xref: /freebsd/sys/kern/kern_umtx.c (revision d0ba1baed3f6e4936a0c1b89c25f6c59168ef6de)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2015, 2016 The FreeBSD Foundation
5  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
6  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice unmodified, this list of conditions, and the following
17  *    disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_umtx_profiling.h"
38 
39 #include <sys/param.h>
40 #include <sys/kernel.h>
41 #include <sys/fcntl.h>
42 #include <sys/file.h>
43 #include <sys/filedesc.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/resource.h>
52 #include <sys/resourcevar.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysent.h>
59 #include <sys/systm.h>
60 #include <sys/sysproto.h>
61 #include <sys/syscallsubr.h>
62 #include <sys/taskqueue.h>
63 #include <sys/time.h>
64 #include <sys/eventhandler.h>
65 #include <sys/umtx.h>
66 
67 #include <security/mac/mac_framework.h>
68 
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_object.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/cpu.h>
77 
78 #ifdef COMPAT_FREEBSD32
79 #include <compat/freebsd32/freebsd32_proto.h>
80 #endif
81 
82 #define _UMUTEX_TRY		1
83 #define _UMUTEX_WAIT		2
84 
85 #ifdef UMTX_PROFILING
86 #define	UPROF_PERC_BIGGER(w, f, sw, sf)					\
87 	(((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
88 #endif
89 
90 /* Priority inheritance mutex info. */
91 struct umtx_pi {
92 	/* Owner thread */
93 	struct thread		*pi_owner;
94 
95 	/* Reference count */
96 	int			pi_refcount;
97 
98  	/* List entry to link umtx holding by thread */
99 	TAILQ_ENTRY(umtx_pi)	pi_link;
100 
101 	/* List entry in hash */
102 	TAILQ_ENTRY(umtx_pi)	pi_hashlink;
103 
104 	/* List for waiters */
105 	TAILQ_HEAD(,umtx_q)	pi_blocked;
106 
107 	/* Identify a userland lock object */
108 	struct umtx_key		pi_key;
109 };
110 
111 /* A userland synchronous object user. */
112 struct umtx_q {
113 	/* Linked list for the hash. */
114 	TAILQ_ENTRY(umtx_q)	uq_link;
115 
116 	/* Umtx key. */
117 	struct umtx_key		uq_key;
118 
119 	/* Umtx flags. */
120 	int			uq_flags;
121 #define UQF_UMTXQ	0x0001
122 
123 	/* The thread waits on. */
124 	struct thread		*uq_thread;
125 
126 	/*
127 	 * Blocked on PI mutex. read can use chain lock
128 	 * or umtx_lock, write must have both chain lock and
129 	 * umtx_lock being hold.
130 	 */
131 	struct umtx_pi		*uq_pi_blocked;
132 
133 	/* On blocked list */
134 	TAILQ_ENTRY(umtx_q)	uq_lockq;
135 
136 	/* Thread contending with us */
137 	TAILQ_HEAD(,umtx_pi)	uq_pi_contested;
138 
139 	/* Inherited priority from PP mutex */
140 	u_char			uq_inherited_pri;
141 
142 	/* Spare queue ready to be reused */
143 	struct umtxq_queue	*uq_spare_queue;
144 
145 	/* The queue we on */
146 	struct umtxq_queue	*uq_cur_queue;
147 };
148 
149 TAILQ_HEAD(umtxq_head, umtx_q);
150 
151 /* Per-key wait-queue */
152 struct umtxq_queue {
153 	struct umtxq_head	head;
154 	struct umtx_key		key;
155 	LIST_ENTRY(umtxq_queue)	link;
156 	int			length;
157 };
158 
159 LIST_HEAD(umtxq_list, umtxq_queue);
160 
161 /* Userland lock object's wait-queue chain */
162 struct umtxq_chain {
163 	/* Lock for this chain. */
164 	struct mtx		uc_lock;
165 
166 	/* List of sleep queues. */
167 	struct umtxq_list	uc_queue[2];
168 #define UMTX_SHARED_QUEUE	0
169 #define UMTX_EXCLUSIVE_QUEUE	1
170 
171 	LIST_HEAD(, umtxq_queue) uc_spare_queue;
172 
173 	/* Busy flag */
174 	char			uc_busy;
175 
176 	/* Chain lock waiters */
177 	int			uc_waiters;
178 
179 	/* All PI in the list */
180 	TAILQ_HEAD(,umtx_pi)	uc_pi_list;
181 
182 #ifdef UMTX_PROFILING
183 	u_int 			length;
184 	u_int			max_length;
185 #endif
186 };
187 
188 #define	UMTXQ_LOCKED_ASSERT(uc)		mtx_assert(&(uc)->uc_lock, MA_OWNED)
189 
190 /*
191  * Don't propagate time-sharing priority, there is a security reason,
192  * a user can simply introduce PI-mutex, let thread A lock the mutex,
193  * and let another thread B block on the mutex, because B is
194  * sleeping, its priority will be boosted, this causes A's priority to
195  * be boosted via priority propagating too and will never be lowered even
196  * if it is using 100%CPU, this is unfair to other processes.
197  */
198 
199 #define UPRI(td)	(((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
200 			  (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
201 			 PRI_MAX_TIMESHARE : (td)->td_user_pri)
202 
203 #define	GOLDEN_RATIO_PRIME	2654404609U
204 #ifndef	UMTX_CHAINS
205 #define	UMTX_CHAINS		512
206 #endif
207 #define	UMTX_SHIFTS		(__WORD_BIT - 9)
208 
209 #define	GET_SHARE(flags)	\
210     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
211 
212 #define BUSY_SPINS		200
213 
214 struct abs_timeout {
215 	int clockid;
216 	bool is_abs_real;	/* TIMER_ABSTIME && CLOCK_REALTIME* */
217 	struct timespec cur;
218 	struct timespec end;
219 };
220 
221 #ifdef COMPAT_FREEBSD32
222 struct umutex32 {
223 	volatile __lwpid_t	m_owner;	/* Owner of the mutex */
224 	__uint32_t		m_flags;	/* Flags of the mutex */
225 	__uint32_t		m_ceilings[2];	/* Priority protect ceiling */
226 	__uint32_t		m_rb_lnk;	/* Robust linkage */
227 	__uint32_t		m_pad;
228 	__uint32_t		m_spare[2];
229 };
230 
231 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
232 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
233     __offsetof(struct umutex32, m_spare[0]), "m_spare32");
234 #endif
235 
236 int umtx_shm_vnobj_persistent = 0;
237 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
238     &umtx_shm_vnobj_persistent, 0,
239     "False forces destruction of umtx attached to file, on last close");
240 static int umtx_max_rb = 1000;
241 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
242     &umtx_max_rb, 0,
243     "");
244 
245 static uma_zone_t		umtx_pi_zone;
246 static struct umtxq_chain	umtxq_chains[2][UMTX_CHAINS];
247 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
248 static int			umtx_pi_allocated;
249 
250 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW, 0, "umtx debug");
251 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
252     &umtx_pi_allocated, 0, "Allocated umtx_pi");
253 static int umtx_verbose_rb = 1;
254 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
255     &umtx_verbose_rb, 0,
256     "");
257 
258 #ifdef UMTX_PROFILING
259 static long max_length;
260 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
261 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD, 0, "umtx chain stats");
262 #endif
263 
264 static void abs_timeout_update(struct abs_timeout *timo);
265 
266 static void umtx_shm_init(void);
267 static void umtxq_sysinit(void *);
268 static void umtxq_hash(struct umtx_key *key);
269 static struct umtxq_chain *umtxq_getchain(struct umtx_key *key);
270 static void umtxq_lock(struct umtx_key *key);
271 static void umtxq_unlock(struct umtx_key *key);
272 static void umtxq_busy(struct umtx_key *key);
273 static void umtxq_unbusy(struct umtx_key *key);
274 static void umtxq_insert_queue(struct umtx_q *uq, int q);
275 static void umtxq_remove_queue(struct umtx_q *uq, int q);
276 static int umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *);
277 static int umtxq_count(struct umtx_key *key);
278 static struct umtx_pi *umtx_pi_alloc(int);
279 static void umtx_pi_free(struct umtx_pi *pi);
280 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
281     bool rb);
282 static void umtx_thread_cleanup(struct thread *td);
283 static void umtx_exec_hook(void *arg __unused, struct proc *p __unused,
284     struct image_params *imgp __unused);
285 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
286 
287 #define umtxq_signal(key, nwake)	umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
288 #define umtxq_insert(uq)	umtxq_insert_queue((uq), UMTX_SHARED_QUEUE)
289 #define umtxq_remove(uq)	umtxq_remove_queue((uq), UMTX_SHARED_QUEUE)
290 
291 static struct mtx umtx_lock;
292 
293 #ifdef UMTX_PROFILING
294 static void
295 umtx_init_profiling(void)
296 {
297 	struct sysctl_oid *chain_oid;
298 	char chain_name[10];
299 	int i;
300 
301 	for (i = 0; i < UMTX_CHAINS; ++i) {
302 		snprintf(chain_name, sizeof(chain_name), "%d", i);
303 		chain_oid = SYSCTL_ADD_NODE(NULL,
304 		    SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
305 		    chain_name, CTLFLAG_RD, NULL, "umtx hash stats");
306 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
307 		    "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
308 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
309 		    "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
310 	}
311 }
312 
313 static int
314 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
315 {
316 	char buf[512];
317 	struct sbuf sb;
318 	struct umtxq_chain *uc;
319 	u_int fract, i, j, tot, whole;
320 	u_int sf0, sf1, sf2, sf3, sf4;
321 	u_int si0, si1, si2, si3, si4;
322 	u_int sw0, sw1, sw2, sw3, sw4;
323 
324 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
325 	for (i = 0; i < 2; i++) {
326 		tot = 0;
327 		for (j = 0; j < UMTX_CHAINS; ++j) {
328 			uc = &umtxq_chains[i][j];
329 			mtx_lock(&uc->uc_lock);
330 			tot += uc->max_length;
331 			mtx_unlock(&uc->uc_lock);
332 		}
333 		if (tot == 0)
334 			sbuf_printf(&sb, "%u) Empty ", i);
335 		else {
336 			sf0 = sf1 = sf2 = sf3 = sf4 = 0;
337 			si0 = si1 = si2 = si3 = si4 = 0;
338 			sw0 = sw1 = sw2 = sw3 = sw4 = 0;
339 			for (j = 0; j < UMTX_CHAINS; j++) {
340 				uc = &umtxq_chains[i][j];
341 				mtx_lock(&uc->uc_lock);
342 				whole = uc->max_length * 100;
343 				mtx_unlock(&uc->uc_lock);
344 				fract = (whole % tot) * 100;
345 				if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
346 					sf0 = fract;
347 					si0 = j;
348 					sw0 = whole;
349 				} else if (UPROF_PERC_BIGGER(whole, fract, sw1,
350 				    sf1)) {
351 					sf1 = fract;
352 					si1 = j;
353 					sw1 = whole;
354 				} else if (UPROF_PERC_BIGGER(whole, fract, sw2,
355 				    sf2)) {
356 					sf2 = fract;
357 					si2 = j;
358 					sw2 = whole;
359 				} else if (UPROF_PERC_BIGGER(whole, fract, sw3,
360 				    sf3)) {
361 					sf3 = fract;
362 					si3 = j;
363 					sw3 = whole;
364 				} else if (UPROF_PERC_BIGGER(whole, fract, sw4,
365 				    sf4)) {
366 					sf4 = fract;
367 					si4 = j;
368 					sw4 = whole;
369 				}
370 			}
371 			sbuf_printf(&sb, "queue %u:\n", i);
372 			sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
373 			    sf0 / tot, si0);
374 			sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
375 			    sf1 / tot, si1);
376 			sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
377 			    sf2 / tot, si2);
378 			sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
379 			    sf3 / tot, si3);
380 			sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
381 			    sf4 / tot, si4);
382 		}
383 	}
384 	sbuf_trim(&sb);
385 	sbuf_finish(&sb);
386 	sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
387 	sbuf_delete(&sb);
388 	return (0);
389 }
390 
391 static int
392 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
393 {
394 	struct umtxq_chain *uc;
395 	u_int i, j;
396 	int clear, error;
397 
398 	clear = 0;
399 	error = sysctl_handle_int(oidp, &clear, 0, req);
400 	if (error != 0 || req->newptr == NULL)
401 		return (error);
402 
403 	if (clear != 0) {
404 		for (i = 0; i < 2; ++i) {
405 			for (j = 0; j < UMTX_CHAINS; ++j) {
406 				uc = &umtxq_chains[i][j];
407 				mtx_lock(&uc->uc_lock);
408 				uc->length = 0;
409 				uc->max_length = 0;
410 				mtx_unlock(&uc->uc_lock);
411 			}
412 		}
413 	}
414 	return (0);
415 }
416 
417 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
418     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
419     sysctl_debug_umtx_chains_clear, "I", "Clear umtx chains statistics");
420 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
421     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
422     sysctl_debug_umtx_chains_peaks, "A", "Highest peaks in chains max length");
423 #endif
424 
425 static void
426 umtxq_sysinit(void *arg __unused)
427 {
428 	int i, j;
429 
430 	umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
431 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
432 	for (i = 0; i < 2; ++i) {
433 		for (j = 0; j < UMTX_CHAINS; ++j) {
434 			mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
435 				 MTX_DEF | MTX_DUPOK);
436 			LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
437 			LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
438 			LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
439 			TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
440 			umtxq_chains[i][j].uc_busy = 0;
441 			umtxq_chains[i][j].uc_waiters = 0;
442 #ifdef UMTX_PROFILING
443 			umtxq_chains[i][j].length = 0;
444 			umtxq_chains[i][j].max_length = 0;
445 #endif
446 		}
447 	}
448 #ifdef UMTX_PROFILING
449 	umtx_init_profiling();
450 #endif
451 	mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
452 	EVENTHANDLER_REGISTER(process_exec, umtx_exec_hook, NULL,
453 	    EVENTHANDLER_PRI_ANY);
454 	umtx_shm_init();
455 }
456 
457 struct umtx_q *
458 umtxq_alloc(void)
459 {
460 	struct umtx_q *uq;
461 
462 	uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
463 	uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
464 	    M_WAITOK | M_ZERO);
465 	TAILQ_INIT(&uq->uq_spare_queue->head);
466 	TAILQ_INIT(&uq->uq_pi_contested);
467 	uq->uq_inherited_pri = PRI_MAX;
468 	return (uq);
469 }
470 
471 void
472 umtxq_free(struct umtx_q *uq)
473 {
474 
475 	MPASS(uq->uq_spare_queue != NULL);
476 	free(uq->uq_spare_queue, M_UMTX);
477 	free(uq, M_UMTX);
478 }
479 
480 static inline void
481 umtxq_hash(struct umtx_key *key)
482 {
483 	unsigned n;
484 
485 	n = (uintptr_t)key->info.both.a + key->info.both.b;
486 	key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
487 }
488 
489 static inline struct umtxq_chain *
490 umtxq_getchain(struct umtx_key *key)
491 {
492 
493 	if (key->type <= TYPE_SEM)
494 		return (&umtxq_chains[1][key->hash]);
495 	return (&umtxq_chains[0][key->hash]);
496 }
497 
498 /*
499  * Lock a chain.
500  */
501 static inline void
502 umtxq_lock(struct umtx_key *key)
503 {
504 	struct umtxq_chain *uc;
505 
506 	uc = umtxq_getchain(key);
507 	mtx_lock(&uc->uc_lock);
508 }
509 
510 /*
511  * Unlock a chain.
512  */
513 static inline void
514 umtxq_unlock(struct umtx_key *key)
515 {
516 	struct umtxq_chain *uc;
517 
518 	uc = umtxq_getchain(key);
519 	mtx_unlock(&uc->uc_lock);
520 }
521 
522 /*
523  * Set chain to busy state when following operation
524  * may be blocked (kernel mutex can not be used).
525  */
526 static inline void
527 umtxq_busy(struct umtx_key *key)
528 {
529 	struct umtxq_chain *uc;
530 
531 	uc = umtxq_getchain(key);
532 	mtx_assert(&uc->uc_lock, MA_OWNED);
533 	if (uc->uc_busy) {
534 #ifdef SMP
535 		if (smp_cpus > 1) {
536 			int count = BUSY_SPINS;
537 			if (count > 0) {
538 				umtxq_unlock(key);
539 				while (uc->uc_busy && --count > 0)
540 					cpu_spinwait();
541 				umtxq_lock(key);
542 			}
543 		}
544 #endif
545 		while (uc->uc_busy) {
546 			uc->uc_waiters++;
547 			msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
548 			uc->uc_waiters--;
549 		}
550 	}
551 	uc->uc_busy = 1;
552 }
553 
554 /*
555  * Unbusy a chain.
