xref: /freebsd/sys/kern/sched_4bsd.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_hwpmc_hooks.h"
39 
40 #define kse td_sched
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/ktr.h>
46 #include <sys/lock.h>
47 #include <sys/kthread.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/resourcevar.h>
51 #include <sys/sched.h>
52 #include <sys/smp.h>
53 #include <sys/sysctl.h>
54 #include <sys/sx.h>
55 #include <sys/turnstile.h>
56 #include <machine/smp.h>
57 
58 #ifdef HWPMC_HOOKS
59 #include <sys/pmckern.h>
60 #endif
61 
62 /*
63  * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
64  * the range 100-256 Hz (approximately).
65  */
66 #define	ESTCPULIM(e) \
67     min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
68     RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
69 #ifdef SMP
70 #define	INVERSE_ESTCPU_WEIGHT	(8 * smp_cpus)
71 #else
72 #define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
73 #endif
74 #define	NICE_WEIGHT		1	/* Priorities per nice level. */
75 
76 /*
77  * The schedulable entity that can be given a context to run.
78  * A process may have several of these. Probably one per processor
79  * but posibly a few more. In this universe they are grouped
80  * with a KSEG that contains the priority and niceness
81  * for the group.
82  */
83 struct kse {
84 	TAILQ_ENTRY(kse) ke_procq;	/* (j/z) Run queue. */
85 	struct thread	*ke_thread;	/* (*) Active associated thread. */
86 	fixpt_t		ke_pctcpu;	/* (j) %cpu during p_swtime. */
87 	char		ke_rqindex;	/* (j) Run queue index. */
88 	enum {
89 		KES_THREAD = 0x0,	/* slaved to thread state */
90 		KES_ONRUNQ
91 	} ke_state;			/* (j) KSE status. */
92 	int		ke_cpticks;	/* (j) Ticks of cpu time. */
93 	struct runq	*ke_runq;	/* runq the kse is currently on */
94 };
95 
96 #define ke_proc		ke_thread->td_proc
97 #define ke_ksegrp	ke_thread->td_ksegrp
98 
99 #define td_kse td_sched
100 
101 /* flags kept in td_flags */
102 #define TDF_DIDRUN	TDF_SCHED0	/* KSE actually ran. */
103 #define TDF_EXIT	TDF_SCHED1	/* KSE is being killed. */
104 #define TDF_BOUND	TDF_SCHED2
105 
106 #define ke_flags	ke_thread->td_flags
107 #define KEF_DIDRUN	TDF_DIDRUN /* KSE actually ran. */
108 #define KEF_EXIT	TDF_EXIT /* KSE is being killed. */
109 #define KEF_BOUND	TDF_BOUND /* stuck to one CPU */
110 
111 #define SKE_RUNQ_PCPU(ke)						\
112     ((ke)->ke_runq != 0 && (ke)->ke_runq != &runq)
113 
114 struct kg_sched {
115 	struct thread	*skg_last_assigned; /* (j) Last thread assigned to */
116 					   /* the system scheduler. */
117 	int	skg_avail_opennings;	/* (j) Num KSEs requested in group. */
118 	int	skg_concurrency;	/* (j) Num KSEs requested in group. */
119 };
120 #define kg_last_assigned	kg_sched->skg_last_assigned
121 #define kg_avail_opennings	kg_sched->skg_avail_opennings
122 #define kg_concurrency		kg_sched->skg_concurrency
123 
124 #define SLOT_RELEASE(kg)						\
125 do {									\
126 	kg->kg_avail_opennings++; 					\
127 	CTR3(KTR_RUNQ, "kg %p(%d) Slot released (->%d)",		\
128 	kg,								\
129 	kg->kg_concurrency,						\
130 	 kg->kg_avail_opennings);					\
131 /*	KASSERT((kg->kg_avail_opennings <= kg->kg_concurrency),		\
132 	    ("slots out of whack"));*/					\
133 } while (0)
134 
135 #define SLOT_USE(kg)							\
136 do {									\
137 	kg->kg_avail_opennings--; 					\
138 	CTR3(KTR_RUNQ, "kg %p(%d) Slot used (->%d)",			\
139 	kg,								\
140 	kg->kg_concurrency,						\
141 	 kg->kg_avail_opennings);					\
142 /*	KASSERT((kg->kg_avail_opennings >= 0),				\
143 	    ("slots out of whack"));*/					\
144 } while (0)
145 
146 /*
147  * KSE_CAN_MIGRATE macro returns true if the kse can migrate between
148  * cpus.
149  */
150 #define KSE_CAN_MIGRATE(ke)						\
151     ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
152 
153 static struct kse kse0;
154 static struct kg_sched kg_sched0;
155 
156 static int	sched_tdcnt;	/* Total runnable threads in the system. */
157 static int	sched_quantum;	/* Roundrobin scheduling quantum in ticks. */
158 #define	SCHED_QUANTUM	(hz / 10)	/* Default sched quantum */
159 
160 static struct callout roundrobin_callout;
161 
162 static void	slot_fill(struct ksegrp *kg);
163 static struct kse *sched_choose(void);		/* XXX Should be thread * */
164 
165 static void	setup_runqs(void);
166 static void	roundrobin(void *arg);
167 static void	schedcpu(void);
168 static void	schedcpu_thread(void);
169 static void	sched_priority(struct thread *td, u_char prio);
170 static void	sched_setup(void *dummy);
171 static void	maybe_resched(struct thread *td);
172 static void	updatepri(struct ksegrp *kg);
173 static void	resetpriority(struct ksegrp *kg);
174 static void	resetpriority_thread(struct thread *td, struct ksegrp *kg);
175 #ifdef SMP
176 static int	forward_wakeup(int  cpunum);
177 #endif
178 
179 static struct kproc_desc sched_kp = {
180         "schedcpu",
181         schedcpu_thread,
182         NULL
183 };
184 SYSINIT(schedcpu, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, kproc_start, &sched_kp)
185 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
186 
187 /*
188  * Global run queue.
