xref: /freebsd/sys/kern/sched_ule.c (revision dc03363dd831a973acf67c91cae2acac16cfe39b)
135e6168fSJeff Roberson /*-
215dc847eSJeff Roberson  * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
335e6168fSJeff Roberson  * All rights reserved.
435e6168fSJeff Roberson  *
535e6168fSJeff Roberson  * Redistribution and use in source and binary forms, with or without
635e6168fSJeff Roberson  * modification, are permitted provided that the following conditions
735e6168fSJeff Roberson  * are met:
835e6168fSJeff Roberson  * 1. Redistributions of source code must retain the above copyright
935e6168fSJeff Roberson  *    notice unmodified, this list of conditions, and the following
1035e6168fSJeff Roberson  *    disclaimer.
1135e6168fSJeff Roberson  * 2. Redistributions in binary form must reproduce the above copyright
1235e6168fSJeff Roberson  *    notice, this list of conditions and the following disclaimer in the
1335e6168fSJeff Roberson  *    documentation and/or other materials provided with the distribution.
1435e6168fSJeff Roberson  *
1535e6168fSJeff Roberson  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
1635e6168fSJeff Roberson  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1735e6168fSJeff Roberson  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
1835e6168fSJeff Roberson  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
1935e6168fSJeff Roberson  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
2035e6168fSJeff Roberson  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2135e6168fSJeff Roberson  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2235e6168fSJeff Roberson  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2335e6168fSJeff Roberson  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
2435e6168fSJeff Roberson  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2535e6168fSJeff Roberson  */
2635e6168fSJeff Roberson 
27677b542eSDavid E. O'Brien #include <sys/cdefs.h>
28677b542eSDavid E. O'Brien __FBSDID("$FreeBSD$");
29677b542eSDavid E. O'Brien 
3035e6168fSJeff Roberson #include <sys/param.h>
3135e6168fSJeff Roberson #include <sys/systm.h>
3235e6168fSJeff Roberson #include <sys/kernel.h>
3335e6168fSJeff Roberson #include <sys/ktr.h>
3435e6168fSJeff Roberson #include <sys/lock.h>
3535e6168fSJeff Roberson #include <sys/mutex.h>
3635e6168fSJeff Roberson #include <sys/proc.h>
37245f3abfSJeff Roberson #include <sys/resource.h>
389bacd788SJeff Roberson #include <sys/resourcevar.h>
3935e6168fSJeff Roberson #include <sys/sched.h>
4035e6168fSJeff Roberson #include <sys/smp.h>
4135e6168fSJeff Roberson #include <sys/sx.h>
4235e6168fSJeff Roberson #include <sys/sysctl.h>
4335e6168fSJeff Roberson #include <sys/sysproto.h>
4435e6168fSJeff Roberson #include <sys/vmmeter.h>
4535e6168fSJeff Roberson #ifdef DDB
4635e6168fSJeff Roberson #include <ddb/ddb.h>
4735e6168fSJeff Roberson #endif
4835e6168fSJeff Roberson #ifdef KTRACE
4935e6168fSJeff Roberson #include <sys/uio.h>
5035e6168fSJeff Roberson #include <sys/ktrace.h>
5135e6168fSJeff Roberson #endif
5235e6168fSJeff Roberson 
5335e6168fSJeff Roberson #include <machine/cpu.h>
5422bf7d9aSJeff Roberson #include <machine/smp.h>
5535e6168fSJeff Roberson 
5615dc847eSJeff Roberson #define KTR_ULE         KTR_NFS
5715dc847eSJeff Roberson 
5835e6168fSJeff Roberson /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
5935e6168fSJeff Roberson /* XXX This is bogus compatability crap for ps */
6035e6168fSJeff Roberson static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
6135e6168fSJeff Roberson SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
6235e6168fSJeff Roberson 
6335e6168fSJeff Roberson static void sched_setup(void *dummy);
6435e6168fSJeff Roberson SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
6535e6168fSJeff Roberson 
6615dc847eSJeff Roberson static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
67e1f89c22SJeff Roberson 
6815dc847eSJeff Roberson static int slice_min = 1;
6915dc847eSJeff Roberson SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
7015dc847eSJeff Roberson 
71210491d3SJeff Roberson static int slice_max = 10;
7215dc847eSJeff Roberson SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
7315dc847eSJeff Roberson 
7415dc847eSJeff Roberson int realstathz;
7515dc847eSJeff Roberson int tickincr = 1;
76783caefbSJeff Roberson 
7735e6168fSJeff Roberson /*
7835e6168fSJeff Roberson  * These datastructures are allocated within their parent datastructure but
7935e6168fSJeff Roberson  * are scheduler specific.
8035e6168fSJeff Roberson  */
8135e6168fSJeff Roberson 
8235e6168fSJeff Roberson struct ke_sched {
8335e6168fSJeff Roberson 	int		ske_slice;
8435e6168fSJeff Roberson 	struct runq	*ske_runq;
8535e6168fSJeff Roberson 	/* The following variables are only used for pctcpu calculation */
8635e6168fSJeff Roberson 	int		ske_ltick;	/* Last tick that we were running on */
8735e6168fSJeff Roberson 	int		ske_ftick;	/* First tick that we were running on */
8835e6168fSJeff Roberson 	int		ske_ticks;	/* Tick count */
8915dc847eSJeff Roberson 	/* CPU that we have affinity for. */
90cd6e33dfSJeff Roberson 	u_char		ske_cpu;
9135e6168fSJeff Roberson };
9235e6168fSJeff Roberson #define	ke_slice	ke_sched->ske_slice
9335e6168fSJeff Roberson #define	ke_runq		ke_sched->ske_runq
9435e6168fSJeff Roberson #define	ke_ltick	ke_sched->ske_ltick
9535e6168fSJeff Roberson #define	ke_ftick	ke_sched->ske_ftick
9635e6168fSJeff Roberson #define	ke_ticks	ke_sched->ske_ticks
97cd6e33dfSJeff Roberson #define	ke_cpu		ke_sched->ske_cpu
9822bf7d9aSJeff Roberson #define	ke_assign	ke_procq.tqe_next
9922bf7d9aSJeff Roberson 
10022bf7d9aSJeff Roberson #define	KEF_ASSIGNED	KEF_SCHED0	/* KSE is being migrated. */
101a70d729bSJeff Roberson #define	KEF_BOUND	KEF_SCHED1	/* KSE can not migrate. */
10235e6168fSJeff Roberson 
10335e6168fSJeff Roberson struct kg_sched {
104407b0157SJeff Roberson 	int	skg_slptime;		/* Number of ticks we vol. slept */
105407b0157SJeff Roberson 	int	skg_runtime;		/* Number of ticks we were running */
10635e6168fSJeff Roberson };
10735e6168fSJeff Roberson #define	kg_slptime	kg_sched->skg_slptime
108407b0157SJeff Roberson #define	kg_runtime	kg_sched->skg_runtime
10935e6168fSJeff Roberson 
11035e6168fSJeff Roberson struct td_sched {
11135e6168fSJeff Roberson 	int	std_slptime;
11235e6168fSJeff Roberson };
11335e6168fSJeff Roberson #define	td_slptime	td_sched->std_slptime
11435e6168fSJeff Roberson 
1155d7ef00cSJeff Roberson struct td_sched td_sched;
11635e6168fSJeff Roberson struct ke_sched ke_sched;
11735e6168fSJeff Roberson struct kg_sched kg_sched;
11835e6168fSJeff Roberson 
11935e6168fSJeff Roberson struct ke_sched *kse0_sched = &ke_sched;
12035e6168fSJeff Roberson struct kg_sched *ksegrp0_sched = &kg_sched;
12135e6168fSJeff Roberson struct p_sched *proc0_sched = NULL;
12235e6168fSJeff Roberson struct td_sched *thread0_sched = &td_sched;
12335e6168fSJeff Roberson 
12435e6168fSJeff Roberson /*
125665cb285SJeff Roberson  * The priority is primarily determined by the interactivity score.  Thus, we
126665cb285SJeff Roberson  * give lower(better) priorities to kse groups that use less CPU.  The nice
127665cb285SJeff Roberson  * value is then directly added to this to allow nice to have some effect
128665cb285SJeff Roberson  * on latency.
129e1f89c22SJeff Roberson  *
130e1f89c22SJeff Roberson  * PRI_RANGE:	Total priority range for timeshare threads.
131665cb285SJeff Roberson  * PRI_NRESV:	Number of nice values.
132e1f89c22SJeff Roberson  * PRI_BASE:	The start of the dynamic range.
13335e6168fSJeff Roberson  */
134407b0157SJeff Roberson #define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
135a0a931ceSJeff Roberson #define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
136a0a931ceSJeff Roberson #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
137665cb285SJeff Roberson #define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
13815dc847eSJeff Roberson #define	SCHED_PRI_INTERACT(score)					\
139665cb285SJeff Roberson     ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
14035e6168fSJeff Roberson 
14135e6168fSJeff Roberson /*
142e1f89c22SJeff Roberson  * These determine the interactivity of a process.
14335e6168fSJeff Roberson  *
144407b0157SJeff Roberson  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
145407b0157SJeff Roberson  *		before throttling back.
146d322132cSJeff Roberson  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
147210491d3SJeff Roberson  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
148e1f89c22SJeff Roberson  * INTERACT_THRESH:	Threshhold for placement on the current runq.
14935e6168fSJeff Roberson  */
1504c9612c6SJeff Roberson #define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
151d322132cSJeff Roberson #define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
152210491d3SJeff Roberson #define	SCHED_INTERACT_MAX	(100)
153210491d3SJeff Roberson #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
1544c9612c6SJeff Roberson #define	SCHED_INTERACT_THRESH	(30)
155e1f89c22SJeff Roberson 
15635e6168fSJeff Roberson /*
15735e6168fSJeff Roberson  * These parameters and macros determine the size of the time slice that is
15835e6168fSJeff Roberson  * granted to each thread.
15935e6168fSJeff Roberson  *
16035e6168fSJeff Roberson  * SLICE_MIN:	Minimum time slice granted, in units of ticks.
16135e6168fSJeff Roberson  * SLICE_MAX:	Maximum time slice granted.
16235e6168fSJeff Roberson  * SLICE_RANGE:	Range of available time slices scaled by hz.
163245f3abfSJeff Roberson  * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
164245f3abfSJeff Roberson  * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
1657d1a81b4SJeff Roberson  * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
16635e6168fSJeff Roberson  */
16715dc847eSJeff Roberson #define	SCHED_SLICE_MIN			(slice_min)
16815dc847eSJeff Roberson #define	SCHED_SLICE_MAX			(slice_max)
1690392e39dSJeff Roberson #define	SCHED_SLICE_INTERACTIVE		(slice_max)
1707d1a81b4SJeff Roberson #define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
17135e6168fSJeff Roberson #define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
17235e6168fSJeff Roberson #define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
173245f3abfSJeff Roberson #define	SCHED_SLICE_NICE(nice)						\
1747d1a81b4SJeff Roberson     (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
17535e6168fSJeff Roberson 
17635e6168fSJeff Roberson /*
17735e6168fSJeff Roberson  * This macro determines whether or not the kse belongs on the current or
17835e6168fSJeff Roberson  * next run queue.
17935e6168fSJeff Roberson  */
18015dc847eSJeff Roberson #define	SCHED_INTERACTIVE(kg)						\
18115dc847eSJeff Roberson     (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
182a5f099d0SJeff Roberson #define	SCHED_CURR(kg, ke)						\
183b003da79SDavid E. O'Brien     (ke->ke_thread->td_priority < kg->kg_user_pri ||			\
18408fd6713SJeff Roberson     SCHED_INTERACTIVE(kg))
18535e6168fSJeff Roberson 
18635e6168fSJeff Roberson /*
18735e6168fSJeff Roberson  * Cpu percentage computation macros and defines.
18835e6168fSJeff Roberson  *
18935e6168fSJeff Roberson  * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
19035e6168fSJeff Roberson  * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
19135e6168fSJeff Roberson  */
19235e6168fSJeff Roberson 
1935053d272SJeff Roberson #define	SCHED_CPU_TIME	10
19435e6168fSJeff Roberson #define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
19535e6168fSJeff Roberson 
19635e6168fSJeff Roberson /*
19715dc847eSJeff Roberson  * kseq - per processor runqs and statistics.
19835e6168fSJeff Roberson  */
19935e6168fSJeff Roberson struct kseq {
200a8949de2SJeff Roberson 	struct runq	ksq_idle;		/* Queue of IDLE threads. */
20115dc847eSJeff Roberson 	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
20215dc847eSJeff Roberson 	struct runq	*ksq_next;		/* Next timeshare queue. */
20315dc847eSJeff Roberson 	struct runq	*ksq_curr;		/* Current queue. */
204ef1134c9SJeff Roberson 	int		ksq_load_timeshare;	/* Load for timeshare. */
20515dc847eSJeff Roberson 	int		ksq_load;		/* Aggregate load. */
206a0a931ceSJeff Roberson 	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
20715dc847eSJeff Roberson 	short		ksq_nicemin;		/* Least nice. */
2085d7ef00cSJeff Roberson #ifdef SMP
20980f86c9fSJeff Roberson 	int			ksq_transferable;
21080f86c9fSJeff Roberson 	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
21180f86c9fSJeff Roberson 	struct kseq_group	*ksq_group;	/* Our processor group. */
212fa9c9717SJeff Roberson 	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
21333916c36SJeff Roberson #else
21433916c36SJeff Roberson 	int		ksq_sysload;		/* For loadavg, !ITHD load. */
2155d7ef00cSJeff Roberson #endif
21635e6168fSJeff Roberson };
21735e6168fSJeff Roberson 
21880f86c9fSJeff Roberson #ifdef SMP
21980f86c9fSJeff Roberson /*
22080f86c9fSJeff Roberson  * kseq groups are groups of processors which can cheaply share threads.  When
22180f86c9fSJeff Roberson  * one processor in the group goes idle it will check the runqs of the other
22280f86c9fSJeff Roberson  * processors in its group prior to halting and waiting for an interrupt.
