xref: /freebsd/sys/kern/sched_4bsd.c (revision a3e8fd0b7f663db7eafff527d5c3ca3bcfa8a537)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $FreeBSD$
39  */
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/ktr.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/proc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/sched.h>
50 #include <sys/smp.h>
51 #include <sys/sysctl.h>
52 #include <sys/sx.h>
53 
54 
55 static int	sched_quantum;	/* Roundrobin scheduling quantum in ticks. */
56 #define	SCHED_QUANTUM	(hz / 10);	/* Default sched quantum */
57 
58 static struct callout schedcpu_callout;
59 static struct callout roundrobin_callout;
60 
61 static void	roundrobin(void *arg);
62 static void	schedcpu(void *arg);
63 static void	sched_setup(void *dummy);
64 static void	maybe_resched(struct thread *td);
65 static void	updatepri(struct ksegrp *kg);
66 static void	resetpriority(struct ksegrp *kg);
67 
68 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
69 
70 /*
71  * Global run queue.
72  */
73 static struct runq runq;
74 SYSINIT(runq, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, runq_init, &runq)
75 
76 static int
77 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
78 {
79 	int error, new_val;
80 
81 	new_val = sched_quantum * tick;
82 	error = sysctl_handle_int(oidp, &new_val, 0, req);
83         if (error != 0 || req->newptr == NULL)
84 		return (error);
85 	if (new_val < tick)
86 		return (EINVAL);
87 	sched_quantum = new_val / tick;
88 	hogticks = 2 * sched_quantum;
89 	return (0);
90 }
91 
92 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
93 	0, sizeof sched_quantum, sysctl_kern_quantum, "I",
94 	"Roundrobin scheduling quantum in microseconds");
95 
96 /*
97  * Arrange to reschedule if necessary, taking the priorities and
98  * schedulers into account.
99  */
100 static void
101 maybe_resched(struct thread *td)
102 {
103 
104 	mtx_assert(&sched_lock, MA_OWNED);
105 	if (td->td_priority < curthread->td_priority)
106 		curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
107 }
108 
109 /*
110  * Force switch among equal priority processes every 100ms.
111  * We don't actually need to force a context switch of the current process.
112  * The act of firing the event triggers a context switch to softclock() and
113  * then switching back out again which is equivalent to a preemption, thus
114  * no further work is needed on the local CPU.
115  */
116 /* ARGSUSED */
117 static void
118 roundrobin(void *arg)
119 {
120 
121 #ifdef SMP
122 	mtx_lock_spin(&sched_lock);
123 	forward_roundrobin();
124 	mtx_unlock_spin(&sched_lock);
125 #endif
126 
127 	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
128 }
129 
130 /*
131  * Constants for digital decay and forget:
132  *	90% of (p_estcpu) usage in 5 * loadav time
133  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
134  *          Note that, as ps(1) mentions, this can let percentages
135  *          total over 100% (I've seen 137.9% for 3 processes).
136  *
137  * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
138  *
139  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
140  * That is, the system wants to compute a value of decay such
141  * that the following for loop:
142  * 	for (i = 0; i < (5 * loadavg); i++)
143  * 		p_estcpu *= decay;
144  * will compute
145  * 	p_estcpu *= 0.1;
146  * for all values of loadavg:
147  *
148  * Mathematically this loop can be expressed by saying:
149  * 	decay ** (5 * loadavg) ~= .1
150  *
151  * The system computes decay as:
152  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
153  *
154  * We wish to prove that the system's computation of decay
155  * will always fulfill the equation:
156  * 	decay ** (5 * loadavg) ~= .1
157  *
158  * If we compute b as:
159  * 	b = 2 * loadavg
160  * then
161  * 	decay = b / (b + 1)
162  *
163  * We now need to prove two things:
164  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
165  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
166  *
167  * Facts:
168  *         For x close to zero, exp(x) =~ 1 + x, since
169  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
170  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
171  *         For x close to zero, ln(1+x) =~ x, since
172  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
173  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
174  *         ln(.1) =~ -2.30
175  *
176  * Proof of (1):
177  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
178  *	solving for factor,
179  *      ln(factor) =~ (-2.30/5*loadav), or
180  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
181  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
182  *
183  * Proof of (2):
184  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
185  *	solving for power,
186  *      power*ln(b/(b+1)) =~ -2.30, or
187  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
188  *
189  * Actual power values for the implemented algorithm are as follows:
190  *      loadav: 1       2       3       4
191  *      power:  5.68    10.32   14.94   19.55
192  */
193 
194 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
195 #define	loadfactor(loadav)	(2 * (loadav))
196 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
197 
198 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
199 static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
200 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
201 
202 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
203 static int	fscale __unused = FSCALE;
204 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
205 
206 /*
207  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
208  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
209  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
210  *
211  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
212  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
213  *
214  * If you don't want to bother with the faster/more-accurate formula, you
215  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
216  * (more general) method of calculating the %age of CPU used by a process.
