xref: /freebsd/sys/kern/sched_4bsd.c (revision 3193579b66fd7067f898dbc54bdea81a0e6f9bd0)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/ktr.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/smp.h>
52 #include <sys/sysctl.h>
53 #include <sys/sx.h>
54 
55 /*
56  * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
57  * the range 100-256 Hz (approximately).
58  */
59 #define	ESTCPULIM(e) \
60     min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
61     RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
62 #ifdef SMP
63 #define	INVERSE_ESTCPU_WEIGHT	(8 * smp_cpus)
64 #else
65 #define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
66 #endif
67 #define	NICE_WEIGHT		1	/* Priorities per nice level. */
68 
69 struct ke_sched {
70 	int	ske_cpticks;	/* (j) Ticks of cpu time. */
71 };
72 
73 static struct ke_sched ke_sched;
74 
75 struct ke_sched *kse0_sched = &ke_sched;
76 struct kg_sched *ksegrp0_sched = NULL;
77 struct p_sched *proc0_sched = NULL;
78 struct td_sched *thread0_sched = NULL;
79 
80 static int	sched_quantum;	/* Roundrobin scheduling quantum in ticks. */
81 #define	SCHED_QUANTUM	(hz / 10)	/* Default sched quantum */
82 
83 static struct callout schedcpu_callout;
84 static struct callout roundrobin_callout;
85 
86 static void	roundrobin(void *arg);
87 static void	schedcpu(void *arg);
88 static void	sched_setup(void *dummy);
89 static void	maybe_resched(struct thread *td);
90 static void	updatepri(struct ksegrp *kg);
91 static void	resetpriority(struct ksegrp *kg);
92 
93 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
94 
95 /*
96  * Global run queue.
97  */
98 static struct runq runq;
99 SYSINIT(runq, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, runq_init, &runq)
100 
101 static int
102 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
103 {
104 	int error, new_val;
105 
106 	new_val = sched_quantum * tick;
107 	error = sysctl_handle_int(oidp, &new_val, 0, req);
108         if (error != 0 || req->newptr == NULL)
109 		return (error);
110 	if (new_val < tick)
111 		return (EINVAL);
112 	sched_quantum = new_val / tick;
113 	hogticks = 2 * sched_quantum;
114 	return (0);
115 }
116 
117 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
118 	0, sizeof sched_quantum, sysctl_kern_quantum, "I",
119 	"Roundrobin scheduling quantum in microseconds");
120 
121 /*
122  * Arrange to reschedule if necessary, taking the priorities and
123  * schedulers into account.
124  */
125 static void
126 maybe_resched(struct thread *td)
127 {
128 
129 	mtx_assert(&sched_lock, MA_OWNED);
130 	if (td->td_priority < curthread->td_priority && curthread->td_kse)
131 		curthread->td_flags |= TDF_NEEDRESCHED;
132 }
133 
134 /*
135  * Force switch among equal priority processes every 100ms.
136  * We don't actually need to force a context switch of the current process.
137  * The act of firing the event triggers a context switch to softclock() and
138  * then switching back out again which is equivalent to a preemption, thus
139  * no further work is needed on the local CPU.
140  */
141 /* ARGSUSED */
142 static void
143 roundrobin(void *arg)
144 {
145 
146 #ifdef SMP
147 	mtx_lock_spin(&sched_lock);
148 	forward_roundrobin();
149 	mtx_unlock_spin(&sched_lock);
150 #endif
151 
152 	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
153 }
154 
155 /*
156  * Constants for digital decay and forget:
157  *	90% of (kg_estcpu) usage in 5 * loadav time
158  *	95% of (ke_pctcpu) usage in 60 seconds (load insensitive)
159  *          Note that, as ps(1) mentions, this can let percentages
160  *          total over 100% (I've seen 137.9% for 3 processes).
161  *
162  * Note that schedclock() updates kg_estcpu and p_cpticks asynchronously.
163  *
164  * We wish to decay away 90% of kg_estcpu in (5 * loadavg) seconds.