22380f86c9fSJeff Roberson  * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
22480f86c9fSJeff Roberson  * In a numa environment we'd want an idle bitmap per group and a two tiered
22580f86c9fSJeff Roberson  * load balancer.
22680f86c9fSJeff Roberson  */
22780f86c9fSJeff Roberson struct kseq_group {
22880f86c9fSJeff Roberson 	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
229b2ae7ed7SMarcel Moolenaar 	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
230b2ae7ed7SMarcel Moolenaar 	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
231b2ae7ed7SMarcel Moolenaar 	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
232cac77d04SJeff Roberson 	int	ksg_load;		/* Total load of this group. */
23380f86c9fSJeff Roberson 	int	ksg_transferable;	/* Transferable load of this group. */
23480f86c9fSJeff Roberson 	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
23580f86c9fSJeff Roberson };
23680f86c9fSJeff Roberson #endif
23780f86c9fSJeff Roberson 
23835e6168fSJeff Roberson /*
23935e6168fSJeff Roberson  * One kse queue per processor.
24035e6168fSJeff Roberson  */
2410a016a05SJeff Roberson #ifdef SMP
242b2ae7ed7SMarcel Moolenaar static cpumask_t kseq_idle;
243cac77d04SJeff Roberson static int ksg_maxid;
24422bf7d9aSJeff Roberson static struct kseq	kseq_cpu[MAXCPU];
24580f86c9fSJeff Roberson static struct kseq_group kseq_groups[MAXCPU];
246dc03363dSJeff Roberson static int bal_tick;
247dc03363dSJeff Roberson static int gbal_tick;
248dc03363dSJeff Roberson 
24980f86c9fSJeff Roberson #define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
25080f86c9fSJeff Roberson #define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
251cac77d04SJeff Roberson #define	KSEQ_ID(x)	((x) - kseq_cpu)
252cac77d04SJeff Roberson #define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
25380f86c9fSJeff Roberson #else	/* !SMP */
25422bf7d9aSJeff Roberson static struct kseq	kseq_cpu;
255dc03363dSJeff Roberson 
2560a016a05SJeff Roberson #define	KSEQ_SELF()	(&kseq_cpu)
2570a016a05SJeff Roberson #define	KSEQ_CPU(x)	(&kseq_cpu)
2580a016a05SJeff Roberson #endif
25935e6168fSJeff Roberson 
260245f3abfSJeff Roberson static void sched_slice(struct kse *ke);
26115dc847eSJeff Roberson static void sched_priority(struct ksegrp *kg);
262e1f89c22SJeff Roberson static int sched_interact_score(struct ksegrp *kg);
2634b60e324SJeff Roberson static void sched_interact_update(struct ksegrp *kg);
264d322132cSJeff Roberson static void sched_interact_fork(struct ksegrp *kg);
26522bf7d9aSJeff Roberson static void sched_pctcpu_update(struct kse *ke);
26635e6168fSJeff Roberson 
2675d7ef00cSJeff Roberson /* Operations on per processor queues */
26822bf7d9aSJeff Roberson static struct kse * kseq_choose(struct kseq *kseq);
2690a016a05SJeff Roberson static void kseq_setup(struct kseq *kseq);
270155b9987SJeff Roberson static void kseq_load_add(struct kseq *kseq, struct kse *ke);
271155b9987SJeff Roberson static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
272155b9987SJeff Roberson static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
273155b9987SJeff Roberson static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
27415dc847eSJeff Roberson static void kseq_nice_add(struct kseq *kseq, int nice);
27515dc847eSJeff Roberson static void kseq_nice_rem(struct kseq *kseq, int nice);
2767cd650a9SJeff Roberson void kseq_print(int cpu);
2775d7ef00cSJeff Roberson #ifdef SMP
27880f86c9fSJeff Roberson static int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
27922bf7d9aSJeff Roberson static struct kse *runq_steal(struct runq *rq);
280dc03363dSJeff Roberson static void sched_balance(void);
281dc03363dSJeff Roberson static void sched_balance_groups(void);
282cac77d04SJeff Roberson static void sched_balance_group(struct kseq_group *ksg);
283cac77d04SJeff Roberson static void sched_balance_pair(struct kseq *high, struct kseq *low);
28422bf7d9aSJeff Roberson static void kseq_move(struct kseq *from, int cpu);
28580f86c9fSJeff Roberson static int kseq_idled(struct kseq *kseq);
28622bf7d9aSJeff Roberson static void kseq_notify(struct kse *ke, int cpu);
28722bf7d9aSJeff Roberson static void kseq_assign(struct kseq *);
28880f86c9fSJeff Roberson static struct kse *kseq_steal(struct kseq *kseq, int stealidle);
289e7a976f4SJeff Roberson /*
290e7a976f4SJeff Roberson  * On P4 Xeons the round-robin interrupt delivery is broken.  As a result of
291e7a976f4SJeff Roberson  * this, we can't pin interrupts to the cpu that they were delivered to,
292e7a976f4SJeff Roberson  * otherwise all ithreads only run on CPU 0.
293e7a976f4SJeff Roberson  */
294e7a976f4SJeff Roberson #ifdef __i386__
295e7a976f4SJeff Roberson #define	KSE_CAN_MIGRATE(ke, class)					\
296e7a976f4SJeff Roberson     ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
297e7a976f4SJeff Roberson #else /* !__i386__ */
2989bacd788SJeff Roberson #define	KSE_CAN_MIGRATE(ke, class)					\
299a70d729bSJeff Roberson     ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
300f28b3340SJeff Roberson     ((ke)->ke_flags & KEF_BOUND) == 0)
301e7a976f4SJeff Roberson #endif /* !__i386__ */
3025d7ef00cSJeff Roberson #endif
3035d7ef00cSJeff Roberson 
30415dc847eSJeff Roberson void
3057cd650a9SJeff Roberson kseq_print(int cpu)
30615dc847eSJeff Roberson {
3077cd650a9SJeff Roberson 	struct kseq *kseq;
30815dc847eSJeff Roberson 	int i;
30915dc847eSJeff Roberson 
3107cd650a9SJeff Roberson 	kseq = KSEQ_CPU(cpu);
31115dc847eSJeff Roberson 
31215dc847eSJeff Roberson 	printf("kseq:\n");
31315dc847eSJeff Roberson 	printf("\tload:           %d\n", kseq->ksq_load);
314155b9987SJeff Roberson 	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
315ef1134c9SJeff Roberson #ifdef SMP
31680f86c9fSJeff Roberson 	printf("\tload transferable: %d\n", kseq->ksq_transferable);
317ef1134c9SJeff Roberson #endif
31815dc847eSJeff Roberson 	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
31915dc847eSJeff Roberson 	printf("\tnice counts:\n");
320a0a931ceSJeff Roberson 	for (i = 0; i < SCHED_PRI_NRESV; i++)
32115dc847eSJeff Roberson 		if (kseq->ksq_nice[i])
32215dc847eSJeff Roberson 			printf("\t\t%d = %d\n",
32315dc847eSJeff Roberson 			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
32415dc847eSJeff Roberson }
32515dc847eSJeff Roberson 
326155b9987SJeff Roberson static __inline void
327155b9987SJeff Roberson kseq_runq_add(struct kseq *kseq, struct kse *ke)
328155b9987SJeff Roberson {
329155b9987SJeff Roberson #ifdef SMP
33080f86c9fSJeff Roberson 	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
33180f86c9fSJeff Roberson 		kseq->ksq_transferable++;
33280f86c9fSJeff Roberson 		kseq->ksq_group->ksg_transferable++;
33380f86c9fSJeff Roberson 	}
334155b9987SJeff Roberson #endif
335155b9987SJeff Roberson 	runq_add(ke->ke_runq, ke);
336155b9987SJeff Roberson }
337155b9987SJeff Roberson 
338155b9987SJeff Roberson static __inline void
339155b9987SJeff Roberson kseq_runq_rem(struct kseq *kseq, struct kse *ke)
340155b9987SJeff Roberson {
341155b9987SJeff Roberson #ifdef SMP
34280f86c9fSJeff Roberson 	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
34380f86c9fSJeff Roberson 		kseq->ksq_transferable--;
34480f86c9fSJeff Roberson 		kseq->ksq_group->ksg_transferable--;
34580f86c9fSJeff Roberson 	}
346155b9987SJeff Roberson #endif
347155b9987SJeff Roberson 	runq_remove(ke->ke_runq, ke);
348155b9987SJeff Roberson }
349155b9987SJeff Roberson 
350a8949de2SJeff Roberson static void
351155b9987SJeff Roberson kseq_load_add(struct kseq *kseq, struct kse *ke)
3525d7ef00cSJeff Roberson {
353ef1134c9SJeff Roberson 	int class;
354b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
355ef1134c9SJeff Roberson 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
356ef1134c9SJeff Roberson 	if (class == PRI_TIMESHARE)
357ef1134c9SJeff Roberson 		kseq->ksq_load_timeshare++;
35815dc847eSJeff Roberson 	kseq->ksq_load++;
359207a6c0dSDavid E. O'Brien 	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
36033916c36SJeff Roberson #ifdef SMP
361cac77d04SJeff Roberson 		kseq->ksq_group->ksg_load++;
36233916c36SJeff Roberson #else
36333916c36SJeff Roberson 		kseq->ksq_sysload++;
364cac77d04SJeff Roberson #endif
36515dc847eSJeff Roberson 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
366155b9987SJeff Roberson 		CTR6(KTR_ULE,
367155b9987SJeff Roberson 		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
36815dc847eSJeff Roberson 		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
36915dc847eSJeff Roberson 		    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
37015dc847eSJeff Roberson 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
37115dc847eSJeff Roberson 		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
3725d7ef00cSJeff Roberson }
37315dc847eSJeff Roberson 
374a8949de2SJeff Roberson static void
375155b9987SJeff Roberson kseq_load_rem(struct kseq *kseq, struct kse *ke)
3765d7ef00cSJeff Roberson {
377ef1134c9SJeff Roberson 	int class;
378b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
379ef1134c9SJeff Roberson 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
380ef1134c9SJeff Roberson 	if (class == PRI_TIMESHARE)
381ef1134c9SJeff Roberson 		kseq->ksq_load_timeshare--;
382207a6c0dSDavid E. O'Brien 	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
38333916c36SJeff Roberson #ifdef SMP
384cac77d04SJeff Roberson 		kseq->ksq_group->ksg_load--;
38533916c36SJeff Roberson #else
38633916c36SJeff Roberson 		kseq->ksq_sysload--;
387cac77d04SJeff Roberson #endif
38815dc847eSJeff Roberson 	kseq->ksq_load--;
38915dc847eSJeff Roberson 	ke->ke_runq = NULL;
39015dc847eSJeff Roberson 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
39115dc847eSJeff Roberson 		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
3925d7ef00cSJeff Roberson }
3935d7ef00cSJeff Roberson 
39415dc847eSJeff Roberson static void
39515dc847eSJeff Roberson kseq_nice_add(struct kseq *kseq, int nice)
39615dc847eSJeff Roberson {
397b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
39815dc847eSJeff Roberson 	/* Normalize to zero. */
39915dc847eSJeff Roberson 	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
400ef1134c9SJeff Roberson 	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
40115dc847eSJeff Roberson 		kseq->ksq_nicemin = nice;
40215dc847eSJeff Roberson }
40315dc847eSJeff Roberson 
40415dc847eSJeff Roberson static void
40515dc847eSJeff Roberson kseq_nice_rem(struct kseq *kseq, int nice)
40615dc847eSJeff Roberson {
40715dc847eSJeff Roberson 	int n;
40815dc847eSJeff Roberson 
409b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
41015dc847eSJeff Roberson 	/* Normalize to zero. */
41115dc847eSJeff Roberson 	n = nice + SCHED_PRI_NHALF;
41215dc847eSJeff Roberson 	kseq->ksq_nice[n]--;
41315dc847eSJeff Roberson 	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
41415dc847eSJeff Roberson 
41515dc847eSJeff Roberson 	/*
41615dc847eSJeff Roberson 	 * If this wasn't the smallest nice value or there are more in
41715dc847eSJeff Roberson 	 * this bucket we can just return.  Otherwise we have to recalculate
41815dc847eSJeff Roberson 	 * the smallest nice.
41915dc847eSJeff Roberson 	 */
42015dc847eSJeff Roberson 	if (nice != kseq->ksq_nicemin ||
42115dc847eSJeff Roberson 	    kseq->ksq_nice[n] != 0 ||
422ef1134c9SJeff Roberson 	    kseq->ksq_load_timeshare == 0)
42315dc847eSJeff Roberson 		return;
42415dc847eSJeff Roberson 
425a0a931ceSJeff Roberson 	for (; n < SCHED_PRI_NRESV; n++)
42615dc847eSJeff Roberson 		if (kseq->ksq_nice[n]) {
42715dc847eSJeff Roberson 			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
42815dc847eSJeff Roberson 			return;
42915dc847eSJeff Roberson 		}
43015dc847eSJeff Roberson }
43115dc847eSJeff Roberson 
4325d7ef00cSJeff Roberson #ifdef SMP
433356500a3SJeff Roberson /*
434155b9987SJeff Roberson  * sched_balance is a simple CPU load balancing algorithm.  It operates by
435356500a3SJeff Roberson  * finding the least loaded and most loaded cpu and equalizing their load
436356500a3SJeff Roberson  * by migrating some processes.
