xref: /freebsd/sys/kern/sched_ule.c (revision cac77d0422dca8cde7de7bfee09da967c4cd9fca)
135e6168fSJeff Roberson /*-
215dc847eSJeff Roberson  * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
335e6168fSJeff Roberson  * All rights reserved.
435e6168fSJeff Roberson  *
535e6168fSJeff Roberson  * Redistribution and use in source and binary forms, with or without
635e6168fSJeff Roberson  * modification, are permitted provided that the following conditions
735e6168fSJeff Roberson  * are met:
835e6168fSJeff Roberson  * 1. Redistributions of source code must retain the above copyright
935e6168fSJeff Roberson  *    notice unmodified, this list of conditions, and the following
1035e6168fSJeff Roberson  *    disclaimer.
1135e6168fSJeff Roberson  * 2. Redistributions in binary form must reproduce the above copyright
1235e6168fSJeff Roberson  *    notice, this list of conditions and the following disclaimer in the
1335e6168fSJeff Roberson  *    documentation and/or other materials provided with the distribution.
1435e6168fSJeff Roberson  *
1535e6168fSJeff Roberson  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
1635e6168fSJeff Roberson  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1735e6168fSJeff Roberson  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
1835e6168fSJeff Roberson  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
1935e6168fSJeff Roberson  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
2035e6168fSJeff Roberson  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2135e6168fSJeff Roberson  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2235e6168fSJeff Roberson  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2335e6168fSJeff Roberson  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
2435e6168fSJeff Roberson  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2535e6168fSJeff Roberson  */
2635e6168fSJeff Roberson 
27677b542eSDavid E. O'Brien #include <sys/cdefs.h>
28677b542eSDavid E. O'Brien __FBSDID("$FreeBSD$");
29677b542eSDavid E. O'Brien 
3035e6168fSJeff Roberson #include <sys/param.h>
3135e6168fSJeff Roberson #include <sys/systm.h>
3235e6168fSJeff Roberson #include <sys/kernel.h>
3335e6168fSJeff Roberson #include <sys/ktr.h>
3435e6168fSJeff Roberson #include <sys/lock.h>
3535e6168fSJeff Roberson #include <sys/mutex.h>
3635e6168fSJeff Roberson #include <sys/proc.h>
37245f3abfSJeff Roberson #include <sys/resource.h>
389bacd788SJeff Roberson #include <sys/resourcevar.h>
3935e6168fSJeff Roberson #include <sys/sched.h>
4035e6168fSJeff Roberson #include <sys/smp.h>
4135e6168fSJeff Roberson #include <sys/sx.h>
4235e6168fSJeff Roberson #include <sys/sysctl.h>
4335e6168fSJeff Roberson #include <sys/sysproto.h>
4435e6168fSJeff Roberson #include <sys/vmmeter.h>
4535e6168fSJeff Roberson #ifdef DDB
4635e6168fSJeff Roberson #include <ddb/ddb.h>
4735e6168fSJeff Roberson #endif
4835e6168fSJeff Roberson #ifdef KTRACE
4935e6168fSJeff Roberson #include <sys/uio.h>
5035e6168fSJeff Roberson #include <sys/ktrace.h>
5135e6168fSJeff Roberson #endif
5235e6168fSJeff Roberson 
5335e6168fSJeff Roberson #include <machine/cpu.h>
5422bf7d9aSJeff Roberson #include <machine/smp.h>
5535e6168fSJeff Roberson 
5615dc847eSJeff Roberson #define KTR_ULE         KTR_NFS
5715dc847eSJeff Roberson 
5835e6168fSJeff Roberson /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
5935e6168fSJeff Roberson /* XXX This is bogus compatability crap for ps */
6035e6168fSJeff Roberson static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
6135e6168fSJeff Roberson SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
6235e6168fSJeff Roberson 
6335e6168fSJeff Roberson static void sched_setup(void *dummy);
6435e6168fSJeff Roberson SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
6535e6168fSJeff Roberson 
6615dc847eSJeff Roberson static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
67e1f89c22SJeff Roberson 
6815dc847eSJeff Roberson static int sched_strict;
6915dc847eSJeff Roberson SYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
7015dc847eSJeff Roberson 
7115dc847eSJeff Roberson static int slice_min = 1;
7215dc847eSJeff Roberson SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
7315dc847eSJeff Roberson 
74210491d3SJeff Roberson static int slice_max = 10;
7515dc847eSJeff Roberson SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
7615dc847eSJeff Roberson 
7715dc847eSJeff Roberson int realstathz;
7815dc847eSJeff Roberson int tickincr = 1;
79783caefbSJeff Roberson 
80356500a3SJeff Roberson #ifdef SMP
81cac77d04SJeff Roberson /* Callouts to handle load balancing SMP systems. */
82356500a3SJeff Roberson static struct callout kseq_lb_callout;
83cac77d04SJeff Roberson static struct callout kseq_group_callout;
84356500a3SJeff Roberson #endif
85356500a3SJeff Roberson 
8635e6168fSJeff Roberson /*
8735e6168fSJeff Roberson  * These datastructures are allocated within their parent datastructure but
8835e6168fSJeff Roberson  * are scheduler specific.
8935e6168fSJeff Roberson  */
9035e6168fSJeff Roberson 
9135e6168fSJeff Roberson struct ke_sched {
9235e6168fSJeff Roberson 	int		ske_slice;
9335e6168fSJeff Roberson 	struct runq	*ske_runq;
9435e6168fSJeff Roberson 	/* The following variables are only used for pctcpu calculation */
9535e6168fSJeff Roberson 	int		ske_ltick;	/* Last tick that we were running on */
9635e6168fSJeff Roberson 	int		ske_ftick;	/* First tick that we were running on */
9735e6168fSJeff Roberson 	int		ske_ticks;	/* Tick count */
9815dc847eSJeff Roberson 	/* CPU that we have affinity for. */
99cd6e33dfSJeff Roberson 	u_char		ske_cpu;
10035e6168fSJeff Roberson };
10135e6168fSJeff Roberson #define	ke_slice	ke_sched->ske_slice
10235e6168fSJeff Roberson #define	ke_runq		ke_sched->ske_runq
10335e6168fSJeff Roberson #define	ke_ltick	ke_sched->ske_ltick
10435e6168fSJeff Roberson #define	ke_ftick	ke_sched->ske_ftick
10535e6168fSJeff Roberson #define	ke_ticks	ke_sched->ske_ticks
106cd6e33dfSJeff Roberson #define	ke_cpu		ke_sched->ske_cpu
10722bf7d9aSJeff Roberson #define	ke_assign	ke_procq.tqe_next
10822bf7d9aSJeff Roberson 
10922bf7d9aSJeff Roberson #define	KEF_ASSIGNED	KEF_SCHED0	/* KSE is being migrated. */
110a70d729bSJeff Roberson #define	KEF_BOUND	KEF_SCHED1	/* KSE can not migrate. */
11135e6168fSJeff Roberson 
11235e6168fSJeff Roberson struct kg_sched {
113407b0157SJeff Roberson 	int	skg_slptime;		/* Number of ticks we vol. slept */
114407b0157SJeff Roberson 	int	skg_runtime;		/* Number of ticks we were running */
11535e6168fSJeff Roberson };
11635e6168fSJeff Roberson #define	kg_slptime	kg_sched->skg_slptime
117407b0157SJeff Roberson #define	kg_runtime	kg_sched->skg_runtime
11835e6168fSJeff Roberson 
11935e6168fSJeff Roberson struct td_sched {
12035e6168fSJeff Roberson 	int	std_slptime;
12135e6168fSJeff Roberson };
12235e6168fSJeff Roberson #define	td_slptime	td_sched->std_slptime
12335e6168fSJeff Roberson 
1245d7ef00cSJeff Roberson struct td_sched td_sched;
12535e6168fSJeff Roberson struct ke_sched ke_sched;
12635e6168fSJeff Roberson struct kg_sched kg_sched;
12735e6168fSJeff Roberson 
12835e6168fSJeff Roberson struct ke_sched *kse0_sched = &ke_sched;
12935e6168fSJeff Roberson struct kg_sched *ksegrp0_sched = &kg_sched;
13035e6168fSJeff Roberson struct p_sched *proc0_sched = NULL;
13135e6168fSJeff Roberson struct td_sched *thread0_sched = &td_sched;
13235e6168fSJeff Roberson 
13335e6168fSJeff Roberson /*
134665cb285SJeff Roberson  * The priority is primarily determined by the interactivity score.  Thus, we
135665cb285SJeff Roberson  * give lower(better) priorities to kse groups that use less CPU.  The nice
136665cb285SJeff Roberson  * value is then directly added to this to allow nice to have some effect
137665cb285SJeff Roberson  * on latency.
138e1f89c22SJeff Roberson  *
139e1f89c22SJeff Roberson  * PRI_RANGE:	Total priority range for timeshare threads.
140665cb285SJeff Roberson  * PRI_NRESV:	Number of nice values.
141e1f89c22SJeff Roberson  * PRI_BASE:	The start of the dynamic range.
14235e6168fSJeff Roberson  */
143407b0157SJeff Roberson #define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
144a0a931ceSJeff Roberson #define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
145a0a931ceSJeff Roberson #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
146665cb285SJeff Roberson #define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
14715dc847eSJeff Roberson #define	SCHED_PRI_INTERACT(score)					\
148665cb285SJeff Roberson     ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
14935e6168fSJeff Roberson 
15035e6168fSJeff Roberson /*
151e1f89c22SJeff Roberson  * These determine the interactivity of a process.
15235e6168fSJeff Roberson  *
153407b0157SJeff Roberson  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
154407b0157SJeff Roberson  *		before throttling back.
155d322132cSJeff Roberson  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
156210491d3SJeff Roberson  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
157e1f89c22SJeff Roberson  * INTERACT_THRESH:	Threshhold for placement on the current runq.
15835e6168fSJeff Roberson  */
1594c9612c6SJeff Roberson #define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
160d322132cSJeff Roberson #define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
161210491d3SJeff Roberson #define	SCHED_INTERACT_MAX	(100)
162210491d3SJeff Roberson #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
1634c9612c6SJeff Roberson #define	SCHED_INTERACT_THRESH	(30)
164e1f89c22SJeff Roberson 
16535e6168fSJeff Roberson /*
16635e6168fSJeff Roberson  * These parameters and macros determine the size of the time slice that is
16735e6168fSJeff Roberson  * granted to each thread.
16835e6168fSJeff Roberson  *
16935e6168fSJeff Roberson  * SLICE_MIN:	Minimum time slice granted, in units of ticks.
17035e6168fSJeff Roberson  * SLICE_MAX:	Maximum time slice granted.
17135e6168fSJeff Roberson  * SLICE_RANGE:	Range of available time slices scaled by hz.
172245f3abfSJeff Roberson  * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
173245f3abfSJeff Roberson  * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
1747d1a81b4SJeff Roberson  * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
17535e6168fSJeff Roberson  */
17615dc847eSJeff Roberson #define	SCHED_SLICE_MIN			(slice_min)
17715dc847eSJeff Roberson #define	SCHED_SLICE_MAX			(slice_max)
1787d1a81b4SJeff Roberson #define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
17935e6168fSJeff Roberson #define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
18035e6168fSJeff Roberson #define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
181245f3abfSJeff Roberson #define	SCHED_SLICE_NICE(nice)						\
1827d1a81b4SJeff Roberson     (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
18335e6168fSJeff Roberson 
18435e6168fSJeff Roberson /*
18535e6168fSJeff Roberson  * This macro determines whether or not the kse belongs on the current or
18635e6168fSJeff Roberson  * next run queue.
18735e6168fSJeff Roberson  */
18815dc847eSJeff Roberson #define	SCHED_INTERACTIVE(kg)						\
18915dc847eSJeff Roberson     (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
190a5f099d0SJeff Roberson #define	SCHED_CURR(kg, ke)						\
19108fd6713SJeff Roberson     (ke->ke_thread->td_priority != kg->kg_user_pri ||			\
19208fd6713SJeff Roberson     SCHED_INTERACTIVE(kg))
19335e6168fSJeff Roberson 
19435e6168fSJeff Roberson /*
19535e6168fSJeff Roberson  * Cpu percentage computation macros and defines.
19635e6168fSJeff Roberson  *
19735e6168fSJeff Roberson  * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
19835e6168fSJeff Roberson  * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
19935e6168fSJeff Roberson  */
20035e6168fSJeff Roberson 
2015053d272SJeff Roberson #define	SCHED_CPU_TIME	10
20235e6168fSJeff Roberson #define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
20335e6168fSJeff Roberson 
20435e6168fSJeff Roberson /*
20515dc847eSJeff Roberson  * kseq - per processor runqs and statistics.
20635e6168fSJeff Roberson  */
20735e6168fSJeff Roberson struct kseq {
208a8949de2SJeff Roberson 	struct runq	ksq_idle;		/* Queue of IDLE threads. */
20915dc847eSJeff Roberson 	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
21015dc847eSJeff Roberson 	struct runq	*ksq_next;		/* Next timeshare queue. */
21115dc847eSJeff Roberson 	struct runq	*ksq_curr;		/* Current queue. */
212ef1134c9SJeff Roberson 	int		ksq_load_timeshare;	/* Load for timeshare. */
21315dc847eSJeff Roberson 	int		ksq_load;		/* Aggregate load. */
214a0a931ceSJeff Roberson 	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
21515dc847eSJeff Roberson 	short		ksq_nicemin;		/* Least nice. */
2165d7ef00cSJeff Roberson #ifdef SMP
21780f86c9fSJeff Roberson 	int			ksq_transferable;
21880f86c9fSJeff Roberson 	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
21980f86c9fSJeff Roberson 	struct kseq_group	*ksq_group;	/* Our processor group. */
220fa9c9717SJeff Roberson 	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
2215d7ef00cSJeff Roberson #endif
22235e6168fSJeff Roberson };
22335e6168fSJeff Roberson 
22480f86c9fSJeff Roberson #ifdef SMP
22580f86c9fSJeff Roberson /*
22680f86c9fSJeff Roberson  * kseq groups are groups of processors which can cheaply share threads.  When
22780f86c9fSJeff Roberson  * one processor in the group goes idle it will check the runqs of the other
22880f86c9fSJeff Roberson  * processors in its group prior to halting and waiting for an interrupt.
