1 /*- 2 * Copyright (c) 1982, 1986, 1990, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/ktr.h> 42 #include <sys/lock.h> 43 #include <sys/kthread.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sysctl.h> 50 #include <sys/sx.h> 51 52 #define KTR_4BSD 0x0 53 54 /* 55 * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in 56 * the range 100-256 Hz (approximately). 57 */ 58 #define ESTCPULIM(e) \ 59 min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \ 60 RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1) 61 #ifdef SMP 62 #define INVERSE_ESTCPU_WEIGHT (8 * smp_cpus) 63 #else 64 #define INVERSE_ESTCPU_WEIGHT 8 /* 1 / (priorities per estcpu level). */ 65 #endif 66 #define NICE_WEIGHT 1 /* Priorities per nice level. */ 67 68 struct ke_sched { 69 int ske_cpticks; /* (j) Ticks of cpu time. */ 70 struct runq *ske_runq; /* runq the kse is currently on */ 71 }; 72 #define ke_runq ke_sched->ske_runq 73 #define KEF_BOUND KEF_SCHED1 74 75 #define SKE_RUNQ_PCPU(ke) \ 76 ((ke)->ke_runq != 0 && (ke)->ke_runq != &runq) 77 78 /* 79 * KSE_CAN_MIGRATE macro returns true if the kse can migrate between 80 * cpus. 81 */ 82 #define KSE_CAN_MIGRATE(ke) \ 83 ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0) 84 static struct ke_sched ke_sched; 85 86 struct ke_sched *kse0_sched = &ke_sched; 87 struct kg_sched *ksegrp0_sched = NULL; 88 struct p_sched *proc0_sched = NULL; 89 struct td_sched *thread0_sched = NULL; 90 91 static int sched_tdcnt; /* Total runnable threads in the system. */ 92 static int sched_quantum; /* Roundrobin scheduling quantum in ticks. */ 93 #define SCHED_QUANTUM (hz / 10) /* Default sched quantum */ 94 95 static struct callout roundrobin_callout; 96 97 static void setup_runqs(void); 98 static void roundrobin(void *arg); 99 static void schedcpu(void); 100 static void schedcpu_thread(void); 101 static void sched_setup(void *dummy); 102 static void maybe_resched(struct thread *td); 103 static void updatepri(struct ksegrp *kg); 104 static void resetpriority(struct ksegrp *kg); 105 106 static struct kproc_desc sched_kp = { 107 "schedcpu", 108 schedcpu_thread, 109 NULL 110 }; 111 SYSINIT(schedcpu, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, kproc_start, &sched_kp) 112 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL) 113 114 /* 115 * Global run queue. 116 */ 117 static struct runq runq; 118 119 #ifdef SMP 120 /* 121 * Per-CPU run queues 122 */ 123 static struct runq runq_pcpu[MAXCPU]; 124 #endif 125 126 static void 127 setup_runqs(void) 128 { 129 #ifdef SMP 130 int i; 131 132 for (i = 0; i < MAXCPU; ++i) 133 runq_init(&runq_pcpu[i]); 134 #endif 135 136 runq_init(&runq); 137 } 138 139 static int 140 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS) 141 { 142 int error, new_val; 143 144 new_val = sched_quantum * tick; 145 error = sysctl_handle_int(oidp, &new_val, 0, req); 146 if (error != 0 || req->newptr == NULL) 147 return (error); 148 if (new_val < tick) 149 return (EINVAL); 150 sched_quantum = new_val / tick; 151 hogticks = 2 * sched_quantum; 152 return (0); 153 } 154 155 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "SCHED"); 156 157 #define SCHD_NAME "4bsd" 158 #define SCHD_NAME_LEN 4 159 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, SCHD_NAME, SCHD_NAME_LEN, 160 "System is using the 4BSD scheduler"); 161 162 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW, 163 0, sizeof sched_quantum, sysctl_kern_quantum, "I", 164 "Roundrobin scheduling quantum in microseconds"); 165 166 /* 167 * Arrange to reschedule if necessary, taking the priorities and 168 * schedulers into account. 