 
640 	low.cs_cpu = -1;
641 	low.cs_load = -1;
642 	low.cs_mask = mask;
643 	low.cs_limit = pri;
644 	cpu_search_lowest(cg, &low);
645 	return low.cs_cpu;
646 }
647 
648 /*
649  * Find the cpu with the highest load via the highest loaded path.
650  */
651 static inline int
652 sched_highest(struct cpu_group *cg, cpumask_t mask, int minload)
653 {
654 	struct cpu_search high;
655 
656 	high.cs_cpu = -1;
657 	high.cs_load = 0;
658 	high.cs_mask = mask;
659 	high.cs_limit = minload;
660 	cpu_search_highest(cg, &high);
661 	return high.cs_cpu;
662 }
663 
664 /*
665  * Simultaneously find the highest and lowest loaded cpu reachable via
666  * cg.
667  */
668 static inline void
669 sched_both(struct cpu_group *cg, cpumask_t mask, int *lowcpu, int *highcpu)
670 {
671 	struct cpu_search high;
672 	struct cpu_search low;
673 
674 	low.cs_cpu = -1;
675 	low.cs_limit = -1;
676 	low.cs_load = -1;
677 	low.cs_mask = mask;
678 	high.cs_load = 0;
679 	high.cs_cpu = -1;
680 	high.cs_limit = -1;
681 	high.cs_mask = mask;
682 	cpu_search_both(cg, &low, &high);
683 	*lowcpu = low.cs_cpu;
684 	*highcpu = high.cs_cpu;
685 	return;
686 }
687 
688 static void
689 sched_balance_group(struct cpu_group *cg)
690 {
691 	cpumask_t mask;
692 	int high;
693 	int low;
694 	int i;
695 
696 	mask = -1;
697 	for (;;) {
698 		sched_both(cg, mask, &low, &high);
699 		if (low == high || low == -1 || high == -1)
700 			break;
701 		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low)))
702 			break;
703 		/*
704 		 * If we failed to move any threads determine which cpu
705 		 * to kick out of the set and try again.
706 	 	 */
707 		if (TDQ_CPU(high)->tdq_transferable == 0)
708 			mask &= ~(1 << high);
709 		else
710 			mask &= ~(1 << low);
711 	}
712 
713 	for (i = 0; i < cg->cg_children; i++)
714 		sched_balance_group(&cg->cg_child[i]);
715 }
716 
717 static void
718 sched_balance()
719 {
720 	struct tdq *tdq;
721 
722 	/*
723 	 * Select a random time between .5 * balance_interval and
724 	 * 1.5 * balance_interval.
725 	 */
726 	balance_ticks = max(balance_interval / 2, 1);
727 	balance_ticks += random() % balance_interval;
728 	if (smp_started == 0 || rebalance == 0)
729 		return;
730 	tdq = TDQ_SELF();
731 	TDQ_UNLOCK(tdq);
732 	sched_balance_group(cpu_top);
733 	TDQ_LOCK(tdq);
734 }
735 
736 /*
737  * Lock two thread queues using their address to maintain lock order.
738  */
739 static void
740 tdq_lock_pair(struct tdq *one, struct tdq *two)
741 {
742 	if (one < two) {
743 		TDQ_LOCK(one);
744 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
745 	} else {
746 		TDQ_LOCK(two);
747 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
748 	}
749 }
750 
751 /*
752  * Unlock two thread queues.  Order is not important here.
753  */
754 static void
755 tdq_unlock_pair(struct tdq *one, struct tdq *two)
756 {
757 	TDQ_UNLOCK(one);
758 	TDQ_UNLOCK(two);
759 }
760 
761 /*
762  * Transfer load between two imbalanced thread queues.
763  */
764 static int
765 sched_balance_pair(struct tdq *high, struct tdq *low)
766 {
767 	int transferable;
768 	int high_load;
769 	int low_load;
770 	int moved;
771 	int move;
772 	int diff;
773 	int i;
774 
775 	tdq_lock_pair(high, low);
776 	transferable = high->tdq_transferable;
777 	high_load = high->tdq_load;
778 	low_load = low->tdq_load;
779 	moved = 0;
780 	/*
781 	 * Determine what the imbalance is and then adjust that to how many
782 	 * threads we actually have to give up (transferable).
783 	 */
784 	if (transferable != 0) {
785 		diff = high_load - low_load;
786 		move = diff / 2;
787 		if (diff & 0x1)
788 			move++;
789 		move = min(move, transferable);
790 		for (i = 0; i < move; i++)
791 			moved += tdq_move(high, low);
792 		/*
793 		 * IPI the target cpu to force it to reschedule with the new
794 		 * workload.
795 		 */
796 		ipi_selected(1 << TDQ_ID(low), IPI_PREEMPT);
797 	}
798 	tdq_unlock_pair(high, low);
799 	return (moved);
800 }
801 
802 /*
803  * Move a thread from one thread queue to another.
804  */
805 static int
806 tdq_move(struct tdq *from, struct tdq *to)
807 {
808 	struct td_sched *ts;
809 	struct thread *td;
810 	struct tdq *tdq;
811 	int cpu;
812 
813 	TDQ_LOCK_ASSERT(from, MA_OWNED);
814 	TDQ_LOCK_ASSERT(to, MA_OWNED);
815 
816 	tdq = from;
817 	cpu = TDQ_ID(to);
818 	ts = tdq_steal(tdq, cpu);
819 	if (ts == NULL)
820 		return (0);
821 	td = ts->ts_thread;
822 	/*
823 	 * Although the run queue is locked the thread may be blocked.  Lock
824 	 * it to clear this and acquire the run-queue lock.
825 	 */
826 	thread_lock(td);
827 	/* Drop recursive lock on from acquired via thread_lock(). */
828 	TDQ_UNLOCK(from);
829 	sched_rem(td);
830 	ts->ts_cpu = cpu;
831 	td->td_lock = TDQ_LOCKPTR(to);
832 	tdq_add(to, td, SRQ_YIELDING);
833 	return (1);
834 }
835 
836 /*
837  * This tdq has idled.  Try to steal a thread from another cpu and switch
838  * to it.
839  */
840 static int
841 tdq_idled(struct tdq *tdq)
842 {
843 	struct cpu_group *cg;
844 	struct tdq *steal;
845 	cpumask_t mask;
846 	int thresh;
847 	int cpu;
848 
849 	if (smp_started == 0 || steal_idle == 0)
850 		return (1);
851 	mask = -1;
852 	mask &= ~PCPU_GET(cpumask);
853 	/* We don't want to be preempted while we're iterating. */
854 	spinlock_enter();
855 	for (cg = tdq->tdq_cg; cg != NULL; ) {
856 		if ((cg->cg_flags & (CG_FLAG_HTT | CG_FLAG_THREAD)) == 0)
857 			thresh = steal_thresh;
858 		else
859 			thresh = 1;
860 		cpu = sched_highest(cg, mask, thresh);
861 		if (cpu == -1) {
862 			cg = cg->cg_parent;
863 			continue;
864 		}
865 		steal = TDQ_CPU(cpu);
866 		mask &= ~(1 << cpu);
867 		tdq_lock_pair(tdq, steal);
868 		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
869 			tdq_unlock_pair(tdq, steal);
870 			continue;
871 		}
872 		/*
873 		 * If a thread was added while interrupts were disabled don't
874 		 * steal one here.  If we fail to acquire one due to affinity
875 		 * restrictions loop again with this cpu removed from the
876 		 * set.
