1 /*- 2 * Copyright (c) 1982, 1986, 1990, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * $FreeBSD$ 39 */ 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/ktr.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/proc.h> 48 #include <sys/resourcevar.h> 49 #include <sys/sched.h> 50 #include <sys/smp.h> 51 #include <sys/sysctl.h> 52 #include <sys/sx.h> 53 54 /* 55 * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in 56 * the range 100-256 Hz (approximately). 57 */ 58 #define ESTCPULIM(e) \ 59 min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \ 60 RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1) 61 #define INVERSE_ESTCPU_WEIGHT 8 /* 1 / (priorities per estcpu level). */ 62 #define NICE_WEIGHT 1 /* Priorities per nice level. */ 63 64 struct ke_sched { 65 int ske_cpticks; /* (j) Ticks of cpu time. */ 66 }; 67 68 struct ke_sched ke_sched; 69 70 struct ke_sched *kse0_sched = &ke_sched; 71 struct kg_sched *ksegrp0_sched = NULL; 72 struct p_sched *proc0_sched = NULL; 73 struct td_sched *thread0_sched = NULL; 74 75 static int sched_quantum; /* Roundrobin scheduling quantum in ticks. */ 76 #define SCHED_QUANTUM (hz / 10) /* Default sched quantum */ 77 78 static struct callout schedcpu_callout; 79 static struct callout roundrobin_callout; 80 81 static void roundrobin(void *arg); 82 static void schedcpu(void *arg); 83 static void sched_setup(void *dummy); 84 static void maybe_resched(struct thread *td); 85 static void updatepri(struct ksegrp *kg); 86 static void resetpriority(struct ksegrp *kg); 87 88 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL) 89 90 /* 91 * Global run queue. 92 */ 93 static struct runq runq; 94 SYSINIT(runq, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, runq_init, &runq) 95 96 static int 97 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS) 98 { 99 int error, new_val; 100 101 new_val = sched_quantum * tick; 102 error = sysctl_handle_int(oidp, &new_val, 0, req); 103 if (error != 0 || req->newptr == NULL) 104 return (error); 105 if (new_val < tick) 106 return (EINVAL); 107 sched_quantum = new_val / tick; 108 hogticks = 2 * sched_quantum; 109 return (0); 110 } 111 112 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW, 113 0, sizeof sched_quantum, sysctl_kern_quantum, "I", 114 "Roundrobin scheduling quantum in microseconds"); 115 116 /* 117 * Arrange to reschedule if necessary, taking the priorities and 118 * schedulers into account. 119 */ 120 static void 121 maybe_resched(struct thread *td) 122 { 123 124 mtx_assert(&sched_lock, MA_OWNED); 125 if (td->td_priority < curthread->td_priority && curthread->td_kse) 126 curthread->td_flags |= TDF_NEEDRESCHED; 127 } 128 129 /* 130 * Force switch among equal priority processes every 100ms. 131 * We don't actually need to force a context switch of the current process. 132 * The act of firing the event triggers a context switch to softclock() and 133 * then switching back out again which is equivalent to a preemption, thus 134 * no further work is needed on the local CPU. 135 */ 136 /* ARGSUSED */ 137 static void 138 roundrobin(void *arg) 139 { 140 141 #ifdef SMP 142 mtx_lock_spin(&sched_lock); 143 forward_roundrobin(); 144 mtx_unlock_spin(&sched_lock); 145 #endif 146 147 callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL); 148 } 149 150 /* 151 * Constants for digital decay and forget: 152 * 90% of (p_estcpu) usage in 5 * loadav time 153 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 154 * Note that, as ps(1) mentions, this can let percentages 155 * total over 100% (I've seen 137.9% for 3 processes). 