22980f86c9fSJeff Roberson  * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
23080f86c9fSJeff Roberson  * In a numa environment we'd want an idle bitmap per group and a two tiered
23180f86c9fSJeff Roberson  * load balancer.
23280f86c9fSJeff Roberson  */
23380f86c9fSJeff Roberson struct kseq_group {
23480f86c9fSJeff Roberson 	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
23580f86c9fSJeff Roberson 	int	ksg_cpumask;		/* Mask of cpus in this group. */
23680f86c9fSJeff Roberson 	int	ksg_idlemask;		/* Idle cpus in this group. */
23780f86c9fSJeff Roberson 	int	ksg_mask;		/* Bit mask for first cpu. */
238cac77d04SJeff Roberson 	int	ksg_load;		/* Total load of this group. */
23980f86c9fSJeff Roberson 	int	ksg_transferable;	/* Transferable load of this group. */
24080f86c9fSJeff Roberson 	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
24180f86c9fSJeff Roberson };
24280f86c9fSJeff Roberson #endif
24380f86c9fSJeff Roberson 
24435e6168fSJeff Roberson /*
24535e6168fSJeff Roberson  * One kse queue per processor.
24635e6168fSJeff Roberson  */
2470a016a05SJeff Roberson #ifdef SMP
24822bf7d9aSJeff Roberson static int kseq_idle;
249cac77d04SJeff Roberson static int ksg_maxid;
25022bf7d9aSJeff Roberson static struct kseq	kseq_cpu[MAXCPU];
25180f86c9fSJeff Roberson static struct kseq_group kseq_groups[MAXCPU];
25280f86c9fSJeff Roberson #define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
25380f86c9fSJeff Roberson #define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
254cac77d04SJeff Roberson #define	KSEQ_ID(x)	((x) - kseq_cpu)
255cac77d04SJeff Roberson #define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
25680f86c9fSJeff Roberson #else	/* !SMP */
25722bf7d9aSJeff Roberson static struct kseq	kseq_cpu;
2580a016a05SJeff Roberson #define	KSEQ_SELF()	(&kseq_cpu)
2590a016a05SJeff Roberson #define	KSEQ_CPU(x)	(&kseq_cpu)
2600a016a05SJeff Roberson #endif
26135e6168fSJeff Roberson 
262245f3abfSJeff Roberson static void sched_slice(struct kse *ke);
26315dc847eSJeff Roberson static void sched_priority(struct ksegrp *kg);
264e1f89c22SJeff Roberson static int sched_interact_score(struct ksegrp *kg);
2654b60e324SJeff Roberson static void sched_interact_update(struct ksegrp *kg);
266d322132cSJeff Roberson static void sched_interact_fork(struct ksegrp *kg);
26722bf7d9aSJeff Roberson static void sched_pctcpu_update(struct kse *ke);
26835e6168fSJeff Roberson 
2695d7ef00cSJeff Roberson /* Operations on per processor queues */
27022bf7d9aSJeff Roberson static struct kse * kseq_choose(struct kseq *kseq);
2710a016a05SJeff Roberson static void kseq_setup(struct kseq *kseq);
272155b9987SJeff Roberson static void kseq_load_add(struct kseq *kseq, struct kse *ke);
273155b9987SJeff Roberson static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
274155b9987SJeff Roberson static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
275155b9987SJeff Roberson static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
27615dc847eSJeff Roberson static void kseq_nice_add(struct kseq *kseq, int nice);
27715dc847eSJeff Roberson static void kseq_nice_rem(struct kseq *kseq, int nice);
2787cd650a9SJeff Roberson void kseq_print(int cpu);
2795d7ef00cSJeff Roberson #ifdef SMP
28080f86c9fSJeff Roberson static int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
28122bf7d9aSJeff Roberson static struct kse *runq_steal(struct runq *rq);
282155b9987SJeff Roberson static void sched_balance(void *arg);
283cac77d04SJeff Roberson static void sched_balance_group(struct kseq_group *ksg);
284cac77d04SJeff Roberson static void sched_balance_pair(struct kseq *high, struct kseq *low);
28522bf7d9aSJeff Roberson static void kseq_move(struct kseq *from, int cpu);
28680f86c9fSJeff Roberson static int kseq_idled(struct kseq *kseq);
28722bf7d9aSJeff Roberson static void kseq_notify(struct kse *ke, int cpu);
28822bf7d9aSJeff Roberson static void kseq_assign(struct kseq *);
28980f86c9fSJeff Roberson static struct kse *kseq_steal(struct kseq *kseq, int stealidle);
2909bacd788SJeff Roberson #define	KSE_CAN_MIGRATE(ke, class)					\
291a70d729bSJeff Roberson     ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
292f28b3340SJeff Roberson     ((ke)->ke_flags & KEF_BOUND) == 0)
2935d7ef00cSJeff Roberson #endif
2945d7ef00cSJeff Roberson 
29515dc847eSJeff Roberson void
2967cd650a9SJeff Roberson kseq_print(int cpu)
29715dc847eSJeff Roberson {
2987cd650a9SJeff Roberson 	struct kseq *kseq;
29915dc847eSJeff Roberson 	int i;
30015dc847eSJeff Roberson 
3017cd650a9SJeff Roberson 	kseq = KSEQ_CPU(cpu);
30215dc847eSJeff Roberson 
30315dc847eSJeff Roberson 	printf("kseq:\n");
30415dc847eSJeff Roberson 	printf("\tload:           %d\n", kseq->ksq_load);
305155b9987SJeff Roberson 	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
306ef1134c9SJeff Roberson #ifdef SMP
30780f86c9fSJeff Roberson 	printf("\tload transferable: %d\n", kseq->ksq_transferable);
308ef1134c9SJeff Roberson #endif
30915dc847eSJeff Roberson 	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
31015dc847eSJeff Roberson 	printf("\tnice counts:\n");
311a0a931ceSJeff Roberson 	for (i = 0; i < SCHED_PRI_NRESV; i++)
31215dc847eSJeff Roberson 		if (kseq->ksq_nice[i])
31315dc847eSJeff Roberson 			printf("\t\t%d = %d\n",
31415dc847eSJeff Roberson 			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
31515dc847eSJeff Roberson }
31615dc847eSJeff Roberson 
317155b9987SJeff Roberson static __inline void
318155b9987SJeff Roberson kseq_runq_add(struct kseq *kseq, struct kse *ke)
319155b9987SJeff Roberson {
320155b9987SJeff Roberson #ifdef SMP
32180f86c9fSJeff Roberson 	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
32280f86c9fSJeff Roberson 		kseq->ksq_transferable++;
32380f86c9fSJeff Roberson 		kseq->ksq_group->ksg_transferable++;
32480f86c9fSJeff Roberson 	}
325155b9987SJeff Roberson #endif
326155b9987SJeff Roberson 	runq_add(ke->ke_runq, ke);
327155b9987SJeff Roberson }
328155b9987SJeff Roberson 
329155b9987SJeff Roberson static __inline void
330155b9987SJeff Roberson kseq_runq_rem(struct kseq *kseq, struct kse *ke)
331155b9987SJeff Roberson {
332155b9987SJeff Roberson #ifdef SMP
33380f86c9fSJeff Roberson 	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
33480f86c9fSJeff Roberson 		kseq->ksq_transferable--;
33580f86c9fSJeff Roberson 		kseq->ksq_group->ksg_transferable--;
33680f86c9fSJeff Roberson 	}
337155b9987SJeff Roberson #endif
338155b9987SJeff Roberson 	runq_remove(ke->ke_runq, ke);
339155b9987SJeff Roberson }
340155b9987SJeff Roberson 
341a8949de2SJeff Roberson static void
342155b9987SJeff Roberson kseq_load_add(struct kseq *kseq, struct kse *ke)
3435d7ef00cSJeff Roberson {
344ef1134c9SJeff Roberson 	int class;
345b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
346ef1134c9SJeff Roberson 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
347ef1134c9SJeff Roberson 	if (class == PRI_TIMESHARE)
348ef1134c9SJeff Roberson 		kseq->ksq_load_timeshare++;
34915dc847eSJeff Roberson 	kseq->ksq_load++;
350cac77d04SJeff Roberson #ifdef SMP
351cac77d04SJeff Roberson 	if (class != PRI_ITHD)
352cac77d04SJeff Roberson 		kseq->ksq_group->ksg_load++;
353cac77d04SJeff Roberson #endif
35415dc847eSJeff Roberson 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
355155b9987SJeff Roberson 		CTR6(KTR_ULE,
356155b9987SJeff Roberson 		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
35715dc847eSJeff Roberson 		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
35815dc847eSJeff Roberson 		    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
35915dc847eSJeff Roberson 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
36015dc847eSJeff Roberson 		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
3615d7ef00cSJeff Roberson }
36215dc847eSJeff Roberson 
363a8949de2SJeff Roberson static void
364155b9987SJeff Roberson kseq_load_rem(struct kseq *kseq, struct kse *ke)
3655d7ef00cSJeff Roberson {
366ef1134c9SJeff Roberson 	int class;
367b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
368ef1134c9SJeff Roberson 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
369ef1134c9SJeff Roberson 	if (class == PRI_TIMESHARE)
370ef1134c9SJeff Roberson 		kseq->ksq_load_timeshare--;
371cac77d04SJeff Roberson #ifdef SMP
372cac77d04SJeff Roberson 	if (class != PRI_ITHD)
373cac77d04SJeff Roberson 		kseq->ksq_group->ksg_load--;
374cac77d04SJeff Roberson #endif
37515dc847eSJeff Roberson 	kseq->ksq_load--;
37615dc847eSJeff Roberson 	ke->ke_runq = NULL;
37715dc847eSJeff Roberson 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
37815dc847eSJeff Roberson 		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
3795d7ef00cSJeff Roberson }
3805d7ef00cSJeff Roberson 
38115dc847eSJeff Roberson static void
38215dc847eSJeff Roberson kseq_nice_add(struct kseq *kseq, int nice)
38315dc847eSJeff Roberson {
384b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
38515dc847eSJeff Roberson 	/* Normalize to zero. */
38615dc847eSJeff Roberson 	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
387ef1134c9SJeff Roberson 	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
38815dc847eSJeff Roberson 		kseq->ksq_nicemin = nice;
38915dc847eSJeff Roberson }
39015dc847eSJeff Roberson 
39115dc847eSJeff Roberson static void
39215dc847eSJeff Roberson kseq_nice_rem(struct kseq *kseq, int nice)
39315dc847eSJeff Roberson {
39415dc847eSJeff Roberson 	int n;
39515dc847eSJeff Roberson 
396b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
39715dc847eSJeff Roberson 	/* Normalize to zero. */
39815dc847eSJeff Roberson 	n = nice + SCHED_PRI_NHALF;
39915dc847eSJeff Roberson 	kseq->ksq_nice[n]--;
40015dc847eSJeff Roberson 	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
40115dc847eSJeff Roberson 
40215dc847eSJeff Roberson 	/*
40315dc847eSJeff Roberson 	 * If this wasn't the smallest nice value or there are more in
40415dc847eSJeff Roberson 	 * this bucket we can just return.  Otherwise we have to recalculate
40515dc847eSJeff Roberson 	 * the smallest nice.
40615dc847eSJeff Roberson 	 */
40715dc847eSJeff Roberson 	if (nice != kseq->ksq_nicemin ||
40815dc847eSJeff Roberson 	    kseq->ksq_nice[n] != 0 ||
409ef1134c9SJeff Roberson 	    kseq->ksq_load_timeshare == 0)
41015dc847eSJeff Roberson 		return;
41115dc847eSJeff Roberson 
412a0a931ceSJeff Roberson 	for (; n < SCHED_PRI_NRESV; n++)
41315dc847eSJeff Roberson 		if (kseq->ksq_nice[n]) {
41415dc847eSJeff Roberson 			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
41515dc847eSJeff Roberson 			return;
41615dc847eSJeff Roberson 		}
41715dc847eSJeff Roberson }
41815dc847eSJeff Roberson 
4195d7ef00cSJeff Roberson #ifdef SMP
420356500a3SJeff Roberson /*
421155b9987SJeff Roberson  * sched_balance is a simple CPU load balancing algorithm.  It operates by
422356500a3SJeff Roberson  * finding the least loaded and most loaded cpu and equalizing their load
423356500a3SJeff Roberson  * by migrating some processes.
424356500a3SJeff Roberson  *
425356500a3SJeff Roberson  * Dealing only with two CPUs at a time has two advantages.  Firstly, most
426356500a3SJeff Roberson  * installations will only have 2 cpus.  Secondly, load balancing too much at
427356500a3SJeff Roberson  * once can have an unpleasant effect on the system.  The scheduler rarely has
428356500a3SJeff Roberson  * enough information to make perfect decisions.  So this algorithm chooses
429356500a3SJeff Roberson  * algorithm simplicity and more gradual effects on load in larger systems.
430356500a3SJeff Roberson  *
431356500a3SJeff Roberson  * It could be improved by considering the priorities and slices assigned to
432356500a3SJeff Roberson  * each task prior to balancing them.  There are many pathological cases with
433356500a3SJeff Roberson  * any approach and so the semi random algorithm below may work as well as any.
