xref: /freebsd/sys/kern/kern_umtx.c (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2015, 2016 The FreeBSD Foundation
5  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
6  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice unmodified, this list of conditions, and the following
17  *    disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_umtx_profiling.h"
38 
39 #include <sys/param.h>
40 #include <sys/kernel.h>
41 #include <sys/fcntl.h>
42 #include <sys/file.h>
43 #include <sys/filedesc.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/resource.h>
52 #include <sys/resourcevar.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/sysproto.h>
60 #include <sys/syscallsubr.h>
61 #include <sys/taskqueue.h>
62 #include <sys/time.h>
63 #include <sys/eventhandler.h>
64 #include <sys/umtx.h>
65 #include <sys/umtxvar.h>
66 
67 #include <security/mac/mac_framework.h>
68 
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_object.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/cpu.h>
77 
78 #include <compat/freebsd32/freebsd32.h>
79 #ifdef COMPAT_FREEBSD32
80 #include <compat/freebsd32/freebsd32_proto.h>
81 #endif
82 
83 #define _UMUTEX_TRY		1
84 #define _UMUTEX_WAIT		2
85 
86 #ifdef UMTX_PROFILING
87 #define	UPROF_PERC_BIGGER(w, f, sw, sf)					\
88 	(((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
89 #endif
90 
91 #define	UMTXQ_LOCKED_ASSERT(uc)		mtx_assert(&(uc)->uc_lock, MA_OWNED)
92 #ifdef INVARIANTS
93 #define	UMTXQ_ASSERT_LOCKED_BUSY(key) do {				\
94 	struct umtxq_chain *uc;						\
95 									\
96 	uc = umtxq_getchain(key);					\
97 	mtx_assert(&uc->uc_lock, MA_OWNED);				\
98 	KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));		\
99 } while (0)
100 #else
101 #define	UMTXQ_ASSERT_LOCKED_BUSY(key) do {} while (0)
102 #endif
103 
104 /*
105  * Don't propagate time-sharing priority, there is a security reason,
106  * a user can simply introduce PI-mutex, let thread A lock the mutex,
107  * and let another thread B block on the mutex, because B is
108  * sleeping, its priority will be boosted, this causes A's priority to
109  * be boosted via priority propagating too and will never be lowered even
110  * if it is using 100%CPU, this is unfair to other processes.
111  */
112 
113 #define UPRI(td)	(((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
114 			  (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
115 			 PRI_MAX_TIMESHARE : (td)->td_user_pri)
116 
117 #define	GOLDEN_RATIO_PRIME	2654404609U
118 #ifndef	UMTX_CHAINS
119 #define	UMTX_CHAINS		512
120 #endif
121 #define	UMTX_SHIFTS		(__WORD_BIT - 9)
122 
123 #define	GET_SHARE(flags)	\
124     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
125 
126 #define BUSY_SPINS		200
127 
128 struct umtx_copyops {
129 	int	(*copyin_timeout)(const void *uaddr, struct timespec *tsp);
130 	int	(*copyin_umtx_time)(const void *uaddr, size_t size,
131 	    struct _umtx_time *tp);
132 	int	(*copyin_robust_lists)(const void *uaddr, size_t size,
133 	    struct umtx_robust_lists_params *rbp);
134 	int	(*copyout_timeout)(void *uaddr, size_t size,
135 	    struct timespec *tsp);
136 	const size_t	timespec_sz;
137 	const size_t	umtx_time_sz;
138 	const bool	compat32;
139 };
140 
141 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
142 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
143     __offsetof(struct umutex32, m_spare[0]), "m_spare32");
144 
145 int umtx_shm_vnobj_persistent = 0;
146 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
147     &umtx_shm_vnobj_persistent, 0,
148     "False forces destruction of umtx attached to file, on last close");
149 static int umtx_max_rb = 1000;
150 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
151     &umtx_max_rb, 0,
152     "Maximum number of robust mutexes allowed for each thread");
153 
154 static uma_zone_t		umtx_pi_zone;
155 static struct umtxq_chain	umtxq_chains[2][UMTX_CHAINS];
156 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
157 static int			umtx_pi_allocated;
158 
159 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
160     "umtx debug");
161 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
162     &umtx_pi_allocated, 0, "Allocated umtx_pi");
163 static int umtx_verbose_rb = 1;
164 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
165     &umtx_verbose_rb, 0,
166     "");
167 
168 #ifdef UMTX_PROFILING
169 static long max_length;
170 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
171 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
172     "umtx chain stats");
173 #endif
174 
175 static inline void umtx_abs_timeout_init2(struct umtx_abs_timeout *timo,
176     const struct _umtx_time *umtxtime);
177 
178 static void umtx_shm_init(void);
179 static void umtxq_sysinit(void *);
180 static void umtxq_hash(struct umtx_key *key);
181 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
182     bool rb);
183 static void umtx_thread_cleanup(struct thread *td);
184 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
185 
186 #define umtxq_signal(key, nwake)	umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
187 
188 static struct mtx umtx_lock;
189 
190 #ifdef UMTX_PROFILING
191 static void
192 umtx_init_profiling(void)
193 {
194 	struct sysctl_oid *chain_oid;
195 	char chain_name[10];
196 	int i;
197 
198 	for (i = 0; i < UMTX_CHAINS; ++i) {
199 		snprintf(chain_name, sizeof(chain_name), "%d", i);
200 		chain_oid = SYSCTL_ADD_NODE(NULL,
201 		    SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
202 		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
203 		    "umtx hash stats");
204 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
205 		    "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
206 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
207 		    "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
208 	}
209 }
210 
211 static int
212 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
213 {
214 	char buf[512];
215 	struct sbuf sb;
216 	struct umtxq_chain *uc;
217 	u_int fract, i, j, tot, whole;
218 	u_int sf0, sf1, sf2, sf3, sf4;
219 	u_int si0, si1, si2, si3, si4;
220 	u_int sw0, sw1, sw2, sw3, sw4;
221 
222 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
223 	for (i = 0; i < 2; i++) {
224 		tot = 0;
225 		for (j = 0; j < UMTX_CHAINS; ++j) {
226 			uc = &umtxq_chains[i][j];
227 			mtx_lock(&uc->uc_lock);
228 			tot += uc->max_length;
229 			mtx_unlock(&uc->uc_lock);
230 		}
231 		if (tot == 0)
232 			sbuf_printf(&sb, "%u) Empty ", i);
233 		else {
234 			sf0 = sf1 = sf2 = sf3 = sf4 = 0;
235 			si0 = si1 = si2 = si3 = si4 = 0;
236 			sw0 = sw1 = sw2 = sw3 = sw4 = 0;
237 			for (j = 0; j < UMTX_CHAINS; j++) {
238 				uc = &umtxq_chains[i][j];
239 				mtx_lock(&uc->uc_lock);
240 				whole = uc->max_length * 100;
241 				mtx_unlock(&uc->uc_lock);
242 				fract = (whole % tot) * 100;
243 				if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
244 					sf0 = fract;
245 					si0 = j;
246 					sw0 = whole;
247 				} else if (UPROF_PERC_BIGGER(whole, fract, sw1,
248 				    sf1)) {
249 					sf1 = fract;
250 					si1 = j;
251 					sw1 = whole;
252 				} else if (UPROF_PERC_BIGGER(whole, fract, sw2,
253 				    sf2)) {
254 					sf2 = fract;
255 					si2 = j;
256 					sw2 = whole;
257 				} else if (UPROF_PERC_BIGGER(whole, fract, sw3,
258 				    sf3)) {
259 					sf3 = fract;
260 					si3 = j;
261 					sw3 = whole;
262 				} else if (UPROF_PERC_BIGGER(whole, fract, sw4,
263 				    sf4)) {
264 					sf4 = fract;
265 					si4 = j;
266 					sw4 = whole;
267 				}
268 			}
269 			sbuf_printf(&sb, "queue %u:\n", i);
270 			sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
271 			    sf0 / tot, si0);
272 			sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
273 			    sf1 / tot, si1);
274 			sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
275 			    sf2 / tot, si2);
276 			sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
277 			    sf3 / tot, si3);
278 			sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
279 			    sf4 / tot, si4);
280 		}
281 	}
282 	sbuf_trim(&sb);
283 	sbuf_finish(&sb);
284 	sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
285 	sbuf_delete(&sb);
286 	return (0);
287 }
288 
289 static int
290 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
291 {
292 	struct umtxq_chain *uc;
293 	u_int i, j;
294 	int clear, error;
295 
296 	clear = 0;
297 	error = sysctl_handle_int(oidp, &clear, 0, req);
298 	if (error != 0 || req->newptr == NULL)
299 		return (error);
300 
301 	if (clear != 0) {
302 		for (i = 0; i < 2; ++i) {
303 			for (j = 0; j < UMTX_CHAINS; ++j) {
304 				uc = &umtxq_chains[i][j];
305 				mtx_lock(&uc->uc_lock);
306 				uc->length = 0;
307 				uc->max_length = 0;
308 				mtx_unlock(&uc->uc_lock);
309 			}
310 		}
311 	}
312 	return (0);
313 }
314 
315 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
316     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
317     sysctl_debug_umtx_chains_clear, "I",
318     "Clear umtx chains statistics");
319 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
320     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
321     sysctl_debug_umtx_chains_peaks, "A",
322     "Highest peaks in chains max length");
323 #endif
324 
325 static void
326 umtxq_sysinit(void *arg __unused)
327 {
328 	int i, j;
329 
330 	umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
331 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
332 	for (i = 0; i < 2; ++i) {
333 		for (j = 0; j < UMTX_CHAINS; ++j) {
334 			mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
335 				 MTX_DEF | MTX_DUPOK);
336 			LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
337 			LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
338 			LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
339 			TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
340 			umtxq_chains[i][j].uc_busy = 0;
341 			umtxq_chains[i][j].uc_waiters = 0;
342 #ifdef UMTX_PROFILING
343 			umtxq_chains[i][j].length = 0;
344 			umtxq_chains[i][j].max_length = 0;
345 #endif
346 		}
347 	}
348 #ifdef UMTX_PROFILING
349 	umtx_init_profiling();
350 #endif
351 	mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
352 	umtx_shm_init();
353 }
354 
355 struct umtx_q *
356 umtxq_alloc(void)
357 {
358 	struct umtx_q *uq;
359 
360 	uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
361 	uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
362 	    M_WAITOK | M_ZERO);
363 	TAILQ_INIT(&uq->uq_spare_queue->head);
364 	TAILQ_INIT(&uq->uq_pi_contested);
365 	uq->uq_inherited_pri = PRI_MAX;
366 	return (uq);
367 }
368 
369 void
370 umtxq_free(struct umtx_q *uq)
371 {
372 
373 	MPASS(uq->uq_spare_queue != NULL);
374 	free(uq->uq_spare_queue, M_UMTX);
375 	free(uq, M_UMTX);
376 }
377 
378 static inline void
379 umtxq_hash(struct umtx_key *key)
380 {
381 	unsigned n;
382 
383 	n = (uintptr_t)key->info.both.a + key->info.both.b;
384 	key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
385 }
386 
387 struct umtxq_chain *
388 umtxq_getchain(struct umtx_key *key)
389 {
390 
391 	if (key->type <= TYPE_SEM)
392 		return (&umtxq_chains[1][key->hash]);
393 	return (&umtxq_chains[0][key->hash]);
394 }
395 
396 /*
397  * Set chain to busy state when following operation
398  * may be blocked (kernel mutex can not be used).
399  */
400 void
401 umtxq_busy(struct umtx_key *key)
402 {
403 	struct umtxq_chain *uc;
404 
405 	uc = umtxq_getchain(key);
406 	mtx_assert(&uc->uc_lock, MA_OWNED);
407 	if (uc->uc_busy) {
408 #ifdef SMP
409 		if (smp_cpus > 1) {
410 			int count = BUSY_SPINS;
411 			if (count > 0) {
412 				umtxq_unlock(key);
413 				while (uc->uc_busy && --count > 0)
414 					cpu_spinwait();
415 				umtxq_lock(key);
416 			}
417 		}
418 #endif
419 		while (uc->uc_busy) {
420 			uc->uc_waiters++;
421 			msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
422 			uc->uc_waiters--;
423 		}
424 	}
425 	uc->uc_busy = 1;
426 }
427 
428 /*
429  * Unbusy a chain.
430  */
431 void
432 umtxq_unbusy(struct umtx_key *key)
433 {
434 	struct umtxq_chain *uc;
435 
436 	uc = umtxq_getchain(key);
437 	mtx_assert(&uc->uc_lock, MA_OWNED);
438 	KASSERT(uc->uc_busy != 0, ("not busy"));
439 	uc->uc_busy = 0;
440 	if (uc->uc_waiters)
441 		wakeup_one(uc);
442 }
443 
444 void
445 umtxq_unbusy_unlocked(struct umtx_key *key)
446 {
447 
448 	umtxq_lock(key);
449 	umtxq_unbusy(key);
450 	umtxq_unlock(key);
451 }
452 
453 static struct umtxq_queue *
454 umtxq_queue_lookup(struct umtx_key *key, int q)
455 {
456 	struct umtxq_queue *uh;
457 	struct umtxq_chain *uc;
458 
459 	uc = umtxq_getchain(key);
460 	UMTXQ_LOCKED_ASSERT(uc);
461 	LIST_FOREACH(uh, &uc->uc_queue[q], link) {
462 		if (umtx_key_match(&uh->key, key))
463 			return (uh);
464 	}
465 
466 	return (NULL);
467 }
468 
469 void
470 umtxq_insert_queue(struct umtx_q *uq, int q)
471 {
472 	struct umtxq_queue *uh;
473 	struct umtxq_chain *uc;
474 
475 	uc = umtxq_getchain(&uq->uq_key);
476 	UMTXQ_LOCKED_ASSERT(uc);
477 	KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
478 	uh = umtxq_queue_lookup(&uq->uq_key, q);
479 	if (uh != NULL) {
480 		LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
481 	} else {
482 		uh = uq->uq_spare_queue;
483 		uh->key = uq->uq_key;
484 		LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
485 #ifdef UMTX_PROFILING
486 		uc->length++;
487 		if (uc->length > uc->max_length) {
488 			uc->max_length = uc->length;
489 			if (uc->max_length > max_length)
490 				max_length = uc->max_length;
491 		}
492 #endif
493 	}
494 	uq->uq_spare_queue = NULL;
495 
496 	TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
497 	uh->length++;
498 	uq->uq_flags |= UQF_UMTXQ;
499 	uq->uq_cur_queue = uh;
500 	return;
501 }
502 
503 void
504 umtxq_remove_queue(struct umtx_q *uq, int q)
505 {
506 	struct umtxq_chain *uc;
507 	struct umtxq_queue *uh;
508 
509 	uc = umtxq_getchain(&uq->uq_key);
510 	UMTXQ_LOCKED_ASSERT(uc);
511 	if (uq->uq_flags & UQF_UMTXQ) {
512 		uh = uq->uq_cur_queue;
513 		TAILQ_REMOVE(&uh->head, uq, uq_link);
514 		uh->length--;
515 		uq->uq_flags &= ~UQF_UMTXQ;
516 		if (TAILQ_EMPTY(&uh->head)) {
517 			KASSERT(uh->length == 0,
518 			    ("inconsistent umtxq_queue length"));
519 #ifdef UMTX_PROFILING
520 			uc->length--;
521 #endif
522 			LIST_REMOVE(uh, link);
523 		} else {
524 			uh = LIST_FIRST(&uc->uc_spare_queue);
525 			KASSERT(uh != NULL, ("uc_spare_queue is empty"));
526 			LIST_REMOVE(uh, link);
527 		}
528 		uq->uq_spare_queue = uh;
529 		uq->uq_cur_queue = NULL;
530 	}
531 }
532 
533 /*
534  * Check if there are multiple waiters
535  */
536 int
537 umtxq_count(struct umtx_key *key)
538 {
539 	struct umtxq_queue *uh;
540 
541 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
542 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
543 	if (uh != NULL)
544 		return (uh->length);
545 	return (0);
546 }
547 
548 /*
549  * Check if there are multiple PI waiters and returns first
550  * waiter.
551  */
552 static int
553 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
554 {
555 	struct umtxq_queue *uh;
556 
557 	*first = NULL;
558 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
559 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
560 	if (uh != NULL) {
561 		*first = TAILQ_FIRST(&uh->head);
562 		return (uh->length);
563 	}
564 	return (0);
565 }
566 
567 /*
568  * Wake up threads waiting on an userland object by a bit mask.
569  */
570 int
571 umtxq_signal_mask(struct umtx_key *key, int n_wake, u_int bitset)
572 {
573 	struct umtxq_queue *uh;
574 	struct umtx_q *uq, *uq_temp;
575 	int ret;
576 
577 	ret = 0;
578 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
579 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
580 	if (uh == NULL)
581 		return (0);
582 	TAILQ_FOREACH_SAFE(uq, &uh->head, uq_link, uq_temp) {
583 		if ((uq->uq_bitset & bitset) == 0)
584 			continue;
585 		umtxq_remove_queue(uq, UMTX_SHARED_QUEUE);
586 		wakeup_one(uq);
587 		if (++ret >= n_wake)
588 			break;
589 	}
590 	return (ret);
591 }
592 
593 /*
594  * Wake up threads waiting on an userland object.
595  */
596 
597 static int
598 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
599 {
600 	struct umtxq_queue *uh;
601 	struct umtx_q *uq;
602 	int ret;
603 
604 	ret = 0;
605 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
606 	uh = umtxq_queue_lookup(key, q);
607 	if (uh != NULL) {
608 		while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
609 			umtxq_remove_queue(uq, q);
610 			wakeup(uq);
611 			if (++ret >= n_wake)
612 				return (ret);
613 		}
614 	}
615 	return (ret);
616 }
617 
618 /*
619  * Wake up specified thread.
620  */
621 static inline void
622 umtxq_signal_thread(struct umtx_q *uq)
623 {
624 
625 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
626 	umtxq_remove(uq);
627 	wakeup(uq);
628 }
629 
630 /*
631  * Wake up a maximum of n_wake threads that are waiting on an userland
632  * object identified by key. The remaining threads are removed from queue
633  * identified by key and added to the queue identified by key2 (requeued).
634  * The n_requeue specifies an upper limit on the number of threads that
635  * are requeued to the second queue.
636  */
637 int
638 umtxq_requeue(struct umtx_key *key, int n_wake, struct umtx_key *key2,
639     int n_requeue)
640 {
641 	struct umtxq_queue *uh;
642 	struct umtx_q *uq, *uq_temp;
643 	int ret;
644 
645 	ret = 0;
646 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
647 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key2));
648 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
649 	if (uh == NULL)
650 		return (0);
651 	TAILQ_FOREACH_SAFE(uq, &uh->head, uq_link, uq_temp) {
652 		if (++ret <= n_wake) {
653 			umtxq_remove(uq);
654 			wakeup_one(uq);
655 		} else {
656 			umtxq_remove(uq);
657 			uq->uq_key = *key2;
658 			umtxq_insert(uq);
659 			if (ret - n_wake == n_requeue)
660 				break;
661 		}
662 	}
663 	return (ret);
664 }
665 
666 static inline int
667 tstohz(const struct timespec *tsp)
668 {
669 	struct timeval tv;
670 
671 	TIMESPEC_TO_TIMEVAL(&tv, tsp);
672 	return tvtohz(&tv);
673 }
674 
675 void
676 umtx_abs_timeout_init(struct umtx_abs_timeout *timo, int clockid,
677     int absolute, const struct timespec *timeout)
678 {
679 
680 	timo->clockid = clockid;
681 	if (!absolute) {
682 		timo->is_abs_real = false;
683 		kern_clock_gettime(curthread, timo->clockid, &timo->cur);
684 		timespecadd(&timo->cur, timeout, &timo->end);
685 	} else {
686 		timo->end = *timeout;
687 		timo->is_abs_real = clockid == CLOCK_REALTIME ||
688 		    clockid == CLOCK_REALTIME_FAST ||
689 		    clockid == CLOCK_REALTIME_PRECISE ||
690 		    clockid == CLOCK_SECOND;
691 	}
692 }
693 
694 static void
695 umtx_abs_timeout_init2(struct umtx_abs_timeout *timo,
696     const struct _umtx_time *umtxtime)
697 {
698 
699 	umtx_abs_timeout_init(timo, umtxtime->_clockid,
700 	    (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
701 }
702 
703 static void
704 umtx_abs_timeout_enforce_min(sbintime_t *sbt)
705 {
706 	sbintime_t when, mint;
707 
708 	mint = curproc->p_umtx_min_timeout;
709 	if (__predict_false(mint != 0)) {
710 		when = sbinuptime() + mint;
711 		if (*sbt < when)
712 			*sbt = when;
713 	}
714 }
715 
716 static int
717 umtx_abs_timeout_getsbt(struct umtx_abs_timeout *timo, sbintime_t *sbt,
718     int *flags)
719 {
720 	struct bintime bt, bbt;
721 	struct timespec tts;
722 	sbintime_t rem;
723 
724 	switch (timo->clockid) {
725 
726 	/* Clocks that can be converted into absolute time. */
727 	case CLOCK_REALTIME:
728 	case CLOCK_REALTIME_PRECISE:
729 	case CLOCK_REALTIME_FAST:
730 	case CLOCK_MONOTONIC:
731 	case CLOCK_MONOTONIC_PRECISE:
732 	case CLOCK_MONOTONIC_FAST:
733 	case CLOCK_UPTIME:
734 	case CLOCK_UPTIME_PRECISE:
735 	case CLOCK_UPTIME_FAST:
736 	case CLOCK_SECOND:
737 		timespec2bintime(&timo->end, &bt);
738 		switch (timo->clockid) {
739 		case CLOCK_REALTIME:
740 		case CLOCK_REALTIME_PRECISE:
741 		case CLOCK_REALTIME_FAST:
742 		case CLOCK_SECOND:
743 			getboottimebin(&bbt);
744 			bintime_sub(&bt, &bbt);
745 			break;
746 		}
747 		if (bt.sec < 0)
748 			return (ETIMEDOUT);
749 		if (bt.sec >= (SBT_MAX >> 32)) {
750 			*sbt = 0;
751 			*flags = 0;
752 			return (0);
753 		}
754 		*sbt = bttosbt(bt);
755 		umtx_abs_timeout_enforce_min(sbt);
756 
757 		/*
758 		 * Check if the absolute time should be aligned to
759 		 * avoid firing multiple timer events in non-periodic
760 		 * timer mode.