556  */
557 static inline void
558 umtxq_unbusy(struct umtx_key *key)
559 {
560 	struct umtxq_chain *uc;
561 
562 	uc = umtxq_getchain(key);
563 	mtx_assert(&uc->uc_lock, MA_OWNED);
564 	KASSERT(uc->uc_busy != 0, ("not busy"));
565 	uc->uc_busy = 0;
566 	if (uc->uc_waiters)
567 		wakeup_one(uc);
568 }
569 
570 static inline void
571 umtxq_unbusy_unlocked(struct umtx_key *key)
572 {
573 
574 	umtxq_lock(key);
575 	umtxq_unbusy(key);
576 	umtxq_unlock(key);
577 }
578 
579 static struct umtxq_queue *
580 umtxq_queue_lookup(struct umtx_key *key, int q)
581 {
582 	struct umtxq_queue *uh;
583 	struct umtxq_chain *uc;
584 
585 	uc = umtxq_getchain(key);
586 	UMTXQ_LOCKED_ASSERT(uc);
587 	LIST_FOREACH(uh, &uc->uc_queue[q], link) {
588 		if (umtx_key_match(&uh->key, key))
589 			return (uh);
590 	}
591 
592 	return (NULL);
593 }
594 
595 static inline void
596 umtxq_insert_queue(struct umtx_q *uq, int q)
597 {
598 	struct umtxq_queue *uh;
599 	struct umtxq_chain *uc;
600 
601 	uc = umtxq_getchain(&uq->uq_key);
602 	UMTXQ_LOCKED_ASSERT(uc);
603 	KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
604 	uh = umtxq_queue_lookup(&uq->uq_key, q);
605 	if (uh != NULL) {
606 		LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
607 	} else {
608 		uh = uq->uq_spare_queue;
609 		uh->key = uq->uq_key;
610 		LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
611 #ifdef UMTX_PROFILING
612 		uc->length++;
613 		if (uc->length > uc->max_length) {
614 			uc->max_length = uc->length;
615 			if (uc->max_length > max_length)
616 				max_length = uc->max_length;
617 		}
618 #endif
619 	}
620 	uq->uq_spare_queue = NULL;
621 
622 	TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
623 	uh->length++;
624 	uq->uq_flags |= UQF_UMTXQ;
625 	uq->uq_cur_queue = uh;
626 	return;
627 }
628 
629 static inline void
630 umtxq_remove_queue(struct umtx_q *uq, int q)
631 {
632 	struct umtxq_chain *uc;
633 	struct umtxq_queue *uh;
634 
635 	uc = umtxq_getchain(&uq->uq_key);
636 	UMTXQ_LOCKED_ASSERT(uc);
637 	if (uq->uq_flags & UQF_UMTXQ) {
638 		uh = uq->uq_cur_queue;
639 		TAILQ_REMOVE(&uh->head, uq, uq_link);
640 		uh->length--;
641 		uq->uq_flags &= ~UQF_UMTXQ;
642 		if (TAILQ_EMPTY(&uh->head)) {
643 			KASSERT(uh->length == 0,
644 			    ("inconsistent umtxq_queue length"));
645 #ifdef UMTX_PROFILING
646 			uc->length--;
647 #endif
648 			LIST_REMOVE(uh, link);
649 		} else {
650 			uh = LIST_FIRST(&uc->uc_spare_queue);
651 			KASSERT(uh != NULL, ("uc_spare_queue is empty"));
652 			LIST_REMOVE(uh, link);
653 		}
654 		uq->uq_spare_queue = uh;
655 		uq->uq_cur_queue = NULL;
656 	}
657 }
658 
659 /*
660  * Check if there are multiple waiters
661  */
662 static int
663 umtxq_count(struct umtx_key *key)
664 {
665 	struct umtxq_queue *uh;
666 
667 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
668 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
669 	if (uh != NULL)
670 		return (uh->length);
671 	return (0);
672 }
673 
674 /*
675  * Check if there are multiple PI waiters and returns first
676  * waiter.
677  */
678 static int
679 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
680 {
681 	struct umtxq_queue *uh;
682 
683 	*first = NULL;
684 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
685 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
686 	if (uh != NULL) {
687 		*first = TAILQ_FIRST(&uh->head);
688 		return (uh->length);
689 	}
690 	return (0);
691 }
692 
693 static int
694 umtxq_check_susp(struct thread *td)
695 {
696 	struct proc *p;
697 	int error;
698 
699 	/*
700 	 * The check for TDF_NEEDSUSPCHK is racy, but it is enough to
701 	 * eventually break the lockstep loop.
702 	 */
703 	if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
704 		return (0);
705 	error = 0;
706 	p = td->td_proc;
707 	PROC_LOCK(p);
708 	if (P_SHOULDSTOP(p) ||
709 	    ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
710 		if (p->p_flag & P_SINGLE_EXIT)
711 			error = EINTR;
712 		else
713 			error = ERESTART;
714 	}
715 	PROC_UNLOCK(p);
716 	return (error);
717 }
718 
719 /*
720  * Wake up threads waiting on an userland object.
721  */
722 
723 static int
724 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
725 {
726 	struct umtxq_queue *uh;
727 	struct umtx_q *uq;
728 	int ret;
729 
730 	ret = 0;
731 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
732 	uh = umtxq_queue_lookup(key, q);
733 	if (uh != NULL) {
734 		while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
735 			umtxq_remove_queue(uq, q);
736 			wakeup(uq);
737 			if (++ret >= n_wake)
738 				return (ret);
739 		}
740 	}
741 	return (ret);
742 }
743 
744 
745 /*
746  * Wake up specified thread.
747  */
748 static inline void
749 umtxq_signal_thread(struct umtx_q *uq)
750 {
751 
752 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
753 	umtxq_remove(uq);
754 	wakeup(uq);
755 }
756 
757 static inline int
758 tstohz(const struct timespec *tsp)
759 {
760 	struct timeval tv;
761 
762 	TIMESPEC_TO_TIMEVAL(&tv, tsp);
763 	return tvtohz(&tv);
764 }
765 
766 static void
767 abs_timeout_init(struct abs_timeout *timo, int clockid, int absolute,
768 	const struct timespec *timeout)
769 {
770 
771 	timo->clockid = clockid;
772 	if (!absolute) {
773 		timo->is_abs_real = false;
774 		abs_timeout_update(timo);
775 		timo->end = timo->cur;
776 		timespecadd(&timo->end, timeout);
777 	} else {
778 		timo->end = *timeout;
779 		timo->is_abs_real = clockid == CLOCK_REALTIME ||
780 		    clockid == CLOCK_REALTIME_FAST ||
781 		    clockid == CLOCK_REALTIME_PRECISE;
782 		/*
783 		 * If is_abs_real, umtxq_sleep will read the clock
784 		 * after setting td_rtcgen; otherwise, read it here.
785 		 */
786 		if (!timo->is_abs_real) {
787 			abs_timeout_update(timo);
788 		}
789 	}
790 }
791 
792 static void
793 abs_timeout_init2(struct abs_timeout *timo, const struct _umtx_time *umtxtime)
794 {
795 
796 	abs_timeout_init(timo, umtxtime->_clockid,
797 	    (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
798 }
799 
800 static inline void
801 abs_timeout_update(struct abs_timeout *timo)
802 {
803 
804 	kern_clock_gettime(curthread, timo->clockid, &timo->cur);
805 }
806 
807 static int
808 abs_timeout_gethz(struct abs_timeout *timo)
809 {
810 	struct timespec tts;
811 
812 	if (timespeccmp(&timo->end, &timo->cur, <=))
813 		return (-1);
814 	tts = timo->end;
815 	timespecsub(&tts, &timo->cur);
816 	return (tstohz(&tts));
817 }
818 
819 static uint32_t
820 umtx_unlock_val(uint32_t flags, bool rb)
821 {
822 
823 	if (rb)
824 		return (UMUTEX_RB_OWNERDEAD);
825 	else if ((flags & UMUTEX_NONCONSISTENT) != 0)
826 		return (UMUTEX_RB_NOTRECOV);
827 	else
828 		return (UMUTEX_UNOWNED);
829 
830 }
831 
832 /*
833  * Put thread into sleep state, before sleeping, check if
834  * thread was removed from umtx queue.
835  */
836 static inline int
837 umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *abstime)
838 {
839 	struct umtxq_chain *uc;
840 	int error, timo;
841 
842 	if (abstime != NULL && abstime->is_abs_real) {
843 		curthread->td_rtcgen = atomic_load_acq_int(&rtc_generation);
844 		abs_timeout_update(abstime);
845 	}
846 
847 	uc = umtxq_getchain(&uq->uq_key);
848 	UMTXQ_LOCKED_ASSERT(uc);
849 	for (;;) {
850 		if (!(uq->uq_flags & UQF_UMTXQ)) {
851 			error = 0;
852 			break;
853 		}
854 		if (abstime != NULL) {
855 			timo = abs_timeout_gethz(abstime);
856 			if (timo < 0) {
857 				error = ETIMEDOUT;
858 				break;
859 			}
860 		} else
861 			timo = 0;
862 		error = msleep(uq, &uc->uc_lock, PCATCH | PDROP, wmesg, timo);
863 		if (error == EINTR || error == ERESTART) {
864 			umtxq_lock(&uq->uq_key);
865 			break;
866 		}
867 		if (abstime != NULL) {
868 			if (abstime->is_abs_real)
869 				curthread->td_rtcgen =
870 				    atomic_load_acq_int(&rtc_generation);
871 			abs_timeout_update(abstime);
872 		}
873 		umtxq_lock(&uq->uq_key);
874 	}
875 
876 	curthread->td_rtcgen = 0;
877 	return (error);
878 }
879 
880 /*
881  * Convert userspace address into unique logical address.
882  */
883 int
884 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
885 {
886 	struct thread *td = curthread;
887 	vm_map_t map;
888 	vm_map_entry_t entry;
889 	vm_pindex_t pindex;
890 	vm_prot_t prot;
891 	boolean_t wired;
892 
893 	key->type = type;
894 	if (share == THREAD_SHARE) {
895 		key->shared = 0;
896 		key->info.private.vs = td->td_proc->p_vmspace;
897 		key->info.private.addr = (uintptr_t)addr;
898 	} else {
899 		MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
900 		map = &td->td_proc->p_vmspace->vm_map;
901 		if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
902 		    &entry, &key->info.shared.object, &pindex, &prot,
903 		    &wired) != KERN_SUCCESS) {
904 			return (EFAULT);
905 		}
906 
907 		if ((share == PROCESS_SHARE) ||
908 		    (share == AUTO_SHARE &&
909 		     VM_INHERIT_SHARE == entry->inheritance)) {
910 			key->shared = 1;
911 			key->info.shared.offset = (vm_offset_t)addr -
912 			    entry->start + entry->offset;
913 			vm_object_reference(key->info.shared.object);
914 		} else {
915 			key->shared = 0;
916 			key->info.private.vs = td->td_proc->p_vmspace;
917 			key->info.private.addr = (uintptr_t)addr;
918 		}
919 		vm_map_lookup_done(map, entry);
920 	}
921 
922 	umtxq_hash(key);
923 	return (0);
924 }
925 
926 /*
927  * Release key.
928  */
929 void
930 umtx_key_release(struct umtx_key *key)
931 {
932 	if (key->shared)
933 		vm_object_deallocate(key->info.shared.object);
934 }
935 
936 /*
937  * Fetch and compare value, sleep on the address if value is not changed.
938  */
939 static int
940 do_wait(struct thread *td, void *addr, u_long id,
941     struct _umtx_time *timeout, int compat32, int is_private)
942 {
943 	struct abs_timeout timo;
944 	struct umtx_q *uq;
945 	u_long tmp;
946 	uint32_t tmp32;
947 	int error = 0;
948 
949 	uq = td->td_umtxq;
950 	if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
951 		is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
952 		return (error);
953 
954 	if (timeout != NULL)
955 		abs_timeout_init2(&timo, timeout);
956 
957 	umtxq_lock(&uq->uq_key);
958 	umtxq_insert(uq);
959 	umtxq_unlock(&uq->uq_key);
960 	if (compat32 == 0) {
961 		error = fueword(addr, &tmp);
962 		if (error != 0)
963 			error = EFAULT;
964 	} else {
965 		error = fueword32(addr, &tmp32);
966 		if (error == 0)
967 			tmp = tmp32;
968 		else
969 			error = EFAULT;
970 	}
971 	umtxq_lock(&uq->uq_key);
972 	if (error == 0) {
973 		if (tmp == id)
974 			error = umtxq_sleep(uq, "uwait", timeout == NULL ?
975 			    NULL : &timo);
976 		if ((uq->uq_flags & UQF_UMTXQ) == 0)
977 			error = 0;
978 		else
979 			umtxq_remove(uq);
980 	} else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
981 		umtxq_remove(uq);
982 	}
983 	umtxq_unlock(&uq->uq_key);
984 	umtx_key_release(&uq->uq_key);
985 	if (error == ERESTART)
986 		error = EINTR;
987 	return (error);
988 }
989 
990 /*
991  * Wake up threads sleeping on the specified address.
992  */
993 int
994 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
995 {
996 	struct umtx_key key;
997 	int ret;
998 
999 	if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
1000 	    is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
1001 		return (ret);
1002 	umtxq_lock(&key);
1003 	umtxq_signal(&key, n_wake);
1004 	umtxq_unlock(&key);
1005 	umtx_key_release(&key);
1006 	return (0);
1007 }
1008 
1009 /*
1010  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
1011  */
1012 static int
1013 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
1014     struct _umtx_time *timeout, int mode)
1015 {
1016 	struct abs_timeout timo;
1017 	struct umtx_q *uq;
1018 	uint32_t owner, old, id;
1019 	int error, rv;
1020 
1021 	id = td->td_tid;
1022 	uq = td->td_umtxq;
1023 	error = 0;
1024 	if (timeout != NULL)
1025 		abs_timeout_init2(&timo, timeout);
1026 
1027 	/*
1028 	 * Care must be exercised when dealing with umtx structure. It
1029 	 * can fault on any access.
1030 	 */
1031 	for (;;) {
1032 		rv = fueword32(&m->m_owner, &owner);
1033 		if (rv == -1)
1034 			return (EFAULT);
1035 		if (mode == _UMUTEX_WAIT) {
1036 			if (owner == UMUTEX_UNOWNED ||
1037 			    owner == UMUTEX_CONTESTED ||
1038 			    owner == UMUTEX_RB_OWNERDEAD ||
1039 			    owner == UMUTEX_RB_NOTRECOV)
1040 				return (0);
1041 		} else {
1042 			/*
1043 			 * Robust mutex terminated.  Kernel duty is to
1044 			 * return EOWNERDEAD to the userspace.  The
1045 			 * umutex.m_flags UMUTEX_NONCONSISTENT is set
1046 			 * by the common userspace code.
1047 			 */
1048 			if (owner == UMUTEX_RB_OWNERDEAD) {
1049 				rv = casueword32(&m->m_owner,
1050 				    UMUTEX_RB_OWNERDEAD, &owner,
1051 				    id | UMUTEX_CONTESTED);
1052 				if (rv == -1)
1053 					return (EFAULT);
1054 				if (owner == UMUTEX_RB_OWNERDEAD)
1055 					return (EOWNERDEAD); /* success */
1056 				rv = umtxq_check_susp(td);
1057 				if (rv != 0)
1058 					return (rv);
1059 				continue;
1060 			}
1061 			if (owner == UMUTEX_RB_NOTRECOV)
1062 				return (ENOTRECOVERABLE);
1063 
1064 
1065 			/*
1066 			 * Try the uncontested case.  This should be
1067 			 * done in userland.
1068 			 */
1069 			rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
1070 			    &owner, id);
1071 			/* The address was invalid. */
1072 			if (rv == -1)
1073 				return (EFAULT);
1074 
1075 			/* The acquire succeeded. */
1076 			if (owner == UMUTEX_UNOWNED)
1077 				return (0);
1078 
1079 			/*
1080 			 * If no one owns it but it is contested try
1081 			 * to acquire it.
1082 			 */
1083 			if (owner == UMUTEX_CONTESTED) {
1084 				rv = casueword32(&m->m_owner,
1085 				    UMUTEX_CONTESTED, &owner,
1086 				    id | UMUTEX_CONTESTED);
1087 				/* The address was invalid. */
1088 				if (rv == -1)
1089 					return (EFAULT);
1090 
1091 				if (owner == UMUTEX_CONTESTED)
1092 					return (0);
1093 
1094 				rv = umtxq_check_susp(td);
1095 				if (rv != 0)
1096 					return (rv);
1097 
1098 				/*
1099 				 * If this failed the lock has
1100 				 * changed, restart.
1101 				 */
1102 				continue;
1103 			}
1104 		}
1105 
1106 		if (mode == _UMUTEX_TRY)
1107 			return (EBUSY);
1108 
1109 		/*
1110 		 * If we caught a signal, we have retried and now
1111 		 * exit immediately.
1112 		 */
1113 		if (error != 0)
1114 			return (error);
1115 
1116 		if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
1117 		    GET_SHARE(flags), &uq->uq_key)) != 0)
1118 			return (error);
1119 
1120 		umtxq_lock(&uq->uq_key);
1121 		umtxq_busy(&uq->uq_key);
1122 		umtxq_insert(uq);
1123 		umtxq_unlock(&uq->uq_key);
1124 
1125 		/*
1126 		 * Set the contested bit so that a release in user space
1127 		 * knows to use the system call for unlock.  If this fails
1128 		 * either some one else has acquired the lock or it has been
1129 		 * released.
1130 		 */
1131 		rv = casueword32(&m->m_owner, owner, &old,
1132 		    owner | UMUTEX_CONTESTED);
1133 
1134 		/* The address was invalid. */
1135 		if (rv == -1) {
1136 			umtxq_lock(&uq->uq_key);
1137 			umtxq_remove(uq);
1138 			umtxq_unbusy(&uq->uq_key);
1139 			umtxq_unlock(&uq->uq_key);
1140 			umtx_key_release(&uq->uq_key);
1141 			return (EFAULT);
1142 		}
1143 
1144 		/*
1145 		 * We set the contested bit, sleep. Otherwise the lock changed
1146 		 * and we need to retry or we lost a race to the thread
1147 		 * unlocking the umtx.