156 * 157 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously. 158 * 159 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. 160 * That is, the system wants to compute a value of decay such 161 * that the following for loop: 162 * for (i = 0; i < (5 * loadavg); i++) 163 * p_estcpu *= decay; 164 * will compute 165 * p_estcpu *= 0.1; 166 * for all values of loadavg: 167 * 168 * Mathematically this loop can be expressed by saying: 169 * decay ** (5 * loadavg) ~= .1 170 * 171 * The system computes decay as: 172 * decay = (2 * loadavg) / (2 * loadavg + 1) 173 * 174 * We wish to prove that the system's computation of decay 175 * will always fulfill the equation: 176 * decay ** (5 * loadavg) ~= .1 177 * 178 * If we compute b as: 179 * b = 2 * loadavg 180 * then 181 * decay = b / (b + 1) 182 * 183 * We now need to prove two things: 184 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 185 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 186 * 187 * Facts: 188 * For x close to zero, exp(x) =~ 1 + x, since 189 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 190 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 191 * For x close to zero, ln(1+x) =~ x, since 192 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 193 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 194 * ln(.1) =~ -2.30 195 * 196 * Proof of (1): 197 * Solve (factor)**(power) =~ .1 given power (5*loadav): 198 * solving for factor, 199 * ln(factor) =~ (-2.30/5*loadav), or 200 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 201 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 202 * 203 * Proof of (2): 204 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 205 * solving for power, 206 * power*ln(b/(b+1)) =~ -2.30, or 207 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 208 * 209 * Actual power values for the implemented algorithm are as follows: 210 * loadav: 1 2 3 4 211 * power: 5.68 10.32 14.94 19.55 212 */ 213 214 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 215 #define loadfactor(loadav) (2 * (loadav)) 216 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 217 218 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 219 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 220 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 221 222 /* 223 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 224 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 225 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 226 * 227 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 228 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 229 * 230 * If you don't want to bother with the faster/more-accurate formula, you 231 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 232 * (more general) method of calculating the %age of CPU used by a process. 233 */ 234 #define CCPU_SHIFT 11 235 236 /* 237 * Recompute process priorities, every hz ticks. 238 * MP-safe, called without the Giant mutex. 239 */ 240 /* ARGSUSED */ 241 static void 242 schedcpu(void *arg) 243 { 244 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 245 struct thread *td; 246 struct proc *p; 247 struct kse *ke; 248 struct ksegrp *kg; 249 int realstathz; 250 int awake; 251 252 realstathz = stathz ? stathz : hz; 253 sx_slock(&allproc_lock); 254 FOREACH_PROC_IN_SYSTEM(p) { 255 mtx_lock_spin(&sched_lock); 256 p->p_swtime++; 257 FOREACH_KSEGRP_IN_PROC(p, kg) { 258 awake = 0; 259 FOREACH_KSE_IN_GROUP(kg, ke) { 260 /* 261 * Increment time in/out of memory and sleep 262 * time (if sleeping). We ignore overflow; 263 * with 16-bit int's (remember them?) 264 * overflow takes 45 days. 265 */ 266 /* 267 * The kse slptimes are not touched in wakeup 268 * because the thread may not HAVE a KSE. 269 */ 270 if (ke->ke_state == KES_ONRUNQ) { 271 awake = 1; 272 ke->ke_flags &= ~KEF_DIDRUN; 273 } else if ((ke->ke_state == KES_THREAD) && 274 (TD_IS_RUNNING(ke->ke_thread))) { 275 awake = 1; 276 /* Do not clear KEF_DIDRUN */ 277 } else if (ke->ke_flags & KEF_DIDRUN) { 278 awake = 1; 279 ke->ke_flags &= ~KEF_DIDRUN; 280 } 281 282 /* 283 * pctcpu is only for ps? 284 * Do it per kse.. and add them up at the end? 285 * XXXKSE 286 */ 287 ke->ke_pctcpu 288 = (ke->ke_pctcpu * ccpu) >> 289 FSHIFT; 290 /* 291 * If the kse has been idle the entire second, 292 * stop recalculating its priority until 293 * it wakes up. 294 */ 295 if (ke->ke_sched->ske_cpticks == 0) 296 continue; 297 #if (FSHIFT >= CCPU_SHIFT) 298 ke->ke_pctcpu += (realstathz == 100) 299 ? ((fixpt_t) ke->ke_sched->ske_cpticks) << 300 (FSHIFT - CCPU_SHIFT) : 301 100 * (((fixpt_t) ke->ke_sched->ske_cpticks) 302 << (FSHIFT - CCPU_SHIFT)) / realstathz; 303 #else 304 ke->ke_pctcpu += ((FSCALE - ccpu) * 305 (ke->ke_sched->ske_cpticks * 306 FSCALE / realstathz)) >> FSHIFT; 307 #endif 308 ke->ke_sched->ske_cpticks = 0; 309 } /* end of kse loop */ 310 /* 311 * If there are ANY running threads in this KSEGRP, 312 * then don't count it as sleeping. 313 */ 314 if (awake) { 315 if (kg->kg_slptime > 1) { 316 /* 317 * In an ideal world, this should not 318 * happen, because whoever woke us 319 * up from the long sleep should have 320 * unwound the slptime and reset our 321 * priority before we run at the stale 322 * priority. Should KASSERT at some 323 * point when all the cases are fixed. 324 */ 325 updatepri(kg); 326 } 327 kg->kg_slptime = 0; 328 } else { 329 kg->kg_slptime++; 330 } 331 if (kg->kg_slptime > 1) 332 continue; 333 kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu); 334 resetpriority(kg); 335 FOREACH_THREAD_IN_GROUP(kg, td) { 336 if (td->td_priority >= PUSER) { 337 sched_prio(td, kg->kg_user_pri); 338 } 339 } 340 } /* end of ksegrp loop */ 341 mtx_unlock_spin(&sched_lock); 342 } /* end of process loop */ 343 sx_sunlock(&allproc_lock); 344 callout_reset(&schedcpu_callout, hz, schedcpu, NULL); 345 } 346 347 /* 348 * Recalculate the priority of a process after it has slept for a while. 349 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at 350 * least six times the loadfactor will decay p_estcpu to zero. 351 */ 352 static void 353 updatepri(struct ksegrp *kg) 354 { 355 register unsigned int newcpu; 356 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 357 358 newcpu = kg->kg_estcpu; 359 if (kg->kg_slptime > 5 * loadfac) 360 kg->kg_estcpu = 0; 361 else { 362 kg->kg_slptime--; /* the first time was done in schedcpu */ 363 while (newcpu && --kg->kg_slptime) 364 newcpu = decay_cpu(loadfac, newcpu); 365 kg->kg_estcpu = newcpu; 366 } 367 resetpriority(kg); 368 } 369 370 /* 371 * Compute the priority of a process when running in user mode. 372 * Arrange to reschedule if the resulting priority is better 373 * than that of the current process. 374 */ 375 static void 376 resetpriority(struct ksegrp *kg) 377 { 378 register unsigned int newpriority; 379 struct thread *td; 380 381 mtx_lock_spin(&sched_lock); 382 if (kg->kg_pri_class == PRI_TIMESHARE) { 383 newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT + 384 NICE_WEIGHT * (kg->kg_nice - PRIO_MIN); 385 newpriority = min(max(newpriority, PRI_MIN_TIMESHARE), 386 PRI_MAX_TIMESHARE); 387 kg->kg_user_pri = newpriority; 388 } 389 FOREACH_THREAD_IN_GROUP(kg, td) { 390 maybe_resched(td); /* XXXKSE silly */ 391 } 392 mtx_unlock_spin(&sched_lock); 393 } 394 395 /* ARGSUSED */ 396 static void 397 sched_setup(void *dummy) 398 { 399 if (sched_quantum == 0) 400 sched_quantum = SCHED_QUANTUM; 401 hogticks = 2 * sched_quantum; 402 403 callout_init(&schedcpu_callout, 1); 404 callout_init(&roundrobin_callout, 0); 405 406 /* Kick off timeout driven events by calling first time. */ 407 roundrobin(NULL); 408 schedcpu(NULL); 409 } 410 411 /* External interfaces start here */ 412 int 413 sched_runnable(void) 414 { 415 return runq_check(&runq); 416 } 417 418 int 419 sched_rr_interval(void) 420 { 421 if (sched_quantum == 0) 422 sched_quantum = SCHED_QUANTUM; 423 return (sched_quantum); 424 } 425 426 /* 427 * We adjust the priority of the current process. The priority of 428 * a process gets worse as it accumulates CPU time. The cpu usage 429 * estimator (p_estcpu) is increased here. resetpriority() will 430 * compute a different priority each time p_estcpu increases by 431 * INVERSE_ESTCPU_WEIGHT 432 * (until MAXPRI is reached). The cpu usage estimator ramps up 433 * quite quickly when the process is running (linearly), and decays 434 * away exponentially, at a rate which is proportionally slower when 435 * the system is busy. The basic principle is that the system will 436 * 90% forget that the process used a lot of CPU time in 5 * loadav 437 * seconds. This causes the system to favor processes which haven't 438 * run much recently, and to round-robin among other processes. 439 */ 440 void 441 sched_clock(struct thread *td) 442 { 443 struct kse *ke; 444 struct ksegrp *kg; 445 446 KASSERT((td != NULL), ("schedclock: null thread pointer")); 447 ke = td->td_kse; 448 kg = td->td_ksegrp; 449 ke->ke_sched->ske_cpticks++; 450 kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1); 451 if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) { 452 resetpriority(kg); 453 if (td->td_priority >= PUSER) 454 td->td_priority = kg->kg_user_pri; 455 } 456 } 457 /* 458 * charge childs scheduling cpu usage to parent. 459 * 460 * XXXKSE assume only one thread & kse & ksegrp keep estcpu in each ksegrp. 461 * Charge it to the ksegrp that did the wait since process estcpu is sum of 462 * all ksegrps, this is strictly as expected. Assume that the child process 463 * aggregated all the estcpu into the 'built-in' ksegrp. 464 */ 465 void 466 sched_exit(struct ksegrp *kg, struct ksegrp *child) 467 { 468 kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + child->kg_estcpu); 469 } 470 471 void 472 sched_fork(struct ksegrp *kg, struct ksegrp *child) 473 { 474 struct kse *ke; 475 476 /* 477 * set priority of child to be that of parent. 478 * XXXKSE this needs redefining.. 479 */ 480 child->kg_estcpu = kg->kg_estcpu; 481 482 /* Set up scheduler specific data */ 483 ke = FIRST_KSE_IN_KSEGRP(kg); 484 ke->ke_sched->ske_cpticks = 0; 485 } 486 487 void 488 sched_nice(struct ksegrp *kg, int nice) 489 { 490 kg->kg_nice = nice; 491 resetpriority(kg); 492 } 493 494 /* 495 * Adjust the priority of a thread. 496 * This may include moving the thread within the KSEGRP, 497 * changing the assignment of a kse to the thread, 498 * and moving a KSE in the system run queue. 499 */ 500 void 501 sched_prio(struct thread *td, u_char prio) 502 { 503 504 if (TD_ON_RUNQ(td)) { 505 adjustrunqueue(td, prio); 506 } else { 507 td->td_priority = prio; 508 } 509 } 510 511 void 512 sched_sleep(struct thread *td, u_char prio) 513 { 514 td->td_ksegrp->kg_slptime = 0; 515 td->td_priority = prio; 516 } 517 518 void 519 sched_switchin(struct thread *td) 520 { 521 td->td_kse->ke_oncpu = PCPU_GET(cpuid); 522 } 523 524 void 525 sched_switchout(struct thread *td) 526 { 527 struct kse *ke; 528 struct proc *p; 529 530 ke = td->td_kse; 531 p = td->td_proc; 532 533 KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?")); 534 535 td->td_lastcpu = ke->ke_oncpu; 536 td->td_last_kse = ke; 537 ke->ke_oncpu = NOCPU; 538 td->td_flags &= ~TDF_NEEDRESCHED; 539 /* 540 * At the last moment, if this thread is still marked RUNNING, 541 * then put it back on the run queue as it has not been suspended 542 * or stopped or any thing else similar. 