165  * That is, the system wants to compute a value of decay such
166  * that the following for loop:
167  * 	for (i = 0; i < (5 * loadavg); i++)
168  * 		kg_estcpu *= decay;
169  * will compute
170  * 	kg_estcpu *= 0.1;
171  * for all values of loadavg:
172  *
173  * Mathematically this loop can be expressed by saying:
174  * 	decay ** (5 * loadavg) ~= .1
175  *
176  * The system computes decay as:
177  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
178  *
179  * We wish to prove that the system's computation of decay
180  * will always fulfill the equation:
181  * 	decay ** (5 * loadavg) ~= .1
182  *
183  * If we compute b as:
184  * 	b = 2 * loadavg
185  * then
186  * 	decay = b / (b + 1)
187  *
188  * We now need to prove two things:
189  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
190  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
191  *
192  * Facts:
193  *         For x close to zero, exp(x) =~ 1 + x, since
194  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
195  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
196  *         For x close to zero, ln(1+x) =~ x, since
197  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
198  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
199  *         ln(.1) =~ -2.30
200  *
201  * Proof of (1):
202  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
203  *	solving for factor,
204  *      ln(factor) =~ (-2.30/5*loadav), or
205  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
206  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
207  *
208  * Proof of (2):
209  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
210  *	solving for power,
211  *      power*ln(b/(b+1)) =~ -2.30, or
212  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
213  *
214  * Actual power values for the implemented algorithm are as follows:
215  *      loadav: 1       2       3       4
216  *      power:  5.68    10.32   14.94   19.55
217  */
218 
219 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
220 #define	loadfactor(loadav)	(2 * (loadav))
221 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
222 
223 /* decay 95% of `ke_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
224 static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
225 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
226 
227 /*
228  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
229  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
230  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
231  *
232  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
233  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
234  *
235  * If you don't want to bother with the faster/more-accurate formula, you
236  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
237  * (more general) method of calculating the %age of CPU used by a process.
238  */
239 #define	CCPU_SHIFT	11
240 
241 /*
242  * Recompute process priorities, every hz ticks.
243  * MP-safe, called without the Giant mutex.
244  */
245 /* ARGSUSED */
246 static void
247 schedcpu(void *arg)
248 {
249 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
250 	struct thread *td;
251 	struct proc *p;
252 	struct kse *ke;
253 	struct ksegrp *kg;
254 	int awake, realstathz;
255 
256 	realstathz = stathz ? stathz : hz;
257 	sx_slock(&allproc_lock);
258 	FOREACH_PROC_IN_SYSTEM(p) {
259 		/*
260 		 * Prevent state changes and protect run queue.
261 		 */
262 		mtx_lock_spin(&sched_lock);
263 		/*
264 		 * Increment time in/out of memory.  We ignore overflow; with
265 		 * 16-bit int's (remember them?) overflow takes 45 days.
266 		 */
267 		p->p_swtime++;
268 		FOREACH_KSEGRP_IN_PROC(p, kg) {
269 			awake = 0;
270 			FOREACH_KSE_IN_GROUP(kg, ke) {
271 				/*
272 				 * Increment sleep time (if sleeping).  We
273 				 * ignore overflow, as above.
274 				 */
275 				/*
276 				 * The kse slptimes are not touched in wakeup
277 				 * because the thread may not HAVE a KSE.
278 				 */
279 				if (ke->ke_state == KES_ONRUNQ) {
280 					awake = 1;
281 					ke->ke_flags &= ~KEF_DIDRUN;
282 				} else if ((ke->ke_state == KES_THREAD) &&
283 				    (TD_IS_RUNNING(ke->ke_thread))) {
284 					awake = 1;
285 					/* Do not clear KEF_DIDRUN */
286 				} else if (ke->ke_flags & KEF_DIDRUN) {
287 					awake = 1;
288 					ke->ke_flags &= ~KEF_DIDRUN;
289 				}
290 
291 				/*
292 				 * ke_pctcpu is only for ps and ttyinfo().
293 				 * Do it per kse, and add them up at the end?
294 				 * XXXKSE
295 				 */
296 				ke->ke_pctcpu = (ke->ke_pctcpu * ccpu) >>
297 				    FSHIFT;
298 				/*
299 				 * If the kse has been idle the entire second,
300 				 * stop recalculating its priority until
301 				 * it wakes up.
302 				 */
303 				if (ke->ke_sched->ske_cpticks == 0)
304 					continue;
305 #if	(FSHIFT >= CCPU_SHIFT)
306 				ke->ke_pctcpu += (realstathz == 100)
307 				    ? ((fixpt_t) ke->ke_sched->ske_cpticks) <<
308 				    (FSHIFT - CCPU_SHIFT) :
309 				    100 * (((fixpt_t) ke->ke_sched->ske_cpticks)
310 				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
311 #else
312 				ke->ke_pctcpu += ((FSCALE - ccpu) *
313 				    (ke->ke_sched->ske_cpticks *
314 				    FSCALE / realstathz)) >> FSHIFT;
315 #endif
316 				ke->ke_sched->ske_cpticks = 0;
317 			} /* end of kse loop */
318 			/*
319 			 * If there are ANY running threads in this KSEGRP,
320 			 * then don't count it as sleeping.
