1 /*- 2 * Copyright (c) 1982, 1986, 1990, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/ktr.h> 42 #include <sys/lock.h> 43 #include <sys/kthread.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sysctl.h> 50 #include <sys/sx.h> 51 52 #define KTR_4BSD 0x0 53 54 /* 55 * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in 56 * the range 100-256 Hz (approximately). 57 */ 58 #define ESTCPULIM(e) \ 59 min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \ 60 RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1) 61 #ifdef SMP 62 #define INVERSE_ESTCPU_WEIGHT (8 * smp_cpus) 63 #else 64 #define INVERSE_ESTCPU_WEIGHT 8 /* 1 / (priorities per estcpu level). */ 65 #endif 66 #define NICE_WEIGHT 1 /* Priorities per nice level. */ 67 68 struct ke_sched { 69 int ske_cpticks; /* (j) Ticks of cpu time. */ 70 struct runq *ske_runq; /* runq the kse is currently on */ 71 }; 72 #define ke_runq ke_sched->ske_runq 73 #define KEF_BOUND KEF_SCHED1 74 75 #define SKE_RUNQ_PCPU(ke) \ 76 ((ke)->ke_runq != 0 && (ke)->ke_runq != &runq) 77 78 /* 79 * KSE_CAN_MIGRATE macro returns true if the kse can migrate between 80 * cpus. 81 */ 82 #define KSE_CAN_MIGRATE(ke) \ 83 ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0) 84 static struct ke_sched ke_sched; 85 86 struct ke_sched *kse0_sched = &ke_sched; 87 struct kg_sched *ksegrp0_sched = NULL; 88 struct p_sched *proc0_sched = NULL; 89 struct td_sched *thread0_sched = NULL; 90 91 static int sched_tdcnt; /* Total runnable threads in the system. */ 92 static int sched_quantum; /* Roundrobin scheduling quantum in ticks. */ 93 #define SCHED_QUANTUM (hz / 10) /* Default sched quantum */ 94 95 static struct callout roundrobin_callout; 96 97 static void setup_runqs(void); 98 static void roundrobin(void *arg); 99 static void schedcpu(void); 100 static void schedcpu_thread(void); 101 static void sched_setup(void *dummy); 102 static void maybe_resched(struct thread *td); 103 static void updatepri(struct ksegrp *kg); 104 static void resetpriority(struct ksegrp *kg); 105 106 static struct kproc_desc sched_kp = { 107 "schedcpu", 108 schedcpu_thread, 109 NULL 110 }; 111 SYSINIT(schedcpu, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, kproc_start, &sched_kp) 112 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL) 113 114 /* 115 * Global run queue. 116 */ 117 static struct runq runq; 118 119 #ifdef SMP 120 /* 121 * Per-CPU run queues 122 */ 123 static struct runq runq_pcpu[MAXCPU]; 124 #endif 125 126 static void 127 setup_runqs(void) 128 { 129 #ifdef SMP 130 int i; 131 132 for (i = 0; i < MAXCPU; ++i) 133 runq_init(&runq_pcpu[i]); 134 #endif 135 136 runq_init(&runq); 137 } 138 139 static int 140 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS) 141 { 142 int error, new_val; 143 144 new_val = sched_quantum * tick; 145 error = sysctl_handle_int(oidp, &new_val, 0, req); 146 if (error != 0 || req->newptr == NULL) 147 return (error); 148 if (new_val < tick) 149 return (EINVAL); 150 sched_quantum = new_val / tick; 151 hogticks = 2 * sched_quantum; 152 return (0); 153 } 154 155 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW, 156 0, sizeof sched_quantum, sysctl_kern_quantum, "I", 157 "Roundrobin scheduling quantum in microseconds"); 158 159 /* 160 * Arrange to reschedule if necessary, taking the priorities and 161 * schedulers into account. 162 */ 163 static void 164 maybe_resched(struct thread *td) 165 { 166 167 mtx_assert(&sched_lock, MA_OWNED); 168 if (td->td_priority < curthread->td_priority && curthread->td_kse) 169 curthread->td_flags |= TDF_NEEDRESCHED; 170 } 171 172 /* 173 * Force switch among equal priority processes every 100ms. 174 * We don't actually need to force a context switch of the current process. 