xref: /freebsd/sys/kern/sched_ule.c (revision b11fdad0fc3618bbd752dcb67beb20a2a804884f)
135e6168fSJeff Roberson /*-
215dc847eSJeff Roberson  * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
335e6168fSJeff Roberson  * All rights reserved.
435e6168fSJeff Roberson  *
535e6168fSJeff Roberson  * Redistribution and use in source and binary forms, with or without
635e6168fSJeff Roberson  * modification, are permitted provided that the following conditions
735e6168fSJeff Roberson  * are met:
835e6168fSJeff Roberson  * 1. Redistributions of source code must retain the above copyright
935e6168fSJeff Roberson  *    notice unmodified, this list of conditions, and the following
1035e6168fSJeff Roberson  *    disclaimer.
1135e6168fSJeff Roberson  * 2. Redistributions in binary form must reproduce the above copyright
1235e6168fSJeff Roberson  *    notice, this list of conditions and the following disclaimer in the
1335e6168fSJeff Roberson  *    documentation and/or other materials provided with the distribution.
1435e6168fSJeff Roberson  *
1535e6168fSJeff Roberson  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
1635e6168fSJeff Roberson  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1735e6168fSJeff Roberson  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
1835e6168fSJeff Roberson  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
1935e6168fSJeff Roberson  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
2035e6168fSJeff Roberson  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2135e6168fSJeff Roberson  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2235e6168fSJeff Roberson  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2335e6168fSJeff Roberson  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
2435e6168fSJeff Roberson  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2535e6168fSJeff Roberson  */
2635e6168fSJeff Roberson 
27677b542eSDavid E. O'Brien #include <sys/cdefs.h>
28677b542eSDavid E. O'Brien __FBSDID("$FreeBSD$");
29677b542eSDavid E. O'Brien 
3035e6168fSJeff Roberson #include <sys/param.h>
3135e6168fSJeff Roberson #include <sys/systm.h>
3235e6168fSJeff Roberson #include <sys/kernel.h>
3335e6168fSJeff Roberson #include <sys/ktr.h>
3435e6168fSJeff Roberson #include <sys/lock.h>
3535e6168fSJeff Roberson #include <sys/mutex.h>
3635e6168fSJeff Roberson #include <sys/proc.h>
37245f3abfSJeff Roberson #include <sys/resource.h>
389bacd788SJeff Roberson #include <sys/resourcevar.h>
3935e6168fSJeff Roberson #include <sys/sched.h>
4035e6168fSJeff Roberson #include <sys/smp.h>
4135e6168fSJeff Roberson #include <sys/sx.h>
4235e6168fSJeff Roberson #include <sys/sysctl.h>
4335e6168fSJeff Roberson #include <sys/sysproto.h>
4435e6168fSJeff Roberson #include <sys/vmmeter.h>
4535e6168fSJeff Roberson #ifdef DDB
4635e6168fSJeff Roberson #include <ddb/ddb.h>
4735e6168fSJeff Roberson #endif
4835e6168fSJeff Roberson #ifdef KTRACE
4935e6168fSJeff Roberson #include <sys/uio.h>
5035e6168fSJeff Roberson #include <sys/ktrace.h>
5135e6168fSJeff Roberson #endif
5235e6168fSJeff Roberson 
5335e6168fSJeff Roberson #include <machine/cpu.h>
5422bf7d9aSJeff Roberson #include <machine/smp.h>
5535e6168fSJeff Roberson 
5615dc847eSJeff Roberson #define KTR_ULE         KTR_NFS
5715dc847eSJeff Roberson 
5835e6168fSJeff Roberson /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
5935e6168fSJeff Roberson /* XXX This is bogus compatability crap for ps */
6035e6168fSJeff Roberson static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
6135e6168fSJeff Roberson SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
6235e6168fSJeff Roberson 
6335e6168fSJeff Roberson static void sched_setup(void *dummy);
6435e6168fSJeff Roberson SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
6535e6168fSJeff Roberson 
6615dc847eSJeff Roberson static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
67e1f89c22SJeff Roberson 
6815dc847eSJeff Roberson static int sched_strict;
6915dc847eSJeff Roberson SYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
7015dc847eSJeff Roberson 
7115dc847eSJeff Roberson static int slice_min = 1;
7215dc847eSJeff Roberson SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
7315dc847eSJeff Roberson 
74210491d3SJeff Roberson static int slice_max = 10;
7515dc847eSJeff Roberson SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
7615dc847eSJeff Roberson 
7715dc847eSJeff Roberson int realstathz;
7815dc847eSJeff Roberson int tickincr = 1;
79783caefbSJeff Roberson 
80356500a3SJeff Roberson #ifdef SMP
81356500a3SJeff Roberson /* Callout to handle load balancing SMP systems. */
82356500a3SJeff Roberson static struct callout kseq_lb_callout;
83356500a3SJeff Roberson #endif
84356500a3SJeff Roberson 
8535e6168fSJeff Roberson /*
8635e6168fSJeff Roberson  * These datastructures are allocated within their parent datastructure but
8735e6168fSJeff Roberson  * are scheduler specific.
8835e6168fSJeff Roberson  */
8935e6168fSJeff Roberson 
9035e6168fSJeff Roberson struct ke_sched {
9135e6168fSJeff Roberson 	int		ske_slice;
9235e6168fSJeff Roberson 	struct runq	*ske_runq;
9335e6168fSJeff Roberson 	/* The following variables are only used for pctcpu calculation */
9435e6168fSJeff Roberson 	int		ske_ltick;	/* Last tick that we were running on */
9535e6168fSJeff Roberson 	int		ske_ftick;	/* First tick that we were running on */
9635e6168fSJeff Roberson 	int		ske_ticks;	/* Tick count */
9715dc847eSJeff Roberson 	/* CPU that we have affinity for. */
98cd6e33dfSJeff Roberson 	u_char		ske_cpu;
9935e6168fSJeff Roberson };
10035e6168fSJeff Roberson #define	ke_slice	ke_sched->ske_slice
10135e6168fSJeff Roberson #define	ke_runq		ke_sched->ske_runq
10235e6168fSJeff Roberson #define	ke_ltick	ke_sched->ske_ltick
10335e6168fSJeff Roberson #define	ke_ftick	ke_sched->ske_ftick
10435e6168fSJeff Roberson #define	ke_ticks	ke_sched->ske_ticks
105cd6e33dfSJeff Roberson #define	ke_cpu		ke_sched->ske_cpu
10622bf7d9aSJeff Roberson #define	ke_assign	ke_procq.tqe_next
10722bf7d9aSJeff Roberson 
10822bf7d9aSJeff Roberson #define	KEF_ASSIGNED	KEF_SCHED0	/* KSE is being migrated. */
109a70d729bSJeff Roberson #define	KEF_BOUND	KEF_SCHED1	/* KSE can not migrate. */
11035e6168fSJeff Roberson 
11135e6168fSJeff Roberson struct kg_sched {
112407b0157SJeff Roberson 	int	skg_slptime;		/* Number of ticks we vol. slept */
113407b0157SJeff Roberson 	int	skg_runtime;		/* Number of ticks we were running */
11435e6168fSJeff Roberson };
11535e6168fSJeff Roberson #define	kg_slptime	kg_sched->skg_slptime
116407b0157SJeff Roberson #define	kg_runtime	kg_sched->skg_runtime
11735e6168fSJeff Roberson 
11835e6168fSJeff Roberson struct td_sched {
11935e6168fSJeff Roberson 	int	std_slptime;
12035e6168fSJeff Roberson };
12135e6168fSJeff Roberson #define	td_slptime	td_sched->std_slptime
12235e6168fSJeff Roberson 
1235d7ef00cSJeff Roberson struct td_sched td_sched;
12435e6168fSJeff Roberson struct ke_sched ke_sched;
12535e6168fSJeff Roberson struct kg_sched kg_sched;
12635e6168fSJeff Roberson 
12735e6168fSJeff Roberson struct ke_sched *kse0_sched = &ke_sched;
12835e6168fSJeff Roberson struct kg_sched *ksegrp0_sched = &kg_sched;
12935e6168fSJeff Roberson struct p_sched *proc0_sched = NULL;
13035e6168fSJeff Roberson struct td_sched *thread0_sched = &td_sched;
13135e6168fSJeff Roberson 
13235e6168fSJeff Roberson /*
133665cb285SJeff Roberson  * The priority is primarily determined by the interactivity score.  Thus, we
134665cb285SJeff Roberson  * give lower(better) priorities to kse groups that use less CPU.  The nice
135665cb285SJeff Roberson  * value is then directly added to this to allow nice to have some effect
136665cb285SJeff Roberson  * on latency.
137e1f89c22SJeff Roberson  *
138e1f89c22SJeff Roberson  * PRI_RANGE:	Total priority range for timeshare threads.
139665cb285SJeff Roberson  * PRI_NRESV:	Number of nice values.
140e1f89c22SJeff Roberson  * PRI_BASE:	The start of the dynamic range.
14135e6168fSJeff Roberson  */
142407b0157SJeff Roberson #define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
143a0a931ceSJeff Roberson #define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
144a0a931ceSJeff Roberson #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
145665cb285SJeff Roberson #define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
14615dc847eSJeff Roberson #define	SCHED_PRI_INTERACT(score)					\
147665cb285SJeff Roberson     ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
14835e6168fSJeff Roberson 
14935e6168fSJeff Roberson /*
150e1f89c22SJeff Roberson  * These determine the interactivity of a process.
15135e6168fSJeff Roberson  *
152407b0157SJeff Roberson  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
153407b0157SJeff Roberson  *		before throttling back.
154d322132cSJeff Roberson  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
155210491d3SJeff Roberson  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
156e1f89c22SJeff Roberson  * INTERACT_THRESH:	Threshhold for placement on the current runq.
15735e6168fSJeff Roberson  */
1584c9612c6SJeff Roberson #define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
159d322132cSJeff Roberson #define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
160210491d3SJeff Roberson #define	SCHED_INTERACT_MAX	(100)
161210491d3SJeff Roberson #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
1624c9612c6SJeff Roberson #define	SCHED_INTERACT_THRESH	(30)
163e1f89c22SJeff Roberson 
16435e6168fSJeff Roberson /*
16535e6168fSJeff Roberson  * These parameters and macros determine the size of the time slice that is
16635e6168fSJeff Roberson  * granted to each thread.
16735e6168fSJeff Roberson  *
16835e6168fSJeff Roberson  * SLICE_MIN:	Minimum time slice granted, in units of ticks.
16935e6168fSJeff Roberson  * SLICE_MAX:	Maximum time slice granted.
17035e6168fSJeff Roberson  * SLICE_RANGE:	Range of available time slices scaled by hz.
171245f3abfSJeff Roberson  * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
172245f3abfSJeff Roberson  * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
1737d1a81b4SJeff Roberson  * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
17435e6168fSJeff Roberson  */
17515dc847eSJeff Roberson #define	SCHED_SLICE_MIN			(slice_min)
17615dc847eSJeff Roberson #define	SCHED_SLICE_MAX			(slice_max)
1777d1a81b4SJeff Roberson #define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
17835e6168fSJeff Roberson #define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
17935e6168fSJeff Roberson #define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
180245f3abfSJeff Roberson #define	SCHED_SLICE_NICE(nice)						\
1817d1a81b4SJeff Roberson     (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
18235e6168fSJeff Roberson 
18335e6168fSJeff Roberson /*
18435e6168fSJeff Roberson  * This macro determines whether or not the kse belongs on the current or
18535e6168fSJeff Roberson  * next run queue.
18635e6168fSJeff Roberson  */
18715dc847eSJeff Roberson #define	SCHED_INTERACTIVE(kg)						\
18815dc847eSJeff Roberson     (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
189a5f099d0SJeff Roberson #define	SCHED_CURR(kg, ke)						\
19008fd6713SJeff Roberson     (ke->ke_thread->td_priority != kg->kg_user_pri ||			\
19108fd6713SJeff Roberson     SCHED_INTERACTIVE(kg))
19235e6168fSJeff Roberson 
19335e6168fSJeff Roberson /*
19435e6168fSJeff Roberson  * Cpu percentage computation macros and defines.
19535e6168fSJeff Roberson  *
19635e6168fSJeff Roberson  * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
19735e6168fSJeff Roberson  * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
19835e6168fSJeff Roberson  */
19935e6168fSJeff Roberson 
2005053d272SJeff Roberson #define	SCHED_CPU_TIME	10
20135e6168fSJeff Roberson #define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
20235e6168fSJeff Roberson 
20335e6168fSJeff Roberson /*
20415dc847eSJeff Roberson  * kseq - per processor runqs and statistics.