217  */
218 #define	CCPU_SHIFT	11
219 
220 /*
221  * Recompute process priorities, every hz ticks.
222  * MP-safe, called without the Giant mutex.
223  */
224 /* ARGSUSED */
225 static void
226 schedcpu(void *arg)
227 {
228 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
229 	struct thread *td;
230 	struct proc *p;
231 	struct kse *ke;
232 	struct ksegrp *kg;
233 	int realstathz;
234 	int awake;
235 
236 	realstathz = stathz ? stathz : hz;
237 	sx_slock(&allproc_lock);
238 	FOREACH_PROC_IN_SYSTEM(p) {
239 		mtx_lock_spin(&sched_lock);
240 		p->p_swtime++;
241 		FOREACH_KSEGRP_IN_PROC(p, kg) {
242 			awake = 0;
243 			FOREACH_KSE_IN_GROUP(kg, ke) {
244 				/*
245 				 * Increment time in/out of memory and sleep
246 				 * time (if sleeping).  We ignore overflow;
247 				 * with 16-bit int's (remember them?)
248 				 * overflow takes 45 days.
249 				 */
250 				/*
251 				 * The kse slptimes are not touched in wakeup
252 				 * because the thread may not HAVE a KSE.
253 				 */
254 				if (ke->ke_state == KES_ONRUNQ) {
255 					awake = 1;
256 					ke->ke_flags &= ~KEF_DIDRUN;
257 				} else if ((ke->ke_state == KES_THREAD) &&
258 				    (TD_IS_RUNNING(ke->ke_thread))) {
259 					awake = 1;
260 					/* Do not clear KEF_DIDRUN */
261 				} else if (ke->ke_flags & KEF_DIDRUN) {
262 					awake = 1;
263 					ke->ke_flags &= ~KEF_DIDRUN;
264 				}
265 
266 				/*
267 				 * pctcpu is only for ps?
268 				 * Do it per kse.. and add them up at the end?
269 				 * XXXKSE
270 				 */
271 				ke->ke_pctcpu
272 				    = (ke->ke_pctcpu * ccpu) >> FSHIFT;
273 				/*
274 				 * If the kse has been idle the entire second,
275 				 * stop recalculating its priority until
276 				 * it wakes up.
277 				 */
278 				if (ke->ke_cpticks == 0)
279 					continue;
280 #if	(FSHIFT >= CCPU_SHIFT)
281 				ke->ke_pctcpu += (realstathz == 100) ?
282 				    ((fixpt_t) ke->ke_cpticks) <<
283 				    (FSHIFT - CCPU_SHIFT) :
284 				    100 * (((fixpt_t) ke->ke_cpticks) <<
285 				    (FSHIFT - CCPU_SHIFT)) / realstathz;
286 #else
287 				ke->ke_pctcpu += ((FSCALE - ccpu) *
288 				    (ke->ke_cpticks * FSCALE / realstathz)) >>
289 				    FSHIFT;
290 #endif
291 				ke->ke_cpticks = 0;
292 			} /* end of kse loop */
293 			/*
294 			 * If there are ANY running threads in this KSEGRP,
295 			 * then don't count it as sleeping.
296 			 */
297 			if (awake) {
298 				if (kg->kg_slptime > 1) {
299 					/*
300 					 * In an ideal world, this should not
301 					 * happen, because whoever woke us
302 					 * up from the long sleep should have
303 					 * unwound the slptime and reset our
304 					 * priority before we run at the stale
305 					 * priority.  Should KASSERT at some
306 					 * point when all the cases are fixed.
307 					 */
308 					updatepri(kg);
309 				}
310 				kg->kg_slptime = 0;
311 			} else {
312 				kg->kg_slptime++;
313 			}
314 			if (kg->kg_slptime > 1)
315 				continue;
316 			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
317 		      	resetpriority(kg);
318 			FOREACH_THREAD_IN_GROUP(kg, td) {
319 				if (td->td_priority >= PUSER) {
320 					sched_prio(td, kg->kg_user_pri);
321 				}
322 			}
323 		} /* end of ksegrp loop */
324 		mtx_unlock_spin(&sched_lock);
325 	} /* end of process loop */
326 	sx_sunlock(&allproc_lock);
327 	wakeup(&lbolt);
328 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
329 }
330 
331 /*
332  * Recalculate the priority of a process after it has slept for a while.
333  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
334  * least six times the loadfactor will decay p_estcpu to zero.