189  */
190 static struct runq runq;
191 
192 #ifdef SMP
193 /*
194  * Per-CPU run queues
195  */
196 static struct runq runq_pcpu[MAXCPU];
197 #endif
198 
199 static void
200 setup_runqs(void)
201 {
202 #ifdef SMP
203 	int i;
204 
205 	for (i = 0; i < MAXCPU; ++i)
206 		runq_init(&runq_pcpu[i]);
207 #endif
208 
209 	runq_init(&runq);
210 }
211 
212 static int
213 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
214 {
215 	int error, new_val;
216 
217 	new_val = sched_quantum * tick;
218 	error = sysctl_handle_int(oidp, &new_val, 0, req);
219         if (error != 0 || req->newptr == NULL)
220 		return (error);
221 	if (new_val < tick)
222 		return (EINVAL);
223 	sched_quantum = new_val / tick;
224 	hogticks = 2 * sched_quantum;
225 	return (0);
226 }
227 
228 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler");
229 
230 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
231     "Scheduler name");
232 
233 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
234     0, sizeof sched_quantum, sysctl_kern_quantum, "I",
235     "Roundrobin scheduling quantum in microseconds");
236 
237 #ifdef SMP
238 /* Enable forwarding of wakeups to all other cpus */
239 SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL, "Kernel SMP");
240 
241 static int forward_wakeup_enabled = 1;
242 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
243 	   &forward_wakeup_enabled, 0,
244 	   "Forwarding of wakeup to idle CPUs");
245 
246 static int forward_wakeups_requested = 0;
247 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
248 	   &forward_wakeups_requested, 0,
249 	   "Requests for Forwarding of wakeup to idle CPUs");
250 
251 static int forward_wakeups_delivered = 0;
252 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
253 	   &forward_wakeups_delivered, 0,
254 	   "Completed Forwarding of wakeup to idle CPUs");
255 
256 static int forward_wakeup_use_mask = 1;
257 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
258 	   &forward_wakeup_use_mask, 0,
259 	   "Use the mask of idle cpus");
260 
261 static int forward_wakeup_use_loop = 0;
262 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
263 	   &forward_wakeup_use_loop, 0,
264 	   "Use a loop to find idle cpus");
265 
266 static int forward_wakeup_use_single = 0;
267 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, onecpu, CTLFLAG_RW,
268 	   &forward_wakeup_use_single, 0,
269 	   "Only signal one idle cpu");
270 
271 static int forward_wakeup_use_htt = 0;
272 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, htt2, CTLFLAG_RW,
273 	   &forward_wakeup_use_htt, 0,
274 	   "account for htt");
275 
276 #endif
277 static int sched_followon = 0;
278 SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
279 	   &sched_followon, 0,
280 	   "allow threads to share a quantum");
281 
282 static int sched_pfollowons = 0;
283 SYSCTL_INT(_kern_sched, OID_AUTO, pfollowons, CTLFLAG_RD,
284 	   &sched_pfollowons, 0,
285 	   "number of followons done to a different ksegrp");
286 
287 static int sched_kgfollowons = 0;
288 SYSCTL_INT(_kern_sched, OID_AUTO, kgfollowons, CTLFLAG_RD,
289 	   &sched_kgfollowons, 0,
290 	   "number of followons done in a ksegrp");
291 
292 static __inline void
293 sched_load_add(void)
294 {
295 	sched_tdcnt++;
296 	CTR1(KTR_SCHED, "global load: %d", sched_tdcnt);
297 }
298 
299 static __inline void
300 sched_load_rem(void)
301 {
302 	sched_tdcnt--;
303 	CTR1(KTR_SCHED, "global load: %d", sched_tdcnt);
304 }
305 /*
306  * Arrange to reschedule if necessary, taking the priorities and
307  * schedulers into account.
308  */
309 static void
310 maybe_resched(struct thread *td)
311 {
312 
313 	mtx_assert(&sched_lock, MA_OWNED);
314 	if (td->td_priority < curthread->td_priority)
315 		curthread->td_flags |= TDF_NEEDRESCHED;
316 }
317 
318 /*
319  * Force switch among equal priority processes every 100ms.
320  * We don't actually need to force a context switch of the current process.
321  * The act of firing the event triggers a context switch to softclock() and
322  * then switching back out again which is equivalent to a preemption, thus
323  * no further work is needed on the local CPU.
324  */
325 /* ARGSUSED */
326 static void
327 roundrobin(void *arg)
328 {
329 
330 #ifdef SMP
331 	mtx_lock_spin(&sched_lock);
332 	forward_roundrobin();
333 	mtx_unlock_spin(&sched_lock);
334 #endif
335 
336 	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
337 }
338 
339 /*
340  * Constants for digital decay and forget:
341  *	90% of (kg_estcpu) usage in 5 * loadav time
342  *	95% of (ke_pctcpu) usage in 60 seconds (load insensitive)
343  *          Note that, as ps(1) mentions, this can let percentages
344  *          total over 100% (I've seen 137.9% for 3 processes).
345  *
346  * Note that schedclock() updates kg_estcpu and p_cpticks asynchronously.
347  *
348  * We wish to decay away 90% of kg_estcpu in (5 * loadavg) seconds.