543 */ 544 if (TD_IS_RUNNING(td)) { 545 /* Put us back on the run queue (kse and all). */ 546 setrunqueue(td); 547 } else if (p->p_flag & P_THREADED) { 548 /* 549 * We will not be on the run queue. So we must be 550 * sleeping or similar. As it's available, 551 * someone else can use the KSE if they need it. 552 */ 553 kse_reassign(ke); 554 } 555 } 556 557 void 558 sched_wakeup(struct thread *td) 559 { 560 struct ksegrp *kg; 561 562 kg = td->td_ksegrp; 563 if (kg->kg_slptime > 1) 564 updatepri(kg); 565 kg->kg_slptime = 0; 566 setrunqueue(td); 567 maybe_resched(td); 568 } 569 570 void 571 sched_add(struct kse *ke) 572 { 573 mtx_assert(&sched_lock, MA_OWNED); 574 KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE")); 575 KASSERT((ke->ke_thread->td_kse != NULL), 576 ("runq_add: No KSE on thread")); 577 KASSERT(ke->ke_state != KES_ONRUNQ, 578 ("runq_add: kse %p (%s) already in run queue", ke, 579 ke->ke_proc->p_comm)); 580 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 581 ("runq_add: process swapped out")); 582 ke->ke_ksegrp->kg_runq_kses++; 583 ke->ke_state = KES_ONRUNQ; 584 585 runq_add(&runq, ke); 586 } 587 588 void 589 sched_rem(struct kse *ke) 590 { 591 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 592 ("runq_remove: process swapped out")); 593 KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue")); 594 mtx_assert(&sched_lock, MA_OWNED); 595 596 runq_remove(&runq, ke); 597 ke->ke_state = KES_THREAD; 598 ke->ke_ksegrp->kg_runq_kses--; 599 } 600 601 struct kse * 602 sched_choose(void) 603 { 604 struct kse *ke; 605 606 ke = runq_choose(&runq); 607 608 if (ke != NULL) { 609 runq_remove(&runq, ke); 610 ke->ke_state = KES_THREAD; 611 612 KASSERT((ke->ke_thread != NULL), 613 ("runq_choose: No thread on KSE")); 614 KASSERT((ke->ke_thread->td_kse != NULL), 615 ("runq_choose: No KSE on thread")); 616 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 617 ("runq_choose: process swapped out")); 618 } 619 return (ke); 620 } 621 622 void 623 sched_userret(struct thread *td) 624 { 625 struct ksegrp *kg; 626 /* 627 * XXX we cheat slightly on the locking here to avoid locking in 628 * the usual case. Setting td_priority here is essentially an 629 * incomplete workaround for not setting it properly elsewhere. 630 * Now that some interrupt handlers are threads, not setting it 631 * properly elsewhere can clobber it in the window between setting 632 * it here and returning to user mode, so don't waste time setting 633 * it perfectly here. 634 */ 635 kg = td->td_ksegrp; 636 if (td->td_priority != kg->kg_user_pri) { 637 mtx_lock_spin(&sched_lock); 638 td->td_priority = kg->kg_user_pri; 639 mtx_unlock_spin(&sched_lock); 640 } 641 } 642 643 int 644 sched_sizeof_kse(void) 645 { 646 return (sizeof(struct kse) + sizeof(struct ke_sched)); 647 } 648 int 649 sched_sizeof_ksegrp(void) 650 { 651 return (sizeof(struct ksegrp)); 652 } 653 int 654 sched_sizeof_proc(void) 655 { 656 return (sizeof(struct proc)); 657 } 658 int 659 sched_sizeof_thread(void) 660 { 661 return (sizeof(struct thread)); 662 } 663 664 fixpt_t 665 sched_pctcpu(struct kse *ke) 666 { 667 return (ke->ke_pctcpu); 668 } 669