20535e6168fSJeff Roberson  */
20635e6168fSJeff Roberson struct kseq {
207a8949de2SJeff Roberson 	struct runq	ksq_idle;		/* Queue of IDLE threads. */
20815dc847eSJeff Roberson 	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
20915dc847eSJeff Roberson 	struct runq	*ksq_next;		/* Next timeshare queue. */
21015dc847eSJeff Roberson 	struct runq	*ksq_curr;		/* Current queue. */
211ef1134c9SJeff Roberson 	int		ksq_load_timeshare;	/* Load for timeshare. */
21215dc847eSJeff Roberson 	int		ksq_load;		/* Aggregate load. */
213a0a931ceSJeff Roberson 	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
21415dc847eSJeff Roberson 	short		ksq_nicemin;		/* Least nice. */
2155d7ef00cSJeff Roberson #ifdef SMP
21680f86c9fSJeff Roberson 	int			ksq_transferable;
21780f86c9fSJeff Roberson 	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
21880f86c9fSJeff Roberson 	struct kseq_group	*ksq_group;	/* Our processor group. */
219fa9c9717SJeff Roberson 	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
2205d7ef00cSJeff Roberson #endif
22135e6168fSJeff Roberson };
22235e6168fSJeff Roberson 
22380f86c9fSJeff Roberson #ifdef SMP
22480f86c9fSJeff Roberson /*
22580f86c9fSJeff Roberson  * kseq groups are groups of processors which can cheaply share threads.  When
22680f86c9fSJeff Roberson  * one processor in the group goes idle it will check the runqs of the other
22780f86c9fSJeff Roberson  * processors in its group prior to halting and waiting for an interrupt.
22880f86c9fSJeff Roberson  * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
22980f86c9fSJeff Roberson  * In a numa environment we'd want an idle bitmap per group and a two tiered
23080f86c9fSJeff Roberson  * load balancer.
23180f86c9fSJeff Roberson  */
23280f86c9fSJeff Roberson struct kseq_group {
23380f86c9fSJeff Roberson 	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
23480f86c9fSJeff Roberson 	int	ksg_cpumask;		/* Mask of cpus in this group. */
23580f86c9fSJeff Roberson 	int	ksg_idlemask;		/* Idle cpus in this group. */
23680f86c9fSJeff Roberson 	int	ksg_mask;		/* Bit mask for first cpu. */
23780f86c9fSJeff Roberson 	int	ksg_transferable;	/* Transferable load of this group. */
23880f86c9fSJeff Roberson 	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
23980f86c9fSJeff Roberson };
24080f86c9fSJeff Roberson #endif
24180f86c9fSJeff Roberson 
24235e6168fSJeff Roberson /*
24335e6168fSJeff Roberson  * One kse queue per processor.
24435e6168fSJeff Roberson  */
2450a016a05SJeff Roberson #ifdef SMP
24622bf7d9aSJeff Roberson static int kseq_idle;
24722bf7d9aSJeff Roberson static struct kseq	kseq_cpu[MAXCPU];
24880f86c9fSJeff Roberson static struct kseq_group kseq_groups[MAXCPU];
24980f86c9fSJeff Roberson #define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
25080f86c9fSJeff Roberson #define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
25180f86c9fSJeff Roberson #else	/* !SMP */
25222bf7d9aSJeff Roberson static struct kseq	kseq_cpu;
2530a016a05SJeff Roberson #define	KSEQ_SELF()	(&kseq_cpu)
2540a016a05SJeff Roberson #define	KSEQ_CPU(x)	(&kseq_cpu)
2550a016a05SJeff Roberson #endif
25635e6168fSJeff Roberson 
257245f3abfSJeff Roberson static void sched_slice(struct kse *ke);
25815dc847eSJeff Roberson static void sched_priority(struct ksegrp *kg);
259e1f89c22SJeff Roberson static int sched_interact_score(struct ksegrp *kg);
2604b60e324SJeff Roberson static void sched_interact_update(struct ksegrp *kg);
261d322132cSJeff Roberson static void sched_interact_fork(struct ksegrp *kg);
26222bf7d9aSJeff Roberson static void sched_pctcpu_update(struct kse *ke);
26335e6168fSJeff Roberson 
2645d7ef00cSJeff Roberson /* Operations on per processor queues */
26522bf7d9aSJeff Roberson static struct kse * kseq_choose(struct kseq *kseq);
2660a016a05SJeff Roberson static void kseq_setup(struct kseq *kseq);
267155b9987SJeff Roberson static void kseq_load_add(struct kseq *kseq, struct kse *ke);
268155b9987SJeff Roberson static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
269155b9987SJeff Roberson static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
270155b9987SJeff Roberson static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
27115dc847eSJeff Roberson static void kseq_nice_add(struct kseq *kseq, int nice);
27215dc847eSJeff Roberson static void kseq_nice_rem(struct kseq *kseq, int nice);
2737cd650a9SJeff Roberson void kseq_print(int cpu);
2745d7ef00cSJeff Roberson #ifdef SMP
27580f86c9fSJeff Roberson static int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
27622bf7d9aSJeff Roberson static struct kse *runq_steal(struct runq *rq);
277155b9987SJeff Roberson static void sched_balance(void *arg);
27822bf7d9aSJeff Roberson static void kseq_move(struct kseq *from, int cpu);
27980f86c9fSJeff Roberson static int kseq_idled(struct kseq *kseq);
28022bf7d9aSJeff Roberson static void kseq_notify(struct kse *ke, int cpu);
28122bf7d9aSJeff Roberson static void kseq_assign(struct kseq *);
28280f86c9fSJeff Roberson static struct kse *kseq_steal(struct kseq *kseq, int stealidle);
2839bacd788SJeff Roberson #define	KSE_CAN_MIGRATE(ke, class)					\
284a70d729bSJeff Roberson     ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
285f28b3340SJeff Roberson     ((ke)->ke_flags & KEF_BOUND) == 0)
2865d7ef00cSJeff Roberson #endif
2875d7ef00cSJeff Roberson 
28815dc847eSJeff Roberson void
2897cd650a9SJeff Roberson kseq_print(int cpu)
29015dc847eSJeff Roberson {
2917cd650a9SJeff Roberson 	struct kseq *kseq;
29215dc847eSJeff Roberson 	int i;
29315dc847eSJeff Roberson 
2947cd650a9SJeff Roberson 	kseq = KSEQ_CPU(cpu);
29515dc847eSJeff Roberson 
29615dc847eSJeff Roberson 	printf("kseq:\n");
29715dc847eSJeff Roberson 	printf("\tload:           %d\n", kseq->ksq_load);
298155b9987SJeff Roberson 	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
299ef1134c9SJeff Roberson #ifdef SMP
30080f86c9fSJeff Roberson 	printf("\tload transferable: %d\n", kseq->ksq_transferable);
301ef1134c9SJeff Roberson #endif
30215dc847eSJeff Roberson 	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
30315dc847eSJeff Roberson 	printf("\tnice counts:\n");
304a0a931ceSJeff Roberson 	for (i = 0; i < SCHED_PRI_NRESV; i++)
30515dc847eSJeff Roberson 		if (kseq->ksq_nice[i])
30615dc847eSJeff Roberson 			printf("\t\t%d = %d\n",
30715dc847eSJeff Roberson 			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
30815dc847eSJeff Roberson }
30915dc847eSJeff Roberson 
310155b9987SJeff Roberson static __inline void
311155b9987SJeff Roberson kseq_runq_add(struct kseq *kseq, struct kse *ke)
312155b9987SJeff Roberson {
313155b9987SJeff Roberson #ifdef SMP
31480f86c9fSJeff Roberson 	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
31580f86c9fSJeff Roberson 		kseq->ksq_transferable++;
31680f86c9fSJeff Roberson 		kseq->ksq_group->ksg_transferable++;
31780f86c9fSJeff Roberson 	}
318155b9987SJeff Roberson #endif
319155b9987SJeff Roberson 	runq_add(ke->ke_runq, ke);
320155b9987SJeff Roberson }
321155b9987SJeff Roberson 
322155b9987SJeff Roberson static __inline void
323155b9987SJeff Roberson kseq_runq_rem(struct kseq *kseq, struct kse *ke)
324155b9987SJeff Roberson {
325155b9987SJeff Roberson #ifdef SMP
32680f86c9fSJeff Roberson 	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
32780f86c9fSJeff Roberson 		kseq->ksq_transferable--;
32880f86c9fSJeff Roberson 		kseq->ksq_group->ksg_transferable--;
32980f86c9fSJeff Roberson 	}
330155b9987SJeff Roberson #endif
331155b9987SJeff Roberson 	runq_remove(ke->ke_runq, ke);
332155b9987SJeff Roberson }
333155b9987SJeff Roberson 
334a8949de2SJeff Roberson static void
335155b9987SJeff Roberson kseq_load_add(struct kseq *kseq, struct kse *ke)
3365d7ef00cSJeff Roberson {
337ef1134c9SJeff Roberson 	int class;
338b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
339ef1134c9SJeff Roberson 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
340ef1134c9SJeff Roberson 	if (class == PRI_TIMESHARE)
341ef1134c9SJeff Roberson 		kseq->ksq_load_timeshare++;
34215dc847eSJeff Roberson 	kseq->ksq_load++;
34315dc847eSJeff Roberson 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
344155b9987SJeff Roberson 		CTR6(KTR_ULE,
345155b9987SJeff Roberson 		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
34615dc847eSJeff Roberson 		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
34715dc847eSJeff Roberson 		    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
34815dc847eSJeff Roberson 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
34915dc847eSJeff Roberson 		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
3505d7ef00cSJeff Roberson }
35115dc847eSJeff Roberson 
352a8949de2SJeff Roberson static void
353155b9987SJeff Roberson kseq_load_rem(struct kseq *kseq, struct kse *ke)
3545d7ef00cSJeff Roberson {
355ef1134c9SJeff Roberson 	int class;
356b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
357ef1134c9SJeff Roberson 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
358ef1134c9SJeff Roberson 	if (class == PRI_TIMESHARE)
359ef1134c9SJeff Roberson 		kseq->ksq_load_timeshare--;
36015dc847eSJeff Roberson 	kseq->ksq_load--;
36115dc847eSJeff Roberson 	ke->ke_runq = NULL;
36215dc847eSJeff Roberson 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
36315dc847eSJeff Roberson 		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
3645d7ef00cSJeff Roberson }
3655d7ef00cSJeff Roberson 
36615dc847eSJeff Roberson static void
36715dc847eSJeff Roberson kseq_nice_add(struct kseq *kseq, int nice)
36815dc847eSJeff Roberson {
369b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
37015dc847eSJeff Roberson 	/* Normalize to zero. */
37115dc847eSJeff Roberson 	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
372ef1134c9SJeff Roberson 	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
37315dc847eSJeff Roberson 		kseq->ksq_nicemin = nice;
37415dc847eSJeff Roberson }
37515dc847eSJeff Roberson 
37615dc847eSJeff Roberson static void
37715dc847eSJeff Roberson kseq_nice_rem(struct kseq *kseq, int nice)
37815dc847eSJeff Roberson {
37915dc847eSJeff Roberson 	int n;
38015dc847eSJeff Roberson 
381b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
38215dc847eSJeff Roberson 	/* Normalize to zero. */
38315dc847eSJeff Roberson 	n = nice + SCHED_PRI_NHALF;
38415dc847eSJeff Roberson 	kseq->ksq_nice[n]--;
38515dc847eSJeff Roberson 	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
38615dc847eSJeff Roberson 
38715dc847eSJeff Roberson 	/*
38815dc847eSJeff Roberson 	 * If this wasn't the smallest nice value or there are more in
38915dc847eSJeff Roberson 	 * this bucket we can just return.  Otherwise we have to recalculate
39015dc847eSJeff Roberson 	 * the smallest nice.
39115dc847eSJeff Roberson 	 */
39215dc847eSJeff Roberson 	if (nice != kseq->ksq_nicemin ||
39315dc847eSJeff Roberson 	    kseq->ksq_nice[n] != 0 ||
394ef1134c9SJeff Roberson 	    kseq->ksq_load_timeshare == 0)
39515dc847eSJeff Roberson 		return;
39615dc847eSJeff Roberson 
397a0a931ceSJeff Roberson 	for (; n < SCHED_PRI_NRESV; n++)
39815dc847eSJeff Roberson 		if (kseq->ksq_nice[n]) {
39915dc847eSJeff Roberson 			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
40015dc847eSJeff Roberson 			return;
40115dc847eSJeff Roberson 		}
40215dc847eSJeff Roberson }
40315dc847eSJeff Roberson 
4045d7ef00cSJeff Roberson #ifdef SMP
405356500a3SJeff Roberson /*
406155b9987SJeff Roberson  * sched_balance is a simple CPU load balancing algorithm.  It operates by
407356500a3SJeff Roberson  * finding the least loaded and most loaded cpu and equalizing their load
408356500a3SJeff Roberson  * by migrating some processes.
409356500a3SJeff Roberson  *
410356500a3SJeff Roberson  * Dealing only with two CPUs at a time has two advantages.  Firstly, most
411356500a3SJeff Roberson  * installations will only have 2 cpus.  Secondly, load balancing too much at
412356500a3SJeff Roberson  * once can have an unpleasant effect on the system.  The scheduler rarely has
413356500a3SJeff Roberson  * enough information to make perfect decisions.  So this algorithm chooses
414356500a3SJeff Roberson  * algorithm simplicity and more gradual effects on load in larger systems.