349  * That is, the system wants to compute a value of decay such
350  * that the following for loop:
351  * 	for (i = 0; i < (5 * loadavg); i++)
352  * 		kg_estcpu *= decay;
353  * will compute
354  * 	kg_estcpu *= 0.1;
355  * for all values of loadavg:
356  *
357  * Mathematically this loop can be expressed by saying:
358  * 	decay ** (5 * loadavg) ~= .1
359  *
360  * The system computes decay as:
361  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
362  *
363  * We wish to prove that the system's computation of decay
364  * will always fulfill the equation:
365  * 	decay ** (5 * loadavg) ~= .1
366  *
367  * If we compute b as:
368  * 	b = 2 * loadavg
369  * then
370  * 	decay = b / (b + 1)
371  *
372  * We now need to prove two things:
373  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
374  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
375  *
376  * Facts:
377  *         For x close to zero, exp(x) =~ 1 + x, since
378  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
379  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
380  *         For x close to zero, ln(1+x) =~ x, since
381  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
382  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
383  *         ln(.1) =~ -2.30
384  *
385  * Proof of (1):
386  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
387  *	solving for factor,
388  *      ln(factor) =~ (-2.30/5*loadav), or
389  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
390  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
391  *
392  * Proof of (2):
393  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
394  *	solving for power,
395  *      power*ln(b/(b+1)) =~ -2.30, or
396  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
397  *
398  * Actual power values for the implemented algorithm are as follows:
399  *      loadav: 1       2       3       4
400  *      power:  5.68    10.32   14.94   19.55
401  */
402 
403 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
404 #define	loadfactor(loadav)	(2 * (loadav))
405 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
406 
407 /* decay 95% of `ke_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
408 static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
409 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
410 
411 /*
412  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
413  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
414  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
415  *
416  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
417  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
418  *
419  * If you don't want to bother with the faster/more-accurate formula, you
420  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
421  * (more general) method of calculating the %age of CPU used by a process.
422  */
423 #define	CCPU_SHIFT	11
424 
425 /*
426  * Recompute process priorities, every hz ticks.
427  * MP-safe, called without the Giant mutex.
428  */
429 /* ARGSUSED */
430 static void
431 schedcpu(void)
432 {
433 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
434 	struct thread *td;
435 	struct proc *p;
436 	struct kse *ke;
437 	struct ksegrp *kg;
438 	int awake, realstathz;
439 
440 	realstathz = stathz ? stathz : hz;
441 	sx_slock(&allproc_lock);
442 	FOREACH_PROC_IN_SYSTEM(p) {
443 		/*
444 		 * Prevent state changes and protect run queue.
445 		 */
446 		mtx_lock_spin(&sched_lock);
447 		/*
448 		 * Increment time in/out of memory.  We ignore overflow; with
449 		 * 16-bit int's (remember them?) overflow takes 45 days.
450 		 */
451 		p->p_swtime++;
452 		FOREACH_KSEGRP_IN_PROC(p, kg) {
453 			awake = 0;
454 			FOREACH_THREAD_IN_GROUP(kg, td) {
455 				ke = td->td_kse;
456 				/*
457 				 * Increment sleep time (if sleeping).  We
458 				 * ignore overflow, as above.
459 				 */
460 				/*
461 				 * The kse slptimes are not touched in wakeup
462 				 * because the thread may not HAVE a KSE.
463 				 */
464 				if (ke->ke_state == KES_ONRUNQ) {
465 					awake = 1;
466 					ke->ke_flags &= ~KEF_DIDRUN;
467 				} else if ((ke->ke_state == KES_THREAD) &&
468 				    (TD_IS_RUNNING(td))) {
469 					awake = 1;
470 					/* Do not clear KEF_DIDRUN */
471 				} else if (ke->ke_flags & KEF_DIDRUN) {
472 					awake = 1;
473 					ke->ke_flags &= ~KEF_DIDRUN;
474 				}
475 
476 				/*
477 				 * ke_pctcpu is only for ps and ttyinfo().
478 				 * Do it per kse, and add them up at the end?
479 				 * XXXKSE
480 				 */
481 				ke->ke_pctcpu = (ke->ke_pctcpu * ccpu) >>
482 				    FSHIFT;
483 				/*
484 				 * If the kse has been idle the entire second,
485 				 * stop recalculating its priority until
486 				 * it wakes up.
487 				 */
488 				if (ke->ke_cpticks == 0)
489 					continue;
490 #if	(FSHIFT >= CCPU_SHIFT)
491 				ke->ke_pctcpu += (realstathz == 100)
492 				    ? ((fixpt_t) ke->ke_cpticks) <<
493 				    (FSHIFT - CCPU_SHIFT) :
494 				    100 * (((fixpt_t) ke->ke_cpticks)
495 				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
496 #else
497 				ke->ke_pctcpu += ((FSCALE - ccpu) *
498 				    (ke->ke_cpticks *
499 				    FSCALE / realstathz)) >> FSHIFT;
500 #endif
501 				ke->ke_cpticks = 0;
502 			} /* end of kse loop */
503 			/*
504 			 * If there are ANY running threads in this KSEGRP,
505 			 * then don't count it as sleeping.
506 			 */
507 			if (awake) {
508 				if (kg->kg_slptime > 1) {
509 					/*
510 					 * In an ideal world, this should not
511 					 * happen, because whoever woke us
512 					 * up from the long sleep should have
513 					 * unwound the slptime and reset our
514 					 * priority before we run at the stale
515 					 * priority.  Should KASSERT at some
516 					 * point when all the cases are fixed.
517 					 */
518 					updatepri(kg);
519 				}
520 				kg->kg_slptime = 0;
521 			} else
522 				kg->kg_slptime++;
523 			if (kg->kg_slptime > 1)
524 				continue;
525 			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
526 		      	resetpriority(kg);
527 			FOREACH_THREAD_IN_GROUP(kg, td) {
528 				resetpriority_thread(td, kg);
529 			}
530 		} /* end of ksegrp loop */
531 		mtx_unlock_spin(&sched_lock);
532 	} /* end of process loop */
533 	sx_sunlock(&allproc_lock);
534 }
535 
536 /*
537  * Main loop for a kthread that executes schedcpu once a second.
538  */
539 static void
540 schedcpu_thread(void)
541 {
542 	int nowake;
543 
544 	for (;;) {
545 		schedcpu();
546 		tsleep(&nowake, curthread->td_priority, "-", hz);
547 	}
548 }
549 
550 /*
551  * Recalculate the priority of a process after it has slept for a while.