761 		 */
762 		switch (timo->clockid) {
763 		case CLOCK_REALTIME_FAST:
764 		case CLOCK_MONOTONIC_FAST:
765 		case CLOCK_UPTIME_FAST:
766 			rem = *sbt % tc_tick_sbt;
767 			if (__predict_true(rem != 0))
768 				*sbt += tc_tick_sbt - rem;
769 			break;
770 		case CLOCK_SECOND:
771 			rem = *sbt % SBT_1S;
772 			if (__predict_true(rem != 0))
773 				*sbt += SBT_1S - rem;
774 			break;
775 		}
776 		*flags = C_ABSOLUTE;
777 		return (0);
778 
779 	/* Clocks that has to be periodically polled. */
780 	case CLOCK_VIRTUAL:
781 	case CLOCK_PROF:
782 	case CLOCK_THREAD_CPUTIME_ID:
783 	case CLOCK_PROCESS_CPUTIME_ID:
784 	default:
785 		kern_clock_gettime(curthread, timo->clockid, &timo->cur);
786 		if (timespeccmp(&timo->end, &timo->cur, <=))
787 			return (ETIMEDOUT);
788 		timespecsub(&timo->end, &timo->cur, &tts);
789 		*sbt = tick_sbt * tstohz(&tts);
790 		*flags = C_HARDCLOCK;
791 		return (0);
792 	}
793 }
794 
795 static uint32_t
796 umtx_unlock_val(uint32_t flags, bool rb)
797 {
798 
799 	if (rb)
800 		return (UMUTEX_RB_OWNERDEAD);
801 	else if ((flags & UMUTEX_NONCONSISTENT) != 0)
802 		return (UMUTEX_RB_NOTRECOV);
803 	else
804 		return (UMUTEX_UNOWNED);
805 
806 }
807 
808 /*
809  * Put thread into sleep state, before sleeping, check if
810  * thread was removed from umtx queue.
811  */
812 int
813 umtxq_sleep(struct umtx_q *uq, const char *wmesg,
814     struct umtx_abs_timeout *timo)
815 {
816 	struct umtxq_chain *uc;
817 	sbintime_t sbt = 0;
818 	int error, flags = 0;
819 
820 	uc = umtxq_getchain(&uq->uq_key);
821 	UMTXQ_LOCKED_ASSERT(uc);
822 	for (;;) {
823 		if (!(uq->uq_flags & UQF_UMTXQ)) {
824 			error = 0;
825 			break;
826 		}
827 		if (timo != NULL) {
828 			if (timo->is_abs_real)
829 				curthread->td_rtcgen =
830 				    atomic_load_acq_int(&rtc_generation);
831 			error = umtx_abs_timeout_getsbt(timo, &sbt, &flags);
832 			if (error != 0)
833 				break;
834 		}
835 		error = msleep_sbt(uq, &uc->uc_lock, PCATCH | PDROP, wmesg,
836 		    sbt, 0, flags);
837 		uc = umtxq_getchain(&uq->uq_key);
838 		mtx_lock(&uc->uc_lock);
839 		if (error == EINTR || error == ERESTART)
840 			break;
841 		if (error == EWOULDBLOCK && (flags & C_ABSOLUTE) != 0) {
842 			error = ETIMEDOUT;
843 			break;
844 		}
845 	}
846 
847 	curthread->td_rtcgen = 0;
848 	return (error);
849 }
850 
851 /*
852  * Convert userspace address into unique logical address.
853  */
854 int
855 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
856 {
857 	struct thread *td = curthread;
858 	vm_map_t map;
859 	vm_map_entry_t entry;
860 	vm_pindex_t pindex;
861 	vm_prot_t prot;
862 	boolean_t wired;
863 
864 	key->type = type;
865 	if (share == THREAD_SHARE) {
866 		key->shared = 0;
867 		key->info.private.vs = td->td_proc->p_vmspace;
868 		key->info.private.addr = (uintptr_t)addr;
869 	} else {
870 		MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
871 		map = &td->td_proc->p_vmspace->vm_map;
872 		if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
873 		    &entry, &key->info.shared.object, &pindex, &prot,
874 		    &wired) != KERN_SUCCESS) {
875 			return (EFAULT);
876 		}
877 
878 		if ((share == PROCESS_SHARE) ||
879 		    (share == AUTO_SHARE &&
880 		     VM_INHERIT_SHARE == entry->inheritance)) {
881 			key->shared = 1;
882 			key->info.shared.offset = (vm_offset_t)addr -
883 			    entry->start + entry->offset;
884 			vm_object_reference(key->info.shared.object);
885 		} else {
886 			key->shared = 0;
887 			key->info.private.vs = td->td_proc->p_vmspace;
888 			key->info.private.addr = (uintptr_t)addr;
889 		}
890 		vm_map_lookup_done(map, entry);
891 	}
892 
893 	umtxq_hash(key);
894 	return (0);
895 }
896 
897 /*
898  * Release key.
899  */
900 void
901 umtx_key_release(struct umtx_key *key)
902 {
903 	if (key->shared)
904 		vm_object_deallocate(key->info.shared.object);
905 }
906 
907 #ifdef COMPAT_FREEBSD10
908 /*
909  * Lock a umtx object.
910  */
911 static int
912 do_lock_umtx(struct thread *td, struct umtx *umtx, u_long id,
913     const struct timespec *timeout)
914 {
915 	struct umtx_abs_timeout timo;
916 	struct umtx_q *uq;
917 	u_long owner;
918 	u_long old;
919 	int error = 0;
920 
921 	uq = td->td_umtxq;
922 	if (timeout != NULL)
923 		umtx_abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
924 
925 	/*
926 	 * Care must be exercised when dealing with umtx structure. It
927 	 * can fault on any access.
928 	 */
929 	for (;;) {
930 		/*
931 		 * Try the uncontested case.  This should be done in userland.
932 		 */
933 		owner = casuword(&umtx->u_owner, UMTX_UNOWNED, id);
934 
935 		/* The acquire succeeded. */
936 		if (owner == UMTX_UNOWNED)
937 			return (0);
938 
939 		/* The address was invalid. */
940 		if (owner == -1)
941 			return (EFAULT);
942 
943 		/* If no one owns it but it is contested try to acquire it. */
944 		if (owner == UMTX_CONTESTED) {
945 			owner = casuword(&umtx->u_owner,
946 			    UMTX_CONTESTED, id | UMTX_CONTESTED);
947 
948 			if (owner == UMTX_CONTESTED)
949 				return (0);
950 
951 			/* The address was invalid. */
952 			if (owner == -1)
953 				return (EFAULT);
954 
955 			error = thread_check_susp(td, false);
956 			if (error != 0)
957 				break;
958 
959 			/* If this failed the lock has changed, restart. */
960 			continue;
961 		}
962 
963 		/*
964 		 * If we caught a signal, we have retried and now
965 		 * exit immediately.
966 		 */
967 		if (error != 0)
968 			break;
969 
970 		if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK,
971 			AUTO_SHARE, &uq->uq_key)) != 0)
972 			return (error);
973 
974 		umtxq_lock(&uq->uq_key);
975 		umtxq_busy(&uq->uq_key);
976 		umtxq_insert(uq);
977 		umtxq_unbusy(&uq->uq_key);
978 		umtxq_unlock(&uq->uq_key);
979 
980 		/*
981 		 * Set the contested bit so that a release in user space
982 		 * knows to use the system call for unlock.  If this fails
983 		 * either some one else has acquired the lock or it has been
984 		 * released.
985 		 */
986 		old = casuword(&umtx->u_owner, owner, owner | UMTX_CONTESTED);
987 
988 		/* The address was invalid. */
989 		if (old == -1) {
990 			umtxq_lock(&uq->uq_key);
991 			umtxq_remove(uq);
992 			umtxq_unlock(&uq->uq_key);
993 			umtx_key_release(&uq->uq_key);
994 			return (EFAULT);
995 		}
996 
997 		/*
998 		 * We set the contested bit, sleep. Otherwise the lock changed
999 		 * and we need to retry or we lost a race to the thread
1000 		 * unlocking the umtx.
1001 		 */
1002 		umtxq_lock(&uq->uq_key);
1003 		if (old == owner)
1004 			error = umtxq_sleep(uq, "umtx", timeout == NULL ? NULL :
1005 			    &timo);
1006 		umtxq_remove(uq);
1007 		umtxq_unlock(&uq->uq_key);
1008 		umtx_key_release(&uq->uq_key);
1009 
1010 		if (error == 0)
1011 			error = thread_check_susp(td, false);
1012 	}
1013 
1014 	if (timeout == NULL) {
1015 		/* Mutex locking is restarted if it is interrupted. */
1016 		if (error == EINTR)
1017 			error = ERESTART;
1018 	} else {
1019 		/* Timed-locking is not restarted. */
1020 		if (error == ERESTART)
1021 			error = EINTR;
1022 	}
1023 	return (error);
1024 }
1025 
1026 /*
1027  * Unlock a umtx object.
1028  */
1029 static int
1030 do_unlock_umtx(struct thread *td, struct umtx *umtx, u_long id)
1031 {
1032 	struct umtx_key key;
1033 	u_long owner;
1034 	u_long old;
1035 	int error;
1036 	int count;
1037 
1038 	/*
1039 	 * Make sure we own this mtx.
1040 	 */
1041 	owner = fuword(__DEVOLATILE(u_long *, &umtx->u_owner));
1042 	if (owner == -1)
1043 		return (EFAULT);
1044 
1045 	if ((owner & ~UMTX_CONTESTED) != id)
1046 		return (EPERM);
1047 
1048 	/* This should be done in userland */
1049 	if ((owner & UMTX_CONTESTED) == 0) {
1050 		old = casuword(&umtx->u_owner, owner, UMTX_UNOWNED);
1051 		if (old == -1)
1052 			return (EFAULT);
1053 		if (old == owner)
1054 			return (0);
1055 		owner = old;
1056 	}
1057 
1058 	/* We should only ever be in here for contested locks */
1059 	if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1060 	    &key)) != 0)
1061 		return (error);
1062 
1063 	umtxq_lock(&key);
1064 	umtxq_busy(&key);
1065 	count = umtxq_count(&key);
1066 	umtxq_unlock(&key);
1067 
1068 	/*
1069 	 * When unlocking the umtx, it must be marked as unowned if
1070 	 * there is zero or one thread only waiting for it.
1071 	 * Otherwise, it must be marked as contested.
1072 	 */
1073 	old = casuword(&umtx->u_owner, owner,
1074 	    count <= 1 ? UMTX_UNOWNED : UMTX_CONTESTED);
1075 	umtxq_lock(&key);
1076 	umtxq_signal(&key,1);
1077 	umtxq_unbusy(&key);
1078 	umtxq_unlock(&key);
1079 	umtx_key_release(&key);
1080 	if (old == -1)
1081 		return (EFAULT);
1082 	if (old != owner)
1083 		return (EINVAL);
1084 	return (0);
1085 }
1086 
1087 #ifdef COMPAT_FREEBSD32
1088 
1089 /*
1090  * Lock a umtx object.
1091  */
1092 static int
1093 do_lock_umtx32(struct thread *td, uint32_t *m, uint32_t id,
1094 	const struct timespec *timeout)
1095 {
1096 	struct umtx_abs_timeout timo;
1097 	struct umtx_q *uq;
1098 	uint32_t owner;
1099 	uint32_t old;
1100 	int error = 0;
1101 
1102 	uq = td->td_umtxq;
1103 
1104 	if (timeout != NULL)
1105 		umtx_abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
1106 
1107 	/*
1108 	 * Care must be exercised when dealing with umtx structure. It
1109 	 * can fault on any access.
1110 	 */
1111 	for (;;) {
1112 		/*
1113 		 * Try the uncontested case.  This should be done in userland.
1114 		 */
1115 		owner = casuword32(m, UMUTEX_UNOWNED, id);
1116 
1117 		/* The acquire succeeded. */
1118 		if (owner == UMUTEX_UNOWNED)
1119 			return (0);
1120 
1121 		/* The address was invalid. */
1122 		if (owner == -1)
1123 			return (EFAULT);
1124 
1125 		/* If no one owns it but it is contested try to acquire it. */
1126 		if (owner == UMUTEX_CONTESTED) {
1127 			owner = casuword32(m,
1128 			    UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
1129 			if (owner == UMUTEX_CONTESTED)
1130 				return (0);
1131 
1132 			/* The address was invalid. */
1133 			if (owner == -1)
1134 				return (EFAULT);
1135 
1136 			error = thread_check_susp(td, false);
1137 			if (error != 0)
1138 				break;
1139 
1140 			/* If this failed the lock has changed, restart. */
1141 			continue;
1142 		}
1143 
1144 		/*
1145 		 * If we caught a signal, we have retried and now
1146 		 * exit immediately.
1147 		 */
1148 		if (error != 0)
1149 			return (error);
1150 
1151 		if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK,
1152 			AUTO_SHARE, &uq->uq_key)) != 0)
1153 			return (error);
1154 
1155 		umtxq_lock(&uq->uq_key);
1156 		umtxq_busy(&uq->uq_key);
1157 		umtxq_insert(uq);
1158 		umtxq_unbusy(&uq->uq_key);
1159 		umtxq_unlock(&uq->uq_key);
1160 
1161 		/*
1162 		 * Set the contested bit so that a release in user space
1163 		 * knows to use the system call for unlock.  If this fails
1164 		 * either some one else has acquired the lock or it has been
1165 		 * released.
1166 		 */
1167 		old = casuword32(m, owner, owner | UMUTEX_CONTESTED);
1168 
1169 		/* The address was invalid. */
1170 		if (old == -1) {
1171 			umtxq_lock(&uq->uq_key);
1172 			umtxq_remove(uq);
1173 			umtxq_unlock(&uq->uq_key);
1174 			umtx_key_release(&uq->uq_key);
1175 			return (EFAULT);
1176 		}
1177 
1178 		/*
1179 		 * We set the contested bit, sleep. Otherwise the lock changed
1180 		 * and we need to retry or we lost a race to the thread
1181 		 * unlocking the umtx.
1182 		 */
1183 		umtxq_lock(&uq->uq_key);
1184 		if (old == owner)
1185 			error = umtxq_sleep(uq, "umtx", timeout == NULL ?
1186 			    NULL : &timo);
1187 		umtxq_remove(uq);
1188 		umtxq_unlock(&uq->uq_key);
1189 		umtx_key_release(&uq->uq_key);
1190 
1191 		if (error == 0)
1192 			error = thread_check_susp(td, false);
1193 	}
1194 
1195 	if (timeout == NULL) {
1196 		/* Mutex locking is restarted if it is interrupted. */
1197 		if (error == EINTR)
1198 			error = ERESTART;
1199 	} else {
1200 		/* Timed-locking is not restarted. */
1201 		if (error == ERESTART)
1202 			error = EINTR;
1203 	}
1204 	return (error);
1205 }
1206 
1207 /*
1208  * Unlock a umtx object.
1209  */
1210 static int
1211 do_unlock_umtx32(struct thread *td, uint32_t *m, uint32_t id)
1212 {
1213 	struct umtx_key key;
1214 	uint32_t owner;
1215 	uint32_t old;
1216 	int error;
1217 	int count;
1218 
1219 	/*
1220 	 * Make sure we own this mtx.
1221 	 */
1222 	owner = fuword32(m);
1223 	if (owner == -1)
1224 		return (EFAULT);
1225 
1226 	if ((owner & ~UMUTEX_CONTESTED) != id)
1227 		return (EPERM);
1228 
1229 	/* This should be done in userland */
1230 	if ((owner & UMUTEX_CONTESTED) == 0) {
1231 		old = casuword32(m, owner, UMUTEX_UNOWNED);
1232 		if (old == -1)
1233 			return (EFAULT);
1234 		if (old == owner)
1235 			return (0);
1236 		owner = old;
1237 	}
1238 
1239 	/* We should only ever be in here for contested locks */
1240 	if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1241 		&key)) != 0)
1242 		return (error);
1243 
1244 	umtxq_lock(&key);
1245 	umtxq_busy(&key);
1246 	count = umtxq_count(&key);
1247 	umtxq_unlock(&key);
1248 
1249 	/*
1250 	 * When unlocking the umtx, it must be marked as unowned if
1251 	 * there is zero or one thread only waiting for it.
1252 	 * Otherwise, it must be marked as contested.
1253 	 */
1254 	old = casuword32(m, owner,
1255 		count <= 1 ? UMUTEX_UNOWNED : UMUTEX_CONTESTED);
1256 	umtxq_lock(&key);
1257 	umtxq_signal(&key,1);
1258 	umtxq_unbusy(&key);
1259 	umtxq_unlock(&key);
1260 	umtx_key_release(&key);
1261 	if (old == -1)
1262 		return (EFAULT);
1263 	if (old != owner)
1264 		return (EINVAL);
1265 	return (0);
1266 }
1267 #endif	/* COMPAT_FREEBSD32 */
1268 #endif	/* COMPAT_FREEBSD10 */
1269 
1270 /*
1271  * Fetch and compare value, sleep on the address if value is not changed.
1272  */
1273 static int
1274 do_wait(struct thread *td, void *addr, u_long id,
1275     struct _umtx_time *timeout, int compat32, int is_private)
1276 {
1277 	struct umtx_abs_timeout timo;
1278 	struct umtx_q *uq;
1279 	u_long tmp;
1280 	uint32_t tmp32;
1281 	int error = 0;
1282 
1283 	uq = td->td_umtxq;
1284 	if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
1285 	    is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
1286 		return (error);
1287 
1288 	if (timeout != NULL)
1289 		umtx_abs_timeout_init2(&timo, timeout);
1290 
1291 	umtxq_lock(&uq->uq_key);
1292 	umtxq_insert(uq);
1293 	umtxq_unlock(&uq->uq_key);
1294 	if (compat32 == 0) {
1295 		error = fueword(addr, &tmp);
1296 		if (error != 0)
1297 			error = EFAULT;
1298 	} else {
1299 		error = fueword32(addr, &tmp32);
1300 		if (error == 0)
1301 			tmp = tmp32;
1302 		else
1303 			error = EFAULT;
1304 	}
1305 	umtxq_lock(&uq->uq_key);
1306 	if (error == 0) {
1307 		if (tmp == id)
1308 			error = umtxq_sleep(uq, "uwait", timeout == NULL ?
1309 			    NULL : &timo);
1310 		if ((uq->uq_flags & UQF_UMTXQ) == 0)
1311 			error = 0;
1312 		else
1313 			umtxq_remove(uq);
1314 	} else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
1315 		umtxq_remove(uq);
1316 	}
1317 	umtxq_unlock(&uq->uq_key);
1318 	umtx_key_release(&uq->uq_key);
1319 	if (error == ERESTART)
1320 		error = EINTR;
1321 	return (error);
1322 }
1323 
1324 /*
1325  * Wake up threads sleeping on the specified address.
1326  */
1327 int
1328 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
1329 {
1330 	struct umtx_key key;
1331 	int ret;
1332 
1333 	if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
1334 	    is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
1335 		return (ret);
1336 	umtxq_lock(&key);
1337 	umtxq_signal(&key, n_wake);
1338 	umtxq_unlock(&key);
1339 	umtx_key_release(&key);
1340 	return (0);
1341 }
1342 
1343 /*
1344  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
1345  */
1346 static int
1347 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
1348     struct _umtx_time *timeout, int mode)
1349 {
1350 	struct umtx_abs_timeout timo;
1351 	struct umtx_q *uq;
1352 	uint32_t owner, old, id;
1353 	int error, rv;
1354 
1355 	id = td->td_tid;
1356 	uq = td->td_umtxq;
1357 	error = 0;
1358 	if (timeout != NULL)
1359 		umtx_abs_timeout_init2(&timo, timeout);
1360 
1361 	/*
1362 	 * Care must be exercised when dealing with umtx structure. It
1363 	 * can fault on any access.
1364 	 */
1365 	for (;;) {
1366 		rv = fueword32(&m->m_owner, &owner);
1367 		if (rv == -1)
1368 			return (EFAULT);
1369 		if (mode == _UMUTEX_WAIT) {
1370 			if (owner == UMUTEX_UNOWNED ||
1371 			    owner == UMUTEX_CONTESTED ||
1372 			    owner == UMUTEX_RB_OWNERDEAD ||
1373 			    owner == UMUTEX_RB_NOTRECOV)
1374 				return (0);
1375 		} else {
1376 			/*
1377 			 * Robust mutex terminated.  Kernel duty is to
1378 			 * return EOWNERDEAD to the userspace.  The
1379 			 * umutex.m_flags UMUTEX_NONCONSISTENT is set
1380 			 * by the common userspace code.
