xref: /freebsd/sys/kern/sched_4bsd.c (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_hwpmc_hooks.h"
41 #include "opt_sched.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/cpuset.h>
46 #include <sys/kernel.h>
47 #include <sys/ktr.h>
48 #include <sys/lock.h>
49 #include <sys/kthread.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/sdt.h>
55 #include <sys/smp.h>
56 #include <sys/sysctl.h>
57 #include <sys/sx.h>
58 #include <sys/turnstile.h>
59 #include <sys/umtx.h>
60 #include <machine/pcb.h>
61 #include <machine/smp.h>
62 
63 #ifdef HWPMC_HOOKS
64 #include <sys/pmckern.h>
65 #endif
66 
67 #ifdef KDTRACE_HOOKS
68 #include <sys/dtrace_bsd.h>
69 int __read_mostly		dtrace_vtime_active;
70 dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
71 #endif
72 
73 /*
74  * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
75  * the range 100-256 Hz (approximately).
76  */
77 #define	ESTCPULIM(e) \
78     min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
79     RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
80 #ifdef SMP
81 #define	INVERSE_ESTCPU_WEIGHT	(8 * smp_cpus)
82 #else
83 #define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
84 #endif
85 #define	NICE_WEIGHT		1	/* Priorities per nice level. */
86 
87 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
88 
89 /*
90  * The schedulable entity that runs a context.
91  * This is  an extension to the thread structure and is tailored to
92  * the requirements of this scheduler.
93  * All fields are protected by the scheduler lock.
94  */
95 struct td_sched {
96 	fixpt_t		ts_pctcpu;	/* %cpu during p_swtime. */
97 	u_int		ts_estcpu;	/* Estimated cpu utilization. */
98 	int		ts_cpticks;	/* Ticks of cpu time. */
99 	int		ts_slptime;	/* Seconds !RUNNING. */
100 	int		ts_slice;	/* Remaining part of time slice. */
101 	int		ts_flags;
102 	struct runq	*ts_runq;	/* runq the thread is currently on */
103 #ifdef KTR
104 	char		ts_name[TS_NAME_LEN];
105 #endif
106 };
107 
108 /* flags kept in td_flags */
109 #define TDF_DIDRUN	TDF_SCHED0	/* thread actually ran. */
110 #define TDF_BOUND	TDF_SCHED1	/* Bound to one CPU. */
111 #define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
112 
113 /* flags kept in ts_flags */
114 #define	TSF_AFFINITY	0x0001		/* Has a non-"full" CPU set. */
115 
116 #define SKE_RUNQ_PCPU(ts)						\
117     ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
118 
119 #define	THREAD_CAN_SCHED(td, cpu)	\
120     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
121 
122 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
123     sizeof(struct thread0_storage),
124     "increase struct thread0_storage.t0st_sched size");
125 
126 static struct mtx sched_lock;
127 
128 static int	realstathz = 127; /* stathz is sometimes 0 and run off of hz. */
129 static int	sched_tdcnt;	/* Total runnable threads in the system. */
130 static int	sched_slice = 12; /* Thread run time before rescheduling. */
131 
132 static void	setup_runqs(void);
133 static void	schedcpu(void);
134 static void	schedcpu_thread(void);
135 static void	sched_priority(struct thread *td, u_char prio);
136 static void	sched_setup(void *dummy);
137 static void	maybe_resched(struct thread *td);
138 static void	updatepri(struct thread *td);
139 static void	resetpriority(struct thread *td);
140 static void	resetpriority_thread(struct thread *td);
141 #ifdef SMP
142 static int	sched_pickcpu(struct thread *td);
143 static int	forward_wakeup(int cpunum);
144 static void	kick_other_cpu(int pri, int cpuid);
145 #endif
146 
147 static struct kproc_desc sched_kp = {
148         "schedcpu",
149         schedcpu_thread,
150         NULL
151 };
152 SYSINIT(schedcpu, SI_SUB_LAST, SI_ORDER_FIRST, kproc_start,
153     &sched_kp);
154 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
155 
156 static void sched_initticks(void *dummy);
157 SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
158     NULL);
159 
160 /*
161  * Global run queue.
162  */
163 static struct runq runq;
164 
165 #ifdef SMP
166 /*
167  * Per-CPU run queues
168  */
169 static struct runq runq_pcpu[MAXCPU];
170 long runq_length[MAXCPU];
171 
172 static cpuset_t idle_cpus_mask;
173 #endif
174 
175 struct pcpuidlestat {
176 	u_int idlecalls;
177 	u_int oldidlecalls;
178 };
179 DPCPU_DEFINE_STATIC(struct pcpuidlestat, idlestat);
180 
181 static void
182 setup_runqs(void)
183 {
184 #ifdef SMP
185 	int i;
186 
187 	for (i = 0; i < MAXCPU; ++i)
188 		runq_init(&runq_pcpu[i]);
189 #endif
190 
191 	runq_init(&runq);
192 }
193 
194 static int
195 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
196 {
197 	int error, new_val, period;
198 
199 	period = 1000000 / realstathz;
200 	new_val = period * sched_slice;
201 	error = sysctl_handle_int(oidp, &new_val, 0, req);
202 	if (error != 0 || req->newptr == NULL)
203 		return (error);
204 	if (new_val <= 0)
205 		return (EINVAL);
206 	sched_slice = imax(1, (new_val + period / 2) / period);
207 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
208 	    realstathz);
209 	return (0);
210 }
211 
212 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler");
213 
214 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
215     "Scheduler name");
216 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
217     NULL, 0, sysctl_kern_quantum, "I",
218     "Quantum for timeshare threads in microseconds");
219 SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
220     "Quantum for timeshare threads in stathz ticks");
221 #ifdef SMP
222 /* Enable forwarding of wakeups to all other cpus */
223 static SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL,
224     "Kernel SMP");
225 
226 static int runq_fuzz = 1;
227 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
228 
229 static int forward_wakeup_enabled = 1;
230 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
231 	   &forward_wakeup_enabled, 0,
232 	   "Forwarding of wakeup to idle CPUs");
233 
234 static int forward_wakeups_requested = 0;
235 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
236 	   &forward_wakeups_requested, 0,
237 	   "Requests for Forwarding of wakeup to idle CPUs");
238 
239 static int forward_wakeups_delivered = 0;
240 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
241 	   &forward_wakeups_delivered, 0,
242 	   "Completed Forwarding of wakeup to idle CPUs");
243 
244 static int forward_wakeup_use_mask = 1;
245 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
246 	   &forward_wakeup_use_mask, 0,
247 	   "Use the mask of idle cpus");
248 
249 static int forward_wakeup_use_loop = 0;
250 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
251 	   &forward_wakeup_use_loop, 0,
252 	   "Use a loop to find idle cpus");
253 
254 #endif
255 #if 0
256 static int sched_followon = 0;
257 SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
258 	   &sched_followon, 0,
259 	   "allow threads to share a quantum");
260 #endif
261 
262 SDT_PROVIDER_DEFINE(sched);
263 
264 SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
265     "struct proc *", "uint8_t");
266 SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
267     "struct proc *", "void *");
268 SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
269     "struct proc *", "void *", "int");
270 SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
271     "struct proc *", "uint8_t", "struct thread *");
272 SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
273 SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
274     "struct proc *");
275 SDT_PROBE_DEFINE(sched, , , on__cpu);
276 SDT_PROBE_DEFINE(sched, , , remain__cpu);
277 SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
278     "struct proc *");
279 
280 static __inline void
281 sched_load_add(void)
282 {
283 
284 	sched_tdcnt++;
285 	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
286 	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
287 }
288 
289 static __inline void
290 sched_load_rem(void)
291 {
292 
293 	sched_tdcnt--;
294 	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
295 	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
296 }
297 /*
298  * Arrange to reschedule if necessary, taking the priorities and
299  * schedulers into account.