437356500a3SJeff Roberson  *
438356500a3SJeff Roberson  * Dealing only with two CPUs at a time has two advantages.  Firstly, most
439356500a3SJeff Roberson  * installations will only have 2 cpus.  Secondly, load balancing too much at
440356500a3SJeff Roberson  * once can have an unpleasant effect on the system.  The scheduler rarely has
441356500a3SJeff Roberson  * enough information to make perfect decisions.  So this algorithm chooses
442356500a3SJeff Roberson  * algorithm simplicity and more gradual effects on load in larger systems.
443356500a3SJeff Roberson  *
444356500a3SJeff Roberson  * It could be improved by considering the priorities and slices assigned to
445356500a3SJeff Roberson  * each task prior to balancing them.  There are many pathological cases with
446356500a3SJeff Roberson  * any approach and so the semi random algorithm below may work as well as any.
447356500a3SJeff Roberson  *
448356500a3SJeff Roberson  */
44922bf7d9aSJeff Roberson static void
450dc03363dSJeff Roberson sched_balance(void)
451356500a3SJeff Roberson {
452cac77d04SJeff Roberson 	struct kseq_group *high;
453cac77d04SJeff Roberson 	struct kseq_group *low;
454cac77d04SJeff Roberson 	struct kseq_group *ksg;
455cac77d04SJeff Roberson 	int cnt;
456356500a3SJeff Roberson 	int i;
457356500a3SJeff Roberson 
45886f8ae96SJeff Roberson 	if (smp_started == 0)
45986f8ae96SJeff Roberson 		goto out;
460cac77d04SJeff Roberson 	low = high = NULL;
461cac77d04SJeff Roberson 	i = random() % (ksg_maxid + 1);
462cac77d04SJeff Roberson 	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
463cac77d04SJeff Roberson 		ksg = KSEQ_GROUP(i);
464cac77d04SJeff Roberson 		/*
465cac77d04SJeff Roberson 		 * Find the CPU with the highest load that has some
466cac77d04SJeff Roberson 		 * threads to transfer.
467cac77d04SJeff Roberson 		 */
468cac77d04SJeff Roberson 		if ((high == NULL || ksg->ksg_load > high->ksg_load)
469cac77d04SJeff Roberson 		    && ksg->ksg_transferable)
470cac77d04SJeff Roberson 			high = ksg;
471cac77d04SJeff Roberson 		if (low == NULL || ksg->ksg_load < low->ksg_load)
472cac77d04SJeff Roberson 			low = ksg;
473cac77d04SJeff Roberson 		if (++i > ksg_maxid)
474cac77d04SJeff Roberson 			i = 0;
475cac77d04SJeff Roberson 	}
476cac77d04SJeff Roberson 	if (low != NULL && high != NULL && high != low)
477cac77d04SJeff Roberson 		sched_balance_pair(LIST_FIRST(&high->ksg_members),
478cac77d04SJeff Roberson 		    LIST_FIRST(&low->ksg_members));
479cac77d04SJeff Roberson out:
480dc03363dSJeff Roberson 	bal_tick = ticks + (random() % (hz * 2));
481cac77d04SJeff Roberson }
48286f8ae96SJeff Roberson 
483cac77d04SJeff Roberson static void
484dc03363dSJeff Roberson sched_balance_groups(void)
485cac77d04SJeff Roberson {
486cac77d04SJeff Roberson 	int i;
487cac77d04SJeff Roberson 
488dc03363dSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
489cac77d04SJeff Roberson 	if (smp_started)
490cac77d04SJeff Roberson 		for (i = 0; i <= ksg_maxid; i++)
491cac77d04SJeff Roberson 			sched_balance_group(KSEQ_GROUP(i));
492dc03363dSJeff Roberson 	gbal_tick = ticks + (random() % (hz * 2));
493356500a3SJeff Roberson }
494cac77d04SJeff Roberson 
495cac77d04SJeff Roberson static void
496cac77d04SJeff Roberson sched_balance_group(struct kseq_group *ksg)
497cac77d04SJeff Roberson {
498cac77d04SJeff Roberson 	struct kseq *kseq;
499cac77d04SJeff Roberson 	struct kseq *high;
500cac77d04SJeff Roberson 	struct kseq *low;
501cac77d04SJeff Roberson 	int load;
502cac77d04SJeff Roberson 
503cac77d04SJeff Roberson 	if (ksg->ksg_transferable == 0)
504cac77d04SJeff Roberson 		return;
505cac77d04SJeff Roberson 	low = NULL;
506cac77d04SJeff Roberson 	high = NULL;
507cac77d04SJeff Roberson 	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
508cac77d04SJeff Roberson 		load = kseq->ksq_load;
509cac77d04SJeff Roberson 		if (high == NULL || load > high->ksq_load)
510cac77d04SJeff Roberson 			high = kseq;
511cac77d04SJeff Roberson 		if (low == NULL || load < low->ksq_load)
512cac77d04SJeff Roberson 			low = kseq;
513356500a3SJeff Roberson 	}
514cac77d04SJeff Roberson 	if (high != NULL && low != NULL && high != low)
515cac77d04SJeff Roberson 		sched_balance_pair(high, low);
516356500a3SJeff Roberson }
517cac77d04SJeff Roberson 
518cac77d04SJeff Roberson static void
519cac77d04SJeff Roberson sched_balance_pair(struct kseq *high, struct kseq *low)
520cac77d04SJeff Roberson {
521cac77d04SJeff Roberson 	int transferable;
522cac77d04SJeff Roberson 	int high_load;
523cac77d04SJeff Roberson 	int low_load;
524cac77d04SJeff Roberson 	int move;
525cac77d04SJeff Roberson 	int diff;
526cac77d04SJeff Roberson 	int i;
527cac77d04SJeff Roberson 
52880f86c9fSJeff Roberson 	/*
52980f86c9fSJeff Roberson 	 * If we're transfering within a group we have to use this specific
53080f86c9fSJeff Roberson 	 * kseq's transferable count, otherwise we can steal from other members
53180f86c9fSJeff Roberson 	 * of the group.
53280f86c9fSJeff Roberson 	 */
533cac77d04SJeff Roberson 	if (high->ksq_group == low->ksq_group) {
534cac77d04SJeff Roberson 		transferable = high->ksq_transferable;
535cac77d04SJeff Roberson 		high_load = high->ksq_load;
536cac77d04SJeff Roberson 		low_load = low->ksq_load;
537cac77d04SJeff Roberson 	} else {
538cac77d04SJeff Roberson 		transferable = high->ksq_group->ksg_transferable;
539cac77d04SJeff Roberson 		high_load = high->ksq_group->ksg_load;
540cac77d04SJeff Roberson 		low_load = low->ksq_group->ksg_load;
541cac77d04SJeff Roberson 	}
54280f86c9fSJeff Roberson 	if (transferable == 0)
543cac77d04SJeff Roberson 		return;
544155b9987SJeff Roberson 	/*
545155b9987SJeff Roberson 	 * Determine what the imbalance is and then adjust that to how many
54680f86c9fSJeff Roberson 	 * kses we actually have to give up (transferable).
547155b9987SJeff Roberson 	 */
548cac77d04SJeff Roberson 	diff = high_load - low_load;
549356500a3SJeff Roberson 	move = diff / 2;
550356500a3SJeff Roberson 	if (diff & 0x1)
551356500a3SJeff Roberson 		move++;
55280f86c9fSJeff Roberson 	move = min(move, transferable);
553356500a3SJeff Roberson 	for (i = 0; i < move; i++)
554cac77d04SJeff Roberson 		kseq_move(high, KSEQ_ID(low));
555356500a3SJeff Roberson 	return;
556356500a3SJeff Roberson }
557356500a3SJeff Roberson 
55822bf7d9aSJeff Roberson static void
559356500a3SJeff Roberson kseq_move(struct kseq *from, int cpu)
560356500a3SJeff Roberson {
56180f86c9fSJeff Roberson 	struct kseq *kseq;
56280f86c9fSJeff Roberson 	struct kseq *to;
563356500a3SJeff Roberson 	struct kse *ke;
564356500a3SJeff Roberson 
56580f86c9fSJeff Roberson 	kseq = from;
56680f86c9fSJeff Roberson 	to = KSEQ_CPU(cpu);
56780f86c9fSJeff Roberson 	ke = kseq_steal(kseq, 1);
56880f86c9fSJeff Roberson 	if (ke == NULL) {
56980f86c9fSJeff Roberson 		struct kseq_group *ksg;
57080f86c9fSJeff Roberson 
57180f86c9fSJeff Roberson 		ksg = kseq->ksq_group;
57280f86c9fSJeff Roberson 		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
57380f86c9fSJeff Roberson 			if (kseq == from || kseq->ksq_transferable == 0)
57480f86c9fSJeff Roberson 				continue;
57580f86c9fSJeff Roberson 			ke = kseq_steal(kseq, 1);
57680f86c9fSJeff Roberson 			break;
57780f86c9fSJeff Roberson 		}
57880f86c9fSJeff Roberson 		if (ke == NULL)
57980f86c9fSJeff Roberson 			panic("kseq_move: No KSEs available with a "
58080f86c9fSJeff Roberson 			    "transferable count of %d\n",
58180f86c9fSJeff Roberson 			    ksg->ksg_transferable);
58280f86c9fSJeff Roberson 	}
58380f86c9fSJeff Roberson 	if (kseq == to)
58480f86c9fSJeff Roberson 		return;
585356500a3SJeff Roberson 	ke->ke_state = KES_THREAD;
58680f86c9fSJeff Roberson 	kseq_runq_rem(kseq, ke);
58780f86c9fSJeff Roberson 	kseq_load_rem(kseq, ke);
588112b6d3aSJeff Roberson 	kseq_notify(ke, cpu);
589356500a3SJeff Roberson }
59022bf7d9aSJeff Roberson 
59180f86c9fSJeff Roberson static int
59280f86c9fSJeff Roberson kseq_idled(struct kseq *kseq)
59322bf7d9aSJeff Roberson {
59480f86c9fSJeff Roberson 	struct kseq_group *ksg;
59580f86c9fSJeff Roberson 	struct kseq *steal;
59680f86c9fSJeff Roberson 	struct kse *ke;
59780f86c9fSJeff Roberson 
59880f86c9fSJeff Roberson 	ksg = kseq->ksq_group;
59980f86c9fSJeff Roberson 	/*
60080f86c9fSJeff Roberson 	 * If we're in a cpu group, try and steal kses from another cpu in
60180f86c9fSJeff Roberson 	 * the group before idling.
60280f86c9fSJeff Roberson 	 */
60380f86c9fSJeff Roberson 	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
60480f86c9fSJeff Roberson 		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
60580f86c9fSJeff Roberson 			if (steal == kseq || steal->ksq_transferable == 0)
60680f86c9fSJeff Roberson 				continue;
60780f86c9fSJeff Roberson 			ke = kseq_steal(steal, 0);
60880f86c9fSJeff Roberson 			if (ke == NULL)
60980f86c9fSJeff Roberson 				continue;
61080f86c9fSJeff Roberson 			ke->ke_state = KES_THREAD;
61180f86c9fSJeff Roberson 			kseq_runq_rem(steal, ke);
61280f86c9fSJeff Roberson 			kseq_load_rem(steal, ke);
61380f86c9fSJeff Roberson 			ke->ke_cpu = PCPU_GET(cpuid);
61480f86c9fSJeff Roberson 			sched_add(ke->ke_thread);
61580f86c9fSJeff Roberson 			return (0);
61680f86c9fSJeff Roberson 		}
61780f86c9fSJeff Roberson 	}
61880f86c9fSJeff Roberson 	/*
61980f86c9fSJeff Roberson 	 * We only set the idled bit when all of the cpus in the group are
62080f86c9fSJeff Roberson 	 * idle.  Otherwise we could get into a situation where a KSE bounces
62180f86c9fSJeff Roberson 	 * back and forth between two idle cores on seperate physical CPUs.
62280f86c9fSJeff Roberson 	 */
62380f86c9fSJeff Roberson 	ksg->ksg_idlemask |= PCPU_GET(cpumask);
62480f86c9fSJeff Roberson 	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
62580f86c9fSJeff Roberson 		return (1);
62680f86c9fSJeff Roberson 	atomic_set_int(&kseq_idle, ksg->ksg_mask);
62780f86c9fSJeff Roberson 	return (1);
62822bf7d9aSJeff Roberson }
62922bf7d9aSJeff Roberson 
63022bf7d9aSJeff Roberson static void
63122bf7d9aSJeff Roberson kseq_assign(struct kseq *kseq)
63222bf7d9aSJeff Roberson {
63322bf7d9aSJeff Roberson 	struct kse *nke;
63422bf7d9aSJeff Roberson 	struct kse *ke;
63522bf7d9aSJeff Roberson 
63622bf7d9aSJeff Roberson 	do {
637fa9c9717SJeff Roberson 		(volatile struct kse *)ke = kseq->ksq_assigned;
63822bf7d9aSJeff Roberson 	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
63922bf7d9aSJeff Roberson 	for (; ke != NULL; ke = nke) {
64022bf7d9aSJeff Roberson 		nke = ke->ke_assign;
64122bf7d9aSJeff Roberson 		ke->ke_flags &= ~KEF_ASSIGNED;
64222bf7d9aSJeff Roberson 		sched_add(ke->ke_thread);
64322bf7d9aSJeff Roberson 	}
64422bf7d9aSJeff Roberson }
64522bf7d9aSJeff Roberson 
64622bf7d9aSJeff Roberson static void
64722bf7d9aSJeff Roberson kseq_notify(struct kse *ke, int cpu)
64822bf7d9aSJeff Roberson {
64922bf7d9aSJeff Roberson 	struct kseq *kseq;
65022bf7d9aSJeff Roberson 	struct thread *td;
65122bf7d9aSJeff Roberson 	struct pcpu *pcpu;
65222bf7d9aSJeff Roberson 
65386e1c22aSJeff Roberson 	ke->ke_cpu = cpu;
65422bf7d9aSJeff Roberson 	ke->ke_flags |= KEF_ASSIGNED;
65522bf7d9aSJeff Roberson 
65622bf7d9aSJeff Roberson 	kseq = KSEQ_CPU(cpu);
6575d7ef00cSJeff Roberson 
6580c0a98b2SJeff Roberson 	/*
65922bf7d9aSJeff Roberson 	 * Place a KSE on another cpu's queue and force a resched.