1148 		 */
1149 		umtxq_lock(&uq->uq_key);
1150 		umtxq_unbusy(&uq->uq_key);
1151 		if (old == owner)
1152 			error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
1153 			    NULL : &timo);
1154 		umtxq_remove(uq);
1155 		umtxq_unlock(&uq->uq_key);
1156 		umtx_key_release(&uq->uq_key);
1157 
1158 		if (error == 0)
1159 			error = umtxq_check_susp(td);
1160 	}
1161 
1162 	return (0);
1163 }
1164 
1165 /*
1166  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
1167  */
1168 static int
1169 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1170 {
1171 	struct umtx_key key;
1172 	uint32_t owner, old, id, newlock;
1173 	int error, count;
1174 
1175 	id = td->td_tid;
1176 	/*
1177 	 * Make sure we own this mtx.
1178 	 */
1179 	error = fueword32(&m->m_owner, &owner);
1180 	if (error == -1)
1181 		return (EFAULT);
1182 
1183 	if ((owner & ~UMUTEX_CONTESTED) != id)
1184 		return (EPERM);
1185 
1186 	newlock = umtx_unlock_val(flags, rb);
1187 	if ((owner & UMUTEX_CONTESTED) == 0) {
1188 		error = casueword32(&m->m_owner, owner, &old, newlock);
1189 		if (error == -1)
1190 			return (EFAULT);
1191 		if (old == owner)
1192 			return (0);
1193 		owner = old;
1194 	}
1195 
1196 	/* We should only ever be in here for contested locks */
1197 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1198 	    &key)) != 0)
1199 		return (error);
1200 
1201 	umtxq_lock(&key);
1202 	umtxq_busy(&key);
1203 	count = umtxq_count(&key);
1204 	umtxq_unlock(&key);
1205 
1206 	/*
1207 	 * When unlocking the umtx, it must be marked as unowned if
1208 	 * there is zero or one thread only waiting for it.
1209 	 * Otherwise, it must be marked as contested.
1210 	 */
1211 	if (count > 1)
1212 		newlock |= UMUTEX_CONTESTED;
1213 	error = casueword32(&m->m_owner, owner, &old, newlock);
1214 	umtxq_lock(&key);
1215 	umtxq_signal(&key, 1);
1216 	umtxq_unbusy(&key);
1217 	umtxq_unlock(&key);
1218 	umtx_key_release(&key);
1219 	if (error == -1)
1220 		return (EFAULT);
1221 	if (old != owner)
1222 		return (EINVAL);
1223 	return (0);
1224 }
1225 
1226 /*
1227  * Check if the mutex is available and wake up a waiter,
1228  * only for simple mutex.
1229  */
1230 static int
1231 do_wake_umutex(struct thread *td, struct umutex *m)
1232 {
1233 	struct umtx_key key;
1234 	uint32_t owner;
1235 	uint32_t flags;
1236 	int error;
1237 	int count;
1238 
1239 	error = fueword32(&m->m_owner, &owner);
1240 	if (error == -1)
1241 		return (EFAULT);
1242 
1243 	if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
1244 	    owner != UMUTEX_RB_NOTRECOV)
1245 		return (0);
1246 
1247 	error = fueword32(&m->m_flags, &flags);
1248 	if (error == -1)
1249 		return (EFAULT);
1250 
1251 	/* We should only ever be in here for contested locks */
1252 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1253 	    &key)) != 0)
1254 		return (error);
1255 
1256 	umtxq_lock(&key);
1257 	umtxq_busy(&key);
1258 	count = umtxq_count(&key);
1259 	umtxq_unlock(&key);
1260 
1261 	if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
1262 	    owner != UMUTEX_RB_NOTRECOV) {
1263 		error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
1264 		    UMUTEX_UNOWNED);
1265 		if (error == -1)
1266 			error = EFAULT;
1267 	}
1268 
1269 	umtxq_lock(&key);
1270 	if (error == 0 && count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1271 	    owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1272 		umtxq_signal(&key, 1);
1273 	umtxq_unbusy(&key);
1274 	umtxq_unlock(&key);
1275 	umtx_key_release(&key);
1276 	return (error);
1277 }
1278 
1279 /*
1280  * Check if the mutex has waiters and tries to fix contention bit.
1281  */
1282 static int
1283 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
1284 {
1285 	struct umtx_key key;
1286 	uint32_t owner, old;
1287 	int type;
1288 	int error;
1289 	int count;
1290 
1291 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
1292 	    UMUTEX_ROBUST)) {
1293 	case 0:
1294 	case UMUTEX_ROBUST:
1295 		type = TYPE_NORMAL_UMUTEX;
1296 		break;
1297 	case UMUTEX_PRIO_INHERIT:
1298 		type = TYPE_PI_UMUTEX;
1299 		break;
1300 	case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
1301 		type = TYPE_PI_ROBUST_UMUTEX;
1302 		break;
1303 	case UMUTEX_PRIO_PROTECT:
1304 		type = TYPE_PP_UMUTEX;
1305 		break;
1306 	case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
1307 		type = TYPE_PP_ROBUST_UMUTEX;
1308 		break;
1309 	default:
1310 		return (EINVAL);
1311 	}
1312 	if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
1313 		return (error);
1314 
1315 	owner = 0;
1316 	umtxq_lock(&key);
1317 	umtxq_busy(&key);
1318 	count = umtxq_count(&key);
1319 	umtxq_unlock(&key);
1320 	/*
1321 	 * Only repair contention bit if there is a waiter, this means the mutex
1322 	 * is still being referenced by userland code, otherwise don't update
1323 	 * any memory.
1324 	 */
1325 	if (count > 1) {
1326 		error = fueword32(&m->m_owner, &owner);
1327 		if (error == -1)
1328 			error = EFAULT;
1329 		while (error == 0 && (owner & UMUTEX_CONTESTED) == 0) {
1330 			error = casueword32(&m->m_owner, owner, &old,
1331 			    owner | UMUTEX_CONTESTED);
1332 			if (error == -1) {
1333 				error = EFAULT;
1334 				break;
1335 			}
1336 			if (old == owner)
1337 				break;
1338 			owner = old;
1339 			error = umtxq_check_susp(td);
1340 			if (error != 0)
1341 				break;
1342 		}
1343 	} else if (count == 1) {
1344 		error = fueword32(&m->m_owner, &owner);
1345 		if (error == -1)
1346 			error = EFAULT;
1347 		while (error == 0 && (owner & ~UMUTEX_CONTESTED) != 0 &&
1348 		    (owner & UMUTEX_CONTESTED) == 0) {
1349 			error = casueword32(&m->m_owner, owner, &old,
1350 			    owner | UMUTEX_CONTESTED);
1351 			if (error == -1) {
1352 				error = EFAULT;
1353 				break;
1354 			}
1355 			if (old == owner)
1356 				break;
1357 			owner = old;
1358 			error = umtxq_check_susp(td);
1359 			if (error != 0)
1360 				break;
1361 		}
1362 	}
1363 	umtxq_lock(&key);
1364 	if (error == EFAULT) {
1365 		umtxq_signal(&key, INT_MAX);
1366 	} else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1367 	    owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1368 		umtxq_signal(&key, 1);
1369 	umtxq_unbusy(&key);
1370 	umtxq_unlock(&key);
1371 	umtx_key_release(&key);
1372 	return (error);
1373 }
1374 
1375 static inline struct umtx_pi *
1376 umtx_pi_alloc(int flags)
1377 {
1378 	struct umtx_pi *pi;
1379 
1380 	pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
1381 	TAILQ_INIT(&pi->pi_blocked);
1382 	atomic_add_int(&umtx_pi_allocated, 1);
1383 	return (pi);
1384 }
1385 
1386 static inline void
1387 umtx_pi_free(struct umtx_pi *pi)
1388 {
1389 	uma_zfree(umtx_pi_zone, pi);
1390 	atomic_add_int(&umtx_pi_allocated, -1);
1391 }
1392 
1393 /*
1394  * Adjust the thread's position on a pi_state after its priority has been
1395  * changed.
1396  */
1397 static int
1398 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
1399 {
1400 	struct umtx_q *uq, *uq1, *uq2;
1401 	struct thread *td1;
1402 
1403 	mtx_assert(&umtx_lock, MA_OWNED);
1404 	if (pi == NULL)
1405 		return (0);
1406 
1407 	uq = td->td_umtxq;
1408 
1409 	/*
1410 	 * Check if the thread needs to be moved on the blocked chain.
1411 	 * It needs to be moved if either its priority is lower than
1412 	 * the previous thread or higher than the next thread.
1413 	 */
1414 	uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
1415 	uq2 = TAILQ_NEXT(uq, uq_lockq);
1416 	if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
1417 	    (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
1418 		/*
1419 		 * Remove thread from blocked chain and determine where
1420 		 * it should be moved to.
1421 		 */
1422 		TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1423 		TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1424 			td1 = uq1->uq_thread;
1425 			MPASS(td1->td_proc->p_magic == P_MAGIC);
1426 			if (UPRI(td1) > UPRI(td))
1427 				break;
1428 		}
1429 
1430 		if (uq1 == NULL)
1431 			TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1432 		else
1433 			TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1434 	}
1435 	return (1);
1436 }
1437 
1438 static struct umtx_pi *
1439 umtx_pi_next(struct umtx_pi *pi)
1440 {
1441 	struct umtx_q *uq_owner;
1442 
1443 	if (pi->pi_owner == NULL)
1444 		return (NULL);
1445 	uq_owner = pi->pi_owner->td_umtxq;
1446 	if (uq_owner == NULL)
1447 		return (NULL);
1448 	return (uq_owner->uq_pi_blocked);
1449 }
1450 
1451 /*
1452  * Floyd's Cycle-Finding Algorithm.
1453  */
1454 static bool
1455 umtx_pi_check_loop(struct umtx_pi *pi)
1456 {
1457 	struct umtx_pi *pi1;	/* fast iterator */
1458 
1459 	mtx_assert(&umtx_lock, MA_OWNED);
1460 	if (pi == NULL)
1461 		return (false);
1462 	pi1 = pi;
1463 	for (;;) {
1464 		pi = umtx_pi_next(pi);
1465 		if (pi == NULL)
1466 			break;
1467 		pi1 = umtx_pi_next(pi1);
1468 		if (pi1 == NULL)
1469 			break;
1470 		pi1 = umtx_pi_next(pi1);
1471 		if (pi1 == NULL)
1472 			break;
1473 		if (pi == pi1)
1474 			return (true);
1475 	}
1476 	return (false);
1477 }
1478 
1479 /*
1480  * Propagate priority when a thread is blocked on POSIX
1481  * PI mutex.
1482  */
1483 static void
1484 umtx_propagate_priority(struct thread *td)
1485 {
1486 	struct umtx_q *uq;
1487 	struct umtx_pi *pi;
1488 	int pri;
1489 
1490 	mtx_assert(&umtx_lock, MA_OWNED);
1491 	pri = UPRI(td);
1492 	uq = td->td_umtxq;
1493 	pi = uq->uq_pi_blocked;
1494 	if (pi == NULL)
1495 		return;
1496 	if (umtx_pi_check_loop(pi))
1497 		return;
1498 
1499 	for (;;) {
1500 		td = pi->pi_owner;
1501 		if (td == NULL || td == curthread)
1502 			return;
1503 
1504 		MPASS(td->td_proc != NULL);
1505 		MPASS(td->td_proc->p_magic == P_MAGIC);
1506 
1507 		thread_lock(td);
1508 		if (td->td_lend_user_pri > pri)
1509 			sched_lend_user_prio(td, pri);
1510 		else {
1511 			thread_unlock(td);
1512 			break;
1513 		}
1514 		thread_unlock(td);
1515 
1516 		/*
1517 		 * Pick up the lock that td is blocked on.
1518 		 */
1519 		uq = td->td_umtxq;
1520 		pi = uq->uq_pi_blocked;
1521 		if (pi == NULL)
1522 			break;
1523 		/* Resort td on the list if needed. */
1524 		umtx_pi_adjust_thread(pi, td);
1525 	}
1526 }
1527 
1528 /*
1529  * Unpropagate priority for a PI mutex when a thread blocked on
1530  * it is interrupted by signal or resumed by others.
1531  */
1532 static void
1533 umtx_repropagate_priority(struct umtx_pi *pi)
1534 {
1535 	struct umtx_q *uq, *uq_owner;
1536 	struct umtx_pi *pi2;
1537 	int pri;
1538 
1539 	mtx_assert(&umtx_lock, MA_OWNED);
1540 
1541 	if (umtx_pi_check_loop(pi))
1542 		return;
1543 	while (pi != NULL && pi->pi_owner != NULL) {
1544 		pri = PRI_MAX;
1545 		uq_owner = pi->pi_owner->td_umtxq;
1546 
1547 		TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
1548 			uq = TAILQ_FIRST(&pi2->pi_blocked);
1549 			if (uq != NULL) {
1550 				if (pri > UPRI(uq->uq_thread))
1551 					pri = UPRI(uq->uq_thread);
1552 			}
1553 		}
1554 
1555 		if (pri > uq_owner->uq_inherited_pri)
1556 			pri = uq_owner->uq_inherited_pri;
1557 		thread_lock(pi->pi_owner);
1558 		sched_lend_user_prio(pi->pi_owner, pri);
1559 		thread_unlock(pi->pi_owner);
1560 		if ((pi = uq_owner->uq_pi_blocked) != NULL)
1561 			umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
1562 	}
1563 }
1564 
1565 /*
1566  * Insert a PI mutex into owned list.
1567  */
1568 static void
1569 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
1570 {
1571 	struct umtx_q *uq_owner;
1572 
1573 	uq_owner = owner->td_umtxq;
1574 	mtx_assert(&umtx_lock, MA_OWNED);
1575 	MPASS(pi->pi_owner == NULL);
1576 	pi->pi_owner = owner;
1577 	TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
1578 }
1579 
1580 
1581 /*
1582  * Disown a PI mutex, and remove it from the owned list.
1583  */
1584 static void
1585 umtx_pi_disown(struct umtx_pi *pi)
1586 {
1587 
1588 	mtx_assert(&umtx_lock, MA_OWNED);
1589 	TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
1590 	pi->pi_owner = NULL;
1591 }
1592 
1593 /*
1594  * Claim ownership of a PI mutex.
1595  */
1596 static int
1597 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
1598 {
1599 	struct umtx_q *uq;
1600 	int pri;
1601 
1602 	mtx_lock(&umtx_lock);
1603 	if (pi->pi_owner == owner) {
1604 		mtx_unlock(&umtx_lock);
1605 		return (0);
1606 	}
1607 
1608 	if (pi->pi_owner != NULL) {
1609 		/*
1610 		 * userland may have already messed the mutex, sigh.
1611 		 */
1612 		mtx_unlock(&umtx_lock);
1613 		return (EPERM);
1614 	}
1615 	umtx_pi_setowner(pi, owner);
1616 	uq = TAILQ_FIRST(&pi->pi_blocked);
1617 	if (uq != NULL) {
1618 		pri = UPRI(uq->uq_thread);
1619 		thread_lock(owner);
1620 		if (pri < UPRI(owner))
1621 			sched_lend_user_prio(owner, pri);
1622 		thread_unlock(owner);
1623 	}
1624 	mtx_unlock(&umtx_lock);
1625 	return (0);
1626 }
1627 
1628 /*
1629  * Adjust a thread's order position in its blocked PI mutex,
1630  * this may result new priority propagating process.
1631  */
1632 void
1633 umtx_pi_adjust(struct thread *td, u_char oldpri)
1634 {
1635 	struct umtx_q *uq;
1636 	struct umtx_pi *pi;
1637 
1638 	uq = td->td_umtxq;
1639 	mtx_lock(&umtx_lock);
1640 	/*
1641 	 * Pick up the lock that td is blocked on.
1642 	 */
1643 	pi = uq->uq_pi_blocked;
1644 	if (pi != NULL) {
1645 		umtx_pi_adjust_thread(pi, td);
1646 		umtx_repropagate_priority(pi);
1647 	}
1648 	mtx_unlock(&umtx_lock);
1649 }
1650 
1651 /*
1652  * Sleep on a PI mutex.
1653  */
1654 static int
1655 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
1656     const char *wmesg, struct abs_timeout *timo, bool shared)
1657 {
1658 	struct thread *td, *td1;
1659 	struct umtx_q *uq1;
1660 	int error, pri;
1661 #ifdef INVARIANTS
1662 	struct umtxq_chain *uc;
1663 
1664 	uc = umtxq_getchain(&pi->pi_key);
1665 #endif
1666 	error = 0;
1667 	td = uq->uq_thread;
1668 	KASSERT(td == curthread, ("inconsistent uq_thread"));
1669 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
1670 	KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
1671 	umtxq_insert(uq);
1672 	mtx_lock(&umtx_lock);
1673 	if (pi->pi_owner == NULL) {
1674 		mtx_unlock(&umtx_lock);
1675 		td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
1676 		mtx_lock(&umtx_lock);
1677 		if (td1 != NULL) {
1678 			if (pi->pi_owner == NULL)
1679 				umtx_pi_setowner(pi, td1);
1680 			PROC_UNLOCK(td1->td_proc);
1681 		}
1682 	}
1683 
1684 	TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1685 		pri = UPRI(uq1->uq_thread);
1686 		if (pri > UPRI(td))
1687 			break;
1688 	}
1689 
1690 	if (uq1 != NULL)
1691 		TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1692 	else
1693 		TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1694 
1695 	uq->uq_pi_blocked = pi;
1696 	thread_lock(td);
1697 	td->td_flags |= TDF_UPIBLOCKED;
1698 	thread_unlock(td);
1699 	umtx_propagate_priority(td);
1700 	mtx_unlock(&umtx_lock);
1701 	umtxq_unbusy(&uq->uq_key);
1702 
1703 	error = umtxq_sleep(uq, wmesg, timo);
1704 	umtxq_remove(uq);
1705 
1706 	mtx_lock(&umtx_lock);
1707 	uq->uq_pi_blocked = NULL;
1708 	thread_lock(td);
1709 	td->td_flags &= ~TDF_UPIBLOCKED;
1710 	thread_unlock(td);
1711 	TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1712 	umtx_repropagate_priority(pi);
1713 	mtx_unlock(&umtx_lock);
1714 	umtxq_unlock(&uq->uq_key);
1715 
1716 	return (error);
1717 }
1718 
1719 /*
1720  * Add reference count for a PI mutex.