877 		 */
878 		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
879 			tdq_unlock_pair(tdq, steal);
880 			continue;
881 		}
882 		spinlock_exit();
883 		TDQ_UNLOCK(steal);
884 		mi_switch(SW_VOL, NULL);
885 		thread_unlock(curthread);
886 
887 		return (0);
888 	}
889 	spinlock_exit();
890 	return (1);
891 }
892 
893 /*
894  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
895  */
896 static void
897 tdq_notify(struct td_sched *ts)
898 {
899 	struct thread *ctd;
900 	struct pcpu *pcpu;
901 	int cpri;
902 	int pri;
903 	int cpu;
904 
905 	cpu = ts->ts_cpu;
906 	pri = ts->ts_thread->td_priority;
907 	pcpu = pcpu_find(cpu);
908 	ctd = pcpu->pc_curthread;
909 	cpri = ctd->td_priority;
910 
911 	/*
912 	 * If our priority is not better than the current priority there is
913 	 * nothing to do.
914 	 */
915 	if (pri > cpri)
916 		return;
917 	/*
918 	 * Always IPI idle.
919 	 */
920 	if (cpri > PRI_MIN_IDLE)
921 		goto sendipi;
922 	/*
923 	 * If we're realtime or better and there is timeshare or worse running
924 	 * send an IPI.
925 	 */
926 	if (pri < PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME)
927 		goto sendipi;
928 	/*
929 	 * Otherwise only IPI if we exceed the threshold.
930 	 */
931 	if (pri > preempt_thresh)
932 		return;
933 sendipi:
934 	ctd->td_flags |= TDF_NEEDRESCHED;
935 	ipi_selected(1 << cpu, IPI_PREEMPT);
936 }
937 
938 /*
939  * Steals load from a timeshare queue.  Honors the rotating queue head
940  * index.
941  */
942 static struct td_sched *
943 runq_steal_from(struct runq *rq, int cpu, u_char start)
944 {
945 	struct td_sched *ts;
946 	struct rqbits *rqb;
947 	struct rqhead *rqh;
948 	int first;
949 	int bit;
950 	int pri;
951 	int i;
952 
953 	rqb = &rq->rq_status;
954 	bit = start & (RQB_BPW -1);
955 	pri = 0;
956 	first = 0;
957 again:
958 	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
959 		if (rqb->rqb_bits[i] == 0)
960 			continue;
961 		if (bit != 0) {
962 			for (pri = bit; pri < RQB_BPW; pri++)
963 				if (rqb->rqb_bits[i] & (1ul << pri))
964 					break;
965 			if (pri >= RQB_BPW)
966 				continue;
967 		} else
968 			pri = RQB_FFS(rqb->rqb_bits[i]);
969 		pri += (i << RQB_L2BPW);
970 		rqh = &rq->rq_queues[pri];
971 		TAILQ_FOREACH(ts, rqh, ts_procq) {
972 			if (first && THREAD_CAN_MIGRATE(ts->ts_thread) &&
973 			    THREAD_CAN_SCHED(ts->ts_thread, cpu))
974 				return (ts);
975 			first = 1;
976 		}
977 	}
978 	if (start != 0) {
979 		start = 0;
980 		goto again;
981 	}
982 
983 	return (NULL);
984 }
985 
986 /*
987  * Steals load from a standard linear queue.
988  */
989 static struct td_sched *
990 runq_steal(struct runq *rq, int cpu)
991 {
992 	struct rqhead *rqh;
993 	struct rqbits *rqb;
994 	struct td_sched *ts;
995 	int word;
996 	int bit;
997 
998 	rqb = &rq->rq_status;
999 	for (word = 0; word < RQB_LEN; word++) {
1000 		if (rqb->rqb_bits[word] == 0)
1001 			continue;
1002 		for (bit = 0; bit < RQB_BPW; bit++) {
1003 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1004 				continue;
1005 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1006 			TAILQ_FOREACH(ts, rqh, ts_procq)
1007 				if (THREAD_CAN_MIGRATE(ts->ts_thread) &&
1008 				    THREAD_CAN_SCHED(ts->ts_thread, cpu))
1009 					return (ts);
1010 		}
1011 	}
1012 	return (NULL);
1013 }
1014 
1015 /*
1016  * Attempt to steal a thread in priority order from a thread queue.
1017  */
1018 static struct td_sched *
1019 tdq_steal(struct tdq *tdq, int cpu)
1020 {
1021 	struct td_sched *ts;
1022 
1023 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1024 	if ((ts = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1025 		return (ts);
1026 	if ((ts = runq_steal_from(&tdq->tdq_timeshare, cpu, tdq->tdq_ridx))
1027 	    != NULL)
1028 		return (ts);
1029 	return (runq_steal(&tdq->tdq_idle, cpu));
1030 }
1031 
1032 /*
1033  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1034  * current lock and returns with the assigned queue locked.
1035  */
1036 static inline struct tdq *
1037 sched_setcpu(struct td_sched *ts, int cpu, int flags)
1038 {
1039 	struct thread *td;
1040 	struct tdq *tdq;
1041 
1042 	THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
1043 
1044 	tdq = TDQ_CPU(cpu);
1045 	td = ts->ts_thread;
1046 	ts->ts_cpu = cpu;
1047 
1048 	/* If the lock matches just return the queue. */
1049 	if (td->td_lock == TDQ_LOCKPTR(tdq))
1050 		return (tdq);
1051 #ifdef notyet
1052 	/*
1053 	 * If the thread isn't running its lockptr is a
1054 	 * turnstile or a sleepqueue.  We can just lock_set without
1055 	 * blocking.
1056 	 */
1057 	if (TD_CAN_RUN(td)) {
1058 		TDQ_LOCK(tdq);
1059 		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1060 		return (tdq);
1061 	}
1062 #endif
1063 	/*
1064 	 * The hard case, migration, we need to block the thread first to
1065 	 * prevent order reversals with other cpus locks.
1066 	 */
1067 	thread_lock_block(td);
1068 	TDQ_LOCK(tdq);
1069 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1070 	return (tdq);
1071 }
1072 
1073 static int
1074 sched_pickcpu(struct td_sched *ts, int flags)
1075 {
1076 	struct cpu_group *cg;
1077 	struct thread *td;
1078 	struct tdq *tdq;
1079 	cpumask_t mask;
1080 	int self;
1081 	int pri;
1082 	int cpu;
1083 
1084 	self = PCPU_GET(cpuid);
1085 	td = ts->ts_thread;
1086 	if (smp_started == 0)
1087 		return (self);
1088 	/*
1089 	 * Don't migrate a running thread from sched_switch().
1090 	 */
1091 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1092 		return (ts->ts_cpu);
1093 	/*
1094 	 * Prefer to run interrupt threads on the processors that generate
1095 	 * the interrupt.
1096 	 */
1097 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1098 	    curthread->td_intr_nesting_level)
1099 		ts->ts_cpu = self;
1100 	/*
1101 	 * If the thread can run on the last cpu and the affinity has not
1102 	 * expired or it is idle run it there.
1103 	 */
1104 	pri = td->td_priority;
1105 	tdq = TDQ_CPU(ts->ts_cpu);
1106 	if (THREAD_CAN_SCHED(td, ts->ts_cpu)) {
1107 		if (tdq->tdq_lowpri > PRI_MIN_IDLE)
1108 			return (ts->ts_cpu);
1109 		if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri)
1110 			return (ts->ts_cpu);
1111 	}
1112 	/*
1113 	 * Search for the highest level in the tree that still has affinity.
1114 	 */
1115 	cg = NULL;
1116 	for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent)
1117 		if (SCHED_AFFINITY(ts, cg->cg_level))
1118 			break;
1119 	cpu = -1;
1120 	mask = td->td_cpuset->cs_mask.__bits[0];
1121 	if (cg)
1122 		cpu = sched_lowest(cg, mask, pri);
1123 	if (cpu == -1)
1124 		cpu = sched_lowest(cpu_top, mask, -1);
1125 	/*
1126 	 * Compare the lowest loaded cpu to current cpu.
1127 	 */
1128 	if (THREAD_CAN_SCHED(td, self) &&
1129 	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) {
1130 		if (tryself && TDQ_CPU(self)->tdq_lowpri > pri)
1131 			cpu = self;
1132 		else if (oldtryself && curthread->td_priority > pri)
1133 			cpu = self;
1134 	}
1135 	if (cpu == -1) {
1136 		panic("cpu == -1, mask 0x%X cpu top %p", mask, cpu_top);
1137 	}
1138 	return (cpu);
1139 }
1140 #endif
1141 
1142 /*
1143  * Pick the highest priority task we have and return it.
