xref: /freebsd/sys/kern/sched_ule.c (revision 2c3490b1a8a19ba171069427b0b267537c69362c)
135e6168fSJeff Roberson /*-
215dc847eSJeff Roberson  * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
335e6168fSJeff Roberson  * All rights reserved.
435e6168fSJeff Roberson  *
535e6168fSJeff Roberson  * Redistribution and use in source and binary forms, with or without
635e6168fSJeff Roberson  * modification, are permitted provided that the following conditions
735e6168fSJeff Roberson  * are met:
835e6168fSJeff Roberson  * 1. Redistributions of source code must retain the above copyright
935e6168fSJeff Roberson  *    notice unmodified, this list of conditions, and the following
1035e6168fSJeff Roberson  *    disclaimer.
1135e6168fSJeff Roberson  * 2. Redistributions in binary form must reproduce the above copyright
1235e6168fSJeff Roberson  *    notice, this list of conditions and the following disclaimer in the
1335e6168fSJeff Roberson  *    documentation and/or other materials provided with the distribution.
1435e6168fSJeff Roberson  *
1535e6168fSJeff Roberson  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
1635e6168fSJeff Roberson  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1735e6168fSJeff Roberson  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
1835e6168fSJeff Roberson  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
1935e6168fSJeff Roberson  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
2035e6168fSJeff Roberson  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2135e6168fSJeff Roberson  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2235e6168fSJeff Roberson  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2335e6168fSJeff Roberson  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
2435e6168fSJeff Roberson  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2535e6168fSJeff Roberson  */
2635e6168fSJeff Roberson 
27677b542eSDavid E. O'Brien #include <sys/cdefs.h>
28677b542eSDavid E. O'Brien __FBSDID("$FreeBSD$");
29677b542eSDavid E. O'Brien 
3035e6168fSJeff Roberson #include <sys/param.h>
3135e6168fSJeff Roberson #include <sys/systm.h>
322c3490b1SMarcel Moolenaar #include <sys/kdb.h>
3335e6168fSJeff Roberson #include <sys/kernel.h>
3435e6168fSJeff Roberson #include <sys/ktr.h>
3535e6168fSJeff Roberson #include <sys/lock.h>
3635e6168fSJeff Roberson #include <sys/mutex.h>
3735e6168fSJeff Roberson #include <sys/proc.h>
38245f3abfSJeff Roberson #include <sys/resource.h>
399bacd788SJeff Roberson #include <sys/resourcevar.h>
4035e6168fSJeff Roberson #include <sys/sched.h>
4135e6168fSJeff Roberson #include <sys/smp.h>
4235e6168fSJeff Roberson #include <sys/sx.h>
4335e6168fSJeff Roberson #include <sys/sysctl.h>
4435e6168fSJeff Roberson #include <sys/sysproto.h>
4535e6168fSJeff Roberson #include <sys/vmmeter.h>
4635e6168fSJeff Roberson #ifdef KTRACE
4735e6168fSJeff Roberson #include <sys/uio.h>
4835e6168fSJeff Roberson #include <sys/ktrace.h>
4935e6168fSJeff Roberson #endif
5035e6168fSJeff Roberson 
5135e6168fSJeff Roberson #include <machine/cpu.h>
5222bf7d9aSJeff Roberson #include <machine/smp.h>
5335e6168fSJeff Roberson 
5415dc847eSJeff Roberson #define KTR_ULE         KTR_NFS
5515dc847eSJeff Roberson 
5635e6168fSJeff Roberson /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
5735e6168fSJeff Roberson /* XXX This is bogus compatability crap for ps */
5835e6168fSJeff Roberson static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
5935e6168fSJeff Roberson SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
6035e6168fSJeff Roberson 
6135e6168fSJeff Roberson static void sched_setup(void *dummy);
6235e6168fSJeff Roberson SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
6335e6168fSJeff Roberson 
6415dc847eSJeff Roberson static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
65e1f89c22SJeff Roberson 
66dc095794SScott Long #define ULE_NAME	"ule"
67dc095794SScott Long #define ULE_NAME_LEN	3
68dc095794SScott Long SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, ULE_NAME, ULE_NAME_LEN,
69dc095794SScott Long 	      "System is using the ULE scheduler");
70dc095794SScott Long 
7115dc847eSJeff Roberson static int slice_min = 1;
7215dc847eSJeff Roberson SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
7315dc847eSJeff Roberson 
74210491d3SJeff Roberson static int slice_max = 10;
7515dc847eSJeff Roberson SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
7615dc847eSJeff Roberson 
7715dc847eSJeff Roberson int realstathz;
7815dc847eSJeff Roberson int tickincr = 1;
79783caefbSJeff Roberson 
8035e6168fSJeff Roberson /*
8135e6168fSJeff Roberson  * These datastructures are allocated within their parent datastructure but
8235e6168fSJeff Roberson  * are scheduler specific.
8335e6168fSJeff Roberson  */
8435e6168fSJeff Roberson 
8535e6168fSJeff Roberson struct ke_sched {
8635e6168fSJeff Roberson 	int		ske_slice;
8735e6168fSJeff Roberson 	struct runq	*ske_runq;
8835e6168fSJeff Roberson 	/* The following variables are only used for pctcpu calculation */
8935e6168fSJeff Roberson 	int		ske_ltick;	/* Last tick that we were running on */
9035e6168fSJeff Roberson 	int		ske_ftick;	/* First tick that we were running on */
9135e6168fSJeff Roberson 	int		ske_ticks;	/* Tick count */
9215dc847eSJeff Roberson 	/* CPU that we have affinity for. */
93cd6e33dfSJeff Roberson 	u_char		ske_cpu;
9435e6168fSJeff Roberson };
9535e6168fSJeff Roberson #define	ke_slice	ke_sched->ske_slice
9635e6168fSJeff Roberson #define	ke_runq		ke_sched->ske_runq
9735e6168fSJeff Roberson #define	ke_ltick	ke_sched->ske_ltick
9835e6168fSJeff Roberson #define	ke_ftick	ke_sched->ske_ftick
9935e6168fSJeff Roberson #define	ke_ticks	ke_sched->ske_ticks
100cd6e33dfSJeff Roberson #define	ke_cpu		ke_sched->ske_cpu
10122bf7d9aSJeff Roberson #define	ke_assign	ke_procq.tqe_next
10222bf7d9aSJeff Roberson 
10322bf7d9aSJeff Roberson #define	KEF_ASSIGNED	KEF_SCHED0	/* KSE is being migrated. */
104a70d729bSJeff Roberson #define	KEF_BOUND	KEF_SCHED1	/* KSE can not migrate. */
10535e6168fSJeff Roberson 
10635e6168fSJeff Roberson struct kg_sched {
107407b0157SJeff Roberson 	int	skg_slptime;		/* Number of ticks we vol. slept */
108407b0157SJeff Roberson 	int	skg_runtime;		/* Number of ticks we were running */
10935e6168fSJeff Roberson };
11035e6168fSJeff Roberson #define	kg_slptime	kg_sched->skg_slptime
111407b0157SJeff Roberson #define	kg_runtime	kg_sched->skg_runtime
11235e6168fSJeff Roberson 
11335e6168fSJeff Roberson struct td_sched {
11435e6168fSJeff Roberson 	int	std_slptime;
11535e6168fSJeff Roberson };
11635e6168fSJeff Roberson #define	td_slptime	td_sched->std_slptime
11735e6168fSJeff Roberson 
1185d7ef00cSJeff Roberson struct td_sched td_sched;
11935e6168fSJeff Roberson struct ke_sched ke_sched;
12035e6168fSJeff Roberson struct kg_sched kg_sched;
12135e6168fSJeff Roberson 
12235e6168fSJeff Roberson struct ke_sched *kse0_sched = &ke_sched;
12335e6168fSJeff Roberson struct kg_sched *ksegrp0_sched = &kg_sched;
12435e6168fSJeff Roberson struct p_sched *proc0_sched = NULL;
12535e6168fSJeff Roberson struct td_sched *thread0_sched = &td_sched;
12635e6168fSJeff Roberson 
12735e6168fSJeff Roberson /*
128665cb285SJeff Roberson  * The priority is primarily determined by the interactivity score.  Thus, we
129665cb285SJeff Roberson  * give lower(better) priorities to kse groups that use less CPU.  The nice
130665cb285SJeff Roberson  * value is then directly added to this to allow nice to have some effect
131665cb285SJeff Roberson  * on latency.
132e1f89c22SJeff Roberson  *
133e1f89c22SJeff Roberson  * PRI_RANGE:	Total priority range for timeshare threads.
134665cb285SJeff Roberson  * PRI_NRESV:	Number of nice values.
135e1f89c22SJeff Roberson  * PRI_BASE:	The start of the dynamic range.
13635e6168fSJeff Roberson  */
137407b0157SJeff Roberson #define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
138a0a931ceSJeff Roberson #define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
139a0a931ceSJeff Roberson #define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
140665cb285SJeff Roberson #define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
14115dc847eSJeff Roberson #define	SCHED_PRI_INTERACT(score)					\
142665cb285SJeff Roberson     ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
14335e6168fSJeff Roberson 
14435e6168fSJeff Roberson /*
145e1f89c22SJeff Roberson  * These determine the interactivity of a process.
14635e6168fSJeff Roberson  *
147407b0157SJeff Roberson  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
148407b0157SJeff Roberson  *		before throttling back.
149d322132cSJeff Roberson  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
150210491d3SJeff Roberson  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
151e1f89c22SJeff Roberson  * INTERACT_THRESH:	Threshhold for placement on the current runq.
15235e6168fSJeff Roberson  */
1534c9612c6SJeff Roberson #define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
154d322132cSJeff Roberson #define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
155210491d3SJeff Roberson #define	SCHED_INTERACT_MAX	(100)
156210491d3SJeff Roberson #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
1574c9612c6SJeff Roberson #define	SCHED_INTERACT_THRESH	(30)
158e1f89c22SJeff Roberson 
15935e6168fSJeff Roberson /*
16035e6168fSJeff Roberson  * These parameters and macros determine the size of the time slice that is
16135e6168fSJeff Roberson  * granted to each thread.
16235e6168fSJeff Roberson  *
16335e6168fSJeff Roberson  * SLICE_MIN:	Minimum time slice granted, in units of ticks.
16435e6168fSJeff Roberson  * SLICE_MAX:	Maximum time slice granted.
16535e6168fSJeff Roberson  * SLICE_RANGE:	Range of available time slices scaled by hz.
166245f3abfSJeff Roberson  * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
167245f3abfSJeff Roberson  * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
1687d1a81b4SJeff Roberson  * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
16935e6168fSJeff Roberson  */
17015dc847eSJeff Roberson #define	SCHED_SLICE_MIN			(slice_min)
17115dc847eSJeff Roberson #define	SCHED_SLICE_MAX			(slice_max)
1720392e39dSJeff Roberson #define	SCHED_SLICE_INTERACTIVE		(slice_max)
1737d1a81b4SJeff Roberson #define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
17435e6168fSJeff Roberson #define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
17535e6168fSJeff Roberson #define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
176245f3abfSJeff Roberson #define	SCHED_SLICE_NICE(nice)						\
1777d1a81b4SJeff Roberson     (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
17835e6168fSJeff Roberson 
17935e6168fSJeff Roberson /*
18035e6168fSJeff Roberson  * This macro determines whether or not the kse belongs on the current or
18135e6168fSJeff Roberson  * next run queue.
18235e6168fSJeff Roberson  */
18315dc847eSJeff Roberson #define	SCHED_INTERACTIVE(kg)						\
18415dc847eSJeff Roberson     (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
185a5f099d0SJeff Roberson #define	SCHED_CURR(kg, ke)						\
186b003da79SDavid E. O'Brien     (ke->ke_thread->td_priority < kg->kg_user_pri ||			\
18708fd6713SJeff Roberson     SCHED_INTERACTIVE(kg))
18835e6168fSJeff Roberson 
18935e6168fSJeff Roberson /*
19035e6168fSJeff Roberson  * Cpu percentage computation macros and defines.
19135e6168fSJeff Roberson  *
19235e6168fSJeff Roberson  * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
19335e6168fSJeff Roberson  * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
19435e6168fSJeff Roberson  */
19535e6168fSJeff Roberson 
1965053d272SJeff Roberson #define	SCHED_CPU_TIME	10
19735e6168fSJeff Roberson #define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
19835e6168fSJeff Roberson 
19935e6168fSJeff Roberson /*
20015dc847eSJeff Roberson  * kseq - per processor runqs and statistics.
20135e6168fSJeff Roberson  */
20235e6168fSJeff Roberson struct kseq {
203a8949de2SJeff Roberson 	struct runq	ksq_idle;		/* Queue of IDLE threads. */
20415dc847eSJeff Roberson 	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
20515dc847eSJeff Roberson 	struct runq	*ksq_next;		/* Next timeshare queue. */
20615dc847eSJeff Roberson 	struct runq	*ksq_curr;		/* Current queue. */
207ef1134c9SJeff Roberson 	int		ksq_load_timeshare;	/* Load for timeshare. */
20815dc847eSJeff Roberson 	int		ksq_load;		/* Aggregate load. */
209a0a931ceSJeff Roberson 	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
21015dc847eSJeff Roberson 	short		ksq_nicemin;		/* Least nice. */
2115d7ef00cSJeff Roberson #ifdef SMP
21280f86c9fSJeff Roberson 	int			ksq_transferable;
21380f86c9fSJeff Roberson 	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
21480f86c9fSJeff Roberson 	struct kseq_group	*ksq_group;	/* Our processor group. */
215fa9c9717SJeff Roberson 	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
21633916c36SJeff Roberson #else
21733916c36SJeff Roberson 	int		ksq_sysload;		/* For loadavg, !ITHD load. */
2185d7ef00cSJeff Roberson #endif
21935e6168fSJeff Roberson };
22035e6168fSJeff Roberson 
22180f86c9fSJeff Roberson #ifdef SMP
22280f86c9fSJeff Roberson /*
22380f86c9fSJeff Roberson  * kseq groups are groups of processors which can cheaply share threads.  When
22480f86c9fSJeff Roberson  * one processor in the group goes idle it will check the runqs of the other
22580f86c9fSJeff Roberson  * processors in its group prior to halting and waiting for an interrupt.