434356500a3SJeff Roberson  *
435356500a3SJeff Roberson  */
43622bf7d9aSJeff Roberson static void
437155b9987SJeff Roberson sched_balance(void *arg)
438356500a3SJeff Roberson {
439cac77d04SJeff Roberson 	struct kseq_group *high;
440cac77d04SJeff Roberson 	struct kseq_group *low;
441cac77d04SJeff Roberson 	struct kseq_group *ksg;
442cac77d04SJeff Roberson 	int timo;
443cac77d04SJeff Roberson 	int cnt;
444356500a3SJeff Roberson 	int i;
445356500a3SJeff Roberson 
446356500a3SJeff Roberson 	mtx_lock_spin(&sched_lock);
44786f8ae96SJeff Roberson 	if (smp_started == 0)
44886f8ae96SJeff Roberson 		goto out;
449cac77d04SJeff Roberson 	low = high = NULL;
450cac77d04SJeff Roberson 	i = random() % (ksg_maxid + 1);
451cac77d04SJeff Roberson 	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
452cac77d04SJeff Roberson 		ksg = KSEQ_GROUP(i);
453cac77d04SJeff Roberson 		/*
454cac77d04SJeff Roberson 		 * Find the CPU with the highest load that has some
455cac77d04SJeff Roberson 		 * threads to transfer.
456cac77d04SJeff Roberson 		 */
457cac77d04SJeff Roberson 		if ((high == NULL || ksg->ksg_load > high->ksg_load)
458cac77d04SJeff Roberson 		    && ksg->ksg_transferable)
459cac77d04SJeff Roberson 			high = ksg;
460cac77d04SJeff Roberson 		if (low == NULL || ksg->ksg_load < low->ksg_load)
461cac77d04SJeff Roberson 			low = ksg;
462cac77d04SJeff Roberson 		if (++i > ksg_maxid)
463cac77d04SJeff Roberson 			i = 0;
464cac77d04SJeff Roberson 	}
465cac77d04SJeff Roberson 	if (low != NULL && high != NULL && high != low)
466cac77d04SJeff Roberson 		sched_balance_pair(LIST_FIRST(&high->ksg_members),
467cac77d04SJeff Roberson 		    LIST_FIRST(&low->ksg_members));
468cac77d04SJeff Roberson out:
469cac77d04SJeff Roberson 	mtx_unlock_spin(&sched_lock);
470cac77d04SJeff Roberson 	timo = random() % (hz * 2);
471cac77d04SJeff Roberson 	callout_reset(&kseq_lb_callout, timo, sched_balance, NULL);
472cac77d04SJeff Roberson }
47386f8ae96SJeff Roberson 
474cac77d04SJeff Roberson static void
475cac77d04SJeff Roberson sched_balance_groups(void *arg)
476cac77d04SJeff Roberson {
477cac77d04SJeff Roberson 	int timo;
478cac77d04SJeff Roberson 	int i;
479cac77d04SJeff Roberson 
480cac77d04SJeff Roberson 	mtx_lock_spin(&sched_lock);
481cac77d04SJeff Roberson 	if (smp_started)
482cac77d04SJeff Roberson 		for (i = 0; i <= ksg_maxid; i++)
483cac77d04SJeff Roberson 			sched_balance_group(KSEQ_GROUP(i));
484cac77d04SJeff Roberson 	mtx_unlock_spin(&sched_lock);
485cac77d04SJeff Roberson 	timo = random() % (hz * 2);
486cac77d04SJeff Roberson 	callout_reset(&kseq_group_callout, timo, sched_balance_groups, NULL);
487356500a3SJeff Roberson }
488cac77d04SJeff Roberson 
489cac77d04SJeff Roberson static void
490cac77d04SJeff Roberson sched_balance_group(struct kseq_group *ksg)
491cac77d04SJeff Roberson {
492cac77d04SJeff Roberson 	struct kseq *kseq;
493cac77d04SJeff Roberson 	struct kseq *high;
494cac77d04SJeff Roberson 	struct kseq *low;
495cac77d04SJeff Roberson 	int load;
496cac77d04SJeff Roberson 
497cac77d04SJeff Roberson 	if (ksg->ksg_transferable == 0)
498cac77d04SJeff Roberson 		return;
499cac77d04SJeff Roberson 	low = NULL;
500cac77d04SJeff Roberson 	high = NULL;
501cac77d04SJeff Roberson 	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
502cac77d04SJeff Roberson 		load = kseq->ksq_load;
503cac77d04SJeff Roberson 		if (kseq == KSEQ_CPU(0))
504cac77d04SJeff Roberson 			load--;
505cac77d04SJeff Roberson 		if (high == NULL || load > high->ksq_load)
506cac77d04SJeff Roberson 			high = kseq;
507cac77d04SJeff Roberson 		if (low == NULL || load < low->ksq_load)
508cac77d04SJeff Roberson 			low = kseq;
509356500a3SJeff Roberson 	}
510cac77d04SJeff Roberson 	if (high != NULL && low != NULL && high != low)
511cac77d04SJeff Roberson 		sched_balance_pair(high, low);
512356500a3SJeff Roberson }
513cac77d04SJeff Roberson 
514cac77d04SJeff Roberson static void
515cac77d04SJeff Roberson sched_balance_pair(struct kseq *high, struct kseq *low)
516cac77d04SJeff Roberson {
517cac77d04SJeff Roberson 	int transferable;
518cac77d04SJeff Roberson 	int high_load;
519cac77d04SJeff Roberson 	int low_load;
520cac77d04SJeff Roberson 	int move;
521cac77d04SJeff Roberson 	int diff;
522cac77d04SJeff Roberson 	int i;
523cac77d04SJeff Roberson 
52480f86c9fSJeff Roberson 	/*
52580f86c9fSJeff Roberson 	 * If we're transfering within a group we have to use this specific
52680f86c9fSJeff Roberson 	 * kseq's transferable count, otherwise we can steal from other members
52780f86c9fSJeff Roberson 	 * of the group.
52880f86c9fSJeff Roberson 	 */
529cac77d04SJeff Roberson 	if (high->ksq_group == low->ksq_group) {
530cac77d04SJeff Roberson 		transferable = high->ksq_transferable;
531cac77d04SJeff Roberson 		high_load = high->ksq_load;
532cac77d04SJeff Roberson 		low_load = low->ksq_load;
533cac77d04SJeff Roberson 		/*
534cac77d04SJeff Roberson 		 * XXX If we encounter cpu 0 we must remember to reduce it's
535cac77d04SJeff Roberson 		 * load by 1 to reflect the swi that is running the callout.
536cac77d04SJeff Roberson 		 * At some point we should really fix load balancing of the
537cac77d04SJeff Roberson 		 * swi and then this wont matter.
538cac77d04SJeff Roberson 		 */
539cac77d04SJeff Roberson 		if (high == KSEQ_CPU(0))
540cac77d04SJeff Roberson 			high_load--;
541cac77d04SJeff Roberson 		if (low == KSEQ_CPU(0))
542cac77d04SJeff Roberson 			low_load--;
543cac77d04SJeff Roberson 	} else {
544cac77d04SJeff Roberson 		transferable = high->ksq_group->ksg_transferable;
545cac77d04SJeff Roberson 		high_load = high->ksq_group->ksg_load;
546cac77d04SJeff Roberson 		low_load = low->ksq_group->ksg_load;
547cac77d04SJeff Roberson 	}
54880f86c9fSJeff Roberson 	if (transferable == 0)
549cac77d04SJeff Roberson 		return;
550155b9987SJeff Roberson 	/*
551155b9987SJeff Roberson 	 * Determine what the imbalance is and then adjust that to how many
55280f86c9fSJeff Roberson 	 * kses we actually have to give up (transferable).
553155b9987SJeff Roberson 	 */
554cac77d04SJeff Roberson 	diff = high_load - low_load;
555356500a3SJeff Roberson 	move = diff / 2;
556356500a3SJeff Roberson 	if (diff & 0x1)
557356500a3SJeff Roberson 		move++;
55880f86c9fSJeff Roberson 	move = min(move, transferable);
559356500a3SJeff Roberson 	for (i = 0; i < move; i++)
560cac77d04SJeff Roberson 		kseq_move(high, KSEQ_ID(low));
561356500a3SJeff Roberson 	return;
562356500a3SJeff Roberson }
563356500a3SJeff Roberson 
56422bf7d9aSJeff Roberson static void
565356500a3SJeff Roberson kseq_move(struct kseq *from, int cpu)
566356500a3SJeff Roberson {
56780f86c9fSJeff Roberson 	struct kseq *kseq;
56880f86c9fSJeff Roberson 	struct kseq *to;
569356500a3SJeff Roberson 	struct kse *ke;
570356500a3SJeff Roberson 
57180f86c9fSJeff Roberson 	kseq = from;
57280f86c9fSJeff Roberson 	to = KSEQ_CPU(cpu);
57380f86c9fSJeff Roberson 	ke = kseq_steal(kseq, 1);
57480f86c9fSJeff Roberson 	if (ke == NULL) {
57580f86c9fSJeff Roberson 		struct kseq_group *ksg;
57680f86c9fSJeff Roberson 
57780f86c9fSJeff Roberson 		ksg = kseq->ksq_group;
57880f86c9fSJeff Roberson 		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
57980f86c9fSJeff Roberson 			if (kseq == from || kseq->ksq_transferable == 0)
58080f86c9fSJeff Roberson 				continue;
58180f86c9fSJeff Roberson 			ke = kseq_steal(kseq, 1);
58280f86c9fSJeff Roberson 			break;
58380f86c9fSJeff Roberson 		}
58480f86c9fSJeff Roberson 		if (ke == NULL)
58580f86c9fSJeff Roberson 			panic("kseq_move: No KSEs available with a "
58680f86c9fSJeff Roberson 			    "transferable count of %d\n",
58780f86c9fSJeff Roberson 			    ksg->ksg_transferable);
58880f86c9fSJeff Roberson 	}
58980f86c9fSJeff Roberson 	if (kseq == to)
59080f86c9fSJeff Roberson 		return;
591356500a3SJeff Roberson 	ke->ke_state = KES_THREAD;
59280f86c9fSJeff Roberson 	kseq_runq_rem(kseq, ke);
59380f86c9fSJeff Roberson 	kseq_load_rem(kseq, ke);
594356500a3SJeff Roberson 
595356500a3SJeff Roberson 	ke->ke_cpu = cpu;
596112b6d3aSJeff Roberson 	kseq_notify(ke, cpu);
597356500a3SJeff Roberson }
59822bf7d9aSJeff Roberson 
59980f86c9fSJeff Roberson static int
60080f86c9fSJeff Roberson kseq_idled(struct kseq *kseq)
60122bf7d9aSJeff Roberson {
60280f86c9fSJeff Roberson 	struct kseq_group *ksg;
60380f86c9fSJeff Roberson 	struct kseq *steal;
60480f86c9fSJeff Roberson 	struct kse *ke;
60580f86c9fSJeff Roberson 
60680f86c9fSJeff Roberson 	ksg = kseq->ksq_group;
60780f86c9fSJeff Roberson 	/*
60880f86c9fSJeff Roberson 	 * If we're in a cpu group, try and steal kses from another cpu in
60980f86c9fSJeff Roberson 	 * the group before idling.
61080f86c9fSJeff Roberson 	 */
61180f86c9fSJeff Roberson 	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
61280f86c9fSJeff Roberson 		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
61380f86c9fSJeff Roberson 			if (steal == kseq || steal->ksq_transferable == 0)
61480f86c9fSJeff Roberson 				continue;
61580f86c9fSJeff Roberson 			ke = kseq_steal(steal, 0);
61680f86c9fSJeff Roberson 			if (ke == NULL)
61780f86c9fSJeff Roberson 				continue;
61880f86c9fSJeff Roberson 			ke->ke_state = KES_THREAD;
61980f86c9fSJeff Roberson 			kseq_runq_rem(steal, ke);
62080f86c9fSJeff Roberson 			kseq_load_rem(steal, ke);
62180f86c9fSJeff Roberson 			ke->ke_cpu = PCPU_GET(cpuid);
62280f86c9fSJeff Roberson 			sched_add(ke->ke_thread);
62380f86c9fSJeff Roberson 			return (0);
62480f86c9fSJeff Roberson 		}
62580f86c9fSJeff Roberson 	}
62680f86c9fSJeff Roberson 	/*
62780f86c9fSJeff Roberson 	 * We only set the idled bit when all of the cpus in the group are
62880f86c9fSJeff Roberson 	 * idle.  Otherwise we could get into a situation where a KSE bounces
62980f86c9fSJeff Roberson 	 * back and forth between two idle cores on seperate physical CPUs.