66022bf7d9aSJeff Roberson 	 */
66122bf7d9aSJeff Roberson 	do {
662fa9c9717SJeff Roberson 		(volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
66322bf7d9aSJeff Roberson 	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
66422bf7d9aSJeff Roberson 	pcpu = pcpu_find(cpu);
66522bf7d9aSJeff Roberson 	td = pcpu->pc_curthread;
66622bf7d9aSJeff Roberson 	if (ke->ke_thread->td_priority < td->td_priority ||
66722bf7d9aSJeff Roberson 	    td == pcpu->pc_idlethread) {
66822bf7d9aSJeff Roberson 		td->td_flags |= TDF_NEEDRESCHED;
66922bf7d9aSJeff Roberson 		ipi_selected(1 << cpu, IPI_AST);
67022bf7d9aSJeff Roberson 	}
67122bf7d9aSJeff Roberson }
67222bf7d9aSJeff Roberson 
67322bf7d9aSJeff Roberson static struct kse *
67422bf7d9aSJeff Roberson runq_steal(struct runq *rq)
67522bf7d9aSJeff Roberson {
67622bf7d9aSJeff Roberson 	struct rqhead *rqh;
67722bf7d9aSJeff Roberson 	struct rqbits *rqb;
67822bf7d9aSJeff Roberson 	struct kse *ke;
67922bf7d9aSJeff Roberson 	int word;
68022bf7d9aSJeff Roberson 	int bit;
68122bf7d9aSJeff Roberson 
68222bf7d9aSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
68322bf7d9aSJeff Roberson 	rqb = &rq->rq_status;
68422bf7d9aSJeff Roberson 	for (word = 0; word < RQB_LEN; word++) {
68522bf7d9aSJeff Roberson 		if (rqb->rqb_bits[word] == 0)
68622bf7d9aSJeff Roberson 			continue;
68722bf7d9aSJeff Roberson 		for (bit = 0; bit < RQB_BPW; bit++) {
688a2640c9bSPeter Wemm 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
68922bf7d9aSJeff Roberson 				continue;
69022bf7d9aSJeff Roberson 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
69122bf7d9aSJeff Roberson 			TAILQ_FOREACH(ke, rqh, ke_procq) {
692ef1134c9SJeff Roberson 				if (KSE_CAN_MIGRATE(ke,
693ef1134c9SJeff Roberson 				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
69422bf7d9aSJeff Roberson 					return (ke);
69522bf7d9aSJeff Roberson 			}
69622bf7d9aSJeff Roberson 		}
69722bf7d9aSJeff Roberson 	}
69822bf7d9aSJeff Roberson 	return (NULL);
69922bf7d9aSJeff Roberson }
70022bf7d9aSJeff Roberson 
70122bf7d9aSJeff Roberson static struct kse *
70280f86c9fSJeff Roberson kseq_steal(struct kseq *kseq, int stealidle)
70322bf7d9aSJeff Roberson {
70422bf7d9aSJeff Roberson 	struct kse *ke;
70522bf7d9aSJeff Roberson 
70680f86c9fSJeff Roberson 	/*
70780f86c9fSJeff Roberson 	 * Steal from next first to try to get a non-interactive task that
70880f86c9fSJeff Roberson 	 * may not have run for a while.
70980f86c9fSJeff Roberson 	 */
71022bf7d9aSJeff Roberson 	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
71122bf7d9aSJeff Roberson 		return (ke);
71280f86c9fSJeff Roberson 	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
71380f86c9fSJeff Roberson 		return (ke);
71480f86c9fSJeff Roberson 	if (stealidle)
71522bf7d9aSJeff Roberson 		return (runq_steal(&kseq->ksq_idle));
71680f86c9fSJeff Roberson 	return (NULL);
71722bf7d9aSJeff Roberson }
71880f86c9fSJeff Roberson 
71980f86c9fSJeff Roberson int
72080f86c9fSJeff Roberson kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
72180f86c9fSJeff Roberson {
72280f86c9fSJeff Roberson 	struct kseq_group *ksg;
72380f86c9fSJeff Roberson 	int cpu;
72480f86c9fSJeff Roberson 
725670c524fSJeff Roberson 	if (smp_started == 0)
726670c524fSJeff Roberson 		return (0);
72780f86c9fSJeff Roberson 	cpu = 0;
72880f86c9fSJeff Roberson 	ksg = kseq->ksq_group;
72980f86c9fSJeff Roberson 
73080f86c9fSJeff Roberson 	/*
731670c524fSJeff Roberson 	 * If there are any idle groups, give them our extra load.  The
732670c524fSJeff Roberson 	 * threshold at which we start to reassign kses has a large impact
733670c524fSJeff Roberson 	 * on the overall performance of the system.  Tuned too high and
734670c524fSJeff Roberson 	 * some CPUs may idle.  Too low and there will be excess migration
735d50c87deSOlivier Houchard 	 * and context switches.
736670c524fSJeff Roberson 	 */
737249e0beaSJeff Roberson 	if (ksg->ksg_load > (ksg->ksg_cpus * 2) && kseq_idle) {
73880f86c9fSJeff Roberson 		/*
73980f86c9fSJeff Roberson 		 * Multiple cpus could find this bit simultaneously
74080f86c9fSJeff Roberson 		 * but the race shouldn't be terrible.
74180f86c9fSJeff Roberson 		 */
74280f86c9fSJeff Roberson 		cpu = ffs(kseq_idle);
74380f86c9fSJeff Roberson 		if (cpu)
74480f86c9fSJeff Roberson 			atomic_clear_int(&kseq_idle, 1 << (cpu - 1));
74580f86c9fSJeff Roberson 	}
74680f86c9fSJeff Roberson 	/*
74780f86c9fSJeff Roberson 	 * If another cpu in this group has idled, assign a thread over
74880f86c9fSJeff Roberson 	 * to them after checking to see if there are idled groups.
74980f86c9fSJeff Roberson 	 */
75080f86c9fSJeff Roberson 	if (cpu == 0 && kseq->ksq_load > 1 && ksg->ksg_idlemask) {
75180f86c9fSJeff Roberson 		cpu = ffs(ksg->ksg_idlemask);
75280f86c9fSJeff Roberson 		if (cpu)
75380f86c9fSJeff Roberson 			ksg->ksg_idlemask &= ~(1 << (cpu - 1));
75480f86c9fSJeff Roberson 	}
75580f86c9fSJeff Roberson 	/*
75680f86c9fSJeff Roberson 	 * Now that we've found an idle CPU, migrate the thread.
75780f86c9fSJeff Roberson 	 */
75880f86c9fSJeff Roberson 	if (cpu) {
75980f86c9fSJeff Roberson 		cpu--;
76080f86c9fSJeff Roberson 		ke->ke_runq = NULL;
76180f86c9fSJeff Roberson 		kseq_notify(ke, cpu);
76280f86c9fSJeff Roberson 		return (1);
76380f86c9fSJeff Roberson 	}
76480f86c9fSJeff Roberson 	return (0);
76580f86c9fSJeff Roberson }
76680f86c9fSJeff Roberson 
76722bf7d9aSJeff Roberson #endif	/* SMP */
76822bf7d9aSJeff Roberson 
76922bf7d9aSJeff Roberson /*
77022bf7d9aSJeff Roberson  * Pick the highest priority task we have and return it.
7710c0a98b2SJeff Roberson  */
7720c0a98b2SJeff Roberson 
77322bf7d9aSJeff Roberson static struct kse *
77422bf7d9aSJeff Roberson kseq_choose(struct kseq *kseq)
7755d7ef00cSJeff Roberson {
7765d7ef00cSJeff Roberson 	struct kse *ke;
7775d7ef00cSJeff Roberson 	struct runq *swap;
7785d7ef00cSJeff Roberson 
779b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
78015dc847eSJeff Roberson 	swap = NULL;
781a8949de2SJeff Roberson 
78215dc847eSJeff Roberson 	for (;;) {
78315dc847eSJeff Roberson 		ke = runq_choose(kseq->ksq_curr);
78415dc847eSJeff Roberson 		if (ke == NULL) {
78515dc847eSJeff Roberson 			/*
78615dc847eSJeff Roberson 			 * We already swaped once and didn't get anywhere.
78715dc847eSJeff Roberson 			 */
78815dc847eSJeff Roberson 			if (swap)
78915dc847eSJeff Roberson 				break;
7905d7ef00cSJeff Roberson 			swap = kseq->ksq_curr;
7915d7ef00cSJeff Roberson 			kseq->ksq_curr = kseq->ksq_next;
7925d7ef00cSJeff Roberson 			kseq->ksq_next = swap;
79315dc847eSJeff Roberson 			continue;
794a8949de2SJeff Roberson 		}
79515dc847eSJeff Roberson 		/*
79615dc847eSJeff Roberson 		 * If we encounter a slice of 0 the kse is in a
79715dc847eSJeff Roberson 		 * TIMESHARE kse group and its nice was too far out
79815dc847eSJeff Roberson 		 * of the range that receives slices.
79915dc847eSJeff Roberson 		 */
80022bf7d9aSJeff Roberson 		if (ke->ke_slice == 0) {
80115dc847eSJeff Roberson 			runq_remove(ke->ke_runq, ke);
80215dc847eSJeff Roberson 			sched_slice(ke);
80315dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_next;
80415dc847eSJeff Roberson 			runq_add(ke->ke_runq, ke);
80515dc847eSJeff Roberson 			continue;
80615dc847eSJeff Roberson 		}
80715dc847eSJeff Roberson 		return (ke);
80815dc847eSJeff Roberson 	}
80915dc847eSJeff Roberson 
810a8949de2SJeff Roberson 	return (runq_choose(&kseq->ksq_idle));
811245f3abfSJeff Roberson }
8120a016a05SJeff Roberson 
8130a016a05SJeff Roberson static void
8140a016a05SJeff Roberson kseq_setup(struct kseq *kseq)
8150a016a05SJeff Roberson {
81615dc847eSJeff Roberson 	runq_init(&kseq->ksq_timeshare[0]);
81715dc847eSJeff Roberson 	runq_init(&kseq->ksq_timeshare[1]);
818a8949de2SJeff Roberson 	runq_init(&kseq->ksq_idle);
81915dc847eSJeff Roberson 	kseq->ksq_curr = &kseq->ksq_timeshare[0];
82015dc847eSJeff Roberson 	kseq->ksq_next = &kseq->ksq_timeshare[1];
8217cd650a9SJeff Roberson 	kseq->ksq_load = 0;
822ef1134c9SJeff Roberson 	kseq->ksq_load_timeshare = 0;
8230a016a05SJeff Roberson }
8240a016a05SJeff Roberson 
82535e6168fSJeff Roberson static void
82635e6168fSJeff Roberson sched_setup(void *dummy)
82735e6168fSJeff Roberson {
8280ec896fdSJeff Roberson #ifdef SMP
829cac77d04SJeff Roberson 	int balance_groups;
83035e6168fSJeff Roberson 	int i;
8310ec896fdSJeff Roberson #endif
83235e6168fSJeff Roberson 
833e493a5d9SJeff Roberson 	slice_min = (hz/100);	/* 10ms */
834e493a5d9SJeff Roberson 	slice_max = (hz/7);	/* ~140ms */
835e1f89c22SJeff Roberson 
836356500a3SJeff Roberson #ifdef SMP
837cac77d04SJeff Roberson 	balance_groups = 0;
83880f86c9fSJeff Roberson 	/*
83980f86c9fSJeff Roberson 	 * Initialize the kseqs.
84080f86c9fSJeff Roberson 	 */
841749d01b0SJeff Roberson 	for (i = 0; i < MAXCPU; i++) {
84280f86c9fSJeff Roberson 		struct kseq *ksq;
84380f86c9fSJeff Roberson 
84480f86c9fSJeff Roberson 		ksq = &kseq_cpu[i];
84580f86c9fSJeff Roberson 		ksq->ksq_assigned = NULL;
846749d01b0SJeff Roberson 		kseq_setup(&kseq_cpu[i]);
84780f86c9fSJeff Roberson 	}
84880f86c9fSJeff Roberson 	if (smp_topology == NULL) {
84980f86c9fSJeff Roberson 		struct kseq_group *ksg;
85080f86c9fSJeff Roberson 		struct kseq *ksq;
85180f86c9fSJeff Roberson 
85280f86c9fSJeff Roberson 		for (i = 0; i < MAXCPU; i++) {
85380f86c9fSJeff Roberson 			ksq = &kseq_cpu[i];
85480f86c9fSJeff Roberson 			ksg = &kseq_groups[i];
85580f86c9fSJeff Roberson 			/*
856dc03363dSJeff Roberson 			 * Setup a kseq group with one member.