415356500a3SJeff Roberson  *
416356500a3SJeff Roberson  * It could be improved by considering the priorities and slices assigned to
417356500a3SJeff Roberson  * each task prior to balancing them.  There are many pathological cases with
418356500a3SJeff Roberson  * any approach and so the semi random algorithm below may work as well as any.
419356500a3SJeff Roberson  *
420356500a3SJeff Roberson  */
42122bf7d9aSJeff Roberson static void
422155b9987SJeff Roberson sched_balance(void *arg)
423356500a3SJeff Roberson {
424356500a3SJeff Roberson 	struct kseq *kseq;
42580f86c9fSJeff Roberson 	int transferable;
426356500a3SJeff Roberson 	int high_load;
427356500a3SJeff Roberson 	int low_load;
428356500a3SJeff Roberson 	int high_cpu;
429356500a3SJeff Roberson 	int low_cpu;
430356500a3SJeff Roberson 	int move;
431356500a3SJeff Roberson 	int diff;
432356500a3SJeff Roberson 	int i;
433356500a3SJeff Roberson 
434356500a3SJeff Roberson 	high_cpu = 0;
435356500a3SJeff Roberson 	low_cpu = 0;
436356500a3SJeff Roberson 	high_load = 0;
437356500a3SJeff Roberson 	low_load = -1;
438356500a3SJeff Roberson 
439356500a3SJeff Roberson 	mtx_lock_spin(&sched_lock);
44086f8ae96SJeff Roberson 	if (smp_started == 0)
44186f8ae96SJeff Roberson 		goto out;
44286f8ae96SJeff Roberson 
443b6c71225SJohn Baldwin 	for (i = 0; i <= mp_maxid; i++) {
4447a20304fSJeff Roberson 		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
445356500a3SJeff Roberson 			continue;
446356500a3SJeff Roberson 		kseq = KSEQ_CPU(i);
44780f86c9fSJeff Roberson 		/*
44880f86c9fSJeff Roberson 		 * Find the CPU with the highest load that has some threads
44980f86c9fSJeff Roberson 		 * to transfer.
45080f86c9fSJeff Roberson 		 */
45180f86c9fSJeff Roberson 		if (kseq->ksq_load > high_load &&
45280f86c9fSJeff Roberson 		    kseq->ksq_group->ksg_transferable) {
45380f86c9fSJeff Roberson 			high_load = kseq->ksq_load;
454356500a3SJeff Roberson 			high_cpu = i;
455356500a3SJeff Roberson 		}
456356500a3SJeff Roberson 		if (low_load == -1 || kseq->ksq_load < low_load) {
457356500a3SJeff Roberson 			low_load = kseq->ksq_load;
458356500a3SJeff Roberson 			low_cpu = i;
459356500a3SJeff Roberson 		}
460356500a3SJeff Roberson 	}
461749d01b0SJeff Roberson 	kseq = KSEQ_CPU(high_cpu);
462356500a3SJeff Roberson 	/*
463356500a3SJeff Roberson 	 * Nothing to do.
464356500a3SJeff Roberson 	 */
46580f86c9fSJeff Roberson 	if (low_load >= high_load)
46680f86c9fSJeff Roberson 		goto out;
46780f86c9fSJeff Roberson 	/*
46880f86c9fSJeff Roberson 	 * If we're transfering within a group we have to use this specific
46980f86c9fSJeff Roberson 	 * kseq's transferable count, otherwise we can steal from other members
47080f86c9fSJeff Roberson 	 * of the group.
47180f86c9fSJeff Roberson 	 */
47280f86c9fSJeff Roberson 	if (kseq->ksq_group == KSEQ_CPU(low_cpu)->ksq_group)
47380f86c9fSJeff Roberson 		transferable = kseq->ksq_transferable;
47480f86c9fSJeff Roberson 	else
47580f86c9fSJeff Roberson 		transferable = kseq->ksq_group->ksg_transferable;
47680f86c9fSJeff Roberson 	if (transferable == 0)
477749d01b0SJeff Roberson 		goto out;
478155b9987SJeff Roberson 	/*
479155b9987SJeff Roberson 	 * Determine what the imbalance is and then adjust that to how many
48080f86c9fSJeff Roberson 	 * kses we actually have to give up (transferable).
481155b9987SJeff Roberson 	 */
482155b9987SJeff Roberson 	diff = kseq->ksq_load - low_load;
483356500a3SJeff Roberson 	move = diff / 2;
484356500a3SJeff Roberson 	if (diff & 0x1)
485356500a3SJeff Roberson 		move++;
48680f86c9fSJeff Roberson 	move = min(move, transferable);
487356500a3SJeff Roberson 	for (i = 0; i < move; i++)
488749d01b0SJeff Roberson 		kseq_move(kseq, low_cpu);
489356500a3SJeff Roberson out:
490356500a3SJeff Roberson 	mtx_unlock_spin(&sched_lock);
491155b9987SJeff Roberson 	callout_reset(&kseq_lb_callout, hz, sched_balance, NULL);
492356500a3SJeff Roberson 
493356500a3SJeff Roberson 	return;
494356500a3SJeff Roberson }
495356500a3SJeff Roberson 
49622bf7d9aSJeff Roberson static void
497356500a3SJeff Roberson kseq_move(struct kseq *from, int cpu)
498356500a3SJeff Roberson {
49980f86c9fSJeff Roberson 	struct kseq *kseq;
50080f86c9fSJeff Roberson 	struct kseq *to;
501356500a3SJeff Roberson 	struct kse *ke;
502356500a3SJeff Roberson 
50380f86c9fSJeff Roberson 	kseq = from;
50480f86c9fSJeff Roberson 	to = KSEQ_CPU(cpu);
50580f86c9fSJeff Roberson 	ke = kseq_steal(kseq, 1);
50680f86c9fSJeff Roberson 	if (ke == NULL) {
50780f86c9fSJeff Roberson 		struct kseq_group *ksg;
50880f86c9fSJeff Roberson 
50980f86c9fSJeff Roberson 		ksg = kseq->ksq_group;
51080f86c9fSJeff Roberson 		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
51180f86c9fSJeff Roberson 			if (kseq == from || kseq->ksq_transferable == 0)
51280f86c9fSJeff Roberson 				continue;
51380f86c9fSJeff Roberson 			ke = kseq_steal(kseq, 1);
51480f86c9fSJeff Roberson 			break;
51580f86c9fSJeff Roberson 		}
51680f86c9fSJeff Roberson 		if (ke == NULL)
51780f86c9fSJeff Roberson 			panic("kseq_move: No KSEs available with a "
51880f86c9fSJeff Roberson 			    "transferable count of %d\n",
51980f86c9fSJeff Roberson 			    ksg->ksg_transferable);
52080f86c9fSJeff Roberson 	}
52180f86c9fSJeff Roberson 	if (kseq == to)
52280f86c9fSJeff Roberson 		return;
523356500a3SJeff Roberson 	ke->ke_state = KES_THREAD;
52480f86c9fSJeff Roberson 	kseq_runq_rem(kseq, ke);
52580f86c9fSJeff Roberson 	kseq_load_rem(kseq, ke);
526356500a3SJeff Roberson 
527356500a3SJeff Roberson 	ke->ke_cpu = cpu;
528112b6d3aSJeff Roberson 	kseq_notify(ke, cpu);
529356500a3SJeff Roberson }
53022bf7d9aSJeff Roberson 
53180f86c9fSJeff Roberson static int
53280f86c9fSJeff Roberson kseq_idled(struct kseq *kseq)
53322bf7d9aSJeff Roberson {
53480f86c9fSJeff Roberson 	struct kseq_group *ksg;
53580f86c9fSJeff Roberson 	struct kseq *steal;
53680f86c9fSJeff Roberson 	struct kse *ke;
53780f86c9fSJeff Roberson 
53880f86c9fSJeff Roberson 	ksg = kseq->ksq_group;
53980f86c9fSJeff Roberson 	/*
54080f86c9fSJeff Roberson 	 * If we're in a cpu group, try and steal kses from another cpu in
54180f86c9fSJeff Roberson 	 * the group before idling.
54280f86c9fSJeff Roberson 	 */
54380f86c9fSJeff Roberson 	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
54480f86c9fSJeff Roberson 		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
54580f86c9fSJeff Roberson 			if (steal == kseq || steal->ksq_transferable == 0)
54680f86c9fSJeff Roberson 				continue;
54780f86c9fSJeff Roberson 			ke = kseq_steal(steal, 0);
54880f86c9fSJeff Roberson 			if (ke == NULL)
54980f86c9fSJeff Roberson 				continue;
55080f86c9fSJeff Roberson 			ke->ke_state = KES_THREAD;
55180f86c9fSJeff Roberson 			kseq_runq_rem(steal, ke);
55280f86c9fSJeff Roberson 			kseq_load_rem(steal, ke);
55380f86c9fSJeff Roberson 			ke->ke_cpu = PCPU_GET(cpuid);
55480f86c9fSJeff Roberson 			sched_add(ke->ke_thread);
55580f86c9fSJeff Roberson 			return (0);
55680f86c9fSJeff Roberson 		}
55780f86c9fSJeff Roberson 	}
55880f86c9fSJeff Roberson 	/*
55980f86c9fSJeff Roberson 	 * We only set the idled bit when all of the cpus in the group are
56080f86c9fSJeff Roberson 	 * idle.  Otherwise we could get into a situation where a KSE bounces
56180f86c9fSJeff Roberson 	 * back and forth between two idle cores on seperate physical CPUs.
56280f86c9fSJeff Roberson 	 */
56380f86c9fSJeff Roberson 	ksg->ksg_idlemask |= PCPU_GET(cpumask);
56480f86c9fSJeff Roberson 	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
56580f86c9fSJeff Roberson 		return (1);
56680f86c9fSJeff Roberson 	atomic_set_int(&kseq_idle, ksg->ksg_mask);
56780f86c9fSJeff Roberson 	return (1);
56822bf7d9aSJeff Roberson }
56922bf7d9aSJeff Roberson 
57022bf7d9aSJeff Roberson static void
57122bf7d9aSJeff Roberson kseq_assign(struct kseq *kseq)
57222bf7d9aSJeff Roberson {
57322bf7d9aSJeff Roberson 	struct kse *nke;
57422bf7d9aSJeff Roberson 	struct kse *ke;
57522bf7d9aSJeff Roberson 
57622bf7d9aSJeff Roberson 	do {
577fa9c9717SJeff Roberson 		(volatile struct kse *)ke = kseq->ksq_assigned;
57822bf7d9aSJeff Roberson 	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
57922bf7d9aSJeff Roberson 	for (; ke != NULL; ke = nke) {
58022bf7d9aSJeff Roberson 		nke = ke->ke_assign;
58122bf7d9aSJeff Roberson 		ke->ke_flags &= ~KEF_ASSIGNED;
58222bf7d9aSJeff Roberson 		sched_add(ke->ke_thread);
58322bf7d9aSJeff Roberson 	}
58422bf7d9aSJeff Roberson }
58522bf7d9aSJeff Roberson 
58622bf7d9aSJeff Roberson static void
58722bf7d9aSJeff Roberson kseq_notify(struct kse *ke, int cpu)
58822bf7d9aSJeff Roberson {
58922bf7d9aSJeff Roberson 	struct kseq *kseq;
59022bf7d9aSJeff Roberson 	struct thread *td;
59122bf7d9aSJeff Roberson 	struct pcpu *pcpu;
59222bf7d9aSJeff Roberson 
59322bf7d9aSJeff Roberson 	ke->ke_flags |= KEF_ASSIGNED;
59422bf7d9aSJeff Roberson 
59522bf7d9aSJeff Roberson 	kseq = KSEQ_CPU(cpu);
5965d7ef00cSJeff Roberson 
5970c0a98b2SJeff Roberson 	/*
59822bf7d9aSJeff Roberson 	 * Place a KSE on another cpu's queue and force a resched.