63080f86c9fSJeff Roberson 	 */
63180f86c9fSJeff Roberson 	ksg->ksg_idlemask |= PCPU_GET(cpumask);
63280f86c9fSJeff Roberson 	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
63380f86c9fSJeff Roberson 		return (1);
63480f86c9fSJeff Roberson 	atomic_set_int(&kseq_idle, ksg->ksg_mask);
63580f86c9fSJeff Roberson 	return (1);
63622bf7d9aSJeff Roberson }
63722bf7d9aSJeff Roberson 
63822bf7d9aSJeff Roberson static void
63922bf7d9aSJeff Roberson kseq_assign(struct kseq *kseq)
64022bf7d9aSJeff Roberson {
64122bf7d9aSJeff Roberson 	struct kse *nke;
64222bf7d9aSJeff Roberson 	struct kse *ke;
64322bf7d9aSJeff Roberson 
64422bf7d9aSJeff Roberson 	do {
645fa9c9717SJeff Roberson 		(volatile struct kse *)ke = kseq->ksq_assigned;
64622bf7d9aSJeff Roberson 	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
64722bf7d9aSJeff Roberson 	for (; ke != NULL; ke = nke) {
64822bf7d9aSJeff Roberson 		nke = ke->ke_assign;
64922bf7d9aSJeff Roberson 		ke->ke_flags &= ~KEF_ASSIGNED;
65022bf7d9aSJeff Roberson 		sched_add(ke->ke_thread);
65122bf7d9aSJeff Roberson 	}
65222bf7d9aSJeff Roberson }
65322bf7d9aSJeff Roberson 
65422bf7d9aSJeff Roberson static void
65522bf7d9aSJeff Roberson kseq_notify(struct kse *ke, int cpu)
65622bf7d9aSJeff Roberson {
65722bf7d9aSJeff Roberson 	struct kseq *kseq;
65822bf7d9aSJeff Roberson 	struct thread *td;
65922bf7d9aSJeff Roberson 	struct pcpu *pcpu;
66022bf7d9aSJeff Roberson 
66122bf7d9aSJeff Roberson 	ke->ke_flags |= KEF_ASSIGNED;
66222bf7d9aSJeff Roberson 
66322bf7d9aSJeff Roberson 	kseq = KSEQ_CPU(cpu);
6645d7ef00cSJeff Roberson 
6650c0a98b2SJeff Roberson 	/*
66622bf7d9aSJeff Roberson 	 * Place a KSE on another cpu's queue and force a resched.
66722bf7d9aSJeff Roberson 	 */
66822bf7d9aSJeff Roberson 	do {
669fa9c9717SJeff Roberson 		(volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
67022bf7d9aSJeff Roberson 	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
67122bf7d9aSJeff Roberson 	pcpu = pcpu_find(cpu);
67222bf7d9aSJeff Roberson 	td = pcpu->pc_curthread;
67322bf7d9aSJeff Roberson 	if (ke->ke_thread->td_priority < td->td_priority ||
67422bf7d9aSJeff Roberson 	    td == pcpu->pc_idlethread) {
67522bf7d9aSJeff Roberson 		td->td_flags |= TDF_NEEDRESCHED;
67622bf7d9aSJeff Roberson 		ipi_selected(1 << cpu, IPI_AST);
67722bf7d9aSJeff Roberson 	}
67822bf7d9aSJeff Roberson }
67922bf7d9aSJeff Roberson 
68022bf7d9aSJeff Roberson static struct kse *
68122bf7d9aSJeff Roberson runq_steal(struct runq *rq)
68222bf7d9aSJeff Roberson {
68322bf7d9aSJeff Roberson 	struct rqhead *rqh;
68422bf7d9aSJeff Roberson 	struct rqbits *rqb;
68522bf7d9aSJeff Roberson 	struct kse *ke;
68622bf7d9aSJeff Roberson 	int word;
68722bf7d9aSJeff Roberson 	int bit;
68822bf7d9aSJeff Roberson 
68922bf7d9aSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
69022bf7d9aSJeff Roberson 	rqb = &rq->rq_status;
69122bf7d9aSJeff Roberson 	for (word = 0; word < RQB_LEN; word++) {
69222bf7d9aSJeff Roberson 		if (rqb->rqb_bits[word] == 0)
69322bf7d9aSJeff Roberson 			continue;
69422bf7d9aSJeff Roberson 		for (bit = 0; bit < RQB_BPW; bit++) {
695a2640c9bSPeter Wemm 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
69622bf7d9aSJeff Roberson 				continue;
69722bf7d9aSJeff Roberson 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
69822bf7d9aSJeff Roberson 			TAILQ_FOREACH(ke, rqh, ke_procq) {
699ef1134c9SJeff Roberson 				if (KSE_CAN_MIGRATE(ke,
700ef1134c9SJeff Roberson 				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
70122bf7d9aSJeff Roberson 					return (ke);
70222bf7d9aSJeff Roberson 			}
70322bf7d9aSJeff Roberson 		}
70422bf7d9aSJeff Roberson 	}
70522bf7d9aSJeff Roberson 	return (NULL);
70622bf7d9aSJeff Roberson }
70722bf7d9aSJeff Roberson 
70822bf7d9aSJeff Roberson static struct kse *
70980f86c9fSJeff Roberson kseq_steal(struct kseq *kseq, int stealidle)
71022bf7d9aSJeff Roberson {
71122bf7d9aSJeff Roberson 	struct kse *ke;
71222bf7d9aSJeff Roberson 
71380f86c9fSJeff Roberson 	/*
71480f86c9fSJeff Roberson 	 * Steal from next first to try to get a non-interactive task that
71580f86c9fSJeff Roberson 	 * may not have run for a while.
71680f86c9fSJeff Roberson 	 */
71722bf7d9aSJeff Roberson 	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
71822bf7d9aSJeff Roberson 		return (ke);
71980f86c9fSJeff Roberson 	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
72080f86c9fSJeff Roberson 		return (ke);
72180f86c9fSJeff Roberson 	if (stealidle)
72222bf7d9aSJeff Roberson 		return (runq_steal(&kseq->ksq_idle));
72380f86c9fSJeff Roberson 	return (NULL);
72422bf7d9aSJeff Roberson }
72580f86c9fSJeff Roberson 
72680f86c9fSJeff Roberson int
72780f86c9fSJeff Roberson kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
72880f86c9fSJeff Roberson {
72980f86c9fSJeff Roberson 	struct kseq_group *ksg;
73080f86c9fSJeff Roberson 	int cpu;
73180f86c9fSJeff Roberson 
73280f86c9fSJeff Roberson 	cpu = 0;
73380f86c9fSJeff Roberson 	ksg = kseq->ksq_group;
73480f86c9fSJeff Roberson 
73580f86c9fSJeff Roberson 	/*
73680f86c9fSJeff Roberson 	 * XXX This ksg_transferable might work better if we were checking
73780f86c9fSJeff Roberson 	 * against a global group load.  As it is now, this prevents us from
73880f86c9fSJeff Roberson 	 * transfering a thread from a group that is potentially bogged down
73980f86c9fSJeff Roberson 	 * with non transferable load.
74080f86c9fSJeff Roberson 	 */
74180f86c9fSJeff Roberson 	if (ksg->ksg_transferable > ksg->ksg_cpus && kseq_idle) {
74280f86c9fSJeff Roberson 		/*
74380f86c9fSJeff Roberson 		 * Multiple cpus could find this bit simultaneously
74480f86c9fSJeff Roberson 		 * but the race shouldn't be terrible.
74580f86c9fSJeff Roberson 		 */
74680f86c9fSJeff Roberson 		cpu = ffs(kseq_idle);
74780f86c9fSJeff Roberson 		if (cpu)
74880f86c9fSJeff Roberson 			atomic_clear_int(&kseq_idle, 1 << (cpu - 1));
74980f86c9fSJeff Roberson 	}
75080f86c9fSJeff Roberson 	/*
75180f86c9fSJeff Roberson 	 * If another cpu in this group has idled, assign a thread over
75280f86c9fSJeff Roberson 	 * to them after checking to see if there are idled groups.
75380f86c9fSJeff Roberson 	 */
75480f86c9fSJeff Roberson 	if (cpu == 0 && kseq->ksq_load > 1 && ksg->ksg_idlemask) {
75580f86c9fSJeff Roberson 		cpu = ffs(ksg->ksg_idlemask);
75680f86c9fSJeff Roberson 		if (cpu)
75780f86c9fSJeff Roberson 			ksg->ksg_idlemask &= ~(1 << (cpu - 1));
75880f86c9fSJeff Roberson 	}
75980f86c9fSJeff Roberson 	/*
76080f86c9fSJeff Roberson 	 * Now that we've found an idle CPU, migrate the thread.
76180f86c9fSJeff Roberson 	 */
76280f86c9fSJeff Roberson 	if (cpu) {
76380f86c9fSJeff Roberson 		cpu--;
76480f86c9fSJeff Roberson 		ke->ke_cpu = cpu;
76580f86c9fSJeff Roberson 		ke->ke_runq = NULL;
76680f86c9fSJeff Roberson 		kseq_notify(ke, cpu);
76780f86c9fSJeff Roberson 		return (1);
76880f86c9fSJeff Roberson 	}
76980f86c9fSJeff Roberson 	return (0);
77080f86c9fSJeff Roberson }
77180f86c9fSJeff Roberson 
77222bf7d9aSJeff Roberson #endif	/* SMP */
77322bf7d9aSJeff Roberson 
77422bf7d9aSJeff Roberson /*
77522bf7d9aSJeff Roberson  * Pick the highest priority task we have and return it.
7760c0a98b2SJeff Roberson  */
7770c0a98b2SJeff Roberson 
77822bf7d9aSJeff Roberson static struct kse *
77922bf7d9aSJeff Roberson kseq_choose(struct kseq *kseq)
7805d7ef00cSJeff Roberson {
7815d7ef00cSJeff Roberson 	struct kse *ke;
7825d7ef00cSJeff Roberson 	struct runq *swap;
7835d7ef00cSJeff Roberson 
784b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
78515dc847eSJeff Roberson 	swap = NULL;
786a8949de2SJeff Roberson 
78715dc847eSJeff Roberson 	for (;;) {
78815dc847eSJeff Roberson 		ke = runq_choose(kseq->ksq_curr);
78915dc847eSJeff Roberson 		if (ke == NULL) {
79015dc847eSJeff Roberson 			/*
79115dc847eSJeff Roberson 			 * We already swaped once and didn't get anywhere.
79215dc847eSJeff Roberson 			 */
79315dc847eSJeff Roberson 			if (swap)
79415dc847eSJeff Roberson 				break;
7955d7ef00cSJeff Roberson 			swap = kseq->ksq_curr;
7965d7ef00cSJeff Roberson 			kseq->ksq_curr = kseq->ksq_next;
7975d7ef00cSJeff Roberson 			kseq->ksq_next = swap;
79815dc847eSJeff Roberson 			continue;
799a8949de2SJeff Roberson 		}
80015dc847eSJeff Roberson 		/*
80115dc847eSJeff Roberson 		 * If we encounter a slice of 0 the kse is in a
80215dc847eSJeff Roberson 		 * TIMESHARE kse group and its nice was too far out
80315dc847eSJeff Roberson 		 * of the range that receives slices.
80415dc847eSJeff Roberson 		 */
80522bf7d9aSJeff Roberson 		if (ke->ke_slice == 0) {
80615dc847eSJeff Roberson 			runq_remove(ke->ke_runq, ke);
80715dc847eSJeff Roberson 			sched_slice(ke);
80815dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_next;
80915dc847eSJeff Roberson 			runq_add(ke->ke_runq, ke);
81015dc847eSJeff Roberson 			continue;
81115dc847eSJeff Roberson 		}
81215dc847eSJeff Roberson 		return (ke);
81315dc847eSJeff Roberson 	}
81415dc847eSJeff Roberson 
815a8949de2SJeff Roberson 	return (runq_choose(&kseq->ksq_idle));
816245f3abfSJeff Roberson }
8170a016a05SJeff Roberson 
8180a016a05SJeff Roberson static void
8190a016a05SJeff Roberson kseq_setup(struct kseq *kseq)
8200a016a05SJeff Roberson {
82115dc847eSJeff Roberson 	runq_init(&kseq->ksq_timeshare[0]);
82215dc847eSJeff Roberson 	runq_init(&kseq->ksq_timeshare[1]);
823a8949de2SJeff Roberson 	runq_init(&kseq->ksq_idle);
82415dc847eSJeff Roberson 	kseq->ksq_curr = &kseq->ksq_timeshare[0];
82515dc847eSJeff Roberson 	kseq->ksq_next = &kseq->ksq_timeshare[1];
8267cd650a9SJeff Roberson 	kseq->ksq_load = 0;
827ef1134c9SJeff Roberson 	kseq->ksq_load_timeshare = 0;
8280a016a05SJeff Roberson }
8290a016a05SJeff Roberson 
83035e6168fSJeff Roberson static void
83135e6168fSJeff Roberson sched_setup(void *dummy)
83235e6168fSJeff Roberson {
8330ec896fdSJeff Roberson #ifdef SMP
834cac77d04SJeff Roberson 	int balance_groups;
83535e6168fSJeff Roberson 	int i;
8360ec896fdSJeff Roberson #endif
83735e6168fSJeff Roberson 
838e493a5d9SJeff Roberson 	slice_min = (hz/100);	/* 10ms */
839e493a5d9SJeff Roberson 	slice_max = (hz/7);	/* ~140ms */
840e1f89c22SJeff Roberson 
841356500a3SJeff Roberson #ifdef SMP
842cac77d04SJeff Roberson 	balance_groups = 0;
84380f86c9fSJeff Roberson 	/*
84480f86c9fSJeff Roberson 	 * Initialize the kseqs.
84580f86c9fSJeff Roberson 	 */
846749d01b0SJeff Roberson 	for (i = 0; i < MAXCPU; i++) {
84780f86c9fSJeff Roberson 		struct kseq *ksq;
84880f86c9fSJeff Roberson 
84980f86c9fSJeff Roberson 		ksq = &kseq_cpu[i];
85080f86c9fSJeff Roberson 		ksq->ksq_assigned = NULL;
851749d01b0SJeff Roberson 		kseq_setup(&kseq_cpu[i]);
85280f86c9fSJeff Roberson 	}
85380f86c9fSJeff Roberson 	if (smp_topology == NULL) {
85480f86c9fSJeff Roberson 		struct kseq_group *ksg;
85580f86c9fSJeff Roberson 		struct kseq *ksq;
85680f86c9fSJeff Roberson 
85780f86c9fSJeff Roberson 		for (i = 0; i < MAXCPU; i++) {
85880f86c9fSJeff Roberson 			ksq = &kseq_cpu[i];
85980f86c9fSJeff Roberson 			ksg = &kseq_groups[i];
86080f86c9fSJeff Roberson 			/*
86180f86c9fSJeff Roberson 			 * Setup a kse group with one member.