1144  */
1145 static struct td_sched *
1146 tdq_choose(struct tdq *tdq)
1147 {
1148 	struct td_sched *ts;
1149 
1150 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1151 	ts = runq_choose(&tdq->tdq_realtime);
1152 	if (ts != NULL)
1153 		return (ts);
1154 	ts = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1155 	if (ts != NULL) {
1156 		KASSERT(ts->ts_thread->td_priority >= PRI_MIN_TIMESHARE,
1157 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1158 		    ts->ts_thread->td_priority));
1159 		return (ts);
1160 	}
1161 
1162 	ts = runq_choose(&tdq->tdq_idle);
1163 	if (ts != NULL) {
1164 		KASSERT(ts->ts_thread->td_priority >= PRI_MIN_IDLE,
1165 		    ("tdq_choose: Invalid priority on idle queue %d",
1166 		    ts->ts_thread->td_priority));
1167 		return (ts);
1168 	}
1169 
1170 	return (NULL);
1171 }
1172 
1173 /*
1174  * Initialize a thread queue.
1175  */
1176 static void
1177 tdq_setup(struct tdq *tdq)
1178 {
1179 
1180 	if (bootverbose)
1181 		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1182 	runq_init(&tdq->tdq_realtime);
1183 	runq_init(&tdq->tdq_timeshare);
1184 	runq_init(&tdq->tdq_idle);
1185 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1186 	    "sched lock %d", (int)TDQ_ID(tdq));
1187 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1188 	    MTX_SPIN | MTX_RECURSE);
1189 }
1190 
1191 #ifdef SMP
1192 static void
1193 sched_setup_smp(void)
1194 {
1195 	struct tdq *tdq;
1196 	int i;
1197 
1198 	cpu_top = smp_topo();
1199 	for (i = 0; i < MAXCPU; i++) {
1200 		if (CPU_ABSENT(i))
1201 			continue;
1202 		tdq = TDQ_CPU(i);
1203 		tdq_setup(tdq);
1204 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1205 		if (tdq->tdq_cg == NULL)
1206 			panic("Can't find cpu group for %d\n", i);
1207 	}
1208 	balance_tdq = TDQ_SELF();
1209 	sched_balance();
1210 }
1211 #endif
1212 
1213 /*
1214  * Setup the thread queues and initialize the topology based on MD
1215  * information.
1216  */
1217 static void
1218 sched_setup(void *dummy)
1219 {
1220 	struct tdq *tdq;
1221 
1222 	tdq = TDQ_SELF();
1223 #ifdef SMP
1224 	sched_setup_smp();
1225 #else
1226 	tdq_setup(tdq);
1227 #endif
1228 	/*
1229 	 * To avoid divide-by-zero, we set realstathz a dummy value
1230 	 * in case which sched_clock() called before sched_initticks().
1231 	 */
1232 	realstathz = hz;
1233 	sched_slice = (realstathz/10);	/* ~100ms */
1234 	tickincr = 1 << SCHED_TICK_SHIFT;
1235 
1236 	/* Add thread0's load since it's running. */
1237 	TDQ_LOCK(tdq);
1238 	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1239 	tdq_load_add(tdq, &td_sched0);
1240 	tdq->tdq_lowpri = thread0.td_priority;
1241 	TDQ_UNLOCK(tdq);
1242 }
1243 
1244 /*
1245  * This routine determines the tickincr after stathz and hz are setup.
1246  */
1247 /* ARGSUSED */
1248 static void
1249 sched_initticks(void *dummy)
1250 {
1251 	int incr;
1252 
1253 	realstathz = stathz ? stathz : hz;
1254 	sched_slice = (realstathz/10);	/* ~100ms */
1255 
1256 	/*
1257 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1258 	 * hz not being evenly divisible by stathz on all platforms.
1259 	 */
1260 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1261 	/*
1262 	 * This does not work for values of stathz that are more than
1263 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1264 	 */
1265 	if (incr == 0)
1266 		incr = 1;
1267 	tickincr = incr;
1268 #ifdef SMP
1269 	/*
1270 	 * Set the default balance interval now that we know
1271 	 * what realstathz is.
1272 	 */
1273 	balance_interval = realstathz;
1274 	/*
1275 	 * Set steal thresh to log2(mp_ncpu) but no greater than 4.  This
1276 	 * prevents excess thrashing on large machines and excess idle on
1277 	 * smaller machines.
1278 	 */
1279 	steal_thresh = min(ffs(mp_ncpus) - 1, 3);
1280 	affinity = SCHED_AFFINITY_DEFAULT;
1281 #endif
1282 }
1283 
1284 
1285 /*
1286  * This is the core of the interactivity algorithm.  Determines a score based
1287  * on past behavior.  It is the ratio of sleep time to run time scaled to
1288  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1289  * differs from the cpu usage because it does not account for time spent
1290  * waiting on a run-queue.  Would be prettier if we had floating point.
1291  */
1292 static int
1293 sched_interact_score(struct thread *td)
1294 {
1295 	struct td_sched *ts;
1296 	int div;
1297 
1298 	ts = td->td_sched;
1299 	/*
1300 	 * The score is only needed if this is likely to be an interactive
1301 	 * task.  Don't go through the expense of computing it if there's
1302 	 * no chance.
1303 	 */
1304 	if (sched_interact <= SCHED_INTERACT_HALF &&
1305 		ts->ts_runtime >= ts->ts_slptime)
1306 			return (SCHED_INTERACT_HALF);
1307 
1308 	if (ts->ts_runtime > ts->ts_slptime) {
1309 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1310 		return (SCHED_INTERACT_HALF +
1311 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1312 	}
1313 	if (ts->ts_slptime > ts->ts_runtime) {
1314 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1315 		return (ts->ts_runtime / div);
1316 	}
1317 	/* runtime == slptime */
1318 	if (ts->ts_runtime)
1319 		return (SCHED_INTERACT_HALF);
1320 
1321 	/*
1322 	 * This can happen if slptime and runtime are 0.
1323 	 */
1324 	return (0);
1325 
1326 }
1327 
1328 /*
1329  * Scale the scheduling priority according to the "interactivity" of this
1330  * process.
1331  */
1332 static void
1333 sched_priority(struct thread *td)
1334 {
1335 	int score;
1336 	int pri;
1337 
1338 	if (td->td_pri_class != PRI_TIMESHARE)
1339 		return;
1340 	/*
1341 	 * If the score is interactive we place the thread in the realtime
1342 	 * queue with a priority that is less than kernel and interrupt
1343 	 * priorities.  These threads are not subject to nice restrictions.
1344 	 *
1345 	 * Scores greater than this are placed on the normal timeshare queue
1346 	 * where the priority is partially decided by the most recent cpu
1347 	 * utilization and the rest is decided by nice value.
1348 	 *
1349 	 * The nice value of the process has a linear effect on the calculated
1350 	 * score.  Negative nice values make it easier for a thread to be
1351 	 * considered interactive.
1352 	 */
1353 	score = imax(0, sched_interact_score(td) - td->td_proc->p_nice);
1354 	if (score < sched_interact) {
1355 		pri = PRI_MIN_REALTIME;
1356 		pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact)
1357 		    * score;
1358 		KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME,
1359 		    ("sched_priority: invalid interactive priority %d score %d",
1360 		    pri, score));
1361 	} else {
1362 		pri = SCHED_PRI_MIN;
1363 		if (td->td_sched->ts_ticks)
1364 			pri += SCHED_PRI_TICKS(td->td_sched);
1365 		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1366 		KASSERT(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE,
1367 		    ("sched_priority: invalid priority %d: nice %d, "
1368 		    "ticks %d ftick %d ltick %d tick pri %d",
1369 		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1370 		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1371 		    SCHED_PRI_TICKS(td->td_sched)));
1372 	}
1373 	sched_user_prio(td, pri);
1374 
1375 	return;
1376 }
1377 
1378 /*
1379  * This routine enforces a maximum limit on the amount of scheduling history
1380  * kept.  It is called after either the slptime or runtime is adjusted.  This
1381  * function is ugly due to integer math.