300  */
301 static void
302 maybe_resched(struct thread *td)
303 {
304 
305 	THREAD_LOCK_ASSERT(td, MA_OWNED);
306 	if (td->td_priority < curthread->td_priority)
307 		curthread->td_flags |= TDF_NEEDRESCHED;
308 }
309 
310 /*
311  * This function is called when a thread is about to be put on run queue
312  * because it has been made runnable or its priority has been adjusted.  It
313  * determines if the new thread should preempt the current thread.  If so,
314  * it sets td_owepreempt to request a preemption.
315  */
316 int
317 maybe_preempt(struct thread *td)
318 {
319 #ifdef PREEMPTION
320 	struct thread *ctd;
321 	int cpri, pri;
322 
323 	/*
324 	 * The new thread should not preempt the current thread if any of the
325 	 * following conditions are true:
326 	 *
327 	 *  - The kernel is in the throes of crashing (panicstr).
328 	 *  - The current thread has a higher (numerically lower) or
329 	 *    equivalent priority.  Note that this prevents curthread from
330 	 *    trying to preempt to itself.
331 	 *  - The current thread has an inhibitor set or is in the process of
332 	 *    exiting.  In this case, the current thread is about to switch
333 	 *    out anyways, so there's no point in preempting.  If we did,
334 	 *    the current thread would not be properly resumed as well, so
335 	 *    just avoid that whole landmine.
336 	 *  - If the new thread's priority is not a realtime priority and
337 	 *    the current thread's priority is not an idle priority and
338 	 *    FULL_PREEMPTION is disabled.
339 	 *
340 	 * If all of these conditions are false, but the current thread is in
341 	 * a nested critical section, then we have to defer the preemption
342 	 * until we exit the critical section.  Otherwise, switch immediately
343 	 * to the new thread.
344 	 */
345 	ctd = curthread;
346 	THREAD_LOCK_ASSERT(td, MA_OWNED);
347 	KASSERT((td->td_inhibitors == 0),
348 			("maybe_preempt: trying to run inhibited thread"));
349 	pri = td->td_priority;
350 	cpri = ctd->td_priority;
351 	if (KERNEL_PANICKED() || pri >= cpri /* || dumping */ ||
352 	    TD_IS_INHIBITED(ctd))
353 		return (0);
354 #ifndef FULL_PREEMPTION
355 	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
356 		return (0);
357 #endif
358 
359 	CTR0(KTR_PROC, "maybe_preempt: scheduling preemption");
360 	ctd->td_owepreempt = 1;
361 	return (1);
362 #else
363 	return (0);
364 #endif
365 }
366 
367 /*
368  * Constants for digital decay and forget:
369  *	90% of (ts_estcpu) usage in 5 * loadav time
370  *	95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
371  *          Note that, as ps(1) mentions, this can let percentages
372  *          total over 100% (I've seen 137.9% for 3 processes).
373  *
374  * Note that schedclock() updates ts_estcpu and p_cpticks asynchronously.
375  *
376  * We wish to decay away 90% of ts_estcpu in (5 * loadavg) seconds.
377  * That is, the system wants to compute a value of decay such
378  * that the following for loop:
379  * 	for (i = 0; i < (5 * loadavg); i++)
380  * 		ts_estcpu *= decay;
381  * will compute
382  * 	ts_estcpu *= 0.1;
383  * for all values of loadavg:
384  *
385  * Mathematically this loop can be expressed by saying:
386  * 	decay ** (5 * loadavg) ~= .1
387  *
388  * The system computes decay as:
389  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
390  *
391  * We wish to prove that the system's computation of decay
392  * will always fulfill the equation:
393  * 	decay ** (5 * loadavg) ~= .1
394  *
395  * If we compute b as:
396  * 	b = 2 * loadavg
397  * then
398  * 	decay = b / (b + 1)
399  *
400  * We now need to prove two things:
401  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
402  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
403  *
404  * Facts:
405  *         For x close to zero, exp(x) =~ 1 + x, since
406  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
407  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
408  *         For x close to zero, ln(1+x) =~ x, since
409  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
410  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
411  *         ln(.1) =~ -2.30
412  *
413  * Proof of (1):
414  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
415  *	solving for factor,
416  *      ln(factor) =~ (-2.30/5*loadav), or
417  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
418  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
419  *
420  * Proof of (2):
421  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
422  *	solving for power,
423  *      power*ln(b/(b+1)) =~ -2.30, or
424  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
425  *
426  * Actual power values for the implemented algorithm are as follows:
427  *      loadav: 1       2       3       4
428  *      power:  5.68    10.32   14.94   19.55
429  */
430 
431 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
432 #define	loadfactor(loadav)	(2 * (loadav))
433 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
434 
435 /* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
436 static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
437 SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
438 
439 /*
440  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
441  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
442  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
443  *
444  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
445  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
446  *
447  * If you don't want to bother with the faster/more-accurate formula, you
448  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
449  * (more general) method of calculating the %age of CPU used by a process.
450  */
451 #define	CCPU_SHIFT	11
452 
453 /*
454  * Recompute process priorities, every hz ticks.
455  * MP-safe, called without the Giant mutex.
456  */
457 /* ARGSUSED */
458 static void
459 schedcpu(void)
460 {
461 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
462 	struct thread *td;
463 	struct proc *p;
464 	struct td_sched *ts;
465 	int awake;
466 
467 	sx_slock(&allproc_lock);
468 	FOREACH_PROC_IN_SYSTEM(p) {
469 		PROC_LOCK(p);
470 		if (p->p_state == PRS_NEW) {
471 			PROC_UNLOCK(p);
472 			continue;
473 		}
474 		FOREACH_THREAD_IN_PROC(p, td) {
475 			awake = 0;
476 			ts = td_get_sched(td);
477 			thread_lock(td);
478 			/*
479 			 * Increment sleep time (if sleeping).  We
480 			 * ignore overflow, as above.
481 			 */
482 			/*
483 			 * The td_sched slptimes are not touched in wakeup
484 			 * because the thread may not HAVE everything in
485 			 * memory? XXX I think this is out of date.
486 			 */
487 			if (TD_ON_RUNQ(td)) {
488 				awake = 1;
489 				td->td_flags &= ~TDF_DIDRUN;
490 			} else if (TD_IS_RUNNING(td)) {
491 				awake = 1;
492 				/* Do not clear TDF_DIDRUN */
493 			} else if (td->td_flags & TDF_DIDRUN) {
494 				awake = 1;
495 				td->td_flags &= ~TDF_DIDRUN;
496 			}
497 
498 			/*
499 			 * ts_pctcpu is only for ps and ttyinfo().