86280f86c9fSJeff Roberson 			 */
86380f86c9fSJeff Roberson 			ksq->ksq_transferable = 0;
86480f86c9fSJeff Roberson 			ksq->ksq_group = ksg;
86580f86c9fSJeff Roberson 			ksg->ksg_cpus = 1;
86680f86c9fSJeff Roberson 			ksg->ksg_idlemask = 0;
86780f86c9fSJeff Roberson 			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
868cac77d04SJeff Roberson 			ksg->ksg_load = 0;
86980f86c9fSJeff Roberson 			ksg->ksg_transferable = 0;
87080f86c9fSJeff Roberson 			LIST_INIT(&ksg->ksg_members);
87180f86c9fSJeff Roberson 			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
872749d01b0SJeff Roberson 		}
873749d01b0SJeff Roberson 	} else {
87480f86c9fSJeff Roberson 		struct kseq_group *ksg;
87580f86c9fSJeff Roberson 		struct cpu_group *cg;
876749d01b0SJeff Roberson 		int j;
877749d01b0SJeff Roberson 
878749d01b0SJeff Roberson 		for (i = 0; i < smp_topology->ct_count; i++) {
879749d01b0SJeff Roberson 			cg = &smp_topology->ct_group[i];
88080f86c9fSJeff Roberson 			ksg = &kseq_groups[i];
88180f86c9fSJeff Roberson 			/*
88280f86c9fSJeff Roberson 			 * Initialize the group.
88380f86c9fSJeff Roberson 			 */
88480f86c9fSJeff Roberson 			ksg->ksg_idlemask = 0;
885cac77d04SJeff Roberson 			ksg->ksg_load = 0;
88680f86c9fSJeff Roberson 			ksg->ksg_transferable = 0;
88780f86c9fSJeff Roberson 			ksg->ksg_cpus = cg->cg_count;
88880f86c9fSJeff Roberson 			ksg->ksg_cpumask = cg->cg_mask;
88980f86c9fSJeff Roberson 			LIST_INIT(&ksg->ksg_members);
89080f86c9fSJeff Roberson 			/*
89180f86c9fSJeff Roberson 			 * Find all of the group members and add them.
89280f86c9fSJeff Roberson 			 */
89380f86c9fSJeff Roberson 			for (j = 0; j < MAXCPU; j++) {
89480f86c9fSJeff Roberson 				if ((cg->cg_mask & (1 << j)) != 0) {
89580f86c9fSJeff Roberson 					if (ksg->ksg_mask == 0)
89680f86c9fSJeff Roberson 						ksg->ksg_mask = 1 << j;
89780f86c9fSJeff Roberson 					kseq_cpu[j].ksq_transferable = 0;
89880f86c9fSJeff Roberson 					kseq_cpu[j].ksq_group = ksg;
89980f86c9fSJeff Roberson 					LIST_INSERT_HEAD(&ksg->ksg_members,
90080f86c9fSJeff Roberson 					    &kseq_cpu[j], ksq_siblings);
90180f86c9fSJeff Roberson 				}
90280f86c9fSJeff Roberson 			}
903cac77d04SJeff Roberson 			if (ksg->ksg_cpus > 1)
904cac77d04SJeff Roberson 				balance_groups = 1;
905749d01b0SJeff Roberson 		}
906cac77d04SJeff Roberson 		ksg_maxid = smp_topology->ct_count - 1;
907749d01b0SJeff Roberson 	}
908c06eb4e2SSam Leffler 	callout_init(&kseq_lb_callout, CALLOUT_MPSAFE);
909cac77d04SJeff Roberson 	callout_init(&kseq_group_callout, CALLOUT_MPSAFE);
910155b9987SJeff Roberson 	sched_balance(NULL);
911cac77d04SJeff Roberson 	/*
912cac77d04SJeff Roberson 	 * Stagger the group and global load balancer so they do not
913cac77d04SJeff Roberson 	 * interfere with each other.
914cac77d04SJeff Roberson 	 */
915cac77d04SJeff Roberson 	if (balance_groups)
916cac77d04SJeff Roberson 		callout_reset(&kseq_group_callout, hz / 2,
917cac77d04SJeff Roberson 		    sched_balance_groups, NULL);
918749d01b0SJeff Roberson #else
919749d01b0SJeff Roberson 	kseq_setup(KSEQ_SELF());
920356500a3SJeff Roberson #endif
921749d01b0SJeff Roberson 	mtx_lock_spin(&sched_lock);
922155b9987SJeff Roberson 	kseq_load_add(KSEQ_SELF(), &kse0);
923749d01b0SJeff Roberson 	mtx_unlock_spin(&sched_lock);
92435e6168fSJeff Roberson }
92535e6168fSJeff Roberson 
92635e6168fSJeff Roberson /*
92735e6168fSJeff Roberson  * Scale the scheduling priority according to the "interactivity" of this
92835e6168fSJeff Roberson  * process.
92935e6168fSJeff Roberson  */
93015dc847eSJeff Roberson static void
93135e6168fSJeff Roberson sched_priority(struct ksegrp *kg)
93235e6168fSJeff Roberson {
93335e6168fSJeff Roberson 	int pri;
93435e6168fSJeff Roberson 
93535e6168fSJeff Roberson 	if (kg->kg_pri_class != PRI_TIMESHARE)
93615dc847eSJeff Roberson 		return;
93735e6168fSJeff Roberson 
93815dc847eSJeff Roberson 	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
939e1f89c22SJeff Roberson 	pri += SCHED_PRI_BASE;
94035e6168fSJeff Roberson 	pri += kg->kg_nice;
94135e6168fSJeff Roberson 
94235e6168fSJeff Roberson 	if (pri > PRI_MAX_TIMESHARE)
94335e6168fSJeff Roberson 		pri = PRI_MAX_TIMESHARE;
94435e6168fSJeff Roberson 	else if (pri < PRI_MIN_TIMESHARE)
94535e6168fSJeff Roberson 		pri = PRI_MIN_TIMESHARE;
94635e6168fSJeff Roberson 
94735e6168fSJeff Roberson 	kg->kg_user_pri = pri;
94835e6168fSJeff Roberson 
94915dc847eSJeff Roberson 	return;
95035e6168fSJeff Roberson }
95135e6168fSJeff Roberson 
95235e6168fSJeff Roberson /*
953245f3abfSJeff Roberson  * Calculate a time slice based on the properties of the kseg and the runq
954a8949de2SJeff Roberson  * that we're on.  This is only for PRI_TIMESHARE ksegrps.
95535e6168fSJeff Roberson  */
956245f3abfSJeff Roberson static void
957245f3abfSJeff Roberson sched_slice(struct kse *ke)
95835e6168fSJeff Roberson {
95915dc847eSJeff Roberson 	struct kseq *kseq;
960245f3abfSJeff Roberson 	struct ksegrp *kg;
96135e6168fSJeff Roberson 
962245f3abfSJeff Roberson 	kg = ke->ke_ksegrp;
96315dc847eSJeff Roberson 	kseq = KSEQ_CPU(ke->ke_cpu);
96435e6168fSJeff Roberson 
965245f3abfSJeff Roberson 	/*
966245f3abfSJeff Roberson 	 * Rationale:
967245f3abfSJeff Roberson 	 * KSEs in interactive ksegs get the minimum slice so that we
968245f3abfSJeff Roberson 	 * quickly notice if it abuses its advantage.
969245f3abfSJeff Roberson 	 *
970245f3abfSJeff Roberson 	 * KSEs in non-interactive ksegs are assigned a slice that is
971245f3abfSJeff Roberson 	 * based on the ksegs nice value relative to the least nice kseg
972245f3abfSJeff Roberson 	 * on the run queue for this cpu.
973245f3abfSJeff Roberson 	 *
974245f3abfSJeff Roberson 	 * If the KSE is less nice than all others it gets the maximum
975245f3abfSJeff Roberson 	 * slice and other KSEs will adjust their slice relative to
976245f3abfSJeff Roberson 	 * this when they first expire.
977245f3abfSJeff Roberson 	 *
978245f3abfSJeff Roberson 	 * There is 20 point window that starts relative to the least
979245f3abfSJeff Roberson 	 * nice kse on the run queue.  Slice size is determined by
980245f3abfSJeff Roberson 	 * the kse distance from the last nice ksegrp.
981245f3abfSJeff Roberson 	 *
9827d1a81b4SJeff Roberson 	 * If the kse is outside of the window it will get no slice
9837d1a81b4SJeff Roberson 	 * and will be reevaluated each time it is selected on the
9847d1a81b4SJeff Roberson 	 * run queue.  The exception to this is nice 0 ksegs when
9857d1a81b4SJeff Roberson 	 * a nice -20 is running.  They are always granted a minimum
9867d1a81b4SJeff Roberson 	 * slice.
987245f3abfSJeff Roberson 	 */
98815dc847eSJeff Roberson 	if (!SCHED_INTERACTIVE(kg)) {
989245f3abfSJeff Roberson 		int nice;
990245f3abfSJeff Roberson 
99115dc847eSJeff Roberson 		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
992ef1134c9SJeff Roberson 		if (kseq->ksq_load_timeshare == 0 ||
99315dc847eSJeff Roberson 		    kg->kg_nice < kseq->ksq_nicemin)
994245f3abfSJeff Roberson 			ke->ke_slice = SCHED_SLICE_MAX;
9957d1a81b4SJeff Roberson 		else if (nice <= SCHED_SLICE_NTHRESH)
996245f3abfSJeff Roberson 			ke->ke_slice = SCHED_SLICE_NICE(nice);
9977d1a81b4SJeff Roberson 		else if (kg->kg_nice == 0)
9987d1a81b4SJeff Roberson 			ke->ke_slice = SCHED_SLICE_MIN;
999245f3abfSJeff Roberson 		else
1000245f3abfSJeff Roberson 			ke->ke_slice = 0;
1001245f3abfSJeff Roberson 	} else
1002245f3abfSJeff Roberson 		ke->ke_slice = SCHED_SLICE_MIN;
100335e6168fSJeff Roberson 
100415dc847eSJeff Roberson 	CTR6(KTR_ULE,
100515dc847eSJeff Roberson 	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
100615dc847eSJeff Roberson 	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
1007ef1134c9SJeff Roberson 	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
100815dc847eSJeff Roberson 
1009245f3abfSJeff Roberson 	return;
101035e6168fSJeff Roberson }
101135e6168fSJeff Roberson 
1012d322132cSJeff Roberson /*
1013d322132cSJeff Roberson  * This routine enforces a maximum limit on the amount of scheduling history
1014d322132cSJeff Roberson  * kept.  It is called after either the slptime or runtime is adjusted.
1015d322132cSJeff Roberson  * This routine will not operate correctly when slp or run times have been
1016d322132cSJeff Roberson  * adjusted to more than double their maximum.
1017d322132cSJeff Roberson  */
10184b60e324SJeff Roberson static void
10194b60e324SJeff Roberson sched_interact_update(struct ksegrp *kg)
10204b60e324SJeff Roberson {
1021d322132cSJeff Roberson 	int sum;
10223f741ca1SJeff Roberson 
1023d322132cSJeff Roberson 	sum = kg->kg_runtime + kg->kg_slptime;
1024d322132cSJeff Roberson 	if (sum < SCHED_SLP_RUN_MAX)
1025d322132cSJeff Roberson 		return;
1026d322132cSJeff Roberson 	/*
1027d322132cSJeff Roberson 	 * If we have exceeded by more than 1/5th then the algorithm below
1028d322132cSJeff Roberson 	 * will not bring us back into range.  Dividing by two here forces
1029d322132cSJeff Roberson 	 * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1030d322132cSJeff Roberson 	 */
1031d322132cSJeff Roberson 	if (sum > (SCHED_INTERACT_MAX / 5) * 6) {
1032d322132cSJeff Roberson 		kg->kg_runtime /= 2;
1033d322132cSJeff Roberson 		kg->kg_slptime /= 2;
1034d322132cSJeff Roberson 		return;
1035d322132cSJeff Roberson 	}
1036d322132cSJeff Roberson 	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1037d322132cSJeff Roberson 	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1038d322132cSJeff Roberson }
1039d322132cSJeff Roberson 
1040d322132cSJeff Roberson static void
1041d322132cSJeff Roberson sched_interact_fork(struct ksegrp *kg)
1042d322132cSJeff Roberson {
1043d322132cSJeff Roberson 	int ratio;
1044d322132cSJeff Roberson 	int sum;
1045d322132cSJeff Roberson 
1046d322132cSJeff Roberson 	sum = kg->kg_runtime + kg->kg_slptime;
1047d322132cSJeff Roberson 	if (sum > SCHED_SLP_RUN_FORK) {
1048d322132cSJeff Roberson 		ratio = sum / SCHED_SLP_RUN_FORK;
1049d322132cSJeff Roberson 		kg->kg_runtime /= ratio;
1050d322132cSJeff Roberson 		kg->kg_slptime /= ratio;
10514b60e324SJeff Roberson 	}
10524b60e324SJeff Roberson }
10534b60e324SJeff Roberson 
1054e1f89c22SJeff Roberson static int
1055e1f89c22SJeff Roberson sched_interact_score(struct ksegrp *kg)
1056e1f89c22SJeff Roberson {
1057210491d3SJeff Roberson 	int div;
1058e1f89c22SJeff Roberson 
1059e1f89c22SJeff Roberson 	if (kg->kg_runtime > kg->kg_slptime) {
1060210491d3SJeff Roberson 		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1061210491d3SJeff Roberson 		return (SCHED_INTERACT_HALF +
1062210491d3SJeff Roberson 		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1063210491d3SJeff Roberson 	} if (kg->kg_slptime > kg->kg_runtime) {
1064210491d3SJeff Roberson 		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1065210491d3SJeff Roberson 		return (kg->kg_runtime / div);
1066e1f89c22SJeff Roberson 	}
1067e1f89c22SJeff Roberson 
1068210491d3SJeff Roberson 	/*
1069210491d3SJeff Roberson 	 * This can happen if slptime and runtime are 0.