1382  */
1383 static void
1384 sched_interact_update(struct thread *td)
1385 {
1386 	struct td_sched *ts;
1387 	u_int sum;
1388 
1389 	ts = td->td_sched;
1390 	sum = ts->ts_runtime + ts->ts_slptime;
1391 	if (sum < SCHED_SLP_RUN_MAX)
1392 		return;
1393 	/*
1394 	 * This only happens from two places:
1395 	 * 1) We have added an unusual amount of run time from fork_exit.
1396 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1397 	 */
1398 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1399 		if (ts->ts_runtime > ts->ts_slptime) {
1400 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1401 			ts->ts_slptime = 1;
1402 		} else {
1403 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1404 			ts->ts_runtime = 1;
1405 		}
1406 		return;
1407 	}
1408 	/*
1409 	 * If we have exceeded by more than 1/5th then the algorithm below
1410 	 * will not bring us back into range.  Dividing by two here forces
1411 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1412 	 */
1413 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1414 		ts->ts_runtime /= 2;
1415 		ts->ts_slptime /= 2;
1416 		return;
1417 	}
1418 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1419 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1420 }
1421 
1422 /*
1423  * Scale back the interactivity history when a child thread is created.  The
1424  * history is inherited from the parent but the thread may behave totally
1425  * differently.  For example, a shell spawning a compiler process.  We want
1426  * to learn that the compiler is behaving badly very quickly.
1427  */
1428 static void
1429 sched_interact_fork(struct thread *td)
1430 {
1431 	int ratio;
1432 	int sum;
1433 
1434 	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1435 	if (sum > SCHED_SLP_RUN_FORK) {
1436 		ratio = sum / SCHED_SLP_RUN_FORK;
1437 		td->td_sched->ts_runtime /= ratio;
1438 		td->td_sched->ts_slptime /= ratio;
1439 	}
1440 }
1441 
1442 /*
1443  * Called from proc0_init() to setup the scheduler fields.
1444  */
1445 void
1446 schedinit(void)
1447 {
1448 
1449 	/*
1450 	 * Set up the scheduler specific parts of proc0.
1451 	 */
1452 	proc0.p_sched = NULL; /* XXX */
1453 	thread0.td_sched = &td_sched0;
1454 	td_sched0.ts_ltick = ticks;
1455 	td_sched0.ts_ftick = ticks;
1456 	td_sched0.ts_thread = &thread0;
1457 }
1458 
1459 /*
1460  * This is only somewhat accurate since given many processes of the same
1461  * priority they will switch when their slices run out, which will be
1462  * at most sched_slice stathz ticks.
1463  */
1464 int
1465 sched_rr_interval(void)
1466 {
1467 
1468 	/* Convert sched_slice to hz */
1469 	return (hz/(realstathz/sched_slice));
1470 }
1471 
1472 /*
1473  * Update the percent cpu tracking information when it is requested or
1474  * the total history exceeds the maximum.  We keep a sliding history of
1475  * tick counts that slowly decays.  This is less precise than the 4BSD
1476  * mechanism since it happens with less regular and frequent events.
1477  */
1478 static void
1479 sched_pctcpu_update(struct td_sched *ts)
1480 {
1481 
1482 	if (ts->ts_ticks == 0)
1483 		return;
1484 	if (ticks - (hz / 10) < ts->ts_ltick &&
1485 	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
1486 		return;
1487 	/*
1488 	 * Adjust counters and watermark for pctcpu calc.
1489 	 */
1490 	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
1491 		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
1492 			    SCHED_TICK_TARG;
1493 	else
1494 		ts->ts_ticks = 0;
1495 	ts->ts_ltick = ticks;
1496 	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
1497 }
1498 
1499 /*
1500  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1501  * if necessary.  This is the back-end for several priority related
1502  * functions.
1503  */
1504 static void
1505 sched_thread_priority(struct thread *td, u_char prio)
1506 {
1507 	struct td_sched *ts;
1508 
1509 	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
1510 	    td, td->td_name, td->td_priority, prio, curthread,
1511 	    curthread->td_name);
1512 	ts = td->td_sched;
1513 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1514 	if (td->td_priority == prio)
1515 		return;
1516 
1517 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1518 		/*
1519 		 * If the priority has been elevated due to priority
1520 		 * propagation, we may have to move ourselves to a new
1521 		 * queue.  This could be optimized to not re-add in some
1522 		 * cases.
1523 		 */
1524 		sched_rem(td);
1525 		td->td_priority = prio;
1526 		sched_add(td, SRQ_BORROWING);
1527 	} else if (TD_IS_RUNNING(td)) {
1528 		struct tdq *tdq;
1529 		int oldpri;
1530 
1531 		tdq = TDQ_CPU(ts->ts_cpu);
1532 		oldpri = td->td_priority;
1533 		td->td_priority = prio;
1534 		if (prio < tdq->tdq_lowpri)
1535 			tdq->tdq_lowpri = prio;
1536 		else if (tdq->tdq_lowpri == oldpri)
1537 			tdq_setlowpri(tdq, td);
1538 	} else
1539 		td->td_priority = prio;
1540 }
1541 
1542 /*
1543  * Update a thread's priority when it is lent another thread's
1544  * priority.
1545  */
1546 void
1547 sched_lend_prio(struct thread *td, u_char prio)
1548 {
1549 
1550 	td->td_flags |= TDF_BORROWING;
1551 	sched_thread_priority(td, prio);
1552 }
1553 
1554 /*
1555  * Restore a thread's priority when priority propagation is
1556  * over.  The prio argument is the minimum priority the thread
1557  * needs to have to satisfy other possible priority lending
1558  * requests.  If the thread's regular priority is less
1559  * important than prio, the thread will keep a priority boost
1560  * of prio.
1561  */
1562 void
1563 sched_unlend_prio(struct thread *td, u_char prio)
1564 {
1565 	u_char base_pri;
1566 
1567 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1568 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1569 		base_pri = td->td_user_pri;
1570 	else
1571 		base_pri = td->td_base_pri;
1572 	if (prio >= base_pri) {
1573 		td->td_flags &= ~TDF_BORROWING;
1574 		sched_thread_priority(td, base_pri);
1575 	} else
1576 		sched_lend_prio(td, prio);
1577 }
1578 
1579 /*
1580  * Standard entry for setting the priority to an absolute value.
1581  */
1582 void
1583 sched_prio(struct thread *td, u_char prio)
1584 {
1585 	u_char oldprio;
1586 
1587 	/* First, update the base priority. */
1588 	td->td_base_pri = prio;
1589 
1590 	/*
1591 	 * If the thread is borrowing another thread's priority, don't
1592 	 * ever lower the priority.
1593 	 */
1594 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1595 		return;
1596 
1597 	/* Change the real priority. */
1598 	oldprio = td->td_priority;
1599 	sched_thread_priority(td, prio);
1600 
1601 	/*
1602 	 * If the thread is on a turnstile, then let the turnstile update
1603 	 * its state.
1604 	 */
1605 	if (TD_ON_LOCK(td) && oldprio != prio)
1606 		turnstile_adjust(td, oldprio);
1607 }
1608 
1609 /*
1610  * Set the base user priority, does not effect current running priority.