22680f86c9fSJeff Roberson  * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
22780f86c9fSJeff Roberson  * In a numa environment we'd want an idle bitmap per group and a two tiered
22880f86c9fSJeff Roberson  * load balancer.
22980f86c9fSJeff Roberson  */
23080f86c9fSJeff Roberson struct kseq_group {
23180f86c9fSJeff Roberson 	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
232b2ae7ed7SMarcel Moolenaar 	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
233b2ae7ed7SMarcel Moolenaar 	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
234b2ae7ed7SMarcel Moolenaar 	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
235cac77d04SJeff Roberson 	int	ksg_load;		/* Total load of this group. */
23680f86c9fSJeff Roberson 	int	ksg_transferable;	/* Transferable load of this group. */
23780f86c9fSJeff Roberson 	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
23880f86c9fSJeff Roberson };
23980f86c9fSJeff Roberson #endif
24080f86c9fSJeff Roberson 
24135e6168fSJeff Roberson /*
24235e6168fSJeff Roberson  * One kse queue per processor.
24335e6168fSJeff Roberson  */
2440a016a05SJeff Roberson #ifdef SMP
245b2ae7ed7SMarcel Moolenaar static cpumask_t kseq_idle;
246cac77d04SJeff Roberson static int ksg_maxid;
24722bf7d9aSJeff Roberson static struct kseq	kseq_cpu[MAXCPU];
24880f86c9fSJeff Roberson static struct kseq_group kseq_groups[MAXCPU];
249dc03363dSJeff Roberson static int bal_tick;
250dc03363dSJeff Roberson static int gbal_tick;
251dc03363dSJeff Roberson 
25280f86c9fSJeff Roberson #define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
25380f86c9fSJeff Roberson #define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
254cac77d04SJeff Roberson #define	KSEQ_ID(x)	((x) - kseq_cpu)
255cac77d04SJeff Roberson #define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
25680f86c9fSJeff Roberson #else	/* !SMP */
25722bf7d9aSJeff Roberson static struct kseq	kseq_cpu;
258dc03363dSJeff Roberson 
2590a016a05SJeff Roberson #define	KSEQ_SELF()	(&kseq_cpu)
2600a016a05SJeff Roberson #define	KSEQ_CPU(x)	(&kseq_cpu)
2610a016a05SJeff Roberson #endif
26235e6168fSJeff Roberson 
26363fcce68SJohn Baldwin static void sched_add_internal(struct thread *td, int preemptive);
264245f3abfSJeff Roberson static void sched_slice(struct kse *ke);
26515dc847eSJeff Roberson static void sched_priority(struct ksegrp *kg);
266e1f89c22SJeff Roberson static int sched_interact_score(struct ksegrp *kg);
2674b60e324SJeff Roberson static void sched_interact_update(struct ksegrp *kg);
268d322132cSJeff Roberson static void sched_interact_fork(struct ksegrp *kg);
26922bf7d9aSJeff Roberson static void sched_pctcpu_update(struct kse *ke);
27035e6168fSJeff Roberson 
2715d7ef00cSJeff Roberson /* Operations on per processor queues */
27222bf7d9aSJeff Roberson static struct kse * kseq_choose(struct kseq *kseq);
2730a016a05SJeff Roberson static void kseq_setup(struct kseq *kseq);
274155b9987SJeff Roberson static void kseq_load_add(struct kseq *kseq, struct kse *ke);
275155b9987SJeff Roberson static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
276155b9987SJeff Roberson static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
277155b9987SJeff Roberson static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
27815dc847eSJeff Roberson static void kseq_nice_add(struct kseq *kseq, int nice);
27915dc847eSJeff Roberson static void kseq_nice_rem(struct kseq *kseq, int nice);
2807cd650a9SJeff Roberson void kseq_print(int cpu);
2815d7ef00cSJeff Roberson #ifdef SMP
28280f86c9fSJeff Roberson static int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
28322bf7d9aSJeff Roberson static struct kse *runq_steal(struct runq *rq);
284dc03363dSJeff Roberson static void sched_balance(void);
285dc03363dSJeff Roberson static void sched_balance_groups(void);
286cac77d04SJeff Roberson static void sched_balance_group(struct kseq_group *ksg);
287cac77d04SJeff Roberson static void sched_balance_pair(struct kseq *high, struct kseq *low);
28822bf7d9aSJeff Roberson static void kseq_move(struct kseq *from, int cpu);
28980f86c9fSJeff Roberson static int kseq_idled(struct kseq *kseq);
29022bf7d9aSJeff Roberson static void kseq_notify(struct kse *ke, int cpu);
29122bf7d9aSJeff Roberson static void kseq_assign(struct kseq *);
29280f86c9fSJeff Roberson static struct kse *kseq_steal(struct kseq *kseq, int stealidle);
293e7a976f4SJeff Roberson /*
294e7a976f4SJeff Roberson  * On P4 Xeons the round-robin interrupt delivery is broken.  As a result of
295e7a976f4SJeff Roberson  * this, we can't pin interrupts to the cpu that they were delivered to,
296e7a976f4SJeff Roberson  * otherwise all ithreads only run on CPU 0.
297e7a976f4SJeff Roberson  */
298e7a976f4SJeff Roberson #ifdef __i386__
299e7a976f4SJeff Roberson #define	KSE_CAN_MIGRATE(ke, class)					\
300e7a976f4SJeff Roberson     ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
301e7a976f4SJeff Roberson #else /* !__i386__ */
3029bacd788SJeff Roberson #define	KSE_CAN_MIGRATE(ke, class)					\
303a70d729bSJeff Roberson     ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
304f28b3340SJeff Roberson     ((ke)->ke_flags & KEF_BOUND) == 0)
305e7a976f4SJeff Roberson #endif /* !__i386__ */
3065d7ef00cSJeff Roberson #endif
3075d7ef00cSJeff Roberson 
30815dc847eSJeff Roberson void
3097cd650a9SJeff Roberson kseq_print(int cpu)
31015dc847eSJeff Roberson {
3117cd650a9SJeff Roberson 	struct kseq *kseq;
31215dc847eSJeff Roberson 	int i;
31315dc847eSJeff Roberson 
3147cd650a9SJeff Roberson 	kseq = KSEQ_CPU(cpu);
31515dc847eSJeff Roberson 
31615dc847eSJeff Roberson 	printf("kseq:\n");
31715dc847eSJeff Roberson 	printf("\tload:           %d\n", kseq->ksq_load);
318155b9987SJeff Roberson 	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
319ef1134c9SJeff Roberson #ifdef SMP
32080f86c9fSJeff Roberson 	printf("\tload transferable: %d\n", kseq->ksq_transferable);
321ef1134c9SJeff Roberson #endif
32215dc847eSJeff Roberson 	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
32315dc847eSJeff Roberson 	printf("\tnice counts:\n");
324a0a931ceSJeff Roberson 	for (i = 0; i < SCHED_PRI_NRESV; i++)
32515dc847eSJeff Roberson 		if (kseq->ksq_nice[i])
32615dc847eSJeff Roberson 			printf("\t\t%d = %d\n",
32715dc847eSJeff Roberson 			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
32815dc847eSJeff Roberson }
32915dc847eSJeff Roberson 
330155b9987SJeff Roberson static __inline void
331155b9987SJeff Roberson kseq_runq_add(struct kseq *kseq, struct kse *ke)
332155b9987SJeff Roberson {
333155b9987SJeff Roberson #ifdef SMP
33480f86c9fSJeff Roberson 	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
33580f86c9fSJeff Roberson 		kseq->ksq_transferable++;
33680f86c9fSJeff Roberson 		kseq->ksq_group->ksg_transferable++;
33780f86c9fSJeff Roberson 	}
338155b9987SJeff Roberson #endif
339155b9987SJeff Roberson 	runq_add(ke->ke_runq, ke);
340155b9987SJeff Roberson }
341155b9987SJeff Roberson 
342155b9987SJeff Roberson static __inline void
343155b9987SJeff Roberson kseq_runq_rem(struct kseq *kseq, struct kse *ke)
344155b9987SJeff Roberson {
345155b9987SJeff Roberson #ifdef SMP
34680f86c9fSJeff Roberson 	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
34780f86c9fSJeff Roberson 		kseq->ksq_transferable--;
34880f86c9fSJeff Roberson 		kseq->ksq_group->ksg_transferable--;
34980f86c9fSJeff Roberson 	}
350155b9987SJeff Roberson #endif
351155b9987SJeff Roberson 	runq_remove(ke->ke_runq, ke);
352155b9987SJeff Roberson }
353155b9987SJeff Roberson 
354a8949de2SJeff Roberson static void
355155b9987SJeff Roberson kseq_load_add(struct kseq *kseq, struct kse *ke)
3565d7ef00cSJeff Roberson {
357ef1134c9SJeff Roberson 	int class;
358b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
359ef1134c9SJeff Roberson 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
360ef1134c9SJeff Roberson 	if (class == PRI_TIMESHARE)
361ef1134c9SJeff Roberson 		kseq->ksq_load_timeshare++;
36215dc847eSJeff Roberson 	kseq->ksq_load++;
363207a6c0dSDavid E. O'Brien 	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
36433916c36SJeff Roberson #ifdef SMP
365cac77d04SJeff Roberson 		kseq->ksq_group->ksg_load++;
36633916c36SJeff Roberson #else
36733916c36SJeff Roberson 		kseq->ksq_sysload++;
368cac77d04SJeff Roberson #endif
36915dc847eSJeff Roberson 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
370155b9987SJeff Roberson 		CTR6(KTR_ULE,
371155b9987SJeff Roberson 		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
37215dc847eSJeff Roberson 		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
373fa885116SJulian Elischer 		    ke->ke_proc->p_nice, kseq->ksq_nicemin);
37415dc847eSJeff Roberson 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
375fa885116SJulian Elischer 		kseq_nice_add(kseq, ke->ke_proc->p_nice);
3765d7ef00cSJeff Roberson }
37715dc847eSJeff Roberson 
378a8949de2SJeff Roberson static void
379155b9987SJeff Roberson kseq_load_rem(struct kseq *kseq, struct kse *ke)
3805d7ef00cSJeff Roberson {
381ef1134c9SJeff Roberson 	int class;
382b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
383ef1134c9SJeff Roberson 	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
384ef1134c9SJeff Roberson 	if (class == PRI_TIMESHARE)
385ef1134c9SJeff Roberson 		kseq->ksq_load_timeshare--;
386207a6c0dSDavid E. O'Brien 	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
38733916c36SJeff Roberson #ifdef SMP
388cac77d04SJeff Roberson 		kseq->ksq_group->ksg_load--;
38933916c36SJeff Roberson #else
39033916c36SJeff Roberson 		kseq->ksq_sysload--;
391cac77d04SJeff Roberson #endif
39215dc847eSJeff Roberson 	kseq->ksq_load--;
39315dc847eSJeff Roberson 	ke->ke_runq = NULL;
39415dc847eSJeff Roberson 	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
395fa885116SJulian Elischer 		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
3965d7ef00cSJeff Roberson }
3975d7ef00cSJeff Roberson 
39815dc847eSJeff Roberson static void
39915dc847eSJeff Roberson kseq_nice_add(struct kseq *kseq, int nice)
40015dc847eSJeff Roberson {
401b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
40215dc847eSJeff Roberson 	/* Normalize to zero. */
40315dc847eSJeff Roberson 	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
404ef1134c9SJeff Roberson 	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
40515dc847eSJeff Roberson 		kseq->ksq_nicemin = nice;
40615dc847eSJeff Roberson }
40715dc847eSJeff Roberson 
40815dc847eSJeff Roberson static void
40915dc847eSJeff Roberson kseq_nice_rem(struct kseq *kseq, int nice)
41015dc847eSJeff Roberson {
41115dc847eSJeff Roberson 	int n;
41215dc847eSJeff Roberson 
413b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
41415dc847eSJeff Roberson 	/* Normalize to zero. */
41515dc847eSJeff Roberson 	n = nice + SCHED_PRI_NHALF;
41615dc847eSJeff Roberson 	kseq->ksq_nice[n]--;
41715dc847eSJeff Roberson 	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
41815dc847eSJeff Roberson 
41915dc847eSJeff Roberson 	/*
42015dc847eSJeff Roberson 	 * If this wasn't the smallest nice value or there are more in
42115dc847eSJeff Roberson 	 * this bucket we can just return.  Otherwise we have to recalculate
42215dc847eSJeff Roberson 	 * the smallest nice.
42315dc847eSJeff Roberson 	 */
42415dc847eSJeff Roberson 	if (nice != kseq->ksq_nicemin ||
42515dc847eSJeff Roberson 	    kseq->ksq_nice[n] != 0 ||
426ef1134c9SJeff Roberson 	    kseq->ksq_load_timeshare == 0)
42715dc847eSJeff Roberson 		return;
42815dc847eSJeff Roberson 
429a0a931ceSJeff Roberson 	for (; n < SCHED_PRI_NRESV; n++)
43015dc847eSJeff Roberson 		if (kseq->ksq_nice[n]) {
43115dc847eSJeff Roberson 			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
43215dc847eSJeff Roberson 			return;
43315dc847eSJeff Roberson 		}
43415dc847eSJeff Roberson }
43515dc847eSJeff Roberson 
4365d7ef00cSJeff Roberson #ifdef SMP
437356500a3SJeff Roberson /*
438155b9987SJeff Roberson  * sched_balance is a simple CPU load balancing algorithm.  It operates by
439356500a3SJeff Roberson  * finding the least loaded and most loaded cpu and equalizing their load
440356500a3SJeff Roberson  * by migrating some processes.
441356500a3SJeff Roberson  *
442356500a3SJeff Roberson  * Dealing only with two CPUs at a time has two advantages.  Firstly, most
443356500a3SJeff Roberson  * installations will only have 2 cpus.  Secondly, load balancing too much at
444356500a3SJeff Roberson  * once can have an unpleasant effect on the system.  The scheduler rarely has
445356500a3SJeff Roberson  * enough information to make perfect decisions.  So this algorithm chooses
446356500a3SJeff Roberson  * algorithm simplicity and more gradual effects on load in larger systems.