1381 			 */
1382 			if (owner == UMUTEX_RB_OWNERDEAD) {
1383 				rv = casueword32(&m->m_owner,
1384 				    UMUTEX_RB_OWNERDEAD, &owner,
1385 				    id | UMUTEX_CONTESTED);
1386 				if (rv == -1)
1387 					return (EFAULT);
1388 				if (rv == 0) {
1389 					MPASS(owner == UMUTEX_RB_OWNERDEAD);
1390 					return (EOWNERDEAD); /* success */
1391 				}
1392 				MPASS(rv == 1);
1393 				rv = thread_check_susp(td, false);
1394 				if (rv != 0)
1395 					return (rv);
1396 				continue;
1397 			}
1398 			if (owner == UMUTEX_RB_NOTRECOV)
1399 				return (ENOTRECOVERABLE);
1400 
1401 			/*
1402 			 * Try the uncontested case.  This should be
1403 			 * done in userland.
1404 			 */
1405 			rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
1406 			    &owner, id);
1407 			/* The address was invalid. */
1408 			if (rv == -1)
1409 				return (EFAULT);
1410 
1411 			/* The acquire succeeded. */
1412 			if (rv == 0) {
1413 				MPASS(owner == UMUTEX_UNOWNED);
1414 				return (0);
1415 			}
1416 
1417 			/*
1418 			 * If no one owns it but it is contested try
1419 			 * to acquire it.
1420 			 */
1421 			MPASS(rv == 1);
1422 			if (owner == UMUTEX_CONTESTED) {
1423 				rv = casueword32(&m->m_owner,
1424 				    UMUTEX_CONTESTED, &owner,
1425 				    id | UMUTEX_CONTESTED);
1426 				/* The address was invalid. */
1427 				if (rv == -1)
1428 					return (EFAULT);
1429 				if (rv == 0) {
1430 					MPASS(owner == UMUTEX_CONTESTED);
1431 					return (0);
1432 				}
1433 				if (rv == 1) {
1434 					rv = thread_check_susp(td, false);
1435 					if (rv != 0)
1436 						return (rv);
1437 				}
1438 
1439 				/*
1440 				 * If this failed the lock has
1441 				 * changed, restart.
1442 				 */
1443 				continue;
1444 			}
1445 
1446 			/* rv == 1 but not contested, likely store failure */
1447 			rv = thread_check_susp(td, false);
1448 			if (rv != 0)
1449 				return (rv);
1450 		}
1451 
1452 		if (mode == _UMUTEX_TRY)
1453 			return (EBUSY);
1454 
1455 		/*
1456 		 * If we caught a signal, we have retried and now
1457 		 * exit immediately.
1458 		 */
1459 		if (error != 0)
1460 			return (error);
1461 
1462 		if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
1463 		    GET_SHARE(flags), &uq->uq_key)) != 0)
1464 			return (error);
1465 
1466 		umtxq_lock(&uq->uq_key);
1467 		umtxq_busy(&uq->uq_key);
1468 		umtxq_insert(uq);
1469 		umtxq_unlock(&uq->uq_key);
1470 
1471 		/*
1472 		 * Set the contested bit so that a release in user space
1473 		 * knows to use the system call for unlock.  If this fails
1474 		 * either some one else has acquired the lock or it has been
1475 		 * released.
1476 		 */
1477 		rv = casueword32(&m->m_owner, owner, &old,
1478 		    owner | UMUTEX_CONTESTED);
1479 
1480 		/* The address was invalid or casueword failed to store. */
1481 		if (rv == -1 || rv == 1) {
1482 			umtxq_lock(&uq->uq_key);
1483 			umtxq_remove(uq);
1484 			umtxq_unbusy(&uq->uq_key);
1485 			umtxq_unlock(&uq->uq_key);
1486 			umtx_key_release(&uq->uq_key);
1487 			if (rv == -1)
1488 				return (EFAULT);
1489 			if (rv == 1) {
1490 				rv = thread_check_susp(td, false);
1491 				if (rv != 0)
1492 					return (rv);
1493 			}
1494 			continue;
1495 		}
1496 
1497 		/*
1498 		 * We set the contested bit, sleep. Otherwise the lock changed
1499 		 * and we need to retry or we lost a race to the thread
1500 		 * unlocking the umtx.
1501 		 */
1502 		umtxq_lock(&uq->uq_key);
1503 		umtxq_unbusy(&uq->uq_key);
1504 		MPASS(old == owner);
1505 		error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
1506 		    NULL : &timo);
1507 		umtxq_remove(uq);
1508 		umtxq_unlock(&uq->uq_key);
1509 		umtx_key_release(&uq->uq_key);
1510 
1511 		if (error == 0)
1512 			error = thread_check_susp(td, false);
1513 	}
1514 
1515 	return (0);
1516 }
1517 
1518 /*
1519  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
1520  */
1521 static int
1522 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1523 {
1524 	struct umtx_key key;
1525 	uint32_t owner, old, id, newlock;
1526 	int error, count;
1527 
1528 	id = td->td_tid;
1529 
1530 again:
1531 	/*
1532 	 * Make sure we own this mtx.
1533 	 */
1534 	error = fueword32(&m->m_owner, &owner);
1535 	if (error == -1)
1536 		return (EFAULT);
1537 
1538 	if ((owner & ~UMUTEX_CONTESTED) != id)
1539 		return (EPERM);
1540 
1541 	newlock = umtx_unlock_val(flags, rb);
1542 	if ((owner & UMUTEX_CONTESTED) == 0) {
1543 		error = casueword32(&m->m_owner, owner, &old, newlock);
1544 		if (error == -1)
1545 			return (EFAULT);
1546 		if (error == 1) {
1547 			error = thread_check_susp(td, false);
1548 			if (error != 0)
1549 				return (error);
1550 			goto again;
1551 		}
1552 		MPASS(old == owner);
1553 		return (0);
1554 	}
1555 
1556 	/* We should only ever be in here for contested locks */
1557 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1558 	    &key)) != 0)
1559 		return (error);
1560 
1561 	umtxq_lock(&key);
1562 	umtxq_busy(&key);
1563 	count = umtxq_count(&key);
1564 	umtxq_unlock(&key);
1565 
1566 	/*
1567 	 * When unlocking the umtx, it must be marked as unowned if
1568 	 * there is zero or one thread only waiting for it.
1569 	 * Otherwise, it must be marked as contested.
1570 	 */
1571 	if (count > 1)
1572 		newlock |= UMUTEX_CONTESTED;
1573 	error = casueword32(&m->m_owner, owner, &old, newlock);
1574 	umtxq_lock(&key);
1575 	umtxq_signal(&key, 1);
1576 	umtxq_unbusy(&key);
1577 	umtxq_unlock(&key);
1578 	umtx_key_release(&key);
1579 	if (error == -1)
1580 		return (EFAULT);
1581 	if (error == 1) {
1582 		if (old != owner)
1583 			return (EINVAL);
1584 		error = thread_check_susp(td, false);
1585 		if (error != 0)
1586 			return (error);
1587 		goto again;
1588 	}
1589 	return (0);
1590 }
1591 
1592 /*
1593  * Check if the mutex is available and wake up a waiter,
1594  * only for simple mutex.
1595  */
1596 static int
1597 do_wake_umutex(struct thread *td, struct umutex *m)
1598 {
1599 	struct umtx_key key;
1600 	uint32_t owner;
1601 	uint32_t flags;
1602 	int error;
1603 	int count;
1604 
1605 again:
1606 	error = fueword32(&m->m_owner, &owner);
1607 	if (error == -1)
1608 		return (EFAULT);
1609 
1610 	if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
1611 	    owner != UMUTEX_RB_NOTRECOV)
1612 		return (0);
1613 
1614 	error = fueword32(&m->m_flags, &flags);
1615 	if (error == -1)
1616 		return (EFAULT);
1617 
1618 	/* We should only ever be in here for contested locks */
1619 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1620 	    &key)) != 0)
1621 		return (error);
1622 
1623 	umtxq_lock(&key);
1624 	umtxq_busy(&key);
1625 	count = umtxq_count(&key);
1626 	umtxq_unlock(&key);
1627 
1628 	if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
1629 	    owner != UMUTEX_RB_NOTRECOV) {
1630 		error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
1631 		    UMUTEX_UNOWNED);
1632 		if (error == -1) {
1633 			error = EFAULT;
1634 		} else if (error == 1) {
1635 			umtxq_lock(&key);
1636 			umtxq_unbusy(&key);
1637 			umtxq_unlock(&key);
1638 			umtx_key_release(&key);
1639 			error = thread_check_susp(td, false);
1640 			if (error != 0)
1641 				return (error);
1642 			goto again;
1643 		}
1644 	}
1645 
1646 	umtxq_lock(&key);
1647 	if (error == 0 && count != 0) {
1648 		MPASS((owner & ~UMUTEX_CONTESTED) == 0 ||
1649 		    owner == UMUTEX_RB_OWNERDEAD ||
1650 		    owner == UMUTEX_RB_NOTRECOV);
1651 		umtxq_signal(&key, 1);
1652 	}
1653 	umtxq_unbusy(&key);
1654 	umtxq_unlock(&key);
1655 	umtx_key_release(&key);
1656 	return (error);
1657 }
1658 
1659 /*
1660  * Check if the mutex has waiters and tries to fix contention bit.
1661  */
1662 static int
1663 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
1664 {
1665 	struct umtx_key key;
1666 	uint32_t owner, old;
1667 	int type;
1668 	int error;
1669 	int count;
1670 
1671 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
1672 	    UMUTEX_ROBUST)) {
1673 	case 0:
1674 	case UMUTEX_ROBUST:
1675 		type = TYPE_NORMAL_UMUTEX;
1676 		break;
1677 	case UMUTEX_PRIO_INHERIT:
1678 		type = TYPE_PI_UMUTEX;
1679 		break;
1680 	case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
1681 		type = TYPE_PI_ROBUST_UMUTEX;
1682 		break;
1683 	case UMUTEX_PRIO_PROTECT:
1684 		type = TYPE_PP_UMUTEX;
1685 		break;
1686 	case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
1687 		type = TYPE_PP_ROBUST_UMUTEX;
1688 		break;
1689 	default:
1690 		return (EINVAL);
1691 	}
1692 	if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
1693 		return (error);
1694 
1695 	owner = 0;
1696 	umtxq_lock(&key);
1697 	umtxq_busy(&key);
1698 	count = umtxq_count(&key);
1699 	umtxq_unlock(&key);
1700 
1701 	error = fueword32(&m->m_owner, &owner);
1702 	if (error == -1)
1703 		error = EFAULT;
1704 
1705 	/*
1706 	 * Only repair contention bit if there is a waiter, this means
1707 	 * the mutex is still being referenced by userland code,
1708 	 * otherwise don't update any memory.
1709 	 */
1710 	while (error == 0 && (owner & UMUTEX_CONTESTED) == 0 &&
1711 	    (count > 1 || (count == 1 && (owner & ~UMUTEX_CONTESTED) != 0))) {
1712 		error = casueword32(&m->m_owner, owner, &old,
1713 		    owner | UMUTEX_CONTESTED);
1714 		if (error == -1) {
1715 			error = EFAULT;
1716 			break;
1717 		}
1718 		if (error == 0) {
1719 			MPASS(old == owner);
1720 			break;
1721 		}
1722 		owner = old;
1723 		error = thread_check_susp(td, false);
1724 	}
1725 
1726 	umtxq_lock(&key);
1727 	if (error == EFAULT) {
1728 		umtxq_signal(&key, INT_MAX);
1729 	} else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1730 	    owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1731 		umtxq_signal(&key, 1);
1732 	umtxq_unbusy(&key);
1733 	umtxq_unlock(&key);
1734 	umtx_key_release(&key);
1735 	return (error);
1736 }
1737 
1738 struct umtx_pi *
1739 umtx_pi_alloc(int flags)
1740 {
1741 	struct umtx_pi *pi;
1742 
1743 	pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
1744 	TAILQ_INIT(&pi->pi_blocked);
1745 	atomic_add_int(&umtx_pi_allocated, 1);
1746 	return (pi);
1747 }
1748 
1749 void
1750 umtx_pi_free(struct umtx_pi *pi)
1751 {
1752 	uma_zfree(umtx_pi_zone, pi);
1753 	atomic_add_int(&umtx_pi_allocated, -1);
1754 }
1755 
1756 /*
1757  * Adjust the thread's position on a pi_state after its priority has been
1758  * changed.
1759  */
1760 static int
1761 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
1762 {
1763 	struct umtx_q *uq, *uq1, *uq2;
1764 	struct thread *td1;
1765 
1766 	mtx_assert(&umtx_lock, MA_OWNED);
1767 	if (pi == NULL)
1768 		return (0);
1769 
1770 	uq = td->td_umtxq;
1771 
1772 	/*
1773 	 * Check if the thread needs to be moved on the blocked chain.
1774 	 * It needs to be moved if either its priority is lower than
1775 	 * the previous thread or higher than the next thread.
1776 	 */
1777 	uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
1778 	uq2 = TAILQ_NEXT(uq, uq_lockq);
1779 	if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
1780 	    (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
1781 		/*
1782 		 * Remove thread from blocked chain and determine where
1783 		 * it should be moved to.
1784 		 */
1785 		TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1786 		TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1787 			td1 = uq1->uq_thread;
1788 			MPASS(td1->td_proc->p_magic == P_MAGIC);
1789 			if (UPRI(td1) > UPRI(td))
1790 				break;
1791 		}
1792 
1793 		if (uq1 == NULL)
1794 			TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1795 		else
1796 			TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1797 	}
1798 	return (1);
1799 }
1800 
1801 static struct umtx_pi *
1802 umtx_pi_next(struct umtx_pi *pi)
1803 {
1804 	struct umtx_q *uq_owner;
1805 
1806 	if (pi->pi_owner == NULL)
1807 		return (NULL);
1808 	uq_owner = pi->pi_owner->td_umtxq;
1809 	if (uq_owner == NULL)
1810 		return (NULL);
1811 	return (uq_owner->uq_pi_blocked);
1812 }
1813 
1814 /*
1815  * Floyd's Cycle-Finding Algorithm.
1816  */
1817 static bool
1818 umtx_pi_check_loop(struct umtx_pi *pi)
1819 {
1820 	struct umtx_pi *pi1;	/* fast iterator */
1821 
1822 	mtx_assert(&umtx_lock, MA_OWNED);
1823 	if (pi == NULL)
1824 		return (false);
1825 	pi1 = pi;
1826 	for (;;) {
1827 		pi = umtx_pi_next(pi);
1828 		if (pi == NULL)
1829 			break;
1830 		pi1 = umtx_pi_next(pi1);
1831 		if (pi1 == NULL)
1832 			break;
1833 		pi1 = umtx_pi_next(pi1);
1834 		if (pi1 == NULL)
1835 			break;
1836 		if (pi == pi1)
1837 			return (true);
1838 	}
1839 	return (false);
1840 }
1841 
1842 /*
1843  * Propagate priority when a thread is blocked on POSIX
1844  * PI mutex.
1845  */
1846 static void
1847 umtx_propagate_priority(struct thread *td)
1848 {
1849 	struct umtx_q *uq;
1850 	struct umtx_pi *pi;
1851 	int pri;
1852 
1853 	mtx_assert(&umtx_lock, MA_OWNED);
1854 	pri = UPRI(td);
1855 	uq = td->td_umtxq;
1856 	pi = uq->uq_pi_blocked;
1857 	if (pi == NULL)
1858 		return;
1859 	if (umtx_pi_check_loop(pi))
1860 		return;
1861 
1862 	for (;;) {
1863 		td = pi->pi_owner;
1864 		if (td == NULL || td == curthread)
1865 			return;
1866 
1867 		MPASS(td->td_proc != NULL);
1868 		MPASS(td->td_proc->p_magic == P_MAGIC);
1869 
1870 		thread_lock(td);
1871 		if (td->td_lend_user_pri > pri)
1872 			sched_lend_user_prio(td, pri);
1873 		else {
1874 			thread_unlock(td);
1875 			break;
1876 		}
1877 		thread_unlock(td);
1878 
1879 		/*
1880 		 * Pick up the lock that td is blocked on.
1881 		 */
1882 		uq = td->td_umtxq;
1883 		pi = uq->uq_pi_blocked;
1884 		if (pi == NULL)
1885 			break;
1886 		/* Resort td on the list if needed. */
1887 		umtx_pi_adjust_thread(pi, td);
1888 	}
1889 }
1890 
1891 /*
1892  * Unpropagate priority for a PI mutex when a thread blocked on
1893  * it is interrupted by signal or resumed by others.
1894  */
1895 static void
1896 umtx_repropagate_priority(struct umtx_pi *pi)
1897 {
1898 	struct umtx_q *uq, *uq_owner;
1899 	struct umtx_pi *pi2;
1900 	int pri;
1901 
1902 	mtx_assert(&umtx_lock, MA_OWNED);
1903 
1904 	if (umtx_pi_check_loop(pi))
1905 		return;
1906 	while (pi != NULL && pi->pi_owner != NULL) {
1907 		pri = PRI_MAX;
1908 		uq_owner = pi->pi_owner->td_umtxq;
1909 
1910 		TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
1911 			uq = TAILQ_FIRST(&pi2->pi_blocked);
1912 			if (uq != NULL) {
1913 				if (pri > UPRI(uq->uq_thread))
1914 					pri = UPRI(uq->uq_thread);
1915 			}
1916 		}
1917 
1918 		if (pri > uq_owner->uq_inherited_pri)
1919 			pri = uq_owner->uq_inherited_pri;
1920 		thread_lock(pi->pi_owner);
1921 		sched_lend_user_prio(pi->pi_owner, pri);
1922 		thread_unlock(pi->pi_owner);
1923 		if ((pi = uq_owner->uq_pi_blocked) != NULL)
1924 			umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
1925 	}
1926 }
1927 
1928 /*
1929  * Insert a PI mutex into owned list.
1930  */
1931 static void
1932 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
1933 {
1934 	struct umtx_q *uq_owner;
1935 
1936 	uq_owner = owner->td_umtxq;
1937 	mtx_assert(&umtx_lock, MA_OWNED);
1938 	MPASS(pi->pi_owner == NULL);
1939 	pi->pi_owner = owner;
1940 	TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
1941 }
1942 
1943 /*
1944  * Disown a PI mutex, and remove it from the owned list.
1945  */
1946 static void
1947 umtx_pi_disown(struct umtx_pi *pi)
1948 {
1949 
1950 	mtx_assert(&umtx_lock, MA_OWNED);
1951 	TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
1952 	pi->pi_owner = NULL;
1953 }
1954 
1955 /*
1956  * Claim ownership of a PI mutex.
1957  */
1958 int
1959 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
1960 {
1961 	struct umtx_q *uq;
1962 	int pri;
1963 
1964 	mtx_lock(&umtx_lock);
1965 	if (pi->pi_owner == owner) {
1966 		mtx_unlock(&umtx_lock);
1967 		return (0);
1968 	}
1969 
1970 	if (pi->pi_owner != NULL) {
1971 		/*
1972 		 * userland may have already messed the mutex, sigh.
1973 		 */
1974 		mtx_unlock(&umtx_lock);
1975 		return (EPERM);
1976 	}
1977 	umtx_pi_setowner(pi, owner);
1978 	uq = TAILQ_FIRST(&pi->pi_blocked);
1979 	if (uq != NULL) {
1980 		pri = UPRI(uq->uq_thread);
1981 		thread_lock(owner);
1982 		if (pri < UPRI(owner))
1983 			sched_lend_user_prio(owner, pri);
1984 		thread_unlock(owner);
1985 	}
1986 	mtx_unlock(&umtx_lock);
1987 	return (0);
1988 }
1989 
1990 /*
1991  * Adjust a thread's order position in its blocked PI mutex,
1992  * this may result new priority propagating process.
1993  */
1994 void
1995 umtx_pi_adjust(struct thread *td, u_char oldpri)
1996 {
1997 	struct umtx_q *uq;
1998 	struct umtx_pi *pi;
1999 
2000 	uq = td->td_umtxq;
2001 	mtx_lock(&umtx_lock);
2002 	/*
2003 	 * Pick up the lock that td is blocked on.
2004 	 */
2005 	pi = uq->uq_pi_blocked;
2006 	if (pi != NULL) {
2007 		umtx_pi_adjust_thread(pi, td);
2008 		umtx_repropagate_priority(pi);
2009 	}
2010 	mtx_unlock(&umtx_lock);
2011 }
2012 
2013 /*
2014  * Sleep on a PI mutex.