85780f86c9fSJeff Roberson 			 */
85880f86c9fSJeff Roberson 			ksq->ksq_transferable = 0;
85980f86c9fSJeff Roberson 			ksq->ksq_group = ksg;
86080f86c9fSJeff Roberson 			ksg->ksg_cpus = 1;
86180f86c9fSJeff Roberson 			ksg->ksg_idlemask = 0;
86280f86c9fSJeff Roberson 			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
863cac77d04SJeff Roberson 			ksg->ksg_load = 0;
86480f86c9fSJeff Roberson 			ksg->ksg_transferable = 0;
86580f86c9fSJeff Roberson 			LIST_INIT(&ksg->ksg_members);
86680f86c9fSJeff Roberson 			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
867749d01b0SJeff Roberson 		}
868749d01b0SJeff Roberson 	} else {
86980f86c9fSJeff Roberson 		struct kseq_group *ksg;
87080f86c9fSJeff Roberson 		struct cpu_group *cg;
871749d01b0SJeff Roberson 		int j;
872749d01b0SJeff Roberson 
873749d01b0SJeff Roberson 		for (i = 0; i < smp_topology->ct_count; i++) {
874749d01b0SJeff Roberson 			cg = &smp_topology->ct_group[i];
87580f86c9fSJeff Roberson 			ksg = &kseq_groups[i];
87680f86c9fSJeff Roberson 			/*
87780f86c9fSJeff Roberson 			 * Initialize the group.
87880f86c9fSJeff Roberson 			 */
87980f86c9fSJeff Roberson 			ksg->ksg_idlemask = 0;
880cac77d04SJeff Roberson 			ksg->ksg_load = 0;
88180f86c9fSJeff Roberson 			ksg->ksg_transferable = 0;
88280f86c9fSJeff Roberson 			ksg->ksg_cpus = cg->cg_count;
88380f86c9fSJeff Roberson 			ksg->ksg_cpumask = cg->cg_mask;
88480f86c9fSJeff Roberson 			LIST_INIT(&ksg->ksg_members);
88580f86c9fSJeff Roberson 			/*
88680f86c9fSJeff Roberson 			 * Find all of the group members and add them.
88780f86c9fSJeff Roberson 			 */
88880f86c9fSJeff Roberson 			for (j = 0; j < MAXCPU; j++) {
88980f86c9fSJeff Roberson 				if ((cg->cg_mask & (1 << j)) != 0) {
89080f86c9fSJeff Roberson 					if (ksg->ksg_mask == 0)
89180f86c9fSJeff Roberson 						ksg->ksg_mask = 1 << j;
89280f86c9fSJeff Roberson 					kseq_cpu[j].ksq_transferable = 0;
89380f86c9fSJeff Roberson 					kseq_cpu[j].ksq_group = ksg;
89480f86c9fSJeff Roberson 					LIST_INSERT_HEAD(&ksg->ksg_members,
89580f86c9fSJeff Roberson 					    &kseq_cpu[j], ksq_siblings);
89680f86c9fSJeff Roberson 				}
89780f86c9fSJeff Roberson 			}
898cac77d04SJeff Roberson 			if (ksg->ksg_cpus > 1)
899cac77d04SJeff Roberson 				balance_groups = 1;
900749d01b0SJeff Roberson 		}
901cac77d04SJeff Roberson 		ksg_maxid = smp_topology->ct_count - 1;
902749d01b0SJeff Roberson 	}
903cac77d04SJeff Roberson 	/*
904cac77d04SJeff Roberson 	 * Stagger the group and global load balancer so they do not
905cac77d04SJeff Roberson 	 * interfere with each other.
906cac77d04SJeff Roberson 	 */
907dc03363dSJeff Roberson 	bal_tick = ticks + hz;
908cac77d04SJeff Roberson 	if (balance_groups)
909dc03363dSJeff Roberson 		gbal_tick = ticks + (hz / 2);
910749d01b0SJeff Roberson #else
911749d01b0SJeff Roberson 	kseq_setup(KSEQ_SELF());
912356500a3SJeff Roberson #endif
913749d01b0SJeff Roberson 	mtx_lock_spin(&sched_lock);
914155b9987SJeff Roberson 	kseq_load_add(KSEQ_SELF(), &kse0);
915749d01b0SJeff Roberson 	mtx_unlock_spin(&sched_lock);
91635e6168fSJeff Roberson }
91735e6168fSJeff Roberson 
91835e6168fSJeff Roberson /*
91935e6168fSJeff Roberson  * Scale the scheduling priority according to the "interactivity" of this
92035e6168fSJeff Roberson  * process.
92135e6168fSJeff Roberson  */
92215dc847eSJeff Roberson static void
92335e6168fSJeff Roberson sched_priority(struct ksegrp *kg)
92435e6168fSJeff Roberson {
92535e6168fSJeff Roberson 	int pri;
92635e6168fSJeff Roberson 
92735e6168fSJeff Roberson 	if (kg->kg_pri_class != PRI_TIMESHARE)
92815dc847eSJeff Roberson 		return;
92935e6168fSJeff Roberson 
93015dc847eSJeff Roberson 	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
931e1f89c22SJeff Roberson 	pri += SCHED_PRI_BASE;
93235e6168fSJeff Roberson 	pri += kg->kg_nice;
93335e6168fSJeff Roberson 
93435e6168fSJeff Roberson 	if (pri > PRI_MAX_TIMESHARE)
93535e6168fSJeff Roberson 		pri = PRI_MAX_TIMESHARE;
93635e6168fSJeff Roberson 	else if (pri < PRI_MIN_TIMESHARE)
93735e6168fSJeff Roberson 		pri = PRI_MIN_TIMESHARE;
93835e6168fSJeff Roberson 
93935e6168fSJeff Roberson 	kg->kg_user_pri = pri;
94035e6168fSJeff Roberson 
94115dc847eSJeff Roberson 	return;
94235e6168fSJeff Roberson }
94335e6168fSJeff Roberson 
94435e6168fSJeff Roberson /*
945245f3abfSJeff Roberson  * Calculate a time slice based on the properties of the kseg and the runq
946a8949de2SJeff Roberson  * that we're on.  This is only for PRI_TIMESHARE ksegrps.
94735e6168fSJeff Roberson  */
948245f3abfSJeff Roberson static void
949245f3abfSJeff Roberson sched_slice(struct kse *ke)
95035e6168fSJeff Roberson {
95115dc847eSJeff Roberson 	struct kseq *kseq;
952245f3abfSJeff Roberson 	struct ksegrp *kg;
95335e6168fSJeff Roberson 
954245f3abfSJeff Roberson 	kg = ke->ke_ksegrp;
95515dc847eSJeff Roberson 	kseq = KSEQ_CPU(ke->ke_cpu);
95635e6168fSJeff Roberson 
957245f3abfSJeff Roberson 	/*
958245f3abfSJeff Roberson 	 * Rationale:
959245f3abfSJeff Roberson 	 * KSEs in interactive ksegs get the minimum slice so that we
960245f3abfSJeff Roberson 	 * quickly notice if it abuses its advantage.
961245f3abfSJeff Roberson 	 *
962245f3abfSJeff Roberson 	 * KSEs in non-interactive ksegs are assigned a slice that is
963245f3abfSJeff Roberson 	 * based on the ksegs nice value relative to the least nice kseg
964245f3abfSJeff Roberson 	 * on the run queue for this cpu.
965245f3abfSJeff Roberson 	 *
966245f3abfSJeff Roberson 	 * If the KSE is less nice than all others it gets the maximum
967245f3abfSJeff Roberson 	 * slice and other KSEs will adjust their slice relative to
968245f3abfSJeff Roberson 	 * this when they first expire.
969245f3abfSJeff Roberson 	 *
970245f3abfSJeff Roberson 	 * There is 20 point window that starts relative to the least
971245f3abfSJeff Roberson 	 * nice kse on the run queue.  Slice size is determined by
972245f3abfSJeff Roberson 	 * the kse distance from the last nice ksegrp.
973245f3abfSJeff Roberson 	 *
9747d1a81b4SJeff Roberson 	 * If the kse is outside of the window it will get no slice
9757d1a81b4SJeff Roberson 	 * and will be reevaluated each time it is selected on the
9767d1a81b4SJeff Roberson 	 * run queue.  The exception to this is nice 0 ksegs when
9777d1a81b4SJeff Roberson 	 * a nice -20 is running.  They are always granted a minimum
9787d1a81b4SJeff Roberson 	 * slice.
979245f3abfSJeff Roberson 	 */
98015dc847eSJeff Roberson 	if (!SCHED_INTERACTIVE(kg)) {
981245f3abfSJeff Roberson 		int nice;
982245f3abfSJeff Roberson 
98315dc847eSJeff Roberson 		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
984ef1134c9SJeff Roberson 		if (kseq->ksq_load_timeshare == 0 ||
98515dc847eSJeff Roberson 		    kg->kg_nice < kseq->ksq_nicemin)
986245f3abfSJeff Roberson 			ke->ke_slice = SCHED_SLICE_MAX;
9877d1a81b4SJeff Roberson 		else if (nice <= SCHED_SLICE_NTHRESH)
988245f3abfSJeff Roberson 			ke->ke_slice = SCHED_SLICE_NICE(nice);
9897d1a81b4SJeff Roberson 		else if (kg->kg_nice == 0)
9907d1a81b4SJeff Roberson 			ke->ke_slice = SCHED_SLICE_MIN;
991245f3abfSJeff Roberson 		else
992245f3abfSJeff Roberson 			ke->ke_slice = 0;
993245f3abfSJeff Roberson 	} else
9949b5f6f62SJeff Roberson 		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
99535e6168fSJeff Roberson 
99615dc847eSJeff Roberson 	CTR6(KTR_ULE,
99715dc847eSJeff Roberson 	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
99815dc847eSJeff Roberson 	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
999ef1134c9SJeff Roberson 	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
100015dc847eSJeff Roberson 
1001245f3abfSJeff Roberson 	return;
100235e6168fSJeff Roberson }
100335e6168fSJeff Roberson 
1004d322132cSJeff Roberson /*
1005d322132cSJeff Roberson  * This routine enforces a maximum limit on the amount of scheduling history
1006d322132cSJeff Roberson  * kept.  It is called after either the slptime or runtime is adjusted.
1007d322132cSJeff Roberson  * This routine will not operate correctly when slp or run times have been
1008d322132cSJeff Roberson  * adjusted to more than double their maximum.
1009d322132cSJeff Roberson  */
10104b60e324SJeff Roberson static void
10114b60e324SJeff Roberson sched_interact_update(struct ksegrp *kg)
10124b60e324SJeff Roberson {
1013d322132cSJeff Roberson 	int sum;
10143f741ca1SJeff Roberson 
1015d322132cSJeff Roberson 	sum = kg->kg_runtime + kg->kg_slptime;
1016d322132cSJeff Roberson 	if (sum < SCHED_SLP_RUN_MAX)
1017d322132cSJeff Roberson 		return;
1018d322132cSJeff Roberson 	/*
1019d322132cSJeff Roberson 	 * If we have exceeded by more than 1/5th then the algorithm below
1020d322132cSJeff Roberson 	 * will not bring us back into range.  Dividing by two here forces
1021d322132cSJeff Roberson 	 * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1022d322132cSJeff Roberson 	 */
102337a35e4aSJeff Roberson 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1024d322132cSJeff Roberson 		kg->kg_runtime /= 2;
1025d322132cSJeff Roberson 		kg->kg_slptime /= 2;
1026d322132cSJeff Roberson 		return;
1027d322132cSJeff Roberson 	}
1028d322132cSJeff Roberson 	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1029d322132cSJeff Roberson 	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1030d322132cSJeff Roberson }
1031d322132cSJeff Roberson 
1032d322132cSJeff Roberson static void
1033d322132cSJeff Roberson sched_interact_fork(struct ksegrp *kg)
1034d322132cSJeff Roberson {
1035d322132cSJeff Roberson 	int ratio;
1036d322132cSJeff Roberson 	int sum;
1037d322132cSJeff Roberson 
1038d322132cSJeff Roberson 	sum = kg->kg_runtime + kg->kg_slptime;
1039d322132cSJeff Roberson 	if (sum > SCHED_SLP_RUN_FORK) {
1040d322132cSJeff Roberson 		ratio = sum / SCHED_SLP_RUN_FORK;
1041d322132cSJeff Roberson 		kg->kg_runtime /= ratio;
1042d322132cSJeff Roberson 		kg->kg_slptime /= ratio;
10434b60e324SJeff Roberson 	}
10444b60e324SJeff Roberson }
10454b60e324SJeff Roberson 
1046e1f89c22SJeff Roberson static int
1047e1f89c22SJeff Roberson sched_interact_score(struct ksegrp *kg)
1048e1f89c22SJeff Roberson {
1049210491d3SJeff Roberson 	int div;
1050e1f89c22SJeff Roberson 
1051e1f89c22SJeff Roberson 	if (kg->kg_runtime > kg->kg_slptime) {
1052210491d3SJeff Roberson 		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1053210491d3SJeff Roberson 		return (SCHED_INTERACT_HALF +
1054210491d3SJeff Roberson 		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1055210491d3SJeff Roberson 	} if (kg->kg_slptime > kg->kg_runtime) {
1056210491d3SJeff Roberson 		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1057210491d3SJeff Roberson 		return (kg->kg_runtime / div);
1058e1f89c22SJeff Roberson 	}
1059e1f89c22SJeff Roberson 
1060210491d3SJeff Roberson 	/*
1061210491d3SJeff Roberson 	 * This can happen if slptime and runtime are 0.
1062210491d3SJeff Roberson 	 */
1063210491d3SJeff Roberson 	return (0);
1064e1f89c22SJeff Roberson 
1065e1f89c22SJeff Roberson }
1066e1f89c22SJeff Roberson 
106715dc847eSJeff Roberson /*
106815dc847eSJeff Roberson  * This is only somewhat accurate since given many processes of the same
106915dc847eSJeff Roberson  * priority they will switch when their slices run out, which will be
107015dc847eSJeff Roberson  * at most SCHED_SLICE_MAX.