447356500a3SJeff Roberson  *
448356500a3SJeff Roberson  * It could be improved by considering the priorities and slices assigned to
449356500a3SJeff Roberson  * each task prior to balancing them.  There are many pathological cases with
450356500a3SJeff Roberson  * any approach and so the semi random algorithm below may work as well as any.
451356500a3SJeff Roberson  *
452356500a3SJeff Roberson  */
45322bf7d9aSJeff Roberson static void
454dc03363dSJeff Roberson sched_balance(void)
455356500a3SJeff Roberson {
456cac77d04SJeff Roberson 	struct kseq_group *high;
457cac77d04SJeff Roberson 	struct kseq_group *low;
458cac77d04SJeff Roberson 	struct kseq_group *ksg;
459cac77d04SJeff Roberson 	int cnt;
460356500a3SJeff Roberson 	int i;
461356500a3SJeff Roberson 
46286f8ae96SJeff Roberson 	if (smp_started == 0)
46386f8ae96SJeff Roberson 		goto out;
464cac77d04SJeff Roberson 	low = high = NULL;
465cac77d04SJeff Roberson 	i = random() % (ksg_maxid + 1);
466cac77d04SJeff Roberson 	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
467cac77d04SJeff Roberson 		ksg = KSEQ_GROUP(i);
468cac77d04SJeff Roberson 		/*
469cac77d04SJeff Roberson 		 * Find the CPU with the highest load that has some
470cac77d04SJeff Roberson 		 * threads to transfer.
471cac77d04SJeff Roberson 		 */
472cac77d04SJeff Roberson 		if ((high == NULL || ksg->ksg_load > high->ksg_load)
473cac77d04SJeff Roberson 		    && ksg->ksg_transferable)
474cac77d04SJeff Roberson 			high = ksg;
475cac77d04SJeff Roberson 		if (low == NULL || ksg->ksg_load < low->ksg_load)
476cac77d04SJeff Roberson 			low = ksg;
477cac77d04SJeff Roberson 		if (++i > ksg_maxid)
478cac77d04SJeff Roberson 			i = 0;
479cac77d04SJeff Roberson 	}
480cac77d04SJeff Roberson 	if (low != NULL && high != NULL && high != low)
481cac77d04SJeff Roberson 		sched_balance_pair(LIST_FIRST(&high->ksg_members),
482cac77d04SJeff Roberson 		    LIST_FIRST(&low->ksg_members));
483cac77d04SJeff Roberson out:
484dc03363dSJeff Roberson 	bal_tick = ticks + (random() % (hz * 2));
485cac77d04SJeff Roberson }
48686f8ae96SJeff Roberson 
487cac77d04SJeff Roberson static void
488dc03363dSJeff Roberson sched_balance_groups(void)
489cac77d04SJeff Roberson {
490cac77d04SJeff Roberson 	int i;
491cac77d04SJeff Roberson 
492dc03363dSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
493cac77d04SJeff Roberson 	if (smp_started)
494cac77d04SJeff Roberson 		for (i = 0; i <= ksg_maxid; i++)
495cac77d04SJeff Roberson 			sched_balance_group(KSEQ_GROUP(i));
496dc03363dSJeff Roberson 	gbal_tick = ticks + (random() % (hz * 2));
497356500a3SJeff Roberson }
498cac77d04SJeff Roberson 
499cac77d04SJeff Roberson static void
500cac77d04SJeff Roberson sched_balance_group(struct kseq_group *ksg)
501cac77d04SJeff Roberson {
502cac77d04SJeff Roberson 	struct kseq *kseq;
503cac77d04SJeff Roberson 	struct kseq *high;
504cac77d04SJeff Roberson 	struct kseq *low;
505cac77d04SJeff Roberson 	int load;
506cac77d04SJeff Roberson 
507cac77d04SJeff Roberson 	if (ksg->ksg_transferable == 0)
508cac77d04SJeff Roberson 		return;
509cac77d04SJeff Roberson 	low = NULL;
510cac77d04SJeff Roberson 	high = NULL;
511cac77d04SJeff Roberson 	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
512cac77d04SJeff Roberson 		load = kseq->ksq_load;
513cac77d04SJeff Roberson 		if (high == NULL || load > high->ksq_load)
514cac77d04SJeff Roberson 			high = kseq;
515cac77d04SJeff Roberson 		if (low == NULL || load < low->ksq_load)
516cac77d04SJeff Roberson 			low = kseq;
517356500a3SJeff Roberson 	}
518cac77d04SJeff Roberson 	if (high != NULL && low != NULL && high != low)
519cac77d04SJeff Roberson 		sched_balance_pair(high, low);
520356500a3SJeff Roberson }
521cac77d04SJeff Roberson 
522cac77d04SJeff Roberson static void
523cac77d04SJeff Roberson sched_balance_pair(struct kseq *high, struct kseq *low)
524cac77d04SJeff Roberson {
525cac77d04SJeff Roberson 	int transferable;
526cac77d04SJeff Roberson 	int high_load;
527cac77d04SJeff Roberson 	int low_load;
528cac77d04SJeff Roberson 	int move;
529cac77d04SJeff Roberson 	int diff;
530cac77d04SJeff Roberson 	int i;
531cac77d04SJeff Roberson 
53280f86c9fSJeff Roberson 	/*
53380f86c9fSJeff Roberson 	 * If we're transfering within a group we have to use this specific
53480f86c9fSJeff Roberson 	 * kseq's transferable count, otherwise we can steal from other members
53580f86c9fSJeff Roberson 	 * of the group.
53680f86c9fSJeff Roberson 	 */
537cac77d04SJeff Roberson 	if (high->ksq_group == low->ksq_group) {
538cac77d04SJeff Roberson 		transferable = high->ksq_transferable;
539cac77d04SJeff Roberson 		high_load = high->ksq_load;
540cac77d04SJeff Roberson 		low_load = low->ksq_load;
541cac77d04SJeff Roberson 	} else {
542cac77d04SJeff Roberson 		transferable = high->ksq_group->ksg_transferable;
543cac77d04SJeff Roberson 		high_load = high->ksq_group->ksg_load;
544cac77d04SJeff Roberson 		low_load = low->ksq_group->ksg_load;
545cac77d04SJeff Roberson 	}
54680f86c9fSJeff Roberson 	if (transferable == 0)
547cac77d04SJeff Roberson 		return;
548155b9987SJeff Roberson 	/*
549155b9987SJeff Roberson 	 * Determine what the imbalance is and then adjust that to how many
55080f86c9fSJeff Roberson 	 * kses we actually have to give up (transferable).
551155b9987SJeff Roberson 	 */
552cac77d04SJeff Roberson 	diff = high_load - low_load;
553356500a3SJeff Roberson 	move = diff / 2;
554356500a3SJeff Roberson 	if (diff & 0x1)
555356500a3SJeff Roberson 		move++;
55680f86c9fSJeff Roberson 	move = min(move, transferable);
557356500a3SJeff Roberson 	for (i = 0; i < move; i++)
558cac77d04SJeff Roberson 		kseq_move(high, KSEQ_ID(low));
559356500a3SJeff Roberson 	return;
560356500a3SJeff Roberson }
561356500a3SJeff Roberson 
56222bf7d9aSJeff Roberson static void
563356500a3SJeff Roberson kseq_move(struct kseq *from, int cpu)
564356500a3SJeff Roberson {
56580f86c9fSJeff Roberson 	struct kseq *kseq;
56680f86c9fSJeff Roberson 	struct kseq *to;
567356500a3SJeff Roberson 	struct kse *ke;
568356500a3SJeff Roberson 
56980f86c9fSJeff Roberson 	kseq = from;
57080f86c9fSJeff Roberson 	to = KSEQ_CPU(cpu);
57180f86c9fSJeff Roberson 	ke = kseq_steal(kseq, 1);
57280f86c9fSJeff Roberson 	if (ke == NULL) {
57380f86c9fSJeff Roberson 		struct kseq_group *ksg;
57480f86c9fSJeff Roberson 
57580f86c9fSJeff Roberson 		ksg = kseq->ksq_group;
57680f86c9fSJeff Roberson 		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
57780f86c9fSJeff Roberson 			if (kseq == from || kseq->ksq_transferable == 0)
57880f86c9fSJeff Roberson 				continue;
57980f86c9fSJeff Roberson 			ke = kseq_steal(kseq, 1);
58080f86c9fSJeff Roberson 			break;
58180f86c9fSJeff Roberson 		}
58280f86c9fSJeff Roberson 		if (ke == NULL)
58380f86c9fSJeff Roberson 			panic("kseq_move: No KSEs available with a "
58480f86c9fSJeff Roberson 			    "transferable count of %d\n",
58580f86c9fSJeff Roberson 			    ksg->ksg_transferable);
58680f86c9fSJeff Roberson 	}
58780f86c9fSJeff Roberson 	if (kseq == to)
58880f86c9fSJeff Roberson 		return;
589356500a3SJeff Roberson 	ke->ke_state = KES_THREAD;
59080f86c9fSJeff Roberson 	kseq_runq_rem(kseq, ke);
59180f86c9fSJeff Roberson 	kseq_load_rem(kseq, ke);
592112b6d3aSJeff Roberson 	kseq_notify(ke, cpu);
593356500a3SJeff Roberson }
59422bf7d9aSJeff Roberson 
59580f86c9fSJeff Roberson static int
59680f86c9fSJeff Roberson kseq_idled(struct kseq *kseq)
59722bf7d9aSJeff Roberson {
59880f86c9fSJeff Roberson 	struct kseq_group *ksg;
59980f86c9fSJeff Roberson 	struct kseq *steal;
60080f86c9fSJeff Roberson 	struct kse *ke;
60180f86c9fSJeff Roberson 
60280f86c9fSJeff Roberson 	ksg = kseq->ksq_group;
60380f86c9fSJeff Roberson 	/*
60480f86c9fSJeff Roberson 	 * If we're in a cpu group, try and steal kses from another cpu in
60580f86c9fSJeff Roberson 	 * the group before idling.
60680f86c9fSJeff Roberson 	 */
60780f86c9fSJeff Roberson 	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
60880f86c9fSJeff Roberson 		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
60980f86c9fSJeff Roberson 			if (steal == kseq || steal->ksq_transferable == 0)
61080f86c9fSJeff Roberson 				continue;
61180f86c9fSJeff Roberson 			ke = kseq_steal(steal, 0);
61280f86c9fSJeff Roberson 			if (ke == NULL)
61380f86c9fSJeff Roberson 				continue;
61480f86c9fSJeff Roberson 			ke->ke_state = KES_THREAD;
61580f86c9fSJeff Roberson 			kseq_runq_rem(steal, ke);
61680f86c9fSJeff Roberson 			kseq_load_rem(steal, ke);
61780f86c9fSJeff Roberson 			ke->ke_cpu = PCPU_GET(cpuid);
61863fcce68SJohn Baldwin 			sched_add_internal(ke->ke_thread, 0);
61980f86c9fSJeff Roberson 			return (0);
62080f86c9fSJeff Roberson 		}
62180f86c9fSJeff Roberson 	}
62280f86c9fSJeff Roberson 	/*
62380f86c9fSJeff Roberson 	 * We only set the idled bit when all of the cpus in the group are
62480f86c9fSJeff Roberson 	 * idle.  Otherwise we could get into a situation where a KSE bounces
62580f86c9fSJeff Roberson 	 * back and forth between two idle cores on seperate physical CPUs.
62680f86c9fSJeff Roberson 	 */
62780f86c9fSJeff Roberson 	ksg->ksg_idlemask |= PCPU_GET(cpumask);
62880f86c9fSJeff Roberson 	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
62980f86c9fSJeff Roberson 		return (1);
63080f86c9fSJeff Roberson 	atomic_set_int(&kseq_idle, ksg->ksg_mask);
63180f86c9fSJeff Roberson 	return (1);
63222bf7d9aSJeff Roberson }
63322bf7d9aSJeff Roberson 
63422bf7d9aSJeff Roberson static void
63522bf7d9aSJeff Roberson kseq_assign(struct kseq *kseq)
63622bf7d9aSJeff Roberson {
63722bf7d9aSJeff Roberson 	struct kse *nke;
63822bf7d9aSJeff Roberson 	struct kse *ke;
63922bf7d9aSJeff Roberson 
64022bf7d9aSJeff Roberson 	do {
641fa9c9717SJeff Roberson 		(volatile struct kse *)ke = kseq->ksq_assigned;
64222bf7d9aSJeff Roberson 	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
64322bf7d9aSJeff Roberson 	for (; ke != NULL; ke = nke) {
64422bf7d9aSJeff Roberson 		nke = ke->ke_assign;
64522bf7d9aSJeff Roberson 		ke->ke_flags &= ~KEF_ASSIGNED;
64663fcce68SJohn Baldwin 		sched_add_internal(ke->ke_thread, 0);
64722bf7d9aSJeff Roberson 	}
64822bf7d9aSJeff Roberson }
64922bf7d9aSJeff Roberson 
65022bf7d9aSJeff Roberson static void
65122bf7d9aSJeff Roberson kseq_notify(struct kse *ke, int cpu)
65222bf7d9aSJeff Roberson {
65322bf7d9aSJeff Roberson 	struct kseq *kseq;
65422bf7d9aSJeff Roberson 	struct thread *td;
65522bf7d9aSJeff Roberson 	struct pcpu *pcpu;
65622bf7d9aSJeff Roberson 
65786e1c22aSJeff Roberson 	ke->ke_cpu = cpu;
65822bf7d9aSJeff Roberson 	ke->ke_flags |= KEF_ASSIGNED;
65922bf7d9aSJeff Roberson 
66022bf7d9aSJeff Roberson 	kseq = KSEQ_CPU(cpu);
6615d7ef00cSJeff Roberson 
6620c0a98b2SJeff Roberson 	/*
66322bf7d9aSJeff Roberson 	 * Place a KSE on another cpu's queue and force a resched.