169 */ 170 static void 171 maybe_resched(struct thread *td) 172 { 173 174 mtx_assert(&sched_lock, MA_OWNED); 175 if (td->td_priority < curthread->td_priority && curthread->td_kse) 176 curthread->td_flags |= TDF_NEEDRESCHED; 177 } 178 179 /* 180 * Force switch among equal priority processes every 100ms. 181 * We don't actually need to force a context switch of the current process. 182 * The act of firing the event triggers a context switch to softclock() and 183 * then switching back out again which is equivalent to a preemption, thus 184 * no further work is needed on the local CPU. 185 */ 186 /* ARGSUSED */ 187 static void 188 roundrobin(void *arg) 189 { 190 191 #ifdef SMP 192 mtx_lock_spin(&sched_lock); 193 forward_roundrobin(); 194 mtx_unlock_spin(&sched_lock); 195 #endif 196 197 callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL); 198 } 199 200 /* 201 * Constants for digital decay and forget: 202 * 90% of (kg_estcpu) usage in 5 * loadav time 203 * 95% of (ke_pctcpu) usage in 60 seconds (load insensitive) 204 * Note that, as ps(1) mentions, this can let percentages 205 * total over 100% (I've seen 137.9% for 3 processes). 206 * 207 * Note that schedclock() updates kg_estcpu and p_cpticks asynchronously. 208 * 209 * We wish to decay away 90% of kg_estcpu in (5 * loadavg) seconds. 210 * That is, the system wants to compute a value of decay such 211 * that the following for loop: 212 * for (i = 0; i < (5 * loadavg); i++) 213 * kg_estcpu *= decay; 214 * will compute 215 * kg_estcpu *= 0.1; 216 * for all values of loadavg: 217 * 218 * Mathematically this loop can be expressed by saying: 219 * decay ** (5 * loadavg) ~= .1 220 * 221 * The system computes decay as: 222 * decay = (2 * loadavg) / (2 * loadavg + 1) 223 * 224 * We wish to prove that the system's computation of decay 225 * will always fulfill the equation: 226 * decay ** (5 * loadavg) ~= .1 227 * 228 * If we compute b as: 229 * b = 2 * loadavg 230 * then 231 * decay = b / (b + 1) 232 * 233 * We now need to prove two things: 234 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 235 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 236 * 237 * Facts: 238 * For x close to zero, exp(x) =~ 1 + x, since 239 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 240 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 241 * For x close to zero, ln(1+x) =~ x, since 242 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 243 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 244 * ln(.1) =~ -2.30 245 * 246 * Proof of (1): 247 * Solve (factor)**(power) =~ .1 given power (5*loadav): 248 * solving for factor, 249 * ln(factor) =~ (-2.30/5*loadav), or 250 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 251 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 252 * 253 * Proof of (2): 254 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 255 * solving for power, 256 * power*ln(b/(b+1)) =~ -2.30, or 257 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 258 * 259 * Actual power values for the implemented algorithm are as follows: 260 * loadav: 1 2 3 4 261 * power: 5.68 10.32 14.94 