107115dc847eSJeff Roberson  */
107235e6168fSJeff Roberson int
107335e6168fSJeff Roberson sched_rr_interval(void)
107435e6168fSJeff Roberson {
107535e6168fSJeff Roberson 	return (SCHED_SLICE_MAX);
107635e6168fSJeff Roberson }
107735e6168fSJeff Roberson 
107822bf7d9aSJeff Roberson static void
107935e6168fSJeff Roberson sched_pctcpu_update(struct kse *ke)
108035e6168fSJeff Roberson {
108135e6168fSJeff Roberson 	/*
108235e6168fSJeff Roberson 	 * Adjust counters and watermark for pctcpu calc.
1083210491d3SJeff Roberson 	 */
108481de51bfSJeff Roberson 	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1085210491d3SJeff Roberson 		/*
108681de51bfSJeff Roberson 		 * Shift the tick count out so that the divide doesn't
108781de51bfSJeff Roberson 		 * round away our results.
108865c8760dSJeff Roberson 		 */
108965c8760dSJeff Roberson 		ke->ke_ticks <<= 10;
109081de51bfSJeff Roberson 		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
109135e6168fSJeff Roberson 			    SCHED_CPU_TICKS;
109265c8760dSJeff Roberson 		ke->ke_ticks >>= 10;
109381de51bfSJeff Roberson 	} else
109481de51bfSJeff Roberson 		ke->ke_ticks = 0;
109535e6168fSJeff Roberson 	ke->ke_ltick = ticks;
109635e6168fSJeff Roberson 	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
109735e6168fSJeff Roberson }
109835e6168fSJeff Roberson 
109935e6168fSJeff Roberson void
110035e6168fSJeff Roberson sched_prio(struct thread *td, u_char prio)
110135e6168fSJeff Roberson {
11023f741ca1SJeff Roberson 	struct kse *ke;
110335e6168fSJeff Roberson 
11043f741ca1SJeff Roberson 	ke = td->td_kse;
110535e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
110635e6168fSJeff Roberson 	if (TD_ON_RUNQ(td)) {
11073f741ca1SJeff Roberson 		/*
11083f741ca1SJeff Roberson 		 * If the priority has been elevated due to priority
11093f741ca1SJeff Roberson 		 * propagation, we may have to move ourselves to a new
11103f741ca1SJeff Roberson 		 * queue.  We still call adjustrunqueue below in case kse
11113f741ca1SJeff Roberson 		 * needs to fix things up.
11123f741ca1SJeff Roberson 		 */
1113769a3635SJeff Roberson 		if (prio < td->td_priority && ke &&
1114769a3635SJeff Roberson 		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
111522bf7d9aSJeff Roberson 		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
11163f741ca1SJeff Roberson 			runq_remove(ke->ke_runq, ke);
11173f741ca1SJeff Roberson 			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
11183f741ca1SJeff Roberson 			runq_add(ke->ke_runq, ke);
111935e6168fSJeff Roberson 		}
11203f741ca1SJeff Roberson 		adjustrunqueue(td, prio);
11213f741ca1SJeff Roberson 	} else
11223f741ca1SJeff Roberson 		td->td_priority = prio;
112335e6168fSJeff Roberson }
112435e6168fSJeff Roberson 
112535e6168fSJeff Roberson void
1126ae53b483SJeff Roberson sched_switch(struct thread *td)
112735e6168fSJeff Roberson {
1128ae53b483SJeff Roberson 	struct thread *newtd;
112935e6168fSJeff Roberson 	struct kse *ke;
113035e6168fSJeff Roberson 
113135e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
113235e6168fSJeff Roberson 
113335e6168fSJeff Roberson 	ke = td->td_kse;
113435e6168fSJeff Roberson 
113535e6168fSJeff Roberson 	td->td_last_kse = ke;
1136060563ecSJulian Elischer         td->td_lastcpu = td->td_oncpu;
1137060563ecSJulian Elischer 	td->td_oncpu = NOCPU;
11384a338afdSJulian Elischer         td->td_flags &= ~TDF_NEEDRESCHED;
113935e6168fSJeff Roberson 
1140b11fdad0SJeff Roberson 	/*
1141b11fdad0SJeff Roberson 	 * If the KSE has been assigned it may be in the process of switching
1142b11fdad0SJeff Roberson 	 * to the new cpu.  This is the case in sched_bind().
1143b11fdad0SJeff Roberson 	 */
1144b11fdad0SJeff Roberson 	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
114535e6168fSJeff Roberson 		if (TD_IS_RUNNING(td)) {
1146155b9987SJeff Roberson 			kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1147ab2baa72SDavid Xu 			setrunqueue(td);
11480e0f6266SJeff Roberson 		} else {
114933916c36SJeff Roberson 			if (ke->ke_runq) {
1150155b9987SJeff Roberson 				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
115133916c36SJeff Roberson 			} else if ((td->td_flags & TDF_IDLETD) == 0)
115233916c36SJeff Roberson 				backtrace();
115335e6168fSJeff Roberson 			/*
115435e6168fSJeff Roberson 			 * We will not be on the run queue. So we must be
115535e6168fSJeff Roberson 			 * sleeping or similar.
115635e6168fSJeff Roberson 			 */
11570e2a4d3aSDavid Xu 			if (td->td_proc->p_flag & P_SA)
115835e6168fSJeff Roberson 				kse_reassign(ke);
11590e0f6266SJeff Roberson 		}
1160b11fdad0SJeff Roberson 	}
1161ae53b483SJeff Roberson 	newtd = choosethread();
1162ae53b483SJeff Roberson 	if (td != newtd)
1163ae53b483SJeff Roberson 		cpu_switch(td, newtd);
1164ae53b483SJeff Roberson 	sched_lock.mtx_lock = (uintptr_t)td;
116535e6168fSJeff Roberson 
1166060563ecSJulian Elischer 	td->td_oncpu = PCPU_GET(cpuid);
116735e6168fSJeff Roberson }
116835e6168fSJeff Roberson 
116935e6168fSJeff Roberson void
117035e6168fSJeff Roberson sched_nice(struct ksegrp *kg, int nice)
117135e6168fSJeff Roberson {
117215dc847eSJeff Roberson 	struct kse *ke;
117335e6168fSJeff Roberson 	struct thread *td;
117415dc847eSJeff Roberson 	struct kseq *kseq;
117535e6168fSJeff Roberson 
11760b5318c8SJohn Baldwin 	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
11770b5318c8SJohn Baldwin 	mtx_assert(&sched_lock, MA_OWNED);
117815dc847eSJeff Roberson 	/*
117915dc847eSJeff Roberson 	 * We need to adjust the nice counts for running KSEs.
118015dc847eSJeff Roberson 	 */
118115dc847eSJeff Roberson 	if (kg->kg_pri_class == PRI_TIMESHARE)
118215dc847eSJeff Roberson 		FOREACH_KSE_IN_GROUP(kg, ke) {
1183d07ac847SJeff Roberson 			if (ke->ke_runq == NULL)
118415dc847eSJeff Roberson 				continue;
118515dc847eSJeff Roberson 			kseq = KSEQ_CPU(ke->ke_cpu);
118615dc847eSJeff Roberson 			kseq_nice_rem(kseq, kg->kg_nice);
118715dc847eSJeff Roberson 			kseq_nice_add(kseq, nice);
118815dc847eSJeff Roberson 		}
118935e6168fSJeff Roberson 	kg->kg_nice = nice;
119035e6168fSJeff Roberson 	sched_priority(kg);
119115dc847eSJeff Roberson 	FOREACH_THREAD_IN_GROUP(kg, td)
11924a338afdSJulian Elischer 		td->td_flags |= TDF_NEEDRESCHED;
119335e6168fSJeff Roberson }
119435e6168fSJeff Roberson 
119535e6168fSJeff Roberson void
119644f3b092SJohn Baldwin sched_sleep(struct thread *td)
119735e6168fSJeff Roberson {
119835e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
119935e6168fSJeff Roberson 
120035e6168fSJeff Roberson 	td->td_slptime = ticks;
120144f3b092SJohn Baldwin 	td->td_base_pri = td->td_priority;
120235e6168fSJeff Roberson 
120315dc847eSJeff Roberson 	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
120415dc847eSJeff Roberson 	    td->td_kse, td->td_slptime);
120535e6168fSJeff Roberson }
120635e6168fSJeff Roberson 
120735e6168fSJeff Roberson void
120835e6168fSJeff Roberson sched_wakeup(struct thread *td)
120935e6168fSJeff Roberson {
121035e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
121135e6168fSJeff Roberson 
121235e6168fSJeff Roberson 	/*
121335e6168fSJeff Roberson 	 * Let the kseg know how long we slept for.  This is because process
121435e6168fSJeff Roberson 	 * interactivity behavior is modeled in the kseg.
121535e6168fSJeff Roberson 	 */
121635e6168fSJeff Roberson 	if (td->td_slptime) {
1217f1e8dc4aSJeff Roberson 		struct ksegrp *kg;
121815dc847eSJeff Roberson 		int hzticks;
1219f1e8dc4aSJeff Roberson 
1220f1e8dc4aSJeff Roberson 		kg = td->td_ksegrp;
1221d322132cSJeff Roberson 		hzticks = (ticks - td->td_slptime) << 10;
1222d322132cSJeff Roberson 		if (hzticks >= SCHED_SLP_RUN_MAX) {
1223d322132cSJeff Roberson 			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1224d322132cSJeff Roberson 			kg->kg_runtime = 1;
1225d322132cSJeff Roberson 		} else {
1226d322132cSJeff Roberson 			kg->kg_slptime += hzticks;
12274b60e324SJeff Roberson 			sched_interact_update(kg);
1228d322132cSJeff Roberson 		}
1229f1e8dc4aSJeff Roberson 		sched_priority(kg);
12304b60e324SJeff Roberson 		if (td->td_kse)
12314b60e324SJeff Roberson 			sched_slice(td->td_kse);
123215dc847eSJeff Roberson 		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
123315dc847eSJeff Roberson 		    td->td_kse, hzticks);
123435e6168fSJeff Roberson 		td->td_slptime = 0;
1235f1e8dc4aSJeff Roberson 	}
123635e6168fSJeff Roberson 	setrunqueue(td);
123735e6168fSJeff Roberson }
123835e6168fSJeff Roberson 
123935e6168fSJeff Roberson /*
124035e6168fSJeff Roberson  * Penalize the parent for creating a new child and initialize the child's
124135e6168fSJeff Roberson  * priority.
124235e6168fSJeff Roberson  */
124335e6168fSJeff Roberson void
124415dc847eSJeff Roberson sched_fork(struct proc *p, struct proc *p1)
124535e6168fSJeff Roberson {
124635e6168fSJeff Roberson 
124735e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
124835e6168fSJeff Roberson 
124915dc847eSJeff Roberson 	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
125015dc847eSJeff Roberson 	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
125115dc847eSJeff Roberson 	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
125215dc847eSJeff Roberson }
125315dc847eSJeff Roberson 
125415dc847eSJeff Roberson void
125515dc847eSJeff Roberson sched_fork_kse(struct kse *ke, struct kse *child)
125615dc847eSJeff Roberson {
12572056d0a1SJohn Baldwin 
1258210491d3SJeff Roberson 	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1259093c05e3SJeff Roberson 	child->ke_cpu = ke->ke_cpu;
126015dc847eSJeff Roberson 	child->ke_runq = NULL;
126115dc847eSJeff Roberson 
1262736c97c7SJeff Roberson 	/* Grab our parents cpu estimation information. */
1263736c97c7SJeff Roberson 	child->ke_ticks = ke->ke_ticks;
1264736c97c7SJeff Roberson 	child->ke_ltick = ke->ke_ltick;
1265736c97c7SJeff Roberson 	child->ke_ftick = ke->ke_ftick;
126615dc847eSJeff Roberson }
126715dc847eSJeff Roberson 
126815dc847eSJeff Roberson void
126915dc847eSJeff Roberson sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
127015dc847eSJeff Roberson {
12712056d0a1SJohn Baldwin 	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1272210491d3SJeff Roberson 
1273d322132cSJeff Roberson 	child->kg_slptime = kg->kg_slptime;
1274d322132cSJeff Roberson 	child->kg_runtime = kg->kg_runtime;
1275d322132cSJeff Roberson 	child->kg_user_pri = kg->kg_user_pri;
1276d322132cSJeff Roberson 	child->kg_nice = kg->kg_nice;
1277d322132cSJeff Roberson 	sched_interact_fork(child);
12784b60e324SJeff Roberson 	kg->kg_runtime += tickincr << 10;
12794b60e324SJeff Roberson 	sched_interact_update(kg);
128015dc847eSJeff Roberson 
1281d322132cSJeff Roberson 	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1282d322132cSJeff Roberson 	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1283d322132cSJeff Roberson 	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1284c9f25d8fSJeff Roberson }
1285c9f25d8fSJeff Roberson 
128615dc847eSJeff Roberson void
128715dc847eSJeff Roberson sched_fork_thread(struct thread *td, struct thread *child)
128815dc847eSJeff Roberson {
128915dc847eSJeff Roberson }
129015dc847eSJeff Roberson 
129115dc847eSJeff Roberson void
129215dc847eSJeff Roberson sched_class(struct ksegrp *kg, int class)
129315dc847eSJeff Roberson {
129415dc847eSJeff Roberson 	struct kseq *kseq;
129515dc847eSJeff Roberson 	struct kse *ke;
1296ef1134c9SJeff Roberson 	int nclass;
1297ef1134c9SJeff Roberson 	int oclass;
129815dc847eSJeff Roberson 
12992056d0a1SJohn Baldwin 	mtx_assert(&sched_lock, MA_OWNED);
130015dc847eSJeff Roberson 	if (kg->kg_pri_class == class)
130115dc847eSJeff Roberson 		return;
130215dc847eSJeff Roberson 
1303ef1134c9SJeff Roberson 	nclass = PRI_BASE(class);
1304ef1134c9SJeff Roberson 	oclass = PRI_BASE(kg->kg_pri_class);
130515dc847eSJeff Roberson 	FOREACH_KSE_IN_GROUP(kg, ke) {
130615dc847eSJeff Roberson 		if (ke->ke_state != KES_ONRUNQ &&
130715dc847eSJeff Roberson 		    ke->ke_state != KES_THREAD)
130815dc847eSJeff Roberson 			continue;
130915dc847eSJeff Roberson 		kseq = KSEQ_CPU(ke->ke_cpu);
131015dc847eSJeff Roberson 
1311ef1134c9SJeff Roberson #ifdef SMP
1312155b9987SJeff Roberson 		/*
1313155b9987SJeff Roberson 		 * On SMP if we're on the RUNQ we must adjust the transferable
1314155b9987SJeff Roberson 		 * count because could be changing to or from an interrupt
1315155b9987SJeff Roberson 		 * class.