1070210491d3SJeff Roberson 	 */
1071210491d3SJeff Roberson 	return (0);
1072e1f89c22SJeff Roberson 
1073e1f89c22SJeff Roberson }
1074e1f89c22SJeff Roberson 
107515dc847eSJeff Roberson /*
107615dc847eSJeff Roberson  * This is only somewhat accurate since given many processes of the same
107715dc847eSJeff Roberson  * priority they will switch when their slices run out, which will be
107815dc847eSJeff Roberson  * at most SCHED_SLICE_MAX.
107915dc847eSJeff Roberson  */
108035e6168fSJeff Roberson int
108135e6168fSJeff Roberson sched_rr_interval(void)
108235e6168fSJeff Roberson {
108335e6168fSJeff Roberson 	return (SCHED_SLICE_MAX);
108435e6168fSJeff Roberson }
108535e6168fSJeff Roberson 
108622bf7d9aSJeff Roberson static void
108735e6168fSJeff Roberson sched_pctcpu_update(struct kse *ke)
108835e6168fSJeff Roberson {
108935e6168fSJeff Roberson 	/*
109035e6168fSJeff Roberson 	 * Adjust counters and watermark for pctcpu calc.
1091210491d3SJeff Roberson 	 */
109281de51bfSJeff Roberson 	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1093210491d3SJeff Roberson 		/*
109481de51bfSJeff Roberson 		 * Shift the tick count out so that the divide doesn't
109581de51bfSJeff Roberson 		 * round away our results.
109665c8760dSJeff Roberson 		 */
109765c8760dSJeff Roberson 		ke->ke_ticks <<= 10;
109881de51bfSJeff Roberson 		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
109935e6168fSJeff Roberson 			    SCHED_CPU_TICKS;
110065c8760dSJeff Roberson 		ke->ke_ticks >>= 10;
110181de51bfSJeff Roberson 	} else
110281de51bfSJeff Roberson 		ke->ke_ticks = 0;
110335e6168fSJeff Roberson 	ke->ke_ltick = ticks;
110435e6168fSJeff Roberson 	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
110535e6168fSJeff Roberson }
110635e6168fSJeff Roberson 
110735e6168fSJeff Roberson void
110835e6168fSJeff Roberson sched_prio(struct thread *td, u_char prio)
110935e6168fSJeff Roberson {
11103f741ca1SJeff Roberson 	struct kse *ke;
111135e6168fSJeff Roberson 
11123f741ca1SJeff Roberson 	ke = td->td_kse;
111335e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
111435e6168fSJeff Roberson 	if (TD_ON_RUNQ(td)) {
11153f741ca1SJeff Roberson 		/*
11163f741ca1SJeff Roberson 		 * If the priority has been elevated due to priority
11173f741ca1SJeff Roberson 		 * propagation, we may have to move ourselves to a new
11183f741ca1SJeff Roberson 		 * queue.  We still call adjustrunqueue below in case kse
11193f741ca1SJeff Roberson 		 * needs to fix things up.
11203f741ca1SJeff Roberson 		 */
1121769a3635SJeff Roberson 		if (prio < td->td_priority && ke &&
1122769a3635SJeff Roberson 		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
112322bf7d9aSJeff Roberson 		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
11243f741ca1SJeff Roberson 			runq_remove(ke->ke_runq, ke);
11253f741ca1SJeff Roberson 			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
11263f741ca1SJeff Roberson 			runq_add(ke->ke_runq, ke);
112735e6168fSJeff Roberson 		}
11283f741ca1SJeff Roberson 		adjustrunqueue(td, prio);
11293f741ca1SJeff Roberson 	} else
11303f741ca1SJeff Roberson 		td->td_priority = prio;
113135e6168fSJeff Roberson }
113235e6168fSJeff Roberson 
113335e6168fSJeff Roberson void
1134ae53b483SJeff Roberson sched_switch(struct thread *td)
113535e6168fSJeff Roberson {
1136ae53b483SJeff Roberson 	struct thread *newtd;
113735e6168fSJeff Roberson 	struct kse *ke;
113835e6168fSJeff Roberson 
113935e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
114035e6168fSJeff Roberson 
114135e6168fSJeff Roberson 	ke = td->td_kse;
114235e6168fSJeff Roberson 
114335e6168fSJeff Roberson 	td->td_last_kse = ke;
1144060563ecSJulian Elischer         td->td_lastcpu = td->td_oncpu;
1145060563ecSJulian Elischer 	td->td_oncpu = NOCPU;
11464a338afdSJulian Elischer         td->td_flags &= ~TDF_NEEDRESCHED;
114735e6168fSJeff Roberson 
1148b11fdad0SJeff Roberson 	/*
1149b11fdad0SJeff Roberson 	 * If the KSE has been assigned it may be in the process of switching
1150b11fdad0SJeff Roberson 	 * to the new cpu.  This is the case in sched_bind().
1151b11fdad0SJeff Roberson 	 */
1152b11fdad0SJeff Roberson 	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
115335e6168fSJeff Roberson 		if (TD_IS_RUNNING(td)) {
1154ab2baa72SDavid Xu 			if (td->td_proc->p_flag & P_SA) {
1155155b9987SJeff Roberson 				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1156ab2baa72SDavid Xu 				setrunqueue(td);
115780f86c9fSJeff Roberson 			} else
1158155b9987SJeff Roberson 				kseq_runq_add(KSEQ_SELF(), ke);
11590e0f6266SJeff Roberson 		} else {
11600e0f6266SJeff Roberson 			if (ke->ke_runq)
1161155b9987SJeff Roberson 				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
116235e6168fSJeff Roberson 			/*
116335e6168fSJeff Roberson 			 * We will not be on the run queue. So we must be
116435e6168fSJeff Roberson 			 * sleeping or similar.
116535e6168fSJeff Roberson 			 */
11660e2a4d3aSDavid Xu 			if (td->td_proc->p_flag & P_SA)
116735e6168fSJeff Roberson 				kse_reassign(ke);
11680e0f6266SJeff Roberson 		}
1169b11fdad0SJeff Roberson 	}
1170ae53b483SJeff Roberson 	newtd = choosethread();
1171ae53b483SJeff Roberson 	if (td != newtd)
1172ae53b483SJeff Roberson 		cpu_switch(td, newtd);
1173ae53b483SJeff Roberson 	sched_lock.mtx_lock = (uintptr_t)td;
117435e6168fSJeff Roberson 
1175060563ecSJulian Elischer 	td->td_oncpu = PCPU_GET(cpuid);
117635e6168fSJeff Roberson }
117735e6168fSJeff Roberson 
117835e6168fSJeff Roberson void
117935e6168fSJeff Roberson sched_nice(struct ksegrp *kg, int nice)
118035e6168fSJeff Roberson {
118115dc847eSJeff Roberson 	struct kse *ke;
118235e6168fSJeff Roberson 	struct thread *td;
118315dc847eSJeff Roberson 	struct kseq *kseq;
118435e6168fSJeff Roberson 
11850b5318c8SJohn Baldwin 	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
11860b5318c8SJohn Baldwin 	mtx_assert(&sched_lock, MA_OWNED);
118715dc847eSJeff Roberson 	/*
118815dc847eSJeff Roberson 	 * We need to adjust the nice counts for running KSEs.
118915dc847eSJeff Roberson 	 */
119015dc847eSJeff Roberson 	if (kg->kg_pri_class == PRI_TIMESHARE)
119115dc847eSJeff Roberson 		FOREACH_KSE_IN_GROUP(kg, ke) {
1192d07ac847SJeff Roberson 			if (ke->ke_runq == NULL)
119315dc847eSJeff Roberson 				continue;
119415dc847eSJeff Roberson 			kseq = KSEQ_CPU(ke->ke_cpu);
119515dc847eSJeff Roberson 			kseq_nice_rem(kseq, kg->kg_nice);
119615dc847eSJeff Roberson 			kseq_nice_add(kseq, nice);
119715dc847eSJeff Roberson 		}
119835e6168fSJeff Roberson 	kg->kg_nice = nice;
119935e6168fSJeff Roberson 	sched_priority(kg);
120015dc847eSJeff Roberson 	FOREACH_THREAD_IN_GROUP(kg, td)
12014a338afdSJulian Elischer 		td->td_flags |= TDF_NEEDRESCHED;
120235e6168fSJeff Roberson }
120335e6168fSJeff Roberson 
120435e6168fSJeff Roberson void
120535e6168fSJeff Roberson sched_sleep(struct thread *td, u_char prio)
120635e6168fSJeff Roberson {
120735e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
120835e6168fSJeff Roberson 
120935e6168fSJeff Roberson 	td->td_slptime = ticks;
121035e6168fSJeff Roberson 	td->td_priority = prio;
121135e6168fSJeff Roberson 
121215dc847eSJeff Roberson 	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
121315dc847eSJeff Roberson 	    td->td_kse, td->td_slptime);
121435e6168fSJeff Roberson }
121535e6168fSJeff Roberson 
121635e6168fSJeff Roberson void
121735e6168fSJeff Roberson sched_wakeup(struct thread *td)
121835e6168fSJeff Roberson {
121935e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
122035e6168fSJeff Roberson 
122135e6168fSJeff Roberson 	/*
122235e6168fSJeff Roberson 	 * Let the kseg know how long we slept for.  This is because process
122335e6168fSJeff Roberson 	 * interactivity behavior is modeled in the kseg.
122435e6168fSJeff Roberson 	 */
122535e6168fSJeff Roberson 	if (td->td_slptime) {
1226f1e8dc4aSJeff Roberson 		struct ksegrp *kg;
122715dc847eSJeff Roberson 		int hzticks;
1228f1e8dc4aSJeff Roberson 
1229f1e8dc4aSJeff Roberson 		kg = td->td_ksegrp;
1230d322132cSJeff Roberson 		hzticks = (ticks - td->td_slptime) << 10;
1231d322132cSJeff Roberson 		if (hzticks >= SCHED_SLP_RUN_MAX) {
1232d322132cSJeff Roberson 			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1233d322132cSJeff Roberson 			kg->kg_runtime = 1;
1234d322132cSJeff Roberson 		} else {
1235d322132cSJeff Roberson 			kg->kg_slptime += hzticks;
12364b60e324SJeff Roberson 			sched_interact_update(kg);
1237d322132cSJeff Roberson 		}
1238f1e8dc4aSJeff Roberson 		sched_priority(kg);
12394b60e324SJeff Roberson 		if (td->td_kse)
12404b60e324SJeff Roberson 			sched_slice(td->td_kse);
124115dc847eSJeff Roberson 		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
124215dc847eSJeff Roberson 		    td->td_kse, hzticks);
124335e6168fSJeff Roberson 		td->td_slptime = 0;
1244f1e8dc4aSJeff Roberson 	}
124535e6168fSJeff Roberson 	setrunqueue(td);
124635e6168fSJeff Roberson }
124735e6168fSJeff Roberson 
124835e6168fSJeff Roberson /*
124935e6168fSJeff Roberson  * Penalize the parent for creating a new child and initialize the child's
125035e6168fSJeff Roberson  * priority.
125135e6168fSJeff Roberson  */
125235e6168fSJeff Roberson void
125315dc847eSJeff Roberson sched_fork(struct proc *p, struct proc *p1)
125435e6168fSJeff Roberson {
125535e6168fSJeff Roberson 
125635e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
125735e6168fSJeff Roberson 
125815dc847eSJeff Roberson 	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
125915dc847eSJeff Roberson 	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
126015dc847eSJeff Roberson 	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
126115dc847eSJeff Roberson }
126215dc847eSJeff Roberson 
126315dc847eSJeff Roberson void
126415dc847eSJeff Roberson sched_fork_kse(struct kse *ke, struct kse *child)
126515dc847eSJeff Roberson {
12662056d0a1SJohn Baldwin 
1267210491d3SJeff Roberson 	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1268093c05e3SJeff Roberson 	child->ke_cpu = ke->ke_cpu;
126915dc847eSJeff Roberson 	child->ke_runq = NULL;
127015dc847eSJeff Roberson 
1271736c97c7SJeff Roberson 	/* Grab our parents cpu estimation information. */
1272736c97c7SJeff Roberson 	child->ke_ticks = ke->ke_ticks;
1273736c97c7SJeff Roberson 	child->ke_ltick = ke->ke_ltick;
1274736c97c7SJeff Roberson 	child->ke_ftick = ke->ke_ftick;
127515dc847eSJeff Roberson }
127615dc847eSJeff Roberson 
127715dc847eSJeff Roberson void
127815dc847eSJeff Roberson sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
127915dc847eSJeff Roberson {
12802056d0a1SJohn Baldwin 	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1281210491d3SJeff Roberson 
1282d322132cSJeff Roberson 	child->kg_slptime = kg->kg_slptime;
1283d322132cSJeff Roberson 	child->kg_runtime = kg->kg_runtime;
1284d322132cSJeff Roberson 	child->kg_user_pri = kg->kg_user_pri;
1285d322132cSJeff Roberson 	child->kg_nice = kg->kg_nice;
1286d322132cSJeff Roberson 	sched_interact_fork(child);
12874b60e324SJeff Roberson 	kg->kg_runtime += tickincr << 10;
12884b60e324SJeff Roberson 	sched_interact_update(kg);
128915dc847eSJeff Roberson 
1290d322132cSJeff Roberson 	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1291d322132cSJeff Roberson 	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1292d322132cSJeff Roberson 	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1293c9f25d8fSJeff Roberson }
1294c9f25d8fSJeff Roberson 
129515dc847eSJeff Roberson void
129615dc847eSJeff Roberson sched_fork_thread(struct thread *td, struct thread *child)
129715dc847eSJeff Roberson {
129815dc847eSJeff Roberson }
129915dc847eSJeff Roberson 
130015dc847eSJeff Roberson void
130115dc847eSJeff Roberson sched_class(struct ksegrp *kg, int class)
130215dc847eSJeff Roberson {
130315dc847eSJeff Roberson 	struct kseq *kseq;
130415dc847eSJeff Roberson 	struct kse *ke;
1305ef1134c9SJeff Roberson 	int nclass;
1306ef1134c9SJeff Roberson 	int oclass;
130715dc847eSJeff Roberson 
13082056d0a1SJohn Baldwin 	mtx_assert(&sched_lock, MA_OWNED);
130915dc847eSJeff Roberson 	if (kg->kg_pri_class == class)
131015dc847eSJeff Roberson 		return;
131115dc847eSJeff Roberson 
1312ef1134c9SJeff Roberson 	nclass = PRI_BASE(class);
1313ef1134c9SJeff Roberson 	oclass = PRI_BASE(kg->kg_pri_class);
131415dc847eSJeff Roberson 	FOREACH_KSE_IN_GROUP(kg, ke) {
131515dc847eSJeff Roberson 		if (ke->ke_state != KES_ONRUNQ &&
131615dc847eSJeff Roberson 		    ke->ke_state != KES_THREAD)
131715dc847eSJeff Roberson 			continue;
131815dc847eSJeff Roberson 		kseq = KSEQ_CPU(ke->ke_cpu);
131915dc847eSJeff Roberson 
1320ef1134c9SJeff Roberson #ifdef SMP
1321155b9987SJeff Roberson 		/*
1322155b9987SJeff Roberson 		 * On SMP if we're on the RUNQ we must adjust the transferable
1323155b9987SJeff Roberson 		 * count because could be changing to or from an interrupt
1324155b9987SJeff Roberson 		 * class.