19.55 262 */ 263 264 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 265 #define loadfactor(loadav) (2 * (loadav)) 266 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 267 268 /* decay 95% of `ke_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 269 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 270 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 271 272 /* 273 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 274 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 275 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 276 * 277 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 278 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 279 * 280 * If you don't want to bother with the faster/more-accurate formula, you 281 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 282 * (more general) method of calculating the %age of CPU used by a process. 283 */ 284 #define CCPU_SHIFT 11 285 286 /* 287 * Recompute process priorities, every hz ticks. 288 * MP-safe, called without the Giant mutex. 289 */ 290 /* ARGSUSED */ 291 static void 292 schedcpu(void) 293 { 294 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 295 struct thread *td; 296 struct proc *p; 297 struct kse *ke; 298 struct ksegrp *kg; 299 int awake, realstathz; 300 301 realstathz = stathz ? stathz : hz; 302 sx_slock(&allproc_lock); 303 FOREACH_PROC_IN_SYSTEM(p) { 304 /* 305 * Prevent state changes and protect run queue. 306 */ 307 mtx_lock_spin(&sched_lock); 308 /* 309 * Increment time in/out of memory. We ignore overflow; with 310 * 16-bit int's (remember them?) overflow takes 45 days. 311 */ 312 p->p_swtime++; 313 FOREACH_KSEGRP_IN_PROC(p, kg) { 314 awake = 0; 315 FOREACH_KSE_IN_GROUP(kg, ke) { 316 /* 317 * Increment sleep time (if sleeping). We 318 * ignore overflow, as above. 319 */ 320 /* 321 * The kse slptimes are not touched in wakeup 322 * because the thread may not HAVE a KSE. 323 */ 324 if (ke->ke_state == KES_ONRUNQ) { 325 awake = 1; 326 ke->ke_flags &= ~KEF_DIDRUN; 327 } else if ((ke->ke_state == KES_THREAD) && 328 (TD_IS_RUNNING(ke->ke_thread))) { 329 awake = 1; 330 /* Do not clear KEF_DIDRUN */ 331 } else if (ke->ke_flags & KEF_DIDRUN) { 332 awake = 1; 333 ke->ke_flags &= ~KEF_DIDRUN; 334 } 335 336 /* 337 * ke_pctcpu is only for ps and ttyinfo(). 338 * Do it per kse, and add them up at the end? 339 * XXXKSE 340 */ 341 ke->ke_pctcpu = (ke->ke_pctcpu * ccpu) >> 342 FSHIFT; 343 /* 344 * If the kse has been idle the entire second, 345 * stop recalculating its priority until 346 * it wakes up. 347 */ 348 if (ke->ke_sched->ske_cpticks == 0) 349 continue; 350 #if (FSHIFT >= CCPU_SHIFT) 351 ke->ke_pctcpu += (realstathz == 100) 352 ? ((fixpt_t) ke->ke_sched->ske_cpticks) << 353 (FSHIFT - CCPU_SHIFT) : 354 100 * (((fixpt_t) ke->ke_sched->ske_cpticks) 355 << (FSHIFT - CCPU_SHIFT)) / realstathz; 356 #else 357 ke->ke_pctcpu += ((FSCALE - ccpu) * 358 (ke->ke_sched->ske_cpticks * 359 FSCALE / realstathz)) >> FSHIFT; 360 #endif 361 ke->ke_sched->ske_cpticks = 0; 362 } /* end of kse loop */ 363 /* 364 * If there are ANY running threads in this KSEGRP, 365 * then don't count it as sleeping. 366 */ 367 if (awake) { 368 if (kg->kg_slptime > 1) { 369 /* 370 * In an ideal world, this should not 371 * happen, because whoever woke us 372 * up from the long sleep should have 373 * unwound the slptime and reset our 374 * priority before we run at the stale 375 * priority. Should KASSERT at some 376 * point when all the cases are fixed. 