59922bf7d9aSJeff Roberson 	 */
60022bf7d9aSJeff Roberson 	do {
601fa9c9717SJeff Roberson 		(volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
60222bf7d9aSJeff Roberson 	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
60322bf7d9aSJeff Roberson 	pcpu = pcpu_find(cpu);
60422bf7d9aSJeff Roberson 	td = pcpu->pc_curthread;
60522bf7d9aSJeff Roberson 	if (ke->ke_thread->td_priority < td->td_priority ||
60622bf7d9aSJeff Roberson 	    td == pcpu->pc_idlethread) {
60722bf7d9aSJeff Roberson 		td->td_flags |= TDF_NEEDRESCHED;
60822bf7d9aSJeff Roberson 		ipi_selected(1 << cpu, IPI_AST);
60922bf7d9aSJeff Roberson 	}
61022bf7d9aSJeff Roberson }
61122bf7d9aSJeff Roberson 
61222bf7d9aSJeff Roberson static struct kse *
61322bf7d9aSJeff Roberson runq_steal(struct runq *rq)
61422bf7d9aSJeff Roberson {
61522bf7d9aSJeff Roberson 	struct rqhead *rqh;
61622bf7d9aSJeff Roberson 	struct rqbits *rqb;
61722bf7d9aSJeff Roberson 	struct kse *ke;
61822bf7d9aSJeff Roberson 	int word;
61922bf7d9aSJeff Roberson 	int bit;
62022bf7d9aSJeff Roberson 
62122bf7d9aSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
62222bf7d9aSJeff Roberson 	rqb = &rq->rq_status;
62322bf7d9aSJeff Roberson 	for (word = 0; word < RQB_LEN; word++) {
62422bf7d9aSJeff Roberson 		if (rqb->rqb_bits[word] == 0)
62522bf7d9aSJeff Roberson 			continue;
62622bf7d9aSJeff Roberson 		for (bit = 0; bit < RQB_BPW; bit++) {
627a2640c9bSPeter Wemm 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
62822bf7d9aSJeff Roberson 				continue;
62922bf7d9aSJeff Roberson 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
63022bf7d9aSJeff Roberson 			TAILQ_FOREACH(ke, rqh, ke_procq) {
631ef1134c9SJeff Roberson 				if (KSE_CAN_MIGRATE(ke,
632ef1134c9SJeff Roberson 				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
63322bf7d9aSJeff Roberson 					return (ke);
63422bf7d9aSJeff Roberson 			}
63522bf7d9aSJeff Roberson 		}
63622bf7d9aSJeff Roberson 	}
63722bf7d9aSJeff Roberson 	return (NULL);
63822bf7d9aSJeff Roberson }
63922bf7d9aSJeff Roberson 
64022bf7d9aSJeff Roberson static struct kse *
64180f86c9fSJeff Roberson kseq_steal(struct kseq *kseq, int stealidle)
64222bf7d9aSJeff Roberson {
64322bf7d9aSJeff Roberson 	struct kse *ke;
64422bf7d9aSJeff Roberson 
64580f86c9fSJeff Roberson 	/*
64680f86c9fSJeff Roberson 	 * Steal from next first to try to get a non-interactive task that
64780f86c9fSJeff Roberson 	 * may not have run for a while.
64880f86c9fSJeff Roberson 	 */
64922bf7d9aSJeff Roberson 	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
65022bf7d9aSJeff Roberson 		return (ke);
65180f86c9fSJeff Roberson 	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
65280f86c9fSJeff Roberson 		return (ke);
65380f86c9fSJeff Roberson 	if (stealidle)
65422bf7d9aSJeff Roberson 		return (runq_steal(&kseq->ksq_idle));
65580f86c9fSJeff Roberson 	return (NULL);
65622bf7d9aSJeff Roberson }
65780f86c9fSJeff Roberson 
65880f86c9fSJeff Roberson int
65980f86c9fSJeff Roberson kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
66080f86c9fSJeff Roberson {
66180f86c9fSJeff Roberson 	struct kseq_group *ksg;
66280f86c9fSJeff Roberson 	int cpu;
66380f86c9fSJeff Roberson 
66480f86c9fSJeff Roberson 	cpu = 0;
66580f86c9fSJeff Roberson 	ksg = kseq->ksq_group;
66680f86c9fSJeff Roberson 
66780f86c9fSJeff Roberson 	/*
66880f86c9fSJeff Roberson 	 * XXX This ksg_transferable might work better if we were checking
66980f86c9fSJeff Roberson 	 * against a global group load.  As it is now, this prevents us from
67080f86c9fSJeff Roberson 	 * transfering a thread from a group that is potentially bogged down
67180f86c9fSJeff Roberson 	 * with non transferable load.
67280f86c9fSJeff Roberson 	 */
67380f86c9fSJeff Roberson 	if (ksg->ksg_transferable > ksg->ksg_cpus && kseq_idle) {
67480f86c9fSJeff Roberson 		/*
67580f86c9fSJeff Roberson 		 * Multiple cpus could find this bit simultaneously
67680f86c9fSJeff Roberson 		 * but the race shouldn't be terrible.
67780f86c9fSJeff Roberson 		 */
67880f86c9fSJeff Roberson 		cpu = ffs(kseq_idle);
67980f86c9fSJeff Roberson 		if (cpu)
68080f86c9fSJeff Roberson 			atomic_clear_int(&kseq_idle, 1 << (cpu - 1));
68180f86c9fSJeff Roberson 	}
68280f86c9fSJeff Roberson 	/*
68380f86c9fSJeff Roberson 	 * If another cpu in this group has idled, assign a thread over
68480f86c9fSJeff Roberson 	 * to them after checking to see if there are idled groups.
68580f86c9fSJeff Roberson 	 */
68680f86c9fSJeff Roberson 	if (cpu == 0 && kseq->ksq_load > 1 && ksg->ksg_idlemask) {
68780f86c9fSJeff Roberson 		cpu = ffs(ksg->ksg_idlemask);
68880f86c9fSJeff Roberson 		if (cpu)
68980f86c9fSJeff Roberson 			ksg->ksg_idlemask &= ~(1 << (cpu - 1));
69080f86c9fSJeff Roberson 	}
69180f86c9fSJeff Roberson 	/*
69280f86c9fSJeff Roberson 	 * Now that we've found an idle CPU, migrate the thread.
69380f86c9fSJeff Roberson 	 */
69480f86c9fSJeff Roberson 	if (cpu) {
69580f86c9fSJeff Roberson 		cpu--;
69680f86c9fSJeff Roberson 		ke->ke_cpu = cpu;
69780f86c9fSJeff Roberson 		ke->ke_runq = NULL;
69880f86c9fSJeff Roberson 		kseq_notify(ke, cpu);
69980f86c9fSJeff Roberson 		return (1);
70080f86c9fSJeff Roberson 	}
70180f86c9fSJeff Roberson 	return (0);
70280f86c9fSJeff Roberson }
70380f86c9fSJeff Roberson 
70422bf7d9aSJeff Roberson #endif	/* SMP */
70522bf7d9aSJeff Roberson 
70622bf7d9aSJeff Roberson /*
70722bf7d9aSJeff Roberson  * Pick the highest priority task we have and return it.
7080c0a98b2SJeff Roberson  */
7090c0a98b2SJeff Roberson 
71022bf7d9aSJeff Roberson static struct kse *
71122bf7d9aSJeff Roberson kseq_choose(struct kseq *kseq)
7125d7ef00cSJeff Roberson {
7135d7ef00cSJeff Roberson 	struct kse *ke;
7145d7ef00cSJeff Roberson 	struct runq *swap;
7155d7ef00cSJeff Roberson 
716b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
71715dc847eSJeff Roberson 	swap = NULL;
718a8949de2SJeff Roberson 
71915dc847eSJeff Roberson 	for (;;) {
72015dc847eSJeff Roberson 		ke = runq_choose(kseq->ksq_curr);
72115dc847eSJeff Roberson 		if (ke == NULL) {
72215dc847eSJeff Roberson 			/*
72315dc847eSJeff Roberson 			 * We already swaped once and didn't get anywhere.
72415dc847eSJeff Roberson 			 */
72515dc847eSJeff Roberson 			if (swap)
72615dc847eSJeff Roberson 				break;
7275d7ef00cSJeff Roberson 			swap = kseq->ksq_curr;
7285d7ef00cSJeff Roberson 			kseq->ksq_curr = kseq->ksq_next;
7295d7ef00cSJeff Roberson 			kseq->ksq_next = swap;
73015dc847eSJeff Roberson 			continue;
731a8949de2SJeff Roberson 		}
73215dc847eSJeff Roberson 		/*
73315dc847eSJeff Roberson 		 * If we encounter a slice of 0 the kse is in a
73415dc847eSJeff Roberson 		 * TIMESHARE kse group and its nice was too far out
73515dc847eSJeff Roberson 		 * of the range that receives slices.
73615dc847eSJeff Roberson 		 */
73722bf7d9aSJeff Roberson 		if (ke->ke_slice == 0) {
73815dc847eSJeff Roberson 			runq_remove(ke->ke_runq, ke);
73915dc847eSJeff Roberson 			sched_slice(ke);
74015dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_next;
74115dc847eSJeff Roberson 			runq_add(ke->ke_runq, ke);
74215dc847eSJeff Roberson 			continue;
74315dc847eSJeff Roberson 		}
74415dc847eSJeff Roberson 		return (ke);
74515dc847eSJeff Roberson 	}
74615dc847eSJeff Roberson 
747a8949de2SJeff Roberson 	return (runq_choose(&kseq->ksq_idle));
748245f3abfSJeff Roberson }
7490a016a05SJeff Roberson 
7500a016a05SJeff Roberson static void
7510a016a05SJeff Roberson kseq_setup(struct kseq *kseq)
7520a016a05SJeff Roberson {
75315dc847eSJeff Roberson 	runq_init(&kseq->ksq_timeshare[0]);
75415dc847eSJeff Roberson 	runq_init(&kseq->ksq_timeshare[1]);
755a8949de2SJeff Roberson 	runq_init(&kseq->ksq_idle);
75615dc847eSJeff Roberson 	kseq->ksq_curr = &kseq->ksq_timeshare[0];
75715dc847eSJeff Roberson 	kseq->ksq_next = &kseq->ksq_timeshare[1];
7587cd650a9SJeff Roberson 	kseq->ksq_load = 0;
759ef1134c9SJeff Roberson 	kseq->ksq_load_timeshare = 0;
7600a016a05SJeff Roberson }
7610a016a05SJeff Roberson 
76235e6168fSJeff Roberson static void
76335e6168fSJeff Roberson sched_setup(void *dummy)
76435e6168fSJeff Roberson {
7650ec896fdSJeff Roberson #ifdef SMP
76635e6168fSJeff Roberson 	int i;
7670ec896fdSJeff Roberson #endif
76835e6168fSJeff Roberson 
769e493a5d9SJeff Roberson 	slice_min = (hz/100);	/* 10ms */
770e493a5d9SJeff Roberson 	slice_max = (hz/7);	/* ~140ms */
771e1f89c22SJeff Roberson 
772356500a3SJeff Roberson #ifdef SMP
77380f86c9fSJeff Roberson 	/*
77480f86c9fSJeff Roberson 	 * Initialize the kseqs.
77580f86c9fSJeff Roberson 	 */
776749d01b0SJeff Roberson 	for (i = 0; i < MAXCPU; i++) {
77780f86c9fSJeff Roberson 		struct kseq *ksq;
77880f86c9fSJeff Roberson 
77980f86c9fSJeff Roberson 		ksq = &kseq_cpu[i];
78080f86c9fSJeff Roberson 		ksq->ksq_assigned = NULL;
781749d01b0SJeff Roberson 		kseq_setup(&kseq_cpu[i]);
78280f86c9fSJeff Roberson 	}
78380f86c9fSJeff Roberson 	if (smp_topology == NULL) {
78480f86c9fSJeff Roberson 		struct kseq_group *ksg;
78580f86c9fSJeff Roberson 		struct kseq *ksq;
78680f86c9fSJeff Roberson 
78780f86c9fSJeff Roberson 		for (i = 0; i < MAXCPU; i++) {
78880f86c9fSJeff Roberson 			ksq = &kseq_cpu[i];
78980f86c9fSJeff Roberson 			ksg = &kseq_groups[i];
79080f86c9fSJeff Roberson 			/*
79180f86c9fSJeff Roberson 			 * Setup a kse group with one member.
79280f86c9fSJeff Roberson 			 */
79380f86c9fSJeff Roberson 			ksq->ksq_transferable = 0;
79480f86c9fSJeff Roberson 			ksq->ksq_group = ksg;
79580f86c9fSJeff Roberson 			ksg->ksg_cpus = 1;
79680f86c9fSJeff Roberson 			ksg->ksg_idlemask = 0;
79780f86c9fSJeff Roberson 			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
79880f86c9fSJeff Roberson 			ksg->ksg_transferable = 0;
79980f86c9fSJeff Roberson 			LIST_INIT(&ksg->ksg_members);
80080f86c9fSJeff Roberson 			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
801749d01b0SJeff Roberson 		}
802749d01b0SJeff Roberson 	} else {
80380f86c9fSJeff Roberson 		struct kseq_group *ksg;
80480f86c9fSJeff Roberson 		struct cpu_group *cg;
805749d01b0SJeff Roberson 		int j;
806749d01b0SJeff Roberson 
807749d01b0SJeff Roberson 		for (i = 0; i < smp_topology->ct_count; i++) {
808749d01b0SJeff Roberson 			cg = &smp_topology->ct_group[i];
80980f86c9fSJeff Roberson 			ksg = &kseq_groups[i];
81080f86c9fSJeff Roberson 			/*
81180f86c9fSJeff Roberson 			 * Initialize the group.
81280f86c9fSJeff Roberson 			 */
81380f86c9fSJeff Roberson 			ksg->ksg_idlemask = 0;
81480f86c9fSJeff Roberson 			ksg->ksg_transferable = 0;
81580f86c9fSJeff Roberson 			ksg->ksg_cpus = cg->cg_count;
81680f86c9fSJeff Roberson 			ksg->ksg_cpumask = cg->cg_mask;
81780f86c9fSJeff Roberson 			LIST_INIT(&ksg->ksg_members);
81880f86c9fSJeff Roberson 			/*
81980f86c9fSJeff Roberson 			 * Find all of the group members and add them.