66422bf7d9aSJeff Roberson 	 */
66522bf7d9aSJeff Roberson 	do {
666fa9c9717SJeff Roberson 		(volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
66722bf7d9aSJeff Roberson 	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
66822bf7d9aSJeff Roberson 	pcpu = pcpu_find(cpu);
66922bf7d9aSJeff Roberson 	td = pcpu->pc_curthread;
67022bf7d9aSJeff Roberson 	if (ke->ke_thread->td_priority < td->td_priority ||
67122bf7d9aSJeff Roberson 	    td == pcpu->pc_idlethread) {
67222bf7d9aSJeff Roberson 		td->td_flags |= TDF_NEEDRESCHED;
67322bf7d9aSJeff Roberson 		ipi_selected(1 << cpu, IPI_AST);
67422bf7d9aSJeff Roberson 	}
67522bf7d9aSJeff Roberson }
67622bf7d9aSJeff Roberson 
67722bf7d9aSJeff Roberson static struct kse *
67822bf7d9aSJeff Roberson runq_steal(struct runq *rq)
67922bf7d9aSJeff Roberson {
68022bf7d9aSJeff Roberson 	struct rqhead *rqh;
68122bf7d9aSJeff Roberson 	struct rqbits *rqb;
68222bf7d9aSJeff Roberson 	struct kse *ke;
68322bf7d9aSJeff Roberson 	int word;
68422bf7d9aSJeff Roberson 	int bit;
68522bf7d9aSJeff Roberson 
68622bf7d9aSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
68722bf7d9aSJeff Roberson 	rqb = &rq->rq_status;
68822bf7d9aSJeff Roberson 	for (word = 0; word < RQB_LEN; word++) {
68922bf7d9aSJeff Roberson 		if (rqb->rqb_bits[word] == 0)
69022bf7d9aSJeff Roberson 			continue;
69122bf7d9aSJeff Roberson 		for (bit = 0; bit < RQB_BPW; bit++) {
692a2640c9bSPeter Wemm 			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
69322bf7d9aSJeff Roberson 				continue;
69422bf7d9aSJeff Roberson 			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
69522bf7d9aSJeff Roberson 			TAILQ_FOREACH(ke, rqh, ke_procq) {
696ef1134c9SJeff Roberson 				if (KSE_CAN_MIGRATE(ke,
697ef1134c9SJeff Roberson 				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
69822bf7d9aSJeff Roberson 					return (ke);
69922bf7d9aSJeff Roberson 			}
70022bf7d9aSJeff Roberson 		}
70122bf7d9aSJeff Roberson 	}
70222bf7d9aSJeff Roberson 	return (NULL);
70322bf7d9aSJeff Roberson }
70422bf7d9aSJeff Roberson 
70522bf7d9aSJeff Roberson static struct kse *
70680f86c9fSJeff Roberson kseq_steal(struct kseq *kseq, int stealidle)
70722bf7d9aSJeff Roberson {
70822bf7d9aSJeff Roberson 	struct kse *ke;
70922bf7d9aSJeff Roberson 
71080f86c9fSJeff Roberson 	/*
71180f86c9fSJeff Roberson 	 * Steal from next first to try to get a non-interactive task that
71280f86c9fSJeff Roberson 	 * may not have run for a while.
71380f86c9fSJeff Roberson 	 */
71422bf7d9aSJeff Roberson 	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
71522bf7d9aSJeff Roberson 		return (ke);
71680f86c9fSJeff Roberson 	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
71780f86c9fSJeff Roberson 		return (ke);
71880f86c9fSJeff Roberson 	if (stealidle)
71922bf7d9aSJeff Roberson 		return (runq_steal(&kseq->ksq_idle));
72080f86c9fSJeff Roberson 	return (NULL);
72122bf7d9aSJeff Roberson }
72280f86c9fSJeff Roberson 
72380f86c9fSJeff Roberson int
72480f86c9fSJeff Roberson kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
72580f86c9fSJeff Roberson {
72680f86c9fSJeff Roberson 	struct kseq_group *ksg;
72780f86c9fSJeff Roberson 	int cpu;
72880f86c9fSJeff Roberson 
729670c524fSJeff Roberson 	if (smp_started == 0)
730670c524fSJeff Roberson 		return (0);
73180f86c9fSJeff Roberson 	cpu = 0;
73280f86c9fSJeff Roberson 	ksg = kseq->ksq_group;
73380f86c9fSJeff Roberson 
73480f86c9fSJeff Roberson 	/*
735670c524fSJeff Roberson 	 * If there are any idle groups, give them our extra load.  The
736670c524fSJeff Roberson 	 * threshold at which we start to reassign kses has a large impact
737670c524fSJeff Roberson 	 * on the overall performance of the system.  Tuned too high and
738670c524fSJeff Roberson 	 * some CPUs may idle.  Too low and there will be excess migration
739d50c87deSOlivier Houchard 	 * and context switches.
740670c524fSJeff Roberson 	 */
741249e0beaSJeff Roberson 	if (ksg->ksg_load > (ksg->ksg_cpus * 2) && kseq_idle) {
74280f86c9fSJeff Roberson 		/*
74380f86c9fSJeff Roberson 		 * Multiple cpus could find this bit simultaneously
74480f86c9fSJeff Roberson 		 * but the race shouldn't be terrible.
74580f86c9fSJeff Roberson 		 */
74680f86c9fSJeff Roberson 		cpu = ffs(kseq_idle);
74780f86c9fSJeff Roberson 		if (cpu)
74880f86c9fSJeff Roberson 			atomic_clear_int(&kseq_idle, 1 << (cpu - 1));
74980f86c9fSJeff Roberson 	}
75080f86c9fSJeff Roberson 	/*
75180f86c9fSJeff Roberson 	 * If another cpu in this group has idled, assign a thread over
75280f86c9fSJeff Roberson 	 * to them after checking to see if there are idled groups.
75380f86c9fSJeff Roberson 	 */
75480f86c9fSJeff Roberson 	if (cpu == 0 && kseq->ksq_load > 1 && ksg->ksg_idlemask) {
75580f86c9fSJeff Roberson 		cpu = ffs(ksg->ksg_idlemask);
75680f86c9fSJeff Roberson 		if (cpu)
75780f86c9fSJeff Roberson 			ksg->ksg_idlemask &= ~(1 << (cpu - 1));
75880f86c9fSJeff Roberson 	}
75980f86c9fSJeff Roberson 	/*
76080f86c9fSJeff Roberson 	 * Now that we've found an idle CPU, migrate the thread.
76180f86c9fSJeff Roberson 	 */
76280f86c9fSJeff Roberson 	if (cpu) {
76380f86c9fSJeff Roberson 		cpu--;
76480f86c9fSJeff Roberson 		ke->ke_runq = NULL;
76580f86c9fSJeff Roberson 		kseq_notify(ke, cpu);
76680f86c9fSJeff Roberson 		return (1);
76780f86c9fSJeff Roberson 	}
76880f86c9fSJeff Roberson 	return (0);
76980f86c9fSJeff Roberson }
77080f86c9fSJeff Roberson 
77122bf7d9aSJeff Roberson #endif	/* SMP */
77222bf7d9aSJeff Roberson 
77322bf7d9aSJeff Roberson /*
77422bf7d9aSJeff Roberson  * Pick the highest priority task we have and return it.
7750c0a98b2SJeff Roberson  */
7760c0a98b2SJeff Roberson 
77722bf7d9aSJeff Roberson static struct kse *
77822bf7d9aSJeff Roberson kseq_choose(struct kseq *kseq)
7795d7ef00cSJeff Roberson {
7805d7ef00cSJeff Roberson 	struct kse *ke;
7815d7ef00cSJeff Roberson 	struct runq *swap;
7825d7ef00cSJeff Roberson 
783b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
78415dc847eSJeff Roberson 	swap = NULL;
785a8949de2SJeff Roberson 
78615dc847eSJeff Roberson 	for (;;) {
78715dc847eSJeff Roberson 		ke = runq_choose(kseq->ksq_curr);
78815dc847eSJeff Roberson 		if (ke == NULL) {
78915dc847eSJeff Roberson 			/*
790bf0acc27SJohn Baldwin 			 * We already swapped once and didn't get anywhere.
79115dc847eSJeff Roberson 			 */
79215dc847eSJeff Roberson 			if (swap)
79315dc847eSJeff Roberson 				break;
7945d7ef00cSJeff Roberson 			swap = kseq->ksq_curr;
7955d7ef00cSJeff Roberson 			kseq->ksq_curr = kseq->ksq_next;
7965d7ef00cSJeff Roberson 			kseq->ksq_next = swap;
79715dc847eSJeff Roberson 			continue;
798a8949de2SJeff Roberson 		}
79915dc847eSJeff Roberson 		/*
80015dc847eSJeff Roberson 		 * If we encounter a slice of 0 the kse is in a
80115dc847eSJeff Roberson 		 * TIMESHARE kse group and its nice was too far out
80215dc847eSJeff Roberson 		 * of the range that receives slices.
80315dc847eSJeff Roberson 		 */
80422bf7d9aSJeff Roberson 		if (ke->ke_slice == 0) {
80515dc847eSJeff Roberson 			runq_remove(ke->ke_runq, ke);
80615dc847eSJeff Roberson 			sched_slice(ke);
80715dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_next;
80815dc847eSJeff Roberson 			runq_add(ke->ke_runq, ke);
80915dc847eSJeff Roberson 			continue;
81015dc847eSJeff Roberson 		}
81115dc847eSJeff Roberson 		return (ke);
81215dc847eSJeff Roberson 	}
81315dc847eSJeff Roberson 
814a8949de2SJeff Roberson 	return (runq_choose(&kseq->ksq_idle));
815245f3abfSJeff Roberson }
8160a016a05SJeff Roberson 
8170a016a05SJeff Roberson static void
8180a016a05SJeff Roberson kseq_setup(struct kseq *kseq)
8190a016a05SJeff Roberson {
82015dc847eSJeff Roberson 	runq_init(&kseq->ksq_timeshare[0]);
82115dc847eSJeff Roberson 	runq_init(&kseq->ksq_timeshare[1]);
822a8949de2SJeff Roberson 	runq_init(&kseq->ksq_idle);
82315dc847eSJeff Roberson 	kseq->ksq_curr = &kseq->ksq_timeshare[0];
82415dc847eSJeff Roberson 	kseq->ksq_next = &kseq->ksq_timeshare[1];
8257cd650a9SJeff Roberson 	kseq->ksq_load = 0;
826ef1134c9SJeff Roberson 	kseq->ksq_load_timeshare = 0;
8270a016a05SJeff Roberson }
8280a016a05SJeff Roberson 
82935e6168fSJeff Roberson static void
83035e6168fSJeff Roberson sched_setup(void *dummy)
83135e6168fSJeff Roberson {
8320ec896fdSJeff Roberson #ifdef SMP
833cac77d04SJeff Roberson 	int balance_groups;
83435e6168fSJeff Roberson 	int i;
8350ec896fdSJeff Roberson #endif
83635e6168fSJeff Roberson 
837e493a5d9SJeff Roberson 	slice_min = (hz/100);	/* 10ms */
838e493a5d9SJeff Roberson 	slice_max = (hz/7);	/* ~140ms */
839e1f89c22SJeff Roberson 
840356500a3SJeff Roberson #ifdef SMP
841cac77d04SJeff Roberson 	balance_groups = 0;
84280f86c9fSJeff Roberson 	/*
84380f86c9fSJeff Roberson 	 * Initialize the kseqs.
84480f86c9fSJeff Roberson 	 */
845749d01b0SJeff Roberson 	for (i = 0; i < MAXCPU; i++) {
84680f86c9fSJeff Roberson 		struct kseq *ksq;
84780f86c9fSJeff Roberson 
84880f86c9fSJeff Roberson 		ksq = &kseq_cpu[i];
84980f86c9fSJeff Roberson 		ksq->ksq_assigned = NULL;
850749d01b0SJeff Roberson 		kseq_setup(&kseq_cpu[i]);
85180f86c9fSJeff Roberson 	}
85280f86c9fSJeff Roberson 	if (smp_topology == NULL) {
85380f86c9fSJeff Roberson 		struct kseq_group *ksg;
85480f86c9fSJeff Roberson 		struct kseq *ksq;
85580f86c9fSJeff Roberson 
85680f86c9fSJeff Roberson 		for (i = 0; i < MAXCPU; i++) {
85780f86c9fSJeff Roberson 			ksq = &kseq_cpu[i];
85880f86c9fSJeff Roberson 			ksg = &kseq_groups[i];
85980f86c9fSJeff Roberson 			/*
860dc03363dSJeff Roberson 			 * Setup a kseq group with one member.
86180f86c9fSJeff Roberson 			 */
86280f86c9fSJeff Roberson 			ksq->ksq_transferable = 0;
86380f86c9fSJeff Roberson 			ksq->ksq_group = ksg;
86480f86c9fSJeff Roberson 			ksg->ksg_cpus = 1;
86580f86c9fSJeff Roberson 			ksg->ksg_idlemask = 0;
86680f86c9fSJeff Roberson 			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
867cac77d04SJeff Roberson 			ksg->ksg_load = 0;
86880f86c9fSJeff Roberson 			ksg->ksg_transferable = 0;
86980f86c9fSJeff Roberson 			LIST_INIT(&ksg->ksg_members);
87080f86c9fSJeff Roberson 			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
871749d01b0SJeff Roberson 		}
872749d01b0SJeff Roberson 	} else {
87380f86c9fSJeff Roberson 		struct kseq_group *ksg;
87480f86c9fSJeff Roberson 		struct cpu_group *cg;
875749d01b0SJeff Roberson 		int j;
876749d01b0SJeff Roberson 
877749d01b0SJeff Roberson 		for (i = 0; i < smp_topology->ct_count; i++) {
878749d01b0SJeff Roberson 			cg = &smp_topology->ct_group[i];
87980f86c9fSJeff Roberson 			ksg = &kseq_groups[i];
88080f86c9fSJeff Roberson 			/*
88180f86c9fSJeff Roberson 			 * Initialize the group.