552  * For all load averages >= 1 and max kg_estcpu of 255, sleeping for at
553  * least six times the loadfactor will decay kg_estcpu to zero.
554  */
555 static void
556 updatepri(struct ksegrp *kg)
557 {
558 	register fixpt_t loadfac;
559 	register unsigned int newcpu;
560 
561 	loadfac = loadfactor(averunnable.ldavg[0]);
562 	if (kg->kg_slptime > 5 * loadfac)
563 		kg->kg_estcpu = 0;
564 	else {
565 		newcpu = kg->kg_estcpu;
566 		kg->kg_slptime--;	/* was incremented in schedcpu() */
567 		while (newcpu && --kg->kg_slptime)
568 			newcpu = decay_cpu(loadfac, newcpu);
569 		kg->kg_estcpu = newcpu;
570 	}
571 }
572 
573 /*
574  * Compute the priority of a process when running in user mode.
575  * Arrange to reschedule if the resulting priority is better
576  * than that of the current process.
577  */
578 static void
579 resetpriority(struct ksegrp *kg)
580 {
581 	register unsigned int newpriority;
582 
583 	if (kg->kg_pri_class == PRI_TIMESHARE) {
584 		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
585 		    NICE_WEIGHT * (kg->kg_proc->p_nice - PRIO_MIN);
586 		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
587 		    PRI_MAX_TIMESHARE);
588 		kg->kg_user_pri = newpriority;
589 	}
590 }
591 
592 /*
593  * Update the thread's priority when the associated ksegroup's user
594  * priority changes.
595  */
596 static void
597 resetpriority_thread(struct thread *td, struct ksegrp *kg)
598 {
599 
600 	/* Only change threads with a time sharing user priority. */
601 	if (td->td_priority < PRI_MIN_TIMESHARE ||
602 	    td->td_priority > PRI_MAX_TIMESHARE)
603 		return;
604 
605 	/* XXX the whole needresched thing is broken, but not silly. */
606 	maybe_resched(td);
607 
608 	sched_prio(td, kg->kg_user_pri);
609 }
610 
611 /* ARGSUSED */
612 static void
613 sched_setup(void *dummy)
614 {
615 	setup_runqs();
616 
617 	if (sched_quantum == 0)
618 		sched_quantum = SCHED_QUANTUM;
619 	hogticks = 2 * sched_quantum;
620 
621 	callout_init(&roundrobin_callout, CALLOUT_MPSAFE);
622 
623 	/* Kick off timeout driven events by calling first time. */
624 	roundrobin(NULL);
625 
626 	/* Account for thread0. */
627 	sched_load_add();
628 }
629 
630 /* External interfaces start here */
631 /*
632  * Very early in the boot some setup of scheduler-specific
633  * parts of proc0 and of some scheduler resources needs to be done.
634  * Called from:
635  *  proc0_init()
636  */
637 void
638 schedinit(void)
639 {
640 	/*
641 	 * Set up the scheduler specific parts of proc0.
642 	 */
643 	proc0.p_sched = NULL; /* XXX */
644 	ksegrp0.kg_sched = &kg_sched0;
645 	thread0.td_sched = &kse0;
646 	kse0.ke_thread = &thread0;
647 	kse0.ke_state = KES_THREAD;
648 	kg_sched0.skg_concurrency = 1;
649 	kg_sched0.skg_avail_opennings = 0; /* we are already running */
650 }
651 
652 int
653 sched_runnable(void)
654 {
655 #ifdef SMP
656 	return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
657 #else
658 	return runq_check(&runq);
659 #endif
660 }
661 
662 int
663 sched_rr_interval(void)
664 {
665 	if (sched_quantum == 0)
666 		sched_quantum = SCHED_QUANTUM;
667 	return (sched_quantum);
668 }
669 
670 /*
671  * We adjust the priority of the current process.  The priority of
672  * a process gets worse as it accumulates CPU time.  The cpu usage
673  * estimator (kg_estcpu) is increased here.  resetpriority() will
674  * compute a different priority each time kg_estcpu increases by
675  * INVERSE_ESTCPU_WEIGHT
676  * (until MAXPRI is reached).  The cpu usage estimator ramps up
677  * quite quickly when the process is running (linearly), and decays
678  * away exponentially, at a rate which is proportionally slower when
679  * the system is busy.  The basic principle is that the system will
680  * 90% forget that the process used a lot of CPU time in 5 * loadav
681  * seconds.  This causes the system to favor processes which haven't
682  * run much recently, and to round-robin among other processes.
683  */
684 void
685 sched_clock(struct thread *td)
686 {
687 	struct ksegrp *kg;
688 	struct kse *ke;
689 
690 	mtx_assert(&sched_lock, MA_OWNED);
691 	kg = td->td_ksegrp;
692 	ke = td->td_kse;
693 
694 	ke->ke_cpticks++;
695 	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
696 	if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
697 		resetpriority(kg);
698 		resetpriority_thread(td, kg);
699 	}
700 }
701 
702 /*
703  * charge childs scheduling cpu usage to parent.
704  *
705  * XXXKSE assume only one thread & kse & ksegrp keep estcpu in each ksegrp.
706  * Charge it to the ksegrp that did the wait since process estcpu is sum of
707  * all ksegrps, this is strictly as expected.  Assume that the child process
708  * aggregated all the estcpu into the 'built-in' ksegrp.