175 * The act of firing the event triggers a context switch to softclock() and 176 * then switching back out again which is equivalent to a preemption, thus 177 * no further work is needed on the local CPU. 178 */ 179 /* ARGSUSED */ 180 static void 181 roundrobin(void *arg) 182 { 183 184 #ifdef SMP 185 mtx_lock_spin(&sched_lock); 186 forward_roundrobin(); 187 mtx_unlock_spin(&sched_lock); 188 #endif 189 190 callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL); 191 } 192 193 /* 194 * Constants for digital decay and forget: 195 * 90% of (kg_estcpu) usage in 5 * loadav time 196 * 95% of (ke_pctcpu) usage in 60 seconds (load insensitive) 197 * Note that, as ps(1) mentions, this can let percentages 198 * total over 100% (I've seen 137.9% for 3 processes). 199 * 200 * Note that schedclock() updates kg_estcpu and p_cpticks asynchronously. 201 * 202 * We wish to decay away 90% of kg_estcpu in (5 * loadavg) seconds. 203 * That is, the system wants to compute a value of decay such 204 * that the following for loop: 205 * for (i = 0; i < (5 * loadavg); i++) 206 * kg_estcpu *= decay; 207 * will compute 208 * kg_estcpu *= 0.1; 209 * for all values of loadavg: 210 * 211 * Mathematically this loop can be expressed by saying: 212 * decay ** (5 * loadavg) ~= .1 213 * 214 * The system computes decay as: 215 * decay = (2 * loadavg) / (2 * loadavg + 1) 216 * 217 * We wish to prove that the system's computation of decay 218 * will always fulfill the equation: 219 * decay ** (5 * loadavg) ~= .1 220 * 221 * If we compute b as: 222 * b = 2 * loadavg 223 * then 224 * decay = b / (b + 1) 225 * 226 * We now need to prove two things: 227 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 228 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 229 * 230 * Facts: 231 * For x close to zero, exp(x) =~ 1 + x, since 232 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 233 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 234 * For x close to zero, ln(1+x) =~ x, since 235 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 236 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 237 * ln(.1) =~ -2.30 238 * 239 * Proof of (1): 240 * Solve (factor)**(power) =~ .1 given power (5*loadav): 241 * solving for factor, 242 * ln(factor) =~ (-2.30/5*loadav), or 243 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 244 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 245 * 246 * Proof of (2): 247 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 248 * solving for power, 249 * power*ln(b/(b+1)) =~ -2.30, or 250 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 251 * 252 * Actual power values for the implemented algorithm are as follows: 253 * loadav: 1 2 3 4 254 * power: 5.68 10.32 14.94 19.55 255 */ 256 257 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 258 #define loadfactor(loadav) (2 * (loadav)) 259 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 260 261 /* decay 95% of `ke_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 262 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 263 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 264 265 /* 266 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 267 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 268 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 269 * 270 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 271 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 272 * 273 * If you don't want to bother with the faster/more-accurate formula, you 274 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 275 * (more general) method of calculating the %age of CPU used by a process. 276 */ 277 #define CCPU_SHIFT 11 278 279 /* 280 * Recompute process priorities, every hz ticks. 281 * MP-safe, called without the Giant mutex. 