1325155b9987SJeff Roberson 		 */
1326155b9987SJeff Roberson 		if (ke->ke_state == KES_ONRUNQ) {
132780f86c9fSJeff Roberson 			if (KSE_CAN_MIGRATE(ke, oclass)) {
132880f86c9fSJeff Roberson 				kseq->ksq_transferable--;
132980f86c9fSJeff Roberson 				kseq->ksq_group->ksg_transferable--;
133080f86c9fSJeff Roberson 			}
133180f86c9fSJeff Roberson 			if (KSE_CAN_MIGRATE(ke, nclass)) {
133280f86c9fSJeff Roberson 				kseq->ksq_transferable++;
133380f86c9fSJeff Roberson 				kseq->ksq_group->ksg_transferable++;
133480f86c9fSJeff Roberson 			}
1335155b9987SJeff Roberson 		}
1336ef1134c9SJeff Roberson #endif
1337155b9987SJeff Roberson 		if (oclass == PRI_TIMESHARE) {
1338ef1134c9SJeff Roberson 			kseq->ksq_load_timeshare--;
133915dc847eSJeff Roberson 			kseq_nice_rem(kseq, kg->kg_nice);
1340155b9987SJeff Roberson 		}
1341155b9987SJeff Roberson 		if (nclass == PRI_TIMESHARE) {
1342155b9987SJeff Roberson 			kseq->ksq_load_timeshare++;
134315dc847eSJeff Roberson 			kseq_nice_add(kseq, kg->kg_nice);
134415dc847eSJeff Roberson 		}
1345155b9987SJeff Roberson 	}
134615dc847eSJeff Roberson 
134715dc847eSJeff Roberson 	kg->kg_pri_class = class;
134835e6168fSJeff Roberson }
134935e6168fSJeff Roberson 
135035e6168fSJeff Roberson /*
135135e6168fSJeff Roberson  * Return some of the child's priority and interactivity to the parent.
135235e6168fSJeff Roberson  */
135335e6168fSJeff Roberson void
135415dc847eSJeff Roberson sched_exit(struct proc *p, struct proc *child)
135535e6168fSJeff Roberson {
135635e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
1357141ad61cSJeff Roberson 	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1358210491d3SJeff Roberson 	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1359141ad61cSJeff Roberson }
1360141ad61cSJeff Roberson 
1361141ad61cSJeff Roberson void
1362141ad61cSJeff Roberson sched_exit_kse(struct kse *ke, struct kse *child)
1363141ad61cSJeff Roberson {
1364155b9987SJeff Roberson 	kseq_load_rem(KSEQ_CPU(child->ke_cpu), child);
1365141ad61cSJeff Roberson }
1366141ad61cSJeff Roberson 
1367141ad61cSJeff Roberson void
1368141ad61cSJeff Roberson sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1369141ad61cSJeff Roberson {
13704b60e324SJeff Roberson 	/* kg->kg_slptime += child->kg_slptime; */
1371210491d3SJeff Roberson 	kg->kg_runtime += child->kg_runtime;
13724b60e324SJeff Roberson 	sched_interact_update(kg);
1373141ad61cSJeff Roberson }
1374141ad61cSJeff Roberson 
1375141ad61cSJeff Roberson void
1376141ad61cSJeff Roberson sched_exit_thread(struct thread *td, struct thread *child)
1377141ad61cSJeff Roberson {
137835e6168fSJeff Roberson }
137935e6168fSJeff Roberson 
138035e6168fSJeff Roberson void
13817cf90fb3SJeff Roberson sched_clock(struct thread *td)
138235e6168fSJeff Roberson {
138335e6168fSJeff Roberson 	struct kseq *kseq;
13840a016a05SJeff Roberson 	struct ksegrp *kg;
13857cf90fb3SJeff Roberson 	struct kse *ke;
138635e6168fSJeff Roberson 
138715dc847eSJeff Roberson 	/*
138815dc847eSJeff Roberson 	 * sched_setup() apparently happens prior to stathz being set.  We
138915dc847eSJeff Roberson 	 * need to resolve the timers earlier in the boot so we can avoid
139015dc847eSJeff Roberson 	 * calculating this here.
139115dc847eSJeff Roberson 	 */
139215dc847eSJeff Roberson 	if (realstathz == 0) {
139315dc847eSJeff Roberson 		realstathz = stathz ? stathz : hz;
139415dc847eSJeff Roberson 		tickincr = hz / realstathz;
139515dc847eSJeff Roberson 		/*
139615dc847eSJeff Roberson 		 * XXX This does not work for values of stathz that are much
139715dc847eSJeff Roberson 		 * larger than hz.
139815dc847eSJeff Roberson 		 */
139915dc847eSJeff Roberson 		if (tickincr == 0)
140015dc847eSJeff Roberson 			tickincr = 1;
140115dc847eSJeff Roberson 	}
140235e6168fSJeff Roberson 
14037cf90fb3SJeff Roberson 	ke = td->td_kse;
140415dc847eSJeff Roberson 	kg = ke->ke_ksegrp;
140535e6168fSJeff Roberson 
14060a016a05SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
14070a016a05SJeff Roberson 	KASSERT((td != NULL), ("schedclock: null thread pointer"));
14080a016a05SJeff Roberson 
14090a016a05SJeff Roberson 	/* Adjust ticks for pctcpu */
141065c8760dSJeff Roberson 	ke->ke_ticks++;
1411d465fb95SJeff Roberson 	ke->ke_ltick = ticks;
1412a8949de2SJeff Roberson 
1413d465fb95SJeff Roberson 	/* Go up to one second beyond our max and then trim back down */
1414d465fb95SJeff Roberson 	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1415d465fb95SJeff Roberson 		sched_pctcpu_update(ke);
1416d465fb95SJeff Roberson 
141743fdafb1SJulian Elischer 	if (td->td_flags & TDF_IDLETD)
141835e6168fSJeff Roberson 		return;
14190a016a05SJeff Roberson 
142015dc847eSJeff Roberson 	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
142115dc847eSJeff Roberson 	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
14223f741ca1SJeff Roberson 	/*
1423a8949de2SJeff Roberson 	 * We only do slicing code for TIMESHARE ksegrps.
1424a8949de2SJeff Roberson 	 */
1425a8949de2SJeff Roberson 	if (kg->kg_pri_class != PRI_TIMESHARE)
1426a8949de2SJeff Roberson 		return;
1427a8949de2SJeff Roberson 	/*
142815dc847eSJeff Roberson 	 * We used a tick charge it to the ksegrp so that we can compute our
142915dc847eSJeff Roberson 	 * interactivity.
143015dc847eSJeff Roberson 	 */
143115dc847eSJeff Roberson 	kg->kg_runtime += tickincr << 10;
14324b60e324SJeff Roberson 	sched_interact_update(kg);
1433407b0157SJeff Roberson 
143435e6168fSJeff Roberson 	/*
143535e6168fSJeff Roberson 	 * We used up one time slice.
143635e6168fSJeff Roberson 	 */
1437093c05e3SJeff Roberson 	if (--ke->ke_slice > 0)
143815dc847eSJeff Roberson 		return;
143935e6168fSJeff Roberson 	/*
144015dc847eSJeff Roberson 	 * We're out of time, recompute priorities and requeue.
144135e6168fSJeff Roberson 	 */
1442093c05e3SJeff Roberson 	kseq = KSEQ_SELF();
1443155b9987SJeff Roberson 	kseq_load_rem(kseq, ke);
1444e1f89c22SJeff Roberson 	sched_priority(kg);
144515dc847eSJeff Roberson 	sched_slice(ke);
144615dc847eSJeff Roberson 	if (SCHED_CURR(kg, ke))
144715dc847eSJeff Roberson 		ke->ke_runq = kseq->ksq_curr;
144815dc847eSJeff Roberson 	else
144915dc847eSJeff Roberson 		ke->ke_runq = kseq->ksq_next;
1450155b9987SJeff Roberson 	kseq_load_add(kseq, ke);
14514a338afdSJulian Elischer 	td->td_flags |= TDF_NEEDRESCHED;
145235e6168fSJeff Roberson }
145335e6168fSJeff Roberson 
145435e6168fSJeff Roberson int
145535e6168fSJeff Roberson sched_runnable(void)
145635e6168fSJeff Roberson {
145735e6168fSJeff Roberson 	struct kseq *kseq;
1458b90816f1SJeff Roberson 	int load;
145935e6168fSJeff Roberson 
1460b90816f1SJeff Roberson 	load = 1;
1461b90816f1SJeff Roberson 
14620a016a05SJeff Roberson 	kseq = KSEQ_SELF();
146322bf7d9aSJeff Roberson #ifdef SMP
146446f8b265SJeff Roberson 	if (kseq->ksq_assigned) {
146546f8b265SJeff Roberson 		mtx_lock_spin(&sched_lock);
146622bf7d9aSJeff Roberson 		kseq_assign(kseq);
146746f8b265SJeff Roberson 		mtx_unlock_spin(&sched_lock);
146846f8b265SJeff Roberson 	}
146922bf7d9aSJeff Roberson #endif
14703f741ca1SJeff Roberson 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
14713f741ca1SJeff Roberson 		if (kseq->ksq_load > 0)
14723f741ca1SJeff Roberson 			goto out;
14733f741ca1SJeff Roberson 	} else
14743f741ca1SJeff Roberson 		if (kseq->ksq_load - 1 > 0)
1475b90816f1SJeff Roberson 			goto out;
1476b90816f1SJeff Roberson 	load = 0;
1477b90816f1SJeff Roberson out:
1478b90816f1SJeff Roberson 	return (load);
147935e6168fSJeff Roberson }
148035e6168fSJeff Roberson 
148135e6168fSJeff Roberson void
148235e6168fSJeff Roberson sched_userret(struct thread *td)
148335e6168fSJeff Roberson {
148435e6168fSJeff Roberson 	struct ksegrp *kg;
148535e6168fSJeff Roberson 
148635e6168fSJeff Roberson 	kg = td->td_ksegrp;
148735e6168fSJeff Roberson 
148835e6168fSJeff Roberson 	if (td->td_priority != kg->kg_user_pri) {
148935e6168fSJeff Roberson 		mtx_lock_spin(&sched_lock);
149035e6168fSJeff Roberson 		td->td_priority = kg->kg_user_pri;
149135e6168fSJeff Roberson 		mtx_unlock_spin(&sched_lock);
149235e6168fSJeff Roberson 	}
149335e6168fSJeff Roberson }
149435e6168fSJeff Roberson 
1495c9f25d8fSJeff Roberson struct kse *
1496c9f25d8fSJeff Roberson sched_choose(void)
1497c9f25d8fSJeff Roberson {
14980a016a05SJeff Roberson 	struct kseq *kseq;
1499c9f25d8fSJeff Roberson 	struct kse *ke;
150015dc847eSJeff Roberson 
1501b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
150222bf7d9aSJeff Roberson 	kseq = KSEQ_SELF();
150315dc847eSJeff Roberson #ifdef SMP
150480f86c9fSJeff Roberson restart:
150522bf7d9aSJeff Roberson 	if (kseq->ksq_assigned)
150622bf7d9aSJeff Roberson 		kseq_assign(kseq);
150715dc847eSJeff Roberson #endif
150822bf7d9aSJeff Roberson 	ke = kseq_choose(kseq);
150935e6168fSJeff Roberson 	if (ke) {
151022bf7d9aSJeff Roberson #ifdef SMP
151122bf7d9aSJeff Roberson 		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
151280f86c9fSJeff Roberson 			if (kseq_idled(kseq) == 0)
151380f86c9fSJeff Roberson 				goto restart;
151422bf7d9aSJeff Roberson #endif
1515155b9987SJeff Roberson 		kseq_runq_rem(kseq, ke);
151635e6168fSJeff Roberson 		ke->ke_state = KES_THREAD;
1517245f3abfSJeff Roberson 
151815dc847eSJeff Roberson 		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
151915dc847eSJeff Roberson 			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
152015dc847eSJeff Roberson 			    ke, ke->ke_runq, ke->ke_slice,
152115dc847eSJeff Roberson 			    ke->ke_thread->td_priority);
1522245f3abfSJeff Roberson 		}
152315dc847eSJeff Roberson 		return (ke);
152435e6168fSJeff Roberson 	}
1525c9f25d8fSJeff Roberson #ifdef SMP
152680f86c9fSJeff Roberson 	if (kseq_idled(kseq) == 0)
152780f86c9fSJeff Roberson 		goto restart;
1528c9f25d8fSJeff Roberson #endif
152915dc847eSJeff Roberson 	return (NULL);
153035e6168fSJeff Roberson }
153135e6168fSJeff Roberson 
153235e6168fSJeff Roberson void
15337cf90fb3SJeff Roberson sched_add(struct thread *td)
153435e6168fSJeff Roberson {
1535c9f25d8fSJeff Roberson 	struct kseq *kseq;
153615dc847eSJeff Roberson 	struct ksegrp *kg;
15377cf90fb3SJeff Roberson 	struct kse *ke;
153822bf7d9aSJeff Roberson 	int class;
1539c9f25d8fSJeff Roberson 
154022bf7d9aSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
15417cf90fb3SJeff Roberson 	ke = td->td_kse;
15427cf90fb3SJeff Roberson 	kg = td->td_ksegrp;
154322bf7d9aSJeff Roberson 	if (ke->ke_flags & KEF_ASSIGNED)
154422bf7d9aSJeff Roberson 		return;
154522bf7d9aSJeff Roberson 	kseq = KSEQ_SELF();
15465d7ef00cSJeff Roberson 	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
15475d7ef00cSJeff Roberson 	KASSERT((ke->ke_thread->td_kse != NULL),
15485d7ef00cSJeff Roberson 	    ("sched_add: No KSE on thread"));
15495d7ef00cSJeff Roberson 	KASSERT(ke->ke_state != KES_ONRUNQ,
15505d7ef00cSJeff Roberson 	    ("sched_add: kse %p (%s) already in run queue", ke,
15515d7ef00cSJeff Roberson 	    ke->ke_proc->p_comm));
15525d7ef00cSJeff Roberson 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
15535d7ef00cSJeff Roberson 	    ("sched_add: process swapped out"));
15549bca28a7SJeff Roberson 	KASSERT(ke->ke_runq == NULL,
15559bca28a7SJeff Roberson 	    ("sched_add: KSE %p is still assigned to a run queue", ke));
15565d7ef00cSJeff Roberson 
155722bf7d9aSJeff Roberson 	class = PRI_BASE(kg->kg_pri_class);
155822bf7d9aSJeff Roberson 	switch (class) {
1559a8949de2SJeff Roberson 	case PRI_ITHD:
1560a8949de2SJeff Roberson 	case PRI_REALTIME:
156115dc847eSJeff Roberson 		ke->ke_runq = kseq->ksq_curr;
156215dc847eSJeff Roberson 		ke->ke_slice = SCHED_SLICE_MAX;
15637cd650a9SJeff Roberson 		ke->ke_cpu = PCPU_GET(cpuid);
1564a8949de2SJeff Roberson 		break;
1565a8949de2SJeff Roberson 	case PRI_TIMESHARE:
156615dc847eSJeff Roberson 		if (SCHED_CURR(kg, ke))
156715dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_curr;
156815dc847eSJeff Roberson 		else
156915dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_next;
157015dc847eSJeff Roberson 		break;
157115dc847eSJeff Roberson 	case PRI_IDLE:
157215dc847eSJeff Roberson 		/*
157315dc847eSJeff Roberson 		 * This is for priority prop.