500 			 */
501 			ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
502 			/*
503 			 * If the td_sched has been idle the entire second,
504 			 * stop recalculating its priority until
505 			 * it wakes up.
506 			 */
507 			if (ts->ts_cpticks != 0) {
508 #if	(FSHIFT >= CCPU_SHIFT)
509 				ts->ts_pctcpu += (realstathz == 100)
510 				    ? ((fixpt_t) ts->ts_cpticks) <<
511 				    (FSHIFT - CCPU_SHIFT) :
512 				    100 * (((fixpt_t) ts->ts_cpticks)
513 				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
514 #else
515 				ts->ts_pctcpu += ((FSCALE - ccpu) *
516 				    (ts->ts_cpticks *
517 				    FSCALE / realstathz)) >> FSHIFT;
518 #endif
519 				ts->ts_cpticks = 0;
520 			}
521 			/*
522 			 * If there are ANY running threads in this process,
523 			 * then don't count it as sleeping.
524 			 * XXX: this is broken.
525 			 */
526 			if (awake) {
527 				if (ts->ts_slptime > 1) {
528 					/*
529 					 * In an ideal world, this should not
530 					 * happen, because whoever woke us
531 					 * up from the long sleep should have
532 					 * unwound the slptime and reset our
533 					 * priority before we run at the stale
534 					 * priority.  Should KASSERT at some
535 					 * point when all the cases are fixed.
536 					 */
537 					updatepri(td);
538 				}
539 				ts->ts_slptime = 0;
540 			} else
541 				ts->ts_slptime++;
542 			if (ts->ts_slptime > 1) {
543 				thread_unlock(td);
544 				continue;
545 			}
546 			ts->ts_estcpu = decay_cpu(loadfac, ts->ts_estcpu);
547 		      	resetpriority(td);
548 			resetpriority_thread(td);
549 			thread_unlock(td);
550 		}
551 		PROC_UNLOCK(p);
552 	}
553 	sx_sunlock(&allproc_lock);
554 }
555 
556 /*
557  * Main loop for a kthread that executes schedcpu once a second.
558  */
559 static void
560 schedcpu_thread(void)
561 {
562 
563 	for (;;) {
564 		schedcpu();
565 		pause("-", hz);
566 	}
567 }
568 
569 /*
570  * Recalculate the priority of a process after it has slept for a while.
571  * For all load averages >= 1 and max ts_estcpu of 255, sleeping for at
572  * least six times the loadfactor will decay ts_estcpu to zero.
573  */
574 static void
575 updatepri(struct thread *td)
576 {
577 	struct td_sched *ts;
578 	fixpt_t loadfac;
579 	unsigned int newcpu;
580 
581 	ts = td_get_sched(td);
582 	loadfac = loadfactor(averunnable.ldavg[0]);
583 	if (ts->ts_slptime > 5 * loadfac)
584 		ts->ts_estcpu = 0;
585 	else {
586 		newcpu = ts->ts_estcpu;
587 		ts->ts_slptime--;	/* was incremented in schedcpu() */
588 		while (newcpu && --ts->ts_slptime)
589 			newcpu = decay_cpu(loadfac, newcpu);
590 		ts->ts_estcpu = newcpu;
591 	}
592 }
593 
594 /*
595  * Compute the priority of a process when running in user mode.
596  * Arrange to reschedule if the resulting priority is better
597  * than that of the current process.
598  */
599 static void
600 resetpriority(struct thread *td)
601 {
602 	u_int newpriority;
603 
604 	if (td->td_pri_class != PRI_TIMESHARE)
605 		return;
606 	newpriority = PUSER +
607 	    td_get_sched(td)->ts_estcpu / INVERSE_ESTCPU_WEIGHT +
608 	    NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
609 	newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
610 	    PRI_MAX_TIMESHARE);
611 	sched_user_prio(td, newpriority);
612 }
613 
614 /*
615  * Update the thread's priority when the associated process's user
616  * priority changes.
617  */
618 static void
619 resetpriority_thread(struct thread *td)
620 {
621 
622 	/* Only change threads with a time sharing user priority. */
623 	if (td->td_priority < PRI_MIN_TIMESHARE ||
624 	    td->td_priority > PRI_MAX_TIMESHARE)
625 		return;
626 
627 	/* XXX the whole needresched thing is broken, but not silly. */
628 	maybe_resched(td);
629 
630 	sched_prio(td, td->td_user_pri);
631 }
632 
633 /* ARGSUSED */
634 static void
635 sched_setup(void *dummy)
636 {
637 
638 	setup_runqs();
639 
640 	/* Account for thread0. */
641 	sched_load_add();
642 }
643 
644 /*
645  * This routine determines time constants after stathz and hz are setup.
646  */
647 static void
648 sched_initticks(void *dummy)
649 {
650 
651 	realstathz = stathz ? stathz : hz;
652 	sched_slice = realstathz / 10;	/* ~100ms */
653 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
654 	    realstathz);
655 }
656 
657 /* External interfaces start here */
658 
659 /*
660  * Very early in the boot some setup of scheduler-specific
661  * parts of proc0 and of some scheduler resources needs to be done.
662  * Called from:
663  *  proc0_init()
664  */
665 void
666 schedinit(void)
667 {
668 
669 	/*
670 	 * Set up the scheduler specific parts of thread0.
671 	 */
672 	thread0.td_lock = &sched_lock;
673 	td_get_sched(&thread0)->ts_slice = sched_slice;
674 	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN);
675 }
676 
677 int
678 sched_runnable(void)
679 {
680 #ifdef SMP
681 	return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
682 #else
683 	return runq_check(&runq);
684 #endif
685 }
686 
687 int
688 sched_rr_interval(void)
689 {
690 
691 	/* Convert sched_slice from stathz to hz. */
692 	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
693 }
694 
695 /*
696  * We adjust the priority of the current process.  The priority of a
697  * process gets worse as it accumulates CPU time.  The cpu usage
698  * estimator (ts_estcpu) is increased here.  resetpriority() will
699  * compute a different priority each time ts_estcpu increases by
700  * INVERSE_ESTCPU_WEIGHT (until PRI_MAX_TIMESHARE is reached).  The
701  * cpu usage estimator ramps up quite quickly when the process is
702  * running (linearly), and decays away exponentially, at a rate which
703  * is proportionally slower when the system is busy.  The basic
704  * principle is that the system will 90% forget that the process used
705  * a lot of CPU time in 5 * loadav seconds.  This causes the system to
706  * favor processes which haven't run much recently, and to round-robin
707  * among other processes.
708  */
709 static void
710 sched_clock_tick(struct thread *td)
711 {
712 	struct pcpuidlestat *stat;
713 	struct td_sched *ts;
714 
715 	THREAD_LOCK_ASSERT(td, MA_OWNED);
716 	ts = td_get_sched(td);
717 
718 	ts->ts_cpticks++;
719 	ts->ts_estcpu = ESTCPULIM(ts->ts_estcpu + 1);
720 	if ((ts->ts_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
721 		resetpriority(td);
722 		resetpriority_thread(td);
723 	}
724 
725 	/*
726 	 * Force a context switch if the current thread has used up a full
727 	 * time slice (default is 100ms).