1611  */
1612 void
1613 sched_user_prio(struct thread *td, u_char prio)
1614 {
1615 	u_char oldprio;
1616 
1617 	td->td_base_user_pri = prio;
1618 	if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
1619                 return;
1620 	oldprio = td->td_user_pri;
1621 	td->td_user_pri = prio;
1622 }
1623 
1624 void
1625 sched_lend_user_prio(struct thread *td, u_char prio)
1626 {
1627 	u_char oldprio;
1628 
1629 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1630 	td->td_flags |= TDF_UBORROWING;
1631 	oldprio = td->td_user_pri;
1632 	td->td_user_pri = prio;
1633 }
1634 
1635 void
1636 sched_unlend_user_prio(struct thread *td, u_char prio)
1637 {
1638 	u_char base_pri;
1639 
1640 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1641 	base_pri = td->td_base_user_pri;
1642 	if (prio >= base_pri) {
1643 		td->td_flags &= ~TDF_UBORROWING;
1644 		sched_user_prio(td, base_pri);
1645 	} else {
1646 		sched_lend_user_prio(td, prio);
1647 	}
1648 }
1649 
1650 /*
1651  * Add the thread passed as 'newtd' to the run queue before selecting
1652  * the next thread to run.  This is only used for KSE.
1653  */
1654 static void
1655 sched_switchin(struct tdq *tdq, struct thread *td)
1656 {
1657 #ifdef SMP
1658 	spinlock_enter();
1659 	TDQ_UNLOCK(tdq);
1660 	thread_lock(td);
1661 	spinlock_exit();
1662 	sched_setcpu(td->td_sched, TDQ_ID(tdq), SRQ_YIELDING);
1663 #else
1664 	td->td_lock = TDQ_LOCKPTR(tdq);
1665 #endif
1666 	tdq_add(tdq, td, SRQ_YIELDING);
1667 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1668 }
1669 
1670 /*
1671  * Block a thread for switching.  Similar to thread_block() but does not
1672  * bump the spin count.
1673  */
1674 static inline struct mtx *
1675 thread_block_switch(struct thread *td)
1676 {
1677 	struct mtx *lock;
1678 
1679 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1680 	lock = td->td_lock;
1681 	td->td_lock = &blocked_lock;
1682 	mtx_unlock_spin(lock);
1683 
1684 	return (lock);
1685 }
1686 
1687 /*
1688  * Handle migration from sched_switch().  This happens only for
1689  * cpu binding.
1690  */
1691 static struct mtx *
1692 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1693 {
1694 	struct tdq *tdn;
1695 
1696 	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1697 #ifdef SMP
1698 	/*
1699 	 * Do the lock dance required to avoid LOR.  We grab an extra
1700 	 * spinlock nesting to prevent preemption while we're
1701 	 * not holding either run-queue lock.
1702 	 */
1703 	spinlock_enter();
1704 	thread_block_switch(td);	/* This releases the lock on tdq. */
1705 	TDQ_LOCK(tdn);
1706 	tdq_add(tdn, td, flags);
1707 	tdq_notify(td->td_sched);
1708 	/*
1709 	 * After we unlock tdn the new cpu still can't switch into this
1710 	 * thread until we've unblocked it in cpu_switch().  The lock
1711 	 * pointers may match in the case of HTT cores.  Don't unlock here
1712 	 * or we can deadlock when the other CPU runs the IPI handler.
1713 	 */
1714 	if (TDQ_LOCKPTR(tdn) != TDQ_LOCKPTR(tdq)) {
1715 		TDQ_UNLOCK(tdn);
1716 		TDQ_LOCK(tdq);
1717 	}
1718 	spinlock_exit();
1719 #endif
1720 	return (TDQ_LOCKPTR(tdn));
1721 }
1722 
1723 /*
1724  * Release a thread that was blocked with thread_block_switch().
1725  */
1726 static inline void
1727 thread_unblock_switch(struct thread *td, struct mtx *mtx)
1728 {
1729 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1730 	    (uintptr_t)mtx);
1731 }
1732 
1733 /*
1734  * Switch threads.  This function has to handle threads coming in while
1735  * blocked for some reason, running, or idle.  It also must deal with
1736  * migrating a thread from one queue to another as running threads may
1737  * be assigned elsewhere via binding.
1738  */
1739 void
1740 sched_switch(struct thread *td, struct thread *newtd, int flags)
1741 {
1742 	struct tdq *tdq;
1743 	struct td_sched *ts;
1744 	struct mtx *mtx;
1745 	int srqflag;
1746 	int cpuid;
1747 
1748 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1749 
1750 	cpuid = PCPU_GET(cpuid);
1751 	tdq = TDQ_CPU(cpuid);
1752 	ts = td->td_sched;
1753 	mtx = td->td_lock;
1754 	ts->ts_rltick = ticks;
1755 	td->td_lastcpu = td->td_oncpu;
1756 	td->td_oncpu = NOCPU;
1757 	td->td_flags &= ~TDF_NEEDRESCHED;
1758 	td->td_owepreempt = 0;
1759 	/*
1760 	 * The lock pointer in an idle thread should never change.  Reset it
1761 	 * to CAN_RUN as well.
1762 	 */
1763 	if (TD_IS_IDLETHREAD(td)) {
1764 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1765 		TD_SET_CAN_RUN(td);
1766 	} else if (TD_IS_RUNNING(td)) {
1767 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1768 		tdq_load_rem(tdq, ts);
1769 		srqflag = (flags & SW_PREEMPT) ?
1770 		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1771 		    SRQ_OURSELF|SRQ_YIELDING;
1772 		if (ts->ts_cpu == cpuid)
1773 			tdq_add(tdq, td, srqflag);
1774 		else
1775 			mtx = sched_switch_migrate(tdq, td, srqflag);
1776 	} else {
1777 		/* This thread must be going to sleep. */
1778 		TDQ_LOCK(tdq);
1779 		mtx = thread_block_switch(td);
1780 		tdq_load_rem(tdq, ts);
1781 	}
1782 	/*
1783 	 * We enter here with the thread blocked and assigned to the
1784 	 * appropriate cpu run-queue or sleep-queue and with the current
1785 	 * thread-queue locked.
1786 	 */
1787 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1788 	/*
1789 	 * If KSE assigned a new thread just add it here and let choosethread
1790 	 * select the best one.
1791 	 */
1792 	if (newtd != NULL)
1793 		sched_switchin(tdq, newtd);
1794 	newtd = choosethread();
1795 	/*
1796 	 * Call the MD code to switch contexts if necessary.
1797 	 */
1798 	if (td != newtd) {
1799 #ifdef	HWPMC_HOOKS
1800 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1801 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1802 #endif
1803 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1804 		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1805 		cpu_switch(td, newtd, mtx);
1806 		/*
1807 		 * We may return from cpu_switch on a different cpu.  However,
1808 		 * we always return with td_lock pointing to the current cpu's
1809 		 * run queue lock.
1810 		 */
1811 		cpuid = PCPU_GET(cpuid);
1812 		tdq = TDQ_CPU(cpuid);
1813 		lock_profile_obtain_lock_success(
1814 		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1815 #ifdef	HWPMC_HOOKS
1816 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1817 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1818 #endif
1819 	} else
1820 		thread_unblock_switch(td, mtx);
1821 	/*
1822 	 * We should always get here with the lowest priority td possible.
1823 	 */
1824 	tdq->tdq_lowpri = td->td_priority;
1825 	/*
1826 	 * Assert that all went well and return.
1827 	 */
1828 	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1829 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1830 	td->td_oncpu = cpuid;
1831 }
1832 
1833 /*
1834  * Adjust thread priorities as a result of a nice request.
1835  */
1836 void
1837 sched_nice(struct proc *p, int nice)
1838 {
1839 	struct thread *td;
1840 
1841 	PROC_LOCK_ASSERT(p, MA_OWNED);
1842 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1843 
1844 	p->p_nice = nice;
1845 	FOREACH_THREAD_IN_PROC(p, td) {
1846 		thread_lock(td);
1847 		sched_priority(td);
1848 		sched_prio(td, td->td_base_user_pri);
1849 		thread_unlock(td);
1850 	}
1851 }
1852 
1853 /*
1854  * Record the sleep time for the interactivity scorer.