709  */
710 void
711 sched_exit(struct proc *p, struct thread *td)
712 {
713 	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), td);
714 	sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
715 }
716 
717 void
718 sched_exit_ksegrp(struct ksegrp *kg, struct thread *childtd)
719 {
720 
721 	mtx_assert(&sched_lock, MA_OWNED);
722 	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + childtd->td_ksegrp->kg_estcpu);
723 }
724 
725 void
726 sched_exit_thread(struct thread *td, struct thread *child)
727 {
728 	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
729 	    child, child->td_proc->p_comm, child->td_priority);
730 	if ((child->td_proc->p_flag & P_NOLOAD) == 0)
731 		sched_load_rem();
732 }
733 
734 void
735 sched_fork(struct thread *td, struct thread *childtd)
736 {
737 	sched_fork_ksegrp(td, childtd->td_ksegrp);
738 	sched_fork_thread(td, childtd);
739 }
740 
741 void
742 sched_fork_ksegrp(struct thread *td, struct ksegrp *child)
743 {
744 	mtx_assert(&sched_lock, MA_OWNED);
745 	child->kg_estcpu = td->td_ksegrp->kg_estcpu;
746 }
747 
748 void
749 sched_fork_thread(struct thread *td, struct thread *childtd)
750 {
751 	sched_newthread(childtd);
752 }
753 
754 void
755 sched_nice(struct proc *p, int nice)
756 {
757 	struct ksegrp *kg;
758 	struct thread *td;
759 
760 	PROC_LOCK_ASSERT(p, MA_OWNED);
761 	mtx_assert(&sched_lock, MA_OWNED);
762 	p->p_nice = nice;
763 	FOREACH_KSEGRP_IN_PROC(p, kg) {
764 		resetpriority(kg);
765 		FOREACH_THREAD_IN_GROUP(kg, td) {
766 			resetpriority_thread(td, kg);
767 		}
768 	}
769 }
770 
771 void
772 sched_class(struct ksegrp *kg, int class)
773 {
774 	mtx_assert(&sched_lock, MA_OWNED);
775 	kg->kg_pri_class = class;
776 }
777 
778 /*
779  * Adjust the priority of a thread.
780  * This may include moving the thread within the KSEGRP,
781  * changing the assignment of a kse to the thread,
782  * and moving a KSE in the system run queue.
783  */
784 static void
785 sched_priority(struct thread *td, u_char prio)
786 {
787 	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
788 	    td, td->td_proc->p_comm, td->td_priority, prio, curthread,
789 	    curthread->td_proc->p_comm);
790 
791 	mtx_assert(&sched_lock, MA_OWNED);
792 	if (td->td_priority == prio)
793 		return;
794 	if (TD_ON_RUNQ(td)) {
795 		adjustrunqueue(td, prio);
796 	} else {
797 		td->td_priority = prio;
798 	}
799 }
800 
801 /*
802  * Update a thread's priority when it is lent another thread's
803  * priority.
804  */
805 void
806 sched_lend_prio(struct thread *td, u_char prio)
807 {
808 
809 	td->td_flags |= TDF_BORROWING;
810 	sched_priority(td, prio);
811 }
812 
813 /*
814  * Restore a thread's priority when priority propagation is
815  * over.  The prio argument is the minimum priority the thread
816  * needs to have to satisfy other possible priority lending
817  * requests.  If the thread's regulary priority is less
818  * important than prio the thread will keep a priority boost
819  * of prio.
820  */
821 void
822 sched_unlend_prio(struct thread *td, u_char prio)
823 {
824 	u_char base_pri;
825 
826 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
827 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
828 		base_pri = td->td_ksegrp->kg_user_pri;
829 	else
830 		base_pri = td->td_base_pri;
831 	if (prio >= base_pri) {
832 		td->td_flags &= ~TDF_BORROWING;
833 		sched_prio(td, base_pri);
834 	} else
835 		sched_lend_prio(td, prio);
836 }
837 
838 void
839 sched_prio(struct thread *td, u_char prio)
840 {
841 	u_char oldprio;
842 
843 	/* First, update the base priority. */
844 	td->td_base_pri = prio;
845 
846 	/*
847 	 * If the thread is borrowing another thread's priority, don't ever
848 	 * lower the priority.
849 	 */
850 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
851 		return;
852 
853 	/* Change the real priority. */
854 	oldprio = td->td_priority;
855 	sched_priority(td, prio);
856 
857 	/*
858 	 * If the thread is on a turnstile, then let the turnstile update
859 	 * its state.
860 	 */
861 	if (TD_ON_LOCK(td) && oldprio != prio)
862 		turnstile_adjust(td, oldprio);
863 }
864 
865 void
866 sched_sleep(struct thread *td)
867 {
868 
869 	mtx_assert(&sched_lock, MA_OWNED);
870 	td->td_ksegrp->kg_slptime = 0;
871 }
872 
873 static void remrunqueue(struct thread *td);
874 
875 void
876 sched_switch(struct thread *td, struct thread *newtd, int flags)
877 {
878 	struct kse *ke;
879 	struct ksegrp *kg;
880 	struct proc *p;
881 
882 	ke = td->td_kse;
883 	p = td->td_proc;
884 
885 	mtx_assert(&sched_lock, MA_OWNED);
886 
887 	if ((p->p_flag & P_NOLOAD) == 0)
888 		sched_load_rem();
889 	/*
890 	 * We are volunteering to switch out so we get to nominate
891 	 * a successor for the rest of our quantum
892 	 * First try another thread in our ksegrp, and then look for
893 	 * other ksegrps in our process.
894 	 */
895 	if (sched_followon &&
896 	    (p->p_flag & P_HADTHREADS) &&
897 	    (flags & SW_VOL) &&
898 	    newtd == NULL) {
899 		/* lets schedule another thread from this process */
900 		 kg = td->td_ksegrp;
901 		 if ((newtd = TAILQ_FIRST(&kg->kg_runq))) {
902 			remrunqueue(newtd);
903 			sched_kgfollowons++;
904 		 } else {
905 			FOREACH_KSEGRP_IN_PROC(p, kg) {
906 				if ((newtd = TAILQ_FIRST(&kg->kg_runq))) {
907 					sched_pfollowons++;
908 					remrunqueue(newtd);
909 					break;
910 				}
911 			}
912 		}
913 	}
914 
915 	if (newtd)
916 		newtd->td_flags |= (td->td_flags & TDF_NEEDRESCHED);
917 
918 	td->td_lastcpu = td->td_oncpu;
919 	td->td_flags &= ~TDF_NEEDRESCHED;
920 	td->td_owepreempt = 0;
921 	td->td_oncpu = NOCPU;
922 	/*
923 	 * At the last moment, if this thread is still marked RUNNING,
924 	 * then put it back on the run queue as it has not been suspended
925 	 * or stopped or any thing else similar.  We never put the idle
926 	 * threads on the run queue, however.