377 */ 378 updatepri(kg); 379 } 380 kg->kg_slptime = 0; 381 } else 382 kg->kg_slptime++; 383 if (kg->kg_slptime > 1) 384 continue; 385 kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu); 386 resetpriority(kg); 387 FOREACH_THREAD_IN_GROUP(kg, td) { 388 if (td->td_priority >= PUSER) { 389 sched_prio(td, kg->kg_user_pri); 390 } 391 } 392 } /* end of ksegrp loop */ 393 mtx_unlock_spin(&sched_lock); 394 } /* end of process loop */ 395 sx_sunlock(&allproc_lock); 396 } 397 398 /* 399 * Main loop for a kthread that executes schedcpu once a second. 400 */ 401 static void 402 schedcpu_thread(void) 403 { 404 int nowake; 405 406 for (;;) { 407 schedcpu(); 408 tsleep(&nowake, curthread->td_priority, "-", hz); 409 } 410 } 411 412 /* 413 * Recalculate the priority of a process after it has slept for a while. 414 * For all load averages >= 1 and max kg_estcpu of 255, sleeping for at 415 * least six times the loadfactor will decay kg_estcpu to zero. 416 */ 417 static void 418 updatepri(struct ksegrp *kg) 419 { 420 register fixpt_t loadfac; 421 register unsigned int newcpu; 422 423 loadfac = loadfactor(averunnable.ldavg[0]); 424 if (kg->kg_slptime > 5 * loadfac) 425 kg->kg_estcpu = 0; 426 else { 427 newcpu = kg->kg_estcpu; 428 kg->kg_slptime--; /* was incremented in schedcpu() */ 429 while (newcpu && --kg->kg_slptime) 430 newcpu = decay_cpu(loadfac, newcpu); 431 kg->kg_estcpu = newcpu; 432 } 433 resetpriority(kg); 434 } 435 436 /* 437 * Compute the priority of a process when running in user mode. 438 * Arrange to reschedule if the resulting priority is better 439 * than that of the current process. 440 */ 441 static void 442 resetpriority(struct ksegrp *kg) 443 { 444 register unsigned int newpriority; 445 struct thread *td; 446 447 if (kg->kg_pri_class == PRI_TIMESHARE) { 448 newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT + 449 NICE_WEIGHT * (kg->kg_proc->p_nice - PRIO_MIN); 450 newpriority = min(max(newpriority, PRI_MIN_TIMESHARE), 451 PRI_MAX_TIMESHARE); 452 kg->kg_user_pri = newpriority; 453 } 454 FOREACH_THREAD_IN_GROUP(kg, td) { 455 maybe_resched(td); /* XXXKSE silly */ 456 } 457 } 458 459 /* ARGSUSED */ 460 static void 461 sched_setup(void *dummy) 462 { 463 setup_runqs(); 464 465 if (sched_quantum == 0) 466 sched_quantum = SCHED_QUANTUM; 467 hogticks = 2 * sched_quantum; 468 469 callout_init(&roundrobin_callout, CALLOUT_MPSAFE); 470 471 /* Kick off timeout driven events by calling first time. */ 472 roundrobin(NULL); 473 474 /* Account for thread0. */ 475 sched_tdcnt++; 476 } 477 478 /* External interfaces start here */ 479 int 480 sched_runnable(void) 481 { 482 #ifdef SMP 483 return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]); 484 #else 485 return runq_check(&runq); 486 #endif 487 } 488 489 int 490 sched_rr_interval(void) 491 { 492 if (sched_quantum == 0) 493 sched_quantum = SCHED_QUANTUM; 494 return (sched_quantum); 495 } 496 497 /* 498 * We adjust the priority of the current process. The priority of 499 * a process gets worse as it accumulates CPU time. The cpu usage 500 * estimator (kg_estcpu) is increased here. resetpriority() will 501 * compute a different priority each time kg_estcpu increases by 502 * INVERSE_ESTCPU_WEIGHT 503 * (until MAXPRI is reached). The cpu usage estimator ramps up 504 * quite quickly when the process is running (linearly), and decays 505 * away exponentially, at a rate which is proportionally slower when 506 * the system is busy. The basic principle is that the system will 507 * 90% forget that the process used a lot of CPU time in 5 * loadav 508 * seconds. This causes the system to favor processes which haven't 509 * run much recently, and to round-robin among other processes. 