728 	 */
729 	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
730 		ts->ts_slice = sched_slice;
731 		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
732 	}
733 
734 	stat = DPCPU_PTR(idlestat);
735 	stat->oldidlecalls = stat->idlecalls;
736 	stat->idlecalls = 0;
737 }
738 
739 void
740 sched_clock(struct thread *td, int cnt)
741 {
742 
743 	for ( ; cnt > 0; cnt--)
744 		sched_clock_tick(td);
745 }
746 
747 /*
748  * Charge child's scheduling CPU usage to parent.
749  */
750 void
751 sched_exit(struct proc *p, struct thread *td)
752 {
753 
754 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
755 	    "prio:%d", td->td_priority);
756 
757 	PROC_LOCK_ASSERT(p, MA_OWNED);
758 	sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
759 }
760 
761 void
762 sched_exit_thread(struct thread *td, struct thread *child)
763 {
764 
765 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
766 	    "prio:%d", child->td_priority);
767 	thread_lock(td);
768 	td_get_sched(td)->ts_estcpu = ESTCPULIM(td_get_sched(td)->ts_estcpu +
769 	    td_get_sched(child)->ts_estcpu);
770 	thread_unlock(td);
771 	thread_lock(child);
772 	if ((child->td_flags & TDF_NOLOAD) == 0)
773 		sched_load_rem();
774 	thread_unlock(child);
775 }
776 
777 void
778 sched_fork(struct thread *td, struct thread *childtd)
779 {
780 	sched_fork_thread(td, childtd);
781 }
782 
783 void
784 sched_fork_thread(struct thread *td, struct thread *childtd)
785 {
786 	struct td_sched *ts, *tsc;
787 
788 	childtd->td_oncpu = NOCPU;
789 	childtd->td_lastcpu = NOCPU;
790 	childtd->td_lock = &sched_lock;
791 	childtd->td_cpuset = cpuset_ref(td->td_cpuset);
792 	childtd->td_domain.dr_policy = td->td_cpuset->cs_domain;
793 	childtd->td_priority = childtd->td_base_pri;
794 	ts = td_get_sched(childtd);
795 	bzero(ts, sizeof(*ts));
796 	tsc = td_get_sched(td);
797 	ts->ts_estcpu = tsc->ts_estcpu;
798 	ts->ts_flags |= (tsc->ts_flags & TSF_AFFINITY);
799 	ts->ts_slice = 1;
800 }
801 
802 void
803 sched_nice(struct proc *p, int nice)
804 {
805 	struct thread *td;
806 
807 	PROC_LOCK_ASSERT(p, MA_OWNED);
808 	p->p_nice = nice;
809 	FOREACH_THREAD_IN_PROC(p, td) {
810 		thread_lock(td);
811 		resetpriority(td);
812 		resetpriority_thread(td);
813 		thread_unlock(td);
814 	}
815 }
816 
817 void
818 sched_class(struct thread *td, int class)
819 {
820 	THREAD_LOCK_ASSERT(td, MA_OWNED);
821 	td->td_pri_class = class;
822 }
823 
824 /*
825  * Adjust the priority of a thread.
826  */
827 static void
828 sched_priority(struct thread *td, u_char prio)
829 {
830 
831 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
832 	    "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
833 	    sched_tdname(curthread));
834 	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
835 	if (td != curthread && prio > td->td_priority) {
836 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
837 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
838 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
839 		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
840 		    curthread);
841 	}
842 	THREAD_LOCK_ASSERT(td, MA_OWNED);
843 	if (td->td_priority == prio)
844 		return;
845 	td->td_priority = prio;
846 	if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
847 		sched_rem(td);
848 		sched_add(td, SRQ_BORING | SRQ_HOLDTD);
849 	}
850 }
851 
852 /*
853  * Update a thread's priority when it is lent another thread's
854  * priority.
855  */
856 void
857 sched_lend_prio(struct thread *td, u_char prio)
858 {
859 
860 	td->td_flags |= TDF_BORROWING;
861 	sched_priority(td, prio);
862 }
863 
864 /*
865  * Restore a thread's priority when priority propagation is
866  * over.  The prio argument is the minimum priority the thread
867  * needs to have to satisfy other possible priority lending
868  * requests.  If the thread's regulary priority is less
869  * important than prio the thread will keep a priority boost
870  * of prio.
871  */
872 void
873 sched_unlend_prio(struct thread *td, u_char prio)
874 {
875 	u_char base_pri;
876 
877 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
878 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
879 		base_pri = td->td_user_pri;
880 	else
881 		base_pri = td->td_base_pri;
882 	if (prio >= base_pri) {
883 		td->td_flags &= ~TDF_BORROWING;
884 		sched_prio(td, base_pri);
885 	} else
886 		sched_lend_prio(td, prio);
887 }
888 
889 void
890 sched_prio(struct thread *td, u_char prio)
891 {
892 	u_char oldprio;
893 
894 	/* First, update the base priority. */
895 	td->td_base_pri = prio;
896 
897 	/*
898 	 * If the thread is borrowing another thread's priority, don't ever
899 	 * lower the priority.
900 	 */
901 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
902 		return;
903 
904 	/* Change the real priority. */
905 	oldprio = td->td_priority;
906 	sched_priority(td, prio);
907 
908 	/*
909 	 * If the thread is on a turnstile, then let the turnstile update
910 	 * its state.
911 	 */
912 	if (TD_ON_LOCK(td) && oldprio != prio)
913 		turnstile_adjust(td, oldprio);
914 }
915 
916 void
917 sched_user_prio(struct thread *td, u_char prio)
918 {
919 
920 	THREAD_LOCK_ASSERT(td, MA_OWNED);
921 	td->td_base_user_pri = prio;
922 	if (td->td_lend_user_pri <= prio)
923 		return;
924 	td->td_user_pri = prio;
925 }
926 
927 void
928 sched_lend_user_prio(struct thread *td, u_char prio)
929 {
930 
931 	THREAD_LOCK_ASSERT(td, MA_OWNED);
932 	td->td_lend_user_pri = prio;
933 	td->td_user_pri = min(prio, td->td_base_user_pri);
934 	if (td->td_priority > td->td_user_pri)
935 		sched_prio(td, td->td_user_pri);
936 	else if (td->td_priority != td->td_user_pri)
937 		td->td_flags |= TDF_NEEDRESCHED;
938 }
939 
940 /*
941  * Like the above but first check if there is anything to do.