1316155b9987SJeff Roberson 		 */
1317155b9987SJeff Roberson 		if (ke->ke_state == KES_ONRUNQ) {
131880f86c9fSJeff Roberson 			if (KSE_CAN_MIGRATE(ke, oclass)) {
131980f86c9fSJeff Roberson 				kseq->ksq_transferable--;
132080f86c9fSJeff Roberson 				kseq->ksq_group->ksg_transferable--;
132180f86c9fSJeff Roberson 			}
132280f86c9fSJeff Roberson 			if (KSE_CAN_MIGRATE(ke, nclass)) {
132380f86c9fSJeff Roberson 				kseq->ksq_transferable++;
132480f86c9fSJeff Roberson 				kseq->ksq_group->ksg_transferable++;
132580f86c9fSJeff Roberson 			}
1326155b9987SJeff Roberson 		}
1327ef1134c9SJeff Roberson #endif
1328155b9987SJeff Roberson 		if (oclass == PRI_TIMESHARE) {
1329ef1134c9SJeff Roberson 			kseq->ksq_load_timeshare--;
133015dc847eSJeff Roberson 			kseq_nice_rem(kseq, kg->kg_nice);
1331155b9987SJeff Roberson 		}
1332155b9987SJeff Roberson 		if (nclass == PRI_TIMESHARE) {
1333155b9987SJeff Roberson 			kseq->ksq_load_timeshare++;
133415dc847eSJeff Roberson 			kseq_nice_add(kseq, kg->kg_nice);
133515dc847eSJeff Roberson 		}
1336155b9987SJeff Roberson 	}
133715dc847eSJeff Roberson 
133815dc847eSJeff Roberson 	kg->kg_pri_class = class;
133935e6168fSJeff Roberson }
134035e6168fSJeff Roberson 
134135e6168fSJeff Roberson /*
134235e6168fSJeff Roberson  * Return some of the child's priority and interactivity to the parent.
134335e6168fSJeff Roberson  */
134435e6168fSJeff Roberson void
134515dc847eSJeff Roberson sched_exit(struct proc *p, struct proc *child)
134635e6168fSJeff Roberson {
134735e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
1348141ad61cSJeff Roberson 	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1349210491d3SJeff Roberson 	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1350141ad61cSJeff Roberson }
1351141ad61cSJeff Roberson 
1352141ad61cSJeff Roberson void
1353141ad61cSJeff Roberson sched_exit_kse(struct kse *ke, struct kse *child)
1354141ad61cSJeff Roberson {
1355155b9987SJeff Roberson 	kseq_load_rem(KSEQ_CPU(child->ke_cpu), child);
1356141ad61cSJeff Roberson }
1357141ad61cSJeff Roberson 
1358141ad61cSJeff Roberson void
1359141ad61cSJeff Roberson sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1360141ad61cSJeff Roberson {
13614b60e324SJeff Roberson 	/* kg->kg_slptime += child->kg_slptime; */
1362210491d3SJeff Roberson 	kg->kg_runtime += child->kg_runtime;
13634b60e324SJeff Roberson 	sched_interact_update(kg);
1364141ad61cSJeff Roberson }
1365141ad61cSJeff Roberson 
1366141ad61cSJeff Roberson void
1367141ad61cSJeff Roberson sched_exit_thread(struct thread *td, struct thread *child)
1368141ad61cSJeff Roberson {
136935e6168fSJeff Roberson }
137035e6168fSJeff Roberson 
137135e6168fSJeff Roberson void
13727cf90fb3SJeff Roberson sched_clock(struct thread *td)
137335e6168fSJeff Roberson {
137435e6168fSJeff Roberson 	struct kseq *kseq;
13750a016a05SJeff Roberson 	struct ksegrp *kg;
13767cf90fb3SJeff Roberson 	struct kse *ke;
137735e6168fSJeff Roberson 
1378dc03363dSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
1379dc03363dSJeff Roberson #ifdef SMP
1380dc03363dSJeff Roberson 	if (ticks == bal_tick)
1381dc03363dSJeff Roberson 		sched_balance();
1382dc03363dSJeff Roberson 	if (ticks == gbal_tick)
1383dc03363dSJeff Roberson 		sched_balance_groups();
1384dc03363dSJeff Roberson #endif
138515dc847eSJeff Roberson 	/*
138615dc847eSJeff Roberson 	 * sched_setup() apparently happens prior to stathz being set.  We
138715dc847eSJeff Roberson 	 * need to resolve the timers earlier in the boot so we can avoid
138815dc847eSJeff Roberson 	 * calculating this here.
138915dc847eSJeff Roberson 	 */
139015dc847eSJeff Roberson 	if (realstathz == 0) {
139115dc847eSJeff Roberson 		realstathz = stathz ? stathz : hz;
139215dc847eSJeff Roberson 		tickincr = hz / realstathz;
139315dc847eSJeff Roberson 		/*
139415dc847eSJeff Roberson 		 * XXX This does not work for values of stathz that are much
139515dc847eSJeff Roberson 		 * larger than hz.
139615dc847eSJeff Roberson 		 */
139715dc847eSJeff Roberson 		if (tickincr == 0)
139815dc847eSJeff Roberson 			tickincr = 1;
139915dc847eSJeff Roberson 	}
140035e6168fSJeff Roberson 
14017cf90fb3SJeff Roberson 	ke = td->td_kse;
140215dc847eSJeff Roberson 	kg = ke->ke_ksegrp;
140335e6168fSJeff Roberson 
14040a016a05SJeff Roberson 	/* Adjust ticks for pctcpu */
140565c8760dSJeff Roberson 	ke->ke_ticks++;
1406d465fb95SJeff Roberson 	ke->ke_ltick = ticks;
1407a8949de2SJeff Roberson 
1408d465fb95SJeff Roberson 	/* Go up to one second beyond our max and then trim back down */
1409d465fb95SJeff Roberson 	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1410d465fb95SJeff Roberson 		sched_pctcpu_update(ke);
1411d465fb95SJeff Roberson 
141243fdafb1SJulian Elischer 	if (td->td_flags & TDF_IDLETD)
141335e6168fSJeff Roberson 		return;
14140a016a05SJeff Roberson 
141515dc847eSJeff Roberson 	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
141615dc847eSJeff Roberson 	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
14173f741ca1SJeff Roberson 	/*
1418a8949de2SJeff Roberson 	 * We only do slicing code for TIMESHARE ksegrps.
1419a8949de2SJeff Roberson 	 */
1420a8949de2SJeff Roberson 	if (kg->kg_pri_class != PRI_TIMESHARE)
1421a8949de2SJeff Roberson 		return;
1422a8949de2SJeff Roberson 	/*
142315dc847eSJeff Roberson 	 * We used a tick charge it to the ksegrp so that we can compute our
142415dc847eSJeff Roberson 	 * interactivity.
142515dc847eSJeff Roberson 	 */
142615dc847eSJeff Roberson 	kg->kg_runtime += tickincr << 10;
14274b60e324SJeff Roberson 	sched_interact_update(kg);
1428407b0157SJeff Roberson 
142935e6168fSJeff Roberson 	/*
143035e6168fSJeff Roberson 	 * We used up one time slice.
143135e6168fSJeff Roberson 	 */
1432093c05e3SJeff Roberson 	if (--ke->ke_slice > 0)
143315dc847eSJeff Roberson 		return;
143435e6168fSJeff Roberson 	/*
143515dc847eSJeff Roberson 	 * We're out of time, recompute priorities and requeue.
143635e6168fSJeff Roberson 	 */
1437093c05e3SJeff Roberson 	kseq = KSEQ_SELF();
1438155b9987SJeff Roberson 	kseq_load_rem(kseq, ke);
1439e1f89c22SJeff Roberson 	sched_priority(kg);
144015dc847eSJeff Roberson 	sched_slice(ke);
144115dc847eSJeff Roberson 	if (SCHED_CURR(kg, ke))
144215dc847eSJeff Roberson 		ke->ke_runq = kseq->ksq_curr;
144315dc847eSJeff Roberson 	else
144415dc847eSJeff Roberson 		ke->ke_runq = kseq->ksq_next;
1445155b9987SJeff Roberson 	kseq_load_add(kseq, ke);
14464a338afdSJulian Elischer 	td->td_flags |= TDF_NEEDRESCHED;
144735e6168fSJeff Roberson }
144835e6168fSJeff Roberson 
144935e6168fSJeff Roberson int
145035e6168fSJeff Roberson sched_runnable(void)
145135e6168fSJeff Roberson {
145235e6168fSJeff Roberson 	struct kseq *kseq;
1453b90816f1SJeff Roberson 	int load;
145435e6168fSJeff Roberson 
1455b90816f1SJeff Roberson 	load = 1;
1456b90816f1SJeff Roberson 
14570a016a05SJeff Roberson 	kseq = KSEQ_SELF();
145822bf7d9aSJeff Roberson #ifdef SMP
145946f8b265SJeff Roberson 	if (kseq->ksq_assigned) {
146046f8b265SJeff Roberson 		mtx_lock_spin(&sched_lock);
146122bf7d9aSJeff Roberson 		kseq_assign(kseq);
146246f8b265SJeff Roberson 		mtx_unlock_spin(&sched_lock);
146346f8b265SJeff Roberson 	}
146422bf7d9aSJeff Roberson #endif
14653f741ca1SJeff Roberson 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
14663f741ca1SJeff Roberson 		if (kseq->ksq_load > 0)
14673f741ca1SJeff Roberson 			goto out;
14683f741ca1SJeff Roberson 	} else
14693f741ca1SJeff Roberson 		if (kseq->ksq_load - 1 > 0)
1470b90816f1SJeff Roberson 			goto out;
1471b90816f1SJeff Roberson 	load = 0;
1472b90816f1SJeff Roberson out:
1473b90816f1SJeff Roberson 	return (load);
147435e6168fSJeff Roberson }
147535e6168fSJeff Roberson 
147635e6168fSJeff Roberson void
147735e6168fSJeff Roberson sched_userret(struct thread *td)
147835e6168fSJeff Roberson {
147935e6168fSJeff Roberson 	struct ksegrp *kg;
148035e6168fSJeff Roberson 
148135e6168fSJeff Roberson 	kg = td->td_ksegrp;
148235e6168fSJeff Roberson 
148335e6168fSJeff Roberson 	if (td->td_priority != kg->kg_user_pri) {
148435e6168fSJeff Roberson 		mtx_lock_spin(&sched_lock);
148535e6168fSJeff Roberson 		td->td_priority = kg->kg_user_pri;
148635e6168fSJeff Roberson 		mtx_unlock_spin(&sched_lock);
148735e6168fSJeff Roberson 	}
148835e6168fSJeff Roberson }
148935e6168fSJeff Roberson 
1490c9f25d8fSJeff Roberson struct kse *
1491c9f25d8fSJeff Roberson sched_choose(void)
1492c9f25d8fSJeff Roberson {
14930a016a05SJeff Roberson 	struct kseq *kseq;
1494c9f25d8fSJeff Roberson 	struct kse *ke;
149515dc847eSJeff Roberson 
1496b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
149722bf7d9aSJeff Roberson 	kseq = KSEQ_SELF();
149815dc847eSJeff Roberson #ifdef SMP
149980f86c9fSJeff Roberson restart:
150022bf7d9aSJeff Roberson 	if (kseq->ksq_assigned)
150122bf7d9aSJeff Roberson 		kseq_assign(kseq);
150215dc847eSJeff Roberson #endif
150322bf7d9aSJeff Roberson 	ke = kseq_choose(kseq);
150435e6168fSJeff Roberson 	if (ke) {
150522bf7d9aSJeff Roberson #ifdef SMP
150622bf7d9aSJeff Roberson 		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
150780f86c9fSJeff Roberson 			if (kseq_idled(kseq) == 0)
150880f86c9fSJeff Roberson 				goto restart;
150922bf7d9aSJeff Roberson #endif
1510155b9987SJeff Roberson 		kseq_runq_rem(kseq, ke);
151135e6168fSJeff Roberson 		ke->ke_state = KES_THREAD;
1512245f3abfSJeff Roberson 
151315dc847eSJeff Roberson 		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
151415dc847eSJeff Roberson 			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
151515dc847eSJeff Roberson 			    ke, ke->ke_runq, ke->ke_slice,
151615dc847eSJeff Roberson 			    ke->ke_thread->td_priority);
1517245f3abfSJeff Roberson 		}
151815dc847eSJeff Roberson 		return (ke);
151935e6168fSJeff Roberson 	}
1520c9f25d8fSJeff Roberson #ifdef SMP
152180f86c9fSJeff Roberson 	if (kseq_idled(kseq) == 0)
152280f86c9fSJeff Roberson 		goto restart;
1523c9f25d8fSJeff Roberson #endif
152415dc847eSJeff Roberson 	return (NULL);
152535e6168fSJeff Roberson }
152635e6168fSJeff Roberson 
152735e6168fSJeff Roberson void
15287cf90fb3SJeff Roberson sched_add(struct thread *td)
152935e6168fSJeff Roberson {
1530c9f25d8fSJeff Roberson 	struct kseq *kseq;
153115dc847eSJeff Roberson 	struct ksegrp *kg;
15327cf90fb3SJeff Roberson 	struct kse *ke;
153322bf7d9aSJeff Roberson 	int class;
1534c9f25d8fSJeff Roberson 
153522bf7d9aSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
15367cf90fb3SJeff Roberson 	ke = td->td_kse;
15377cf90fb3SJeff Roberson 	kg = td->td_ksegrp;
153822bf7d9aSJeff Roberson 	if (ke->ke_flags & KEF_ASSIGNED)
153922bf7d9aSJeff Roberson 		return;
154022bf7d9aSJeff Roberson 	kseq = KSEQ_SELF();
1541c494ddc8SJeff Roberson 	KASSERT((ke->ke_thread != NULL),
1542c494ddc8SJeff Roberson 	    ("sched_add: No thread on KSE"));
15435d7ef00cSJeff Roberson 	KASSERT((ke->ke_thread->td_kse != NULL),
15445d7ef00cSJeff Roberson 	    ("sched_add: No KSE on thread"));
15455d7ef00cSJeff Roberson 	KASSERT(ke->ke_state != KES_ONRUNQ,
15465d7ef00cSJeff Roberson 	    ("sched_add: kse %p (%s) already in run queue", ke,
15475d7ef00cSJeff Roberson 	    ke->ke_proc->p_comm));
15485d7ef00cSJeff Roberson 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
15495d7ef00cSJeff Roberson 	    ("sched_add: process swapped out"));
15509bca28a7SJeff Roberson 	KASSERT(ke->ke_runq == NULL,
15519bca28a7SJeff Roberson 	    ("sched_add: KSE %p is still assigned to a run queue", ke));
15525d7ef00cSJeff Roberson 
155322bf7d9aSJeff Roberson 	class = PRI_BASE(kg->kg_pri_class);
155422bf7d9aSJeff Roberson 	switch (class) {
1555a8949de2SJeff Roberson 	case PRI_ITHD:
1556a8949de2SJeff Roberson 	case PRI_REALTIME:
155715dc847eSJeff Roberson 		ke->ke_runq = kseq->ksq_curr;
155815dc847eSJeff Roberson 		ke->ke_slice = SCHED_SLICE_MAX;
15597cd650a9SJeff Roberson 		ke->ke_cpu = PCPU_GET(cpuid);
1560a8949de2SJeff Roberson 		break;
1561a8949de2SJeff Roberson 	case PRI_TIMESHARE:
156215dc847eSJeff Roberson 		if (SCHED_CURR(kg, ke))
156315dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_curr;
156415dc847eSJeff Roberson 		else
156515dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_next;
156615dc847eSJeff Roberson 		break;
156715dc847eSJeff Roberson 	case PRI_IDLE:
156815dc847eSJeff Roberson 		/*
156915dc847eSJeff Roberson 		 * This is for priority prop.