1721  */
1722 static void
1723 umtx_pi_ref(struct umtx_pi *pi)
1724 {
1725 
1726 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
1727 	pi->pi_refcount++;
1728 }
1729 
1730 /*
1731  * Decrease reference count for a PI mutex, if the counter
1732  * is decreased to zero, its memory space is freed.
1733  */
1734 static void
1735 umtx_pi_unref(struct umtx_pi *pi)
1736 {
1737 	struct umtxq_chain *uc;
1738 
1739 	uc = umtxq_getchain(&pi->pi_key);
1740 	UMTXQ_LOCKED_ASSERT(uc);
1741 	KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
1742 	if (--pi->pi_refcount == 0) {
1743 		mtx_lock(&umtx_lock);
1744 		if (pi->pi_owner != NULL)
1745 			umtx_pi_disown(pi);
1746 		KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
1747 			("blocked queue not empty"));
1748 		mtx_unlock(&umtx_lock);
1749 		TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
1750 		umtx_pi_free(pi);
1751 	}
1752 }
1753 
1754 /*
1755  * Find a PI mutex in hash table.
1756  */
1757 static struct umtx_pi *
1758 umtx_pi_lookup(struct umtx_key *key)
1759 {
1760 	struct umtxq_chain *uc;
1761 	struct umtx_pi *pi;
1762 
1763 	uc = umtxq_getchain(key);
1764 	UMTXQ_LOCKED_ASSERT(uc);
1765 
1766 	TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
1767 		if (umtx_key_match(&pi->pi_key, key)) {
1768 			return (pi);
1769 		}
1770 	}
1771 	return (NULL);
1772 }
1773 
1774 /*
1775  * Insert a PI mutex into hash table.
1776  */
1777 static inline void
1778 umtx_pi_insert(struct umtx_pi *pi)
1779 {
1780 	struct umtxq_chain *uc;
1781 
1782 	uc = umtxq_getchain(&pi->pi_key);
1783 	UMTXQ_LOCKED_ASSERT(uc);
1784 	TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
1785 }
1786 
1787 /*
1788  * Lock a PI mutex.
1789  */
1790 static int
1791 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
1792     struct _umtx_time *timeout, int try)
1793 {
1794 	struct abs_timeout timo;
1795 	struct umtx_q *uq;
1796 	struct umtx_pi *pi, *new_pi;
1797 	uint32_t id, old_owner, owner, old;
1798 	int error, rv;
1799 
1800 	id = td->td_tid;
1801 	uq = td->td_umtxq;
1802 
1803 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
1804 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
1805 	    &uq->uq_key)) != 0)
1806 		return (error);
1807 
1808 	if (timeout != NULL)
1809 		abs_timeout_init2(&timo, timeout);
1810 
1811 	umtxq_lock(&uq->uq_key);
1812 	pi = umtx_pi_lookup(&uq->uq_key);
1813 	if (pi == NULL) {
1814 		new_pi = umtx_pi_alloc(M_NOWAIT);
1815 		if (new_pi == NULL) {
1816 			umtxq_unlock(&uq->uq_key);
1817 			new_pi = umtx_pi_alloc(M_WAITOK);
1818 			umtxq_lock(&uq->uq_key);
1819 			pi = umtx_pi_lookup(&uq->uq_key);
1820 			if (pi != NULL) {
1821 				umtx_pi_free(new_pi);
1822 				new_pi = NULL;
1823 			}
1824 		}
1825 		if (new_pi != NULL) {
1826 			new_pi->pi_key = uq->uq_key;
1827 			umtx_pi_insert(new_pi);
1828 			pi = new_pi;
1829 		}
1830 	}
1831 	umtx_pi_ref(pi);
1832 	umtxq_unlock(&uq->uq_key);
1833 
1834 	/*
1835 	 * Care must be exercised when dealing with umtx structure.  It
1836 	 * can fault on any access.
1837 	 */
1838 	for (;;) {
1839 		/*
1840 		 * Try the uncontested case.  This should be done in userland.
1841 		 */
1842 		rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
1843 		/* The address was invalid. */
1844 		if (rv == -1) {
1845 			error = EFAULT;
1846 			break;
1847 		}
1848 
1849 		/* The acquire succeeded. */
1850 		if (owner == UMUTEX_UNOWNED) {
1851 			error = 0;
1852 			break;
1853 		}
1854 
1855 		if (owner == UMUTEX_RB_NOTRECOV) {
1856 			error = ENOTRECOVERABLE;
1857 			break;
1858 		}
1859 
1860 		/* If no one owns it but it is contested try to acquire it. */
1861 		if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
1862 			old_owner = owner;
1863 			rv = casueword32(&m->m_owner, owner, &owner,
1864 			    id | UMUTEX_CONTESTED);
1865 			/* The address was invalid. */
1866 			if (rv == -1) {
1867 				error = EFAULT;
1868 				break;
1869 			}
1870 
1871 			if (owner == old_owner) {
1872 				umtxq_lock(&uq->uq_key);
1873 				umtxq_busy(&uq->uq_key);
1874 				error = umtx_pi_claim(pi, td);
1875 				umtxq_unbusy(&uq->uq_key);
1876 				umtxq_unlock(&uq->uq_key);
1877 				if (error != 0) {
1878 					/*
1879 					 * Since we're going to return an
1880 					 * error, restore the m_owner to its
1881 					 * previous, unowned state to avoid
1882 					 * compounding the problem.
1883 					 */
1884 					(void)casuword32(&m->m_owner,
1885 					    id | UMUTEX_CONTESTED,
1886 					    old_owner);
1887 				}
1888 				if (error == 0 &&
1889 				    old_owner == UMUTEX_RB_OWNERDEAD)
1890 					error = EOWNERDEAD;
1891 				break;
1892 			}
1893 
1894 			error = umtxq_check_susp(td);
1895 			if (error != 0)
1896 				break;
1897 
1898 			/* If this failed the lock has changed, restart. */
1899 			continue;
1900 		}
1901 
1902 		if ((owner & ~UMUTEX_CONTESTED) == id) {
1903 			error = EDEADLK;
1904 			break;
1905 		}
1906 
1907 		if (try != 0) {
1908 			error = EBUSY;
1909 			break;
1910 		}
1911 
1912 		/*
1913 		 * If we caught a signal, we have retried and now
1914 		 * exit immediately.
1915 		 */
1916 		if (error != 0)
1917 			break;
1918 
1919 		umtxq_lock(&uq->uq_key);
1920 		umtxq_busy(&uq->uq_key);
1921 		umtxq_unlock(&uq->uq_key);
1922 
1923 		/*
1924 		 * Set the contested bit so that a release in user space
1925 		 * knows to use the system call for unlock.  If this fails
1926 		 * either some one else has acquired the lock or it has been
1927 		 * released.
1928 		 */
1929 		rv = casueword32(&m->m_owner, owner, &old, owner |
1930 		    UMUTEX_CONTESTED);
1931 
1932 		/* The address was invalid. */
1933 		if (rv == -1) {
1934 			umtxq_unbusy_unlocked(&uq->uq_key);
1935 			error = EFAULT;
1936 			break;
1937 		}
1938 
1939 		umtxq_lock(&uq->uq_key);
1940 		/*
1941 		 * We set the contested bit, sleep. Otherwise the lock changed
1942 		 * and we need to retry or we lost a race to the thread
1943 		 * unlocking the umtx.  Note that the UMUTEX_RB_OWNERDEAD
1944 		 * value for owner is impossible there.
1945 		 */
1946 		if (old == owner) {
1947 			error = umtxq_sleep_pi(uq, pi,
1948 			    owner & ~UMUTEX_CONTESTED,
1949 			    "umtxpi", timeout == NULL ? NULL : &timo,
1950 			    (flags & USYNC_PROCESS_SHARED) != 0);
1951 			if (error != 0)
1952 				continue;
1953 		} else {
1954 			umtxq_unbusy(&uq->uq_key);
1955 			umtxq_unlock(&uq->uq_key);
1956 		}
1957 
1958 		error = umtxq_check_susp(td);
1959 		if (error != 0)
1960 			break;
1961 	}
1962 
1963 	umtxq_lock(&uq->uq_key);
1964 	umtx_pi_unref(pi);
1965 	umtxq_unlock(&uq->uq_key);
1966 
1967 	umtx_key_release(&uq->uq_key);
1968 	return (error);
1969 }
1970 
1971 /*
1972  * Unlock a PI mutex.
1973  */
1974 static int
1975 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1976 {
1977 	struct umtx_key key;
1978 	struct umtx_q *uq_first, *uq_first2, *uq_me;
1979 	struct umtx_pi *pi, *pi2;
1980 	uint32_t id, new_owner, old, owner;
1981 	int count, error, pri;
1982 
1983 	id = td->td_tid;
1984 	/*
1985 	 * Make sure we own this mtx.
1986 	 */
1987 	error = fueword32(&m->m_owner, &owner);
1988 	if (error == -1)
1989 		return (EFAULT);
1990 
1991 	if ((owner & ~UMUTEX_CONTESTED) != id)
1992 		return (EPERM);
1993 
1994 	new_owner = umtx_unlock_val(flags, rb);
1995 
1996 	/* This should be done in userland */
1997 	if ((owner & UMUTEX_CONTESTED) == 0) {
1998 		error = casueword32(&m->m_owner, owner, &old, new_owner);
1999 		if (error == -1)
2000 			return (EFAULT);
2001 		if (old == owner)
2002 			return (0);
2003 		owner = old;
2004 	}
2005 
2006 	/* We should only ever be in here for contested locks */
2007 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2008 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2009 	    &key)) != 0)
2010 		return (error);
2011 
2012 	umtxq_lock(&key);
2013 	umtxq_busy(&key);
2014 	count = umtxq_count_pi(&key, &uq_first);
2015 	if (uq_first != NULL) {
2016 		mtx_lock(&umtx_lock);
2017 		pi = uq_first->uq_pi_blocked;
2018 		KASSERT(pi != NULL, ("pi == NULL?"));
2019 		if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
2020 			mtx_unlock(&umtx_lock);
2021 			umtxq_unbusy(&key);
2022 			umtxq_unlock(&key);
2023 			umtx_key_release(&key);
2024 			/* userland messed the mutex */
2025 			return (EPERM);
2026 		}
2027 		uq_me = td->td_umtxq;
2028 		if (pi->pi_owner == td)
2029 			umtx_pi_disown(pi);
2030 		/* get highest priority thread which is still sleeping. */
2031 		uq_first = TAILQ_FIRST(&pi->pi_blocked);
2032 		while (uq_first != NULL &&
2033 		    (uq_first->uq_flags & UQF_UMTXQ) == 0) {
2034 			uq_first = TAILQ_NEXT(uq_first, uq_lockq);
2035 		}
2036 		pri = PRI_MAX;
2037 		TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
2038 			uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
2039 			if (uq_first2 != NULL) {
2040 				if (pri > UPRI(uq_first2->uq_thread))
2041 					pri = UPRI(uq_first2->uq_thread);
2042 			}
2043 		}
2044 		thread_lock(td);
2045 		sched_lend_user_prio(td, pri);
2046 		thread_unlock(td);
2047 		mtx_unlock(&umtx_lock);
2048 		if (uq_first)
2049 			umtxq_signal_thread(uq_first);
2050 	} else {
2051 		pi = umtx_pi_lookup(&key);
2052 		/*
2053 		 * A umtx_pi can exist if a signal or timeout removed the
2054 		 * last waiter from the umtxq, but there is still
2055 		 * a thread in do_lock_pi() holding the umtx_pi.
2056 		 */
2057 		if (pi != NULL) {
2058 			/*
2059 			 * The umtx_pi can be unowned, such as when a thread
2060 			 * has just entered do_lock_pi(), allocated the
2061 			 * umtx_pi, and unlocked the umtxq.
2062 			 * If the current thread owns it, it must disown it.
2063 			 */
2064 			mtx_lock(&umtx_lock);
2065 			if (pi->pi_owner == td)
2066 				umtx_pi_disown(pi);
2067 			mtx_unlock(&umtx_lock);
2068 		}
2069 	}
2070 	umtxq_unlock(&key);
2071 
2072 	/*
2073 	 * When unlocking the umtx, it must be marked as unowned if
2074 	 * there is zero or one thread only waiting for it.
2075 	 * Otherwise, it must be marked as contested.
2076 	 */
2077 
2078 	if (count > 1)
2079 		new_owner |= UMUTEX_CONTESTED;
2080 	error = casueword32(&m->m_owner, owner, &old, new_owner);
2081 
2082 	umtxq_unbusy_unlocked(&key);
2083 	umtx_key_release(&key);
2084 	if (error == -1)
2085 		return (EFAULT);
2086 	if (old != owner)
2087 		return (EINVAL);
2088 	return (0);
2089 }
2090 
2091 /*
2092  * Lock a PP mutex.
2093  */
2094 static int
2095 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
2096     struct _umtx_time *timeout, int try)
2097 {
2098 	struct abs_timeout timo;
2099 	struct umtx_q *uq, *uq2;
2100 	struct umtx_pi *pi;
2101 	uint32_t ceiling;
2102 	uint32_t owner, id;
2103 	int error, pri, old_inherited_pri, su, rv;
2104 
2105 	id = td->td_tid;
2106 	uq = td->td_umtxq;
2107 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2108 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2109 	    &uq->uq_key)) != 0)
2110 		return (error);
2111 
2112 	if (timeout != NULL)
2113 		abs_timeout_init2(&timo, timeout);
2114 
2115 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2116 	for (;;) {
2117 		old_inherited_pri = uq->uq_inherited_pri;
2118 		umtxq_lock(&uq->uq_key);
2119 		umtxq_busy(&uq->uq_key);
2120 		umtxq_unlock(&uq->uq_key);
2121 
2122 		rv = fueword32(&m->m_ceilings[0], &ceiling);
2123 		if (rv == -1) {
2124 			error = EFAULT;
2125 			goto out;
2126 		}
2127 		ceiling = RTP_PRIO_MAX - ceiling;
2128 		if (ceiling > RTP_PRIO_MAX) {
2129 			error = EINVAL;
2130 			goto out;
2131 		}
2132 
2133 		mtx_lock(&umtx_lock);
2134 		if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
2135 			mtx_unlock(&umtx_lock);
2136 			error = EINVAL;
2137 			goto out;
2138 		}
2139 		if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
2140 			uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
2141 			thread_lock(td);
2142 			if (uq->uq_inherited_pri < UPRI(td))
2143 				sched_lend_user_prio(td, uq->uq_inherited_pri);
2144 			thread_unlock(td);
2145 		}
2146 		mtx_unlock(&umtx_lock);
2147 
2148 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2149 		    id | UMUTEX_CONTESTED);
2150 		/* The address was invalid. */
2151 		if (rv == -1) {
2152 			error = EFAULT;
2153 			break;
2154 		}
2155 
2156 		if (owner == UMUTEX_CONTESTED) {
2157 			error = 0;
2158 			break;
2159 		} else if (owner == UMUTEX_RB_OWNERDEAD) {
2160 			rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
2161 			    &owner, id | UMUTEX_CONTESTED);
2162 			if (rv == -1) {
2163 				error = EFAULT;
2164 				break;
2165 			}
2166 			if (owner == UMUTEX_RB_OWNERDEAD) {
2167 				error = EOWNERDEAD; /* success */
2168 				break;
2169 			}
2170 			error = 0;
2171 		} else if (owner == UMUTEX_RB_NOTRECOV) {
2172 			error = ENOTRECOVERABLE;
2173 			break;
2174 		}
2175 
2176 		if (try != 0) {
2177 			error = EBUSY;
2178 			break;
2179 		}
2180 
2181 		/*
2182 		 * If we caught a signal, we have retried and now
2183 		 * exit immediately.
2184 		 */
2185 		if (error != 0)
2186 			break;
2187 
2188 		umtxq_lock(&uq->uq_key);
2189 		umtxq_insert(uq);
2190 		umtxq_unbusy(&uq->uq_key);
2191 		error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
2192 		    NULL : &timo);
2193 		umtxq_remove(uq);
2194 		umtxq_unlock(&uq->uq_key);
2195 
2196 		mtx_lock(&umtx_lock);
2197 		uq->uq_inherited_pri = old_inherited_pri;
2198 		pri = PRI_MAX;
2199 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2200 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2201 			if (uq2 != NULL) {
2202 				if (pri > UPRI(uq2->uq_thread))
2203 					pri = UPRI(uq2->uq_thread);
2204 			}
2205 		}
2206 		if (pri > uq->uq_inherited_pri)
2207 			pri = uq->uq_inherited_pri;
2208 		thread_lock(td);
2209 		sched_lend_user_prio(td, pri);
2210 		thread_unlock(td);
2211 		mtx_unlock(&umtx_lock);
2212 	}
2213 
2214 	if (error != 0 && error != EOWNERDEAD) {
2215 		mtx_lock(&umtx_lock);
2216 		uq->uq_inherited_pri = old_inherited_pri;
2217 		pri = PRI_MAX;
2218 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2219 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2220 			if (uq2 != NULL) {
2221 				if (pri > UPRI(uq2->uq_thread))
2222 					pri = UPRI(uq2->uq_thread);
2223 			}
2224 		}
2225 		if (pri > uq->uq_inherited_pri)
2226 			pri = uq->uq_inherited_pri;
2227 		thread_lock(td);
2228 		sched_lend_user_prio(td, pri);
2229 		thread_unlock(td);
2230 		mtx_unlock(&umtx_lock);
2231 	}
2232 
2233 out:
2234 	umtxq_unbusy_unlocked(&uq->uq_key);
2235 	umtx_key_release(&uq->uq_key);
2236 	return (error);
2237 }
2238 
2239 /*
2240  * Unlock a PP mutex.