942  */
943 void
944 sched_lend_user_prio_cond(struct thread *td, u_char prio)
945 {
946 
947 	if (td->td_lend_user_pri != prio)
948 		goto lend;
949 	if (td->td_user_pri != min(prio, td->td_base_user_pri))
950 		goto lend;
951 	if (td->td_priority >= td->td_user_pri)
952 		goto lend;
953 	return;
954 
955 lend:
956 	thread_lock(td);
957 	sched_lend_user_prio(td, prio);
958 	thread_unlock(td);
959 }
960 
961 void
962 sched_sleep(struct thread *td, int pri)
963 {
964 
965 	THREAD_LOCK_ASSERT(td, MA_OWNED);
966 	td->td_slptick = ticks;
967 	td_get_sched(td)->ts_slptime = 0;
968 	if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
969 		sched_prio(td, pri);
970 	if (TD_IS_SUSPENDED(td) || pri >= PSOCK)
971 		td->td_flags |= TDF_CANSWAP;
972 }
973 
974 void
975 sched_switch(struct thread *td, int flags)
976 {
977 	struct thread *newtd;
978 	struct mtx *tmtx;
979 	struct td_sched *ts;
980 	struct proc *p;
981 	int preempted;
982 
983 	tmtx = &sched_lock;
984 	ts = td_get_sched(td);
985 	p = td->td_proc;
986 
987 	THREAD_LOCK_ASSERT(td, MA_OWNED);
988 
989 	td->td_lastcpu = td->td_oncpu;
990 	preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
991 	    (flags & SW_PREEMPT) != 0;
992 	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
993 	td->td_owepreempt = 0;
994 	td->td_oncpu = NOCPU;
995 
996 	/*
997 	 * At the last moment, if this thread is still marked RUNNING,
998 	 * then put it back on the run queue as it has not been suspended
999 	 * or stopped or any thing else similar.  We never put the idle
1000 	 * threads on the run queue, however.
1001 	 */
1002 	if (td->td_flags & TDF_IDLETD) {
1003 		TD_SET_CAN_RUN(td);
1004 #ifdef SMP
1005 		CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
1006 #endif
1007 	} else {
1008 		if (TD_IS_RUNNING(td)) {
1009 			/* Put us back on the run queue. */
1010 			sched_add(td, preempted ?
1011 			    SRQ_HOLDTD|SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1012 			    SRQ_HOLDTD|SRQ_OURSELF|SRQ_YIELDING);
1013 		}
1014 	}
1015 
1016 	/*
1017 	 * Switch to the sched lock to fix things up and pick
1018 	 * a new thread.  Block the td_lock in order to avoid
1019 	 * breaking the critical path.
1020 	 */
1021 	if (td->td_lock != &sched_lock) {
1022 		mtx_lock_spin(&sched_lock);
1023 		tmtx = thread_lock_block(td);
1024 		mtx_unlock_spin(tmtx);
1025 	}
1026 
1027 	if ((td->td_flags & TDF_NOLOAD) == 0)
1028 		sched_load_rem();
1029 
1030 	newtd = choosethread();
1031 	MPASS(newtd->td_lock == &sched_lock);
1032 
1033 #if (KTR_COMPILE & KTR_SCHED) != 0
1034 	if (TD_IS_IDLETHREAD(td))
1035 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
1036 		    "prio:%d", td->td_priority);
1037 	else
1038 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
1039 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
1040 		    "lockname:\"%s\"", td->td_lockname);
1041 #endif
1042 
1043 	if (td != newtd) {
1044 #ifdef	HWPMC_HOOKS
1045 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1046 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1047 #endif
1048 
1049 		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
1050 
1051                 /* I feel sleepy */
1052 		lock_profile_release_lock(&sched_lock.lock_object);
1053 #ifdef KDTRACE_HOOKS
1054 		/*
1055 		 * If DTrace has set the active vtime enum to anything
1056 		 * other than INACTIVE (0), then it should have set the
1057 		 * function to call.
1058 		 */
1059 		if (dtrace_vtime_active)
1060 			(*dtrace_vtime_switch_func)(newtd);
1061 #endif
1062 
1063 		cpu_switch(td, newtd, tmtx);
1064 		lock_profile_obtain_lock_success(&sched_lock.lock_object,
1065 		    0, 0, __FILE__, __LINE__);
1066 		/*
1067 		 * Where am I?  What year is it?
1068 		 * We are in the same thread that went to sleep above,
1069 		 * but any amount of time may have passed. All our context
1070 		 * will still be available as will local variables.
1071 		 * PCPU values however may have changed as we may have
1072 		 * changed CPU so don't trust cached values of them.
1073 		 * New threads will go to fork_exit() instead of here
1074 		 * so if you change things here you may need to change
1075 		 * things there too.
1076 		 *
1077 		 * If the thread above was exiting it will never wake
1078 		 * up again here, so either it has saved everything it
1079 		 * needed to, or the thread_wait() or wait() will
1080 		 * need to reap it.
1081 		 */
1082 
1083 		SDT_PROBE0(sched, , , on__cpu);
1084 #ifdef	HWPMC_HOOKS
1085 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1086 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1087 #endif
1088 	} else {
1089 		td->td_lock = &sched_lock;
1090 		SDT_PROBE0(sched, , , remain__cpu);
1091 	}
1092 
1093 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
1094 	    "prio:%d", td->td_priority);
1095 
1096 #ifdef SMP
1097 	if (td->td_flags & TDF_IDLETD)
1098 		CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
1099 #endif
1100 	sched_lock.mtx_lock = (uintptr_t)td;
1101 	td->td_oncpu = PCPU_GET(cpuid);
1102 	spinlock_enter();
1103 	mtx_unlock_spin(&sched_lock);
1104 }
1105 
1106 void
1107 sched_wakeup(struct thread *td, int srqflags)
1108 {
1109 	struct td_sched *ts;
1110 
1111 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1112 	ts = td_get_sched(td);
1113 	td->td_flags &= ~TDF_CANSWAP;
1114 	if (ts->ts_slptime > 1) {
1115 		updatepri(td);
1116 		resetpriority(td);
1117 	}
1118 	td->td_slptick = 0;
1119 	ts->ts_slptime = 0;
1120 	ts->ts_slice = sched_slice;
1121 	sched_add(td, srqflags);
1122 }
1123 
1124 #ifdef SMP
1125 static int
1126 forward_wakeup(int cpunum)
1127 {
1128 	struct pcpu *pc;
1129 	cpuset_t dontuse, map, map2;
1130 	u_int id, me;
1131 	int iscpuset;
1132 
1133 	mtx_assert(&sched_lock, MA_OWNED);
1134 
1135 	CTR0(KTR_RUNQ, "forward_wakeup()");
1136 
1137 	if ((!forward_wakeup_enabled) ||
1138 	     (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
1139 		return (0);
1140 	if (!smp_started || KERNEL_PANICKED())
1141 		return (0);
1142 
1143 	forward_wakeups_requested++;
1144 
1145 	/*
1146 	 * Check the idle mask we received against what we calculated
1147 	 * before in the old version.