927 	 */
928 	if (td == PCPU_GET(idlethread))
929 		TD_SET_CAN_RUN(td);
930 	else {
931 		SLOT_RELEASE(td->td_ksegrp);
932 		if (TD_IS_RUNNING(td)) {
933 			/* Put us back on the run queue (kse and all). */
934 			setrunqueue(td, (flags & SW_PREEMPT) ?
935 			    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
936 			    SRQ_OURSELF|SRQ_YIELDING);
937 		} else if (p->p_flag & P_HADTHREADS) {
938 			/*
939 			 * We will not be on the run queue. So we must be
940 			 * sleeping or similar. As it's available,
941 			 * someone else can use the KSE if they need it.
942 			 * It's NOT available if we are about to need it
943 			 */
944 			if (newtd == NULL || newtd->td_ksegrp != td->td_ksegrp)
945 				slot_fill(td->td_ksegrp);
946 		}
947 	}
948 	if (newtd) {
949 		/*
950 		 * The thread we are about to run needs to be counted
951 		 * as if it had been added to the run queue and selected.
952 		 * It came from:
953 		 * * A preemption
954 		 * * An upcall
955 		 * * A followon
956 		 */
957 		KASSERT((newtd->td_inhibitors == 0),
958 			("trying to run inhibitted thread"));
959 		SLOT_USE(newtd->td_ksegrp);
960 		newtd->td_kse->ke_flags |= KEF_DIDRUN;
961         	TD_SET_RUNNING(newtd);
962 		if ((newtd->td_proc->p_flag & P_NOLOAD) == 0)
963 			sched_load_add();
964 	} else {
965 		newtd = choosethread();
966 	}
967 
968 	if (td != newtd) {
969 #ifdef	HWPMC_HOOKS
970 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
971 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
972 #endif
973 		cpu_switch(td, newtd);
974 #ifdef	HWPMC_HOOKS
975 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
976 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
977 #endif
978 	}
979 
980 	sched_lock.mtx_lock = (uintptr_t)td;
981 	td->td_oncpu = PCPU_GET(cpuid);
982 }
983 
984 void
985 sched_wakeup(struct thread *td)
986 {
987 	struct ksegrp *kg;
988 
989 	mtx_assert(&sched_lock, MA_OWNED);
990 	kg = td->td_ksegrp;
991 	if (kg->kg_slptime > 1) {
992 		updatepri(kg);
993 		resetpriority(kg);
994 	}
995 	kg->kg_slptime = 0;
996 	setrunqueue(td, SRQ_BORING);
997 }
998 
999 #ifdef SMP
1000 /* enable HTT_2 if you have a 2-way HTT cpu.*/
1001 static int
1002 forward_wakeup(int  cpunum)
1003 {
1004 	cpumask_t map, me, dontuse;
1005 	cpumask_t map2;
1006 	struct pcpu *pc;
1007 	cpumask_t id, map3;
1008 
1009 	mtx_assert(&sched_lock, MA_OWNED);
1010 
1011 	CTR0(KTR_RUNQ, "forward_wakeup()");
1012 
1013 	if ((!forward_wakeup_enabled) ||
1014 	     (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
1015 		return (0);
1016 	if (!smp_started || cold || panicstr)
1017 		return (0);
1018 
1019 	forward_wakeups_requested++;
1020 
1021 /*
1022  * check the idle mask we received against what we calculated before
1023  * in the old version.
1024  */
1025 	me = PCPU_GET(cpumask);
1026 	/*
1027 	 * don't bother if we should be doing it ourself..