2241  */
2242 static int
2243 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2244 {
2245 	struct umtx_key key;
2246 	struct umtx_q *uq, *uq2;
2247 	struct umtx_pi *pi;
2248 	uint32_t id, owner, rceiling;
2249 	int error, pri, new_inherited_pri, su;
2250 
2251 	id = td->td_tid;
2252 	uq = td->td_umtxq;
2253 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2254 
2255 	/*
2256 	 * Make sure we own this mtx.
2257 	 */
2258 	error = fueword32(&m->m_owner, &owner);
2259 	if (error == -1)
2260 		return (EFAULT);
2261 
2262 	if ((owner & ~UMUTEX_CONTESTED) != id)
2263 		return (EPERM);
2264 
2265 	error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
2266 	if (error != 0)
2267 		return (error);
2268 
2269 	if (rceiling == -1)
2270 		new_inherited_pri = PRI_MAX;
2271 	else {
2272 		rceiling = RTP_PRIO_MAX - rceiling;
2273 		if (rceiling > RTP_PRIO_MAX)
2274 			return (EINVAL);
2275 		new_inherited_pri = PRI_MIN_REALTIME + rceiling;
2276 	}
2277 
2278 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2279 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2280 	    &key)) != 0)
2281 		return (error);
2282 	umtxq_lock(&key);
2283 	umtxq_busy(&key);
2284 	umtxq_unlock(&key);
2285 	/*
2286 	 * For priority protected mutex, always set unlocked state
2287 	 * to UMUTEX_CONTESTED, so that userland always enters kernel
2288 	 * to lock the mutex, it is necessary because thread priority
2289 	 * has to be adjusted for such mutex.
2290 	 */
2291 	error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
2292 	    UMUTEX_CONTESTED);
2293 
2294 	umtxq_lock(&key);
2295 	if (error == 0)
2296 		umtxq_signal(&key, 1);
2297 	umtxq_unbusy(&key);
2298 	umtxq_unlock(&key);
2299 
2300 	if (error == -1)
2301 		error = EFAULT;
2302 	else {
2303 		mtx_lock(&umtx_lock);
2304 		if (su != 0)
2305 			uq->uq_inherited_pri = new_inherited_pri;
2306 		pri = PRI_MAX;
2307 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2308 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2309 			if (uq2 != NULL) {
2310 				if (pri > UPRI(uq2->uq_thread))
2311 					pri = UPRI(uq2->uq_thread);
2312 			}
2313 		}
2314 		if (pri > uq->uq_inherited_pri)
2315 			pri = uq->uq_inherited_pri;
2316 		thread_lock(td);
2317 		sched_lend_user_prio(td, pri);
2318 		thread_unlock(td);
2319 		mtx_unlock(&umtx_lock);
2320 	}
2321 	umtx_key_release(&key);
2322 	return (error);
2323 }
2324 
2325 static int
2326 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
2327     uint32_t *old_ceiling)
2328 {
2329 	struct umtx_q *uq;
2330 	uint32_t flags, id, owner, save_ceiling;
2331 	int error, rv, rv1;
2332 
2333 	error = fueword32(&m->m_flags, &flags);
2334 	if (error == -1)
2335 		return (EFAULT);
2336 	if ((flags & UMUTEX_PRIO_PROTECT) == 0)
2337 		return (EINVAL);
2338 	if (ceiling > RTP_PRIO_MAX)
2339 		return (EINVAL);
2340 	id = td->td_tid;
2341 	uq = td->td_umtxq;
2342 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2343 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2344 	    &uq->uq_key)) != 0)
2345 		return (error);
2346 	for (;;) {
2347 		umtxq_lock(&uq->uq_key);
2348 		umtxq_busy(&uq->uq_key);
2349 		umtxq_unlock(&uq->uq_key);
2350 
2351 		rv = fueword32(&m->m_ceilings[0], &save_ceiling);
2352 		if (rv == -1) {
2353 			error = EFAULT;
2354 			break;
2355 		}
2356 
2357 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2358 		    id | UMUTEX_CONTESTED);
2359 		if (rv == -1) {
2360 			error = EFAULT;
2361 			break;
2362 		}
2363 
2364 		if (owner == UMUTEX_CONTESTED) {
2365 			rv = suword32(&m->m_ceilings[0], ceiling);
2366 			rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
2367 			error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
2368 			break;
2369 		}
2370 
2371 		if ((owner & ~UMUTEX_CONTESTED) == id) {
2372 			rv = suword32(&m->m_ceilings[0], ceiling);
2373 			error = rv == 0 ? 0 : EFAULT;
2374 			break;
2375 		}
2376 
2377 		if (owner == UMUTEX_RB_OWNERDEAD) {
2378 			error = EOWNERDEAD;
2379 			break;
2380 		} else if (owner == UMUTEX_RB_NOTRECOV) {
2381 			error = ENOTRECOVERABLE;
2382 			break;
2383 		}
2384 
2385 		/*
2386 		 * If we caught a signal, we have retried and now
2387 		 * exit immediately.
2388 		 */
2389 		if (error != 0)
2390 			break;
2391 
2392 		/*
2393 		 * We set the contested bit, sleep. Otherwise the lock changed
2394 		 * and we need to retry or we lost a race to the thread
2395 		 * unlocking the umtx.
2396 		 */
2397 		umtxq_lock(&uq->uq_key);
2398 		umtxq_insert(uq);
2399 		umtxq_unbusy(&uq->uq_key);
2400 		error = umtxq_sleep(uq, "umtxpp", NULL);
2401 		umtxq_remove(uq);
2402 		umtxq_unlock(&uq->uq_key);
2403 	}
2404 	umtxq_lock(&uq->uq_key);
2405 	if (error == 0)
2406 		umtxq_signal(&uq->uq_key, INT_MAX);
2407 	umtxq_unbusy(&uq->uq_key);
2408 	umtxq_unlock(&uq->uq_key);
2409 	umtx_key_release(&uq->uq_key);
2410 	if (error == 0 && old_ceiling != NULL) {
2411 		rv = suword32(old_ceiling, save_ceiling);
2412 		error = rv == 0 ? 0 : EFAULT;
2413 	}
2414 	return (error);
2415 }
2416 
2417 /*
2418  * Lock a userland POSIX mutex.
2419  */
2420 static int
2421 do_lock_umutex(struct thread *td, struct umutex *m,
2422     struct _umtx_time *timeout, int mode)
2423 {
2424 	uint32_t flags;
2425 	int error;
2426 
2427 	error = fueword32(&m->m_flags, &flags);
2428 	if (error == -1)
2429 		return (EFAULT);
2430 
2431 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2432 	case 0:
2433 		error = do_lock_normal(td, m, flags, timeout, mode);
2434 		break;
2435 	case UMUTEX_PRIO_INHERIT:
2436 		error = do_lock_pi(td, m, flags, timeout, mode);
2437 		break;
2438 	case UMUTEX_PRIO_PROTECT:
2439 		error = do_lock_pp(td, m, flags, timeout, mode);
2440 		break;
2441 	default:
2442 		return (EINVAL);
2443 	}
2444 	if (timeout == NULL) {
2445 		if (error == EINTR && mode != _UMUTEX_WAIT)
2446 			error = ERESTART;
2447 	} else {
2448 		/* Timed-locking is not restarted. */
2449 		if (error == ERESTART)
2450 			error = EINTR;
2451 	}
2452 	return (error);
2453 }
2454 
2455 /*
2456  * Unlock a userland POSIX mutex.
2457  */
2458 static int
2459 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
2460 {
2461 	uint32_t flags;
2462 	int error;
2463 
2464 	error = fueword32(&m->m_flags, &flags);
2465 	if (error == -1)
2466 		return (EFAULT);
2467 
2468 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2469 	case 0:
2470 		return (do_unlock_normal(td, m, flags, rb));
2471 	case UMUTEX_PRIO_INHERIT:
2472 		return (do_unlock_pi(td, m, flags, rb));
2473 	case UMUTEX_PRIO_PROTECT:
2474 		return (do_unlock_pp(td, m, flags, rb));
2475 	}
2476 
2477 	return (EINVAL);
2478 }
2479 
2480 static int
2481 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
2482     struct timespec *timeout, u_long wflags)
2483 {
2484 	struct abs_timeout timo;
2485 	struct umtx_q *uq;
2486 	uint32_t flags, clockid, hasw;
2487 	int error;
2488 
2489 	uq = td->td_umtxq;
2490 	error = fueword32(&cv->c_flags, &flags);
2491 	if (error == -1)
2492 		return (EFAULT);
2493 	error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
2494 	if (error != 0)
2495 		return (error);
2496 
2497 	if ((wflags & CVWAIT_CLOCKID) != 0) {
2498 		error = fueword32(&cv->c_clockid, &clockid);
2499 		if (error == -1) {
2500 			umtx_key_release(&uq->uq_key);
2501 			return (EFAULT);
2502 		}
2503 		if (clockid < CLOCK_REALTIME ||
2504 		    clockid >= CLOCK_THREAD_CPUTIME_ID) {
2505 			/* hmm, only HW clock id will work. */
2506 			umtx_key_release(&uq->uq_key);
2507 			return (EINVAL);
2508 		}
2509 	} else {
2510 		clockid = CLOCK_REALTIME;
2511 	}
2512 
2513 	umtxq_lock(&uq->uq_key);
2514 	umtxq_busy(&uq->uq_key);
2515 	umtxq_insert(uq);
2516 	umtxq_unlock(&uq->uq_key);
2517 
2518 	/*
2519 	 * Set c_has_waiters to 1 before releasing user mutex, also
2520 	 * don't modify cache line when unnecessary.
2521 	 */
2522 	error = fueword32(&cv->c_has_waiters, &hasw);
2523 	if (error == 0 && hasw == 0)
2524 		suword32(&cv->c_has_waiters, 1);
2525 
2526 	umtxq_unbusy_unlocked(&uq->uq_key);
2527 
2528 	error = do_unlock_umutex(td, m, false);
2529 
2530 	if (timeout != NULL)
2531 		abs_timeout_init(&timo, clockid, (wflags & CVWAIT_ABSTIME) != 0,
2532 		    timeout);
2533 
2534 	umtxq_lock(&uq->uq_key);
2535 	if (error == 0) {
2536 		error = umtxq_sleep(uq, "ucond", timeout == NULL ?
2537 		    NULL : &timo);
2538 	}
2539 
2540 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
2541 		error = 0;
2542 	else {
2543 		/*
2544 		 * This must be timeout,interrupted by signal or
2545 		 * surprious wakeup, clear c_has_waiter flag when
2546 		 * necessary.
2547 		 */
2548 		umtxq_busy(&uq->uq_key);
2549 		if ((uq->uq_flags & UQF_UMTXQ) != 0) {
2550 			int oldlen = uq->uq_cur_queue->length;
2551 			umtxq_remove(uq);
2552 			if (oldlen == 1) {
2553 				umtxq_unlock(&uq->uq_key);
2554 				suword32(&cv->c_has_waiters, 0);
2555 				umtxq_lock(&uq->uq_key);
2556 			}
2557 		}
2558 		umtxq_unbusy(&uq->uq_key);
2559 		if (error == ERESTART)
2560 			error = EINTR;
2561 	}
2562 
2563 	umtxq_unlock(&uq->uq_key);
2564 	umtx_key_release(&uq->uq_key);
2565 	return (error);
2566 }
2567 
2568 /*
2569  * Signal a userland condition variable.
2570  */
2571 static int
2572 do_cv_signal(struct thread *td, struct ucond *cv)
2573 {
2574 	struct umtx_key key;
2575 	int error, cnt, nwake;
2576 	uint32_t flags;
2577 
2578 	error = fueword32(&cv->c_flags, &flags);
2579 	if (error == -1)
2580 		return (EFAULT);
2581 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2582 		return (error);
2583 	umtxq_lock(&key);
2584 	umtxq_busy(&key);
2585 	cnt = umtxq_count(&key);
2586 	nwake = umtxq_signal(&key, 1);
2587 	if (cnt <= nwake) {
2588 		umtxq_unlock(&key);
2589 		error = suword32(&cv->c_has_waiters, 0);
2590 		if (error == -1)
2591 			error = EFAULT;
2592 		umtxq_lock(&key);
2593 	}
2594 	umtxq_unbusy(&key);
2595 	umtxq_unlock(&key);
2596 	umtx_key_release(&key);
2597 	return (error);
2598 }
2599 
2600 static int
2601 do_cv_broadcast(struct thread *td, struct ucond *cv)
2602 {
2603 	struct umtx_key key;
2604 	int error;
2605 	uint32_t flags;
2606 
2607 	error = fueword32(&cv->c_flags, &flags);
2608 	if (error == -1)
2609 		return (EFAULT);
2610 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2611 		return (error);
2612 
2613 	umtxq_lock(&key);
2614 	umtxq_busy(&key);
2615 	umtxq_signal(&key, INT_MAX);
2616 	umtxq_unlock(&key);
2617 
2618 	error = suword32(&cv->c_has_waiters, 0);
2619 	if (error == -1)
2620 		error = EFAULT;
2621 
2622 	umtxq_unbusy_unlocked(&key);
2623 
2624 	umtx_key_release(&key);
2625 	return (error);
2626 }
2627 
2628 static int
2629 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag, struct _umtx_time *timeout)
2630 {
2631 	struct abs_timeout timo;
2632 	struct umtx_q *uq;
2633 	uint32_t flags, wrflags;
2634 	int32_t state, oldstate;
2635 	int32_t blocked_readers;
2636 	int error, error1, rv;
2637 
2638 	uq = td->td_umtxq;
2639 	error = fueword32(&rwlock->rw_flags, &flags);
2640 	if (error == -1)
2641 		return (EFAULT);
2642 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2643 	if (error != 0)
2644 		return (error);
2645 
2646 	if (timeout != NULL)
2647 		abs_timeout_init2(&timo, timeout);
2648 
2649 	wrflags = URWLOCK_WRITE_OWNER;
2650 	if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
2651 		wrflags |= URWLOCK_WRITE_WAITERS;
2652 
2653 	for (;;) {
2654 		rv = fueword32(&rwlock->rw_state, &state);
2655 		if (rv == -1) {
2656 			umtx_key_release(&uq->uq_key);
2657 			return (EFAULT);
2658 		}
2659 
2660 		/* try to lock it */
2661 		while (!(state & wrflags)) {
2662 			if (__predict_false(URWLOCK_READER_COUNT(state) == URWLOCK_MAX_READERS)) {
2663 				umtx_key_release(&uq->uq_key);
2664 				return (EAGAIN);
2665 			}
2666 			rv = casueword32(&rwlock->rw_state, state,
2667 			    &oldstate, state + 1);
2668 			if (rv == -1) {
2669 				umtx_key_release(&uq->uq_key);
2670 				return (EFAULT);
2671 			}
2672 			if (oldstate == state) {
2673 				umtx_key_release(&uq->uq_key);
2674 				return (0);
2675 			}
2676 			error = umtxq_check_susp(td);
2677 			if (error != 0)
2678 				break;
2679 			state = oldstate;
2680 		}
2681 
2682 		if (error)
2683 			break;
2684 
2685 		/* grab monitor lock */
2686 		umtxq_lock(&uq->uq_key);
2687 		umtxq_busy(&uq->uq_key);
2688 		umtxq_unlock(&uq->uq_key);
2689 
2690 		/*
2691 		 * re-read the state, in case it changed between the try-lock above
2692 		 * and the check below
2693 		 */
2694 		rv = fueword32(&rwlock->rw_state, &state);
2695 		if (rv == -1)
2696 			error = EFAULT;
2697 
2698 		/* set read contention bit */
2699 		while (error == 0 && (state & wrflags) &&
2700 		    !(state & URWLOCK_READ_WAITERS)) {
2701 			rv = casueword32(&rwlock->rw_state, state,
2702 			    &oldstate, state | URWLOCK_READ_WAITERS);
2703 			if (rv == -1) {
2704 				error = EFAULT;
2705 				break;
2706 			}
2707 			if (oldstate == state)
2708 				goto sleep;
2709 			state = oldstate;
2710 			error = umtxq_check_susp(td);
2711 			if (error != 0)
2712 				break;
2713 		}
2714 		if (error != 0) {
2715 			umtxq_unbusy_unlocked(&uq->uq_key);
2716 			break;
2717 		}
2718 
2719 		/* state is changed while setting flags, restart */
2720 		if (!(state & wrflags)) {
2721 			umtxq_unbusy_unlocked(&uq->uq_key);
2722 			error = umtxq_check_susp(td);
2723 			if (error != 0)
2724 				break;
2725 			continue;
2726 		}
2727 
2728 sleep:
2729 		/* contention bit is set, before sleeping, increase read waiter count */
2730 		rv = fueword32(&rwlock->rw_blocked_readers,
2731 		    &blocked_readers);
2732 		if (rv == -1) {
2733 			umtxq_unbusy_unlocked(&uq->uq_key);
2734 			error = EFAULT;
2735 			break;
2736 		}
2737 		suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
2738 
2739 		while (state & wrflags) {
2740 			umtxq_lock(&uq->uq_key);
2741 			umtxq_insert(uq);
2742 			umtxq_unbusy(&uq->uq_key);
2743 
2744 			error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
2745 			    NULL : &timo);
2746 
2747 			umtxq_busy(&uq->uq_key);
2748 			umtxq_remove(uq);
2749 			umtxq_unlock(&uq->uq_key);
2750 			if (error)
2751 				break;
2752 			rv = fueword32(&rwlock->rw_state, &state);
2753 			if (rv == -1) {
2754 				error = EFAULT;
2755 				break;
2756 			}
2757 		}
2758 
2759 		/* decrease read waiter count, and may clear read contention bit */