1855  */
1856 void
1857 sched_sleep(struct thread *td)
1858 {
1859 
1860 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1861 
1862 	td->td_slptick = ticks;
1863 }
1864 
1865 /*
1866  * Schedule a thread to resume execution and record how long it voluntarily
1867  * slept.  We also update the pctcpu, interactivity, and priority.
1868  */
1869 void
1870 sched_wakeup(struct thread *td)
1871 {
1872 	struct td_sched *ts;
1873 	int slptick;
1874 
1875 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1876 	ts = td->td_sched;
1877 	/*
1878 	 * If we slept for more than a tick update our interactivity and
1879 	 * priority.
1880 	 */
1881 	slptick = td->td_slptick;
1882 	td->td_slptick = 0;
1883 	if (slptick && slptick != ticks) {
1884 		u_int hzticks;
1885 
1886 		hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
1887 		ts->ts_slptime += hzticks;
1888 		sched_interact_update(td);
1889 		sched_pctcpu_update(ts);
1890 		sched_priority(td);
1891 	}
1892 	/* Reset the slice value after we sleep. */
1893 	ts->ts_slice = sched_slice;
1894 	sched_add(td, SRQ_BORING);
1895 }
1896 
1897 /*
1898  * Penalize the parent for creating a new child and initialize the child's
1899  * priority.
1900  */
1901 void
1902 sched_fork(struct thread *td, struct thread *child)
1903 {
1904 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1905 	sched_fork_thread(td, child);
1906 	/*
1907 	 * Penalize the parent and child for forking.
1908 	 */
1909 	sched_interact_fork(child);
1910 	sched_priority(child);
1911 	td->td_sched->ts_runtime += tickincr;
1912 	sched_interact_update(td);
1913 	sched_priority(td);
1914 }
1915 
1916 /*
1917  * Fork a new thread, may be within the same process.
1918  */
1919 void
1920 sched_fork_thread(struct thread *td, struct thread *child)
1921 {
1922 	struct td_sched *ts;
1923 	struct td_sched *ts2;
1924 
1925 	/*
1926 	 * Initialize child.
1927 	 */
1928 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1929 	sched_newthread(child);
1930 	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1931 	child->td_cpuset = cpuset_ref(td->td_cpuset);
1932 	ts = td->td_sched;
1933 	ts2 = child->td_sched;
1934 	ts2->ts_cpu = ts->ts_cpu;
1935 	ts2->ts_runq = NULL;
1936 	/*
1937 	 * Grab our parents cpu estimation information and priority.
1938 	 */
1939 	ts2->ts_ticks = ts->ts_ticks;
1940 	ts2->ts_ltick = ts->ts_ltick;
1941 	ts2->ts_ftick = ts->ts_ftick;
1942 	child->td_user_pri = td->td_user_pri;
1943 	child->td_base_user_pri = td->td_base_user_pri;
1944 	/*
1945 	 * And update interactivity score.
1946 	 */
1947 	ts2->ts_slptime = ts->ts_slptime;
1948 	ts2->ts_runtime = ts->ts_runtime;
1949 	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
1950 }
1951 
1952 /*
1953  * Adjust the priority class of a thread.
1954  */
1955 void
1956 sched_class(struct thread *td, int class)
1957 {
1958 
1959 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1960 	if (td->td_pri_class == class)
1961 		return;
1962 	/*
1963 	 * On SMP if we're on the RUNQ we must adjust the transferable
1964 	 * count because could be changing to or from an interrupt
1965 	 * class.
1966 	 */
1967 	if (TD_ON_RUNQ(td)) {
1968 		struct tdq *tdq;
1969 
1970 		tdq = TDQ_CPU(td->td_sched->ts_cpu);
1971 		if (THREAD_CAN_MIGRATE(td))
1972 			tdq->tdq_transferable--;
1973 		td->td_pri_class = class;
1974 		if (THREAD_CAN_MIGRATE(td))
1975 			tdq->tdq_transferable++;
1976 	}
1977 	td->td_pri_class = class;
1978 }
1979 
1980 /*
1981  * Return some of the child's priority and interactivity to the parent.
1982  */
1983 void
1984 sched_exit(struct proc *p, struct thread *child)
1985 {
1986 	struct thread *td;
1987 
1988 	CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
1989 	    child, child->td_name, child->td_priority);
1990 
1991 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1992 	td = FIRST_THREAD_IN_PROC(p);
1993 	sched_exit_thread(td, child);
1994 }
1995 
1996 /*
1997  * Penalize another thread for the time spent on this one.  This helps to
1998  * worsen the priority and interactivity of processes which schedule batch
1999  * jobs such as make.  This has little effect on the make process itself but
2000  * causes new processes spawned by it to receive worse scores immediately.
2001  */
2002 void
2003 sched_exit_thread(struct thread *td, struct thread *child)
2004 {
2005 
2006 	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
2007 	    child, child->td_name, child->td_priority);
2008 
2009 #ifdef KSE
2010 	/*
2011 	 * KSE forks and exits so often that this penalty causes short-lived
2012 	 * threads to always be non-interactive.  This causes mozilla to
2013 	 * crawl under load.
2014 	 */
2015 	if ((td->td_pflags & TDP_SA) && td->td_proc == child->td_proc)
2016 		return;
2017 #endif
2018 	/*
2019 	 * Give the child's runtime to the parent without returning the
2020 	 * sleep time as a penalty to the parent.  This causes shells that
2021 	 * launch expensive things to mark their children as expensive.
2022 	 */
2023 	thread_lock(td);
2024 	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2025 	sched_interact_update(td);
2026 	sched_priority(td);
2027 	thread_unlock(td);
2028 }
2029 
2030 /*
2031  * Fix priorities on return to user-space.  Priorities may be elevated due
2032  * to static priorities in msleep() or similar.
2033  */
2034 void
2035 sched_userret(struct thread *td)
2036 {
2037 	/*
2038 	 * XXX we cheat slightly on the locking here to avoid locking in
2039 	 * the usual case.  Setting td_priority here is essentially an
2040 	 * incomplete workaround for not setting it properly elsewhere.
2041 	 * Now that some interrupt handlers are threads, not setting it
2042 	 * properly elsewhere can clobber it in the window between setting
2043 	 * it here and returning to user mode, so don't waste time setting
2044 	 * it perfectly here.
2045 	 */
2046 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2047 	    ("thread with borrowed priority returning to userland"));
2048 	if (td->td_priority != td->td_user_pri) {
2049 		thread_lock(td);
2050 		td->td_priority = td->td_user_pri;
2051 		td->td_base_pri = td->td_user_pri;
2052 		if (lowpri_userret)
2053 			tdq_setlowpri(TDQ_SELF(), td);
2054 		thread_unlock(td);
2055         }
2056 }
2057 
2058 /*
2059  * Handle a stathz tick.  This is really only relevant for timeshare
2060  * threads.
2061  */
2062 void
2063 sched_clock(struct thread *td)
2064 {
2065 	struct tdq *tdq;
2066 	struct td_sched *ts;
2067 
2068 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2069 	tdq = TDQ_SELF();
2070 #ifdef SMP
2071 	/*
2072 	 * We run the long term load balancer infrequently on the first cpu.
2073 	 */
2074 	if (balance_tdq == tdq) {
2075 		if (balance_ticks && --balance_ticks == 0)
2076 			sched_balance();
2077 	}
2078 #endif
2079 	/*
2080 	 * Advance the insert index once for each tick to ensure that all
2081 	 * threads get a chance to run.
2082 	 */
2083 	if (tdq->tdq_idx == tdq->tdq_ridx) {
2084 		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2085 		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2086 			tdq->tdq_ridx = tdq->tdq_idx;
2087 	}
2088 	ts = td->td_sched;
2089 	if (td->td_pri_class & PRI_FIFO_BIT)
2090 		return;
2091 	if (td->td_pri_class == PRI_TIMESHARE) {
2092 		/*
2093 		 * We used a tick; charge it to the thread so
2094 		 * that we can compute our interactivity.