321 			 */
322 			if (awake) {
323 				if (kg->kg_slptime > 1) {
324 					/*
325 					 * In an ideal world, this should not
326 					 * happen, because whoever woke us
327 					 * up from the long sleep should have
328 					 * unwound the slptime and reset our
329 					 * priority before we run at the stale
330 					 * priority.  Should KASSERT at some
331 					 * point when all the cases are fixed.
332 					 */
333 					updatepri(kg);
334 				}
335 				kg->kg_slptime = 0;
336 			} else
337 				kg->kg_slptime++;
338 			if (kg->kg_slptime > 1)
339 				continue;
340 			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
341 		      	resetpriority(kg);
342 			FOREACH_THREAD_IN_GROUP(kg, td) {
343 				if (td->td_priority >= PUSER) {
344 					sched_prio(td, kg->kg_user_pri);
345 				}
346 			}
347 		} /* end of ksegrp loop */
348 		mtx_unlock_spin(&sched_lock);
349 	} /* end of process loop */
350 	sx_sunlock(&allproc_lock);
351 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
352 }
353 
354 /*
355  * Recalculate the priority of a process after it has slept for a while.
356  * For all load averages >= 1 and max kg_estcpu of 255, sleeping for at
357  * least six times the loadfactor will decay kg_estcpu to zero.
358  */
359 static void
360 updatepri(struct ksegrp *kg)
361 {
362 	register fixpt_t loadfac;
363 	register unsigned int newcpu;
364 
365 	loadfac = loadfactor(averunnable.ldavg[0]);
366 	if (kg->kg_slptime > 5 * loadfac)
367 		kg->kg_estcpu = 0;
368 	else {
369 		newcpu = kg->kg_estcpu;
370 		kg->kg_slptime--;	/* was incremented in schedcpu() */
371 		while (newcpu && --kg->kg_slptime)
372 			newcpu = decay_cpu(loadfac, newcpu);
373 		kg->kg_estcpu = newcpu;
374 	}
375 	resetpriority(kg);
376 }
377 
378 /*
379  * Compute the priority of a process when running in user mode.
380  * Arrange to reschedule if the resulting priority is better
381  * than that of the current process.
382  */
383 static void
384 resetpriority(struct ksegrp *kg)
385 {
386 	register unsigned int newpriority;
387 	struct thread *td;
388 
389 	if (kg->kg_pri_class == PRI_TIMESHARE) {
390 		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
391 		    NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
392 		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
393 		    PRI_MAX_TIMESHARE);
394 		kg->kg_user_pri = newpriority;
395 	}
396 	FOREACH_THREAD_IN_GROUP(kg, td) {
397 		maybe_resched(td);			/* XXXKSE silly */
398 	}
399 }
400 
401 /* ARGSUSED */
402 static void
403 sched_setup(void *dummy)
404 {
405 
406 	if (sched_quantum == 0)
407 		sched_quantum = SCHED_QUANTUM;
408 	hogticks = 2 * sched_quantum;
409 
410 	callout_init(&schedcpu_callout, CALLOUT_MPSAFE);
411 	callout_init(&roundrobin_callout, 0);
412 
413 	/* Kick off timeout driven events by calling first time. */
414 	roundrobin(NULL);
415 	schedcpu(NULL);
416 }
417 
418 /* External interfaces start here */
419 int
420 sched_runnable(void)
421 {
422         return runq_check(&runq);
423 }
424 
425 int
426 sched_rr_interval(void)
427 {
428 	if (sched_quantum == 0)
429 		sched_quantum = SCHED_QUANTUM;
430 	return (sched_quantum);
431 }
432 
433 /*
434  * We adjust the priority of the current process.  The priority of
435  * a process gets worse as it accumulates CPU time.  The cpu usage
436  * estimator (kg_estcpu) is increased here.  resetpriority() will
437  * compute a different priority each time kg_estcpu increases by
438  * INVERSE_ESTCPU_WEIGHT
439  * (until MAXPRI is reached).  The cpu usage estimator ramps up
440  * quite quickly when the process is running (linearly), and decays
441  * away exponentially, at a rate which is proportionally slower when
442  * the system is busy.  The basic principle is that the system will
443  * 90% forget that the process used a lot of CPU time in 5 * loadav
444  * seconds.  This causes the system to favor processes which haven't
445  * run much recently, and to round-robin among other processes.