2015  */
2016 int
2017 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
2018     const char *wmesg, struct umtx_abs_timeout *timo, bool shared)
2019 {
2020 	struct thread *td, *td1;
2021 	struct umtx_q *uq1;
2022 	int error, pri;
2023 #ifdef INVARIANTS
2024 	struct umtxq_chain *uc;
2025 
2026 	uc = umtxq_getchain(&pi->pi_key);
2027 #endif
2028 	error = 0;
2029 	td = uq->uq_thread;
2030 	KASSERT(td == curthread, ("inconsistent uq_thread"));
2031 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
2032 	KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
2033 	umtxq_insert(uq);
2034 	mtx_lock(&umtx_lock);
2035 	if (pi->pi_owner == NULL) {
2036 		mtx_unlock(&umtx_lock);
2037 		td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
2038 		mtx_lock(&umtx_lock);
2039 		if (td1 != NULL) {
2040 			if (pi->pi_owner == NULL)
2041 				umtx_pi_setowner(pi, td1);
2042 			PROC_UNLOCK(td1->td_proc);
2043 		}
2044 	}
2045 
2046 	TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
2047 		pri = UPRI(uq1->uq_thread);
2048 		if (pri > UPRI(td))
2049 			break;
2050 	}
2051 
2052 	if (uq1 != NULL)
2053 		TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
2054 	else
2055 		TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
2056 
2057 	uq->uq_pi_blocked = pi;
2058 	thread_lock(td);
2059 	td->td_flags |= TDF_UPIBLOCKED;
2060 	thread_unlock(td);
2061 	umtx_propagate_priority(td);
2062 	mtx_unlock(&umtx_lock);
2063 	umtxq_unbusy(&uq->uq_key);
2064 
2065 	error = umtxq_sleep(uq, wmesg, timo);
2066 	umtxq_remove(uq);
2067 
2068 	mtx_lock(&umtx_lock);
2069 	uq->uq_pi_blocked = NULL;
2070 	thread_lock(td);
2071 	td->td_flags &= ~TDF_UPIBLOCKED;
2072 	thread_unlock(td);
2073 	TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
2074 	umtx_repropagate_priority(pi);
2075 	mtx_unlock(&umtx_lock);
2076 	umtxq_unlock(&uq->uq_key);
2077 
2078 	return (error);
2079 }
2080 
2081 /*
2082  * Add reference count for a PI mutex.
2083  */
2084 void
2085 umtx_pi_ref(struct umtx_pi *pi)
2086 {
2087 
2088 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
2089 	pi->pi_refcount++;
2090 }
2091 
2092 /*
2093  * Decrease reference count for a PI mutex, if the counter
2094  * is decreased to zero, its memory space is freed.
2095  */
2096 void
2097 umtx_pi_unref(struct umtx_pi *pi)
2098 {
2099 	struct umtxq_chain *uc;
2100 
2101 	uc = umtxq_getchain(&pi->pi_key);
2102 	UMTXQ_LOCKED_ASSERT(uc);
2103 	KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
2104 	if (--pi->pi_refcount == 0) {
2105 		mtx_lock(&umtx_lock);
2106 		if (pi->pi_owner != NULL)
2107 			umtx_pi_disown(pi);
2108 		KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
2109 			("blocked queue not empty"));
2110 		mtx_unlock(&umtx_lock);
2111 		TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
2112 		umtx_pi_free(pi);
2113 	}
2114 }
2115 
2116 /*
2117  * Find a PI mutex in hash table.
2118  */
2119 struct umtx_pi *
2120 umtx_pi_lookup(struct umtx_key *key)
2121 {
2122 	struct umtxq_chain *uc;
2123 	struct umtx_pi *pi;
2124 
2125 	uc = umtxq_getchain(key);
2126 	UMTXQ_LOCKED_ASSERT(uc);
2127 
2128 	TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
2129 		if (umtx_key_match(&pi->pi_key, key)) {
2130 			return (pi);
2131 		}
2132 	}
2133 	return (NULL);
2134 }
2135 
2136 /*
2137  * Insert a PI mutex into hash table.
2138  */
2139 void
2140 umtx_pi_insert(struct umtx_pi *pi)
2141 {
2142 	struct umtxq_chain *uc;
2143 
2144 	uc = umtxq_getchain(&pi->pi_key);
2145 	UMTXQ_LOCKED_ASSERT(uc);
2146 	TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
2147 }
2148 
2149 /*
2150  * Drop a PI mutex and wakeup a top waiter.
2151  */
2152 int
2153 umtx_pi_drop(struct thread *td, struct umtx_key *key, bool rb, int *count)
2154 {
2155 	struct umtx_q *uq_first, *uq_first2, *uq_me;
2156 	struct umtx_pi *pi, *pi2;
2157 	int pri;
2158 
2159 	UMTXQ_ASSERT_LOCKED_BUSY(key);
2160 	*count = umtxq_count_pi(key, &uq_first);
2161 	if (uq_first != NULL) {
2162 		mtx_lock(&umtx_lock);
2163 		pi = uq_first->uq_pi_blocked;
2164 		KASSERT(pi != NULL, ("pi == NULL?"));
2165 		if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
2166 			mtx_unlock(&umtx_lock);
2167 			/* userland messed the mutex */
2168 			return (EPERM);
2169 		}
2170 		uq_me = td->td_umtxq;
2171 		if (pi->pi_owner == td)
2172 			umtx_pi_disown(pi);
2173 		/* get highest priority thread which is still sleeping. */
2174 		uq_first = TAILQ_FIRST(&pi->pi_blocked);
2175 		while (uq_first != NULL &&
2176 		    (uq_first->uq_flags & UQF_UMTXQ) == 0) {
2177 			uq_first = TAILQ_NEXT(uq_first, uq_lockq);
2178 		}
2179 		pri = PRI_MAX;
2180 		TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
2181 			uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
2182 			if (uq_first2 != NULL) {
2183 				if (pri > UPRI(uq_first2->uq_thread))
2184 					pri = UPRI(uq_first2->uq_thread);
2185 			}
2186 		}
2187 		thread_lock(td);
2188 		sched_lend_user_prio(td, pri);
2189 		thread_unlock(td);
2190 		mtx_unlock(&umtx_lock);
2191 		if (uq_first)
2192 			umtxq_signal_thread(uq_first);
2193 	} else {
2194 		pi = umtx_pi_lookup(key);
2195 		/*
2196 		 * A umtx_pi can exist if a signal or timeout removed the
2197 		 * last waiter from the umtxq, but there is still
2198 		 * a thread in do_lock_pi() holding the umtx_pi.
2199 		 */
2200 		if (pi != NULL) {
2201 			/*
2202 			 * The umtx_pi can be unowned, such as when a thread
2203 			 * has just entered do_lock_pi(), allocated the
2204 			 * umtx_pi, and unlocked the umtxq.
2205 			 * If the current thread owns it, it must disown it.
2206 			 */
2207 			mtx_lock(&umtx_lock);
2208 			if (pi->pi_owner == td)
2209 				umtx_pi_disown(pi);
2210 			mtx_unlock(&umtx_lock);
2211 		}
2212 	}
2213 	return (0);
2214 }
2215 
2216 /*
2217  * Lock a PI mutex.
2218  */
2219 static int
2220 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
2221     struct _umtx_time *timeout, int try)
2222 {
2223 	struct umtx_abs_timeout timo;
2224 	struct umtx_q *uq;
2225 	struct umtx_pi *pi, *new_pi;
2226 	uint32_t id, old_owner, owner, old;
2227 	int error, rv;
2228 
2229 	id = td->td_tid;
2230 	uq = td->td_umtxq;
2231 
2232 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2233 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2234 	    &uq->uq_key)) != 0)
2235 		return (error);
2236 
2237 	if (timeout != NULL)
2238 		umtx_abs_timeout_init2(&timo, timeout);
2239 
2240 	umtxq_lock(&uq->uq_key);
2241 	pi = umtx_pi_lookup(&uq->uq_key);
2242 	if (pi == NULL) {
2243 		new_pi = umtx_pi_alloc(M_NOWAIT);
2244 		if (new_pi == NULL) {
2245 			umtxq_unlock(&uq->uq_key);
2246 			new_pi = umtx_pi_alloc(M_WAITOK);
2247 			umtxq_lock(&uq->uq_key);
2248 			pi = umtx_pi_lookup(&uq->uq_key);
2249 			if (pi != NULL) {
2250 				umtx_pi_free(new_pi);
2251 				new_pi = NULL;
2252 			}
2253 		}
2254 		if (new_pi != NULL) {
2255 			new_pi->pi_key = uq->uq_key;
2256 			umtx_pi_insert(new_pi);
2257 			pi = new_pi;
2258 		}
2259 	}
2260 	umtx_pi_ref(pi);
2261 	umtxq_unlock(&uq->uq_key);
2262 
2263 	/*
2264 	 * Care must be exercised when dealing with umtx structure.  It
2265 	 * can fault on any access.
2266 	 */
2267 	for (;;) {
2268 		/*
2269 		 * Try the uncontested case.  This should be done in userland.
2270 		 */
2271 		rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
2272 		/* The address was invalid. */
2273 		if (rv == -1) {
2274 			error = EFAULT;
2275 			break;
2276 		}
2277 		/* The acquire succeeded. */
2278 		if (rv == 0) {
2279 			MPASS(owner == UMUTEX_UNOWNED);
2280 			error = 0;
2281 			break;
2282 		}
2283 
2284 		if (owner == UMUTEX_RB_NOTRECOV) {
2285 			error = ENOTRECOVERABLE;
2286 			break;
2287 		}
2288 
2289 		/*
2290 		 * Nobody owns it, but the acquire failed. This can happen
2291 		 * with ll/sc atomics.
2292 		 */
2293 		if (owner == UMUTEX_UNOWNED) {
2294 			error = thread_check_susp(td, true);
2295 			if (error != 0)
2296 				break;
2297 			continue;
2298 		}
2299 
2300 		/*
2301 		 * Avoid overwriting a possible error from sleep due
2302 		 * to the pending signal with suspension check result.
2303 		 */
2304 		if (error == 0) {
2305 			error = thread_check_susp(td, true);
2306 			if (error != 0)
2307 				break;
2308 		}
2309 
2310 		/* If no one owns it but it is contested try to acquire it. */
2311 		if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
2312 			old_owner = owner;
2313 			rv = casueword32(&m->m_owner, owner, &owner,
2314 			    id | UMUTEX_CONTESTED);
2315 			/* The address was invalid. */
2316 			if (rv == -1) {
2317 				error = EFAULT;
2318 				break;
2319 			}
2320 			if (rv == 1) {
2321 				if (error == 0) {
2322 					error = thread_check_susp(td, true);
2323 					if (error != 0)
2324 						break;
2325 				}
2326 
2327 				/*
2328 				 * If this failed the lock could
2329 				 * changed, restart.
2330 				 */
2331 				continue;
2332 			}
2333 
2334 			MPASS(rv == 0);
2335 			MPASS(owner == old_owner);
2336 			umtxq_lock(&uq->uq_key);
2337 			umtxq_busy(&uq->uq_key);
2338 			error = umtx_pi_claim(pi, td);
2339 			umtxq_unbusy(&uq->uq_key);
2340 			umtxq_unlock(&uq->uq_key);
2341 			if (error != 0) {
2342 				/*
2343 				 * Since we're going to return an
2344 				 * error, restore the m_owner to its
2345 				 * previous, unowned state to avoid
2346 				 * compounding the problem.
2347 				 */
2348 				(void)casuword32(&m->m_owner,
2349 				    id | UMUTEX_CONTESTED, old_owner);
2350 			}
2351 			if (error == 0 && old_owner == UMUTEX_RB_OWNERDEAD)
2352 				error = EOWNERDEAD;
2353 			break;
2354 		}
2355 
2356 		if ((owner & ~UMUTEX_CONTESTED) == id) {
2357 			error = EDEADLK;
2358 			break;
2359 		}
2360 
2361 		if (try != 0) {
2362 			error = EBUSY;
2363 			break;
2364 		}
2365 
2366 		/*
2367 		 * If we caught a signal, we have retried and now
2368 		 * exit immediately.
2369 		 */
2370 		if (error != 0)
2371 			break;
2372 
2373 		umtxq_lock(&uq->uq_key);
2374 		umtxq_busy(&uq->uq_key);
2375 		umtxq_unlock(&uq->uq_key);
2376 
2377 		/*
2378 		 * Set the contested bit so that a release in user space
2379 		 * knows to use the system call for unlock.  If this fails
2380 		 * either some one else has acquired the lock or it has been
2381 		 * released.
2382 		 */
2383 		rv = casueword32(&m->m_owner, owner, &old, owner |
2384 		    UMUTEX_CONTESTED);
2385 
2386 		/* The address was invalid. */
2387 		if (rv == -1) {
2388 			umtxq_unbusy_unlocked(&uq->uq_key);
2389 			error = EFAULT;
2390 			break;
2391 		}
2392 		if (rv == 1) {
2393 			umtxq_unbusy_unlocked(&uq->uq_key);
2394 			error = thread_check_susp(td, true);
2395 			if (error != 0)
2396 				break;
2397 
2398 			/*
2399 			 * The lock changed and we need to retry or we
2400 			 * lost a race to the thread unlocking the
2401 			 * umtx.  Note that the UMUTEX_RB_OWNERDEAD
2402 			 * value for owner is impossible there.
2403 			 */
2404 			continue;
2405 		}
2406 
2407 		umtxq_lock(&uq->uq_key);
2408 
2409 		/* We set the contested bit, sleep. */
2410 		MPASS(old == owner);
2411 		error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
2412 		    "umtxpi", timeout == NULL ? NULL : &timo,
2413 		    (flags & USYNC_PROCESS_SHARED) != 0);
2414 		if (error != 0)
2415 			continue;
2416 
2417 		error = thread_check_susp(td, false);
2418 		if (error != 0)
2419 			break;
2420 	}
2421 
2422 	umtxq_lock(&uq->uq_key);
2423 	umtx_pi_unref(pi);
2424 	umtxq_unlock(&uq->uq_key);
2425 
2426 	umtx_key_release(&uq->uq_key);
2427 	return (error);
2428 }
2429 
2430 /*
2431  * Unlock a PI mutex.
2432  */
2433 static int
2434 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2435 {
2436 	struct umtx_key key;
2437 	uint32_t id, new_owner, old, owner;
2438 	int count, error;
2439 
2440 	id = td->td_tid;
2441 
2442 usrloop:
2443 	/*
2444 	 * Make sure we own this mtx.
2445 	 */
2446 	error = fueword32(&m->m_owner, &owner);
2447 	if (error == -1)
2448 		return (EFAULT);
2449 
2450 	if ((owner & ~UMUTEX_CONTESTED) != id)
2451 		return (EPERM);
2452 
2453 	new_owner = umtx_unlock_val(flags, rb);
2454 
2455 	/* This should be done in userland */
2456 	if ((owner & UMUTEX_CONTESTED) == 0) {
2457 		error = casueword32(&m->m_owner, owner, &old, new_owner);
2458 		if (error == -1)
2459 			return (EFAULT);
2460 		if (error == 1) {
2461 			error = thread_check_susp(td, true);
2462 			if (error != 0)
2463 				return (error);
2464 			goto usrloop;
2465 		}
2466 		if (old == owner)
2467 			return (0);
2468 		owner = old;
2469 	}
2470 
2471 	/* We should only ever be in here for contested locks */
2472 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2473 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2474 	    &key)) != 0)
2475 		return (error);
2476 
2477 	umtxq_lock(&key);
2478 	umtxq_busy(&key);
2479 	error = umtx_pi_drop(td, &key, rb, &count);
2480 	if (error != 0) {
2481 		umtxq_unbusy(&key);
2482 		umtxq_unlock(&key);
2483 		umtx_key_release(&key);
2484 		/* userland messed the mutex */
2485 		return (error);
2486 	}
2487 	umtxq_unlock(&key);
2488 
2489 	/*
2490 	 * When unlocking the umtx, it must be marked as unowned if
2491 	 * there is zero or one thread only waiting for it.
2492 	 * Otherwise, it must be marked as contested.
2493 	 */
2494 
2495 	if (count > 1)
2496 		new_owner |= UMUTEX_CONTESTED;
2497 again:
2498 	error = casueword32(&m->m_owner, owner, &old, new_owner);
2499 	if (error == 1) {
2500 		error = thread_check_susp(td, false);
2501 		if (error == 0)
2502 			goto again;
2503 	}
2504 	umtxq_unbusy_unlocked(&key);
2505 	umtx_key_release(&key);
2506 	if (error == -1)
2507 		return (EFAULT);
2508 	if (error == 0 && old != owner)
2509 		return (EINVAL);
2510 	return (error);
2511 }
2512 
2513 /*
2514  * Lock a PP mutex.
2515  */
2516 static int
2517 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
2518     struct _umtx_time *timeout, int try)
2519 {
2520 	struct umtx_abs_timeout timo;
2521 	struct umtx_q *uq, *uq2;
2522 	struct umtx_pi *pi;
2523 	uint32_t ceiling;
2524 	uint32_t owner, id;
2525 	int error, pri, old_inherited_pri, su, rv;
2526 
2527 	id = td->td_tid;
2528 	uq = td->td_umtxq;
2529 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2530 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2531 	    &uq->uq_key)) != 0)
2532 		return (error);
2533 
2534 	if (timeout != NULL)
2535 		umtx_abs_timeout_init2(&timo, timeout);
2536 
2537 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2538 	for (;;) {
2539 		old_inherited_pri = uq->uq_inherited_pri;
2540 		umtxq_lock(&uq->uq_key);
2541 		umtxq_busy(&uq->uq_key);
2542 		umtxq_unlock(&uq->uq_key);
2543 
2544 		rv = fueword32(&m->m_ceilings[0], &ceiling);
2545 		if (rv == -1) {
2546 			error = EFAULT;
2547 			goto out;
2548 		}
2549 		ceiling = RTP_PRIO_MAX - ceiling;
2550 		if (ceiling > RTP_PRIO_MAX) {
2551 			error = EINVAL;
2552 			goto out;
2553 		}
2554 
2555 		mtx_lock(&umtx_lock);
2556 		if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
2557 			mtx_unlock(&umtx_lock);
2558 			error = EINVAL;
2559 			goto out;
2560 		}
2561 		if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
2562 			uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
2563 			thread_lock(td);
2564 			if (uq->uq_inherited_pri < UPRI(td))
2565 				sched_lend_user_prio(td, uq->uq_inherited_pri);
2566 			thread_unlock(td);
2567 		}
2568 		mtx_unlock(&umtx_lock);
2569 
2570 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2571 		    id | UMUTEX_CONTESTED);
2572 		/* The address was invalid. */
2573 		if (rv == -1) {
2574 			error = EFAULT;
2575 			break;
2576 		}
2577 		if (rv == 0) {
2578 			MPASS(owner == UMUTEX_CONTESTED);
2579 			error = 0;
2580 			break;
2581 		}
2582 		/* rv == 1 */
2583 		if (owner == UMUTEX_RB_OWNERDEAD) {
2584 			rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
2585 			    &owner, id | UMUTEX_CONTESTED);
2586 			if (rv == -1) {
2587 				error = EFAULT;
2588 				break;
2589 			}
2590 			if (rv == 0) {
2591 				MPASS(owner == UMUTEX_RB_OWNERDEAD);
2592 				error = EOWNERDEAD; /* success */
2593 				break;
2594 			}
2595 
2596 			/*
2597 			 *  rv == 1, only check for suspension if we
2598 			 *  did not already catched a signal.  If we
2599 			 *  get an error from the check, the same
2600 			 *  condition is checked by the umtxq_sleep()
2601 			 *  call below, so we should obliterate the
2602 			 *  error to not skip the last loop iteration.
2603 			 */
2604 			if (error == 0) {
2605 				error = thread_check_susp(td, false);
2606 				if (error == 0) {
2607 					if (try != 0)
2608 						error = EBUSY;
2609 					else
2610 						continue;
2611 				}
2612 				error = 0;
2613 			}
2614 		} else if (owner == UMUTEX_RB_NOTRECOV) {
2615 			error = ENOTRECOVERABLE;
2616 		}
2617 
2618 		if (try != 0)
2619 			error = EBUSY;
2620 
2621 		/*
2622 		 * If we caught a signal, we have retried and now
2623 		 * exit immediately.
2624 		 */
2625 		if (error != 0)
2626 			break;
2627 
2628 		umtxq_lock(&uq->uq_key);
2629 		umtxq_insert(uq);
2630 		umtxq_unbusy(&uq->uq_key);
2631 		error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
2632 		    NULL : &timo);
2633 		umtxq_remove(uq);
2634 		umtxq_unlock(&uq->uq_key);
2635 
2636 		mtx_lock(&umtx_lock);
2637 		uq->uq_inherited_pri = old_inherited_pri;
2638 		pri = PRI_MAX;
2639 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2640 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2641 			if (uq2 != NULL) {
2642 				if (pri > UPRI(uq2->uq_thread))
2643 					pri = UPRI(uq2->uq_thread);
2644 			}
2645 		}
2646 		if (pri > uq->uq_inherited_pri)
2647 			pri = uq->uq_inherited_pri;
2648 		thread_lock(td);
2649 		sched_lend_user_prio(td, pri);
2650 		thread_unlock(td);
2651 		mtx_unlock(&umtx_lock);
2652 	}
2653 
2654 	if (error != 0 && error != EOWNERDEAD) {
2655 		mtx_lock(&umtx_lock);
2656 		uq->uq_inherited_pri = old_inherited_pri;
2657 		pri = PRI_MAX;
2658 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2659 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2660 			if (uq2 != NULL) {
2661 				if (pri > UPRI(uq2->uq_thread))
2662 					pri = UPRI(uq2->uq_thread);
2663 			}
2664 		}
2665 		if (pri > uq->uq_inherited_pri)
2666 			pri = uq->uq_inherited_pri;
2667 		thread_lock(td);
2668 		sched_lend_user_prio(td, pri);
2669 		thread_unlock(td);
2670 		mtx_unlock(&umtx_lock);
2671 	}
2672 
2673 out:
2674 	umtxq_unbusy_unlocked(&uq->uq_key);
2675 	umtx_key_release(&uq->uq_key);
2676 	return (error);
2677 }
2678 
2679 /*
2680  * Unlock a PP mutex.