2760 		rv = fueword32(&rwlock->rw_blocked_readers,
2761 		    &blocked_readers);
2762 		if (rv == -1) {
2763 			umtxq_unbusy_unlocked(&uq->uq_key);
2764 			error = EFAULT;
2765 			break;
2766 		}
2767 		suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
2768 		if (blocked_readers == 1) {
2769 			rv = fueword32(&rwlock->rw_state, &state);
2770 			if (rv == -1) {
2771 				umtxq_unbusy_unlocked(&uq->uq_key);
2772 				error = EFAULT;
2773 				break;
2774 			}
2775 			for (;;) {
2776 				rv = casueword32(&rwlock->rw_state, state,
2777 				    &oldstate, state & ~URWLOCK_READ_WAITERS);
2778 				if (rv == -1) {
2779 					error = EFAULT;
2780 					break;
2781 				}
2782 				if (oldstate == state)
2783 					break;
2784 				state = oldstate;
2785 				error1 = umtxq_check_susp(td);
2786 				if (error1 != 0) {
2787 					if (error == 0)
2788 						error = error1;
2789 					break;
2790 				}
2791 			}
2792 		}
2793 
2794 		umtxq_unbusy_unlocked(&uq->uq_key);
2795 		if (error != 0)
2796 			break;
2797 	}
2798 	umtx_key_release(&uq->uq_key);
2799 	if (error == ERESTART)
2800 		error = EINTR;
2801 	return (error);
2802 }
2803 
2804 static int
2805 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
2806 {
2807 	struct abs_timeout timo;
2808 	struct umtx_q *uq;
2809 	uint32_t flags;
2810 	int32_t state, oldstate;
2811 	int32_t blocked_writers;
2812 	int32_t blocked_readers;
2813 	int error, error1, rv;
2814 
2815 	uq = td->td_umtxq;
2816 	error = fueword32(&rwlock->rw_flags, &flags);
2817 	if (error == -1)
2818 		return (EFAULT);
2819 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2820 	if (error != 0)
2821 		return (error);
2822 
2823 	if (timeout != NULL)
2824 		abs_timeout_init2(&timo, timeout);
2825 
2826 	blocked_readers = 0;
2827 	for (;;) {
2828 		rv = fueword32(&rwlock->rw_state, &state);
2829 		if (rv == -1) {
2830 			umtx_key_release(&uq->uq_key);
2831 			return (EFAULT);
2832 		}
2833 		while (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
2834 			rv = casueword32(&rwlock->rw_state, state,
2835 			    &oldstate, state | URWLOCK_WRITE_OWNER);
2836 			if (rv == -1) {
2837 				umtx_key_release(&uq->uq_key);
2838 				return (EFAULT);
2839 			}
2840 			if (oldstate == state) {
2841 				umtx_key_release(&uq->uq_key);
2842 				return (0);
2843 			}
2844 			state = oldstate;
2845 			error = umtxq_check_susp(td);
2846 			if (error != 0)
2847 				break;
2848 		}
2849 
2850 		if (error) {
2851 			if (!(state & (URWLOCK_WRITE_OWNER|URWLOCK_WRITE_WAITERS)) &&
2852 			    blocked_readers != 0) {
2853 				umtxq_lock(&uq->uq_key);
2854 				umtxq_busy(&uq->uq_key);
2855 				umtxq_signal_queue(&uq->uq_key, INT_MAX, UMTX_SHARED_QUEUE);
2856 				umtxq_unbusy(&uq->uq_key);
2857 				umtxq_unlock(&uq->uq_key);
2858 			}
2859 
2860 			break;
2861 		}
2862 
2863 		/* grab monitor lock */
2864 		umtxq_lock(&uq->uq_key);
2865 		umtxq_busy(&uq->uq_key);
2866 		umtxq_unlock(&uq->uq_key);
2867 
2868 		/*
2869 		 * re-read the state, in case it changed between the try-lock above
2870 		 * and the check below
2871 		 */
2872 		rv = fueword32(&rwlock->rw_state, &state);
2873 		if (rv == -1)
2874 			error = EFAULT;
2875 
2876 		while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
2877 		    URWLOCK_READER_COUNT(state) != 0) &&
2878 		    (state & URWLOCK_WRITE_WAITERS) == 0) {
2879 			rv = casueword32(&rwlock->rw_state, state,
2880 			    &oldstate, state | URWLOCK_WRITE_WAITERS);
2881 			if (rv == -1) {
2882 				error = EFAULT;
2883 				break;
2884 			}
2885 			if (oldstate == state)
2886 				goto sleep;
2887 			state = oldstate;
2888 			error = umtxq_check_susp(td);
2889 			if (error != 0)
2890 				break;
2891 		}
2892 		if (error != 0) {
2893 			umtxq_unbusy_unlocked(&uq->uq_key);
2894 			break;
2895 		}
2896 
2897 		if (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
2898 			umtxq_unbusy_unlocked(&uq->uq_key);
2899 			error = umtxq_check_susp(td);
2900 			if (error != 0)
2901 				break;
2902 			continue;
2903 		}
2904 sleep:
2905 		rv = fueword32(&rwlock->rw_blocked_writers,
2906 		    &blocked_writers);
2907 		if (rv == -1) {
2908 			umtxq_unbusy_unlocked(&uq->uq_key);
2909 			error = EFAULT;
2910 			break;
2911 		}
2912 		suword32(&rwlock->rw_blocked_writers, blocked_writers+1);
2913 
2914 		while ((state & URWLOCK_WRITE_OWNER) || URWLOCK_READER_COUNT(state) != 0) {
2915 			umtxq_lock(&uq->uq_key);
2916 			umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
2917 			umtxq_unbusy(&uq->uq_key);
2918 
2919 			error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
2920 			    NULL : &timo);
2921 
2922 			umtxq_busy(&uq->uq_key);
2923 			umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
2924 			umtxq_unlock(&uq->uq_key);
2925 			if (error)
2926 				break;
2927 			rv = fueword32(&rwlock->rw_state, &state);
2928 			if (rv == -1) {
2929 				error = EFAULT;
2930 				break;
2931 			}
2932 		}
2933 
2934 		rv = fueword32(&rwlock->rw_blocked_writers,
2935 		    &blocked_writers);
2936 		if (rv == -1) {
2937 			umtxq_unbusy_unlocked(&uq->uq_key);
2938 			error = EFAULT;
2939 			break;
2940 		}
2941 		suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
2942 		if (blocked_writers == 1) {
2943 			rv = fueword32(&rwlock->rw_state, &state);
2944 			if (rv == -1) {
2945 				umtxq_unbusy_unlocked(&uq->uq_key);
2946 				error = EFAULT;
2947 				break;
2948 			}
2949 			for (;;) {
2950 				rv = casueword32(&rwlock->rw_state, state,
2951 				    &oldstate, state & ~URWLOCK_WRITE_WAITERS);
2952 				if (rv == -1) {
2953 					error = EFAULT;
2954 					break;
2955 				}
2956 				if (oldstate == state)
2957 					break;
2958 				state = oldstate;
2959 				error1 = umtxq_check_susp(td);
2960 				/*
2961 				 * We are leaving the URWLOCK_WRITE_WAITERS
2962 				 * behind, but this should not harm the
2963 				 * correctness.
2964 				 */
2965 				if (error1 != 0) {
2966 					if (error == 0)
2967 						error = error1;
2968 					break;
2969 				}
2970 			}
2971 			rv = fueword32(&rwlock->rw_blocked_readers,
2972 			    &blocked_readers);
2973 			if (rv == -1) {
2974 				umtxq_unbusy_unlocked(&uq->uq_key);
2975 				error = EFAULT;
2976 				break;
2977 			}
2978 		} else
2979 			blocked_readers = 0;
2980 
2981 		umtxq_unbusy_unlocked(&uq->uq_key);
2982 	}
2983 
2984 	umtx_key_release(&uq->uq_key);
2985 	if (error == ERESTART)
2986 		error = EINTR;
2987 	return (error);
2988 }
2989 
2990 static int
2991 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
2992 {
2993 	struct umtx_q *uq;
2994 	uint32_t flags;
2995 	int32_t state, oldstate;
2996 	int error, rv, q, count;
2997 
2998 	uq = td->td_umtxq;
2999 	error = fueword32(&rwlock->rw_flags, &flags);
3000 	if (error == -1)
3001 		return (EFAULT);
3002 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3003 	if (error != 0)
3004 		return (error);
3005 
3006 	error = fueword32(&rwlock->rw_state, &state);
3007 	if (error == -1) {
3008 		error = EFAULT;
3009 		goto out;
3010 	}
3011 	if (state & URWLOCK_WRITE_OWNER) {
3012 		for (;;) {
3013 			rv = casueword32(&rwlock->rw_state, state,
3014 			    &oldstate, state & ~URWLOCK_WRITE_OWNER);
3015 			if (rv == -1) {
3016 				error = EFAULT;
3017 				goto out;
3018 			}
3019 			if (oldstate != state) {
3020 				state = oldstate;
3021 				if (!(oldstate & URWLOCK_WRITE_OWNER)) {
3022 					error = EPERM;
3023 					goto out;
3024 				}
3025 				error = umtxq_check_susp(td);
3026 				if (error != 0)
3027 					goto out;
3028 			} else
3029 				break;
3030 		}
3031 	} else if (URWLOCK_READER_COUNT(state) != 0) {
3032 		for (;;) {
3033 			rv = casueword32(&rwlock->rw_state, state,
3034 			    &oldstate, state - 1);
3035 			if (rv == -1) {
3036 				error = EFAULT;
3037 				goto out;
3038 			}
3039 			if (oldstate != state) {
3040 				state = oldstate;
3041 				if (URWLOCK_READER_COUNT(oldstate) == 0) {
3042 					error = EPERM;
3043 					goto out;
3044 				}
3045 				error = umtxq_check_susp(td);
3046 				if (error != 0)
3047 					goto out;
3048 			} else
3049 				break;
3050 		}
3051 	} else {
3052 		error = EPERM;
3053 		goto out;
3054 	}
3055 
3056 	count = 0;
3057 
3058 	if (!(flags & URWLOCK_PREFER_READER)) {
3059 		if (state & URWLOCK_WRITE_WAITERS) {
3060 			count = 1;
3061 			q = UMTX_EXCLUSIVE_QUEUE;
3062 		} else if (state & URWLOCK_READ_WAITERS) {
3063 			count = INT_MAX;
3064 			q = UMTX_SHARED_QUEUE;
3065 		}
3066 	} else {
3067 		if (state & URWLOCK_READ_WAITERS) {
3068 			count = INT_MAX;
3069 			q = UMTX_SHARED_QUEUE;
3070 		} else if (state & URWLOCK_WRITE_WAITERS) {
3071 			count = 1;
3072 			q = UMTX_EXCLUSIVE_QUEUE;
3073 		}
3074 	}
3075 
3076 	if (count) {
3077 		umtxq_lock(&uq->uq_key);
3078 		umtxq_busy(&uq->uq_key);
3079 		umtxq_signal_queue(&uq->uq_key, count, q);
3080 		umtxq_unbusy(&uq->uq_key);
3081 		umtxq_unlock(&uq->uq_key);
3082 	}
3083 out:
3084 	umtx_key_release(&uq->uq_key);
3085 	return (error);
3086 }
3087 
3088 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3089 static int
3090 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
3091 {
3092 	struct abs_timeout timo;
3093 	struct umtx_q *uq;
3094 	uint32_t flags, count, count1;
3095 	int error, rv;
3096 
3097 	uq = td->td_umtxq;
3098 	error = fueword32(&sem->_flags, &flags);
3099 	if (error == -1)
3100 		return (EFAULT);
3101 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3102 	if (error != 0)
3103 		return (error);
3104 
3105 	if (timeout != NULL)
3106 		abs_timeout_init2(&timo, timeout);
3107 
3108 	umtxq_lock(&uq->uq_key);
3109 	umtxq_busy(&uq->uq_key);
3110 	umtxq_insert(uq);
3111 	umtxq_unlock(&uq->uq_key);
3112 	rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
3113 	if (rv == 0)
3114 		rv = fueword32(&sem->_count, &count);
3115 	if (rv == -1 || count != 0) {
3116 		umtxq_lock(&uq->uq_key);
3117 		umtxq_unbusy(&uq->uq_key);
3118 		umtxq_remove(uq);
3119 		umtxq_unlock(&uq->uq_key);
3120 		umtx_key_release(&uq->uq_key);
3121 		return (rv == -1 ? EFAULT : 0);
3122 	}
3123 	umtxq_lock(&uq->uq_key);
3124 	umtxq_unbusy(&uq->uq_key);
3125 
3126 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3127 
3128 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3129 		error = 0;
3130 	else {
3131 		umtxq_remove(uq);
3132 		/* A relative timeout cannot be restarted. */
3133 		if (error == ERESTART && timeout != NULL &&
3134 		    (timeout->_flags & UMTX_ABSTIME) == 0)
3135 			error = EINTR;
3136 	}
3137 	umtxq_unlock(&uq->uq_key);
3138 	umtx_key_release(&uq->uq_key);
3139 	return (error);
3140 }
3141 
3142 /*
3143  * Signal a userland semaphore.
3144  */
3145 static int
3146 do_sem_wake(struct thread *td, struct _usem *sem)
3147 {
3148 	struct umtx_key key;
3149 	int error, cnt;
3150 	uint32_t flags;
3151 
3152 	error = fueword32(&sem->_flags, &flags);
3153 	if (error == -1)
3154 		return (EFAULT);
3155 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3156 		return (error);
3157 	umtxq_lock(&key);
3158 	umtxq_busy(&key);
3159 	cnt = umtxq_count(&key);
3160 	if (cnt > 0) {
3161 		/*
3162 		 * Check if count is greater than 0, this means the memory is
3163 		 * still being referenced by user code, so we can safely
3164 		 * update _has_waiters flag.
3165 		 */
3166 		if (cnt == 1) {
3167 			umtxq_unlock(&key);
3168 			error = suword32(&sem->_has_waiters, 0);
3169 			umtxq_lock(&key);
3170 			if (error == -1)
3171 				error = EFAULT;
3172 		}
3173 		umtxq_signal(&key, 1);
3174 	}
3175 	umtxq_unbusy(&key);
3176 	umtxq_unlock(&key);
3177 	umtx_key_release(&key);
3178 	return (error);
3179 }
3180 #endif
3181 
3182 static int
3183 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
3184 {
3185 	struct abs_timeout timo;
3186 	struct umtx_q *uq;
3187 	uint32_t count, flags;
3188 	int error, rv;
3189 
3190 	uq = td->td_umtxq;
3191 	flags = fuword32(&sem->_flags);
3192 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3193 	if (error != 0)
3194 		return (error);
3195 
3196 	if (timeout != NULL)
3197 		abs_timeout_init2(&timo, timeout);
3198 
3199 	umtxq_lock(&uq->uq_key);
3200 	umtxq_busy(&uq->uq_key);
3201 	umtxq_insert(uq);
3202 	umtxq_unlock(&uq->uq_key);
3203 	rv = fueword32(&sem->_count, &count);
3204 	if (rv == -1) {
3205 		umtxq_lock(&uq->uq_key);
3206 		umtxq_unbusy(&uq->uq_key);
3207 		umtxq_remove(uq);
3208 		umtxq_unlock(&uq->uq_key);
3209 		umtx_key_release(&uq->uq_key);
3210 		return (EFAULT);
3211 	}
3212 	for (;;) {
3213 		if (USEM_COUNT(count) != 0) {
3214 			umtxq_lock(&uq->uq_key);
3215 			umtxq_unbusy(&uq->uq_key);
3216 			umtxq_remove(uq);
3217 			umtxq_unlock(&uq->uq_key);
3218 			umtx_key_release(&uq->uq_key);
3219 			return (0);
3220 		}
3221 		if (count == USEM_HAS_WAITERS)
3222 			break;
3223 		rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
3224 		if (rv == -1) {
3225 			umtxq_lock(&uq->uq_key);
3226 			umtxq_unbusy(&uq->uq_key);
3227 			umtxq_remove(uq);
3228 			umtxq_unlock(&uq->uq_key);
3229 			umtx_key_release(&uq->uq_key);
3230 			return (EFAULT);
3231 		}
3232 		if (count == 0)
3233 			break;
3234 	}
3235 	umtxq_lock(&uq->uq_key);
3236 	umtxq_unbusy(&uq->uq_key);
3237 
3238 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3239 
3240 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3241 		error = 0;
3242 	else {
3243 		umtxq_remove(uq);
3244 		if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
3245 			/* A relative timeout cannot be restarted. */
3246 			if (error == ERESTART)
3247 				error = EINTR;
3248 			if (error == EINTR) {
3249 				abs_timeout_update(&timo);
3250 				timeout->_timeout = timo.end;
3251 				timespecsub(&timeout->_timeout, &timo.cur);
3252 			}
3253 		}
3254 	}
3255 	umtxq_unlock(&uq->uq_key);
3256 	umtx_key_release(&uq->uq_key);
3257 	return (error);
3258 }
3259 
3260 /*
3261  * Signal a userland semaphore.
3262  */
3263 static int
3264 do_sem2_wake(struct thread *td, struct _usem2 *sem)
3265 {
3266 	struct umtx_key key;
3267 	int error, cnt, rv;
3268 	uint32_t count, flags;
3269 
3270 	rv = fueword32(&sem->_flags, &flags);
3271 	if (rv == -1)
3272 		return (EFAULT);
3273 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3274 		return (error);
3275 	umtxq_lock(&key);
3276 	umtxq_busy(&key);
3277 	cnt = umtxq_count(&key);
3278 	if (cnt > 0) {
3279 		/*
3280 		 * If this was the last sleeping thread, clear the waiters
3281 		 * flag in _count.