1148 	 */
1149 	me = PCPU_GET(cpuid);
1150 
1151 	/* Don't bother if we should be doing it ourself. */
1152 	if (CPU_ISSET(me, &idle_cpus_mask) &&
1153 	    (cpunum == NOCPU || me == cpunum))
1154 		return (0);
1155 
1156 	CPU_SETOF(me, &dontuse);
1157 	CPU_OR(&dontuse, &stopped_cpus);
1158 	CPU_OR(&dontuse, &hlt_cpus_mask);
1159 	CPU_ZERO(&map2);
1160 	if (forward_wakeup_use_loop) {
1161 		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1162 			id = pc->pc_cpuid;
1163 			if (!CPU_ISSET(id, &dontuse) &&
1164 			    pc->pc_curthread == pc->pc_idlethread) {
1165 				CPU_SET(id, &map2);
1166 			}
1167 		}
1168 	}
1169 
1170 	if (forward_wakeup_use_mask) {
1171 		map = idle_cpus_mask;
1172 		CPU_ANDNOT(&map, &dontuse);
1173 
1174 		/* If they are both on, compare and use loop if different. */
1175 		if (forward_wakeup_use_loop) {
1176 			if (CPU_CMP(&map, &map2)) {
1177 				printf("map != map2, loop method preferred\n");
1178 				map = map2;
1179 			}
1180 		}
1181 	} else {
1182 		map = map2;
1183 	}
1184 
1185 	/* If we only allow a specific CPU, then mask off all the others. */
1186 	if (cpunum != NOCPU) {
1187 		KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
1188 		iscpuset = CPU_ISSET(cpunum, &map);
1189 		if (iscpuset == 0)
1190 			CPU_ZERO(&map);
1191 		else
1192 			CPU_SETOF(cpunum, &map);
1193 	}
1194 	if (!CPU_EMPTY(&map)) {
1195 		forward_wakeups_delivered++;
1196 		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1197 			id = pc->pc_cpuid;
1198 			if (!CPU_ISSET(id, &map))
1199 				continue;
1200 			if (cpu_idle_wakeup(pc->pc_cpuid))
1201 				CPU_CLR(id, &map);
1202 		}
1203 		if (!CPU_EMPTY(&map))
1204 			ipi_selected(map, IPI_AST);
1205 		return (1);
1206 	}
1207 	if (cpunum == NOCPU)
1208 		printf("forward_wakeup: Idle processor not found\n");
1209 	return (0);
1210 }
1211 
1212 static void
1213 kick_other_cpu(int pri, int cpuid)
1214 {
1215 	struct pcpu *pcpu;
1216 	int cpri;
1217 
1218 	pcpu = pcpu_find(cpuid);
1219 	if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
1220 		forward_wakeups_delivered++;
1221 		if (!cpu_idle_wakeup(cpuid))
1222 			ipi_cpu(cpuid, IPI_AST);
1223 		return;
1224 	}
1225 
1226 	cpri = pcpu->pc_curthread->td_priority;
1227 	if (pri >= cpri)
1228 		return;
1229 
1230 #if defined(IPI_PREEMPTION) && defined(PREEMPTION)
1231 #if !defined(FULL_PREEMPTION)
1232 	if (pri <= PRI_MAX_ITHD)
1233 #endif /* ! FULL_PREEMPTION */
1234 	{
1235 		ipi_cpu(cpuid, IPI_PREEMPT);
1236 		return;
1237 	}
1238 #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
1239 
1240 	pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
1241 	ipi_cpu(cpuid, IPI_AST);
1242 	return;
1243 }
1244 #endif /* SMP */
1245 
1246 #ifdef SMP
1247 static int
1248 sched_pickcpu(struct thread *td)
1249 {
1250 	int best, cpu;
1251 
1252 	mtx_assert(&sched_lock, MA_OWNED);
1253 
1254 	if (td->td_lastcpu != NOCPU && THREAD_CAN_SCHED(td, td->td_lastcpu))
1255 		best = td->td_lastcpu;
1256 	else
1257 		best = NOCPU;
1258 	CPU_FOREACH(cpu) {
1259 		if (!THREAD_CAN_SCHED(td, cpu))
1260 			continue;
1261 
1262 		if (best == NOCPU)
1263 			best = cpu;
1264 		else if (runq_length[cpu] < runq_length[best])
1265 			best = cpu;
1266 	}
1267 	KASSERT(best != NOCPU, ("no valid CPUs"));
1268 
1269 	return (best);
1270 }
1271 #endif
1272 
1273 void
1274 sched_add(struct thread *td, int flags)
1275 #ifdef SMP
1276 {
1277 	cpuset_t tidlemsk;
1278 	struct td_sched *ts;
1279 	u_int cpu, cpuid;
1280 	int forwarded = 0;
1281 	int single_cpu = 0;
1282 
1283 	ts = td_get_sched(td);
1284 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1285 	KASSERT((td->td_inhibitors == 0),
1286 	    ("sched_add: trying to run inhibited thread"));
1287 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1288 	    ("sched_add: bad thread state"));
1289 	KASSERT(td->td_flags & TDF_INMEM,
1290 	    ("sched_add: thread swapped out"));
1291 
1292 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1293 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1294 	    sched_tdname(curthread));
1295 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1296 	    KTR_ATTR_LINKED, sched_tdname(td));
1297 	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1298 	    flags & SRQ_PREEMPTED);
1299 
1300 	/*
1301 	 * Now that the thread is moving to the run-queue, set the lock
1302 	 * to the scheduler's lock.
1303 	 */
1304 	if (td->td_lock != &sched_lock) {
1305 		mtx_lock_spin(&sched_lock);
1306 		if ((flags & SRQ_HOLD) != 0)
1307 			td->td_lock = &sched_lock;
1308 		else
1309 			thread_lock_set(td, &sched_lock);
1310 
1311 	}
1312 	TD_SET_RUNQ(td);
1313 
1314 	/*
1315 	 * If SMP is started and the thread is pinned or otherwise limited to
1316 	 * a specific set of CPUs, queue the thread to a per-CPU run queue.
1317 	 * Otherwise, queue the thread to the global run queue.
1318 	 *
1319 	 * If SMP has not yet been started we must use the global run queue
1320 	 * as per-CPU state may not be initialized yet and we may crash if we
1321 	 * try to access the per-CPU run queues.