88280f86c9fSJeff Roberson 			 */
88380f86c9fSJeff Roberson 			ksg->ksg_idlemask = 0;
884cac77d04SJeff Roberson 			ksg->ksg_load = 0;
88580f86c9fSJeff Roberson 			ksg->ksg_transferable = 0;
88680f86c9fSJeff Roberson 			ksg->ksg_cpus = cg->cg_count;
88780f86c9fSJeff Roberson 			ksg->ksg_cpumask = cg->cg_mask;
88880f86c9fSJeff Roberson 			LIST_INIT(&ksg->ksg_members);
88980f86c9fSJeff Roberson 			/*
89080f86c9fSJeff Roberson 			 * Find all of the group members and add them.
89180f86c9fSJeff Roberson 			 */
89280f86c9fSJeff Roberson 			for (j = 0; j < MAXCPU; j++) {
89380f86c9fSJeff Roberson 				if ((cg->cg_mask & (1 << j)) != 0) {
89480f86c9fSJeff Roberson 					if (ksg->ksg_mask == 0)
89580f86c9fSJeff Roberson 						ksg->ksg_mask = 1 << j;
89680f86c9fSJeff Roberson 					kseq_cpu[j].ksq_transferable = 0;
89780f86c9fSJeff Roberson 					kseq_cpu[j].ksq_group = ksg;
89880f86c9fSJeff Roberson 					LIST_INSERT_HEAD(&ksg->ksg_members,
89980f86c9fSJeff Roberson 					    &kseq_cpu[j], ksq_siblings);
90080f86c9fSJeff Roberson 				}
90180f86c9fSJeff Roberson 			}
902cac77d04SJeff Roberson 			if (ksg->ksg_cpus > 1)
903cac77d04SJeff Roberson 				balance_groups = 1;
904749d01b0SJeff Roberson 		}
905cac77d04SJeff Roberson 		ksg_maxid = smp_topology->ct_count - 1;
906749d01b0SJeff Roberson 	}
907cac77d04SJeff Roberson 	/*
908cac77d04SJeff Roberson 	 * Stagger the group and global load balancer so they do not
909cac77d04SJeff Roberson 	 * interfere with each other.
910cac77d04SJeff Roberson 	 */
911dc03363dSJeff Roberson 	bal_tick = ticks + hz;
912cac77d04SJeff Roberson 	if (balance_groups)
913dc03363dSJeff Roberson 		gbal_tick = ticks + (hz / 2);
914749d01b0SJeff Roberson #else
915749d01b0SJeff Roberson 	kseq_setup(KSEQ_SELF());
916356500a3SJeff Roberson #endif
917749d01b0SJeff Roberson 	mtx_lock_spin(&sched_lock);
918155b9987SJeff Roberson 	kseq_load_add(KSEQ_SELF(), &kse0);
919749d01b0SJeff Roberson 	mtx_unlock_spin(&sched_lock);
92035e6168fSJeff Roberson }
92135e6168fSJeff Roberson 
92235e6168fSJeff Roberson /*
92335e6168fSJeff Roberson  * Scale the scheduling priority according to the "interactivity" of this
92435e6168fSJeff Roberson  * process.
92535e6168fSJeff Roberson  */
92615dc847eSJeff Roberson static void
92735e6168fSJeff Roberson sched_priority(struct ksegrp *kg)
92835e6168fSJeff Roberson {
92935e6168fSJeff Roberson 	int pri;
93035e6168fSJeff Roberson 
93135e6168fSJeff Roberson 	if (kg->kg_pri_class != PRI_TIMESHARE)
93215dc847eSJeff Roberson 		return;
93335e6168fSJeff Roberson 
93415dc847eSJeff Roberson 	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
935e1f89c22SJeff Roberson 	pri += SCHED_PRI_BASE;
936fa885116SJulian Elischer 	pri += kg->kg_proc->p_nice;
93735e6168fSJeff Roberson 
93835e6168fSJeff Roberson 	if (pri > PRI_MAX_TIMESHARE)
93935e6168fSJeff Roberson 		pri = PRI_MAX_TIMESHARE;
94035e6168fSJeff Roberson 	else if (pri < PRI_MIN_TIMESHARE)
94135e6168fSJeff Roberson 		pri = PRI_MIN_TIMESHARE;
94235e6168fSJeff Roberson 
94335e6168fSJeff Roberson 	kg->kg_user_pri = pri;
94435e6168fSJeff Roberson 
94515dc847eSJeff Roberson 	return;
94635e6168fSJeff Roberson }
94735e6168fSJeff Roberson 
94835e6168fSJeff Roberson /*
949245f3abfSJeff Roberson  * Calculate a time slice based on the properties of the kseg and the runq
950a8949de2SJeff Roberson  * that we're on.  This is only for PRI_TIMESHARE ksegrps.
95135e6168fSJeff Roberson  */
952245f3abfSJeff Roberson static void
953245f3abfSJeff Roberson sched_slice(struct kse *ke)
95435e6168fSJeff Roberson {
95515dc847eSJeff Roberson 	struct kseq *kseq;
956245f3abfSJeff Roberson 	struct ksegrp *kg;
95735e6168fSJeff Roberson 
958245f3abfSJeff Roberson 	kg = ke->ke_ksegrp;
95915dc847eSJeff Roberson 	kseq = KSEQ_CPU(ke->ke_cpu);
96035e6168fSJeff Roberson 
961245f3abfSJeff Roberson 	/*
962245f3abfSJeff Roberson 	 * Rationale:
963245f3abfSJeff Roberson 	 * KSEs in interactive ksegs get the minimum slice so that we
964245f3abfSJeff Roberson 	 * quickly notice if it abuses its advantage.
965245f3abfSJeff Roberson 	 *
966245f3abfSJeff Roberson 	 * KSEs in non-interactive ksegs are assigned a slice that is
967245f3abfSJeff Roberson 	 * based on the ksegs nice value relative to the least nice kseg
968245f3abfSJeff Roberson 	 * on the run queue for this cpu.
969245f3abfSJeff Roberson 	 *
970245f3abfSJeff Roberson 	 * If the KSE is less nice than all others it gets the maximum
971245f3abfSJeff Roberson 	 * slice and other KSEs will adjust their slice relative to
972245f3abfSJeff Roberson 	 * this when they first expire.
973245f3abfSJeff Roberson 	 *
974245f3abfSJeff Roberson 	 * There is 20 point window that starts relative to the least
975245f3abfSJeff Roberson 	 * nice kse on the run queue.  Slice size is determined by
976245f3abfSJeff Roberson 	 * the kse distance from the last nice ksegrp.
977245f3abfSJeff Roberson 	 *
9787d1a81b4SJeff Roberson 	 * If the kse is outside of the window it will get no slice
9797d1a81b4SJeff Roberson 	 * and will be reevaluated each time it is selected on the
9807d1a81b4SJeff Roberson 	 * run queue.  The exception to this is nice 0 ksegs when
9817d1a81b4SJeff Roberson 	 * a nice -20 is running.  They are always granted a minimum
9827d1a81b4SJeff Roberson 	 * slice.
983245f3abfSJeff Roberson 	 */
98415dc847eSJeff Roberson 	if (!SCHED_INTERACTIVE(kg)) {
985245f3abfSJeff Roberson 		int nice;
986245f3abfSJeff Roberson 
987fa885116SJulian Elischer 		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
988ef1134c9SJeff Roberson 		if (kseq->ksq_load_timeshare == 0 ||
989fa885116SJulian Elischer 		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
990245f3abfSJeff Roberson 			ke->ke_slice = SCHED_SLICE_MAX;
9917d1a81b4SJeff Roberson 		else if (nice <= SCHED_SLICE_NTHRESH)
992245f3abfSJeff Roberson 			ke->ke_slice = SCHED_SLICE_NICE(nice);
993fa885116SJulian Elischer 		else if (kg->kg_proc->p_nice == 0)
9947d1a81b4SJeff Roberson 			ke->ke_slice = SCHED_SLICE_MIN;
995245f3abfSJeff Roberson 		else
996245f3abfSJeff Roberson 			ke->ke_slice = 0;
997245f3abfSJeff Roberson 	} else
9989b5f6f62SJeff Roberson 		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
99935e6168fSJeff Roberson 
100015dc847eSJeff Roberson 	CTR6(KTR_ULE,
100115dc847eSJeff Roberson 	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
1002fa885116SJulian Elischer 	    ke, ke->ke_slice, kg->kg_proc->p_nice, kseq->ksq_nicemin,
1003ef1134c9SJeff Roberson 	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
100415dc847eSJeff Roberson 
1005245f3abfSJeff Roberson 	return;
100635e6168fSJeff Roberson }
100735e6168fSJeff Roberson 
1008d322132cSJeff Roberson /*
1009d322132cSJeff Roberson  * This routine enforces a maximum limit on the amount of scheduling history
1010d322132cSJeff Roberson  * kept.  It is called after either the slptime or runtime is adjusted.
1011d322132cSJeff Roberson  * This routine will not operate correctly when slp or run times have been
1012d322132cSJeff Roberson  * adjusted to more than double their maximum.
1013d322132cSJeff Roberson  */
10144b60e324SJeff Roberson static void
10154b60e324SJeff Roberson sched_interact_update(struct ksegrp *kg)
10164b60e324SJeff Roberson {
1017d322132cSJeff Roberson 	int sum;
10183f741ca1SJeff Roberson 
1019d322132cSJeff Roberson 	sum = kg->kg_runtime + kg->kg_slptime;
1020d322132cSJeff Roberson 	if (sum < SCHED_SLP_RUN_MAX)
1021d322132cSJeff Roberson 		return;
1022d322132cSJeff Roberson 	/*
1023d322132cSJeff Roberson 	 * If we have exceeded by more than 1/5th then the algorithm below
1024d322132cSJeff Roberson 	 * will not bring us back into range.  Dividing by two here forces
1025d322132cSJeff Roberson 	 * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1026d322132cSJeff Roberson 	 */
102737a35e4aSJeff Roberson 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1028d322132cSJeff Roberson 		kg->kg_runtime /= 2;
1029d322132cSJeff Roberson 		kg->kg_slptime /= 2;
1030d322132cSJeff Roberson 		return;
1031d322132cSJeff Roberson 	}
1032d322132cSJeff Roberson 	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1033d322132cSJeff Roberson 	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1034d322132cSJeff Roberson }
1035d322132cSJeff Roberson 
1036d322132cSJeff Roberson static void
1037d322132cSJeff Roberson sched_interact_fork(struct ksegrp *kg)
1038d322132cSJeff Roberson {
1039d322132cSJeff Roberson 	int ratio;
1040d322132cSJeff Roberson 	int sum;
1041d322132cSJeff Roberson 
1042d322132cSJeff Roberson 	sum = kg->kg_runtime + kg->kg_slptime;
1043d322132cSJeff Roberson 	if (sum > SCHED_SLP_RUN_FORK) {
1044d322132cSJeff Roberson 		ratio = sum / SCHED_SLP_RUN_FORK;
1045d322132cSJeff Roberson 		kg->kg_runtime /= ratio;
1046d322132cSJeff Roberson 		kg->kg_slptime /= ratio;
10474b60e324SJeff Roberson 	}
10484b60e324SJeff Roberson }
10494b60e324SJeff Roberson 
1050e1f89c22SJeff Roberson static int
1051e1f89c22SJeff Roberson sched_interact_score(struct ksegrp *kg)
1052e1f89c22SJeff Roberson {
1053210491d3SJeff Roberson 	int div;
1054e1f89c22SJeff Roberson 
1055e1f89c22SJeff Roberson 	if (kg->kg_runtime > kg->kg_slptime) {
1056210491d3SJeff Roberson 		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1057210491d3SJeff Roberson 		return (SCHED_INTERACT_HALF +
1058210491d3SJeff Roberson 		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1059210491d3SJeff Roberson 	} if (kg->kg_slptime > kg->kg_runtime) {
1060210491d3SJeff Roberson 		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1061210491d3SJeff Roberson 		return (kg->kg_runtime / div);
1062e1f89c22SJeff Roberson 	}
1063e1f89c22SJeff Roberson 
1064210491d3SJeff Roberson 	/*
1065210491d3SJeff Roberson 	 * This can happen if slptime and runtime are 0.
1066210491d3SJeff Roberson 	 */
1067210491d3SJeff Roberson 	return (0);
1068e1f89c22SJeff Roberson 
1069e1f89c22SJeff Roberson }
1070e1f89c22SJeff Roberson 
107115dc847eSJeff Roberson /*
107215dc847eSJeff Roberson  * This is only somewhat accurate since given many processes of the same
107315dc847eSJeff Roberson  * priority they will switch when their slices run out, which will be
107415dc847eSJeff Roberson  * at most SCHED_SLICE_MAX.
107515dc847eSJeff Roberson  */
107635e6168fSJeff Roberson int
107735e6168fSJeff Roberson sched_rr_interval(void)
107835e6168fSJeff Roberson {
107935e6168fSJeff Roberson 	return (SCHED_SLICE_MAX);
108035e6168fSJeff Roberson }
108135e6168fSJeff Roberson 
108222bf7d9aSJeff Roberson static void
108335e6168fSJeff Roberson sched_pctcpu_update(struct kse *ke)
108435e6168fSJeff Roberson {
108535e6168fSJeff Roberson 	/*
108635e6168fSJeff Roberson 	 * Adjust counters and watermark for pctcpu calc.
1087210491d3SJeff Roberson 	 */
108881de51bfSJeff Roberson 	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1089210491d3SJeff Roberson 		/*
109081de51bfSJeff Roberson 		 * Shift the tick count out so that the divide doesn't
109181de51bfSJeff Roberson 		 * round away our results.