157415dc847eSJeff Roberson 		 */
15753f741ca1SJeff Roberson 		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
157615dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_curr;
157715dc847eSJeff Roberson 		else
157815dc847eSJeff Roberson 			ke->ke_runq = &kseq->ksq_idle;
157915dc847eSJeff Roberson 		ke->ke_slice = SCHED_SLICE_MIN;
158015dc847eSJeff Roberson 		break;
158115dc847eSJeff Roberson 	default:
1582d322132cSJeff Roberson 		panic("Unknown pri class.");
1583a8949de2SJeff Roberson 		break;
1584a6ed4186SJeff Roberson 	}
158522bf7d9aSJeff Roberson #ifdef SMP
158680f86c9fSJeff Roberson 	if (ke->ke_cpu != PCPU_GET(cpuid)) {
158780f86c9fSJeff Roberson 		kseq_notify(ke, ke->ke_cpu);
158880f86c9fSJeff Roberson 		return;
158980f86c9fSJeff Roberson 	}
159022bf7d9aSJeff Roberson 	/*
159180f86c9fSJeff Roberson 	 * If there are any idle groups, give them our extra load.  The
1592155b9987SJeff Roberson 	 * threshold at which we start to reassign kses has a large impact
1593155b9987SJeff Roberson 	 * on the overall performance of the system.  Tuned too high and
1594155b9987SJeff Roberson 	 * some CPUs may idle.  Too low and there will be excess migration
1595155b9987SJeff Roberson 	 * and context swiches.
159622bf7d9aSJeff Roberson 	 */
159780f86c9fSJeff Roberson 	if (kseq->ksq_load > 1 && KSE_CAN_MIGRATE(ke, class))
159880f86c9fSJeff Roberson 		if (kseq_transfer(kseq, ke, class))
159922bf7d9aSJeff Roberson 			return;
160080f86c9fSJeff Roberson 	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
160180f86c9fSJeff Roberson 	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
160280f86c9fSJeff Roberson 		/*
160380f86c9fSJeff Roberson 		 * Check to see if our group is unidling, and if so, remove it
160480f86c9fSJeff Roberson 		 * from the global idle mask.
160580f86c9fSJeff Roberson 		 */
160680f86c9fSJeff Roberson 		if (kseq->ksq_group->ksg_idlemask ==
160780f86c9fSJeff Roberson 		    kseq->ksq_group->ksg_cpumask)
160880f86c9fSJeff Roberson 			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
160980f86c9fSJeff Roberson 		/*
161080f86c9fSJeff Roberson 		 * Now remove ourselves from the group specific idle mask.
161180f86c9fSJeff Roberson 		 */
161280f86c9fSJeff Roberson 		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1613112b6d3aSJeff Roberson 	}
161422bf7d9aSJeff Roberson #endif
161522bf7d9aSJeff Roberson         if (td->td_priority < curthread->td_priority)
161622bf7d9aSJeff Roberson                 curthread->td_flags |= TDF_NEEDRESCHED;
1617a8949de2SJeff Roberson 
161835e6168fSJeff Roberson 	ke->ke_ksegrp->kg_runq_kses++;
161935e6168fSJeff Roberson 	ke->ke_state = KES_ONRUNQ;
162035e6168fSJeff Roberson 
1621155b9987SJeff Roberson 	kseq_runq_add(kseq, ke);
1622155b9987SJeff Roberson 	kseq_load_add(kseq, ke);
162335e6168fSJeff Roberson }
162435e6168fSJeff Roberson 
162535e6168fSJeff Roberson void
16267cf90fb3SJeff Roberson sched_rem(struct thread *td)
162735e6168fSJeff Roberson {
162815dc847eSJeff Roberson 	struct kseq *kseq;
16297cf90fb3SJeff Roberson 	struct kse *ke;
16307cf90fb3SJeff Roberson 
16317cf90fb3SJeff Roberson 	ke = td->td_kse;
163222bf7d9aSJeff Roberson 	/*
163322bf7d9aSJeff Roberson 	 * It is safe to just return here because sched_rem() is only ever
163422bf7d9aSJeff Roberson 	 * used in places where we're immediately going to add the
163522bf7d9aSJeff Roberson 	 * kse back on again.  In that case it'll be added with the correct
163622bf7d9aSJeff Roberson 	 * thread and priority when the caller drops the sched_lock.
163722bf7d9aSJeff Roberson 	 */
163822bf7d9aSJeff Roberson 	if (ke->ke_flags & KEF_ASSIGNED)
163922bf7d9aSJeff Roberson 		return;
164035e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
16419bca28a7SJeff Roberson 	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
164235e6168fSJeff Roberson 
164335e6168fSJeff Roberson 	ke->ke_state = KES_THREAD;
164435e6168fSJeff Roberson 	ke->ke_ksegrp->kg_runq_kses--;
164515dc847eSJeff Roberson 	kseq = KSEQ_CPU(ke->ke_cpu);
1646155b9987SJeff Roberson 	kseq_runq_rem(kseq, ke);
1647155b9987SJeff Roberson 	kseq_load_rem(kseq, ke);
164835e6168fSJeff Roberson }
164935e6168fSJeff Roberson 
165035e6168fSJeff Roberson fixpt_t
16517cf90fb3SJeff Roberson sched_pctcpu(struct thread *td)
165235e6168fSJeff Roberson {
165335e6168fSJeff Roberson 	fixpt_t pctcpu;
16547cf90fb3SJeff Roberson 	struct kse *ke;
165535e6168fSJeff Roberson 
165635e6168fSJeff Roberson 	pctcpu = 0;
16577cf90fb3SJeff Roberson 	ke = td->td_kse;
1658484288deSJeff Roberson 	if (ke == NULL)
1659484288deSJeff Roberson 		return (0);
166035e6168fSJeff Roberson 
1661b90816f1SJeff Roberson 	mtx_lock_spin(&sched_lock);
166235e6168fSJeff Roberson 	if (ke->ke_ticks) {
166335e6168fSJeff Roberson 		int rtick;
166435e6168fSJeff Roberson 
1665210491d3SJeff Roberson 		/*
1666210491d3SJeff Roberson 		 * Don't update more frequently than twice a second.  Allowing
1667210491d3SJeff Roberson 		 * this causes the cpu usage to decay away too quickly due to
1668210491d3SJeff Roberson 		 * rounding errors.
1669210491d3SJeff Roberson 		 */
16702e227f04SJeff Roberson 		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
16712e227f04SJeff Roberson 		    ke->ke_ltick < (ticks - (hz / 2)))
167235e6168fSJeff Roberson 			sched_pctcpu_update(ke);
167335e6168fSJeff Roberson 		/* How many rtick per second ? */
1674210491d3SJeff Roberson 		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
16757121cce5SScott Long 		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
167635e6168fSJeff Roberson 	}
167735e6168fSJeff Roberson 
167835e6168fSJeff Roberson 	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1679828e7683SJohn Baldwin 	mtx_unlock_spin(&sched_lock);
168035e6168fSJeff Roberson 
168135e6168fSJeff Roberson 	return (pctcpu);
168235e6168fSJeff Roberson }
168335e6168fSJeff Roberson 
16849bacd788SJeff Roberson void
16859bacd788SJeff Roberson sched_bind(struct thread *td, int cpu)
16869bacd788SJeff Roberson {
16879bacd788SJeff Roberson 	struct kse *ke;
16889bacd788SJeff Roberson 
16899bacd788SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
16909bacd788SJeff Roberson 	ke = td->td_kse;
16919bacd788SJeff Roberson 	ke->ke_flags |= KEF_BOUND;
169280f86c9fSJeff Roberson #ifdef SMP
169380f86c9fSJeff Roberson 	if (PCPU_GET(cpuid) == cpu)
16949bacd788SJeff Roberson 		return;
16959bacd788SJeff Roberson 	/* sched_rem without the runq_remove */
16969bacd788SJeff Roberson 	ke->ke_state = KES_THREAD;
16979bacd788SJeff Roberson 	ke->ke_ksegrp->kg_runq_kses--;
1698155b9987SJeff Roberson 	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
16999bacd788SJeff Roberson 	ke->ke_cpu = cpu;
17009bacd788SJeff Roberson 	kseq_notify(ke, cpu);
17019bacd788SJeff Roberson 	/* When we return from mi_switch we'll be on the correct cpu. */
17029bacd788SJeff Roberson 	td->td_proc->p_stats->p_ru.ru_nvcsw++;
17039bacd788SJeff Roberson 	mi_switch();
17049bacd788SJeff Roberson #endif
17059bacd788SJeff Roberson }
17069bacd788SJeff Roberson 
17079bacd788SJeff Roberson void
17089bacd788SJeff Roberson sched_unbind(struct thread *td)
17099bacd788SJeff Roberson {
17109bacd788SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
17119bacd788SJeff Roberson 	td->td_kse->ke_flags &= ~KEF_BOUND;
17129bacd788SJeff Roberson }
17139bacd788SJeff Roberson 
171435e6168fSJeff Roberson int
171535e6168fSJeff Roberson sched_sizeof_kse(void)
171635e6168fSJeff Roberson {
171735e6168fSJeff Roberson 	return (sizeof(struct kse) + sizeof(struct ke_sched));
171835e6168fSJeff Roberson }
171935e6168fSJeff Roberson 
172035e6168fSJeff Roberson int
172135e6168fSJeff Roberson sched_sizeof_ksegrp(void)
172235e6168fSJeff Roberson {
172335e6168fSJeff Roberson 	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
172435e6168fSJeff Roberson }
172535e6168fSJeff Roberson 
172635e6168fSJeff Roberson int
172735e6168fSJeff Roberson sched_sizeof_proc(void)
172835e6168fSJeff Roberson {
172935e6168fSJeff Roberson 	return (sizeof(struct proc));
173035e6168fSJeff Roberson }
173135e6168fSJeff Roberson 
173235e6168fSJeff Roberson int
173335e6168fSJeff Roberson sched_sizeof_thread(void)
173435e6168fSJeff Roberson {
173535e6168fSJeff Roberson 	return (sizeof(struct thread) + sizeof(struct td_sched));
173635e6168fSJeff Roberson }
1737