82080f86c9fSJeff Roberson 			 */
82180f86c9fSJeff Roberson 			for (j = 0; j < MAXCPU; j++) {
82280f86c9fSJeff Roberson 				if ((cg->cg_mask & (1 << j)) != 0) {
82380f86c9fSJeff Roberson 					if (ksg->ksg_mask == 0)
82480f86c9fSJeff Roberson 						ksg->ksg_mask = 1 << j;
82580f86c9fSJeff Roberson 					kseq_cpu[j].ksq_transferable = 0;
82680f86c9fSJeff Roberson 					kseq_cpu[j].ksq_group = ksg;
82780f86c9fSJeff Roberson 					LIST_INSERT_HEAD(&ksg->ksg_members,
82880f86c9fSJeff Roberson 					    &kseq_cpu[j], ksq_siblings);
82980f86c9fSJeff Roberson 				}
83080f86c9fSJeff Roberson 			}
831749d01b0SJeff Roberson 		}
832749d01b0SJeff Roberson 	}
833c06eb4e2SSam Leffler 	callout_init(&kseq_lb_callout, CALLOUT_MPSAFE);
834155b9987SJeff Roberson 	sched_balance(NULL);
835749d01b0SJeff Roberson #else
836749d01b0SJeff Roberson 	kseq_setup(KSEQ_SELF());
837356500a3SJeff Roberson #endif
838749d01b0SJeff Roberson 	mtx_lock_spin(&sched_lock);
839155b9987SJeff Roberson 	kseq_load_add(KSEQ_SELF(), &kse0);
840749d01b0SJeff Roberson 	mtx_unlock_spin(&sched_lock);
84135e6168fSJeff Roberson }
84235e6168fSJeff Roberson 
84335e6168fSJeff Roberson /*
84435e6168fSJeff Roberson  * Scale the scheduling priority according to the "interactivity" of this
84535e6168fSJeff Roberson  * process.
84635e6168fSJeff Roberson  */
84715dc847eSJeff Roberson static void
84835e6168fSJeff Roberson sched_priority(struct ksegrp *kg)
84935e6168fSJeff Roberson {
85035e6168fSJeff Roberson 	int pri;
85135e6168fSJeff Roberson 
85235e6168fSJeff Roberson 	if (kg->kg_pri_class != PRI_TIMESHARE)
85315dc847eSJeff Roberson 		return;
85435e6168fSJeff Roberson 
85515dc847eSJeff Roberson 	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
856e1f89c22SJeff Roberson 	pri += SCHED_PRI_BASE;
85735e6168fSJeff Roberson 	pri += kg->kg_nice;
85835e6168fSJeff Roberson 
85935e6168fSJeff Roberson 	if (pri > PRI_MAX_TIMESHARE)
86035e6168fSJeff Roberson 		pri = PRI_MAX_TIMESHARE;
86135e6168fSJeff Roberson 	else if (pri < PRI_MIN_TIMESHARE)
86235e6168fSJeff Roberson 		pri = PRI_MIN_TIMESHARE;
86335e6168fSJeff Roberson 
86435e6168fSJeff Roberson 	kg->kg_user_pri = pri;
86535e6168fSJeff Roberson 
86615dc847eSJeff Roberson 	return;
86735e6168fSJeff Roberson }
86835e6168fSJeff Roberson 
86935e6168fSJeff Roberson /*
870245f3abfSJeff Roberson  * Calculate a time slice based on the properties of the kseg and the runq
871a8949de2SJeff Roberson  * that we're on.  This is only for PRI_TIMESHARE ksegrps.
87235e6168fSJeff Roberson  */
873245f3abfSJeff Roberson static void
874245f3abfSJeff Roberson sched_slice(struct kse *ke)
87535e6168fSJeff Roberson {
87615dc847eSJeff Roberson 	struct kseq *kseq;
877245f3abfSJeff Roberson 	struct ksegrp *kg;
87835e6168fSJeff Roberson 
879245f3abfSJeff Roberson 	kg = ke->ke_ksegrp;
88015dc847eSJeff Roberson 	kseq = KSEQ_CPU(ke->ke_cpu);
88135e6168fSJeff Roberson 
882245f3abfSJeff Roberson 	/*
883245f3abfSJeff Roberson 	 * Rationale:
884245f3abfSJeff Roberson 	 * KSEs in interactive ksegs get the minimum slice so that we
885245f3abfSJeff Roberson 	 * quickly notice if it abuses its advantage.
886245f3abfSJeff Roberson 	 *
887245f3abfSJeff Roberson 	 * KSEs in non-interactive ksegs are assigned a slice that is
888245f3abfSJeff Roberson 	 * based on the ksegs nice value relative to the least nice kseg
889245f3abfSJeff Roberson 	 * on the run queue for this cpu.
890245f3abfSJeff Roberson 	 *
891245f3abfSJeff Roberson 	 * If the KSE is less nice than all others it gets the maximum
892245f3abfSJeff Roberson 	 * slice and other KSEs will adjust their slice relative to
893245f3abfSJeff Roberson 	 * this when they first expire.
894245f3abfSJeff Roberson 	 *
895245f3abfSJeff Roberson 	 * There is 20 point window that starts relative to the least
896245f3abfSJeff Roberson 	 * nice kse on the run queue.  Slice size is determined by
897245f3abfSJeff Roberson 	 * the kse distance from the last nice ksegrp.
898245f3abfSJeff Roberson 	 *
8997d1a81b4SJeff Roberson 	 * If the kse is outside of the window it will get no slice
9007d1a81b4SJeff Roberson 	 * and will be reevaluated each time it is selected on the
9017d1a81b4SJeff Roberson 	 * run queue.  The exception to this is nice 0 ksegs when
9027d1a81b4SJeff Roberson 	 * a nice -20 is running.  They are always granted a minimum
9037d1a81b4SJeff Roberson 	 * slice.
904245f3abfSJeff Roberson 	 */
90515dc847eSJeff Roberson 	if (!SCHED_INTERACTIVE(kg)) {
906245f3abfSJeff Roberson 		int nice;
907245f3abfSJeff Roberson 
90815dc847eSJeff Roberson 		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
909ef1134c9SJeff Roberson 		if (kseq->ksq_load_timeshare == 0 ||
91015dc847eSJeff Roberson 		    kg->kg_nice < kseq->ksq_nicemin)
911245f3abfSJeff Roberson 			ke->ke_slice = SCHED_SLICE_MAX;
9127d1a81b4SJeff Roberson 		else if (nice <= SCHED_SLICE_NTHRESH)
913245f3abfSJeff Roberson 			ke->ke_slice = SCHED_SLICE_NICE(nice);
9147d1a81b4SJeff Roberson 		else if (kg->kg_nice == 0)
9157d1a81b4SJeff Roberson 			ke->ke_slice = SCHED_SLICE_MIN;
916245f3abfSJeff Roberson 		else
917245f3abfSJeff Roberson 			ke->ke_slice = 0;
918245f3abfSJeff Roberson 	} else
919245f3abfSJeff Roberson 		ke->ke_slice = SCHED_SLICE_MIN;
92035e6168fSJeff Roberson 
92115dc847eSJeff Roberson 	CTR6(KTR_ULE,
92215dc847eSJeff Roberson 	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
92315dc847eSJeff Roberson 	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
924ef1134c9SJeff Roberson 	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
92515dc847eSJeff Roberson 
926245f3abfSJeff Roberson 	return;
92735e6168fSJeff Roberson }
92835e6168fSJeff Roberson 
929d322132cSJeff Roberson /*
930d322132cSJeff Roberson  * This routine enforces a maximum limit on the amount of scheduling history
931d322132cSJeff Roberson  * kept.  It is called after either the slptime or runtime is adjusted.
932d322132cSJeff Roberson  * This routine will not operate correctly when slp or run times have been
933d322132cSJeff Roberson  * adjusted to more than double their maximum.
934d322132cSJeff Roberson  */
9354b60e324SJeff Roberson static void
9364b60e324SJeff Roberson sched_interact_update(struct ksegrp *kg)
9374b60e324SJeff Roberson {
938d322132cSJeff Roberson 	int sum;
9393f741ca1SJeff Roberson 
940d322132cSJeff Roberson 	sum = kg->kg_runtime + kg->kg_slptime;
941d322132cSJeff Roberson 	if (sum < SCHED_SLP_RUN_MAX)
942d322132cSJeff Roberson 		return;
943d322132cSJeff Roberson 	/*
944d322132cSJeff Roberson 	 * If we have exceeded by more than 1/5th then the algorithm below
945d322132cSJeff Roberson 	 * will not bring us back into range.  Dividing by two here forces
946d322132cSJeff Roberson 	 * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
947d322132cSJeff Roberson 	 */
948d322132cSJeff Roberson 	if (sum > (SCHED_INTERACT_MAX / 5) * 6) {
949d322132cSJeff Roberson 		kg->kg_runtime /= 2;
950d322132cSJeff Roberson 		kg->kg_slptime /= 2;
951d322132cSJeff Roberson 		return;
952d322132cSJeff Roberson 	}
953d322132cSJeff Roberson 	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
954d322132cSJeff Roberson 	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
955d322132cSJeff Roberson }
956d322132cSJeff Roberson 
957d322132cSJeff Roberson static void
958d322132cSJeff Roberson sched_interact_fork(struct ksegrp *kg)
959d322132cSJeff Roberson {
960d322132cSJeff Roberson 	int ratio;
961d322132cSJeff Roberson 	int sum;
962d322132cSJeff Roberson 
963d322132cSJeff Roberson 	sum = kg->kg_runtime + kg->kg_slptime;
964d322132cSJeff Roberson 	if (sum > SCHED_SLP_RUN_FORK) {
965d322132cSJeff Roberson 		ratio = sum / SCHED_SLP_RUN_FORK;
966d322132cSJeff Roberson 		kg->kg_runtime /= ratio;
967d322132cSJeff Roberson 		kg->kg_slptime /= ratio;
9684b60e324SJeff Roberson 	}
9694b60e324SJeff Roberson }
9704b60e324SJeff Roberson 
971e1f89c22SJeff Roberson static int
972e1f89c22SJeff Roberson sched_interact_score(struct ksegrp *kg)
973e1f89c22SJeff Roberson {
974210491d3SJeff Roberson 	int div;
975e1f89c22SJeff Roberson 
976e1f89c22SJeff Roberson 	if (kg->kg_runtime > kg->kg_slptime) {
977210491d3SJeff Roberson 		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
978210491d3SJeff Roberson 		return (SCHED_INTERACT_HALF +
979210491d3SJeff Roberson 		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
980210491d3SJeff Roberson 	} if (kg->kg_slptime > kg->kg_runtime) {
981210491d3SJeff Roberson 		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
982210491d3SJeff Roberson 		return (kg->kg_runtime / div);
983e1f89c22SJeff Roberson 	}
984e1f89c22SJeff Roberson 
985210491d3SJeff Roberson 	/*
986210491d3SJeff Roberson 	 * This can happen if slptime and runtime are 0.
987210491d3SJeff Roberson 	 */
988210491d3SJeff Roberson 	return (0);
989e1f89c22SJeff Roberson 
990e1f89c22SJeff Roberson }
991e1f89c22SJeff Roberson 
99215dc847eSJeff Roberson /*
99315dc847eSJeff Roberson  * This is only somewhat accurate since given many processes of the same
99415dc847eSJeff Roberson  * priority they will switch when their slices run out, which will be
99515dc847eSJeff Roberson  * at most SCHED_SLICE_MAX.
99615dc847eSJeff Roberson  */
99735e6168fSJeff Roberson int
99835e6168fSJeff Roberson sched_rr_interval(void)
99935e6168fSJeff Roberson {
100035e6168fSJeff Roberson 	return (SCHED_SLICE_MAX);
100135e6168fSJeff Roberson }
100235e6168fSJeff Roberson 
100322bf7d9aSJeff Roberson static void
100435e6168fSJeff Roberson sched_pctcpu_update(struct kse *ke)
100535e6168fSJeff Roberson {
100635e6168fSJeff Roberson 	/*
100735e6168fSJeff Roberson 	 * Adjust counters and watermark for pctcpu calc.
1008210491d3SJeff Roberson 	 */
100981de51bfSJeff Roberson 	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1010210491d3SJeff Roberson 		/*
101181de51bfSJeff Roberson 		 * Shift the tick count out so that the divide doesn't
101281de51bfSJeff Roberson 		 * round away our results.