109265c8760dSJeff Roberson 		 */
109365c8760dSJeff Roberson 		ke->ke_ticks <<= 10;
109481de51bfSJeff Roberson 		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
109535e6168fSJeff Roberson 			    SCHED_CPU_TICKS;
109665c8760dSJeff Roberson 		ke->ke_ticks >>= 10;
109781de51bfSJeff Roberson 	} else
109881de51bfSJeff Roberson 		ke->ke_ticks = 0;
109935e6168fSJeff Roberson 	ke->ke_ltick = ticks;
110035e6168fSJeff Roberson 	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
110135e6168fSJeff Roberson }
110235e6168fSJeff Roberson 
110335e6168fSJeff Roberson void
110435e6168fSJeff Roberson sched_prio(struct thread *td, u_char prio)
110535e6168fSJeff Roberson {
11063f741ca1SJeff Roberson 	struct kse *ke;
110735e6168fSJeff Roberson 
11083f741ca1SJeff Roberson 	ke = td->td_kse;
110935e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
111035e6168fSJeff Roberson 	if (TD_ON_RUNQ(td)) {
11113f741ca1SJeff Roberson 		/*
11123f741ca1SJeff Roberson 		 * If the priority has been elevated due to priority
11133f741ca1SJeff Roberson 		 * propagation, we may have to move ourselves to a new
11143f741ca1SJeff Roberson 		 * queue.  We still call adjustrunqueue below in case kse
11153f741ca1SJeff Roberson 		 * needs to fix things up.
11163f741ca1SJeff Roberson 		 */
1117769a3635SJeff Roberson 		if (prio < td->td_priority && ke &&
1118769a3635SJeff Roberson 		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
111922bf7d9aSJeff Roberson 		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
11203f741ca1SJeff Roberson 			runq_remove(ke->ke_runq, ke);
11213f741ca1SJeff Roberson 			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
11223f741ca1SJeff Roberson 			runq_add(ke->ke_runq, ke);
112335e6168fSJeff Roberson 		}
11243f741ca1SJeff Roberson 		adjustrunqueue(td, prio);
11253f741ca1SJeff Roberson 	} else
11263f741ca1SJeff Roberson 		td->td_priority = prio;
112735e6168fSJeff Roberson }
112835e6168fSJeff Roberson 
112935e6168fSJeff Roberson void
1130bf0acc27SJohn Baldwin sched_switch(struct thread *td, struct thread *newtd)
113135e6168fSJeff Roberson {
113235e6168fSJeff Roberson 	struct kse *ke;
113335e6168fSJeff Roberson 
113435e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
113535e6168fSJeff Roberson 
113635e6168fSJeff Roberson 	ke = td->td_kse;
113735e6168fSJeff Roberson 
113835e6168fSJeff Roberson 	td->td_last_kse = ke;
1139060563ecSJulian Elischer         td->td_lastcpu = td->td_oncpu;
1140060563ecSJulian Elischer 	td->td_oncpu = NOCPU;
11410c0b25aeSJohn Baldwin 	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_OWEPREEMPT);
114235e6168fSJeff Roberson 
1143b11fdad0SJeff Roberson 	/*
1144b11fdad0SJeff Roberson 	 * If the KSE has been assigned it may be in the process of switching
1145b11fdad0SJeff Roberson 	 * to the new cpu.  This is the case in sched_bind().
1146b11fdad0SJeff Roberson 	 */
1147b11fdad0SJeff Roberson 	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1148bf0acc27SJohn Baldwin 		if (td == PCPU_GET(idlethread))
1149bf0acc27SJohn Baldwin 			TD_SET_CAN_RUN(td);
1150bf0acc27SJohn Baldwin 		else if (TD_IS_RUNNING(td)) {
1151155b9987SJeff Roberson 			kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1152ab2baa72SDavid Xu 			setrunqueue(td);
11530e0f6266SJeff Roberson 		} else {
115433916c36SJeff Roberson 			if (ke->ke_runq) {
1155155b9987SJeff Roberson 				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
115633916c36SJeff Roberson 			} else if ((td->td_flags & TDF_IDLETD) == 0)
11572c3490b1SMarcel Moolenaar 				kdb_backtrace();
115835e6168fSJeff Roberson 			/*
115935e6168fSJeff Roberson 			 * We will not be on the run queue. So we must be
116035e6168fSJeff Roberson 			 * sleeping or similar.
116135e6168fSJeff Roberson 			 */
11620e2a4d3aSDavid Xu 			if (td->td_proc->p_flag & P_SA)
116335e6168fSJeff Roberson 				kse_reassign(ke);
11640e0f6266SJeff Roberson 		}
1165b11fdad0SJeff Roberson 	}
1166bf0acc27SJohn Baldwin 	if (newtd == NULL)
1167ae53b483SJeff Roberson 		newtd = choosethread();
1168bf0acc27SJohn Baldwin 	else
1169bf0acc27SJohn Baldwin 		kseq_load_add(KSEQ_SELF(), newtd->td_kse);
1170ae53b483SJeff Roberson 	if (td != newtd)
1171ae53b483SJeff Roberson 		cpu_switch(td, newtd);
1172ae53b483SJeff Roberson 	sched_lock.mtx_lock = (uintptr_t)td;
117335e6168fSJeff Roberson 
1174060563ecSJulian Elischer 	td->td_oncpu = PCPU_GET(cpuid);
117535e6168fSJeff Roberson }
117635e6168fSJeff Roberson 
117735e6168fSJeff Roberson void
1178fa885116SJulian Elischer sched_nice(struct proc *p, int nice)
117935e6168fSJeff Roberson {
1180fa885116SJulian Elischer 	struct ksegrp *kg;
118115dc847eSJeff Roberson 	struct kse *ke;
118235e6168fSJeff Roberson 	struct thread *td;
118315dc847eSJeff Roberson 	struct kseq *kseq;
118435e6168fSJeff Roberson 
1185fa885116SJulian Elischer 	PROC_LOCK_ASSERT(p, MA_OWNED);
11860b5318c8SJohn Baldwin 	mtx_assert(&sched_lock, MA_OWNED);
118715dc847eSJeff Roberson 	/*
118815dc847eSJeff Roberson 	 * We need to adjust the nice counts for running KSEs.
118915dc847eSJeff Roberson 	 */
1190fa885116SJulian Elischer 	FOREACH_KSEGRP_IN_PROC(p, kg) {
1191fa885116SJulian Elischer 		if (kg->kg_pri_class == PRI_TIMESHARE) {
119215dc847eSJeff Roberson 			FOREACH_KSE_IN_GROUP(kg, ke) {
1193d07ac847SJeff Roberson 				if (ke->ke_runq == NULL)
119415dc847eSJeff Roberson 					continue;
119515dc847eSJeff Roberson 				kseq = KSEQ_CPU(ke->ke_cpu);
1196fa885116SJulian Elischer 				kseq_nice_rem(kseq, p->p_nice);
119715dc847eSJeff Roberson 				kseq_nice_add(kseq, nice);
119815dc847eSJeff Roberson 			}
1199fa885116SJulian Elischer 		}
1200fa885116SJulian Elischer 	}
1201fa885116SJulian Elischer 	p->p_nice = nice;
1202fa885116SJulian Elischer 	FOREACH_KSEGRP_IN_PROC(p, kg) {
120335e6168fSJeff Roberson 		sched_priority(kg);
120415dc847eSJeff Roberson 		FOREACH_THREAD_IN_GROUP(kg, td)
12054a338afdSJulian Elischer 			td->td_flags |= TDF_NEEDRESCHED;
120635e6168fSJeff Roberson 	}
1207fa885116SJulian Elischer }
120835e6168fSJeff Roberson 
120935e6168fSJeff Roberson void
121044f3b092SJohn Baldwin sched_sleep(struct thread *td)
121135e6168fSJeff Roberson {
121235e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
121335e6168fSJeff Roberson 
121435e6168fSJeff Roberson 	td->td_slptime = ticks;
121544f3b092SJohn Baldwin 	td->td_base_pri = td->td_priority;
121635e6168fSJeff Roberson 
121715dc847eSJeff Roberson 	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
121815dc847eSJeff Roberson 	    td->td_kse, td->td_slptime);
121935e6168fSJeff Roberson }
122035e6168fSJeff Roberson 
122135e6168fSJeff Roberson void
122235e6168fSJeff Roberson sched_wakeup(struct thread *td)
122335e6168fSJeff Roberson {
122435e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
122535e6168fSJeff Roberson 
122635e6168fSJeff Roberson 	/*
122735e6168fSJeff Roberson 	 * Let the kseg know how long we slept for.  This is because process
122835e6168fSJeff Roberson 	 * interactivity behavior is modeled in the kseg.
122935e6168fSJeff Roberson 	 */
123035e6168fSJeff Roberson 	if (td->td_slptime) {
1231f1e8dc4aSJeff Roberson 		struct ksegrp *kg;
123215dc847eSJeff Roberson 		int hzticks;
1233f1e8dc4aSJeff Roberson 
1234f1e8dc4aSJeff Roberson 		kg = td->td_ksegrp;
1235d322132cSJeff Roberson 		hzticks = (ticks - td->td_slptime) << 10;
1236d322132cSJeff Roberson 		if (hzticks >= SCHED_SLP_RUN_MAX) {
1237d322132cSJeff Roberson 			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1238d322132cSJeff Roberson 			kg->kg_runtime = 1;
1239d322132cSJeff Roberson 		} else {
1240d322132cSJeff Roberson 			kg->kg_slptime += hzticks;
12414b60e324SJeff Roberson 			sched_interact_update(kg);
1242d322132cSJeff Roberson 		}
1243f1e8dc4aSJeff Roberson 		sched_priority(kg);
12444b60e324SJeff Roberson 		if (td->td_kse)
12454b60e324SJeff Roberson 			sched_slice(td->td_kse);
124615dc847eSJeff Roberson 		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
124715dc847eSJeff Roberson 		    td->td_kse, hzticks);
124835e6168fSJeff Roberson 		td->td_slptime = 0;
1249f1e8dc4aSJeff Roberson 	}
125035e6168fSJeff Roberson 	setrunqueue(td);
125135e6168fSJeff Roberson }
125235e6168fSJeff Roberson 
125335e6168fSJeff Roberson /*
125435e6168fSJeff Roberson  * Penalize the parent for creating a new child and initialize the child's
125535e6168fSJeff Roberson  * priority.
125635e6168fSJeff Roberson  */
125735e6168fSJeff Roberson void
125815dc847eSJeff Roberson sched_fork(struct proc *p, struct proc *p1)
125935e6168fSJeff Roberson {
126035e6168fSJeff Roberson 
126135e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
126235e6168fSJeff Roberson 
1263fa885116SJulian Elischer 	p1->p_nice = p->p_nice;
126415dc847eSJeff Roberson 	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
126515dc847eSJeff Roberson 	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
126615dc847eSJeff Roberson 	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
126715dc847eSJeff Roberson }
126815dc847eSJeff Roberson 
126915dc847eSJeff Roberson void
127015dc847eSJeff Roberson sched_fork_kse(struct kse *ke, struct kse *child)
127115dc847eSJeff Roberson {
12722056d0a1SJohn Baldwin 
1273210491d3SJeff Roberson 	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1274093c05e3SJeff Roberson 	child->ke_cpu = ke->ke_cpu;
127515dc847eSJeff Roberson 	child->ke_runq = NULL;
127615dc847eSJeff Roberson 
1277736c97c7SJeff Roberson 	/* Grab our parents cpu estimation information. */
1278736c97c7SJeff Roberson 	child->ke_ticks = ke->ke_ticks;
1279736c97c7SJeff Roberson 	child->ke_ltick = ke->ke_ltick;
1280736c97c7SJeff Roberson 	child->ke_ftick = ke->ke_ftick;
128115dc847eSJeff Roberson }
128215dc847eSJeff Roberson 
128315dc847eSJeff Roberson void
128415dc847eSJeff Roberson sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
128515dc847eSJeff Roberson {
12862056d0a1SJohn Baldwin 	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1287210491d3SJeff Roberson 
1288d322132cSJeff Roberson 	child->kg_slptime = kg->kg_slptime;
1289d322132cSJeff Roberson 	child->kg_runtime = kg->kg_runtime;
1290d322132cSJeff Roberson 	child->kg_user_pri = kg->kg_user_pri;
1291d322132cSJeff Roberson 	sched_interact_fork(child);
12924b60e324SJeff Roberson 	kg->kg_runtime += tickincr << 10;
12934b60e324SJeff Roberson 	sched_interact_update(kg);
129415dc847eSJeff Roberson 
1295d322132cSJeff Roberson 	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1296d322132cSJeff Roberson 	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1297d322132cSJeff Roberson 	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1298c9f25d8fSJeff Roberson }
1299c9f25d8fSJeff Roberson 
130015dc847eSJeff Roberson void
130115dc847eSJeff Roberson sched_fork_thread(struct thread *td, struct thread *child)
130215dc847eSJeff Roberson {
130315dc847eSJeff Roberson }
130415dc847eSJeff Roberson 
130515dc847eSJeff Roberson void
130615dc847eSJeff Roberson sched_class(struct ksegrp *kg, int class)
130715dc847eSJeff Roberson {
130815dc847eSJeff Roberson 	struct kseq *kseq;
130915dc847eSJeff Roberson 	struct kse *ke;
1310ef1134c9SJeff Roberson 	int nclass;
1311ef1134c9SJeff Roberson 	int oclass;
131215dc847eSJeff Roberson 
13132056d0a1SJohn Baldwin 	mtx_assert(&sched_lock, MA_OWNED);
131415dc847eSJeff Roberson 	if (kg->kg_pri_class == class)
131515dc847eSJeff Roberson 		return;
131615dc847eSJeff Roberson 
1317ef1134c9SJeff Roberson 	nclass = PRI_BASE(class);
1318ef1134c9SJeff Roberson 	oclass = PRI_BASE(kg->kg_pri_class);
131915dc847eSJeff Roberson 	FOREACH_KSE_IN_GROUP(kg, ke) {
132015dc847eSJeff Roberson 		if (ke->ke_state != KES_ONRUNQ &&
132115dc847eSJeff Roberson 		    ke->ke_state != KES_THREAD)
132215dc847eSJeff Roberson 			continue;
132315dc847eSJeff Roberson 		kseq = KSEQ_CPU(ke->ke_cpu);
132415dc847eSJeff Roberson 
1325ef1134c9SJeff Roberson #ifdef SMP
1326155b9987SJeff Roberson 		/*
1327155b9987SJeff Roberson 		 * On SMP if we're on the RUNQ we must adjust the transferable
1328155b9987SJeff Roberson 		 * count because could be changing to or from an interrupt
1329155b9987SJeff Roberson 		 * class.