510 */ 511 void 512 sched_clock(struct thread *td) 513 { 514 struct ksegrp *kg; 515 struct kse *ke; 516 517 mtx_assert(&sched_lock, MA_OWNED); 518 kg = td->td_ksegrp; 519 ke = td->td_kse; 520 521 ke->ke_sched->ske_cpticks++; 522 kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1); 523 if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) { 524 resetpriority(kg); 525 if (td->td_priority >= PUSER) 526 td->td_priority = kg->kg_user_pri; 527 } 528 } 529 530 /* 531 * charge childs scheduling cpu usage to parent. 532 * 533 * XXXKSE assume only one thread & kse & ksegrp keep estcpu in each ksegrp. 534 * Charge it to the ksegrp that did the wait since process estcpu is sum of 535 * all ksegrps, this is strictly as expected. Assume that the child process 536 * aggregated all the estcpu into the 'built-in' ksegrp. 537 */ 538 void 539 sched_exit(struct proc *p, struct proc *p1) 540 { 541 sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1)); 542 sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1)); 543 sched_exit_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1)); 544 } 545 546 void 547 sched_exit_kse(struct kse *ke, struct kse *child) 548 { 549 } 550 551 void 552 sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child) 553 { 554 555 mtx_assert(&sched_lock, MA_OWNED); 556 kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + child->kg_estcpu); 557 } 558 559 void 560 sched_exit_thread(struct thread *td, struct thread *child) 561 { 562 if ((child->td_proc->p_flag & P_NOLOAD) == 0) 563 sched_tdcnt--; 564 } 565 566 void 567 sched_fork(struct proc *p, struct proc *p1) 568 { 569 sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1)); 570 sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1)); 571 sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1)); 572 } 573 574 void 575 sched_fork_kse(struct kse *ke, struct kse *child) 576 { 577 child->ke_sched->ske_cpticks = 0; 578 } 579 580 void 581 sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child) 582 { 583 mtx_assert(&sched_lock, MA_OWNED); 584 child->kg_estcpu = kg->kg_estcpu; 585 } 586 587 void 588 sched_fork_thread(struct thread *td, struct thread *child) 589 { 590 } 591 592 void 593 sched_nice(struct proc *p, int nice) 594 { 595 struct ksegrp *kg; 596 597 PROC_LOCK_ASSERT(p, MA_OWNED); 598 mtx_assert(&sched_lock, MA_OWNED); 599 p->p_nice = nice; 600 FOREACH_KSEGRP_IN_PROC(p, kg) { 601 resetpriority(kg); 602 } 603 } 604 605 void 606 sched_class(struct ksegrp *kg, int class) 607 { 608 mtx_assert(&sched_lock, MA_OWNED); 609 kg->kg_pri_class = class; 610 } 611 612 /* 613 * Adjust the priority of a thread. 614 * This may include moving the thread within the KSEGRP, 615 * changing the assignment of a kse to the thread, 616 * and moving a KSE in the system run queue. 