101365c8760dSJeff Roberson 		 */
101465c8760dSJeff Roberson 		ke->ke_ticks <<= 10;
101581de51bfSJeff Roberson 		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
101635e6168fSJeff Roberson 			    SCHED_CPU_TICKS;
101765c8760dSJeff Roberson 		ke->ke_ticks >>= 10;
101881de51bfSJeff Roberson 	} else
101981de51bfSJeff Roberson 		ke->ke_ticks = 0;
102035e6168fSJeff Roberson 	ke->ke_ltick = ticks;
102135e6168fSJeff Roberson 	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
102235e6168fSJeff Roberson }
102335e6168fSJeff Roberson 
102435e6168fSJeff Roberson void
102535e6168fSJeff Roberson sched_prio(struct thread *td, u_char prio)
102635e6168fSJeff Roberson {
10273f741ca1SJeff Roberson 	struct kse *ke;
102835e6168fSJeff Roberson 
10293f741ca1SJeff Roberson 	ke = td->td_kse;
103035e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
103135e6168fSJeff Roberson 	if (TD_ON_RUNQ(td)) {
10323f741ca1SJeff Roberson 		/*
10333f741ca1SJeff Roberson 		 * If the priority has been elevated due to priority
10343f741ca1SJeff Roberson 		 * propagation, we may have to move ourselves to a new
10353f741ca1SJeff Roberson 		 * queue.  We still call adjustrunqueue below in case kse
10363f741ca1SJeff Roberson 		 * needs to fix things up.
10373f741ca1SJeff Roberson 		 */
1038769a3635SJeff Roberson 		if (prio < td->td_priority && ke &&
1039769a3635SJeff Roberson 		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
104022bf7d9aSJeff Roberson 		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
10413f741ca1SJeff Roberson 			runq_remove(ke->ke_runq, ke);
10423f741ca1SJeff Roberson 			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
10433f741ca1SJeff Roberson 			runq_add(ke->ke_runq, ke);
104435e6168fSJeff Roberson 		}
10453f741ca1SJeff Roberson 		adjustrunqueue(td, prio);
10463f741ca1SJeff Roberson 	} else
10473f741ca1SJeff Roberson 		td->td_priority = prio;
104835e6168fSJeff Roberson }
104935e6168fSJeff Roberson 
105035e6168fSJeff Roberson void
1051ae53b483SJeff Roberson sched_switch(struct thread *td)
105235e6168fSJeff Roberson {
1053ae53b483SJeff Roberson 	struct thread *newtd;
105435e6168fSJeff Roberson 	struct kse *ke;
105535e6168fSJeff Roberson 
105635e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
105735e6168fSJeff Roberson 
105835e6168fSJeff Roberson 	ke = td->td_kse;
105935e6168fSJeff Roberson 
106035e6168fSJeff Roberson 	td->td_last_kse = ke;
1061060563ecSJulian Elischer         td->td_lastcpu = td->td_oncpu;
1062060563ecSJulian Elischer 	td->td_oncpu = NOCPU;
10634a338afdSJulian Elischer         td->td_flags &= ~TDF_NEEDRESCHED;
106435e6168fSJeff Roberson 
1065b11fdad0SJeff Roberson 	/*
1066b11fdad0SJeff Roberson 	 * If the KSE has been assigned it may be in the process of switching
1067b11fdad0SJeff Roberson 	 * to the new cpu.  This is the case in sched_bind().
1068b11fdad0SJeff Roberson 	 */
1069b11fdad0SJeff Roberson 	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
107035e6168fSJeff Roberson 		if (TD_IS_RUNNING(td)) {
1071ab2baa72SDavid Xu 			if (td->td_proc->p_flag & P_SA) {
1072155b9987SJeff Roberson 				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1073ab2baa72SDavid Xu 				setrunqueue(td);
107480f86c9fSJeff Roberson 			} else
1075155b9987SJeff Roberson 				kseq_runq_add(KSEQ_SELF(), ke);
10760e0f6266SJeff Roberson 		} else {
10770e0f6266SJeff Roberson 			if (ke->ke_runq)
1078155b9987SJeff Roberson 				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
107935e6168fSJeff Roberson 			/*
108035e6168fSJeff Roberson 			 * We will not be on the run queue. So we must be
108135e6168fSJeff Roberson 			 * sleeping or similar.
108235e6168fSJeff Roberson 			 */
10830e2a4d3aSDavid Xu 			if (td->td_proc->p_flag & P_SA)
108435e6168fSJeff Roberson 				kse_reassign(ke);
10850e0f6266SJeff Roberson 		}
1086b11fdad0SJeff Roberson 	}
1087ae53b483SJeff Roberson 	newtd = choosethread();
1088ae53b483SJeff Roberson 	if (td != newtd)
1089ae53b483SJeff Roberson 		cpu_switch(td, newtd);
1090ae53b483SJeff Roberson 	sched_lock.mtx_lock = (uintptr_t)td;
109135e6168fSJeff Roberson 
1092060563ecSJulian Elischer 	td->td_oncpu = PCPU_GET(cpuid);
109335e6168fSJeff Roberson }
109435e6168fSJeff Roberson 
109535e6168fSJeff Roberson void
109635e6168fSJeff Roberson sched_nice(struct ksegrp *kg, int nice)
109735e6168fSJeff Roberson {
109815dc847eSJeff Roberson 	struct kse *ke;
109935e6168fSJeff Roberson 	struct thread *td;
110015dc847eSJeff Roberson 	struct kseq *kseq;
110135e6168fSJeff Roberson 
11020b5318c8SJohn Baldwin 	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
11030b5318c8SJohn Baldwin 	mtx_assert(&sched_lock, MA_OWNED);
110415dc847eSJeff Roberson 	/*
110515dc847eSJeff Roberson 	 * We need to adjust the nice counts for running KSEs.
110615dc847eSJeff Roberson 	 */
110715dc847eSJeff Roberson 	if (kg->kg_pri_class == PRI_TIMESHARE)
110815dc847eSJeff Roberson 		FOREACH_KSE_IN_GROUP(kg, ke) {
1109d07ac847SJeff Roberson 			if (ke->ke_runq == NULL)
111015dc847eSJeff Roberson 				continue;
111115dc847eSJeff Roberson 			kseq = KSEQ_CPU(ke->ke_cpu);
111215dc847eSJeff Roberson 			kseq_nice_rem(kseq, kg->kg_nice);
111315dc847eSJeff Roberson 			kseq_nice_add(kseq, nice);
111415dc847eSJeff Roberson 		}
111535e6168fSJeff Roberson 	kg->kg_nice = nice;
111635e6168fSJeff Roberson 	sched_priority(kg);
111715dc847eSJeff Roberson 	FOREACH_THREAD_IN_GROUP(kg, td)
11184a338afdSJulian Elischer 		td->td_flags |= TDF_NEEDRESCHED;
111935e6168fSJeff Roberson }
112035e6168fSJeff Roberson 
112135e6168fSJeff Roberson void
112235e6168fSJeff Roberson sched_sleep(struct thread *td, u_char prio)
112335e6168fSJeff Roberson {
112435e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
112535e6168fSJeff Roberson 
112635e6168fSJeff Roberson 	td->td_slptime = ticks;
112735e6168fSJeff Roberson 	td->td_priority = prio;
112835e6168fSJeff Roberson 
112915dc847eSJeff Roberson 	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
113015dc847eSJeff Roberson 	    td->td_kse, td->td_slptime);
113135e6168fSJeff Roberson }
113235e6168fSJeff Roberson 
113335e6168fSJeff Roberson void
113435e6168fSJeff Roberson sched_wakeup(struct thread *td)
113535e6168fSJeff Roberson {
113635e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
113735e6168fSJeff Roberson 
113835e6168fSJeff Roberson 	/*
113935e6168fSJeff Roberson 	 * Let the kseg know how long we slept for.  This is because process
114035e6168fSJeff Roberson 	 * interactivity behavior is modeled in the kseg.
114135e6168fSJeff Roberson 	 */
114235e6168fSJeff Roberson 	if (td->td_slptime) {
1143f1e8dc4aSJeff Roberson 		struct ksegrp *kg;
114415dc847eSJeff Roberson 		int hzticks;
1145f1e8dc4aSJeff Roberson 
1146f1e8dc4aSJeff Roberson 		kg = td->td_ksegrp;
1147d322132cSJeff Roberson 		hzticks = (ticks - td->td_slptime) << 10;
1148d322132cSJeff Roberson 		if (hzticks >= SCHED_SLP_RUN_MAX) {
1149d322132cSJeff Roberson 			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1150d322132cSJeff Roberson 			kg->kg_runtime = 1;
1151d322132cSJeff Roberson 		} else {
1152d322132cSJeff Roberson 			kg->kg_slptime += hzticks;
11534b60e324SJeff Roberson 			sched_interact_update(kg);
1154d322132cSJeff Roberson 		}
1155f1e8dc4aSJeff Roberson 		sched_priority(kg);
11564b60e324SJeff Roberson 		if (td->td_kse)
11574b60e324SJeff Roberson 			sched_slice(td->td_kse);
115815dc847eSJeff Roberson 		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
115915dc847eSJeff Roberson 		    td->td_kse, hzticks);
116035e6168fSJeff Roberson 		td->td_slptime = 0;
1161f1e8dc4aSJeff Roberson 	}
116235e6168fSJeff Roberson 	setrunqueue(td);
116335e6168fSJeff Roberson }
116435e6168fSJeff Roberson 
116535e6168fSJeff Roberson /*
116635e6168fSJeff Roberson  * Penalize the parent for creating a new child and initialize the child's
116735e6168fSJeff Roberson  * priority.
116835e6168fSJeff Roberson  */
116935e6168fSJeff Roberson void
117015dc847eSJeff Roberson sched_fork(struct proc *p, struct proc *p1)
117135e6168fSJeff Roberson {
117235e6168fSJeff Roberson 
117335e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
117435e6168fSJeff Roberson 
117515dc847eSJeff Roberson 	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
117615dc847eSJeff Roberson 	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
117715dc847eSJeff Roberson 	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
117815dc847eSJeff Roberson }
117915dc847eSJeff Roberson 
118015dc847eSJeff Roberson void
118115dc847eSJeff Roberson sched_fork_kse(struct kse *ke, struct kse *child)
118215dc847eSJeff Roberson {
11832056d0a1SJohn Baldwin 
1184210491d3SJeff Roberson 	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1185093c05e3SJeff Roberson 	child->ke_cpu = ke->ke_cpu;
118615dc847eSJeff Roberson 	child->ke_runq = NULL;
118715dc847eSJeff Roberson 
1188736c97c7SJeff Roberson 	/* Grab our parents cpu estimation information. */
1189736c97c7SJeff Roberson 	child->ke_ticks = ke->ke_ticks;
1190736c97c7SJeff Roberson 	child->ke_ltick = ke->ke_ltick;
1191736c97c7SJeff Roberson 	child->ke_ftick = ke->ke_ftick;
119215dc847eSJeff Roberson }
119315dc847eSJeff Roberson 
119415dc847eSJeff Roberson void
119515dc847eSJeff Roberson sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
119615dc847eSJeff Roberson {
11972056d0a1SJohn Baldwin 	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1198210491d3SJeff Roberson 
1199d322132cSJeff Roberson 	child->kg_slptime = kg->kg_slptime;
1200d322132cSJeff Roberson 	child->kg_runtime = kg->kg_runtime;
1201d322132cSJeff Roberson 	child->kg_user_pri = kg->kg_user_pri;
1202d322132cSJeff Roberson 	child->kg_nice = kg->kg_nice;
1203d322132cSJeff Roberson 	sched_interact_fork(child);
12044b60e324SJeff Roberson 	kg->kg_runtime += tickincr << 10;
12054b60e324SJeff Roberson 	sched_interact_update(kg);
120615dc847eSJeff Roberson 
1207d322132cSJeff Roberson 	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1208d322132cSJeff Roberson 	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1209d322132cSJeff Roberson 	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1210c9f25d8fSJeff Roberson }
1211c9f25d8fSJeff Roberson 
121215dc847eSJeff Roberson void
121315dc847eSJeff Roberson sched_fork_thread(struct thread *td, struct thread *child)
121415dc847eSJeff Roberson {
121515dc847eSJeff Roberson }
121615dc847eSJeff Roberson 
121715dc847eSJeff Roberson void
121815dc847eSJeff Roberson sched_class(struct ksegrp *kg, int class)
121915dc847eSJeff Roberson {
122015dc847eSJeff Roberson 	struct kseq *kseq;
122115dc847eSJeff Roberson 	struct kse *ke;
1222ef1134c9SJeff Roberson 	int nclass;
1223ef1134c9SJeff Roberson 	int oclass;
122415dc847eSJeff Roberson 
12252056d0a1SJohn Baldwin 	mtx_assert(&sched_lock, MA_OWNED);
122615dc847eSJeff Roberson 	if (kg->kg_pri_class == class)
122715dc847eSJeff Roberson 		return;
122815dc847eSJeff Roberson 
1229ef1134c9SJeff Roberson 	nclass = PRI_BASE(class);
1230ef1134c9SJeff Roberson 	oclass = PRI_BASE(kg->kg_pri_class);
123115dc847eSJeff Roberson 	FOREACH_KSE_IN_GROUP(kg, ke) {
123215dc847eSJeff Roberson 		if (ke->ke_state != KES_ONRUNQ &&
123315dc847eSJeff Roberson 		    ke->ke_state != KES_THREAD)
123415dc847eSJeff Roberson 			continue;
123515dc847eSJeff Roberson 		kseq = KSEQ_CPU(ke->ke_cpu);
123615dc847eSJeff Roberson 
1237ef1134c9SJeff Roberson #ifdef SMP
1238155b9987SJeff Roberson 		/*
1239155b9987SJeff Roberson 		 * On SMP if we're on the RUNQ we must adjust the transferable
1240155b9987SJeff Roberson 		 * count because could be changing to or from an interrupt
1241155b9987SJeff Roberson 		 * class.