1028 	 */
1029 	if ((me & idle_cpus_mask) && (cpunum == NOCPU || me == (1 << cpunum)))
1030 		return (0);
1031 
1032 	dontuse = me | stopped_cpus | hlt_cpus_mask;
1033 	map3 = 0;
1034 	if (forward_wakeup_use_loop) {
1035 		SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
1036 			id = pc->pc_cpumask;
1037 			if ( (id & dontuse) == 0 &&
1038 			    pc->pc_curthread == pc->pc_idlethread) {
1039 				map3 |= id;
1040 			}
1041 		}
1042 	}
1043 
1044 	if (forward_wakeup_use_mask) {
1045 		map = 0;
1046 		map = idle_cpus_mask & ~dontuse;
1047 
1048 		/* If they are both on, compare and use loop if different */
1049 		if (forward_wakeup_use_loop) {
1050 			if (map != map3) {
1051 				printf("map (%02X) != map3 (%02X)\n",
1052 						map, map3);
1053 				map = map3;
1054 			}
1055 		}
1056 	} else {
1057 		map = map3;
1058 	}
1059 	/* If we only allow a specific CPU, then mask off all the others */
1060 	if (cpunum != NOCPU) {
1061 		KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
1062 		map &= (1 << cpunum);
1063 	} else {
1064 		/* Try choose an idle die. */
1065 		if (forward_wakeup_use_htt) {
1066 			map2 =  (map & (map >> 1)) & 0x5555;
1067 			if (map2) {
1068 				map = map2;
1069 			}
1070 		}
1071 
1072 		/* set only one bit */
1073 		if (forward_wakeup_use_single) {
1074 			map = map & ((~map) + 1);
1075 		}
1076 	}
1077 	if (map) {
1078 		forward_wakeups_delivered++;
1079 		ipi_selected(map, IPI_AST);
1080 		return (1);
1081 	}
1082 	if (cpunum == NOCPU)
1083 		printf("forward_wakeup: Idle processor not found\n");
1084 	return (0);
1085 }
1086 #endif
1087 
1088 #ifdef SMP
1089 static void kick_other_cpu(int pri,int cpuid);
1090 
1091 static void
1092 kick_other_cpu(int pri,int cpuid)
1093 {
1094 	struct pcpu * pcpu = pcpu_find(cpuid);
1095 	int cpri = pcpu->pc_curthread->td_priority;
1096 
1097 	if (idle_cpus_mask & pcpu->pc_cpumask) {
1098 		forward_wakeups_delivered++;
1099 		ipi_selected(pcpu->pc_cpumask, IPI_AST);
1100 		return;
1101 	}
1102 
1103 	if (pri >= cpri)
1104 		return;
1105 
1106 #if defined(IPI_PREEMPTION) && defined(PREEMPTION)
1107 #if !defined(FULL_PREEMPTION)
1108 	if (pri <= PRI_MAX_ITHD)
1109 #endif /* ! FULL_PREEMPTION */
1110 	{
1111 		ipi_selected(pcpu->pc_cpumask, IPI_PREEMPT);
1112 		return;
1113 	}
1114 #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
1115 
1116 	pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
1117 	ipi_selected( pcpu->pc_cpumask , IPI_AST);
1118 	return;
1119 }
1120 #endif /* SMP */
1121 
1122 void
1123 sched_add(struct thread *td, int flags)
1124 #ifdef SMP
1125 {
1126 	struct kse *ke;
1127 	int forwarded = 0;
1128 	int cpu;
1129 	int single_cpu = 0;
1130 
1131 	ke = td->td_kse;
1132 	mtx_assert(&sched_lock, MA_OWNED);
1133 	KASSERT(ke->ke_state != KES_ONRUNQ,
1134 	    ("sched_add: kse %p (%s) already in run queue", ke,
1135 	    ke->ke_proc->p_comm));
1136 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1137 	    ("sched_add: process swapped out"));
1138 	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
1139 	    td, td->td_proc->p_comm, td->td_priority, curthread,
1140 	    curthread->td_proc->p_comm);
1141 
1142 
1143 	if (td->td_pinned != 0) {
1144 		cpu = td->td_lastcpu;
1145 		ke->ke_runq = &runq_pcpu[cpu];
1146 		single_cpu = 1;
1147 		CTR3(KTR_RUNQ,
1148 		    "sched_add: Put kse:%p(td:%p) on cpu%d runq", ke, td, cpu);
1149 	} else if ((ke)->ke_flags & KEF_BOUND) {
1150 		/* Find CPU from bound runq */
1151 		KASSERT(SKE_RUNQ_PCPU(ke),("sched_add: bound kse not on cpu runq"));
1152 		cpu = ke->ke_runq - &runq_pcpu[0];
1153 		single_cpu = 1;
1154 		CTR3(KTR_RUNQ,
1155 		    "sched_add: Put kse:%p(td:%p) on cpu%d runq", ke, td, cpu);
1156 	} else {
1157 		CTR2(KTR_RUNQ,
1158 		    "sched_add: adding kse:%p (td:%p) to gbl runq", ke, td);
1159 		cpu = NOCPU;
1160 		ke->ke_runq = &runq;
1161 	}
1162 
1163 	if (single_cpu && (cpu != PCPU_GET(cpuid))) {
1164 	        kick_other_cpu(td->td_priority,cpu);
1165 	} else {
1166 
1167 		if (!single_cpu) {
1168 			cpumask_t me = PCPU_GET(cpumask);
1169 			int idle = idle_cpus_mask & me;
1170 
1171 			if (!idle && ((flags & SRQ_INTR) == 0) &&
1172 			    (idle_cpus_mask & ~(hlt_cpus_mask | me)))
1173 				forwarded = forward_wakeup(cpu);
1174 		}
1175 
1176 		if (!forwarded) {
1177 			if ((flags & SRQ_YIELDING) == 0 && maybe_preempt(td))
1178 				return;
1179 			else
1180 				maybe_resched(td);
1181 		}
1182 	}
1183 
1184 	if ((td->td_proc->p_flag & P_NOLOAD) == 0)
1185 		sched_load_add();
1186 	SLOT_USE(td->td_ksegrp);
1187 	runq_add(ke->ke_runq, ke, flags);
1188 	ke->ke_state = KES_ONRUNQ;
1189 }
1190 #else /* SMP */
1191 {
1192 	struct kse *ke;
1193 	ke = td->td_kse;
1194 	mtx_assert(&sched_lock, MA_OWNED);
1195 	KASSERT(ke->ke_state != KES_ONRUNQ,
1196 	    ("sched_add: kse %p (%s) already in run queue", ke,
1197 	    ke->ke_proc->p_comm));
1198 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1199 	    ("sched_add: process swapped out"));
1200 	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
1201 	    td, td->td_proc->p_comm, td->td_priority, curthread,
1202 	    curthread->td_proc->p_comm);
1203 	CTR2(KTR_RUNQ, "sched_add: adding kse:%p (td:%p) to runq", ke, td);
1204 	ke->ke_runq = &runq;
1205 
1206 	/*
1207 	 * If we are yielding (on the way out anyhow)
1208 	 * or the thread being saved is US,
1209 	 * then don't try be smart about preemption
1210 	 * or kicking off another CPU
1211 	 * as it won't help and may hinder.
1212 	 * In the YIEDLING case, we are about to run whoever is
1213 	 * being put in the queue anyhow, and in the
1214 	 * OURSELF case, we are puting ourself on the run queue
1215 	 * which also only happens when we are about to yield.