2681  */
2682 static int
2683 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2684 {
2685 	struct umtx_key key;
2686 	struct umtx_q *uq, *uq2;
2687 	struct umtx_pi *pi;
2688 	uint32_t id, owner, rceiling;
2689 	int error, pri, new_inherited_pri, su;
2690 
2691 	id = td->td_tid;
2692 	uq = td->td_umtxq;
2693 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2694 
2695 	/*
2696 	 * Make sure we own this mtx.
2697 	 */
2698 	error = fueword32(&m->m_owner, &owner);
2699 	if (error == -1)
2700 		return (EFAULT);
2701 
2702 	if ((owner & ~UMUTEX_CONTESTED) != id)
2703 		return (EPERM);
2704 
2705 	error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
2706 	if (error != 0)
2707 		return (error);
2708 
2709 	if (rceiling == -1)
2710 		new_inherited_pri = PRI_MAX;
2711 	else {
2712 		rceiling = RTP_PRIO_MAX - rceiling;
2713 		if (rceiling > RTP_PRIO_MAX)
2714 			return (EINVAL);
2715 		new_inherited_pri = PRI_MIN_REALTIME + rceiling;
2716 	}
2717 
2718 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2719 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2720 	    &key)) != 0)
2721 		return (error);
2722 	umtxq_lock(&key);
2723 	umtxq_busy(&key);
2724 	umtxq_unlock(&key);
2725 	/*
2726 	 * For priority protected mutex, always set unlocked state
2727 	 * to UMUTEX_CONTESTED, so that userland always enters kernel
2728 	 * to lock the mutex, it is necessary because thread priority
2729 	 * has to be adjusted for such mutex.
2730 	 */
2731 	error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
2732 	    UMUTEX_CONTESTED);
2733 
2734 	umtxq_lock(&key);
2735 	if (error == 0)
2736 		umtxq_signal(&key, 1);
2737 	umtxq_unbusy(&key);
2738 	umtxq_unlock(&key);
2739 
2740 	if (error == -1)
2741 		error = EFAULT;
2742 	else {
2743 		mtx_lock(&umtx_lock);
2744 		if (su != 0)
2745 			uq->uq_inherited_pri = new_inherited_pri;
2746 		pri = PRI_MAX;
2747 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2748 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2749 			if (uq2 != NULL) {
2750 				if (pri > UPRI(uq2->uq_thread))
2751 					pri = UPRI(uq2->uq_thread);
2752 			}
2753 		}
2754 		if (pri > uq->uq_inherited_pri)
2755 			pri = uq->uq_inherited_pri;
2756 		thread_lock(td);
2757 		sched_lend_user_prio(td, pri);
2758 		thread_unlock(td);
2759 		mtx_unlock(&umtx_lock);
2760 	}
2761 	umtx_key_release(&key);
2762 	return (error);
2763 }
2764 
2765 static int
2766 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
2767     uint32_t *old_ceiling)
2768 {
2769 	struct umtx_q *uq;
2770 	uint32_t flags, id, owner, save_ceiling;
2771 	int error, rv, rv1;
2772 
2773 	error = fueword32(&m->m_flags, &flags);
2774 	if (error == -1)
2775 		return (EFAULT);
2776 	if ((flags & UMUTEX_PRIO_PROTECT) == 0)
2777 		return (EINVAL);
2778 	if (ceiling > RTP_PRIO_MAX)
2779 		return (EINVAL);
2780 	id = td->td_tid;
2781 	uq = td->td_umtxq;
2782 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2783 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2784 	    &uq->uq_key)) != 0)
2785 		return (error);
2786 	for (;;) {
2787 		umtxq_lock(&uq->uq_key);
2788 		umtxq_busy(&uq->uq_key);
2789 		umtxq_unlock(&uq->uq_key);
2790 
2791 		rv = fueword32(&m->m_ceilings[0], &save_ceiling);
2792 		if (rv == -1) {
2793 			error = EFAULT;
2794 			break;
2795 		}
2796 
2797 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2798 		    id | UMUTEX_CONTESTED);
2799 		if (rv == -1) {
2800 			error = EFAULT;
2801 			break;
2802 		}
2803 
2804 		if (rv == 0) {
2805 			MPASS(owner == UMUTEX_CONTESTED);
2806 			rv = suword32(&m->m_ceilings[0], ceiling);
2807 			rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
2808 			error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
2809 			break;
2810 		}
2811 
2812 		if ((owner & ~UMUTEX_CONTESTED) == id) {
2813 			rv = suword32(&m->m_ceilings[0], ceiling);
2814 			error = rv == 0 ? 0 : EFAULT;
2815 			break;
2816 		}
2817 
2818 		if (owner == UMUTEX_RB_OWNERDEAD) {
2819 			error = EOWNERDEAD;
2820 			break;
2821 		} else if (owner == UMUTEX_RB_NOTRECOV) {
2822 			error = ENOTRECOVERABLE;
2823 			break;
2824 		}
2825 
2826 		/*
2827 		 * If we caught a signal, we have retried and now
2828 		 * exit immediately.
2829 		 */
2830 		if (error != 0)
2831 			break;
2832 
2833 		/*
2834 		 * We set the contested bit, sleep. Otherwise the lock changed
2835 		 * and we need to retry or we lost a race to the thread
2836 		 * unlocking the umtx.
2837 		 */
2838 		umtxq_lock(&uq->uq_key);
2839 		umtxq_insert(uq);
2840 		umtxq_unbusy(&uq->uq_key);
2841 		error = umtxq_sleep(uq, "umtxpp", NULL);
2842 		umtxq_remove(uq);
2843 		umtxq_unlock(&uq->uq_key);
2844 	}
2845 	umtxq_lock(&uq->uq_key);
2846 	if (error == 0)
2847 		umtxq_signal(&uq->uq_key, INT_MAX);
2848 	umtxq_unbusy(&uq->uq_key);
2849 	umtxq_unlock(&uq->uq_key);
2850 	umtx_key_release(&uq->uq_key);
2851 	if (error == 0 && old_ceiling != NULL) {
2852 		rv = suword32(old_ceiling, save_ceiling);
2853 		error = rv == 0 ? 0 : EFAULT;
2854 	}
2855 	return (error);
2856 }
2857 
2858 /*
2859  * Lock a userland POSIX mutex.
2860  */
2861 static int
2862 do_lock_umutex(struct thread *td, struct umutex *m,
2863     struct _umtx_time *timeout, int mode)
2864 {
2865 	uint32_t flags;
2866 	int error;
2867 
2868 	error = fueword32(&m->m_flags, &flags);
2869 	if (error == -1)
2870 		return (EFAULT);
2871 
2872 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2873 	case 0:
2874 		error = do_lock_normal(td, m, flags, timeout, mode);
2875 		break;
2876 	case UMUTEX_PRIO_INHERIT:
2877 		error = do_lock_pi(td, m, flags, timeout, mode);
2878 		break;
2879 	case UMUTEX_PRIO_PROTECT:
2880 		error = do_lock_pp(td, m, flags, timeout, mode);
2881 		break;
2882 	default:
2883 		return (EINVAL);
2884 	}
2885 	if (timeout == NULL) {
2886 		if (error == EINTR && mode != _UMUTEX_WAIT)
2887 			error = ERESTART;
2888 	} else {
2889 		/* Timed-locking is not restarted. */
2890 		if (error == ERESTART)
2891 			error = EINTR;
2892 	}
2893 	return (error);
2894 }
2895 
2896 /*
2897  * Unlock a userland POSIX mutex.
2898  */
2899 static int
2900 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
2901 {
2902 	uint32_t flags;
2903 	int error;
2904 
2905 	error = fueword32(&m->m_flags, &flags);
2906 	if (error == -1)
2907 		return (EFAULT);
2908 
2909 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2910 	case 0:
2911 		return (do_unlock_normal(td, m, flags, rb));
2912 	case UMUTEX_PRIO_INHERIT:
2913 		return (do_unlock_pi(td, m, flags, rb));
2914 	case UMUTEX_PRIO_PROTECT:
2915 		return (do_unlock_pp(td, m, flags, rb));
2916 	}
2917 
2918 	return (EINVAL);
2919 }
2920 
2921 static int
2922 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
2923     struct timespec *timeout, u_long wflags)
2924 {
2925 	struct umtx_abs_timeout timo;
2926 	struct umtx_q *uq;
2927 	uint32_t flags, clockid, hasw;
2928 	int error;
2929 
2930 	uq = td->td_umtxq;
2931 	error = fueword32(&cv->c_flags, &flags);
2932 	if (error == -1)
2933 		return (EFAULT);
2934 	error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
2935 	if (error != 0)
2936 		return (error);
2937 
2938 	if ((wflags & CVWAIT_CLOCKID) != 0) {
2939 		error = fueword32(&cv->c_clockid, &clockid);
2940 		if (error == -1) {
2941 			umtx_key_release(&uq->uq_key);
2942 			return (EFAULT);
2943 		}
2944 		if (clockid < CLOCK_REALTIME ||
2945 		    clockid >= CLOCK_THREAD_CPUTIME_ID) {
2946 			/* hmm, only HW clock id will work. */
2947 			umtx_key_release(&uq->uq_key);
2948 			return (EINVAL);
2949 		}
2950 	} else {
2951 		clockid = CLOCK_REALTIME;
2952 	}
2953 
2954 	umtxq_lock(&uq->uq_key);
2955 	umtxq_busy(&uq->uq_key);
2956 	umtxq_insert(uq);
2957 	umtxq_unlock(&uq->uq_key);
2958 
2959 	/*
2960 	 * Set c_has_waiters to 1 before releasing user mutex, also
2961 	 * don't modify cache line when unnecessary.
2962 	 */
2963 	error = fueword32(&cv->c_has_waiters, &hasw);
2964 	if (error == 0 && hasw == 0)
2965 		suword32(&cv->c_has_waiters, 1);
2966 
2967 	umtxq_unbusy_unlocked(&uq->uq_key);
2968 
2969 	error = do_unlock_umutex(td, m, false);
2970 
2971 	if (timeout != NULL)
2972 		umtx_abs_timeout_init(&timo, clockid,
2973 		    (wflags & CVWAIT_ABSTIME) != 0, timeout);
2974 
2975 	umtxq_lock(&uq->uq_key);
2976 	if (error == 0) {
2977 		error = umtxq_sleep(uq, "ucond", timeout == NULL ?
2978 		    NULL : &timo);
2979 	}
2980 
2981 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
2982 		error = 0;
2983 	else {
2984 		/*
2985 		 * This must be timeout,interrupted by signal or
2986 		 * surprious wakeup, clear c_has_waiter flag when
2987 		 * necessary.
2988 		 */
2989 		umtxq_busy(&uq->uq_key);
2990 		if ((uq->uq_flags & UQF_UMTXQ) != 0) {
2991 			int oldlen = uq->uq_cur_queue->length;
2992 			umtxq_remove(uq);
2993 			if (oldlen == 1) {
2994 				umtxq_unlock(&uq->uq_key);
2995 				suword32(&cv->c_has_waiters, 0);
2996 				umtxq_lock(&uq->uq_key);
2997 			}
2998 		}
2999 		umtxq_unbusy(&uq->uq_key);
3000 		if (error == ERESTART)
3001 			error = EINTR;
3002 	}
3003 
3004 	umtxq_unlock(&uq->uq_key);
3005 	umtx_key_release(&uq->uq_key);
3006 	return (error);
3007 }
3008 
3009 /*
3010  * Signal a userland condition variable.
3011  */
3012 static int
3013 do_cv_signal(struct thread *td, struct ucond *cv)
3014 {
3015 	struct umtx_key key;
3016 	int error, cnt, nwake;
3017 	uint32_t flags;
3018 
3019 	error = fueword32(&cv->c_flags, &flags);
3020 	if (error == -1)
3021 		return (EFAULT);
3022 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
3023 		return (error);
3024 	umtxq_lock(&key);
3025 	umtxq_busy(&key);
3026 	cnt = umtxq_count(&key);
3027 	nwake = umtxq_signal(&key, 1);
3028 	if (cnt <= nwake) {
3029 		umtxq_unlock(&key);
3030 		error = suword32(&cv->c_has_waiters, 0);
3031 		if (error == -1)
3032 			error = EFAULT;
3033 		umtxq_lock(&key);
3034 	}
3035 	umtxq_unbusy(&key);
3036 	umtxq_unlock(&key);
3037 	umtx_key_release(&key);
3038 	return (error);
3039 }
3040 
3041 static int
3042 do_cv_broadcast(struct thread *td, struct ucond *cv)
3043 {
3044 	struct umtx_key key;
3045 	int error;
3046 	uint32_t flags;
3047 
3048 	error = fueword32(&cv->c_flags, &flags);
3049 	if (error == -1)
3050 		return (EFAULT);
3051 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
3052 		return (error);
3053 
3054 	umtxq_lock(&key);
3055 	umtxq_busy(&key);
3056 	umtxq_signal(&key, INT_MAX);
3057 	umtxq_unlock(&key);
3058 
3059 	error = suword32(&cv->c_has_waiters, 0);
3060 	if (error == -1)
3061 		error = EFAULT;
3062 
3063 	umtxq_unbusy_unlocked(&key);
3064 
3065 	umtx_key_release(&key);
3066 	return (error);
3067 }
3068 
3069 static int
3070 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag,
3071     struct _umtx_time *timeout)
3072 {
3073 	struct umtx_abs_timeout timo;
3074 	struct umtx_q *uq;
3075 	uint32_t flags, wrflags;
3076 	int32_t state, oldstate;
3077 	int32_t blocked_readers;
3078 	int error, error1, rv;
3079 
3080 	uq = td->td_umtxq;
3081 	error = fueword32(&rwlock->rw_flags, &flags);
3082 	if (error == -1)
3083 		return (EFAULT);
3084 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3085 	if (error != 0)
3086 		return (error);
3087 
3088 	if (timeout != NULL)
3089 		umtx_abs_timeout_init2(&timo, timeout);
3090 
3091 	wrflags = URWLOCK_WRITE_OWNER;
3092 	if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
3093 		wrflags |= URWLOCK_WRITE_WAITERS;
3094 
3095 	for (;;) {
3096 		rv = fueword32(&rwlock->rw_state, &state);
3097 		if (rv == -1) {
3098 			umtx_key_release(&uq->uq_key);
3099 			return (EFAULT);
3100 		}
3101 
3102 		/* try to lock it */
3103 		while (!(state & wrflags)) {
3104 			if (__predict_false(URWLOCK_READER_COUNT(state) ==
3105 			    URWLOCK_MAX_READERS)) {
3106 				umtx_key_release(&uq->uq_key);
3107 				return (EAGAIN);
3108 			}
3109 			rv = casueword32(&rwlock->rw_state, state,
3110 			    &oldstate, state + 1);
3111 			if (rv == -1) {
3112 				umtx_key_release(&uq->uq_key);
3113 				return (EFAULT);
3114 			}
3115 			if (rv == 0) {
3116 				MPASS(oldstate == state);
3117 				umtx_key_release(&uq->uq_key);
3118 				return (0);
3119 			}
3120 			error = thread_check_susp(td, true);
3121 			if (error != 0)
3122 				break;
3123 			state = oldstate;
3124 		}
3125 
3126 		if (error)
3127 			break;
3128 
3129 		/* grab monitor lock */
3130 		umtxq_lock(&uq->uq_key);
3131 		umtxq_busy(&uq->uq_key);
3132 		umtxq_unlock(&uq->uq_key);
3133 
3134 		/*
3135 		 * re-read the state, in case it changed between the try-lock above
3136 		 * and the check below
3137 		 */
3138 		rv = fueword32(&rwlock->rw_state, &state);
3139 		if (rv == -1)
3140 			error = EFAULT;
3141 
3142 		/* set read contention bit */
3143 		while (error == 0 && (state & wrflags) &&
3144 		    !(state & URWLOCK_READ_WAITERS)) {
3145 			rv = casueword32(&rwlock->rw_state, state,
3146 			    &oldstate, state | URWLOCK_READ_WAITERS);
3147 			if (rv == -1) {
3148 				error = EFAULT;
3149 				break;
3150 			}
3151 			if (rv == 0) {
3152 				MPASS(oldstate == state);
3153 				goto sleep;
3154 			}
3155 			state = oldstate;
3156 			error = thread_check_susp(td, false);
3157 			if (error != 0)
3158 				break;
3159 		}
3160 		if (error != 0) {
3161 			umtxq_unbusy_unlocked(&uq->uq_key);
3162 			break;
3163 		}
3164 
3165 		/* state is changed while setting flags, restart */
3166 		if (!(state & wrflags)) {
3167 			umtxq_unbusy_unlocked(&uq->uq_key);
3168 			error = thread_check_susp(td, true);
3169 			if (error != 0)
3170 				break;
3171 			continue;
3172 		}
3173 
3174 sleep:
3175 		/*
3176 		 * Contention bit is set, before sleeping, increase
3177 		 * read waiter count.
3178 		 */
3179 		rv = fueword32(&rwlock->rw_blocked_readers,
3180 		    &blocked_readers);
3181 		if (rv == -1) {
3182 			umtxq_unbusy_unlocked(&uq->uq_key);
3183 			error = EFAULT;
3184 			break;
3185 		}
3186 		suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
3187 
3188 		while (state & wrflags) {
3189 			umtxq_lock(&uq->uq_key);
3190 			umtxq_insert(uq);
3191 			umtxq_unbusy(&uq->uq_key);
3192 
3193 			error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
3194 			    NULL : &timo);
3195 
3196 			umtxq_busy(&uq->uq_key);
3197 			umtxq_remove(uq);
3198 			umtxq_unlock(&uq->uq_key);
3199 			if (error)
3200 				break;
3201 			rv = fueword32(&rwlock->rw_state, &state);
3202 			if (rv == -1) {
3203 				error = EFAULT;
3204 				break;
3205 			}
3206 		}
3207 
3208 		/* decrease read waiter count, and may clear read contention bit */
3209 		rv = fueword32(&rwlock->rw_blocked_readers,
3210 		    &blocked_readers);
3211 		if (rv == -1) {
3212 			umtxq_unbusy_unlocked(&uq->uq_key);
3213 			error = EFAULT;
3214 			break;
3215 		}
3216 		suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
3217 		if (blocked_readers == 1) {
3218 			rv = fueword32(&rwlock->rw_state, &state);
3219 			if (rv == -1) {
3220 				umtxq_unbusy_unlocked(&uq->uq_key);
3221 				error = EFAULT;
3222 				break;
3223 			}
3224 			for (;;) {
3225 				rv = casueword32(&rwlock->rw_state, state,
3226 				    &oldstate, state & ~URWLOCK_READ_WAITERS);
3227 				if (rv == -1) {
3228 					error = EFAULT;
3229 					break;
3230 				}
3231 				if (rv == 0) {
3232 					MPASS(oldstate == state);
3233 					break;
3234 				}
3235 				state = oldstate;
3236 				error1 = thread_check_susp(td, false);
3237 				if (error1 != 0) {
3238 					if (error == 0)
3239 						error = error1;
3240 					break;
3241 				}
3242 			}
3243 		}
3244 
3245 		umtxq_unbusy_unlocked(&uq->uq_key);
3246 		if (error != 0)
3247 			break;
3248 	}
3249 	umtx_key_release(&uq->uq_key);
3250 	if (error == ERESTART)
3251 		error = EINTR;
3252 	return (error);
3253 }
3254 
3255 static int
3256 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
3257 {
3258 	struct umtx_abs_timeout timo;
3259 	struct umtx_q *uq;
3260 	uint32_t flags;
3261 	int32_t state, oldstate;
3262 	int32_t blocked_writers;
3263 	int32_t blocked_readers;
3264 	int error, error1, rv;
3265 
3266 	uq = td->td_umtxq;
3267 	error = fueword32(&rwlock->rw_flags, &flags);
3268 	if (error == -1)
3269 		return (EFAULT);
3270 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3271 	if (error != 0)
3272 		return (error);
3273 
3274 	if (timeout != NULL)
3275 		umtx_abs_timeout_init2(&timo, timeout);
3276 
3277 	blocked_readers = 0;
3278 	for (;;) {
3279 		rv = fueword32(&rwlock->rw_state, &state);
3280 		if (rv == -1) {
3281 			umtx_key_release(&uq->uq_key);
3282 			return (EFAULT);
3283 		}
3284 		while ((state & URWLOCK_WRITE_OWNER) == 0 &&
3285 		    URWLOCK_READER_COUNT(state) == 0) {
3286 			rv = casueword32(&rwlock->rw_state, state,
3287 			    &oldstate, state | URWLOCK_WRITE_OWNER);
3288 			if (rv == -1) {
3289 				umtx_key_release(&uq->uq_key);
3290 				return (EFAULT);
3291 			}
3292 			if (rv == 0) {
3293 				MPASS(oldstate == state);
3294 				umtx_key_release(&uq->uq_key);
3295 				return (0);
3296 			}
3297 			state = oldstate;
3298 			error = thread_check_susp(td, true);
3299 			if (error != 0)
3300 				break;
3301 		}
3302 
3303 		if (error) {
3304 			if ((state & (URWLOCK_WRITE_OWNER |
3305 			    URWLOCK_WRITE_WAITERS)) == 0 &&
3306 			    blocked_readers != 0) {
3307 				umtxq_lock(&uq->uq_key);
3308 				umtxq_busy(&uq->uq_key);
3309 				umtxq_signal_queue(&uq->uq_key, INT_MAX,
3310 				    UMTX_SHARED_QUEUE);
3311 				umtxq_unbusy(&uq->uq_key);
3312 				umtxq_unlock(&uq->uq_key);
3313 			}
3314 
3315 			break;
3316 		}
3317 
3318 		/* grab monitor lock */
3319 		umtxq_lock(&uq->uq_key);
3320 		umtxq_busy(&uq->uq_key);
3321 		umtxq_unlock(&uq->uq_key);
3322 
3323 		/*
3324 		 * Re-read the state, in case it changed between the
3325 		 * try-lock above and the check below.