617 */ 618 void 619 sched_prio(struct thread *td, u_char prio) 620 { 621 622 mtx_assert(&sched_lock, MA_OWNED); 623 if (TD_ON_RUNQ(td)) { 624 adjustrunqueue(td, prio); 625 } else { 626 td->td_priority = prio; 627 } 628 } 629 630 void 631 sched_sleep(struct thread *td) 632 { 633 634 mtx_assert(&sched_lock, MA_OWNED); 635 td->td_ksegrp->kg_slptime = 0; 636 td->td_base_pri = td->td_priority; 637 } 638 639 void 640 sched_switch(struct thread *td, struct thread *newtd) 641 { 642 struct kse *ke; 643 struct proc *p; 644 645 ke = td->td_kse; 646 p = td->td_proc; 647 648 mtx_assert(&sched_lock, MA_OWNED); 649 KASSERT((ke->ke_state == KES_THREAD), ("sched_switch: kse state?")); 650 651 if ((p->p_flag & P_NOLOAD) == 0) 652 sched_tdcnt--; 653 if (newtd != NULL && (newtd->td_proc->p_flag & P_NOLOAD) == 0) 654 sched_tdcnt++; 655 td->td_lastcpu = td->td_oncpu; 656 td->td_last_kse = ke; 657 td->td_flags &= ~(TDF_NEEDRESCHED | TDF_OWEPREEMPT); 658 td->td_oncpu = NOCPU; 659 /* 660 * At the last moment, if this thread is still marked RUNNING, 661 * then put it back on the run queue as it has not been suspended 662 * or stopped or any thing else similar. We never put the idle 663 * threads on the run queue, however. 664 */ 665 if (td == PCPU_GET(idlethread)) 666 TD_SET_CAN_RUN(td); 667 else if (TD_IS_RUNNING(td)) { 668 /* Put us back on the run queue (kse and all). */ 669 setrunqueue(td); 670 } else if (p->p_flag & P_SA) { 671 /* 672 * We will not be on the run queue. So we must be 673 * sleeping or similar. As it's available, 674 * someone else can use the KSE if they need it. 675 */ 676 kse_reassign(ke); 677 } 678 if (newtd == NULL) 679 newtd = choosethread(); 680 if (td != newtd) 681 cpu_switch(td, newtd); 682 sched_lock.mtx_lock = (uintptr_t)td; 683 td->td_oncpu = PCPU_GET(cpuid); 684 } 685 686 void 687 sched_wakeup(struct thread *td) 688 { 689 struct ksegrp *kg; 690 691 mtx_assert(&sched_lock, MA_OWNED); 692 kg = td->td_ksegrp; 693 if (kg->kg_slptime > 1) 694 updatepri(kg); 695 kg->kg_slptime = 0; 696 setrunqueue(td); 697 maybe_resched(td); 698 } 699 700 void 701 sched_add(struct thread *td) 702 { 703 struct kse *ke; 704 705 ke = td->td_kse; 706 mtx_assert(&sched_lock, MA_OWNED); 707 KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE")); 708 KASSERT((ke->ke_thread->td_kse != NULL), 709 ("sched_add: No KSE on thread")); 710 KASSERT(ke->ke_state != KES_ONRUNQ, 711 ("sched_add: kse %p (%s) already in run queue", ke, 712 ke->ke_proc->p_comm)); 713 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 714 ("sched_add: process swapped out")); 715 716 #ifdef SMP 717 /* 718 * Only try to preempt if the thread is unpinned or pinned to the 719 * current CPU. 720 */ 721 if (KSE_CAN_MIGRATE(ke) || ke->ke_runq == &runq_pcpu[PCPU_GET(cpuid)]) 722 #endif 723 if (maybe_preempt(td)) 724 return; 725 ke->ke_ksegrp->kg_runq_kses++; 726 ke->ke_state = KES_ONRUNQ; 727 728 #ifdef SMP 729 if (KSE_CAN_MIGRATE(ke)) { 730 CTR1(KTR_4BSD, "adding kse:%p to gbl runq", ke); 731 ke->ke_runq = &runq; 732 } else { 733 CTR1(KTR_4BSD, "adding kse:%p to pcpu runq", ke); 734 if (!SKE_RUNQ_PCPU(ke)) 735 ke->ke_runq = &runq_pcpu[PCPU_GET(cpuid)]; 736 } 737 #else 738 ke->ke_runq = &runq; 739 #endif 740 if ((td->td_proc->p_flag & P_NOLOAD) == 0) 741 sched_tdcnt++; 742 runq_add(ke->ke_runq, ke); 743 } 744 745 void 746 sched_rem(struct thread *td) 747 { 748 struct kse *ke; 749 750 ke = td->td_kse; 751 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 