3282 		 */
3283 		if (cnt == 1) {
3284 			umtxq_unlock(&key);
3285 			rv = fueword32(&sem->_count, &count);
3286 			while (rv != -1 && count & USEM_HAS_WAITERS)
3287 				rv = casueword32(&sem->_count, count, &count,
3288 				    count & ~USEM_HAS_WAITERS);
3289 			if (rv == -1)
3290 				error = EFAULT;
3291 			umtxq_lock(&key);
3292 		}
3293 
3294 		umtxq_signal(&key, 1);
3295 	}
3296 	umtxq_unbusy(&key);
3297 	umtxq_unlock(&key);
3298 	umtx_key_release(&key);
3299 	return (error);
3300 }
3301 
3302 inline int
3303 umtx_copyin_timeout(const void *addr, struct timespec *tsp)
3304 {
3305 	int error;
3306 
3307 	error = copyin(addr, tsp, sizeof(struct timespec));
3308 	if (error == 0) {
3309 		if (tsp->tv_sec < 0 ||
3310 		    tsp->tv_nsec >= 1000000000 ||
3311 		    tsp->tv_nsec < 0)
3312 			error = EINVAL;
3313 	}
3314 	return (error);
3315 }
3316 
3317 static inline int
3318 umtx_copyin_umtx_time(const void *addr, size_t size, struct _umtx_time *tp)
3319 {
3320 	int error;
3321 
3322 	if (size <= sizeof(struct timespec)) {
3323 		tp->_clockid = CLOCK_REALTIME;
3324 		tp->_flags = 0;
3325 		error = copyin(addr, &tp->_timeout, sizeof(struct timespec));
3326 	} else
3327 		error = copyin(addr, tp, sizeof(struct _umtx_time));
3328 	if (error != 0)
3329 		return (error);
3330 	if (tp->_timeout.tv_sec < 0 ||
3331 	    tp->_timeout.tv_nsec >= 1000000000 || tp->_timeout.tv_nsec < 0)
3332 		return (EINVAL);
3333 	return (0);
3334 }
3335 
3336 static int
3337 __umtx_op_unimpl(struct thread *td, struct _umtx_op_args *uap)
3338 {
3339 
3340 	return (EOPNOTSUPP);
3341 }
3342 
3343 static int
3344 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap)
3345 {
3346 	struct _umtx_time timeout, *tm_p;
3347 	int error;
3348 
3349 	if (uap->uaddr2 == NULL)
3350 		tm_p = NULL;
3351 	else {
3352 		error = umtx_copyin_umtx_time(
3353 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3354 		if (error != 0)
3355 			return (error);
3356 		tm_p = &timeout;
3357 	}
3358 	return (do_wait(td, uap->obj, uap->val, tm_p, 0, 0));
3359 }
3360 
3361 static int
3362 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap)
3363 {
3364 	struct _umtx_time timeout, *tm_p;
3365 	int error;
3366 
3367 	if (uap->uaddr2 == NULL)
3368 		tm_p = NULL;
3369 	else {
3370 		error = umtx_copyin_umtx_time(
3371 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3372 		if (error != 0)
3373 			return (error);
3374 		tm_p = &timeout;
3375 	}
3376 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
3377 }
3378 
3379 static int
3380 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap)
3381 {
3382 	struct _umtx_time *tm_p, timeout;
3383 	int error;
3384 
3385 	if (uap->uaddr2 == NULL)
3386 		tm_p = NULL;
3387 	else {
3388 		error = umtx_copyin_umtx_time(
3389 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3390 		if (error != 0)
3391 			return (error);
3392 		tm_p = &timeout;
3393 	}
3394 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
3395 }
3396 
3397 static int
3398 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap)
3399 {
3400 
3401 	return (kern_umtx_wake(td, uap->obj, uap->val, 0));
3402 }
3403 
3404 #define BATCH_SIZE	128
3405 static int
3406 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap)
3407 {
3408 	char *uaddrs[BATCH_SIZE], **upp;
3409 	int count, error, i, pos, tocopy;
3410 
3411 	upp = (char **)uap->obj;
3412 	error = 0;
3413 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3414 	    pos += tocopy) {
3415 		tocopy = MIN(count, BATCH_SIZE);
3416 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
3417 		if (error != 0)
3418 			break;
3419 		for (i = 0; i < tocopy; ++i)
3420 			kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
3421 		maybe_yield();
3422 	}
3423 	return (error);
3424 }
3425 
3426 static int
3427 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap)
3428 {
3429 
3430 	return (kern_umtx_wake(td, uap->obj, uap->val, 1));
3431 }
3432 
3433 static int
3434 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap)
3435 {
3436 	struct _umtx_time *tm_p, timeout;
3437 	int error;
3438 
3439 	/* Allow a null timespec (wait forever). */
3440 	if (uap->uaddr2 == NULL)
3441 		tm_p = NULL;
3442 	else {
3443 		error = umtx_copyin_umtx_time(
3444 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3445 		if (error != 0)
3446 			return (error);
3447 		tm_p = &timeout;
3448 	}
3449 	return (do_lock_umutex(td, uap->obj, tm_p, 0));
3450 }
3451 
3452 static int
3453 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap)
3454 {
3455 
3456 	return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
3457 }
3458 
3459 static int
3460 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap)
3461 {
3462 	struct _umtx_time *tm_p, timeout;
3463 	int error;
3464 
3465 	/* Allow a null timespec (wait forever). */
3466 	if (uap->uaddr2 == NULL)
3467 		tm_p = NULL;
3468 	else {
3469 		error = umtx_copyin_umtx_time(
3470 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3471 		if (error != 0)
3472 			return (error);
3473 		tm_p = &timeout;
3474 	}
3475 	return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
3476 }
3477 
3478 static int
3479 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap)
3480 {
3481 
3482 	return (do_wake_umutex(td, uap->obj));
3483 }
3484 
3485 static int
3486 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap)
3487 {
3488 
3489 	return (do_unlock_umutex(td, uap->obj, false));
3490 }
3491 
3492 static int
3493 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap)
3494 {
3495 
3496 	return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
3497 }
3498 
3499 static int
3500 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap)
3501 {
3502 	struct timespec *ts, timeout;
3503 	int error;
3504 
3505 	/* Allow a null timespec (wait forever). */
3506 	if (uap->uaddr2 == NULL)
3507 		ts = NULL;
3508 	else {
3509 		error = umtx_copyin_timeout(uap->uaddr2, &timeout);
3510 		if (error != 0)
3511 			return (error);
3512 		ts = &timeout;
3513 	}
3514 	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
3515 }
3516 
3517 static int
3518 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap)
3519 {
3520 
3521 	return (do_cv_signal(td, uap->obj));
3522 }
3523 
3524 static int
3525 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap)
3526 {
3527 
3528 	return (do_cv_broadcast(td, uap->obj));
3529 }
3530 
3531 static int
3532 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap)
3533 {
3534 	struct _umtx_time timeout;
3535 	int error;
3536 
3537 	/* Allow a null timespec (wait forever). */
3538 	if (uap->uaddr2 == NULL) {
3539 		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
3540 	} else {
3541 		error = umtx_copyin_umtx_time(uap->uaddr2,
3542 		   (size_t)uap->uaddr1, &timeout);
3543 		if (error != 0)
3544 			return (error);
3545 		error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
3546 	}
3547 	return (error);
3548 }
3549 
3550 static int
3551 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap)
3552 {
3553 	struct _umtx_time timeout;
3554 	int error;
3555 
3556 	/* Allow a null timespec (wait forever). */
3557 	if (uap->uaddr2 == NULL) {
3558 		error = do_rw_wrlock(td, uap->obj, 0);
3559 	} else {
3560 		error = umtx_copyin_umtx_time(uap->uaddr2,
3561 		   (size_t)uap->uaddr1, &timeout);
3562 		if (error != 0)
3563 			return (error);
3564 
3565 		error = do_rw_wrlock(td, uap->obj, &timeout);
3566 	}
3567 	return (error);
3568 }
3569 
3570 static int
3571 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap)
3572 {
3573 
3574 	return (do_rw_unlock(td, uap->obj));
3575 }
3576 
3577 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3578 static int
3579 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap)
3580 {
3581 	struct _umtx_time *tm_p, timeout;
3582 	int error;
3583 
3584 	/* Allow a null timespec (wait forever). */
3585 	if (uap->uaddr2 == NULL)
3586 		tm_p = NULL;
3587 	else {
3588 		error = umtx_copyin_umtx_time(
3589 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3590 		if (error != 0)
3591 			return (error);
3592 		tm_p = &timeout;
3593 	}
3594 	return (do_sem_wait(td, uap->obj, tm_p));
3595 }
3596 
3597 static int
3598 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap)
3599 {
3600 
3601 	return (do_sem_wake(td, uap->obj));
3602 }
3603 #endif
3604 
3605 static int
3606 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap)
3607 {
3608 
3609 	return (do_wake2_umutex(td, uap->obj, uap->val));
3610 }
3611 
3612 static int
3613 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap)
3614 {
3615 	struct _umtx_time *tm_p, timeout;
3616 	size_t uasize;
3617 	int error;
3618 
3619 	/* Allow a null timespec (wait forever). */
3620 	if (uap->uaddr2 == NULL) {
3621 		uasize = 0;
3622 		tm_p = NULL;
3623 	} else {
3624 		uasize = (size_t)uap->uaddr1;
3625 		error = umtx_copyin_umtx_time(uap->uaddr2, uasize, &timeout);
3626 		if (error != 0)
3627 			return (error);
3628 		tm_p = &timeout;
3629 	}
3630 	error = do_sem2_wait(td, uap->obj, tm_p);
3631 	if (error == EINTR && uap->uaddr2 != NULL &&
3632 	    (timeout._flags & UMTX_ABSTIME) == 0 &&
3633 	    uasize >= sizeof(struct _umtx_time) + sizeof(struct timespec)) {
3634 		error = copyout(&timeout._timeout,
3635 		    (struct _umtx_time *)uap->uaddr2 + 1,
3636 		    sizeof(struct timespec));
3637 		if (error == 0) {
3638 			error = EINTR;
3639 		}
3640 	}
3641 
3642 	return (error);
3643 }
3644 
3645 static int
3646 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap)
3647 {
3648 
3649 	return (do_sem2_wake(td, uap->obj));
3650 }
3651 
3652 #define	USHM_OBJ_UMTX(o)						\
3653     ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
3654 
3655 #define	USHMF_REG_LINKED	0x0001
3656 #define	USHMF_OBJ_LINKED	0x0002
3657 struct umtx_shm_reg {
3658 	TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
3659 	LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
3660 	struct umtx_key		ushm_key;
3661 	struct ucred		*ushm_cred;
3662 	struct shmfd		*ushm_obj;
3663 	u_int			ushm_refcnt;
3664 	u_int			ushm_flags;
3665 };
3666 
3667 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
3668 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
3669 
3670 static uma_zone_t umtx_shm_reg_zone;
3671 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
3672 static struct mtx umtx_shm_lock;
3673 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
3674     TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
3675 
3676 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
3677 
3678 static void
3679 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
3680 {
3681 	struct umtx_shm_reg_head d;
3682 	struct umtx_shm_reg *reg, *reg1;
3683 
3684 	TAILQ_INIT(&d);
3685 	mtx_lock(&umtx_shm_lock);
3686 	TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
3687 	mtx_unlock(&umtx_shm_lock);
3688 	TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
3689 		TAILQ_REMOVE(&d, reg, ushm_reg_link);
3690 		umtx_shm_free_reg(reg);
3691 	}
3692 }
3693 
3694 static struct task umtx_shm_reg_delfree_task =
3695     TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
3696 
3697 static struct umtx_shm_reg *
3698 umtx_shm_find_reg_locked(const struct umtx_key *key)
3699 {
3700 	struct umtx_shm_reg *reg;
3701 	struct umtx_shm_reg_head *reg_head;
3702 
3703 	KASSERT(key->shared, ("umtx_p_find_rg: private key"));
3704 	mtx_assert(&umtx_shm_lock, MA_OWNED);
3705 	reg_head = &umtx_shm_registry[key->hash];
3706 	TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
3707 		KASSERT(reg->ushm_key.shared,
3708 		    ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
3709 		if (reg->ushm_key.info.shared.object ==
3710 		    key->info.shared.object &&
3711 		    reg->ushm_key.info.shared.offset ==
3712 		    key->info.shared.offset) {
3713 			KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
3714 			KASSERT(reg->ushm_refcnt > 0,
3715 			    ("reg %p refcnt 0 onlist", reg));
3716 			KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
3717 			    ("reg %p not linked", reg));
3718 			reg->ushm_refcnt++;
3719 			return (reg);
3720 		}
3721 	}
3722 	return (NULL);
3723 }
3724 
3725 static struct umtx_shm_reg *
3726 umtx_shm_find_reg(const struct umtx_key *key)
3727 {
3728 	struct umtx_shm_reg *reg;
3729 
3730 	mtx_lock(&umtx_shm_lock);
3731 	reg = umtx_shm_find_reg_locked(key);
3732 	mtx_unlock(&umtx_shm_lock);
3733 	return (reg);
3734 }
3735 
3736 static void
3737 umtx_shm_free_reg(struct umtx_shm_reg *reg)
3738 {
3739 
3740 	chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
3741 	crfree(reg->ushm_cred);
3742 	shm_drop(reg->ushm_obj);
3743 	uma_zfree(umtx_shm_reg_zone, reg);
3744 }
3745 
3746 static bool
3747 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
3748 {
3749 	bool res;
3750 
3751 	mtx_assert(&umtx_shm_lock, MA_OWNED);
3752 	KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
3753 	reg->ushm_refcnt--;
3754 	res = reg->ushm_refcnt == 0;
3755 	if (res || force) {
3756 		if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
3757 			TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
3758 			    reg, ushm_reg_link);
3759 			reg->ushm_flags &= ~USHMF_REG_LINKED;
3760 		}
3761 		if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
3762 			LIST_REMOVE(reg, ushm_obj_link);
3763 			reg->ushm_flags &= ~USHMF_OBJ_LINKED;
3764 		}
3765 	}
3766 	return (res);
3767 }
3768 
3769 static void
3770 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
3771 {
3772 	vm_object_t object;
3773 	bool dofree;
3774 
3775 	if (force) {
3776 		object = reg->ushm_obj->shm_object;
3777 		VM_OBJECT_WLOCK(object);
3778 		object->flags |= OBJ_UMTXDEAD;
3779 		VM_OBJECT_WUNLOCK(object);
3780 	}
3781 	mtx_lock(&umtx_shm_lock);
3782 	dofree = umtx_shm_unref_reg_locked(reg, force);
3783 	mtx_unlock(&umtx_shm_lock);
3784 	if (dofree)
3785 		umtx_shm_free_reg(reg);
3786 }
3787 
3788 void
3789 umtx_shm_object_init(vm_object_t object)
3790 {
3791 
3792 	LIST_INIT(USHM_OBJ_UMTX(object));
3793 }
3794 
3795 void
3796 umtx_shm_object_terminated(vm_object_t object)
3797 {
3798 	struct umtx_shm_reg *reg, *reg1;
3799 	bool dofree;
3800 
3801 	dofree = false;
3802 	mtx_lock(&umtx_shm_lock);
3803 	LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
3804 		if (umtx_shm_unref_reg_locked(reg, true)) {
3805 			TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
3806 			    ushm_reg_link);
3807 			dofree = true;
3808 		}
3809 	}
3810 	mtx_unlock(&umtx_shm_lock);
3811 	if (dofree)
3812 		taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
3813 }
3814 
3815 static int
3816 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
3817     struct umtx_shm_reg **res)
3818 {
3819 	struct umtx_shm_reg *reg, *reg1;
3820 	struct ucred *cred;
3821 	int error;
3822 
3823 	reg = umtx_shm_find_reg(key);
3824 	if (reg != NULL) {
3825 		*res = reg;
3826 		return (0);
3827 	}
3828 	cred = td->td_ucred;
3829 	if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
3830 		return (ENOMEM);
3831 	reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
3832 	reg->ushm_refcnt = 1;
3833 	bcopy(key, &reg->ushm_key, sizeof(*key));
3834 	reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR);