1322 	 */
1323 	if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
1324 	    ts->ts_flags & TSF_AFFINITY)) {
1325 		if (td->td_pinned != 0)
1326 			cpu = td->td_lastcpu;
1327 		else if (td->td_flags & TDF_BOUND) {
1328 			/* Find CPU from bound runq. */
1329 			KASSERT(SKE_RUNQ_PCPU(ts),
1330 			    ("sched_add: bound td_sched not on cpu runq"));
1331 			cpu = ts->ts_runq - &runq_pcpu[0];
1332 		} else
1333 			/* Find a valid CPU for our cpuset */
1334 			cpu = sched_pickcpu(td);
1335 		ts->ts_runq = &runq_pcpu[cpu];
1336 		single_cpu = 1;
1337 		CTR3(KTR_RUNQ,
1338 		    "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
1339 		    cpu);
1340 	} else {
1341 		CTR2(KTR_RUNQ,
1342 		    "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
1343 		    td);
1344 		cpu = NOCPU;
1345 		ts->ts_runq = &runq;
1346 	}
1347 
1348 	if ((td->td_flags & TDF_NOLOAD) == 0)
1349 		sched_load_add();
1350 	runq_add(ts->ts_runq, td, flags);
1351 	if (cpu != NOCPU)
1352 		runq_length[cpu]++;
1353 
1354 	cpuid = PCPU_GET(cpuid);
1355 	if (single_cpu && cpu != cpuid) {
1356 	        kick_other_cpu(td->td_priority, cpu);
1357 	} else {
1358 		if (!single_cpu) {
1359 			tidlemsk = idle_cpus_mask;
1360 			CPU_ANDNOT(&tidlemsk, &hlt_cpus_mask);
1361 			CPU_CLR(cpuid, &tidlemsk);
1362 
1363 			if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
1364 			    ((flags & SRQ_INTR) == 0) &&
1365 			    !CPU_EMPTY(&tidlemsk))
1366 				forwarded = forward_wakeup(cpu);
1367 		}
1368 
1369 		if (!forwarded) {
1370 			if (!maybe_preempt(td))
1371 				maybe_resched(td);
1372 		}
1373 	}
1374 	if ((flags & SRQ_HOLDTD) == 0)
1375 		thread_unlock(td);
1376 }
1377 #else /* SMP */
1378 {
1379 	struct td_sched *ts;
1380 
1381 	ts = td_get_sched(td);
1382 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1383 	KASSERT((td->td_inhibitors == 0),
1384 	    ("sched_add: trying to run inhibited thread"));
1385 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1386 	    ("sched_add: bad thread state"));
1387 	KASSERT(td->td_flags & TDF_INMEM,
1388 	    ("sched_add: thread swapped out"));
1389 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1390 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1391 	    sched_tdname(curthread));
1392 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1393 	    KTR_ATTR_LINKED, sched_tdname(td));
1394 	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1395 	    flags & SRQ_PREEMPTED);
1396 
1397 	/*
1398 	 * Now that the thread is moving to the run-queue, set the lock
1399 	 * to the scheduler's lock.
1400 	 */
1401 	if (td->td_lock != &sched_lock) {
1402 		mtx_lock_spin(&sched_lock);
1403 		if ((flags & SRQ_HOLD) != 0)
1404 			td->td_lock = &sched_lock;
1405 		else
1406 			thread_lock_set(td, &sched_lock);
1407 	}
1408 	TD_SET_RUNQ(td);
1409 	CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
1410 	ts->ts_runq = &runq;
1411 
1412 	if ((td->td_flags & TDF_NOLOAD) == 0)
1413 		sched_load_add();
1414 	runq_add(ts->ts_runq, td, flags);
1415 	if (!maybe_preempt(td))
1416 		maybe_resched(td);
1417 	if ((flags & SRQ_HOLDTD) == 0)
1418 		thread_unlock(td);
1419 }
1420 #endif /* SMP */
1421 
1422 void
1423 sched_rem(struct thread *td)
1424 {
1425 	struct td_sched *ts;
1426 
1427 	ts = td_get_sched(td);
1428 	KASSERT(td->td_flags & TDF_INMEM,
1429 	    ("sched_rem: thread swapped out"));
1430 	KASSERT(TD_ON_RUNQ(td),
1431 	    ("sched_rem: thread not on run queue"));
1432 	mtx_assert(&sched_lock, MA_OWNED);
1433 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
1434 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1435 	    sched_tdname(curthread));
1436 	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
1437 
1438 	if ((td->td_flags & TDF_NOLOAD) == 0)
1439 		sched_load_rem();
1440 #ifdef SMP
1441 	if (ts->ts_runq != &runq)
1442 		runq_length[ts->ts_runq - runq_pcpu]--;
1443 #endif
1444 	runq_remove(ts->ts_runq, td);
1445 	TD_SET_CAN_RUN(td);
1446 }
1447 
1448 /*
1449  * Select threads to run.  Note that running threads still consume a
1450  * slot.
1451  */
1452 struct thread *
1453 sched_choose(void)
1454 {
1455 	struct thread *td;
1456 	struct runq *rq;
1457 
1458 	mtx_assert(&sched_lock,  MA_OWNED);
1459 #ifdef SMP
1460 	struct thread *tdcpu;
1461 
1462 	rq = &runq;
1463 	td = runq_choose_fuzz(&runq, runq_fuzz);
1464 	tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
1465 
1466 	if (td == NULL ||
1467 	    (tdcpu != NULL &&
1468 	     tdcpu->td_priority < td->td_priority)) {
1469 		CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
1470 		     PCPU_GET(cpuid));
1471 		td = tdcpu;
1472 		rq = &runq_pcpu[PCPU_GET(cpuid)];
1473 	} else {
1474 		CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
1475 	}
1476 
1477 #else
1478 	rq = &runq;
1479 	td = runq_choose(&runq);
1480 #endif
1481 
1482 	if (td) {
1483 #ifdef SMP
1484 		if (td == tdcpu)
1485 			runq_length[PCPU_GET(cpuid)]--;
1486 #endif
1487 		runq_remove(rq, td);
1488 		td->td_flags |= TDF_DIDRUN;
1489 
1490 		KASSERT(td->td_flags & TDF_INMEM,
1491 		    ("sched_choose: thread swapped out"));
1492 		return (td);
1493 	}
1494 	return (PCPU_GET(idlethread));
1495 }
1496 
1497 void
1498 sched_preempt(struct thread *td)
1499 {
1500 
1501 	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
1502 	if (td->td_critnest > 1) {
1503 		td->td_owepreempt = 1;
1504 	} else {
1505 		thread_lock(td);
1506 		mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT);
1507 	}
1508 }
1509 
1510 void
1511 sched_userret_slowpath(struct thread *td)
1512 {
1513 
1514 	thread_lock(td);
1515 	td->td_priority = td->td_user_pri;
1516 	td->td_base_pri = td->td_user_pri;
1517 	thread_unlock(td);
1518 }
1519 
1520 void
1521 sched_bind(struct thread *td, int cpu)
1522 {
1523 	struct td_sched *ts;
1524 
1525 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
1526 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
1527 
1528 	ts = td_get_sched(td);
1529 
1530 	td->td_flags |= TDF_BOUND;
1531 #ifdef SMP
1532 	ts->ts_runq = &runq_pcpu[cpu];
1533 	if (PCPU_GET(cpuid) == cpu)
1534 		return;
1535 
1536 	mi_switch(SW_VOL);
1537 	thread_lock(td);
1538 #endif
1539 }
1540 
1541 void
1542 sched_unbind(struct thread* td)
1543 {
1544 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1545 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
1546 	td->td_flags &= ~TDF_BOUND;
1547 }
1548 
1549 int
1550 sched_is_bound(struct thread *td)
1551 {
1552 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1553 	return (td->td_flags & TDF_BOUND);
1554 }
1555 
1556 void
1557 sched_relinquish(struct thread *td)
1558 {
1559 	thread_lock(td);
1560 	mi_switch(SW_VOL | SWT_RELINQUISH);
1561 }
1562 
1563 int
1564 sched_load(void)
1565 {
1566 	return (sched_tdcnt);
1567 }
1568 
1569 int
1570 sched_sizeof_proc(void)
1571 {
1572 	return (sizeof(struct proc));
1573 }
1574 
1575 int
1576 sched_sizeof_thread(void)
1577 {
1578 	return (sizeof(struct thread) + sizeof(struct td_sched));
1579 }
1580 
1581 fixpt_t
1582 sched_pctcpu(struct thread *td)
1583 {
1584 	struct td_sched *ts;
1585 
1586 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1587 	ts = td_get_sched(td);
1588 	return (ts->ts_pctcpu);
1589 }
1590 
1591 #ifdef RACCT
1592 /*
1593  * Calculates the contribution to the thread cpu usage for the latest
1594  * (unfinished) second.