752 ("sched_rem: process swapped out")); 753 KASSERT((ke->ke_state == KES_ONRUNQ), 754 ("sched_rem: KSE not on run queue")); 755 mtx_assert(&sched_lock, MA_OWNED); 756 757 if ((td->td_proc->p_flag & P_NOLOAD) == 0) 758 sched_tdcnt--; 759 runq_remove(ke->ke_sched->ske_runq, ke); 760 761 ke->ke_state = KES_THREAD; 762 ke->ke_ksegrp->kg_runq_kses--; 763 } 764 765 struct kse * 766 sched_choose(void) 767 { 768 struct kse *ke; 769 struct runq *rq; 770 771 #ifdef SMP 772 struct kse *kecpu; 773 774 rq = &runq; 775 ke = runq_choose(&runq); 776 kecpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]); 777 778 if (ke == NULL || 779 (kecpu != NULL && 780 kecpu->ke_thread->td_priority < ke->ke_thread->td_priority)) { 781 CTR2(KTR_4BSD, "choosing kse %p from pcpu runq %d", kecpu, 782 PCPU_GET(cpuid)); 783 ke = kecpu; 784 rq = &runq_pcpu[PCPU_GET(cpuid)]; 785 } else { 786 CTR1(KTR_4BSD, "choosing kse %p from main runq", ke); 787 } 788 789 #else 790 rq = &runq; 791 ke = runq_choose(&runq); 792 #endif 793 794 if (ke != NULL) { 795 runq_remove(rq, ke); 796 ke->ke_state = KES_THREAD; 797 798 KASSERT((ke->ke_thread != NULL), 799 ("sched_choose: No thread on KSE")); 800 KASSERT((ke->ke_thread->td_kse != NULL), 801 ("sched_choose: No KSE on thread")); 802 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 803 ("sched_choose: process swapped out")); 804 } 805 return (ke); 806 } 807 808 void 809 sched_userret(struct thread *td) 810 { 811 struct ksegrp *kg; 812 /* 813 * XXX we cheat slightly on the locking here to avoid locking in 814 * the usual case. Setting td_priority here is essentially an 815 * incomplete workaround for not setting it properly elsewhere. 816 * Now that some interrupt handlers are threads, not setting it 817 * properly elsewhere can clobber it in the window between setting 818 * it here and returning to user mode, so don't waste time setting 819 * it perfectly here. 820 */ 821 kg = td->td_ksegrp; 822 if (td->td_priority != kg->kg_user_pri) { 823 mtx_lock_spin(&sched_lock); 824 td->td_priority = kg->kg_user_pri; 825 mtx_unlock_spin(&sched_lock); 826 } 827 } 828 829 void 830 sched_bind(struct thread *td, int cpu) 831 { 832 struct kse *ke; 833 834 mtx_assert(&sched_lock, MA_OWNED); 835 KASSERT(TD_IS_RUNNING(td), 836 ("sched_bind: cannot bind non-running thread")); 837 838 ke = td->td_kse; 839 840 ke->ke_flags |= KEF_BOUND; 841 #ifdef SMP 842 ke->ke_runq = &runq_pcpu[cpu]; 843 if (PCPU_GET(cpuid) == cpu) 844 return; 845 846 ke->ke_state = KES_THREAD; 847 848 mi_switch(SW_VOL, NULL); 849 #endif 850 } 851 852 void 853 sched_unbind(struct thread* td) 854 { 855 mtx_assert(&sched_lock, MA_OWNED); 856 td->td_kse->ke_flags &= ~KEF_BOUND; 857 } 858 859 int 860 sched_load(void) 861 { 862 return (sched_tdcnt); 863 } 864 865 int 866 sched_sizeof_kse(void) 867 { 868 return (sizeof(struct kse) + sizeof(struct ke_sched)); 869 } 870 int 871 sched_sizeof_ksegrp(void) 872 { 873 return (sizeof(struct ksegrp)); 874 } 875 int 876 sched_sizeof_proc(void) 877 { 878 return (sizeof(struct proc)); 879 } 880 int 881 sched_sizeof_thread(void) 882 { 883 return (sizeof(struct thread)); 884 } 885 886 fixpt_t 887 sched_pctcpu(struct thread *td) 888 { 889 struct kse *ke; 890 891 ke = td->td_kse; 892 if (ke == NULL) 893 ke = td->td_last_kse; 894 if (ke) 895 return (ke->ke_pctcpu); 896 897 return (0); 898 } 899