157015dc847eSJeff Roberson 		 */
15713f741ca1SJeff Roberson 		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
157215dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_curr;
157315dc847eSJeff Roberson 		else
157415dc847eSJeff Roberson 			ke->ke_runq = &kseq->ksq_idle;
157515dc847eSJeff Roberson 		ke->ke_slice = SCHED_SLICE_MIN;
157615dc847eSJeff Roberson 		break;
157715dc847eSJeff Roberson 	default:
1578d322132cSJeff Roberson 		panic("Unknown pri class.");
1579a8949de2SJeff Roberson 		break;
1580a6ed4186SJeff Roberson 	}
158122bf7d9aSJeff Roberson #ifdef SMP
158280f86c9fSJeff Roberson 	if (ke->ke_cpu != PCPU_GET(cpuid)) {
158386e1c22aSJeff Roberson 		ke->ke_runq = NULL;
158480f86c9fSJeff Roberson 		kseq_notify(ke, ke->ke_cpu);
158580f86c9fSJeff Roberson 		return;
158680f86c9fSJeff Roberson 	}
158722bf7d9aSJeff Roberson 	/*
1588670c524fSJeff Roberson 	 * If we had been idle, clear our bit in the group and potentially
1589670c524fSJeff Roberson 	 * the global bitmap.  If not, see if we should transfer this thread.
159022bf7d9aSJeff Roberson 	 */
159180f86c9fSJeff Roberson 	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
159280f86c9fSJeff Roberson 	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
159380f86c9fSJeff Roberson 		/*
159480f86c9fSJeff Roberson 		 * Check to see if our group is unidling, and if so, remove it
159580f86c9fSJeff Roberson 		 * from the global idle mask.
159680f86c9fSJeff Roberson 		 */
159780f86c9fSJeff Roberson 		if (kseq->ksq_group->ksg_idlemask ==
159880f86c9fSJeff Roberson 		    kseq->ksq_group->ksg_cpumask)
159980f86c9fSJeff Roberson 			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
160080f86c9fSJeff Roberson 		/*
160180f86c9fSJeff Roberson 		 * Now remove ourselves from the group specific idle mask.
160280f86c9fSJeff Roberson 		 */
160380f86c9fSJeff Roberson 		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1604670c524fSJeff Roberson 	} else if (kseq->ksq_load > 1 && KSE_CAN_MIGRATE(ke, class))
1605670c524fSJeff Roberson 		if (kseq_transfer(kseq, ke, class))
1606670c524fSJeff Roberson 			return;
160722bf7d9aSJeff Roberson #endif
160822bf7d9aSJeff Roberson         if (td->td_priority < curthread->td_priority)
160922bf7d9aSJeff Roberson                 curthread->td_flags |= TDF_NEEDRESCHED;
1610a8949de2SJeff Roberson 
161135e6168fSJeff Roberson 	ke->ke_ksegrp->kg_runq_kses++;
161235e6168fSJeff Roberson 	ke->ke_state = KES_ONRUNQ;
161335e6168fSJeff Roberson 
1614155b9987SJeff Roberson 	kseq_runq_add(kseq, ke);
1615155b9987SJeff Roberson 	kseq_load_add(kseq, ke);
161635e6168fSJeff Roberson }
161735e6168fSJeff Roberson 
161835e6168fSJeff Roberson void
16197cf90fb3SJeff Roberson sched_rem(struct thread *td)
162035e6168fSJeff Roberson {
162115dc847eSJeff Roberson 	struct kseq *kseq;
16227cf90fb3SJeff Roberson 	struct kse *ke;
16237cf90fb3SJeff Roberson 
16247cf90fb3SJeff Roberson 	ke = td->td_kse;
162522bf7d9aSJeff Roberson 	/*
162622bf7d9aSJeff Roberson 	 * It is safe to just return here because sched_rem() is only ever
162722bf7d9aSJeff Roberson 	 * used in places where we're immediately going to add the
162822bf7d9aSJeff Roberson 	 * kse back on again.  In that case it'll be added with the correct
162922bf7d9aSJeff Roberson 	 * thread and priority when the caller drops the sched_lock.
163022bf7d9aSJeff Roberson 	 */
163122bf7d9aSJeff Roberson 	if (ke->ke_flags & KEF_ASSIGNED)
163222bf7d9aSJeff Roberson 		return;
163335e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
1634c494ddc8SJeff Roberson 	KASSERT((ke->ke_state == KES_ONRUNQ),
1635c494ddc8SJeff Roberson 	    ("sched_rem: KSE not on run queue"));
163635e6168fSJeff Roberson 
163735e6168fSJeff Roberson 	ke->ke_state = KES_THREAD;
163835e6168fSJeff Roberson 	ke->ke_ksegrp->kg_runq_kses--;
163915dc847eSJeff Roberson 	kseq = KSEQ_CPU(ke->ke_cpu);
1640155b9987SJeff Roberson 	kseq_runq_rem(kseq, ke);
1641155b9987SJeff Roberson 	kseq_load_rem(kseq, ke);
164235e6168fSJeff Roberson }
164335e6168fSJeff Roberson 
164435e6168fSJeff Roberson fixpt_t
16457cf90fb3SJeff Roberson sched_pctcpu(struct thread *td)
164635e6168fSJeff Roberson {
164735e6168fSJeff Roberson 	fixpt_t pctcpu;
16487cf90fb3SJeff Roberson 	struct kse *ke;
164935e6168fSJeff Roberson 
165035e6168fSJeff Roberson 	pctcpu = 0;
16517cf90fb3SJeff Roberson 	ke = td->td_kse;
1652484288deSJeff Roberson 	if (ke == NULL)
1653484288deSJeff Roberson 		return (0);
165435e6168fSJeff Roberson 
1655b90816f1SJeff Roberson 	mtx_lock_spin(&sched_lock);
165635e6168fSJeff Roberson 	if (ke->ke_ticks) {
165735e6168fSJeff Roberson 		int rtick;
165835e6168fSJeff Roberson 
1659210491d3SJeff Roberson 		/*
1660210491d3SJeff Roberson 		 * Don't update more frequently than twice a second.  Allowing
1661210491d3SJeff Roberson 		 * this causes the cpu usage to decay away too quickly due to
1662210491d3SJeff Roberson 		 * rounding errors.
1663210491d3SJeff Roberson 		 */
16642e227f04SJeff Roberson 		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
16652e227f04SJeff Roberson 		    ke->ke_ltick < (ticks - (hz / 2)))
166635e6168fSJeff Roberson 			sched_pctcpu_update(ke);
166735e6168fSJeff Roberson 		/* How many rtick per second ? */
1668210491d3SJeff Roberson 		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
16697121cce5SScott Long 		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
167035e6168fSJeff Roberson 	}
167135e6168fSJeff Roberson 
167235e6168fSJeff Roberson 	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1673828e7683SJohn Baldwin 	mtx_unlock_spin(&sched_lock);
167435e6168fSJeff Roberson 
167535e6168fSJeff Roberson 	return (pctcpu);
167635e6168fSJeff Roberson }
167735e6168fSJeff Roberson 
16789bacd788SJeff Roberson void
16799bacd788SJeff Roberson sched_bind(struct thread *td, int cpu)
16809bacd788SJeff Roberson {
16819bacd788SJeff Roberson 	struct kse *ke;
16829bacd788SJeff Roberson 
16839bacd788SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
16849bacd788SJeff Roberson 	ke = td->td_kse;
16859bacd788SJeff Roberson 	ke->ke_flags |= KEF_BOUND;
168680f86c9fSJeff Roberson #ifdef SMP
168780f86c9fSJeff Roberson 	if (PCPU_GET(cpuid) == cpu)
16889bacd788SJeff Roberson 		return;
16899bacd788SJeff Roberson 	/* sched_rem without the runq_remove */
16909bacd788SJeff Roberson 	ke->ke_state = KES_THREAD;
16919bacd788SJeff Roberson 	ke->ke_ksegrp->kg_runq_kses--;
1692155b9987SJeff Roberson 	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
16939bacd788SJeff Roberson 	kseq_notify(ke, cpu);
16949bacd788SJeff Roberson 	/* When we return from mi_switch we'll be on the correct cpu. */
169529bcc451SJeff Roberson 	mi_switch(SW_VOL);
16969bacd788SJeff Roberson #endif
16979bacd788SJeff Roberson }
16989bacd788SJeff Roberson 
16999bacd788SJeff Roberson void
17009bacd788SJeff Roberson sched_unbind(struct thread *td)
17019bacd788SJeff Roberson {
17029bacd788SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
17039bacd788SJeff Roberson 	td->td_kse->ke_flags &= ~KEF_BOUND;
17049bacd788SJeff Roberson }
17059bacd788SJeff Roberson 
170635e6168fSJeff Roberson int
170733916c36SJeff Roberson sched_load(void)
170833916c36SJeff Roberson {
170933916c36SJeff Roberson #ifdef SMP
171033916c36SJeff Roberson 	int total;
171133916c36SJeff Roberson 	int i;
171233916c36SJeff Roberson 
171333916c36SJeff Roberson 	total = 0;
171433916c36SJeff Roberson 	for (i = 0; i <= ksg_maxid; i++)
171533916c36SJeff Roberson 		total += KSEQ_GROUP(i)->ksg_load;
171633916c36SJeff Roberson 	return (total);
171733916c36SJeff Roberson #else
171833916c36SJeff Roberson 	return (KSEQ_SELF()->ksq_sysload);
171933916c36SJeff Roberson #endif
172033916c36SJeff Roberson }
172133916c36SJeff Roberson 
172233916c36SJeff Roberson int
172335e6168fSJeff Roberson sched_sizeof_kse(void)
172435e6168fSJeff Roberson {
172535e6168fSJeff Roberson 	return (sizeof(struct kse) + sizeof(struct ke_sched));
172635e6168fSJeff Roberson }
172735e6168fSJeff Roberson 
172835e6168fSJeff Roberson int
172935e6168fSJeff Roberson sched_sizeof_ksegrp(void)
173035e6168fSJeff Roberson {
173135e6168fSJeff Roberson 	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
173235e6168fSJeff Roberson }
173335e6168fSJeff Roberson 
173435e6168fSJeff Roberson int
173535e6168fSJeff Roberson sched_sizeof_proc(void)
173635e6168fSJeff Roberson {
173735e6168fSJeff Roberson 	return (sizeof(struct proc));
173835e6168fSJeff Roberson }
173935e6168fSJeff Roberson 
174035e6168fSJeff Roberson int
174135e6168fSJeff Roberson sched_sizeof_thread(void)
174235e6168fSJeff Roberson {
174335e6168fSJeff Roberson 	return (sizeof(struct thread) + sizeof(struct td_sched));
174435e6168fSJeff Roberson }
1745