1216 	 */
1217 	if((flags & SRQ_YIELDING) == 0) {
1218 		if (maybe_preempt(td))
1219 			return;
1220 	}
1221 	if ((td->td_proc->p_flag & P_NOLOAD) == 0)
1222 		sched_load_add();
1223 	SLOT_USE(td->td_ksegrp);
1224 	runq_add(ke->ke_runq, ke, flags);
1225 	ke->ke_state = KES_ONRUNQ;
1226 	maybe_resched(td);
1227 }
1228 #endif /* SMP */
1229 
1230 void
1231 sched_rem(struct thread *td)
1232 {
1233 	struct kse *ke;
1234 
1235 	ke = td->td_kse;
1236 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1237 	    ("sched_rem: process swapped out"));
1238 	KASSERT((ke->ke_state == KES_ONRUNQ),
1239 	    ("sched_rem: KSE not on run queue"));
1240 	mtx_assert(&sched_lock, MA_OWNED);
1241 	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
1242 	    td, td->td_proc->p_comm, td->td_priority, curthread,
1243 	    curthread->td_proc->p_comm);
1244 
1245 	if ((td->td_proc->p_flag & P_NOLOAD) == 0)
1246 		sched_load_rem();
1247 	SLOT_RELEASE(td->td_ksegrp);
1248 	runq_remove(ke->ke_runq, ke);
1249 
1250 	ke->ke_state = KES_THREAD;
1251 }
1252 
1253 /*
1254  * Select threads to run.
1255  * Notice that the running threads still consume a slot.
1256  */
1257 struct kse *
1258 sched_choose(void)
1259 {
1260 	struct kse *ke;
1261 	struct runq *rq;
1262 
1263 #ifdef SMP
1264 	struct kse *kecpu;
1265 
1266 	rq = &runq;
1267 	ke = runq_choose(&runq);
1268 	kecpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
1269 
1270 	if (ke == NULL ||
1271 	    (kecpu != NULL &&
1272 	     kecpu->ke_thread->td_priority < ke->ke_thread->td_priority)) {
1273 		CTR2(KTR_RUNQ, "choosing kse %p from pcpu runq %d", kecpu,
1274 		     PCPU_GET(cpuid));
1275 		ke = kecpu;
1276 		rq = &runq_pcpu[PCPU_GET(cpuid)];
1277 	} else {
1278 		CTR1(KTR_RUNQ, "choosing kse %p from main runq", ke);
1279 	}
1280 
1281 #else
1282 	rq = &runq;
1283 	ke = runq_choose(&runq);
1284 #endif
1285 
1286 	if (ke != NULL) {
1287 		runq_remove(rq, ke);
1288 		ke->ke_state = KES_THREAD;
1289 
1290 		KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1291 		    ("sched_choose: process swapped out"));
1292 	}
1293 	return (ke);
1294 }
1295 
1296 void
1297 sched_userret(struct thread *td)
1298 {
1299 	struct ksegrp *kg;
1300 	/*
1301 	 * XXX we cheat slightly on the locking here to avoid locking in
1302 	 * the usual case.  Setting td_priority here is essentially an
1303 	 * incomplete workaround for not setting it properly elsewhere.
1304 	 * Now that some interrupt handlers are threads, not setting it
1305 	 * properly elsewhere can clobber it in the window between setting
1306 	 * it here and returning to user mode, so don't waste time setting
1307 	 * it perfectly here.
1308 	 */
1309 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
1310 	    ("thread with borrowed priority returning to userland"));
1311 	kg = td->td_ksegrp;
1312 	if (td->td_priority != kg->kg_user_pri) {
1313 		mtx_lock_spin(&sched_lock);
1314 		td->td_priority = kg->kg_user_pri;
1315 		td->td_base_pri = kg->kg_user_pri;
1316 		mtx_unlock_spin(&sched_lock);
1317 	}
1318 }
1319 
1320 void
1321 sched_bind(struct thread *td, int cpu)
1322 {
1323 	struct kse *ke;
1324 
1325 	mtx_assert(&sched_lock, MA_OWNED);
1326 	KASSERT(TD_IS_RUNNING(td),
1327 	    ("sched_bind: cannot bind non-running thread"));
1328 
1329 	ke = td->td_kse;
1330 
1331 	ke->ke_flags |= KEF_BOUND;
1332 #ifdef SMP
1333 	ke->ke_runq = &runq_pcpu[cpu];
1334 	if (PCPU_GET(cpuid) == cpu)
1335 		return;
1336 
1337 	ke->ke_state = KES_THREAD;
1338 
1339 	mi_switch(SW_VOL, NULL);
1340 #endif
1341 }
1342 
1343 void
1344 sched_unbind(struct thread* td)
1345 {
1346 	mtx_assert(&sched_lock, MA_OWNED);
1347 	td->td_kse->ke_flags &= ~KEF_BOUND;
1348 }
1349 
1350 int
1351 sched_is_bound(struct thread *td)
1352 {
1353 	mtx_assert(&sched_lock, MA_OWNED);
1354 	return (td->td_kse->ke_flags & KEF_BOUND);
1355 }
1356 
1357 int
1358 sched_load(void)
1359 {
1360 	return (sched_tdcnt);
1361 }
1362 
1363 int
1364 sched_sizeof_ksegrp(void)
1365 {
1366 	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1367 }
1368 int
1369 sched_sizeof_proc(void)
1370 {
1371 	return (sizeof(struct proc));
1372 }
1373 int
1374 sched_sizeof_thread(void)
1375 {
1376 	return (sizeof(struct thread) + sizeof(struct kse));
1377 }
1378 
1379 fixpt_t
1380 sched_pctcpu(struct thread *td)
1381 {
1382 	struct kse *ke;
1383 
1384 	ke = td->td_kse;
1385 	return (ke->ke_pctcpu);
1386 
1387 	return (0);
1388 }
1389 #define KERN_SWITCH_INCLUDE 1
1390 #include "kern/kern_switch.c"
1391