446  */
447 void
448 sched_clock(struct thread *td)
449 {
450 	struct ksegrp *kg;
451 	struct kse *ke;
452 
453 	mtx_assert(&sched_lock, MA_OWNED);
454 	kg = td->td_ksegrp;
455 	ke = td->td_kse;
456 
457 	ke->ke_sched->ske_cpticks++;
458 	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
459 	if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
460 		resetpriority(kg);
461 		if (td->td_priority >= PUSER)
462 			td->td_priority = kg->kg_user_pri;
463 	}
464 }
465 
466 /*
467  * charge childs scheduling cpu usage to parent.
468  *
469  * XXXKSE assume only one thread & kse & ksegrp keep estcpu in each ksegrp.
470  * Charge it to the ksegrp that did the wait since process estcpu is sum of
471  * all ksegrps, this is strictly as expected.  Assume that the child process
472  * aggregated all the estcpu into the 'built-in' ksegrp.
473  */
474 void
475 sched_exit(struct proc *p, struct proc *p1)
476 {
477 	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
478 	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
479 	sched_exit_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
480 }
481 
482 void
483 sched_exit_kse(struct kse *ke, struct kse *child)
484 {
485 }
486 
487 void
488 sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
489 {
490 
491 	mtx_assert(&sched_lock, MA_OWNED);
492 	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + child->kg_estcpu);
493 }
494 
495 void
496 sched_exit_thread(struct thread *td, struct thread *child)
497 {
498 }
499 
500 void
501 sched_fork(struct proc *p, struct proc *p1)
502 {
503 	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
504 	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
505 	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
506 }
507 
508 void
509 sched_fork_kse(struct kse *ke, struct kse *child)
510 {
511 	child->ke_sched->ske_cpticks = 0;
512 }
513 
514 void
515 sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
516 {
517 	mtx_assert(&sched_lock, MA_OWNED);
518 	child->kg_estcpu = kg->kg_estcpu;
519 }
520 
521 void
522 sched_fork_thread(struct thread *td, struct thread *child)
523 {
524 }
525 
526 void
527 sched_nice(struct ksegrp *kg, int nice)
528 {
529 
530 	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
531 	mtx_assert(&sched_lock, MA_OWNED);
532 	kg->kg_nice = nice;
533 	resetpriority(kg);
534 }
535 
536 void
537 sched_class(struct ksegrp *kg, int class)
538 {
539 	mtx_assert(&sched_lock, MA_OWNED);
540 	kg->kg_pri_class = class;
541 }
542 
543 /*
544  * Adjust the priority of a thread.
545  * This may include moving the thread within the KSEGRP,
546  * changing the assignment of a kse to the thread,
547  * and moving a KSE in the system run queue.
548  */
549 void
550 sched_prio(struct thread *td, u_char prio)
551 {
552 
553 	mtx_assert(&sched_lock, MA_OWNED);
554 	if (TD_ON_RUNQ(td)) {
555 		adjustrunqueue(td, prio);
556 	} else {
557 		td->td_priority = prio;
558 	}
559 }
560 
561 void
562 sched_sleep(struct thread *td, u_char prio)
563 {
564 
565 	mtx_assert(&sched_lock, MA_OWNED);
566 	td->td_ksegrp->kg_slptime = 0;
567 	td->td_priority = prio;
568 }
569 
570 void
571 sched_switch(struct thread *td)
572 {
573 	struct thread *newtd;
574 	struct kse *ke;
575 	struct proc *p;
576 
577 	ke = td->td_kse;
578 	p = td->td_proc;
579 
580 	mtx_assert(&sched_lock, MA_OWNED);
581 	KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?"));
582 
583 	td->td_lastcpu = td->td_oncpu;
584 	td->td_last_kse = ke;
585 	td->td_oncpu = NOCPU;
586 	td->td_flags &= ~TDF_NEEDRESCHED;
587 	/*
588 	 * At the last moment, if this thread is still marked RUNNING,
589 	 * then put it back on the run queue as it has not been suspended
590 	 * or stopped or any thing else similar.
591 	 */
592 	if (TD_IS_RUNNING(td)) {
593 		/* Put us back on the run queue (kse and all). */
594 		setrunqueue(td);
595 	} else if (p->p_flag & P_SA) {
596 		/*
597 		 * We will not be on the run queue. So we must be
598 		 * sleeping or similar. As it's available,
599 		 * someone else can use the KSE if they need it.