3326 		 */
3327 		rv = fueword32(&rwlock->rw_state, &state);
3328 		if (rv == -1)
3329 			error = EFAULT;
3330 
3331 		while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
3332 		    URWLOCK_READER_COUNT(state) != 0) &&
3333 		    (state & URWLOCK_WRITE_WAITERS) == 0) {
3334 			rv = casueword32(&rwlock->rw_state, state,
3335 			    &oldstate, state | URWLOCK_WRITE_WAITERS);
3336 			if (rv == -1) {
3337 				error = EFAULT;
3338 				break;
3339 			}
3340 			if (rv == 0) {
3341 				MPASS(oldstate == state);
3342 				goto sleep;
3343 			}
3344 			state = oldstate;
3345 			error = thread_check_susp(td, false);
3346 			if (error != 0)
3347 				break;
3348 		}
3349 		if (error != 0) {
3350 			umtxq_unbusy_unlocked(&uq->uq_key);
3351 			break;
3352 		}
3353 
3354 		if ((state & URWLOCK_WRITE_OWNER) == 0 &&
3355 		    URWLOCK_READER_COUNT(state) == 0) {
3356 			umtxq_unbusy_unlocked(&uq->uq_key);
3357 			error = thread_check_susp(td, false);
3358 			if (error != 0)
3359 				break;
3360 			continue;
3361 		}
3362 sleep:
3363 		rv = fueword32(&rwlock->rw_blocked_writers,
3364 		    &blocked_writers);
3365 		if (rv == -1) {
3366 			umtxq_unbusy_unlocked(&uq->uq_key);
3367 			error = EFAULT;
3368 			break;
3369 		}
3370 		suword32(&rwlock->rw_blocked_writers, blocked_writers + 1);
3371 
3372 		while ((state & URWLOCK_WRITE_OWNER) ||
3373 		    URWLOCK_READER_COUNT(state) != 0) {
3374 			umtxq_lock(&uq->uq_key);
3375 			umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3376 			umtxq_unbusy(&uq->uq_key);
3377 
3378 			error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
3379 			    NULL : &timo);
3380 
3381 			umtxq_busy(&uq->uq_key);
3382 			umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3383 			umtxq_unlock(&uq->uq_key);
3384 			if (error)
3385 				break;
3386 			rv = fueword32(&rwlock->rw_state, &state);
3387 			if (rv == -1) {
3388 				error = EFAULT;
3389 				break;
3390 			}
3391 		}
3392 
3393 		rv = fueword32(&rwlock->rw_blocked_writers,
3394 		    &blocked_writers);
3395 		if (rv == -1) {
3396 			umtxq_unbusy_unlocked(&uq->uq_key);
3397 			error = EFAULT;
3398 			break;
3399 		}
3400 		suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
3401 		if (blocked_writers == 1) {
3402 			rv = fueword32(&rwlock->rw_state, &state);
3403 			if (rv == -1) {
3404 				umtxq_unbusy_unlocked(&uq->uq_key);
3405 				error = EFAULT;
3406 				break;
3407 			}
3408 			for (;;) {
3409 				rv = casueword32(&rwlock->rw_state, state,
3410 				    &oldstate, state & ~URWLOCK_WRITE_WAITERS);
3411 				if (rv == -1) {
3412 					error = EFAULT;
3413 					break;
3414 				}
3415 				if (rv == 0) {
3416 					MPASS(oldstate == state);
3417 					break;
3418 				}
3419 				state = oldstate;
3420 				error1 = thread_check_susp(td, false);
3421 				/*
3422 				 * We are leaving the URWLOCK_WRITE_WAITERS
3423 				 * behind, but this should not harm the
3424 				 * correctness.
3425 				 */
3426 				if (error1 != 0) {
3427 					if (error == 0)
3428 						error = error1;
3429 					break;
3430 				}
3431 			}
3432 			rv = fueword32(&rwlock->rw_blocked_readers,
3433 			    &blocked_readers);
3434 			if (rv == -1) {
3435 				umtxq_unbusy_unlocked(&uq->uq_key);
3436 				error = EFAULT;
3437 				break;
3438 			}
3439 		} else
3440 			blocked_readers = 0;
3441 
3442 		umtxq_unbusy_unlocked(&uq->uq_key);
3443 	}
3444 
3445 	umtx_key_release(&uq->uq_key);
3446 	if (error == ERESTART)
3447 		error = EINTR;
3448 	return (error);
3449 }
3450 
3451 static int
3452 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
3453 {
3454 	struct umtx_q *uq;
3455 	uint32_t flags;
3456 	int32_t state, oldstate;
3457 	int error, rv, q, count;
3458 
3459 	uq = td->td_umtxq;
3460 	error = fueword32(&rwlock->rw_flags, &flags);
3461 	if (error == -1)
3462 		return (EFAULT);
3463 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3464 	if (error != 0)
3465 		return (error);
3466 
3467 	error = fueword32(&rwlock->rw_state, &state);
3468 	if (error == -1) {
3469 		error = EFAULT;
3470 		goto out;
3471 	}
3472 	if (state & URWLOCK_WRITE_OWNER) {
3473 		for (;;) {
3474 			rv = casueword32(&rwlock->rw_state, state,
3475 			    &oldstate, state & ~URWLOCK_WRITE_OWNER);
3476 			if (rv == -1) {
3477 				error = EFAULT;
3478 				goto out;
3479 			}
3480 			if (rv == 1) {
3481 				state = oldstate;
3482 				if (!(oldstate & URWLOCK_WRITE_OWNER)) {
3483 					error = EPERM;
3484 					goto out;
3485 				}
3486 				error = thread_check_susp(td, true);
3487 				if (error != 0)
3488 					goto out;
3489 			} else
3490 				break;
3491 		}
3492 	} else if (URWLOCK_READER_COUNT(state) != 0) {
3493 		for (;;) {
3494 			rv = casueword32(&rwlock->rw_state, state,
3495 			    &oldstate, state - 1);
3496 			if (rv == -1) {
3497 				error = EFAULT;
3498 				goto out;
3499 			}
3500 			if (rv == 1) {
3501 				state = oldstate;
3502 				if (URWLOCK_READER_COUNT(oldstate) == 0) {
3503 					error = EPERM;
3504 					goto out;
3505 				}
3506 				error = thread_check_susp(td, true);
3507 				if (error != 0)
3508 					goto out;
3509 			} else
3510 				break;
3511 		}
3512 	} else {
3513 		error = EPERM;
3514 		goto out;
3515 	}
3516 
3517 	count = 0;
3518 
3519 	if (!(flags & URWLOCK_PREFER_READER)) {
3520 		if (state & URWLOCK_WRITE_WAITERS) {
3521 			count = 1;
3522 			q = UMTX_EXCLUSIVE_QUEUE;
3523 		} else if (state & URWLOCK_READ_WAITERS) {
3524 			count = INT_MAX;
3525 			q = UMTX_SHARED_QUEUE;
3526 		}
3527 	} else {
3528 		if (state & URWLOCK_READ_WAITERS) {
3529 			count = INT_MAX;
3530 			q = UMTX_SHARED_QUEUE;
3531 		} else if (state & URWLOCK_WRITE_WAITERS) {
3532 			count = 1;
3533 			q = UMTX_EXCLUSIVE_QUEUE;
3534 		}
3535 	}
3536 
3537 	if (count) {
3538 		umtxq_lock(&uq->uq_key);
3539 		umtxq_busy(&uq->uq_key);
3540 		umtxq_signal_queue(&uq->uq_key, count, q);
3541 		umtxq_unbusy(&uq->uq_key);
3542 		umtxq_unlock(&uq->uq_key);
3543 	}
3544 out:
3545 	umtx_key_release(&uq->uq_key);
3546 	return (error);
3547 }
3548 
3549 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3550 static int
3551 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
3552 {
3553 	struct umtx_abs_timeout timo;
3554 	struct umtx_q *uq;
3555 	uint32_t flags, count, count1;
3556 	int error, rv, rv1;
3557 
3558 	uq = td->td_umtxq;
3559 	error = fueword32(&sem->_flags, &flags);
3560 	if (error == -1)
3561 		return (EFAULT);
3562 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3563 	if (error != 0)
3564 		return (error);
3565 
3566 	if (timeout != NULL)
3567 		umtx_abs_timeout_init2(&timo, timeout);
3568 
3569 again:
3570 	umtxq_lock(&uq->uq_key);
3571 	umtxq_busy(&uq->uq_key);
3572 	umtxq_insert(uq);
3573 	umtxq_unlock(&uq->uq_key);
3574 	rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
3575 	if (rv != -1)
3576 		rv1 = fueword32(&sem->_count, &count);
3577 	if (rv == -1 || rv1 == -1 || count != 0 || (rv == 1 && count1 == 0)) {
3578 		if (rv == 0)
3579 			suword32(&sem->_has_waiters, 0);
3580 		umtxq_lock(&uq->uq_key);
3581 		umtxq_unbusy(&uq->uq_key);
3582 		umtxq_remove(uq);
3583 		umtxq_unlock(&uq->uq_key);
3584 		if (rv == -1 || rv1 == -1) {
3585 			error = EFAULT;
3586 			goto out;
3587 		}
3588 		if (count != 0) {
3589 			error = 0;
3590 			goto out;
3591 		}
3592 		MPASS(rv == 1 && count1 == 0);
3593 		rv = thread_check_susp(td, true);
3594 		if (rv == 0)
3595 			goto again;
3596 		error = rv;
3597 		goto out;
3598 	}
3599 	umtxq_lock(&uq->uq_key);
3600 	umtxq_unbusy(&uq->uq_key);
3601 
3602 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3603 
3604 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3605 		error = 0;
3606 	else {
3607 		umtxq_remove(uq);
3608 		/* A relative timeout cannot be restarted. */
3609 		if (error == ERESTART && timeout != NULL &&
3610 		    (timeout->_flags & UMTX_ABSTIME) == 0)
3611 			error = EINTR;
3612 	}
3613 	umtxq_unlock(&uq->uq_key);
3614 out:
3615 	umtx_key_release(&uq->uq_key);
3616 	return (error);
3617 }
3618 
3619 /*
3620  * Signal a userland semaphore.
3621  */
3622 static int
3623 do_sem_wake(struct thread *td, struct _usem *sem)
3624 {
3625 	struct umtx_key key;
3626 	int error, cnt;
3627 	uint32_t flags;
3628 
3629 	error = fueword32(&sem->_flags, &flags);
3630 	if (error == -1)
3631 		return (EFAULT);
3632 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3633 		return (error);
3634 	umtxq_lock(&key);
3635 	umtxq_busy(&key);
3636 	cnt = umtxq_count(&key);
3637 	if (cnt > 0) {
3638 		/*
3639 		 * Check if count is greater than 0, this means the memory is
3640 		 * still being referenced by user code, so we can safely
3641 		 * update _has_waiters flag.
3642 		 */
3643 		if (cnt == 1) {
3644 			umtxq_unlock(&key);
3645 			error = suword32(&sem->_has_waiters, 0);
3646 			umtxq_lock(&key);
3647 			if (error == -1)
3648 				error = EFAULT;
3649 		}
3650 		umtxq_signal(&key, 1);
3651 	}
3652 	umtxq_unbusy(&key);
3653 	umtxq_unlock(&key);
3654 	umtx_key_release(&key);
3655 	return (error);
3656 }
3657 #endif
3658 
3659 static int
3660 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
3661 {
3662 	struct umtx_abs_timeout timo;
3663 	struct umtx_q *uq;
3664 	uint32_t count, flags;
3665 	int error, rv;
3666 
3667 	uq = td->td_umtxq;
3668 	flags = fuword32(&sem->_flags);
3669 	if (timeout != NULL)
3670 		umtx_abs_timeout_init2(&timo, timeout);
3671 
3672 again:
3673 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3674 	if (error != 0)
3675 		return (error);
3676 	umtxq_lock(&uq->uq_key);
3677 	umtxq_busy(&uq->uq_key);
3678 	umtxq_insert(uq);
3679 	umtxq_unlock(&uq->uq_key);
3680 	rv = fueword32(&sem->_count, &count);
3681 	if (rv == -1) {
3682 		umtxq_lock(&uq->uq_key);
3683 		umtxq_unbusy(&uq->uq_key);
3684 		umtxq_remove(uq);
3685 		umtxq_unlock(&uq->uq_key);
3686 		umtx_key_release(&uq->uq_key);
3687 		return (EFAULT);
3688 	}
3689 	for (;;) {
3690 		if (USEM_COUNT(count) != 0) {
3691 			umtxq_lock(&uq->uq_key);
3692 			umtxq_unbusy(&uq->uq_key);
3693 			umtxq_remove(uq);
3694 			umtxq_unlock(&uq->uq_key);
3695 			umtx_key_release(&uq->uq_key);
3696 			return (0);
3697 		}
3698 		if (count == USEM_HAS_WAITERS)
3699 			break;
3700 		rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
3701 		if (rv == 0)
3702 			break;
3703 		umtxq_lock(&uq->uq_key);
3704 		umtxq_unbusy(&uq->uq_key);
3705 		umtxq_remove(uq);
3706 		umtxq_unlock(&uq->uq_key);
3707 		umtx_key_release(&uq->uq_key);
3708 		if (rv == -1)
3709 			return (EFAULT);
3710 		rv = thread_check_susp(td, true);
3711 		if (rv != 0)
3712 			return (rv);
3713 		goto again;
3714 	}
3715 	umtxq_lock(&uq->uq_key);
3716 	umtxq_unbusy(&uq->uq_key);
3717 
3718 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3719 
3720 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3721 		error = 0;
3722 	else {
3723 		umtxq_remove(uq);
3724 		if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
3725 			/* A relative timeout cannot be restarted. */
3726 			if (error == ERESTART)
3727 				error = EINTR;
3728 			if (error == EINTR) {
3729 				kern_clock_gettime(curthread, timo.clockid,
3730 				    &timo.cur);
3731 				timespecsub(&timo.end, &timo.cur,
3732 				    &timeout->_timeout);
3733 			}
3734 		}
3735 	}
3736 	umtxq_unlock(&uq->uq_key);
3737 	umtx_key_release(&uq->uq_key);
3738 	return (error);
3739 }
3740 
3741 /*
3742  * Signal a userland semaphore.
3743  */
3744 static int
3745 do_sem2_wake(struct thread *td, struct _usem2 *sem)
3746 {
3747 	struct umtx_key key;
3748 	int error, cnt, rv;
3749 	uint32_t count, flags;
3750 
3751 	rv = fueword32(&sem->_flags, &flags);
3752 	if (rv == -1)
3753 		return (EFAULT);
3754 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3755 		return (error);
3756 	umtxq_lock(&key);
3757 	umtxq_busy(&key);
3758 	cnt = umtxq_count(&key);
3759 	if (cnt > 0) {
3760 		/*
3761 		 * If this was the last sleeping thread, clear the waiters
3762 		 * flag in _count.
3763 		 */
3764 		if (cnt == 1) {
3765 			umtxq_unlock(&key);
3766 			rv = fueword32(&sem->_count, &count);
3767 			while (rv != -1 && count & USEM_HAS_WAITERS) {
3768 				rv = casueword32(&sem->_count, count, &count,
3769 				    count & ~USEM_HAS_WAITERS);
3770 				if (rv == 1) {
3771 					rv = thread_check_susp(td, true);
3772 					if (rv != 0)
3773 						break;
3774 				}
3775 			}
3776 			if (rv == -1)
3777 				error = EFAULT;
3778 			else if (rv > 0) {
3779 				error = rv;
3780 			}
3781 			umtxq_lock(&key);
3782 		}
3783 
3784 		umtxq_signal(&key, 1);
3785 	}
3786 	umtxq_unbusy(&key);
3787 	umtxq_unlock(&key);
3788 	umtx_key_release(&key);
3789 	return (error);
3790 }
3791 
3792 #ifdef COMPAT_FREEBSD10
3793 int
3794 freebsd10__umtx_lock(struct thread *td, struct freebsd10__umtx_lock_args *uap)
3795 {
3796 	return (do_lock_umtx(td, uap->umtx, td->td_tid, 0));
3797 }
3798 
3799 int
3800 freebsd10__umtx_unlock(struct thread *td,
3801     struct freebsd10__umtx_unlock_args *uap)
3802 {
3803 	return (do_unlock_umtx(td, uap->umtx, td->td_tid));
3804 }
3805 #endif
3806 
3807 inline int
3808 umtx_copyin_timeout(const void *uaddr, struct timespec *tsp)
3809 {
3810 	int error;
3811 
3812 	error = copyin(uaddr, tsp, sizeof(*tsp));
3813 	if (error == 0) {
3814 		if (!timespecvalid_interval(tsp))
3815 			error = EINVAL;
3816 	}
3817 	return (error);
3818 }
3819 
3820 static inline int
3821 umtx_copyin_umtx_time(const void *uaddr, size_t size, struct _umtx_time *tp)
3822 {
3823 	int error;
3824 
3825 	if (size <= sizeof(tp->_timeout)) {
3826 		tp->_clockid = CLOCK_REALTIME;
3827 		tp->_flags = 0;
3828 		error = copyin(uaddr, &tp->_timeout, sizeof(tp->_timeout));
3829 	} else
3830 		error = copyin(uaddr, tp, sizeof(*tp));
3831 	if (error != 0)
3832 		return (error);
3833 	if (!timespecvalid_interval(&tp->_timeout))
3834 		return (EINVAL);
3835 	return (0);
3836 }
3837 
3838 static int
3839 umtx_copyin_robust_lists(const void *uaddr, size_t size,
3840     struct umtx_robust_lists_params *rb)
3841 {
3842 
3843 	if (size > sizeof(*rb))
3844 		return (EINVAL);
3845 	return (copyin(uaddr, rb, size));
3846 }
3847 
3848 static int
3849 umtx_copyout_timeout(void *uaddr, size_t sz, struct timespec *tsp)
3850 {
3851 
3852 	/*
3853 	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
3854 	 * and we're only called if sz >= sizeof(timespec) as supplied in the
3855 	 * copyops.