1595  */
1596 fixpt_t
1597 sched_pctcpu_delta(struct thread *td)
1598 {
1599 	struct td_sched *ts;
1600 	fixpt_t delta;
1601 	int realstathz;
1602 
1603 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1604 	ts = td_get_sched(td);
1605 	delta = 0;
1606 	realstathz = stathz ? stathz : hz;
1607 	if (ts->ts_cpticks != 0) {
1608 #if	(FSHIFT >= CCPU_SHIFT)
1609 		delta = (realstathz == 100)
1610 		    ? ((fixpt_t) ts->ts_cpticks) <<
1611 		    (FSHIFT - CCPU_SHIFT) :
1612 		    100 * (((fixpt_t) ts->ts_cpticks)
1613 		    << (FSHIFT - CCPU_SHIFT)) / realstathz;
1614 #else
1615 		delta = ((FSCALE - ccpu) *
1616 		    (ts->ts_cpticks *
1617 		    FSCALE / realstathz)) >> FSHIFT;
1618 #endif
1619 	}
1620 
1621 	return (delta);
1622 }
1623 #endif
1624 
1625 u_int
1626 sched_estcpu(struct thread *td)
1627 {
1628 
1629 	return (td_get_sched(td)->ts_estcpu);
1630 }
1631 
1632 /*
1633  * The actual idle process.
1634  */
1635 void
1636 sched_idletd(void *dummy)
1637 {
1638 	struct pcpuidlestat *stat;
1639 
1640 	THREAD_NO_SLEEPING();
1641 	stat = DPCPU_PTR(idlestat);
1642 	for (;;) {
1643 		mtx_assert(&Giant, MA_NOTOWNED);
1644 
1645 		while (sched_runnable() == 0) {
1646 			cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
1647 			stat->idlecalls++;
1648 		}
1649 
1650 		mtx_lock_spin(&sched_lock);
1651 		mi_switch(SW_VOL | SWT_IDLE);
1652 	}
1653 }
1654 
1655 /*
1656  * A CPU is entering for the first time or a thread is exiting.
1657  */
1658 void
1659 sched_throw(struct thread *td)
1660 {
1661 	/*
1662 	 * Correct spinlock nesting.  The idle thread context that we are
1663 	 * borrowing was created so that it would start out with a single
1664 	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
1665 	 * explicitly acquired locks in this function, the nesting count
1666 	 * is now 2 rather than 1.  Since we are nested, calling
1667 	 * spinlock_exit() will simply adjust the counts without allowing
1668 	 * spin lock using code to interrupt us.
1669 	 */
1670 	if (td == NULL) {
1671 		mtx_lock_spin(&sched_lock);
1672 		spinlock_exit();
1673 		PCPU_SET(switchtime, cpu_ticks());
1674 		PCPU_SET(switchticks, ticks);
1675 	} else {
1676 		lock_profile_release_lock(&sched_lock.lock_object);
1677 		MPASS(td->td_lock == &sched_lock);
1678 		td->td_lastcpu = td->td_oncpu;
1679 		td->td_oncpu = NOCPU;
1680 	}
1681 	mtx_assert(&sched_lock, MA_OWNED);
1682 	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
1683 	cpu_throw(td, choosethread());	/* doesn't return */
1684 }
1685 
1686 void
1687 sched_fork_exit(struct thread *td)
1688 {
1689 
1690 	/*
1691 	 * Finish setting up thread glue so that it begins execution in a
1692 	 * non-nested critical section with sched_lock held but not recursed.
1693 	 */
1694 	td->td_oncpu = PCPU_GET(cpuid);
1695 	sched_lock.mtx_lock = (uintptr_t)td;
1696 	lock_profile_obtain_lock_success(&sched_lock.lock_object,
1697 	    0, 0, __FILE__, __LINE__);
1698 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
1699 
1700 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
1701 	    "prio:%d", td->td_priority);
1702 	SDT_PROBE0(sched, , , on__cpu);
1703 }
1704 
1705 char *
1706 sched_tdname(struct thread *td)
1707 {
1708 #ifdef KTR
1709 	struct td_sched *ts;
1710 
1711 	ts = td_get_sched(td);
1712 	if (ts->ts_name[0] == '\0')
1713 		snprintf(ts->ts_name, sizeof(ts->ts_name),
1714 		    "%s tid %d", td->td_name, td->td_tid);
1715 	return (ts->ts_name);
1716 #else
1717 	return (td->td_name);
1718 #endif
1719 }
1720 
1721 #ifdef KTR
1722 void
1723 sched_clear_tdname(struct thread *td)
1724 {
1725 	struct td_sched *ts;
1726 
1727 	ts = td_get_sched(td);
1728 	ts->ts_name[0] = '\0';
1729 }
1730 #endif
1731 
1732 void
1733 sched_affinity(struct thread *td)
1734 {
1735 #ifdef SMP
1736 	struct td_sched *ts;
1737 	int cpu;
1738 
1739 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1740 
1741 	/*
1742 	 * Set the TSF_AFFINITY flag if there is at least one CPU this
1743 	 * thread can't run on.
1744 	 */
1745 	ts = td_get_sched(td);
1746 	ts->ts_flags &= ~TSF_AFFINITY;
1747 	CPU_FOREACH(cpu) {
1748 		if (!THREAD_CAN_SCHED(td, cpu)) {
1749 			ts->ts_flags |= TSF_AFFINITY;
1750 			break;
1751 		}
1752 	}
1753 
1754 	/*
1755 	 * If this thread can run on all CPUs, nothing else to do.
1756 	 */
1757 	if (!(ts->ts_flags & TSF_AFFINITY))
1758 		return;
1759 
1760 	/* Pinned threads and bound threads should be left alone. */
1761 	if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
1762 		return;
1763 
1764 	switch (td->td_state) {
1765 	case TDS_RUNQ:
1766 		/*
1767 		 * If we are on a per-CPU runqueue that is in the set,
1768 		 * then nothing needs to be done.
1769 		 */
1770 		if (ts->ts_runq != &runq &&
1771 		    THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
1772 			return;
1773 
1774 		/* Put this thread on a valid per-CPU runqueue. */
1775 		sched_rem(td);
1776 		sched_add(td, SRQ_HOLDTD | SRQ_BORING);
1777 		break;
1778 	case TDS_RUNNING:
1779 		/*
1780 		 * See if our current CPU is in the set.  If not, force a
1781 		 * context switch.
1782 		 */
1783 		if (THREAD_CAN_SCHED(td, td->td_oncpu))
1784 			return;
1785 
1786 		td->td_flags |= TDF_NEEDRESCHED;
1787 		if (td != curthread)
1788 			ipi_cpu(cpu, IPI_AST);
1789 		break;
1790 	default:
1791 		break;
1792 	}
1793 #endif
1794 }
1795