282 */ 283 /* ARGSUSED */ 284 static void 285 schedcpu(void) 286 { 287 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 288 struct thread *td; 289 struct proc *p; 290 struct kse *ke; 291 struct ksegrp *kg; 292 int awake, realstathz; 293 294 realstathz = stathz ? stathz : hz; 295 sx_slock(&allproc_lock); 296 FOREACH_PROC_IN_SYSTEM(p) { 297 /* 298 * Prevent state changes and protect run queue. 299 */ 300 mtx_lock_spin(&sched_lock); 301 /* 302 * Increment time in/out of memory. We ignore overflow; with 303 * 16-bit int's (remember them?) overflow takes 45 days. 304 */ 305 p->p_swtime++; 306 FOREACH_KSEGRP_IN_PROC(p, kg) { 307 awake = 0; 308 FOREACH_KSE_IN_GROUP(kg, ke) { 309 /* 310 * Increment sleep time (if sleeping). We 311 * ignore overflow, as above. 312 */ 313 /* 314 * The kse slptimes are not touched in wakeup 315 * because the thread may not HAVE a KSE. 316 */ 317 if (ke->ke_state == KES_ONRUNQ) { 318 awake = 1; 319 ke->ke_flags &= ~KEF_DIDRUN; 320 } else if ((ke->ke_state == KES_THREAD) && 321 (TD_IS_RUNNING(ke->ke_thread))) { 322 awake = 1; 323 /* Do not clear KEF_DIDRUN */ 324 } else if (ke->ke_flags & KEF_DIDRUN) { 325 awake = 1; 326 ke->ke_flags &= ~KEF_DIDRUN; 327 } 328 329 /* 330 * ke_pctcpu is only for ps and ttyinfo(). 331 * Do it per kse, and add them up at the end? 332 * XXXKSE 333 */ 334 ke->ke_pctcpu = (ke->ke_pctcpu * ccpu) >> 335 FSHIFT; 336 /* 337 * If the kse has been idle the entire second, 338 * stop recalculating its priority until 339 * it wakes up. 340 */ 341 if (ke->ke_sched->ske_cpticks == 0) 342 continue; 343 #if (FSHIFT >= CCPU_SHIFT) 344 ke->ke_pctcpu += (realstathz == 100) 345 ? ((fixpt_t) ke->ke_sched->ske_cpticks) << 346 (FSHIFT - CCPU_SHIFT) : 347 100 * (((fixpt_t) ke->ke_sched->ske_cpticks) 348 << (FSHIFT - CCPU_SHIFT)) / realstathz; 349 #else 350 ke->ke_pctcpu += ((FSCALE - ccpu) * 351 (ke->ke_sched->ske_cpticks * 352 FSCALE / realstathz)) >> FSHIFT; 353 #endif 354 ke->ke_sched->ske_cpticks = 0; 355 } /* end of kse loop */ 356 /* 357 * If there are ANY running threads in this KSEGRP, 358 * then don't count it as sleeping. 359 */ 360 if (awake) { 361 if (kg->kg_slptime > 1) { 362 /* 363 * In an ideal world, this should not 364 * happen, because whoever woke us 365 * up from the long sleep should have 366 * unwound the slptime and reset our 367 * priority before we run at the stale 368 * priority. Should KASSERT at some 369 * point when all the cases are fixed. 370 */ 371 updatepri(kg); 372 } 373 kg->kg_slptime = 0; 374 } else 375 kg->kg_slptime++; 376 if (kg->kg_slptime > 1) 377 continue; 378 kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu); 379 resetpriority(kg); 380 FOREACH_THREAD_IN_GROUP(kg, td) { 381 if (td->td_priority >= PUSER) { 382 sched_prio(td, kg->kg_user_pri); 383 } 384 } 385 } /* end of ksegrp loop */ 386 mtx_unlock_spin(&sched_lock); 387 } /* end of process loop */ 388 sx_sunlock(&allproc_lock); 389 } 390 391 /* 392 * Main loop for a kthread that executes schedcpu once a second. 393 */ 394 static void 395 schedcpu_thread(void) 396 { 397 int nowake; 398 399 for (;;) { 400 schedcpu(); 401 tsleep(&nowake, curthread->td_priority, "-", hz); 402 } 403 } 404 405 /* 406 * Recalculate the priority of a process after it has slept for a while. 407 * For all load averages >= 1 and max kg_estcpu of 255, sleeping for at 408 * least six times the loadfactor will decay kg_estcpu to zero. 409 */ 410 static void 411 updatepri(struct ksegrp *kg) 412 { 413 register fixpt_t loadfac; 414 register unsigned int newcpu; 415 416 loadfac = loadfactor(averunnable.ldavg[0]); 417 if (kg->kg_slptime > 5 * loadfac) 418 kg->kg_estcpu = 0; 419 else { 420 newcpu = kg->kg_estcpu; 421 kg->kg_slptime--; /* was incremented in schedcpu() */ 422 while (newcpu && --kg->kg_slptime) 423 newcpu = decay_cpu(loadfac, newcpu); 424 kg->kg_estcpu = newcpu; 425 } 426 resetpriority(kg); 427 } 428 429 /* 430 * Compute the priority of a process when running in user mode. 431 * Arrange to reschedule if the resulting priority is better 432 * than that of the current process. 