1330155b9987SJeff Roberson 		 */
1331155b9987SJeff Roberson 		if (ke->ke_state == KES_ONRUNQ) {
133280f86c9fSJeff Roberson 			if (KSE_CAN_MIGRATE(ke, oclass)) {
133380f86c9fSJeff Roberson 				kseq->ksq_transferable--;
133480f86c9fSJeff Roberson 				kseq->ksq_group->ksg_transferable--;
133580f86c9fSJeff Roberson 			}
133680f86c9fSJeff Roberson 			if (KSE_CAN_MIGRATE(ke, nclass)) {
133780f86c9fSJeff Roberson 				kseq->ksq_transferable++;
133880f86c9fSJeff Roberson 				kseq->ksq_group->ksg_transferable++;
133980f86c9fSJeff Roberson 			}
1340155b9987SJeff Roberson 		}
1341ef1134c9SJeff Roberson #endif
1342155b9987SJeff Roberson 		if (oclass == PRI_TIMESHARE) {
1343ef1134c9SJeff Roberson 			kseq->ksq_load_timeshare--;
1344fa885116SJulian Elischer 			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1345155b9987SJeff Roberson 		}
1346155b9987SJeff Roberson 		if (nclass == PRI_TIMESHARE) {
1347155b9987SJeff Roberson 			kseq->ksq_load_timeshare++;
1348fa885116SJulian Elischer 			kseq_nice_add(kseq, kg->kg_proc->p_nice);
134915dc847eSJeff Roberson 		}
1350155b9987SJeff Roberson 	}
135115dc847eSJeff Roberson 
135215dc847eSJeff Roberson 	kg->kg_pri_class = class;
135335e6168fSJeff Roberson }
135435e6168fSJeff Roberson 
135535e6168fSJeff Roberson /*
135635e6168fSJeff Roberson  * Return some of the child's priority and interactivity to the parent.
135735e6168fSJeff Roberson  */
135835e6168fSJeff Roberson void
135915dc847eSJeff Roberson sched_exit(struct proc *p, struct proc *child)
136035e6168fSJeff Roberson {
136135e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
1362141ad61cSJeff Roberson 	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1363210491d3SJeff Roberson 	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1364141ad61cSJeff Roberson }
1365141ad61cSJeff Roberson 
1366141ad61cSJeff Roberson void
1367141ad61cSJeff Roberson sched_exit_kse(struct kse *ke, struct kse *child)
1368141ad61cSJeff Roberson {
1369155b9987SJeff Roberson 	kseq_load_rem(KSEQ_CPU(child->ke_cpu), child);
1370141ad61cSJeff Roberson }
1371141ad61cSJeff Roberson 
1372141ad61cSJeff Roberson void
1373141ad61cSJeff Roberson sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1374141ad61cSJeff Roberson {
13754b60e324SJeff Roberson 	/* kg->kg_slptime += child->kg_slptime; */
1376210491d3SJeff Roberson 	kg->kg_runtime += child->kg_runtime;
13774b60e324SJeff Roberson 	sched_interact_update(kg);
1378141ad61cSJeff Roberson }
1379141ad61cSJeff Roberson 
1380141ad61cSJeff Roberson void
1381141ad61cSJeff Roberson sched_exit_thread(struct thread *td, struct thread *child)
1382141ad61cSJeff Roberson {
138335e6168fSJeff Roberson }
138435e6168fSJeff Roberson 
138535e6168fSJeff Roberson void
13867cf90fb3SJeff Roberson sched_clock(struct thread *td)
138735e6168fSJeff Roberson {
138835e6168fSJeff Roberson 	struct kseq *kseq;
13890a016a05SJeff Roberson 	struct ksegrp *kg;
13907cf90fb3SJeff Roberson 	struct kse *ke;
139135e6168fSJeff Roberson 
1392dc03363dSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
1393dc03363dSJeff Roberson #ifdef SMP
1394dc03363dSJeff Roberson 	if (ticks == bal_tick)
1395dc03363dSJeff Roberson 		sched_balance();
1396dc03363dSJeff Roberson 	if (ticks == gbal_tick)
1397dc03363dSJeff Roberson 		sched_balance_groups();
1398dc03363dSJeff Roberson #endif
139915dc847eSJeff Roberson 	/*
140015dc847eSJeff Roberson 	 * sched_setup() apparently happens prior to stathz being set.  We
140115dc847eSJeff Roberson 	 * need to resolve the timers earlier in the boot so we can avoid
140215dc847eSJeff Roberson 	 * calculating this here.
140315dc847eSJeff Roberson 	 */
140415dc847eSJeff Roberson 	if (realstathz == 0) {
140515dc847eSJeff Roberson 		realstathz = stathz ? stathz : hz;
140615dc847eSJeff Roberson 		tickincr = hz / realstathz;
140715dc847eSJeff Roberson 		/*
140815dc847eSJeff Roberson 		 * XXX This does not work for values of stathz that are much
140915dc847eSJeff Roberson 		 * larger than hz.
141015dc847eSJeff Roberson 		 */
141115dc847eSJeff Roberson 		if (tickincr == 0)
141215dc847eSJeff Roberson 			tickincr = 1;
141315dc847eSJeff Roberson 	}
141435e6168fSJeff Roberson 
14157cf90fb3SJeff Roberson 	ke = td->td_kse;
141615dc847eSJeff Roberson 	kg = ke->ke_ksegrp;
141735e6168fSJeff Roberson 
14180a016a05SJeff Roberson 	/* Adjust ticks for pctcpu */
141965c8760dSJeff Roberson 	ke->ke_ticks++;
1420d465fb95SJeff Roberson 	ke->ke_ltick = ticks;
1421a8949de2SJeff Roberson 
1422d465fb95SJeff Roberson 	/* Go up to one second beyond our max and then trim back down */
1423d465fb95SJeff Roberson 	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1424d465fb95SJeff Roberson 		sched_pctcpu_update(ke);
1425d465fb95SJeff Roberson 
142643fdafb1SJulian Elischer 	if (td->td_flags & TDF_IDLETD)
142735e6168fSJeff Roberson 		return;
14280a016a05SJeff Roberson 
142915dc847eSJeff Roberson 	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
143015dc847eSJeff Roberson 	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
14313f741ca1SJeff Roberson 	/*
1432a8949de2SJeff Roberson 	 * We only do slicing code for TIMESHARE ksegrps.
1433a8949de2SJeff Roberson 	 */
1434a8949de2SJeff Roberson 	if (kg->kg_pri_class != PRI_TIMESHARE)
1435a8949de2SJeff Roberson 		return;
1436a8949de2SJeff Roberson 	/*
143715dc847eSJeff Roberson 	 * We used a tick charge it to the ksegrp so that we can compute our
143815dc847eSJeff Roberson 	 * interactivity.
143915dc847eSJeff Roberson 	 */
144015dc847eSJeff Roberson 	kg->kg_runtime += tickincr << 10;
14414b60e324SJeff Roberson 	sched_interact_update(kg);
1442407b0157SJeff Roberson 
144335e6168fSJeff Roberson 	/*
144435e6168fSJeff Roberson 	 * We used up one time slice.
144535e6168fSJeff Roberson 	 */
1446093c05e3SJeff Roberson 	if (--ke->ke_slice > 0)
144715dc847eSJeff Roberson 		return;
144835e6168fSJeff Roberson 	/*
144915dc847eSJeff Roberson 	 * We're out of time, recompute priorities and requeue.
145035e6168fSJeff Roberson 	 */
1451093c05e3SJeff Roberson 	kseq = KSEQ_SELF();
1452155b9987SJeff Roberson 	kseq_load_rem(kseq, ke);
1453e1f89c22SJeff Roberson 	sched_priority(kg);
145415dc847eSJeff Roberson 	sched_slice(ke);
145515dc847eSJeff Roberson 	if (SCHED_CURR(kg, ke))
145615dc847eSJeff Roberson 		ke->ke_runq = kseq->ksq_curr;
145715dc847eSJeff Roberson 	else
145815dc847eSJeff Roberson 		ke->ke_runq = kseq->ksq_next;
1459155b9987SJeff Roberson 	kseq_load_add(kseq, ke);
14604a338afdSJulian Elischer 	td->td_flags |= TDF_NEEDRESCHED;
146135e6168fSJeff Roberson }
146235e6168fSJeff Roberson 
146335e6168fSJeff Roberson int
146435e6168fSJeff Roberson sched_runnable(void)
146535e6168fSJeff Roberson {
146635e6168fSJeff Roberson 	struct kseq *kseq;
1467b90816f1SJeff Roberson 	int load;
146835e6168fSJeff Roberson 
1469b90816f1SJeff Roberson 	load = 1;
1470b90816f1SJeff Roberson 
14710a016a05SJeff Roberson 	kseq = KSEQ_SELF();
147222bf7d9aSJeff Roberson #ifdef SMP
147346f8b265SJeff Roberson 	if (kseq->ksq_assigned) {
147446f8b265SJeff Roberson 		mtx_lock_spin(&sched_lock);
147522bf7d9aSJeff Roberson 		kseq_assign(kseq);
147646f8b265SJeff Roberson 		mtx_unlock_spin(&sched_lock);
147746f8b265SJeff Roberson 	}
147822bf7d9aSJeff Roberson #endif
14793f741ca1SJeff Roberson 	if ((curthread->td_flags & TDF_IDLETD) != 0) {
14803f741ca1SJeff Roberson 		if (kseq->ksq_load > 0)
14813f741ca1SJeff Roberson 			goto out;
14823f741ca1SJeff Roberson 	} else
14833f741ca1SJeff Roberson 		if (kseq->ksq_load - 1 > 0)
1484b90816f1SJeff Roberson 			goto out;
1485b90816f1SJeff Roberson 	load = 0;
1486b90816f1SJeff Roberson out:
1487b90816f1SJeff Roberson 	return (load);
148835e6168fSJeff Roberson }
148935e6168fSJeff Roberson 
149035e6168fSJeff Roberson void
149135e6168fSJeff Roberson sched_userret(struct thread *td)
149235e6168fSJeff Roberson {
149335e6168fSJeff Roberson 	struct ksegrp *kg;
149435e6168fSJeff Roberson 
149535e6168fSJeff Roberson 	kg = td->td_ksegrp;
149635e6168fSJeff Roberson 
149735e6168fSJeff Roberson 	if (td->td_priority != kg->kg_user_pri) {
149835e6168fSJeff Roberson 		mtx_lock_spin(&sched_lock);
149935e6168fSJeff Roberson 		td->td_priority = kg->kg_user_pri;
150035e6168fSJeff Roberson 		mtx_unlock_spin(&sched_lock);
150135e6168fSJeff Roberson 	}
150235e6168fSJeff Roberson }
150335e6168fSJeff Roberson 
1504c9f25d8fSJeff Roberson struct kse *
1505c9f25d8fSJeff Roberson sched_choose(void)
1506c9f25d8fSJeff Roberson {
15070a016a05SJeff Roberson 	struct kseq *kseq;
1508c9f25d8fSJeff Roberson 	struct kse *ke;
150915dc847eSJeff Roberson 
1510b90816f1SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
151122bf7d9aSJeff Roberson 	kseq = KSEQ_SELF();
151215dc847eSJeff Roberson #ifdef SMP
151380f86c9fSJeff Roberson restart:
151422bf7d9aSJeff Roberson 	if (kseq->ksq_assigned)
151522bf7d9aSJeff Roberson 		kseq_assign(kseq);
151615dc847eSJeff Roberson #endif
151722bf7d9aSJeff Roberson 	ke = kseq_choose(kseq);
151835e6168fSJeff Roberson 	if (ke) {
151922bf7d9aSJeff Roberson #ifdef SMP
152022bf7d9aSJeff Roberson 		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
152180f86c9fSJeff Roberson 			if (kseq_idled(kseq) == 0)
152280f86c9fSJeff Roberson 				goto restart;
152322bf7d9aSJeff Roberson #endif
1524155b9987SJeff Roberson 		kseq_runq_rem(kseq, ke);
152535e6168fSJeff Roberson 		ke->ke_state = KES_THREAD;
1526245f3abfSJeff Roberson 
152715dc847eSJeff Roberson 		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
152815dc847eSJeff Roberson 			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
152915dc847eSJeff Roberson 			    ke, ke->ke_runq, ke->ke_slice,
153015dc847eSJeff Roberson 			    ke->ke_thread->td_priority);
1531245f3abfSJeff Roberson 		}
153215dc847eSJeff Roberson 		return (ke);
153335e6168fSJeff Roberson 	}
1534c9f25d8fSJeff Roberson #ifdef SMP
153580f86c9fSJeff Roberson 	if (kseq_idled(kseq) == 0)
153680f86c9fSJeff Roberson 		goto restart;
1537c9f25d8fSJeff Roberson #endif
153815dc847eSJeff Roberson 	return (NULL);
153935e6168fSJeff Roberson }
154035e6168fSJeff Roberson 
154135e6168fSJeff Roberson void
15427cf90fb3SJeff Roberson sched_add(struct thread *td)
154335e6168fSJeff Roberson {
154463fcce68SJohn Baldwin 
154563fcce68SJohn Baldwin 	sched_add_internal(td, 1);
154663fcce68SJohn Baldwin }
154763fcce68SJohn Baldwin 
154863fcce68SJohn Baldwin static void
154963fcce68SJohn Baldwin sched_add_internal(struct thread *td, int preemptive)
155063fcce68SJohn Baldwin {
1551c9f25d8fSJeff Roberson 	struct kseq *kseq;
155215dc847eSJeff Roberson 	struct ksegrp *kg;
15537cf90fb3SJeff Roberson 	struct kse *ke;
155422bf7d9aSJeff Roberson 	int class;
1555c9f25d8fSJeff Roberson 
155622bf7d9aSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
15577cf90fb3SJeff Roberson 	ke = td->td_kse;
15587cf90fb3SJeff Roberson 	kg = td->td_ksegrp;
155922bf7d9aSJeff Roberson 	if (ke->ke_flags & KEF_ASSIGNED)
156022bf7d9aSJeff Roberson 		return;
156122bf7d9aSJeff Roberson 	kseq = KSEQ_SELF();
1562c494ddc8SJeff Roberson 	KASSERT((ke->ke_thread != NULL),
1563c494ddc8SJeff Roberson 	    ("sched_add: No thread on KSE"));
15645d7ef00cSJeff Roberson 	KASSERT((ke->ke_thread->td_kse != NULL),
15655d7ef00cSJeff Roberson 	    ("sched_add: No KSE on thread"));
15665d7ef00cSJeff Roberson 	KASSERT(ke->ke_state != KES_ONRUNQ,
15675d7ef00cSJeff Roberson 	    ("sched_add: kse %p (%s) already in run queue", ke,
15685d7ef00cSJeff Roberson 	    ke->ke_proc->p_comm));
15695d7ef00cSJeff Roberson 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
15705d7ef00cSJeff Roberson 	    ("sched_add: process swapped out"));
15719bca28a7SJeff Roberson 	KASSERT(ke->ke_runq == NULL,
15729bca28a7SJeff Roberson 	    ("sched_add: KSE %p is still assigned to a run queue", ke));
15735d7ef00cSJeff Roberson 
157422bf7d9aSJeff Roberson 	class = PRI_BASE(kg->kg_pri_class);
157522bf7d9aSJeff Roberson 	switch (class) {
1576a8949de2SJeff Roberson 	case PRI_ITHD:
1577a8949de2SJeff Roberson 	case PRI_REALTIME:
157815dc847eSJeff Roberson 		ke->ke_runq = kseq->ksq_curr;
157915dc847eSJeff Roberson 		ke->ke_slice = SCHED_SLICE_MAX;
15807cd650a9SJeff Roberson 		ke->ke_cpu = PCPU_GET(cpuid);
1581a8949de2SJeff Roberson 		break;
1582a8949de2SJeff Roberson 	case PRI_TIMESHARE:
158315dc847eSJeff Roberson 		if (SCHED_CURR(kg, ke))
158415dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_curr;
158515dc847eSJeff Roberson 		else
158615dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_next;
158715dc847eSJeff Roberson 		break;
158815dc847eSJeff Roberson 	case PRI_IDLE:
158915dc847eSJeff Roberson 		/*
159015dc847eSJeff Roberson 		 * This is for priority prop.