1242155b9987SJeff Roberson 		 */
1243155b9987SJeff Roberson 		if (ke->ke_state == KES_ONRUNQ) {
124480f86c9fSJeff Roberson 			if (KSE_CAN_MIGRATE(ke, oclass)) {
124580f86c9fSJeff Roberson 				kseq->ksq_transferable--;
124680f86c9fSJeff Roberson 				kseq->ksq_group->ksg_transferable--;
124780f86c9fSJeff Roberson 			}
124880f86c9fSJeff Roberson 			if (KSE_CAN_MIGRATE(ke, nclass)) {
124980f86c9fSJeff Roberson 				kseq->ksq_transferable++;
125080f86c9fSJeff Roberson 				kseq->ksq_group->ksg_transferable++;
125180f86c9fSJeff Roberson 			}
1252155b9987SJeff Roberson 		}
1253ef1134c9SJeff Roberson #endif
1254155b9987SJeff Roberson 		if (oclass == PRI_TIMESHARE) {
1255ef1134c9SJeff Roberson 			kseq->ksq_load_timeshare--;
125615dc847eSJeff Roberson 			kseq_nice_rem(kseq, kg->kg_nice);
1257155b9987SJeff Roberson 		}
1258155b9987SJeff Roberson 		if (nclass == PRI_TIMESHARE) {
1259155b9987SJeff Roberson 			kseq->ksq_load_timeshare++;
126015dc847eSJeff Roberson 			kseq_nice_add(kseq, kg->kg_nice);
126115dc847eSJeff Roberson 		}
1262155b9987SJeff Roberson 	}
126315dc847eSJeff Roberson 
126415dc847eSJeff Roberson 	kg->kg_pri_class = class;
126535e6168fSJeff Roberson }
126635e6168fSJeff Roberson 
126735e6168fSJeff Roberson /*
126835e6168fSJeff Roberson  * Return some of the child's priority and interactivity to the parent.
126935e6168fSJeff Roberson  */
127035e6168fSJeff Roberson void
127115dc847eSJeff Roberson sched_exit(struct proc *p, struct proc *child)
127235e6168fSJeff Roberson {
127335e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
1274141ad61cSJeff Roberson 	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1275210491d3SJeff Roberson 	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1276141ad61cSJeff Roberson }
1277141ad61cSJeff Roberson 
1278141ad61cSJeff Roberson void
1279141ad61cSJeff Roberson sched_exit_kse(struct kse *ke, struct kse *child)
1280141ad61cSJeff Roberson {
1281155b9987SJeff Roberson 	kseq_load_rem(KSEQ_CPU(child->ke_cpu), child);
1282141ad61cSJeff Roberson }
1283141ad61cSJeff Roberson 
1284141ad61cSJeff Roberson void
1285141ad61cSJeff Roberson sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1286141ad61cSJeff Roberson {
12874b60e324SJeff Roberson 	/* kg->kg_slptime += child->kg_slptime; */
1288210491d3SJeff Roberson 	kg->kg_runtime += child->kg_runtime;
12894b60e324SJeff Roberson 	sched_interact_update(kg);
1290141ad61cSJeff Roberson }
1291141ad61cSJeff Roberson 
1292141ad61cSJeff Roberson void
1293141ad61cSJeff Roberson sched_exit_thread(struct thread *td, struct thread *child)
1294141ad61cSJeff Roberson {
129535e6168fSJeff Roberson }
129635e6168fSJeff Roberson 
129735e6168fSJeff Roberson void
12987cf90fb3SJeff Roberson sched_clock(struct thread *td)
129935e6168fSJeff Roberson {
130035e6168fSJeff Roberson 	struct kseq *kseq;
13010a016a05SJeff Roberson 	struct ksegrp *kg;
13027cf90fb3SJeff Roberson 	struct kse *ke;
130335e6168fSJeff Roberson 
130415dc847eSJeff Roberson 	/*
130515dc847eSJeff Roberson 	 * sched_setup() apparently happens prior to stathz being set.  We
130615dc847eSJeff Roberson 	 * need to resolve the timers earlier in the boot so we can avoid
130715dc847eSJeff Roberson 	 * calculating this here.
130815dc847eSJeff Roberson 	 */
130915dc847eSJeff Roberson 	if (realstathz == 0) {
131015dc847eSJeff Roberson 		realstathz = stathz ? stathz : hz;
131115dc847eSJeff Roberson 		tickincr = hz / realstathz;
131215dc847eSJeff Roberson 		/*
131315dc847eSJeff Roberson 		 * XXX This does not work for values of stathz that are much
131415dc847eSJeff Roberson 		 * larger than hz.
131515dc847eSJeff Roberson 		 */
131615dc847eSJeff Roberson 		if (tickincr == 0)
131715dc847eSJeff Roberson 			tickincr = 1;
131815dc847eSJeff Roberson 	}
131935e6168fSJeff Roberson 
13207cf90fb3SJeff Roberson 	ke = td->td_kse;
132115dc847eSJeff Roberson 	kg = ke->ke_ksegrp;
132235e6168fSJeff Roberson 
13230a016a05SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
13240a016a05SJeff Roberson 	KASSERT((td != NULL), ("schedclock: null thread pointer"));
13250a016a05SJeff Roberson 
13260a016a05SJeff Roberson 	/* Adjust ticks for pctcpu */
132765c8760dSJeff Roberson 	ke->ke_ticks++;
1328d465fb95SJeff Roberson 	ke->ke_ltick = ticks;
1329a8949de2SJeff Roberson 
1330d465fb95SJeff Roberson 	/* Go up to one second beyond our max and then trim back down */
1331d465fb95SJeff Roberson 	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1332d465fb95SJeff Roberson 		sched_pctcpu_update(ke);
1333d465fb95SJeff Roberson 
133443fdafb1SJulian Elischer 	if (td->td_flags & TDF_IDLETD)
133535e6168fSJeff Roberson 		return;
13360a016a05SJeff Roberson 
133715dc847eSJeff Roberson 	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
133815dc847eSJeff Roberson 	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
13393f741ca1SJeff Roberson 	/*
1340a8949de2SJeff Roberson 	 * We only do slicing code for TIMESHARE ksegrps.
1341a8949de2SJeff Roberson 	 */
1342a8949de2SJeff Roberson 	if (kg->kg_pri_class != PRI_TIMESHARE)
1343a8949de2SJeff Roberson 		return;
1344a8949de2SJeff Roberson 	/*
134515dc847eSJeff Roberson 	 * We used a tick charge it to the ksegrp so that we can compute our
134615dc847eSJeff Roberson 	 * interactivity.
134715dc847eSJeff Roberson 	 */
134815dc847eSJeff Roberson 	kg->kg_runtime += tickincr << 10;
13494b60e324SJeff Roberson 	sched_interact_update(kg);
1350407b0157SJeff Roberson 
135135e6168fSJeff Roberson 	/*
135235e6168fSJeff Roberson 	 * We used up one time slice.
135335e6168fSJeff Roberson 	 */
1354093c05e3SJeff Roberson 	if (--ke->ke_slice > 0)
135515dc847eSJeff Roberson 		return;
135635e6168fSJeff Roberson 	/*
135715dc847eSJeff Roberson 	 * We're out of time, recompute priorities and requeue.
135835e6168fSJeff Roberson 	 */
1359093c05e3SJeff Roberson 	kseq = KSEQ_SELF();
1360155b9987SJeff Roberson 	kseq_load_rem(kseq, ke);
1361e1f89c22SJeff Roberson 	sched_priority(kg);
136215dc847eSJeff Roberson 	sched_slice(ke);
136315dc847eSJeff Roberson 	if (SCHED_CURR(kg, ke))
136415dc847eSJeff Roberson 		ke->ke_runq = kseq->ksq_curr;
136515dc847eSJeff Roberson 	else
136615dc847eSJeff Roberson 		ke->ke_runq = kseq->ksq_next;
1367155b9987SJeff Roberson 	kseq_load_add(kseq, ke);
13684a338afdSJulian Elischer 	td->td_flags |= TDF_NEEDRESCHED;
136935e6168fSJeff Roberson }
137035e6168fSJeff Roberson 
137135e6168fSJeff Roberson int
137235e6168fSJeff Roberson sched_runnable(void)
137335e6168fSJeff Roberson {
137435e6168fSJeff Roberson 	struct kseq *kseq;
1375b90816f1SJeff Roberson 	int load;
137635e6168fSJeff Roberson 
1377b90816f1SJeff Roberson 	load = 1;
1378b90816f1SJeff Roberson 
13790a016a05SJeff Roberson 	kseq = KSEQ_SELF();
138022bf7d9aSJeff Roberson #ifdef SMP
138146f8b265SJeff Roberson 	if (kseq->ksq_assigned) {
138246f8b265SJeff Roberson 		mtx_lock_spin(&sched_lock);
138322bf7d9aSJeff Roberson 		kseq_assign(kseq);
138446f8b265SJeff Roberson 		mtx_unlock_spin(&sched_lock);
138546f8b265SJeff Roberson 	}
138622bf7d9aSJeff Roberson #endif
13873f741ca1SJeff Roberson 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
13883f741ca1SJeff Roberson 		if (kseq->ksq_load > 0)
13893f741ca1SJeff Roberson 			goto out;
13903f741ca1SJeff Roberson 	} else
13913f741ca1SJeff Roberson 		if (kseq->ksq_load - 1 > 0)
1392b90816f1SJeff Roberson 			goto out;
1393b90816f1SJeff Roberson 	load = 0;
1394b90816f1SJeff Roberson out:
1395b90816f1SJeff Roberson 	return (load);
139635e6168fSJeff Roberson }
139735e6168fSJeff Roberson 
139835e6168fSJeff Roberson void
139935e6168fSJeff Roberson sched_userret(struct thread *td)
140035e6168fSJeff Roberson {
140135e6168fSJeff Roberson 	struct ksegrp *kg;
140235e6168fSJeff Roberson 
140335e6168fSJeff Roberson 	kg = td->td_ksegrp;
140435e6168fSJeff Roberson 
140535e6168fSJeff Roberson 	if (td->td_priority != kg->kg_user_pri) {
140635e6168fSJeff Roberson 		mtx_lock_spin(&sched_lock);
140735e6168fSJeff Roberson 		td->td_priority = kg->kg_user_pri;
140835e6168fSJeff Roberson 		mtx_unlock_spin(&sched_lock);
140935e6168fSJeff Roberson 	}
141035e6168fSJeff Roberson }
141135e6168fSJeff Roberson 
1412c9f25d8fSJeff Roberson struct kse *
1413c9f25d8fSJeff Roberson sched_choose(void)
1414c9f25d8fSJeff Roberson {
14150a016a05SJeff Roberson 	struct kseq *kseq;
1416c9f25d8fSJeff Roberson 	struct kse *ke;
141715dc847eSJeff Roberson 
1418b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
141922bf7d9aSJeff Roberson 	kseq = KSEQ_SELF();
142015dc847eSJeff Roberson #ifdef SMP
142180f86c9fSJeff Roberson restart:
142222bf7d9aSJeff Roberson 	if (kseq->ksq_assigned)
142322bf7d9aSJeff Roberson 		kseq_assign(kseq);
142415dc847eSJeff Roberson #endif
142522bf7d9aSJeff Roberson 	ke = kseq_choose(kseq);
142635e6168fSJeff Roberson 	if (ke) {
142722bf7d9aSJeff Roberson #ifdef SMP
142822bf7d9aSJeff Roberson 		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
142980f86c9fSJeff Roberson 			if (kseq_idled(kseq) == 0)
143080f86c9fSJeff Roberson 				goto restart;
143122bf7d9aSJeff Roberson #endif
1432155b9987SJeff Roberson 		kseq_runq_rem(kseq, ke);
143335e6168fSJeff Roberson 		ke->ke_state = KES_THREAD;
1434245f3abfSJeff Roberson 
143515dc847eSJeff Roberson 		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
143615dc847eSJeff Roberson 			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
143715dc847eSJeff Roberson 			    ke, ke->ke_runq, ke->ke_slice,
143815dc847eSJeff Roberson 			    ke->ke_thread->td_priority);
1439245f3abfSJeff Roberson 		}
144015dc847eSJeff Roberson 		return (ke);
144135e6168fSJeff Roberson 	}
1442c9f25d8fSJeff Roberson #ifdef SMP
144380f86c9fSJeff Roberson 	if (kseq_idled(kseq) == 0)
144480f86c9fSJeff Roberson 		goto restart;
1445c9f25d8fSJeff Roberson #endif
144615dc847eSJeff Roberson 	return (NULL);
144735e6168fSJeff Roberson }
144835e6168fSJeff Roberson 
144935e6168fSJeff Roberson void
14507cf90fb3SJeff Roberson sched_add(struct thread *td)
145135e6168fSJeff Roberson {
1452c9f25d8fSJeff Roberson 	struct kseq *kseq;
145315dc847eSJeff Roberson 	struct ksegrp *kg;
14547cf90fb3SJeff Roberson 	struct kse *ke;
145522bf7d9aSJeff Roberson 	int class;
1456c9f25d8fSJeff Roberson 
145722bf7d9aSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
14587cf90fb3SJeff Roberson 	ke = td->td_kse;
14597cf90fb3SJeff Roberson 	kg = td->td_ksegrp;
146022bf7d9aSJeff Roberson 	if (ke->ke_flags & KEF_ASSIGNED)
146122bf7d9aSJeff Roberson 		return;
146222bf7d9aSJeff Roberson 	kseq = KSEQ_SELF();
14635d7ef00cSJeff Roberson 	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
14645d7ef00cSJeff Roberson 	KASSERT((ke->ke_thread->td_kse != NULL),
14655d7ef00cSJeff Roberson 	    ("sched_add: No KSE on thread"));
14665d7ef00cSJeff Roberson 	KASSERT(ke->ke_state != KES_ONRUNQ,
14675d7ef00cSJeff Roberson 	    ("sched_add: kse %p (%s) already in run queue", ke,
14685d7ef00cSJeff Roberson 	    ke->ke_proc->p_comm));
14695d7ef00cSJeff Roberson 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
14705d7ef00cSJeff Roberson 	    ("sched_add: process swapped out"));
14719bca28a7SJeff Roberson 	KASSERT(ke->ke_runq == NULL,
14729bca28a7SJeff Roberson 	    ("sched_add: KSE %p is still assigned to a run queue", ke));
14735d7ef00cSJeff Roberson 
147422bf7d9aSJeff Roberson 	class = PRI_BASE(kg->kg_pri_class);
147522bf7d9aSJeff Roberson 	switch (class) {
1476a8949de2SJeff Roberson 	case PRI_ITHD:
1477a8949de2SJeff Roberson 	case PRI_REALTIME:
147815dc847eSJeff Roberson 		ke->ke_runq = kseq->ksq_curr;
147915dc847eSJeff Roberson 		ke->ke_slice = SCHED_SLICE_MAX;
14807cd650a9SJeff Roberson 		ke->ke_cpu = PCPU_GET(cpuid);
1481a8949de2SJeff Roberson 		break;
1482a8949de2SJeff Roberson 	case PRI_TIMESHARE:
148315dc847eSJeff Roberson 		if (SCHED_CURR(kg, ke))
148415dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_curr;
148515dc847eSJeff Roberson 		else
148615dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_next;
148715dc847eSJeff Roberson 		break;
148815dc847eSJeff Roberson 	case PRI_IDLE:
148915dc847eSJeff Roberson 		/*
149015dc847eSJeff Roberson 		 * This is for priority prop.