600 		 */
601 		kse_reassign(ke);
602 	}
603 	newtd = choosethread();
604 	if (td != newtd)
605 		cpu_switch(td, newtd);
606 	sched_lock.mtx_lock = (uintptr_t)td;
607 	td->td_oncpu = PCPU_GET(cpuid);
608 }
609 
610 void
611 sched_wakeup(struct thread *td)
612 {
613 	struct ksegrp *kg;
614 
615 	mtx_assert(&sched_lock, MA_OWNED);
616 	kg = td->td_ksegrp;
617 	if (kg->kg_slptime > 1)
618 		updatepri(kg);
619 	kg->kg_slptime = 0;
620 	setrunqueue(td);
621 	maybe_resched(td);
622 }
623 
624 void
625 sched_add(struct thread *td)
626 {
627 	struct kse *ke;
628 
629 	ke = td->td_kse;
630 	mtx_assert(&sched_lock, MA_OWNED);
631 	KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE"));
632 	KASSERT((ke->ke_thread->td_kse != NULL),
633 	    ("runq_add: No KSE on thread"));
634 	KASSERT(ke->ke_state != KES_ONRUNQ,
635 	    ("runq_add: kse %p (%s) already in run queue", ke,
636 	    ke->ke_proc->p_comm));
637 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
638 	    ("runq_add: process swapped out"));
639 	ke->ke_ksegrp->kg_runq_kses++;
640 	ke->ke_state = KES_ONRUNQ;
641 
642 	runq_add(&runq, ke);
643 }
644 
645 void
646 sched_rem(struct thread *td)
647 {
648 	struct kse *ke;
649 
650 	ke = td->td_kse;
651 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
652 	    ("runq_remove: process swapped out"));
653 	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
654 	mtx_assert(&sched_lock, MA_OWNED);
655 
656 	runq_remove(&runq, ke);
657 	ke->ke_state = KES_THREAD;
658 	ke->ke_ksegrp->kg_runq_kses--;
659 }
660 
661 struct kse *
662 sched_choose(void)
663 {
664 	struct kse *ke;
665 
666 	ke = runq_choose(&runq);
667 
668 	if (ke != NULL) {
669 		runq_remove(&runq, ke);
670 		ke->ke_state = KES_THREAD;
671 
672 		KASSERT((ke->ke_thread != NULL),
673 		    ("runq_choose: No thread on KSE"));
674 		KASSERT((ke->ke_thread->td_kse != NULL),
675 		    ("runq_choose: No KSE on thread"));
676 		KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
677 		    ("runq_choose: process swapped out"));
678 	}
679 	return (ke);
680 }
681 
682 void
683 sched_userret(struct thread *td)
684 {
685 	struct ksegrp *kg;
686 	/*
687 	 * XXX we cheat slightly on the locking here to avoid locking in
688 	 * the usual case.  Setting td_priority here is essentially an
689 	 * incomplete workaround for not setting it properly elsewhere.
690 	 * Now that some interrupt handlers are threads, not setting it
691 	 * properly elsewhere can clobber it in the window between setting
692 	 * it here and returning to user mode, so don't waste time setting
693 	 * it perfectly here.
694 	 */
695 	kg = td->td_ksegrp;
696 	if (td->td_priority != kg->kg_user_pri) {
697 		mtx_lock_spin(&sched_lock);
698 		td->td_priority = kg->kg_user_pri;
699 		mtx_unlock_spin(&sched_lock);
700 	}
701 }
702 
703 int
704 sched_sizeof_kse(void)
705 {
706 	return (sizeof(struct kse) + sizeof(struct ke_sched));
707 }
708 int
709 sched_sizeof_ksegrp(void)
710 {
711 	return (sizeof(struct ksegrp));
712 }
713 int
714 sched_sizeof_proc(void)
715 {
716 	return (sizeof(struct proc));
717 }
718 int
719 sched_sizeof_thread(void)
720 {
721 	return (sizeof(struct thread));
722 }
723 
724 fixpt_t
725 sched_pctcpu(struct thread *td)
726 {
727 	struct kse *ke;
728 
729 	ke = td->td_kse;
730 	if (ke == NULL)
731 		ke = td->td_last_kse;
732 	if (ke)
733 		return (ke->ke_pctcpu);
734 
735 	return (0);
736 }
737