159115dc847eSJeff Roberson 		 */
15923f741ca1SJeff Roberson 		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
159315dc847eSJeff Roberson 			ke->ke_runq = kseq->ksq_curr;
159415dc847eSJeff Roberson 		else
159515dc847eSJeff Roberson 			ke->ke_runq = &kseq->ksq_idle;
159615dc847eSJeff Roberson 		ke->ke_slice = SCHED_SLICE_MIN;
159715dc847eSJeff Roberson 		break;
159815dc847eSJeff Roberson 	default:
1599d322132cSJeff Roberson 		panic("Unknown pri class.");
1600a8949de2SJeff Roberson 		break;
1601a6ed4186SJeff Roberson 	}
160222bf7d9aSJeff Roberson #ifdef SMP
160380f86c9fSJeff Roberson 	if (ke->ke_cpu != PCPU_GET(cpuid)) {
160486e1c22aSJeff Roberson 		ke->ke_runq = NULL;
160580f86c9fSJeff Roberson 		kseq_notify(ke, ke->ke_cpu);
160680f86c9fSJeff Roberson 		return;
160780f86c9fSJeff Roberson 	}
160822bf7d9aSJeff Roberson 	/*
1609670c524fSJeff Roberson 	 * If we had been idle, clear our bit in the group and potentially
1610670c524fSJeff Roberson 	 * the global bitmap.  If not, see if we should transfer this thread.
161122bf7d9aSJeff Roberson 	 */
161280f86c9fSJeff Roberson 	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
161380f86c9fSJeff Roberson 	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
161480f86c9fSJeff Roberson 		/*
161580f86c9fSJeff Roberson 		 * Check to see if our group is unidling, and if so, remove it
161680f86c9fSJeff Roberson 		 * from the global idle mask.
161780f86c9fSJeff Roberson 		 */
161880f86c9fSJeff Roberson 		if (kseq->ksq_group->ksg_idlemask ==
161980f86c9fSJeff Roberson 		    kseq->ksq_group->ksg_cpumask)
162080f86c9fSJeff Roberson 			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
162180f86c9fSJeff Roberson 		/*
162280f86c9fSJeff Roberson 		 * Now remove ourselves from the group specific idle mask.
162380f86c9fSJeff Roberson 		 */
162480f86c9fSJeff Roberson 		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1625670c524fSJeff Roberson 	} else if (kseq->ksq_load > 1 && KSE_CAN_MIGRATE(ke, class))
1626670c524fSJeff Roberson 		if (kseq_transfer(kseq, ke, class))
1627670c524fSJeff Roberson 			return;
162822bf7d9aSJeff Roberson #endif
162922bf7d9aSJeff Roberson         if (td->td_priority < curthread->td_priority)
163022bf7d9aSJeff Roberson                 curthread->td_flags |= TDF_NEEDRESCHED;
1631a8949de2SJeff Roberson 
16320c0b25aeSJohn Baldwin #ifdef SMP
16330c0b25aeSJohn Baldwin 	/*
16340c0b25aeSJohn Baldwin 	 * Only try to preempt if the thread is unpinned or pinned to the
16350c0b25aeSJohn Baldwin 	 * current CPU.
16360c0b25aeSJohn Baldwin 	 */
1637abdb4e5dSBosko Milekic 	if (KSE_CAN_MIGRATE(ke, class) || ke->ke_cpu == PCPU_GET(cpuid))
16380c0b25aeSJohn Baldwin #endif
163963fcce68SJohn Baldwin 	if (preemptive && maybe_preempt(td))
16400c0b25aeSJohn Baldwin 		return;
164135e6168fSJeff Roberson 	ke->ke_ksegrp->kg_runq_kses++;
164235e6168fSJeff Roberson 	ke->ke_state = KES_ONRUNQ;
164335e6168fSJeff Roberson 
1644155b9987SJeff Roberson 	kseq_runq_add(kseq, ke);
1645155b9987SJeff Roberson 	kseq_load_add(kseq, ke);
164635e6168fSJeff Roberson }
164735e6168fSJeff Roberson 
164835e6168fSJeff Roberson void
16497cf90fb3SJeff Roberson sched_rem(struct thread *td)
165035e6168fSJeff Roberson {
165115dc847eSJeff Roberson 	struct kseq *kseq;
16527cf90fb3SJeff Roberson 	struct kse *ke;
16537cf90fb3SJeff Roberson 
16547cf90fb3SJeff Roberson 	ke = td->td_kse;
165522bf7d9aSJeff Roberson 	/*
165622bf7d9aSJeff Roberson 	 * It is safe to just return here because sched_rem() is only ever
165722bf7d9aSJeff Roberson 	 * used in places where we're immediately going to add the
165822bf7d9aSJeff Roberson 	 * kse back on again.  In that case it'll be added with the correct
165922bf7d9aSJeff Roberson 	 * thread and priority when the caller drops the sched_lock.
166022bf7d9aSJeff Roberson 	 */
166122bf7d9aSJeff Roberson 	if (ke->ke_flags & KEF_ASSIGNED)
166222bf7d9aSJeff Roberson 		return;
166335e6168fSJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
1664c494ddc8SJeff Roberson 	KASSERT((ke->ke_state == KES_ONRUNQ),
1665c494ddc8SJeff Roberson 	    ("sched_rem: KSE not on run queue"));
166635e6168fSJeff Roberson 
166735e6168fSJeff Roberson 	ke->ke_state = KES_THREAD;
166835e6168fSJeff Roberson 	ke->ke_ksegrp->kg_runq_kses--;
166915dc847eSJeff Roberson 	kseq = KSEQ_CPU(ke->ke_cpu);
1670155b9987SJeff Roberson 	kseq_runq_rem(kseq, ke);
1671155b9987SJeff Roberson 	kseq_load_rem(kseq, ke);
167235e6168fSJeff Roberson }
167335e6168fSJeff Roberson 
167435e6168fSJeff Roberson fixpt_t
16757cf90fb3SJeff Roberson sched_pctcpu(struct thread *td)
167635e6168fSJeff Roberson {
167735e6168fSJeff Roberson 	fixpt_t pctcpu;
16787cf90fb3SJeff Roberson 	struct kse *ke;
167935e6168fSJeff Roberson 
168035e6168fSJeff Roberson 	pctcpu = 0;
16817cf90fb3SJeff Roberson 	ke = td->td_kse;
1682484288deSJeff Roberson 	if (ke == NULL)
1683484288deSJeff Roberson 		return (0);
168435e6168fSJeff Roberson 
1685b90816f1SJeff Roberson 	mtx_lock_spin(&sched_lock);
168635e6168fSJeff Roberson 	if (ke->ke_ticks) {
168735e6168fSJeff Roberson 		int rtick;
168835e6168fSJeff Roberson 
1689210491d3SJeff Roberson 		/*
1690210491d3SJeff Roberson 		 * Don't update more frequently than twice a second.  Allowing
1691210491d3SJeff Roberson 		 * this causes the cpu usage to decay away too quickly due to
1692210491d3SJeff Roberson 		 * rounding errors.
1693210491d3SJeff Roberson 		 */
16942e227f04SJeff Roberson 		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
16952e227f04SJeff Roberson 		    ke->ke_ltick < (ticks - (hz / 2)))
169635e6168fSJeff Roberson 			sched_pctcpu_update(ke);
169735e6168fSJeff Roberson 		/* How many rtick per second ? */
1698210491d3SJeff Roberson 		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
16997121cce5SScott Long 		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
170035e6168fSJeff Roberson 	}
170135e6168fSJeff Roberson 
170235e6168fSJeff Roberson 	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1703828e7683SJohn Baldwin 	mtx_unlock_spin(&sched_lock);
170435e6168fSJeff Roberson 
170535e6168fSJeff Roberson 	return (pctcpu);
170635e6168fSJeff Roberson }
170735e6168fSJeff Roberson 
17089bacd788SJeff Roberson void
17099bacd788SJeff Roberson sched_bind(struct thread *td, int cpu)
17109bacd788SJeff Roberson {
17119bacd788SJeff Roberson 	struct kse *ke;
17129bacd788SJeff Roberson 
17139bacd788SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
17149bacd788SJeff Roberson 	ke = td->td_kse;
17159bacd788SJeff Roberson 	ke->ke_flags |= KEF_BOUND;
171680f86c9fSJeff Roberson #ifdef SMP
171780f86c9fSJeff Roberson 	if (PCPU_GET(cpuid) == cpu)
17189bacd788SJeff Roberson 		return;
17199bacd788SJeff Roberson 	/* sched_rem without the runq_remove */
17209bacd788SJeff Roberson 	ke->ke_state = KES_THREAD;
17219bacd788SJeff Roberson 	ke->ke_ksegrp->kg_runq_kses--;
1722155b9987SJeff Roberson 	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
17239bacd788SJeff Roberson 	kseq_notify(ke, cpu);
17249bacd788SJeff Roberson 	/* When we return from mi_switch we'll be on the correct cpu. */
1725279f949eSPoul-Henning Kamp 	mi_switch(SW_VOL, NULL);
17269bacd788SJeff Roberson #endif
17279bacd788SJeff Roberson }
17289bacd788SJeff Roberson 
17299bacd788SJeff Roberson void
17309bacd788SJeff Roberson sched_unbind(struct thread *td)
17319bacd788SJeff Roberson {
17329bacd788SJeff Roberson 	mtx_assert(&sched_lock, MA_OWNED);
17339bacd788SJeff Roberson 	td->td_kse->ke_flags &= ~KEF_BOUND;
17349bacd788SJeff Roberson }
17359bacd788SJeff Roberson 
173635e6168fSJeff Roberson int
173733916c36SJeff Roberson sched_load(void)
173833916c36SJeff Roberson {
173933916c36SJeff Roberson #ifdef SMP
174033916c36SJeff Roberson 	int total;
174133916c36SJeff Roberson 	int i;
174233916c36SJeff Roberson 
174333916c36SJeff Roberson 	total = 0;
174433916c36SJeff Roberson 	for (i = 0; i <= ksg_maxid; i++)
174533916c36SJeff Roberson 		total += KSEQ_GROUP(i)->ksg_load;
174633916c36SJeff Roberson 	return (total);
174733916c36SJeff Roberson #else
174833916c36SJeff Roberson 	return (KSEQ_SELF()->ksq_sysload);
174933916c36SJeff Roberson #endif
175033916c36SJeff Roberson }
175133916c36SJeff Roberson 
175233916c36SJeff Roberson int
175335e6168fSJeff Roberson sched_sizeof_kse(void)
175435e6168fSJeff Roberson {
175535e6168fSJeff Roberson 	return (sizeof(struct kse) + sizeof(struct ke_sched));
175635e6168fSJeff Roberson }
175735e6168fSJeff Roberson 
175835e6168fSJeff Roberson int
175935e6168fSJeff Roberson sched_sizeof_ksegrp(void)
176035e6168fSJeff Roberson {
176135e6168fSJeff Roberson 	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
176235e6168fSJeff Roberson }
176335e6168fSJeff Roberson 
176435e6168fSJeff Roberson int
176535e6168fSJeff Roberson sched_sizeof_proc(void)
176635e6168fSJeff Roberson {
176735e6168fSJeff Roberson 	return (sizeof(struct proc));
176835e6168fSJeff Roberson }
176935e6168fSJeff Roberson 
177035e6168fSJeff Roberson int
177135e6168fSJeff Roberson sched_sizeof_thread(void)
177235e6168fSJeff Roberson {
177335e6168fSJeff Roberson 	return (sizeof(struct thread) + sizeof(struct td_sched));
177435e6168fSJeff Roberson }
1775