2095 		 */
2096 		td->td_sched->ts_runtime += tickincr;
2097 		sched_interact_update(td);
2098 	}
2099 	/*
2100 	 * We used up one time slice.
2101 	 */
2102 	if (--ts->ts_slice > 0)
2103 		return;
2104 	/*
2105 	 * We're out of time, recompute priorities and requeue.
2106 	 */
2107 	sched_priority(td);
2108 	td->td_flags |= TDF_NEEDRESCHED;
2109 }
2110 
2111 /*
2112  * Called once per hz tick.  Used for cpu utilization information.  This
2113  * is easier than trying to scale based on stathz.
2114  */
2115 void
2116 sched_tick(void)
2117 {
2118 	struct td_sched *ts;
2119 
2120 	ts = curthread->td_sched;
2121 	/* Adjust ticks for pctcpu */
2122 	ts->ts_ticks += 1 << SCHED_TICK_SHIFT;
2123 	ts->ts_ltick = ticks;
2124 	/*
2125 	 * Update if we've exceeded our desired tick threshhold by over one
2126 	 * second.
2127 	 */
2128 	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
2129 		sched_pctcpu_update(ts);
2130 }
2131 
2132 /*
2133  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2134  * cooperative idle threads.
2135  */
2136 int
2137 sched_runnable(void)
2138 {
2139 	struct tdq *tdq;
2140 	int load;
2141 
2142 	load = 1;
2143 
2144 	tdq = TDQ_SELF();
2145 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2146 		if (tdq->tdq_load > 0)
2147 			goto out;
2148 	} else
2149 		if (tdq->tdq_load - 1 > 0)
2150 			goto out;
2151 	load = 0;
2152 out:
2153 	return (load);
2154 }
2155 
2156 /*
2157  * Choose the highest priority thread to run.  The thread is removed from
2158  * the run-queue while running however the load remains.  For SMP we set
2159  * the tdq in the global idle bitmask if it idles here.
2160  */
2161 struct thread *
2162 sched_choose(void)
2163 {
2164 	struct td_sched *ts;
2165 	struct tdq *tdq;
2166 
2167 	tdq = TDQ_SELF();
2168 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2169 	ts = tdq_choose(tdq);
2170 	if (ts) {
2171 		tdq_runq_rem(tdq, ts);
2172 		return (ts->ts_thread);
2173 	}
2174 	return (PCPU_GET(idlethread));
2175 }
2176 
2177 /*
2178  * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2179  * we always request it once we exit a critical section.
2180  */
2181 static inline void
2182 sched_setpreempt(struct thread *td)
2183 {
2184 	struct thread *ctd;
2185 	int cpri;
2186 	int pri;
2187 
2188 	ctd = curthread;
2189 	pri = td->td_priority;
2190 	cpri = ctd->td_priority;
2191 	if (td->td_priority < cpri)
2192 		curthread->td_flags |= TDF_NEEDRESCHED;
2193 	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2194 		return;
2195 	/*
2196 	 * Always preempt IDLE threads.  Otherwise only if the preempting
2197 	 * thread is an ithread.
2198 	 */
2199 	if (pri > preempt_thresh && cpri < PRI_MIN_IDLE)
2200 		return;
2201 	ctd->td_owepreempt = 1;
2202 	return;
2203 }
2204 
2205 /*
2206  * Add a thread to a thread queue.  Initializes priority, slice, runq, and
2207  * add it to the appropriate queue.  This is the internal function called
2208  * when the tdq is predetermined.
2209  */
2210 void
2211 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2212 {
2213 	struct td_sched *ts;
2214 	int class;
2215 
2216 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2217 	KASSERT((td->td_inhibitors == 0),
2218 	    ("sched_add: trying to run inhibited thread"));
2219 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2220 	    ("sched_add: bad thread state"));
2221 	KASSERT(td->td_flags & TDF_INMEM,
2222 	    ("sched_add: thread swapped out"));
2223 
2224 	ts = td->td_sched;
2225 	class = PRI_BASE(td->td_pri_class);
2226         TD_SET_RUNQ(td);
2227 	if (ts->ts_slice == 0)
2228 		ts->ts_slice = sched_slice;
2229 	/*
2230 	 * Pick the run queue based on priority.
2231 	 */
2232 	if (td->td_priority <= PRI_MAX_REALTIME)
2233 		ts->ts_runq = &tdq->tdq_realtime;
2234 	else if (td->td_priority <= PRI_MAX_TIMESHARE)
2235 		ts->ts_runq = &tdq->tdq_timeshare;
2236 	else
2237 		ts->ts_runq = &tdq->tdq_idle;
2238 	if (td->td_priority < tdq->tdq_lowpri)
2239 		tdq->tdq_lowpri = td->td_priority;
2240 	tdq_runq_add(tdq, ts, flags);
2241 	tdq_load_add(tdq, ts);
2242 }
2243 
2244 /*
2245  * Select the target thread queue and add a thread to it.  Request
2246  * preemption or IPI a remote processor if required.
2247  */
2248 void
2249 sched_add(struct thread *td, int flags)
2250 {
2251 	struct td_sched *ts;
2252 	struct tdq *tdq;
2253 #ifdef SMP
2254 	int cpuid;
2255 	int cpu;
2256 #endif
2257 	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
2258 	    td, td->td_name, td->td_priority, curthread,
2259 	    curthread->td_name);
2260 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2261 	ts = td->td_sched;
2262 	/*
2263 	 * Recalculate the priority before we select the target cpu or
2264 	 * run-queue.
2265 	 */
2266 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2267 		sched_priority(td);
2268 #ifdef SMP
2269 	cpuid = PCPU_GET(cpuid);
2270 	/*
2271 	 * Pick the destination cpu and if it isn't ours transfer to the
2272 	 * target cpu.
2273 	 */
2274 	cpu = sched_pickcpu(ts, flags);
2275 	tdq = sched_setcpu(ts, cpu, flags);
2276 	tdq_add(tdq, td, flags);
2277 	if (cpu != cpuid) {
2278 		tdq_notify(ts);
2279 		return;
2280 	}
2281 #else
2282 	tdq = TDQ_SELF();
2283 	TDQ_LOCK(tdq);
2284 	/*
2285 	 * Now that the thread is moving to the run-queue, set the lock
2286 	 * to the scheduler's lock.
2287 	 */
2288 	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2289 	tdq_add(tdq, td, flags);
2290 #endif
2291 	if (!(flags & SRQ_YIELDING))
2292 		sched_setpreempt(td);
2293 }
2294 
2295 /*
2296  * Remove a thread from a run-queue without running it.  This is used
2297  * when we're stealing a thread from a remote queue.  Otherwise all threads
2298  * exit by calling sched_exit_thread() and sched_throw() themselves.
2299  */
2300 void
2301 sched_rem(struct thread *td)
2302 {
2303 	struct tdq *tdq;
2304 	struct td_sched *ts;
2305 
2306 	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
2307 	    td, td->td_name, td->td_priority, curthread,
2308 	    curthread->td_name);
2309 	ts = td->td_sched;
2310 	tdq = TDQ_CPU(ts->ts_cpu);
2311 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2312 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2313 	KASSERT(TD_ON_RUNQ(td),
2314 	    ("sched_rem: thread not on run queue"));
2315 	tdq_runq_rem(tdq, ts);
2316 	tdq_load_rem(tdq, ts);
2317 	TD_SET_CAN_RUN(td);
2318 	if (td->td_priority == tdq->tdq_lowpri)
2319 		tdq_setlowpri(tdq, NULL);
2320 }
2321 
2322 /*
2323  * Fetch cpu utilization information.  Updates on demand.