149115dc847eSJeff Roberson 		 */
14923f741ca1SJeff Roberson 		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
149315dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_curr;
149415dc847eSJeff Roberson 		else
149515dc847eSJeff Roberson 			ke->ke_runq = &kseq->ksq_idle;
149615dc847eSJeff Roberson 		ke->ke_slice = SCHED_SLICE_MIN;
149715dc847eSJeff Roberson 		break;
149815dc847eSJeff Roberson 	default:
1499d322132cSJeff Roberson 		panic("Unknown pri class.");
1500a8949de2SJeff Roberson 		break;
1501a6ed4186SJeff Roberson 	}
150222bf7d9aSJeff Roberson #ifdef SMP
150380f86c9fSJeff Roberson 	if (ke->ke_cpu != PCPU_GET(cpuid)) {
150480f86c9fSJeff Roberson 		kseq_notify(ke, ke->ke_cpu);
150580f86c9fSJeff Roberson 		return;
150680f86c9fSJeff Roberson 	}
150722bf7d9aSJeff Roberson 	/*
150880f86c9fSJeff Roberson 	 * If there are any idle groups, give them our extra load.  The
1509155b9987SJeff Roberson 	 * threshold at which we start to reassign kses has a large impact
1510155b9987SJeff Roberson 	 * on the overall performance of the system.  Tuned too high and
1511155b9987SJeff Roberson 	 * some CPUs may idle.  Too low and there will be excess migration
1512155b9987SJeff Roberson 	 * and context swiches.
151322bf7d9aSJeff Roberson 	 */
151480f86c9fSJeff Roberson 	if (kseq->ksq_load > 1 && KSE_CAN_MIGRATE(ke, class))
151580f86c9fSJeff Roberson 		if (kseq_transfer(kseq, ke, class))
151622bf7d9aSJeff Roberson 			return;
151780f86c9fSJeff Roberson 	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
151880f86c9fSJeff Roberson 	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
151980f86c9fSJeff Roberson 		/*
152080f86c9fSJeff Roberson 		 * Check to see if our group is unidling, and if so, remove it
152180f86c9fSJeff Roberson 		 * from the global idle mask.
152280f86c9fSJeff Roberson 		 */
152380f86c9fSJeff Roberson 		if (kseq->ksq_group->ksg_idlemask ==
152480f86c9fSJeff Roberson 		    kseq->ksq_group->ksg_cpumask)
152580f86c9fSJeff Roberson 			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
152680f86c9fSJeff Roberson 		/*
152780f86c9fSJeff Roberson 		 * Now remove ourselves from the group specific idle mask.
152880f86c9fSJeff Roberson 		 */
152980f86c9fSJeff Roberson 		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1530112b6d3aSJeff Roberson 	}
153122bf7d9aSJeff Roberson #endif
153222bf7d9aSJeff Roberson         if (td->td_priority < curthread->td_priority)
153322bf7d9aSJeff Roberson                 curthread->td_flags |= TDF_NEEDRESCHED;
1534a8949de2SJeff Roberson 
153535e6168fSJeff Roberson 	ke->ke_ksegrp->kg_runq_kses++;
153635e6168fSJeff Roberson 	ke->ke_state = KES_ONRUNQ;
153735e6168fSJeff Roberson 
1538155b9987SJeff Roberson 	kseq_runq_add(kseq, ke);
1539155b9987SJeff Roberson 	kseq_load_add(kseq, ke);
154035e6168fSJeff Roberson }
154135e6168fSJeff Roberson 
154235e6168fSJeff Roberson void
15437cf90fb3SJeff Roberson sched_rem(struct thread *td)
154435e6168fSJeff Roberson {
154515dc847eSJeff Roberson 	struct kseq *kseq;
15467cf90fb3SJeff Roberson 	struct kse *ke;
15477cf90fb3SJeff Roberson 
15487cf90fb3SJeff Roberson 	ke = td->td_kse;
154922bf7d9aSJeff Roberson 	/*
155022bf7d9aSJeff Roberson 	 * It is safe to just return here because sched_rem() is only ever
155122bf7d9aSJeff Roberson 	 * used in places where we're immediately going to add the
155222bf7d9aSJeff Roberson 	 * kse back on again.  In that case it'll be added with the correct
155322bf7d9aSJeff Roberson 	 * thread and priority when the caller drops the sched_lock.
155422bf7d9aSJeff Roberson 	 */
155522bf7d9aSJeff Roberson 	if (ke->ke_flags & KEF_ASSIGNED)
155622bf7d9aSJeff Roberson 		return;
155735e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
15589bca28a7SJeff Roberson 	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
155935e6168fSJeff Roberson 
156035e6168fSJeff Roberson 	ke->ke_state = KES_THREAD;
156135e6168fSJeff Roberson 	ke->ke_ksegrp->kg_runq_kses--;
156215dc847eSJeff Roberson 	kseq = KSEQ_CPU(ke->ke_cpu);
1563155b9987SJeff Roberson 	kseq_runq_rem(kseq, ke);
1564155b9987SJeff Roberson 	kseq_load_rem(kseq, ke);
156535e6168fSJeff Roberson }
156635e6168fSJeff Roberson 
156735e6168fSJeff Roberson fixpt_t
15687cf90fb3SJeff Roberson sched_pctcpu(struct thread *td)
156935e6168fSJeff Roberson {
157035e6168fSJeff Roberson 	fixpt_t pctcpu;
15717cf90fb3SJeff Roberson 	struct kse *ke;
157235e6168fSJeff Roberson 
157335e6168fSJeff Roberson 	pctcpu = 0;
15747cf90fb3SJeff Roberson 	ke = td->td_kse;
1575484288deSJeff Roberson 	if (ke == NULL)
1576484288deSJeff Roberson 		return (0);
157735e6168fSJeff Roberson 
1578b90816f1SJeff Roberson 	mtx_lock_spin(&sched_lock);
157935e6168fSJeff Roberson 	if (ke->ke_ticks) {
158035e6168fSJeff Roberson 		int rtick;
158135e6168fSJeff Roberson 
1582210491d3SJeff Roberson 		/*
1583210491d3SJeff Roberson 		 * Don't update more frequently than twice a second.  Allowing
1584210491d3SJeff Roberson 		 * this causes the cpu usage to decay away too quickly due to
1585210491d3SJeff Roberson 		 * rounding errors.
1586210491d3SJeff Roberson 		 */
1587210491d3SJeff Roberson 		if (ke->ke_ltick < (ticks - (hz / 2)))
158835e6168fSJeff Roberson 			sched_pctcpu_update(ke);
158935e6168fSJeff Roberson 		/* How many rtick per second ? */
1590210491d3SJeff Roberson 		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
15917121cce5SScott Long 		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
159235e6168fSJeff Roberson 	}
159335e6168fSJeff Roberson 
159435e6168fSJeff Roberson 	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1595828e7683SJohn Baldwin 	mtx_unlock_spin(&sched_lock);
159635e6168fSJeff Roberson 
159735e6168fSJeff Roberson 	return (pctcpu);
159835e6168fSJeff Roberson }
159935e6168fSJeff Roberson 
16009bacd788SJeff Roberson void
16019bacd788SJeff Roberson sched_bind(struct thread *td, int cpu)
16029bacd788SJeff Roberson {
16039bacd788SJeff Roberson 	struct kse *ke;
16049bacd788SJeff Roberson 
16059bacd788SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
16069bacd788SJeff Roberson 	ke = td->td_kse;
16079bacd788SJeff Roberson 	ke->ke_flags |= KEF_BOUND;
160880f86c9fSJeff Roberson #ifdef SMP
160980f86c9fSJeff Roberson 	if (PCPU_GET(cpuid) == cpu)
16109bacd788SJeff Roberson 		return;
16119bacd788SJeff Roberson 	/* sched_rem without the runq_remove */
16129bacd788SJeff Roberson 	ke->ke_state = KES_THREAD;
16139bacd788SJeff Roberson 	ke->ke_ksegrp->kg_runq_kses--;
1614155b9987SJeff Roberson 	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
16159bacd788SJeff Roberson 	ke->ke_cpu = cpu;
16169bacd788SJeff Roberson 	kseq_notify(ke, cpu);
16179bacd788SJeff Roberson 	/* When we return from mi_switch we'll be on the correct cpu. */
16189bacd788SJeff Roberson 	td->td_proc->p_stats->p_ru.ru_nvcsw++;
16199bacd788SJeff Roberson 	mi_switch();
16209bacd788SJeff Roberson #endif
16219bacd788SJeff Roberson }
16229bacd788SJeff Roberson 
16239bacd788SJeff Roberson void
16249bacd788SJeff Roberson sched_unbind(struct thread *td)
16259bacd788SJeff Roberson {
16269bacd788SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
16279bacd788SJeff Roberson 	td->td_kse->ke_flags &= ~KEF_BOUND;
16289bacd788SJeff Roberson }
16299bacd788SJeff Roberson 
163035e6168fSJeff Roberson int
163135e6168fSJeff Roberson sched_sizeof_kse(void)
163235e6168fSJeff Roberson {
163335e6168fSJeff Roberson 	return (sizeof(struct kse) + sizeof(struct ke_sched));
163435e6168fSJeff Roberson }
163535e6168fSJeff Roberson 
163635e6168fSJeff Roberson int
163735e6168fSJeff Roberson sched_sizeof_ksegrp(void)
163835e6168fSJeff Roberson {
163935e6168fSJeff Roberson 	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
164035e6168fSJeff Roberson }
164135e6168fSJeff Roberson 
164235e6168fSJeff Roberson int
164335e6168fSJeff Roberson sched_sizeof_proc(void)
164435e6168fSJeff Roberson {
164535e6168fSJeff Roberson 	return (sizeof(struct proc));
164635e6168fSJeff Roberson }
164735e6168fSJeff Roberson 
164835e6168fSJeff Roberson int
164935e6168fSJeff Roberson sched_sizeof_thread(void)
165035e6168fSJeff Roberson {
165135e6168fSJeff Roberson 	return (sizeof(struct thread) + sizeof(struct td_sched));
165235e6168fSJeff Roberson }
1653