335  */
336 static void
337 updatepri(struct ksegrp *kg)
338 {
339 	register unsigned int newcpu;
340 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
341 
342 	newcpu = kg->kg_estcpu;
343 	if (kg->kg_slptime > 5 * loadfac)
344 		kg->kg_estcpu = 0;
345 	else {
346 		kg->kg_slptime--;	/* the first time was done in schedcpu */
347 		while (newcpu && --kg->kg_slptime)
348 			newcpu = decay_cpu(loadfac, newcpu);
349 		kg->kg_estcpu = newcpu;
350 	}
351 	resetpriority(kg);
352 }
353 
354 /*
355  * Compute the priority of a process when running in user mode.
356  * Arrange to reschedule if the resulting priority is better
357  * than that of the current process.
358  */
359 static void
360 resetpriority(struct ksegrp *kg)
361 {
362 	register unsigned int newpriority;
363 	struct thread *td;
364 
365 	mtx_lock_spin(&sched_lock);
366 	if (kg->kg_pri_class == PRI_TIMESHARE) {
367 		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
368 		    NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
369 		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
370 		    PRI_MAX_TIMESHARE);
371 		kg->kg_user_pri = newpriority;
372 	}
373 	FOREACH_THREAD_IN_GROUP(kg, td) {
374 		maybe_resched(td);			/* XXXKSE silly */
375 	}
376 	mtx_unlock_spin(&sched_lock);
377 }
378 
379 /* ARGSUSED */
380 static void
381 sched_setup(void *dummy)
382 {
383 	if (sched_quantum == 0)
384 		sched_quantum = SCHED_QUANTUM;
385 	hogticks = 2 * sched_quantum;
386 
387 	callout_init(&schedcpu_callout, 1);
388 	callout_init(&roundrobin_callout, 0);
389 
390 	/* Kick off timeout driven events by calling first time. */
391 	roundrobin(NULL);
392 	schedcpu(NULL);
393 }
394 
395 /* External interfaces start here */
396 int
397 sched_runnable(void)
398 {
399         return runq_check(&runq);
400 }
401 
402 int
403 sched_rr_interval(void)
404 {
405 	if (sched_quantum == 0)
406 		sched_quantum = SCHED_QUANTUM;
407 	return (sched_quantum);
408 }
409 
410 /*
411  * We adjust the priority of the current process.  The priority of
412  * a process gets worse as it accumulates CPU time.  The cpu usage
413  * estimator (p_estcpu) is increased here.  resetpriority() will
414  * compute a different priority each time p_estcpu increases by
415  * INVERSE_ESTCPU_WEIGHT
416  * (until MAXPRI is reached).  The cpu usage estimator ramps up
417  * quite quickly when the process is running (linearly), and decays
418  * away exponentially, at a rate which is proportionally slower when
419  * the system is busy.  The basic principle is that the system will
420  * 90% forget that the process used a lot of CPU time in 5 * loadav
421  * seconds.  This causes the system to favor processes which haven't
422  * run much recently, and to round-robin among other processes.
423  */
424 void
425 sched_clock(struct thread *td)
426 {
427 	struct kse *ke;
428 	struct ksegrp *kg;
429 
430 	KASSERT((td != NULL), ("schedclock: null thread pointer"));
431 	ke = td->td_kse;
432 	kg = td->td_ksegrp;
433 	ke->ke_cpticks++;
434 	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
435 	if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
436 		resetpriority(kg);
437 		if (td->td_priority >= PUSER)
438 			td->td_priority = kg->kg_user_pri;
439 	}
440 }
441 /*
442  * charge childs scheduling cpu usage to parent.
443  *
444  * XXXKSE assume only one thread & kse & ksegrp keep estcpu in each ksegrp.
445  * Charge it to the ksegrp that did the wait since process estcpu is sum of
446  * all ksegrps, this is strictly as expected.  Assume that the child process
447  * aggregated all the estcpu into the 'built-in' ksegrp.
448  */
449 void
450 sched_exit(struct ksegrp *kg, struct ksegrp *child)
451 {
452 	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + child->kg_estcpu);
453 }
454 
455 void
456 sched_fork(struct ksegrp *kg, struct ksegrp *child)
457 {
458 	/*
459 	 * set priority of child to be that of parent.
460 	 * XXXKSE this needs redefining..
461 	 */
462 	child->kg_estcpu = kg->kg_estcpu;
463 }
464 
465 void
466 sched_nice(struct ksegrp *kg, int nice)
467 {
468 	kg->kg_nice = nice;
469 	resetpriority(kg);
470 }
471 
472 /*
473  * Adjust the priority of a thread.
474  * This may include moving the thread within the KSEGRP,
475  * changing the assignment of a kse to the thread,
476  * and moving a KSE in the system run queue.