3856 	 */
3857 	KASSERT(sz >= sizeof(*tsp),
3858 	    ("umtx_copyops specifies incorrect sizes"));
3859 
3860 	return (copyout(tsp, uaddr, sizeof(*tsp)));
3861 }
3862 
3863 #ifdef COMPAT_FREEBSD10
3864 static int
3865 __umtx_op_lock_umtx(struct thread *td, struct _umtx_op_args *uap,
3866     const struct umtx_copyops *ops)
3867 {
3868 	struct timespec *ts, timeout;
3869 	int error;
3870 
3871 	/* Allow a null timespec (wait forever). */
3872 	if (uap->uaddr2 == NULL)
3873 		ts = NULL;
3874 	else {
3875 		error = ops->copyin_timeout(uap->uaddr2, &timeout);
3876 		if (error != 0)
3877 			return (error);
3878 		ts = &timeout;
3879 	}
3880 #ifdef COMPAT_FREEBSD32
3881 	if (ops->compat32)
3882 		return (do_lock_umtx32(td, uap->obj, uap->val, ts));
3883 #endif
3884 	return (do_lock_umtx(td, uap->obj, uap->val, ts));
3885 }
3886 
3887 static int
3888 __umtx_op_unlock_umtx(struct thread *td, struct _umtx_op_args *uap,
3889     const struct umtx_copyops *ops)
3890 {
3891 #ifdef COMPAT_FREEBSD32
3892 	if (ops->compat32)
3893 		return (do_unlock_umtx32(td, uap->obj, uap->val));
3894 #endif
3895 	return (do_unlock_umtx(td, uap->obj, uap->val));
3896 }
3897 #endif	/* COMPAT_FREEBSD10 */
3898 
3899 #if !defined(COMPAT_FREEBSD10)
3900 static int
3901 __umtx_op_unimpl(struct thread *td __unused, struct _umtx_op_args *uap __unused,
3902     const struct umtx_copyops *ops __unused)
3903 {
3904 	return (EOPNOTSUPP);
3905 }
3906 #endif	/* COMPAT_FREEBSD10 */
3907 
3908 static int
3909 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap,
3910     const struct umtx_copyops *ops)
3911 {
3912 	struct _umtx_time timeout, *tm_p;
3913 	int error;
3914 
3915 	if (uap->uaddr2 == NULL)
3916 		tm_p = NULL;
3917 	else {
3918 		error = ops->copyin_umtx_time(
3919 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3920 		if (error != 0)
3921 			return (error);
3922 		tm_p = &timeout;
3923 	}
3924 	return (do_wait(td, uap->obj, uap->val, tm_p, ops->compat32, 0));
3925 }
3926 
3927 static int
3928 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap,
3929     const struct umtx_copyops *ops)
3930 {
3931 	struct _umtx_time timeout, *tm_p;
3932 	int error;
3933 
3934 	if (uap->uaddr2 == NULL)
3935 		tm_p = NULL;
3936 	else {
3937 		error = ops->copyin_umtx_time(
3938 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3939 		if (error != 0)
3940 			return (error);
3941 		tm_p = &timeout;
3942 	}
3943 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
3944 }
3945 
3946 static int
3947 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap,
3948     const struct umtx_copyops *ops)
3949 {
3950 	struct _umtx_time *tm_p, timeout;
3951 	int error;
3952 
3953 	if (uap->uaddr2 == NULL)
3954 		tm_p = NULL;
3955 	else {
3956 		error = ops->copyin_umtx_time(
3957 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3958 		if (error != 0)
3959 			return (error);
3960 		tm_p = &timeout;
3961 	}
3962 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
3963 }
3964 
3965 static int
3966 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap,
3967     const struct umtx_copyops *ops __unused)
3968 {
3969 
3970 	return (kern_umtx_wake(td, uap->obj, uap->val, 0));
3971 }
3972 
3973 #define BATCH_SIZE	128
3974 static int
3975 __umtx_op_nwake_private_native(struct thread *td, struct _umtx_op_args *uap)
3976 {
3977 	char *uaddrs[BATCH_SIZE], **upp;
3978 	int count, error, i, pos, tocopy;
3979 
3980 	upp = (char **)uap->obj;
3981 	error = 0;
3982 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3983 	    pos += tocopy) {
3984 		tocopy = MIN(count, BATCH_SIZE);
3985 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
3986 		if (error != 0)
3987 			break;
3988 		for (i = 0; i < tocopy; ++i) {
3989 			kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
3990 		}
3991 		maybe_yield();
3992 	}
3993 	return (error);
3994 }
3995 
3996 static int
3997 __umtx_op_nwake_private_compat32(struct thread *td, struct _umtx_op_args *uap)
3998 {
3999 	uint32_t uaddrs[BATCH_SIZE], *upp;
4000 	int count, error, i, pos, tocopy;
4001 
4002 	upp = (uint32_t *)uap->obj;
4003 	error = 0;
4004 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
4005 	    pos += tocopy) {
4006 		tocopy = MIN(count, BATCH_SIZE);
4007 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
4008 		if (error != 0)
4009 			break;
4010 		for (i = 0; i < tocopy; ++i) {
4011 			kern_umtx_wake(td, (void *)(uintptr_t)uaddrs[i],
4012 			    INT_MAX, 1);
4013 		}
4014 		maybe_yield();
4015 	}
4016 	return (error);
4017 }
4018 
4019 static int
4020 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap,
4021     const struct umtx_copyops *ops)
4022 {
4023 
4024 	if (ops->compat32)
4025 		return (__umtx_op_nwake_private_compat32(td, uap));
4026 	return (__umtx_op_nwake_private_native(td, uap));
4027 }
4028 
4029 static int
4030 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap,
4031     const struct umtx_copyops *ops __unused)
4032 {
4033 
4034 	return (kern_umtx_wake(td, uap->obj, uap->val, 1));
4035 }
4036 
4037 static int
4038 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap,
4039    const struct umtx_copyops *ops)
4040 {
4041 	struct _umtx_time *tm_p, timeout;
4042 	int error;
4043 
4044 	/* Allow a null timespec (wait forever). */
4045 	if (uap->uaddr2 == NULL)
4046 		tm_p = NULL;
4047 	else {
4048 		error = ops->copyin_umtx_time(
4049 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4050 		if (error != 0)
4051 			return (error);
4052 		tm_p = &timeout;
4053 	}
4054 	return (do_lock_umutex(td, uap->obj, tm_p, 0));
4055 }
4056 
4057 static int
4058 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap,
4059     const struct umtx_copyops *ops __unused)
4060 {
4061 
4062 	return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
4063 }
4064 
4065 static int
4066 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap,
4067     const struct umtx_copyops *ops)
4068 {
4069 	struct _umtx_time *tm_p, timeout;
4070 	int error;
4071 
4072 	/* Allow a null timespec (wait forever). */
4073 	if (uap->uaddr2 == NULL)
4074 		tm_p = NULL;
4075 	else {
4076 		error = ops->copyin_umtx_time(
4077 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4078 		if (error != 0)
4079 			return (error);
4080 		tm_p = &timeout;
4081 	}
4082 	return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
4083 }
4084 
4085 static int
4086 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap,
4087     const struct umtx_copyops *ops __unused)
4088 {
4089 
4090 	return (do_wake_umutex(td, uap->obj));
4091 }
4092 
4093 static int
4094 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap,
4095     const struct umtx_copyops *ops __unused)
4096 {
4097 
4098 	return (do_unlock_umutex(td, uap->obj, false));
4099 }
4100 
4101 static int
4102 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap,
4103     const struct umtx_copyops *ops __unused)
4104 {
4105 
4106 	return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
4107 }
4108 
4109 static int
4110 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap,
4111     const struct umtx_copyops *ops)
4112 {
4113 	struct timespec *ts, timeout;
4114 	int error;
4115 
4116 	/* Allow a null timespec (wait forever). */
4117 	if (uap->uaddr2 == NULL)
4118 		ts = NULL;
4119 	else {
4120 		error = ops->copyin_timeout(uap->uaddr2, &timeout);
4121 		if (error != 0)
4122 			return (error);
4123 		ts = &timeout;
4124 	}
4125 	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
4126 }
4127 
4128 static int
4129 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap,
4130     const struct umtx_copyops *ops __unused)
4131 {
4132 
4133 	return (do_cv_signal(td, uap->obj));
4134 }
4135 
4136 static int
4137 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap,
4138     const struct umtx_copyops *ops __unused)
4139 {
4140 
4141 	return (do_cv_broadcast(td, uap->obj));
4142 }
4143 
4144 static int
4145 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap,
4146     const struct umtx_copyops *ops)
4147 {
4148 	struct _umtx_time timeout;
4149 	int error;
4150 
4151 	/* Allow a null timespec (wait forever). */
4152 	if (uap->uaddr2 == NULL) {
4153 		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
4154 	} else {
4155 		error = ops->copyin_umtx_time(uap->uaddr2,
4156 		   (size_t)uap->uaddr1, &timeout);
4157 		if (error != 0)
4158 			return (error);
4159 		error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
4160 	}
4161 	return (error);
4162 }
4163 
4164 static int
4165 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap,
4166     const struct umtx_copyops *ops)
4167 {
4168 	struct _umtx_time timeout;
4169 	int error;
4170 
4171 	/* Allow a null timespec (wait forever). */
4172 	if (uap->uaddr2 == NULL) {
4173 		error = do_rw_wrlock(td, uap->obj, 0);
4174 	} else {
4175 		error = ops->copyin_umtx_time(uap->uaddr2,
4176 		   (size_t)uap->uaddr1, &timeout);
4177 		if (error != 0)
4178 			return (error);
4179 
4180 		error = do_rw_wrlock(td, uap->obj, &timeout);
4181 	}
4182 	return (error);
4183 }
4184 
4185 static int
4186 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap,
4187     const struct umtx_copyops *ops __unused)
4188 {
4189 
4190 	return (do_rw_unlock(td, uap->obj));
4191 }
4192 
4193 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4194 static int
4195 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap,
4196     const struct umtx_copyops *ops)
4197 {
4198 	struct _umtx_time *tm_p, timeout;
4199 	int error;
4200 
4201 	/* Allow a null timespec (wait forever). */
4202 	if (uap->uaddr2 == NULL)
4203 		tm_p = NULL;
4204 	else {
4205 		error = ops->copyin_umtx_time(
4206 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4207 		if (error != 0)
4208 			return (error);
4209 		tm_p = &timeout;
4210 	}
4211 	return (do_sem_wait(td, uap->obj, tm_p));
4212 }
4213 
4214 static int
4215 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap,
4216     const struct umtx_copyops *ops __unused)
4217 {
4218 
4219 	return (do_sem_wake(td, uap->obj));
4220 }
4221 #endif
4222 
4223 static int
4224 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap,
4225     const struct umtx_copyops *ops __unused)
4226 {
4227 
4228 	return (do_wake2_umutex(td, uap->obj, uap->val));
4229 }
4230 
4231 static int
4232 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap,
4233     const struct umtx_copyops *ops)
4234 {
4235 	struct _umtx_time *tm_p, timeout;
4236 	size_t uasize;
4237 	int error;
4238 
4239 	/* Allow a null timespec (wait forever). */
4240 	if (uap->uaddr2 == NULL) {
4241 		uasize = 0;
4242 		tm_p = NULL;
4243 	} else {
4244 		uasize = (size_t)uap->uaddr1;
4245 		error = ops->copyin_umtx_time(uap->uaddr2, uasize, &timeout);
4246 		if (error != 0)
4247 			return (error);
4248 		tm_p = &timeout;
4249 	}
4250 	error = do_sem2_wait(td, uap->obj, tm_p);
4251 	if (error == EINTR && uap->uaddr2 != NULL &&
4252 	    (timeout._flags & UMTX_ABSTIME) == 0 &&
4253 	    uasize >= ops->umtx_time_sz + ops->timespec_sz) {
4254 		error = ops->copyout_timeout(
4255 		    (void *)((uintptr_t)uap->uaddr2 + ops->umtx_time_sz),
4256 		    uasize - ops->umtx_time_sz, &timeout._timeout);
4257 		if (error == 0) {
4258 			error = EINTR;
4259 		}
4260 	}
4261 
4262 	return (error);
4263 }
4264 
4265 static int
4266 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap,
4267     const struct umtx_copyops *ops __unused)
4268 {
4269 
4270 	return (do_sem2_wake(td, uap->obj));
4271 }
4272 
4273 #define	USHM_OBJ_UMTX(o)						\
4274     ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
4275 
4276 #define	USHMF_REG_LINKED	0x0001
4277 #define	USHMF_OBJ_LINKED	0x0002
4278 struct umtx_shm_reg {
4279 	TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
4280 	LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
4281 	struct umtx_key		ushm_key;
4282 	struct ucred		*ushm_cred;
4283 	struct shmfd		*ushm_obj;
4284 	u_int			ushm_refcnt;
4285 	u_int			ushm_flags;
4286 };
4287 
4288 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
4289 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
4290 
4291 static uma_zone_t umtx_shm_reg_zone;
4292 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
4293 static struct mtx umtx_shm_lock;
4294 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
4295     TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
4296 
4297 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
4298 
4299 static void
4300 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
4301 {
4302 	struct umtx_shm_reg_head d;
4303 	struct umtx_shm_reg *reg, *reg1;
4304 
4305 	TAILQ_INIT(&d);
4306 	mtx_lock(&umtx_shm_lock);
4307 	TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
4308 	mtx_unlock(&umtx_shm_lock);
4309 	TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
4310 		TAILQ_REMOVE(&d, reg, ushm_reg_link);
4311 		umtx_shm_free_reg(reg);
4312 	}
4313 }
4314 
4315 static struct task umtx_shm_reg_delfree_task =
4316     TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
4317 
4318 static struct umtx_shm_reg *
4319 umtx_shm_find_reg_locked(const struct umtx_key *key)
4320 {
4321 	struct umtx_shm_reg *reg;
4322 	struct umtx_shm_reg_head *reg_head;
4323 
4324 	KASSERT(key->shared, ("umtx_p_find_rg: private key"));
4325 	mtx_assert(&umtx_shm_lock, MA_OWNED);
4326 	reg_head = &umtx_shm_registry[key->hash];
4327 	TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
4328 		KASSERT(reg->ushm_key.shared,
4329 		    ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
4330 		if (reg->ushm_key.info.shared.object ==
4331 		    key->info.shared.object &&
4332 		    reg->ushm_key.info.shared.offset ==
4333 		    key->info.shared.offset) {
4334 			KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
4335 			KASSERT(reg->ushm_refcnt > 0,
4336 			    ("reg %p refcnt 0 onlist", reg));
4337 			KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
4338 			    ("reg %p not linked", reg));
4339 			reg->ushm_refcnt++;
4340 			return (reg);
4341 		}
4342 	}
4343 	return (NULL);
4344 }
4345 
4346 static struct umtx_shm_reg *
4347 umtx_shm_find_reg(const struct umtx_key *key)
4348 {
4349 	struct umtx_shm_reg *reg;
4350 
4351 	mtx_lock(&umtx_shm_lock);
4352 	reg = umtx_shm_find_reg_locked(key);
4353 	mtx_unlock(&umtx_shm_lock);
4354 	return (reg);
4355 }
4356 
4357 static void
4358 umtx_shm_free_reg(struct umtx_shm_reg *reg)
4359 {
4360 
4361 	chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
4362 	crfree(reg->ushm_cred);
4363 	shm_drop(reg->ushm_obj);
4364 	uma_zfree(umtx_shm_reg_zone, reg);
4365 }
4366 
4367 static bool
4368 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
4369 {
4370 	bool res;
4371 
4372 	mtx_assert(&umtx_shm_lock, MA_OWNED);
4373 	KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
4374 	reg->ushm_refcnt--;
4375 	res = reg->ushm_refcnt == 0;
4376 	if (res || force) {
4377 		if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
4378 			TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
4379 			    reg, ushm_reg_link);
4380 			reg->ushm_flags &= ~USHMF_REG_LINKED;
4381 		}
4382 		if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
4383 			LIST_REMOVE(reg, ushm_obj_link);
4384 			reg->ushm_flags &= ~USHMF_OBJ_LINKED;
4385 		}
4386 	}
4387 	return (res);
4388 }
4389 
4390 static void
4391 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
4392 {
4393 	vm_object_t object;
4394 	bool dofree;
4395 
4396 	if (force) {
4397 		object = reg->ushm_obj->shm_object;
4398 		VM_OBJECT_WLOCK(object);
4399 		vm_object_set_flag(object, OBJ_UMTXDEAD);
4400 		VM_OBJECT_WUNLOCK(object);
4401 	}
4402 	mtx_lock(&umtx_shm_lock);
4403 	dofree = umtx_shm_unref_reg_locked(reg, force);
4404 	mtx_unlock(&umtx_shm_lock);
4405 	if (dofree)
4406 		umtx_shm_free_reg(reg);
4407 }
4408 
4409 void
4410 umtx_shm_object_init(vm_object_t object)
4411 {
4412 
4413 	LIST_INIT(USHM_OBJ_UMTX(object));
4414 }
4415 
4416 void
4417 umtx_shm_object_terminated(vm_object_t object)
4418 {
4419 	struct umtx_shm_reg *reg, *reg1;
4420 	bool dofree;
4421 
4422 	if (LIST_EMPTY(USHM_OBJ_UMTX(object)))
4423 		return;
4424 
4425 	dofree = false;
4426 	mtx_lock(&umtx_shm_lock);
4427 	LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
4428 		if (umtx_shm_unref_reg_locked(reg, true)) {
4429 			TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
4430 			    ushm_reg_link);
4431 			dofree = true;
4432 		}
4433 	}
4434 	mtx_unlock(&umtx_shm_lock);
4435 	if (dofree)
4436 		taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
4437 }
4438 
4439 static int
4440 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
4441     struct umtx_shm_reg **res)
4442 {
4443 	struct umtx_shm_reg *reg, *reg1;
4444 	struct ucred *cred;
4445 	int error;
4446 
4447 	reg = umtx_shm_find_reg(key);
4448 	if (reg != NULL) {
4449 		*res = reg;
4450 		return (0);
4451 	}
4452 	cred = td->td_ucred;
4453 	if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
4454 		return (ENOMEM);
4455 	reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
4456 	reg->ushm_refcnt = 1;
4457 	bcopy(key, &reg->ushm_key, sizeof(*key));
4458 	reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR, false);
4459 	reg->ushm_cred = crhold(cred);
4460 	error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
4461 	if (error != 0) {
4462 		umtx_shm_free_reg(reg);
4463 		return (error);
4464 	}
4465 	mtx_lock(&umtx_shm_lock);
4466 	reg1 = umtx_shm_find_reg_locked(key);
4467 	if (reg1 != NULL) {
4468 		mtx_unlock(&umtx_shm_lock);
4469 		umtx_shm_free_reg(reg);
4470 		*res = reg1;
4471 		return (0);
4472 	}
4473 	reg->ushm_refcnt++;
4474 	TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
4475 	LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
4476 	    ushm_obj_link);
4477 	reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
4478 	mtx_unlock(&umtx_shm_lock);
4479 	*res = reg;
4480 	return (0);
4481 }
4482 
4483 static int
4484 umtx_shm_alive(struct thread *td, void *addr)
4485 {
4486 	vm_map_t map;
4487 	vm_map_entry_t entry;
4488 	vm_object_t object;
4489 	vm_pindex_t pindex;
4490 	vm_prot_t prot;
4491 	int res, ret;
4492 	boolean_t wired;
4493 
4494 	map = &td->td_proc->p_vmspace->vm_map;
4495 	res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
4496 	    &object, &pindex, &prot, &wired);
4497 	if (res != KERN_SUCCESS)
4498 		return (EFAULT);
4499 	if (object == NULL)
4500 		ret = EINVAL;
4501 	else
4502 		ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
4503 	vm_map_lookup_done(map, entry);
4504 	return (ret);
4505 }
4506 
4507 static void
4508 umtx_shm_init(void)
4509 {
4510 	int i;
4511 
4512 	umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
4513 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
4514 	mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
4515 	for (i = 0; i < nitems(umtx_shm_registry); i++)
4516 		TAILQ_INIT(&umtx_shm_registry[i]);
4517 }
4518 
4519 static int
4520 umtx_shm(struct thread *td, void *addr, u_int flags)
4521 {
4522 	struct umtx_key key;
4523 	struct umtx_shm_reg *reg;
4524 	struct file *fp;
4525 	int error, fd;
4526 
4527 	if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
4528 	    UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
4529 		return (EINVAL);
4530 	if ((flags & UMTX_SHM_ALIVE) != 0)
4531 		return (umtx_shm_alive(td, addr));
4532 	error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
4533 	if (error != 0)
4534 		return (error);
4535 	KASSERT(key.shared == 1, ("non-shared key"));
4536 	if ((flags & UMTX_SHM_CREAT) != 0) {
4537 		error = umtx_shm_create_reg(td, &key, &reg);
4538 	} else {
4539 		reg = umtx_shm_find_reg(&key);
4540 		if (reg == NULL)
4541 			error = ESRCH;
4542 	}
4543 	umtx_key_release(&key);
4544 	if (error != 0)
4545 		return (error);
4546 	KASSERT(reg != NULL, ("no reg"));
4547 	if ((flags & UMTX_SHM_DESTROY) != 0) {
4548 		umtx_shm_unref_reg(reg, true);
4549 	} else {
4550 #if 0
4551 #ifdef MAC
4552 		error = mac_posixshm_check_open(td->td_ucred,
4553 		    reg->ushm_obj, FFLAGS(O_RDWR));
4554 		if (error == 0)
4555 #endif
4556 			error = shm_access(reg->ushm_obj, td->td_ucred,
4557 			    FFLAGS(O_RDWR));
4558 		if (error == 0)
4559 #endif
4560 			error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
4561 		if (error == 0) {
4562 			shm_hold(reg->ushm_obj);
4563 			finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
4564 			    &shm_ops);
4565 			td->td_retval[0] = fd;
4566 			fdrop(fp, td);
4567 		}
4568 	}
4569 	umtx_shm_unref_reg(reg, false);
4570 	return (error);
4571 }
4572 
4573 static int
4574 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap,
4575     const struct umtx_copyops *ops __unused)
4576 {
4577 
4578 	return (umtx_shm(td, uap->uaddr1, uap->val));
4579 }
4580 
4581 static int
4582 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap,
4583     const struct umtx_copyops *ops)
4584 {
4585 	struct umtx_robust_lists_params rb;
4586 	int error;
4587 
4588 	if (ops->compat32) {
4589 		if ((td->td_pflags2 & TDP2_COMPAT32RB) == 0 &&
4590 		    (td->td_rb_list != 0 || td->td_rbp_list != 0 ||
4591 		    td->td_rb_inact != 0))
4592 			return (EBUSY);
4593 	} else if ((td->td_pflags2 & TDP2_COMPAT32RB) != 0) {
4594 		return (EBUSY);
4595 	}
4596 
4597 	bzero(&rb, sizeof(rb));
4598 	error = ops->copyin_robust_lists(uap->uaddr1, uap->val, &rb);
4599 	if (error != 0)
4600 		return (error);
4601 
4602 	if (ops->compat32)
4603 		td->td_pflags2 |= TDP2_COMPAT32RB;
4604 
4605 	td->td_rb_list = rb.robust_list_offset;
4606 	td->td_rbp_list = rb.robust_priv_list_offset;
4607 	td->td_rb_inact = rb.robust_inact_offset;
4608 	return (0);
4609 }
4610 
4611 static int
4612 __umtx_op_get_min_timeout(struct thread *td, struct _umtx_op_args *uap,
4613     const struct umtx_copyops *ops)
4614 {
4615 	long val;
4616 	int error, val1;
4617 
4618 	val = sbttons(td->td_proc->p_umtx_min_timeout);
4619 	if (ops->compat32) {
4620 		val1 = (int)val;
4621 		error = copyout(&val1, uap->uaddr1, sizeof(val1));
4622 	} else {
4623 		error = copyout(&val, uap->uaddr1, sizeof(val));
4624 	}
4625 	return (error);
4626 }
4627 
4628 static int
4629 __umtx_op_set_min_timeout(struct thread *td, struct _umtx_op_args *uap,
4630     const struct umtx_copyops *ops)
4631 {
4632 	if (uap->val < 0)
4633 		return (EINVAL);
4634 	td->td_proc->p_umtx_min_timeout = nstosbt(uap->val);
4635 	return (0);
4636 }
4637 
4638 #if defined(__i386__) || defined(__amd64__)
4639 /*
4640  * Provide the standard 32-bit definitions for x86, since native/compat32 use a
4641  * 32-bit time_t there.  Other architectures just need the i386 definitions
4642  * along with their standard compat32.