433 */ 434 static void 435 resetpriority(struct ksegrp *kg) 436 { 437 register unsigned int newpriority; 438 struct thread *td; 439 440 if (kg->kg_pri_class == PRI_TIMESHARE) { 441 newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT + 442 NICE_WEIGHT * (kg->kg_nice - PRIO_MIN); 443 newpriority = min(max(newpriority, PRI_MIN_TIMESHARE), 444 PRI_MAX_TIMESHARE); 445 kg->kg_user_pri = newpriority; 446 } 447 FOREACH_THREAD_IN_GROUP(kg, td) { 448 maybe_resched(td); /* XXXKSE silly */ 449 } 450 } 451 452 /* ARGSUSED */ 453 static void 454 sched_setup(void *dummy) 455 { 456 setup_runqs(); 457 458 if (sched_quantum == 0) 459 sched_quantum = SCHED_QUANTUM; 460 hogticks = 2 * sched_quantum; 461 462 callout_init(&roundrobin_callout, CALLOUT_MPSAFE); 463 464 /* Kick off timeout driven events by calling first time. */ 465 roundrobin(NULL); 466 467 /* Account for thread0. */ 468 sched_tdcnt++; 469 } 470 471 /* External interfaces start here */ 472 int 473 sched_runnable(void) 474 { 475 #ifdef SMP 476 return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]); 477 #else 478 return runq_check(&runq); 479 #endif 480 } 481 482 int 483 sched_rr_interval(void) 484 { 485 if (sched_quantum == 0) 486 sched_quantum = SCHED_QUANTUM; 487 return (sched_quantum); 488 } 489 490 /* 491 * We adjust the priority of the current process. The priority of 492 * a process gets worse as it accumulates CPU time. The cpu usage 493 * estimator (kg_estcpu) is increased here. resetpriority() will 494 * compute a different priority each time kg_estcpu increases by 495 * INVERSE_ESTCPU_WEIGHT 496 * (until MAXPRI is reached). The cpu usage estimator ramps up 497 * quite quickly when the process is running (linearly), and decays 498 * away exponentially, at a rate which is proportionally slower when 499 * the system is busy. The basic principle is that the system will 500 * 90% forget that the process used a lot of CPU time in 5 * loadav 501 * seconds. This causes the system to favor processes which haven't 502 * run much recently, and to round-robin among other processes. 503 */ 504 void 505 sched_clock(struct thread *td) 506 { 507 struct ksegrp *kg; 508 struct kse *ke; 509 510 mtx_assert(&sched_lock, MA_OWNED); 511 kg = td->td_ksegrp; 512 ke = td->td_kse; 513 514 ke->ke_sched->ske_cpticks++; 515 kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1); 516 if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) { 517 resetpriority(kg); 518 if (td->td_priority >= PUSER) 519 td->td_priority = kg->kg_user_pri; 520 } 521 } 522 523 /* 524 * charge childs scheduling cpu usage to parent. 525 * 526 * XXXKSE assume only one thread & kse & ksegrp keep estcpu in each ksegrp. 527 * Charge it to the ksegrp that did the wait since process estcpu is sum of 528 * all ksegrps, this is strictly as expected. Assume that the child process 529 * aggregated all the estcpu into the 'built-in' ksegrp. 530 */ 531 void 532 sched_exit(struct proc *p, struct proc *p1) 533 { 534 sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1)); 535 sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1)); 536 sched_exit_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1)); 537 } 538 539 void 540 sched_exit_kse(struct kse *ke, struct kse *child) 541 { 542 } 543 544 void 545 sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child) 546 { 547 548 mtx_assert(&sched_lock, MA_OWNED); 549 kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + child->kg_estcpu); 550 } 551 552 void 553 sched_exit_thread(struct thread *td, struct thread *child) 554 { 555 if ((child->td_proc->p_flag & P_NOLOAD) == 0) 556 sched_tdcnt--; 557 } 558 559 void 560 sched_fork(struct proc *p, struct proc *p1) 561 { 562 sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1)); 563 sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1)); 564 sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1)); 565 } 566 567 void 568 sched_fork_kse(struct kse *ke, struct kse *child) 569 { 570 child->ke_sched->ske_cpticks = 0; 571 } 572 573 void 574 sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child) 575 { 576 mtx_assert(&sched_lock, MA_OWNED); 577 child->kg_estcpu = kg->kg_estcpu; 578 } 579 580 void 581 sched_fork_thread(struct thread *td, struct thread *child) 582 { 583 } 584 585 void 586 sched_nice(struct ksegrp *kg, int nice) 587 { 588 589 PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED); 590 mtx_assert(&sched_lock, MA_OWNED); 591 kg->kg_nice = nice; 592 resetpriority(kg); 593 } 594 595 void 596 sched_class(struct ksegrp *kg, int class) 597 { 598 mtx_assert(&sched_lock, MA_OWNED); 599 kg->kg_pri_class = class; 600 } 601 602 /* 603 * Adjust the priority of a thread. 604 * This may include moving the thread within the KSEGRP, 605 * changing the assignment of a kse to the thread, 606 * and moving a KSE in the system run queue. 607 */ 608 void 609 sched_prio(struct thread *td, u_char prio) 610 { 611 612 mtx_assert(&sched_lock, MA_OWNED); 613 if (TD_ON_RUNQ(td)) { 614 adjustrunqueue(td, prio); 615 } else { 616 td->td_priority = prio; 617 } 618 } 619 620 void 621 sched_sleep(struct thread *td) 622 { 623 624 mtx_assert(&sched_lock, MA_OWNED); 625 td->td_ksegrp->kg_slptime = 0; 626 td->td_base_pri = td->td_priority; 627 } 628 629 void 630 sched_switch(struct thread *td) 631 { 632 struct thread *newtd; 633 struct kse *ke; 634 struct proc *p; 635 636 ke = td->td_kse; 637 p = td->td_proc; 638 639 mtx_assert(&sched_lock, MA_OWNED); 640 KASSERT((ke->ke_state == KES_THREAD), ("sched_switch: kse state?")); 641 642 if ((p->p_flag & P_NOLOAD) == 0) 643 sched_tdcnt--; 644 td->td_lastcpu = td->td_oncpu; 645 td->td_last_kse = ke; 646 td->td_flags &= ~TDF_NEEDRESCHED; 647 td->td_oncpu = NOCPU; 648 /* 649 * At the last moment, if this thread is still marked RUNNING, 650 * then put it back on the run queue as it has not been suspended 651 * or stopped or any thing else similar. 652 */ 653 if (TD_IS_RUNNING(td)) { 654 /* Put us back on the run queue (kse and all). */ 655 setrunqueue(td); 656 } else if (p->p_flag & P_SA) { 657 /* 658 * We will not be on the run queue. So we must be 659 * sleeping or similar. As it's available, 660 * someone else can use the KSE if they need it. 661 */ 662 kse_reassign(ke); 663 } 664 newtd = choosethread(); 665 if (td != newtd) 666 cpu_switch(td, newtd); 667 sched_lock.mtx_lock = (uintptr_t)td; 668 td->td_oncpu = PCPU_GET(cpuid); 669 } 670 671 void 672 sched_wakeup(struct thread *td) 673 { 674 struct ksegrp *kg; 675 676 mtx_assert(&sched_lock, MA_OWNED); 677 kg = td->td_ksegrp; 678 if (kg->kg_slptime > 1) 679 updatepri(kg); 680 kg->kg_slptime = 0; 681 setrunqueue(td); 682 maybe_resched(td); 683 } 684 685 void 686 sched_add(struct thread *td) 687 { 688 struct kse *ke; 689 690 ke = td->td_kse; 691 mtx_assert(&sched_lock, MA_OWNED); 692 KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE")); 693 KASSERT((ke->ke_thread->td_kse != NULL), 694 ("sched_add: No KSE on thread")); 695 KASSERT(ke->ke_state != KES_ONRUNQ, 696 ("sched_add: kse %p (%s) already in run queue", ke, 697 ke->ke_proc->p_comm)); 698 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 699 ("sched_add: process swapped out")); 700 ke->ke_ksegrp->kg_runq_kses++; 701 ke->ke_state = KES_ONRUNQ; 702 703 #ifdef SMP 704 if (KSE_CAN_MIGRATE(ke)) { 705 CTR1(KTR_4BSD, "adding kse:%p to gbl runq", ke); 706 ke->ke_runq = &runq; 707 } else { 708 CTR1(KTR_4BSD, "adding kse:%p to pcpu runq", ke); 709 if (!SKE_RUNQ_PCPU(ke)) 710 ke->ke_runq = &runq_pcpu[PCPU_GET(cpuid)]; 711 } 712 #else 713 ke->ke_runq = &runq; 714 #endif 715 if ((td->td_proc->p_flag & P_NOLOAD) == 0) 716 sched_tdcnt++; 717 runq_add(ke->ke_runq, ke); 718 } 719 720 void 721 sched_rem(struct thread *td) 722 { 723 struct kse *ke; 724 725 ke = td->td_kse; 726 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 727 ("sched_rem: process swapped out")); 728 KASSERT((ke->ke_state == KES_ONRUNQ), 729 ("sched_rem: KSE not on run queue")); 730 mtx_assert(&sched_lock, MA_OWNED); 731 732 if ((td->td_proc->p_flag & P_NOLOAD) == 0) 733 sched_tdcnt--; 734 runq_remove(ke->ke_sched->ske_runq, ke); 735 736 ke->ke_state = KES_THREAD; 737 ke->ke_ksegrp->kg_runq_kses--; 738 } 739 740 struct kse * 741 sched_choose(void) 742 { 743 struct kse *ke; 744 struct runq *rq; 745 746 #ifdef SMP 747 struct kse *kecpu; 748 749 rq = &runq; 750 ke = runq_choose(&runq); 751 kecpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]); 752 753 if (ke == NULL || 754 (kecpu != NULL && 755 kecpu->ke_thread->td_priority < ke->ke_thread->td_priority)) { 756 CTR2(KTR_4BSD, "choosing kse %p from pcpu runq %d", kecpu, 757 PCPU_GET(cpuid)); 758 ke = kecpu; 759 rq = &runq_pcpu[PCPU_GET(cpuid)]; 760 } else { 761 CTR1(KTR_4BSD, "choosing kse %p from main runq", ke); 762 } 763 764 #else 765 rq = &runq; 766 ke = runq_choose(&runq); 767 #endif 768 769 if (ke != NULL) { 770 runq_remove(rq, ke); 771 ke->ke_state = KES_THREAD; 772 773 KASSERT((ke->ke_thread != NULL), 774 ("sched_choose: No thread on KSE")); 775 KASSERT((ke->ke_thread->td_kse != NULL), 776 ("sched_choose: No KSE on thread")); 777 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 778 ("sched_choose: process swapped out")); 779 } 780 return (ke); 781 } 782 783 void 784 sched_userret(struct thread *td) 785 { 786 struct ksegrp *kg; 787 /* 788 * XXX we cheat slightly on the locking here to avoid locking in 789 * the usual case. Setting td_priority here is essentially an 790 * incomplete workaround for not setting it properly elsewhere. 791 * Now that some interrupt handlers are threads, not setting it 792 * properly elsewhere can clobber it in the window between setting 793 * it here and returning to user mode, so don't waste time setting 794 * it perfectly here. 795 */ 796 kg = td->td_ksegrp; 797 if (td->td_priority != kg->kg_user_pri) { 798 mtx_lock_spin(&sched_lock); 799 td->td_priority = kg->kg_user_pri; 800 mtx_unlock_spin(&sched_lock); 801 } 802 } 803 804 void 805 sched_bind(struct thread *td, int cpu) 806 { 807 struct kse *ke; 808 809 mtx_assert(&sched_lock, MA_OWNED); 810 KASSERT(TD_IS_RUNNING(td), 811 ("sched_bind: cannot bind non-running thread")); 812 813 ke = td->td_kse; 814 815 ke->ke_flags |= KEF_BOUND; 816 #ifdef SMP 817 ke->ke_runq = &runq_pcpu[cpu]; 818 if (PCPU_GET(cpuid) == cpu) 819 return; 820 821 ke->ke_state = KES_THREAD; 822 823 mi_switch(SW_VOL); 824 #endif 825 } 826 827 void 828 sched_unbind(struct thread* td) 829 { 830 mtx_assert(&sched_lock, MA_OWNED); 831 td->td_kse->ke_flags &= ~KEF_BOUND; 832 } 833 834 int 835 sched_load(void) 836 { 837 return (sched_tdcnt); 838 } 839 840 int 841 sched_sizeof_kse(void) 842 { 843 return (sizeof(struct kse) + sizeof(struct ke_sched)); 844 } 845 int 846 sched_sizeof_ksegrp(void) 847 { 848 return (sizeof(struct ksegrp)); 849 } 850 int 851 sched_sizeof_proc(void) 852 { 853 return (sizeof(struct proc)); 854 } 855 int 856 sched_sizeof_thread(void) 857 { 858 return (sizeof(struct thread)); 859 } 860 861 fixpt_t 862 sched_pctcpu(struct thread *td) 863 { 864 struct kse *ke; 865 866 ke = td->td_kse; 867 if (ke == NULL) 868 ke = td->td_last_kse; 869 if (ke) 870 return (ke->ke_pctcpu); 871 872 return (0); 873 } 874