477  */
478 void
479 sched_prio(struct thread *td, u_char prio)
480 {
481 
482 	if (TD_ON_RUNQ(td)) {
483 		adjustrunqueue(td, prio);
484 	} else {
485 		td->td_priority = prio;
486 	}
487 }
488 
489 void
490 sched_sleep(struct thread *td, u_char prio)
491 {
492 	td->td_ksegrp->kg_slptime = 0;
493 	td->td_priority = prio;
494 }
495 
496 void
497 sched_switchin(struct thread *td)
498 {
499 	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
500 }
501 
502 void
503 sched_switchout(struct thread *td)
504 {
505 	struct kse *ke;
506 	struct proc *p;
507 
508 	ke = td->td_kse;
509 	p = td->td_proc;
510 
511 	KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?"));
512 
513 	td->td_lastcpu = ke->ke_oncpu;
514 	td->td_last_kse = ke;
515 	ke->ke_oncpu = NOCPU;
516 	ke->ke_flags &= ~KEF_NEEDRESCHED;
517 	/*
518 	 * At the last moment, if this thread is still marked RUNNING,
519 	 * then put it back on the run queue as it has not been suspended
520 	 * or stopped or any thing else similar.
521 	 */
522 	if (TD_IS_RUNNING(td)) {
523 		/* Put us back on the run queue (kse and all). */
524 		setrunqueue(td);
525 	} else if (p->p_flag & P_KSES) {
526 		/*
527 		 * We will not be on the run queue. So we must be
528 		 * sleeping or similar. As it's available,
529 		 * someone else can use the KSE if they need it.
530 		 * (If bound LOANING can still occur).
531 		 */
532 		kse_reassign(ke);
533 	}
534 }
535 
536 void
537 sched_wakeup(struct thread *td)
538 {
539 	struct ksegrp *kg;
540 
541 	kg = td->td_ksegrp;
542 	if (kg->kg_slptime > 1)
543 		updatepri(kg);
544 	kg->kg_slptime = 0;
545 	setrunqueue(td);
546 	maybe_resched(td);
547 }
548 
549 void
550 sched_add(struct kse *ke)
551 {
552 	mtx_assert(&sched_lock, MA_OWNED);
553 	KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE"));
554 	KASSERT((ke->ke_thread->td_kse != NULL),
555 	    ("runq_add: No KSE on thread"));
556 	KASSERT(ke->ke_state != KES_ONRUNQ,
557 	    ("runq_add: kse %p (%s) already in run queue", ke,
558 	    ke->ke_proc->p_comm));
559 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
560 	    ("runq_add: process swapped out"));
561 	ke->ke_ksegrp->kg_runq_kses++;
562 	ke->ke_state = KES_ONRUNQ;
563 
564 	runq_add(&runq, ke);
565 }
566 
567 void
568 sched_rem(struct kse *ke)
569 {
570 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
571 	    ("runq_remove: process swapped out"));
572 	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
573 	mtx_assert(&sched_lock, MA_OWNED);
574 
575 	runq_remove(&runq, ke);
576 	ke->ke_state = KES_THREAD;
577 	ke->ke_ksegrp->kg_runq_kses--;
578 }
579 
580 struct kse *
581 sched_choose(void)
582 {
583 	struct kse *ke;
584 
585 	ke = runq_choose(&runq);
586 
587 	if (ke != NULL) {
588 		runq_remove(&runq, ke);
589 		ke->ke_state = KES_THREAD;
590 
591 		KASSERT((ke->ke_thread != NULL),
592 		    ("runq_choose: No thread on KSE"));
593 		KASSERT((ke->ke_thread->td_kse != NULL),
594 		    ("runq_choose: No KSE on thread"));
595 		KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
596 		    ("runq_choose: process swapped out"));
597 	}
598 	return (ke);
599 }
600 
601 void
602 sched_userret(struct thread *td)
603 {
604 	struct ksegrp *kg;
605 	/*
606 	 * XXX we cheat slightly on the locking here to avoid locking in
607 	 * the usual case.  Setting td_priority here is essentially an
608 	 * incomplete workaround for not setting it properly elsewhere.
609 	 * Now that some interrupt handlers are threads, not setting it
610 	 * properly elsewhere can clobber it in the window between setting
611 	 * it here and returning to user mode, so don't waste time setting
612 	 * it perfectly here.
613 	 */
614 	kg = td->td_ksegrp;
615 	if (td->td_priority != kg->kg_user_pri) {
616 		mtx_lock_spin(&sched_lock);
617 		td->td_priority = kg->kg_user_pri;
618 		mtx_unlock_spin(&sched_lock);
619 	}
620 }
621