4643  */
4644 struct timespecx32 {
4645 	int64_t			tv_sec;
4646 	int32_t			tv_nsec;
4647 };
4648 
4649 struct umtx_timex32 {
4650 	struct	timespecx32	_timeout;
4651 	uint32_t		_flags;
4652 	uint32_t		_clockid;
4653 };
4654 
4655 #ifndef __i386__
4656 #define	timespeci386	timespec32
4657 #define	umtx_timei386	umtx_time32
4658 #endif
4659 #else /* !__i386__ && !__amd64__ */
4660 /* 32-bit architectures can emulate i386, so define these almost everywhere. */
4661 struct timespeci386 {
4662 	int32_t			tv_sec;
4663 	int32_t			tv_nsec;
4664 };
4665 
4666 struct umtx_timei386 {
4667 	struct	timespeci386	_timeout;
4668 	uint32_t		_flags;
4669 	uint32_t		_clockid;
4670 };
4671 
4672 #if defined(__LP64__)
4673 #define	timespecx32	timespec32
4674 #define	umtx_timex32	umtx_time32
4675 #endif
4676 #endif
4677 
4678 static int
4679 umtx_copyin_robust_lists32(const void *uaddr, size_t size,
4680     struct umtx_robust_lists_params *rbp)
4681 {
4682 	struct umtx_robust_lists_params_compat32 rb32;
4683 	int error;
4684 
4685 	if (size > sizeof(rb32))
4686 		return (EINVAL);
4687 	bzero(&rb32, sizeof(rb32));
4688 	error = copyin(uaddr, &rb32, size);
4689 	if (error != 0)
4690 		return (error);
4691 	CP(rb32, *rbp, robust_list_offset);
4692 	CP(rb32, *rbp, robust_priv_list_offset);
4693 	CP(rb32, *rbp, robust_inact_offset);
4694 	return (0);
4695 }
4696 
4697 #ifndef __i386__
4698 static inline int
4699 umtx_copyin_timeouti386(const void *uaddr, struct timespec *tsp)
4700 {
4701 	struct timespeci386 ts32;
4702 	int error;
4703 
4704 	error = copyin(uaddr, &ts32, sizeof(ts32));
4705 	if (error == 0) {
4706 		if (!timespecvalid_interval(&ts32))
4707 			error = EINVAL;
4708 		else {
4709 			CP(ts32, *tsp, tv_sec);
4710 			CP(ts32, *tsp, tv_nsec);
4711 		}
4712 	}
4713 	return (error);
4714 }
4715 
4716 static inline int
4717 umtx_copyin_umtx_timei386(const void *uaddr, size_t size, struct _umtx_time *tp)
4718 {
4719 	struct umtx_timei386 t32;
4720 	int error;
4721 
4722 	t32._clockid = CLOCK_REALTIME;
4723 	t32._flags   = 0;
4724 	if (size <= sizeof(t32._timeout))
4725 		error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4726 	else
4727 		error = copyin(uaddr, &t32, sizeof(t32));
4728 	if (error != 0)
4729 		return (error);
4730 	if (!timespecvalid_interval(&t32._timeout))
4731 		return (EINVAL);
4732 	TS_CP(t32, *tp, _timeout);
4733 	CP(t32, *tp, _flags);
4734 	CP(t32, *tp, _clockid);
4735 	return (0);
4736 }
4737 
4738 static int
4739 umtx_copyout_timeouti386(void *uaddr, size_t sz, struct timespec *tsp)
4740 {
4741 	struct timespeci386 remain32 = {
4742 		.tv_sec = tsp->tv_sec,
4743 		.tv_nsec = tsp->tv_nsec,
4744 	};
4745 
4746 	/*
4747 	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4748 	 * and we're only called if sz >= sizeof(timespec) as supplied in the
4749 	 * copyops.
4750 	 */
4751 	KASSERT(sz >= sizeof(remain32),
4752 	    ("umtx_copyops specifies incorrect sizes"));
4753 
4754 	return (copyout(&remain32, uaddr, sizeof(remain32)));
4755 }
4756 #endif /* !__i386__ */
4757 
4758 #if defined(__i386__) || defined(__LP64__)
4759 static inline int
4760 umtx_copyin_timeoutx32(const void *uaddr, struct timespec *tsp)
4761 {
4762 	struct timespecx32 ts32;
4763 	int error;
4764 
4765 	error = copyin(uaddr, &ts32, sizeof(ts32));
4766 	if (error == 0) {
4767 		if (!timespecvalid_interval(&ts32))
4768 			error = EINVAL;
4769 		else {
4770 			CP(ts32, *tsp, tv_sec);
4771 			CP(ts32, *tsp, tv_nsec);
4772 		}
4773 	}
4774 	return (error);
4775 }
4776 
4777 static inline int
4778 umtx_copyin_umtx_timex32(const void *uaddr, size_t size, struct _umtx_time *tp)
4779 {
4780 	struct umtx_timex32 t32;
4781 	int error;
4782 
4783 	t32._clockid = CLOCK_REALTIME;
4784 	t32._flags   = 0;
4785 	if (size <= sizeof(t32._timeout))
4786 		error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4787 	else
4788 		error = copyin(uaddr, &t32, sizeof(t32));
4789 	if (error != 0)
4790 		return (error);
4791 	if (!timespecvalid_interval(&t32._timeout))
4792 		return (EINVAL);
4793 	TS_CP(t32, *tp, _timeout);
4794 	CP(t32, *tp, _flags);
4795 	CP(t32, *tp, _clockid);
4796 	return (0);
4797 }
4798 
4799 static int
4800 umtx_copyout_timeoutx32(void *uaddr, size_t sz, struct timespec *tsp)
4801 {
4802 	struct timespecx32 remain32 = {
4803 		.tv_sec = tsp->tv_sec,
4804 		.tv_nsec = tsp->tv_nsec,
4805 	};
4806 
4807 	/*
4808 	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4809 	 * and we're only called if sz >= sizeof(timespec) as supplied in the
4810 	 * copyops.
4811 	 */
4812 	KASSERT(sz >= sizeof(remain32),
4813 	    ("umtx_copyops specifies incorrect sizes"));
4814 
4815 	return (copyout(&remain32, uaddr, sizeof(remain32)));
4816 }
4817 #endif /* __i386__ || __LP64__ */
4818 
4819 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap,
4820     const struct umtx_copyops *umtx_ops);
4821 
4822 static const _umtx_op_func op_table[] = {
4823 #ifdef COMPAT_FREEBSD10
4824 	[UMTX_OP_LOCK]		= __umtx_op_lock_umtx,
4825 	[UMTX_OP_UNLOCK]	= __umtx_op_unlock_umtx,
4826 #else
4827 	[UMTX_OP_LOCK]		= __umtx_op_unimpl,
4828 	[UMTX_OP_UNLOCK]	= __umtx_op_unimpl,
4829 #endif
4830 	[UMTX_OP_WAIT]		= __umtx_op_wait,
4831 	[UMTX_OP_WAKE]		= __umtx_op_wake,
4832 	[UMTX_OP_MUTEX_TRYLOCK]	= __umtx_op_trylock_umutex,
4833 	[UMTX_OP_MUTEX_LOCK]	= __umtx_op_lock_umutex,
4834 	[UMTX_OP_MUTEX_UNLOCK]	= __umtx_op_unlock_umutex,
4835 	[UMTX_OP_SET_CEILING]	= __umtx_op_set_ceiling,
4836 	[UMTX_OP_CV_WAIT]	= __umtx_op_cv_wait,
4837 	[UMTX_OP_CV_SIGNAL]	= __umtx_op_cv_signal,
4838 	[UMTX_OP_CV_BROADCAST]	= __umtx_op_cv_broadcast,
4839 	[UMTX_OP_WAIT_UINT]	= __umtx_op_wait_uint,
4840 	[UMTX_OP_RW_RDLOCK]	= __umtx_op_rw_rdlock,
4841 	[UMTX_OP_RW_WRLOCK]	= __umtx_op_rw_wrlock,
4842 	[UMTX_OP_RW_UNLOCK]	= __umtx_op_rw_unlock,
4843 	[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
4844 	[UMTX_OP_WAKE_PRIVATE]	= __umtx_op_wake_private,
4845 	[UMTX_OP_MUTEX_WAIT]	= __umtx_op_wait_umutex,
4846 	[UMTX_OP_MUTEX_WAKE]	= __umtx_op_wake_umutex,
4847 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4848 	[UMTX_OP_SEM_WAIT]	= __umtx_op_sem_wait,
4849 	[UMTX_OP_SEM_WAKE]	= __umtx_op_sem_wake,
4850 #else
4851 	[UMTX_OP_SEM_WAIT]	= __umtx_op_unimpl,
4852 	[UMTX_OP_SEM_WAKE]	= __umtx_op_unimpl,
4853 #endif
4854 	[UMTX_OP_NWAKE_PRIVATE]	= __umtx_op_nwake_private,
4855 	[UMTX_OP_MUTEX_WAKE2]	= __umtx_op_wake2_umutex,
4856 	[UMTX_OP_SEM2_WAIT]	= __umtx_op_sem2_wait,
4857 	[UMTX_OP_SEM2_WAKE]	= __umtx_op_sem2_wake,
4858 	[UMTX_OP_SHM]		= __umtx_op_shm,
4859 	[UMTX_OP_ROBUST_LISTS]	= __umtx_op_robust_lists,
4860 	[UMTX_OP_GET_MIN_TIMEOUT] = __umtx_op_get_min_timeout,
4861 	[UMTX_OP_SET_MIN_TIMEOUT] = __umtx_op_set_min_timeout,
4862 };
4863 
4864 static const struct umtx_copyops umtx_native_ops = {
4865 	.copyin_timeout = umtx_copyin_timeout,
4866 	.copyin_umtx_time = umtx_copyin_umtx_time,
4867 	.copyin_robust_lists = umtx_copyin_robust_lists,
4868 	.copyout_timeout = umtx_copyout_timeout,
4869 	.timespec_sz = sizeof(struct timespec),
4870 	.umtx_time_sz = sizeof(struct _umtx_time),
4871 };
4872 
4873 #ifndef __i386__
4874 static const struct umtx_copyops umtx_native_opsi386 = {
4875 	.copyin_timeout = umtx_copyin_timeouti386,
4876 	.copyin_umtx_time = umtx_copyin_umtx_timei386,
4877 	.copyin_robust_lists = umtx_copyin_robust_lists32,
4878 	.copyout_timeout = umtx_copyout_timeouti386,
4879 	.timespec_sz = sizeof(struct timespeci386),
4880 	.umtx_time_sz = sizeof(struct umtx_timei386),
4881 	.compat32 = true,
4882 };
4883 #endif
4884 
4885 #if defined(__i386__) || defined(__LP64__)
4886 /* i386 can emulate other 32-bit archs, too! */
4887 static const struct umtx_copyops umtx_native_opsx32 = {
4888 	.copyin_timeout = umtx_copyin_timeoutx32,
4889 	.copyin_umtx_time = umtx_copyin_umtx_timex32,
4890 	.copyin_robust_lists = umtx_copyin_robust_lists32,
4891 	.copyout_timeout = umtx_copyout_timeoutx32,
4892 	.timespec_sz = sizeof(struct timespecx32),
4893 	.umtx_time_sz = sizeof(struct umtx_timex32),
4894 	.compat32 = true,
4895 };
4896 
4897 #ifdef COMPAT_FREEBSD32
4898 #ifdef __amd64__
4899 #define	umtx_native_ops32	umtx_native_opsi386
4900 #else
4901 #define	umtx_native_ops32	umtx_native_opsx32
4902 #endif
4903 #endif /* COMPAT_FREEBSD32 */
4904 #endif /* __i386__ || __LP64__ */
4905 
4906 #define	UMTX_OP__FLAGS	(UMTX_OP__32BIT | UMTX_OP__I386)
4907 
4908 static int
4909 kern__umtx_op(struct thread *td, void *obj, int op, unsigned long val,
4910     void *uaddr1, void *uaddr2, const struct umtx_copyops *ops)
4911 {
4912 	struct _umtx_op_args uap = {
4913 		.obj = obj,
4914 		.op = op & ~UMTX_OP__FLAGS,
4915 		.val = val,
4916 		.uaddr1 = uaddr1,
4917 		.uaddr2 = uaddr2
4918 	};
4919 
4920 	if ((uap.op >= nitems(op_table)))
4921 		return (EINVAL);
4922 	return ((*op_table[uap.op])(td, &uap, ops));
4923 }
4924 
4925 int
4926 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
4927 {
4928 	static const struct umtx_copyops *umtx_ops;
4929 
4930 	umtx_ops = &umtx_native_ops;
4931 #ifdef __LP64__
4932 	if ((uap->op & (UMTX_OP__32BIT | UMTX_OP__I386)) != 0) {
4933 		if ((uap->op & UMTX_OP__I386) != 0)
4934 			umtx_ops = &umtx_native_opsi386;
4935 		else
4936 			umtx_ops = &umtx_native_opsx32;
4937 	}
4938 #elif !defined(__i386__)
4939 	/* We consider UMTX_OP__32BIT a nop on !i386 ILP32. */
4940 	if ((uap->op & UMTX_OP__I386) != 0)
4941 		umtx_ops = &umtx_native_opsi386;
4942 #else
4943 	/* Likewise, UMTX_OP__I386 is a nop on i386. */
4944 	if ((uap->op & UMTX_OP__32BIT) != 0)
4945 		umtx_ops = &umtx_native_opsx32;
4946 #endif
4947 	return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
4948 	    uap->uaddr2, umtx_ops));
4949 }
4950 
4951 #ifdef COMPAT_FREEBSD32
4952 #ifdef COMPAT_FREEBSD10
4953 int
4954 freebsd10_freebsd32__umtx_lock(struct thread *td,
4955     struct freebsd10_freebsd32__umtx_lock_args *uap)
4956 {
4957 	return (do_lock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid, NULL));
4958 }
4959 
4960 int
4961 freebsd10_freebsd32__umtx_unlock(struct thread *td,
4962     struct freebsd10_freebsd32__umtx_unlock_args *uap)
4963 {
4964 	return (do_unlock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid));
4965 }
4966 #endif /* COMPAT_FREEBSD10 */
4967 
4968 int
4969 freebsd32__umtx_op(struct thread *td, struct freebsd32__umtx_op_args *uap)
4970 {
4971 
4972 	return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
4973 	    uap->uaddr2, &umtx_native_ops32));
4974 }
4975 #endif /* COMPAT_FREEBSD32 */
4976 
4977 void
4978 umtx_thread_init(struct thread *td)
4979 {
4980 
4981 	td->td_umtxq = umtxq_alloc();
4982 	td->td_umtxq->uq_thread = td;
4983 }
4984 
4985 void
4986 umtx_thread_fini(struct thread *td)
4987 {
4988 
4989 	umtxq_free(td->td_umtxq);
4990 }
4991 
4992 /*
4993  * It will be called when new thread is created, e.g fork().
4994  */
4995 void
4996 umtx_thread_alloc(struct thread *td)
4997 {
4998 	struct umtx_q *uq;
4999 
5000 	uq = td->td_umtxq;
5001 	uq->uq_inherited_pri = PRI_MAX;
5002 
5003 	KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
5004 	KASSERT(uq->uq_thread == td, ("uq_thread != td"));
5005 	KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
5006 	KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
5007 }
5008 
5009 /*
5010  * exec() hook.
5011  *
5012  * Clear robust lists for all process' threads, not delaying the
5013  * cleanup to thread exit, since the relevant address space is
5014  * destroyed right now.
5015  */
5016 void
5017 umtx_exec(struct proc *p)
5018 {
5019 	struct thread *td;
5020 
5021 	KASSERT(p == curproc, ("need curproc"));
5022 	KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
5023 	    (p->p_flag & P_STOPPED_SINGLE) != 0,
5024 	    ("curproc must be single-threaded"));
5025 	/*
5026 	 * There is no need to lock the list as only this thread can be
5027 	 * running.
5028 	 */
5029 	FOREACH_THREAD_IN_PROC(p, td) {
5030 		KASSERT(td == curthread ||
5031 		    ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
5032 		    ("running thread %p %p", p, td));
5033 		umtx_thread_cleanup(td);
5034 		td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
5035 	}
5036 
5037 	p->p_umtx_min_timeout = 0;
5038 }
5039 
5040 /*
5041  * thread exit hook.
5042  */
5043 void
5044 umtx_thread_exit(struct thread *td)
5045 {
5046 
5047 	umtx_thread_cleanup(td);
5048 }
5049 
5050 static int
5051 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res, bool compat32)
5052 {
5053 	u_long res1;
5054 	uint32_t res32;
5055 	int error;
5056 
5057 	if (compat32) {
5058 		error = fueword32((void *)ptr, &res32);
5059 		if (error == 0)
5060 			res1 = res32;
5061 	} else {
5062 		error = fueword((void *)ptr, &res1);
5063 	}
5064 	if (error == 0)
5065 		*res = res1;
5066 	else
5067 		error = EFAULT;
5068 	return (error);
5069 }
5070 
5071 static void
5072 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list,
5073     bool compat32)
5074 {
5075 	struct umutex32 m32;
5076 
5077 	if (compat32) {
5078 		memcpy(&m32, m, sizeof(m32));
5079 		*rb_list = m32.m_rb_lnk;
5080 	} else {
5081 		*rb_list = m->m_rb_lnk;
5082 	}
5083 }
5084 
5085 static int
5086 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact,
5087     bool compat32)
5088 {
5089 	struct umutex m;
5090 	int error;
5091 
5092 	KASSERT(td->td_proc == curproc, ("need current vmspace"));
5093 	error = copyin((void *)rbp, &m, sizeof(m));
5094 	if (error != 0)
5095 		return (error);
5096 	if (rb_list != NULL)
5097 		umtx_read_rb_list(td, &m, rb_list, compat32);
5098 	if ((m.m_flags & UMUTEX_ROBUST) == 0)
5099 		return (EINVAL);
5100 	if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
5101 		/* inact is cleared after unlock, allow the inconsistency */
5102 		return (inact ? 0 : EINVAL);
5103 	return (do_unlock_umutex(td, (struct umutex *)rbp, true));
5104 }
5105 
5106 static void
5107 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
5108     const char *name, bool compat32)
5109 {
5110 	int error, i;
5111 	uintptr_t rbp;
5112 	bool inact;
5113 
5114 	if (rb_list == 0)
5115 		return;
5116 	error = umtx_read_uptr(td, rb_list, &rbp, compat32);
5117 	for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
5118 		if (rbp == *rb_inact) {
5119 			inact = true;
5120 			*rb_inact = 0;
5121 		} else
5122 			inact = false;
5123 		error = umtx_handle_rb(td, rbp, &rbp, inact, compat32);
5124 	}
5125 	if (i == umtx_max_rb && umtx_verbose_rb) {
5126 		uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
5127 		    td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
5128 	}
5129 	if (error != 0 && umtx_verbose_rb) {
5130 		uprintf("comm %s pid %d: handling %srb error %d\n",
5131 		    td->td_proc->p_comm, td->td_proc->p_pid, name, error);
5132 	}
5133 }
5134 
5135 /*
5136  * Clean up umtx data.
5137  */
5138 static void
5139 umtx_thread_cleanup(struct thread *td)
5140 {
5141 	struct umtx_q *uq;
5142 	struct umtx_pi *pi;
5143 	uintptr_t rb_inact;
5144 	bool compat32;
5145 
5146 	/*
5147 	 * Disown pi mutexes.
5148 	 */
5149 	uq = td->td_umtxq;
5150 	if (uq != NULL) {
5151 		if (uq->uq_inherited_pri != PRI_MAX ||
5152 		    !TAILQ_EMPTY(&uq->uq_pi_contested)) {
5153 			mtx_lock(&umtx_lock);
5154 			uq->uq_inherited_pri = PRI_MAX;
5155 			while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
5156 				pi->pi_owner = NULL;
5157 				TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
5158 			}
5159 			mtx_unlock(&umtx_lock);
5160 		}
5161 		sched_lend_user_prio_cond(td, PRI_MAX);
5162 	}
5163 
5164 	compat32 = (td->td_pflags2 & TDP2_COMPAT32RB) != 0;
5165 	td->td_pflags2 &= ~TDP2_COMPAT32RB;
5166 
5167 	if (td->td_rb_inact == 0 && td->td_rb_list == 0 && td->td_rbp_list == 0)
5168 		return;
5169 
5170 	/*
5171 	 * Handle terminated robust mutexes.  Must be done after
5172 	 * robust pi disown, otherwise unlock could see unowned
5173 	 * entries.
5174 	 */
5175 	rb_inact = td->td_rb_inact;
5176 	if (rb_inact != 0)
5177 		(void)umtx_read_uptr(td, rb_inact, &rb_inact, compat32);
5178 	umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "", compat32);
5179 	umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ", compat32);
5180 	if (rb_inact != 0)
5181 		(void)umtx_handle_rb(td, rb_inact, NULL, true, compat32);
5182 }
5183