2324  */
2325 fixpt_t
2326 sched_pctcpu(struct thread *td)
2327 {
2328 	fixpt_t pctcpu;
2329 	struct td_sched *ts;
2330 
2331 	pctcpu = 0;
2332 	ts = td->td_sched;
2333 	if (ts == NULL)
2334 		return (0);
2335 
2336 	thread_lock(td);
2337 	if (ts->ts_ticks) {
2338 		int rtick;
2339 
2340 		sched_pctcpu_update(ts);
2341 		/* How many rtick per second ? */
2342 		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2343 		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2344 	}
2345 	thread_unlock(td);
2346 
2347 	return (pctcpu);
2348 }
2349 
2350 /*
2351  * Enforce affinity settings for a thread.  Called after adjustments to
2352  * cpumask.
2353  */
2354 void
2355 sched_affinity(struct thread *td)
2356 {
2357 #ifdef SMP
2358 	struct td_sched *ts;
2359 	int cpu;
2360 
2361 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2362 	ts = td->td_sched;
2363 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2364 		return;
2365 	if (!TD_IS_RUNNING(td))
2366 		return;
2367 	td->td_flags |= TDF_NEEDRESCHED;
2368 	if (!THREAD_CAN_MIGRATE(td))
2369 		return;
2370 	/*
2371 	 * Assign the new cpu and force a switch before returning to
2372 	 * userspace.  If the target thread is not running locally send
2373 	 * an ipi to force the issue.
2374 	 */
2375 	cpu = ts->ts_cpu;
2376 	ts->ts_cpu = sched_pickcpu(ts, 0);
2377 	if (cpu != PCPU_GET(cpuid))
2378 		ipi_selected(1 << cpu, IPI_PREEMPT);
2379 #endif
2380 }
2381 
2382 /*
2383  * Bind a thread to a target cpu.
2384  */
2385 void
2386 sched_bind(struct thread *td, int cpu)
2387 {
2388 	struct td_sched *ts;
2389 
2390 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2391 	ts = td->td_sched;
2392 	if (ts->ts_flags & TSF_BOUND)
2393 		sched_unbind(td);
2394 	ts->ts_flags |= TSF_BOUND;
2395 	sched_pin();
2396 	if (PCPU_GET(cpuid) == cpu)
2397 		return;
2398 	ts->ts_cpu = cpu;
2399 	/* When we return from mi_switch we'll be on the correct cpu. */
2400 	mi_switch(SW_VOL, NULL);
2401 }
2402 
2403 /*
2404  * Release a bound thread.
2405  */
2406 void
2407 sched_unbind(struct thread *td)
2408 {
2409 	struct td_sched *ts;
2410 
2411 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2412 	ts = td->td_sched;
2413 	if ((ts->ts_flags & TSF_BOUND) == 0)
2414 		return;
2415 	ts->ts_flags &= ~TSF_BOUND;
2416 	sched_unpin();
2417 }
2418 
2419 int
2420 sched_is_bound(struct thread *td)
2421 {
2422 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2423 	return (td->td_sched->ts_flags & TSF_BOUND);
2424 }
2425 
2426 /*
2427  * Basic yield call.
2428  */
2429 void
2430 sched_relinquish(struct thread *td)
2431 {
2432 	thread_lock(td);
2433 	SCHED_STAT_INC(switch_relinquish);
2434 	mi_switch(SW_VOL, NULL);
2435 	thread_unlock(td);
2436 }
2437 
2438 /*
2439  * Return the total system load.
2440  */
2441 int
2442 sched_load(void)
2443 {
2444 #ifdef SMP
2445 	int total;
2446 	int i;
2447 
2448 	total = 0;
2449 	for (i = 0; i <= mp_maxid; i++)
2450 		total += TDQ_CPU(i)->tdq_sysload;
2451 	return (total);
2452 #else
2453 	return (TDQ_SELF()->tdq_sysload);
2454 #endif
2455 }
2456 
2457 int
2458 sched_sizeof_proc(void)
2459 {
2460 	return (sizeof(struct proc));
2461 }
2462 
2463 int
2464 sched_sizeof_thread(void)
2465 {
2466 	return (sizeof(struct thread) + sizeof(struct td_sched));
2467 }
2468 
2469 /*
2470  * The actual idle process.
2471  */
2472 void
2473 sched_idletd(void *dummy)
2474 {
2475 	struct thread *td;
2476 	struct tdq *tdq;
2477 
2478 	td = curthread;
2479 	tdq = TDQ_SELF();
2480 	mtx_assert(&Giant, MA_NOTOWNED);
2481 	/* ULE relies on preemption for idle interruption. */
2482 	for (;;) {
2483 #ifdef SMP
2484 		if (tdq_idled(tdq))
2485 			cpu_idle();
2486 #else
2487 		cpu_idle();
2488 #endif
2489 	}
2490 }
2491 
2492 /*
2493  * A CPU is entering for the first time or a thread is exiting.
2494  */
2495 void
2496 sched_throw(struct thread *td)
2497 {
2498 	struct thread *newtd;
2499 	struct tdq *tdq;
2500 
2501 	tdq = TDQ_SELF();
2502 	if (td == NULL) {
2503 		/* Correct spinlock nesting and acquire the correct lock. */
2504 		TDQ_LOCK(tdq);
2505 		spinlock_exit();
2506 	} else {
2507 		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2508 		tdq_load_rem(tdq, td->td_sched);
2509 		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2510 	}
2511 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2512 	newtd = choosethread();
2513 	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2514 	PCPU_SET(switchtime, cpu_ticks());
2515 	PCPU_SET(switchticks, ticks);
2516 	cpu_throw(td, newtd);		/* doesn't return */
2517 }
2518 
2519 /*
2520  * This is called from fork_exit().  Just acquire the correct locks and
2521  * let fork do the rest of the work.
2522  */
2523 void
2524 sched_fork_exit(struct thread *td)
2525 {
2526 	struct td_sched *ts;
2527 	struct tdq *tdq;
2528 	int cpuid;
2529 
2530 	/*
2531 	 * Finish setting up thread glue so that it begins execution in a
2532 	 * non-nested critical section with the scheduler lock held.
2533 	 */
2534 	cpuid = PCPU_GET(cpuid);
2535 	tdq = TDQ_CPU(cpuid);
2536 	ts = td->td_sched;
2537 	if (TD_IS_IDLETHREAD(td))
2538 		td->td_lock = TDQ_LOCKPTR(tdq);
2539 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2540 	td->td_oncpu = cpuid;
2541 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2542 	lock_profile_obtain_lock_success(
2543 	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2544 	tdq->tdq_lowpri = td->td_priority;
2545 }
2546 
2547 static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0,
2548     "Scheduler");
2549 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2550     "Scheduler name");
2551 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2552     "Slice size for timeshare threads");
2553 SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2554      "Interactivity score threshold");
2555 SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2556      0,"Min priority for preemption, lower priorities have greater precedence");
2557 #ifdef SMP
2558 SYSCTL_INT(_kern_sched, OID_AUTO, pick_pri, CTLFLAG_RW, &pick_pri, 0,
2559     "Pick the target cpu based on priority rather than load.");
2560 SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2561     "Number of hz ticks to keep thread affinity for");
2562 SYSCTL_INT(_kern_sched, OID_AUTO, tryself, CTLFLAG_RW, &tryself, 0, "");
2563 SYSCTL_INT(_kern_sched, OID_AUTO, userret, CTLFLAG_RW, &lowpri_userret, 0, "");
2564 SYSCTL_INT(_kern_sched, OID_AUTO, oldtryself, CTLFLAG_RW, &oldtryself, 0, "");
2565 SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2566     "Enables the long-term load balancer");
2567 SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2568     &balance_interval, 0,
2569     "Average frequency in stathz ticks to run the long-term balancer");
2570 SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0,
2571     "Steals work from another hyper-threaded core on idle");
2572 SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2573     "Attempts to steal work from other cores before idling");
2574 SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2575     "Minimum load on remote cpu before we'll steal");
2576 #endif
2577 
2578 /* ps compat.  All cpu percentages from ULE are weighted. */
2579 static int ccpu = 0;
2580 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2581 
2582 
2583 #define KERN_SWITCH_INCLUDE 1
2584 #include "kern/kern_switch.c"
2585