3835 	reg->ushm_cred = crhold(cred);
3836 	error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
3837 	if (error != 0) {
3838 		umtx_shm_free_reg(reg);
3839 		return (error);
3840 	}
3841 	mtx_lock(&umtx_shm_lock);
3842 	reg1 = umtx_shm_find_reg_locked(key);
3843 	if (reg1 != NULL) {
3844 		mtx_unlock(&umtx_shm_lock);
3845 		umtx_shm_free_reg(reg);
3846 		*res = reg1;
3847 		return (0);
3848 	}
3849 	reg->ushm_refcnt++;
3850 	TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
3851 	LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
3852 	    ushm_obj_link);
3853 	reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
3854 	mtx_unlock(&umtx_shm_lock);
3855 	*res = reg;
3856 	return (0);
3857 }
3858 
3859 static int
3860 umtx_shm_alive(struct thread *td, void *addr)
3861 {
3862 	vm_map_t map;
3863 	vm_map_entry_t entry;
3864 	vm_object_t object;
3865 	vm_pindex_t pindex;
3866 	vm_prot_t prot;
3867 	int res, ret;
3868 	boolean_t wired;
3869 
3870 	map = &td->td_proc->p_vmspace->vm_map;
3871 	res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
3872 	    &object, &pindex, &prot, &wired);
3873 	if (res != KERN_SUCCESS)
3874 		return (EFAULT);
3875 	if (object == NULL)
3876 		ret = EINVAL;
3877 	else
3878 		ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
3879 	vm_map_lookup_done(map, entry);
3880 	return (ret);
3881 }
3882 
3883 static void
3884 umtx_shm_init(void)
3885 {
3886 	int i;
3887 
3888 	umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
3889 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
3890 	mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
3891 	for (i = 0; i < nitems(umtx_shm_registry); i++)
3892 		TAILQ_INIT(&umtx_shm_registry[i]);
3893 }
3894 
3895 static int
3896 umtx_shm(struct thread *td, void *addr, u_int flags)
3897 {
3898 	struct umtx_key key;
3899 	struct umtx_shm_reg *reg;
3900 	struct file *fp;
3901 	int error, fd;
3902 
3903 	if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
3904 	    UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
3905 		return (EINVAL);
3906 	if ((flags & UMTX_SHM_ALIVE) != 0)
3907 		return (umtx_shm_alive(td, addr));
3908 	error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
3909 	if (error != 0)
3910 		return (error);
3911 	KASSERT(key.shared == 1, ("non-shared key"));
3912 	if ((flags & UMTX_SHM_CREAT) != 0) {
3913 		error = umtx_shm_create_reg(td, &key, &reg);
3914 	} else {
3915 		reg = umtx_shm_find_reg(&key);
3916 		if (reg == NULL)
3917 			error = ESRCH;
3918 	}
3919 	umtx_key_release(&key);
3920 	if (error != 0)
3921 		return (error);
3922 	KASSERT(reg != NULL, ("no reg"));
3923 	if ((flags & UMTX_SHM_DESTROY) != 0) {
3924 		umtx_shm_unref_reg(reg, true);
3925 	} else {
3926 #if 0
3927 #ifdef MAC
3928 		error = mac_posixshm_check_open(td->td_ucred,
3929 		    reg->ushm_obj, FFLAGS(O_RDWR));
3930 		if (error == 0)
3931 #endif
3932 			error = shm_access(reg->ushm_obj, td->td_ucred,
3933 			    FFLAGS(O_RDWR));
3934 		if (error == 0)
3935 #endif
3936 			error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
3937 		if (error == 0) {
3938 			shm_hold(reg->ushm_obj);
3939 			finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
3940 			    &shm_ops);
3941 			td->td_retval[0] = fd;
3942 			fdrop(fp, td);
3943 		}
3944 	}
3945 	umtx_shm_unref_reg(reg, false);
3946 	return (error);
3947 }
3948 
3949 static int
3950 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap)
3951 {
3952 
3953 	return (umtx_shm(td, uap->uaddr1, uap->val));
3954 }
3955 
3956 static int
3957 umtx_robust_lists(struct thread *td, struct umtx_robust_lists_params *rbp)
3958 {
3959 
3960 	td->td_rb_list = rbp->robust_list_offset;
3961 	td->td_rbp_list = rbp->robust_priv_list_offset;
3962 	td->td_rb_inact = rbp->robust_inact_offset;
3963 	return (0);
3964 }
3965 
3966 static int
3967 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap)
3968 {
3969 	struct umtx_robust_lists_params rb;
3970 	int error;
3971 
3972 	if (uap->val > sizeof(rb))
3973 		return (EINVAL);
3974 	bzero(&rb, sizeof(rb));
3975 	error = copyin(uap->uaddr1, &rb, uap->val);
3976 	if (error != 0)
3977 		return (error);
3978 	return (umtx_robust_lists(td, &rb));
3979 }
3980 
3981 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap);
3982 
3983 static const _umtx_op_func op_table[] = {
3984 	[UMTX_OP_RESERVED0]	= __umtx_op_unimpl,
3985 	[UMTX_OP_RESERVED1]	= __umtx_op_unimpl,
3986 	[UMTX_OP_WAIT]		= __umtx_op_wait,
3987 	[UMTX_OP_WAKE]		= __umtx_op_wake,
3988 	[UMTX_OP_MUTEX_TRYLOCK]	= __umtx_op_trylock_umutex,
3989 	[UMTX_OP_MUTEX_LOCK]	= __umtx_op_lock_umutex,
3990 	[UMTX_OP_MUTEX_UNLOCK]	= __umtx_op_unlock_umutex,
3991 	[UMTX_OP_SET_CEILING]	= __umtx_op_set_ceiling,
3992 	[UMTX_OP_CV_WAIT]	= __umtx_op_cv_wait,
3993 	[UMTX_OP_CV_SIGNAL]	= __umtx_op_cv_signal,
3994 	[UMTX_OP_CV_BROADCAST]	= __umtx_op_cv_broadcast,
3995 	[UMTX_OP_WAIT_UINT]	= __umtx_op_wait_uint,
3996 	[UMTX_OP_RW_RDLOCK]	= __umtx_op_rw_rdlock,
3997 	[UMTX_OP_RW_WRLOCK]	= __umtx_op_rw_wrlock,
3998 	[UMTX_OP_RW_UNLOCK]	= __umtx_op_rw_unlock,
3999 	[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
4000 	[UMTX_OP_WAKE_PRIVATE]	= __umtx_op_wake_private,
4001 	[UMTX_OP_MUTEX_WAIT]	= __umtx_op_wait_umutex,
4002 	[UMTX_OP_MUTEX_WAKE]	= __umtx_op_wake_umutex,
4003 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4004 	[UMTX_OP_SEM_WAIT]	= __umtx_op_sem_wait,
4005 	[UMTX_OP_SEM_WAKE]	= __umtx_op_sem_wake,
4006 #else
4007 	[UMTX_OP_SEM_WAIT]	= __umtx_op_unimpl,
4008 	[UMTX_OP_SEM_WAKE]	= __umtx_op_unimpl,
4009 #endif
4010 	[UMTX_OP_NWAKE_PRIVATE]	= __umtx_op_nwake_private,
4011 	[UMTX_OP_MUTEX_WAKE2]	= __umtx_op_wake2_umutex,
4012 	[UMTX_OP_SEM2_WAIT]	= __umtx_op_sem2_wait,
4013 	[UMTX_OP_SEM2_WAKE]	= __umtx_op_sem2_wake,
4014 	[UMTX_OP_SHM]		= __umtx_op_shm,
4015 	[UMTX_OP_ROBUST_LISTS]	= __umtx_op_robust_lists,
4016 };
4017 
4018 int
4019 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
4020 {
4021 
4022 	if ((unsigned)uap->op < nitems(op_table))
4023 		return (*op_table[uap->op])(td, uap);
4024 	return (EINVAL);
4025 }
4026 
4027 #ifdef COMPAT_FREEBSD32
4028 
4029 struct timespec32 {
4030 	int32_t tv_sec;
4031 	int32_t tv_nsec;
4032 };
4033 
4034 struct umtx_time32 {
4035 	struct	timespec32	timeout;
4036 	uint32_t		flags;
4037 	uint32_t		clockid;
4038 };
4039 
4040 static inline int
4041 umtx_copyin_timeout32(void *addr, struct timespec *tsp)
4042 {
4043 	struct timespec32 ts32;
4044 	int error;
4045 
4046 	error = copyin(addr, &ts32, sizeof(struct timespec32));
4047 	if (error == 0) {
4048 		if (ts32.tv_sec < 0 ||
4049 		    ts32.tv_nsec >= 1000000000 ||
4050 		    ts32.tv_nsec < 0)
4051 			error = EINVAL;
4052 		else {
4053 			tsp->tv_sec = ts32.tv_sec;
4054 			tsp->tv_nsec = ts32.tv_nsec;
4055 		}
4056 	}
4057 	return (error);
4058 }
4059 
4060 static inline int
4061 umtx_copyin_umtx_time32(const void *addr, size_t size, struct _umtx_time *tp)
4062 {
4063 	struct umtx_time32 t32;
4064 	int error;
4065 
4066 	t32.clockid = CLOCK_REALTIME;
4067 	t32.flags   = 0;
4068 	if (size <= sizeof(struct timespec32))
4069 		error = copyin(addr, &t32.timeout, sizeof(struct timespec32));
4070 	else
4071 		error = copyin(addr, &t32, sizeof(struct umtx_time32));
4072 	if (error != 0)
4073 		return (error);
4074 	if (t32.timeout.tv_sec < 0 ||
4075 	    t32.timeout.tv_nsec >= 1000000000 || t32.timeout.tv_nsec < 0)
4076 		return (EINVAL);
4077 	tp->_timeout.tv_sec = t32.timeout.tv_sec;
4078 	tp->_timeout.tv_nsec = t32.timeout.tv_nsec;
4079 	tp->_flags = t32.flags;
4080 	tp->_clockid = t32.clockid;
4081 	return (0);
4082 }
4083 
4084 static int
4085 __umtx_op_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4086 {
4087 	struct _umtx_time *tm_p, timeout;
4088 	int error;
4089 
4090 	if (uap->uaddr2 == NULL)
4091 		tm_p = NULL;
4092 	else {
4093 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4094 			(size_t)uap->uaddr1, &timeout);
4095 		if (error != 0)
4096 			return (error);
4097 		tm_p = &timeout;
4098 	}
4099 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
4100 }
4101 
4102 static int
4103 __umtx_op_lock_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
4104 {
4105 	struct _umtx_time *tm_p, timeout;
4106 	int error;
4107 
4108 	/* Allow a null timespec (wait forever). */
4109 	if (uap->uaddr2 == NULL)
4110 		tm_p = NULL;
4111 	else {
4112 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4113 			    (size_t)uap->uaddr1, &timeout);
4114 		if (error != 0)
4115 			return (error);
4116 		tm_p = &timeout;
4117 	}
4118 	return (do_lock_umutex(td, uap->obj, tm_p, 0));
4119 }
4120 
4121 static int
4122 __umtx_op_wait_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
4123 {
4124 	struct _umtx_time *tm_p, timeout;
4125 	int error;
4126 
4127 	/* Allow a null timespec (wait forever). */
4128 	if (uap->uaddr2 == NULL)
4129 		tm_p = NULL;
4130 	else {
4131 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4132 		    (size_t)uap->uaddr1, &timeout);
4133 		if (error != 0)
4134 			return (error);
4135 		tm_p = &timeout;
4136 	}
4137 	return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
4138 }
4139 
4140 static int
4141 __umtx_op_cv_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4142 {
4143 	struct timespec *ts, timeout;
4144 	int error;
4145 
4146 	/* Allow a null timespec (wait forever). */
4147 	if (uap->uaddr2 == NULL)
4148 		ts = NULL;
4149 	else {
4150 		error = umtx_copyin_timeout32(uap->uaddr2, &timeout);
4151 		if (error != 0)
4152 			return (error);
4153 		ts = &timeout;
4154 	}
4155 	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
4156 }
4157 
4158 static int
4159 __umtx_op_rw_rdlock_compat32(struct thread *td, struct _umtx_op_args *uap)
4160 {
4161 	struct _umtx_time timeout;
4162 	int error;
4163 
4164 	/* Allow a null timespec (wait forever). */
4165 	if (uap->uaddr2 == NULL) {
4166 		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
4167 	} else {
4168 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4169 		    (size_t)uap->uaddr1, &timeout);
4170 		if (error != 0)
4171 			return (error);
4172 		error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
4173 	}
4174 	return (error);
4175 }
4176 
4177 static int
4178 __umtx_op_rw_wrlock_compat32(struct thread *td, struct _umtx_op_args *uap)
4179 {
4180 	struct _umtx_time timeout;
4181 	int error;
4182 
4183 	/* Allow a null timespec (wait forever). */
4184 	if (uap->uaddr2 == NULL) {
4185 		error = do_rw_wrlock(td, uap->obj, 0);
4186 	} else {
4187 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4188 		    (size_t)uap->uaddr1, &timeout);
4189 		if (error != 0)
4190 			return (error);
4191 		error = do_rw_wrlock(td, uap->obj, &timeout);
4192 	}
4193 	return (error);
4194 }
4195 
4196 static int
4197 __umtx_op_wait_uint_private_compat32(struct thread *td, struct _umtx_op_args *uap)
4198 {
4199 	struct _umtx_time *tm_p, timeout;
4200 	int error;
4201 
4202 	if (uap->uaddr2 == NULL)
4203 		tm_p = NULL;
4204 	else {
4205 		error = umtx_copyin_umtx_time32(
4206 		    uap->uaddr2, (size_t)uap->uaddr1,&timeout);
4207 		if (error != 0)
4208 			return (error);
4209 		tm_p = &timeout;
4210 	}
4211 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
4212 }
4213 
4214 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4215 static int
4216 __umtx_op_sem_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4217 {
4218 	struct _umtx_time *tm_p, timeout;
4219 	int error;
4220 
4221 	/* Allow a null timespec (wait forever). */
4222 	if (uap->uaddr2 == NULL)
4223 		tm_p = NULL;
4224 	else {
4225 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4226 		    (size_t)uap->uaddr1, &timeout);
4227 		if (error != 0)
4228 			return (error);
4229 		tm_p = &timeout;
4230 	}
4231 	return (do_sem_wait(td, uap->obj, tm_p));
4232 }
4233 #endif
4234 
4235 static int
4236 __umtx_op_sem2_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4237 {
4238 	struct _umtx_time *tm_p, timeout;
4239 	size_t uasize;
4240 	int error;
4241 
4242 	/* Allow a null timespec (wait forever). */
4243 	if (uap->uaddr2 == NULL) {
4244 		uasize = 0;
4245 		tm_p = NULL;
4246 	} else {
4247 		uasize = (size_t)uap->uaddr1;
4248 		error = umtx_copyin_umtx_time32(uap->uaddr2, uasize, &timeout);
4249 		if (error != 0)
4250 			return (error);
4251 		tm_p = &timeout;
4252 	}
4253 	error = do_sem2_wait(td, uap->obj, tm_p);
4254 	if (error == EINTR && uap->uaddr2 != NULL &&
4255 	    (timeout._flags & UMTX_ABSTIME) == 0 &&
4256 	    uasize >= sizeof(struct umtx_time32) + sizeof(struct timespec32)) {
4257 		struct timespec32 remain32 = {
4258 			.tv_sec = timeout._timeout.tv_sec,
4259 			.tv_nsec = timeout._timeout.tv_nsec
4260 		};
4261 		error = copyout(&remain32,
4262 		    (struct umtx_time32 *)uap->uaddr2 + 1,
4263 		    sizeof(struct timespec32));
4264 		if (error == 0) {
4265 			error = EINTR;
4266 		}
4267 	}
4268 
4269 	return (error);
4270 }
4271 
4272 static int
4273 __umtx_op_nwake_private32(struct thread *td, struct _umtx_op_args *uap)
4274 {
4275 	uint32_t uaddrs[BATCH_SIZE], **upp;
4276 	int count, error, i, pos, tocopy;
4277 
4278 	upp = (uint32_t **)uap->obj;
4279 	error = 0;
4280 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
4281 	    pos += tocopy) {
4282 		tocopy = MIN(count, BATCH_SIZE);
4283 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
4284 		if (error != 0)
4285 			break;
4286 		for (i = 0; i < tocopy; ++i)
4287 			kern_umtx_wake(td, (void *)(intptr_t)uaddrs[i],
4288 			    INT_MAX, 1);
4289 		maybe_yield();
4290 	}
4291 	return (error);
4292 }
4293 
4294 struct umtx_robust_lists_params_compat32 {
4295 	uint32_t	robust_list_offset;
4296 	uint32_t	robust_priv_list_offset;
4297 	uint32_t	robust_inact_offset;
4298 };
4299 
4300 static int
4301 __umtx_op_robust_lists_compat32(struct thread *td, struct _umtx_op_args *uap)
4302 {
4303 	struct umtx_robust_lists_params rb;
4304 	struct umtx_robust_lists_params_compat32 rb32;
4305 	int error;
4306 
4307 	if (uap->val > sizeof(rb32))
4308 		return (EINVAL);
4309 	bzero(&rb, sizeof(rb));
4310 	bzero(&rb32, sizeof(rb32));
4311 	error = copyin(uap->uaddr1, &rb32, uap->val);
4312 	if (error != 0)
4313 		return (error);
4314 	rb.robust_list_offset = rb32.robust_list_offset;
4315 	rb.robust_priv_list_offset = rb32.robust_priv_list_offset;
4316 	rb.robust_inact_offset = rb32.robust_inact_offset;
4317 	return (umtx_robust_lists(td, &rb));
4318 }
4319 
4320 static const _umtx_op_func op_table_compat32[] = {
4321 	[UMTX_OP_RESERVED0]	= __umtx_op_unimpl,
4322 	[UMTX_OP_RESERVED1]	= __umtx_op_unimpl,
4323 	[UMTX_OP_WAIT]		= __umtx_op_wait_compat32,
4324 	[UMTX_OP_WAKE]		= __umtx_op_wake,
4325 	[UMTX_OP_MUTEX_TRYLOCK]	= __umtx_op_trylock_umutex,
4326 	[UMTX_OP_MUTEX_LOCK]	= __umtx_op_lock_umutex_compat32,
4327 	[UMTX_OP_MUTEX_UNLOCK]	= __umtx_op_unlock_umutex,
4328 	[UMTX_OP_SET_CEILING]	= __umtx_op_set_ceiling,
4329 	[UMTX_OP_CV_WAIT]	= __umtx_op_cv_wait_compat32,
4330 	[UMTX_OP_CV_SIGNAL]	= __umtx_op_cv_signal,
4331 	[UMTX_OP_CV_BROADCAST]	= __umtx_op_cv_broadcast,
4332 	[UMTX_OP_WAIT_UINT]	= __umtx_op_wait_compat32,
4333 	[UMTX_OP_RW_RDLOCK]	= __umtx_op_rw_rdlock_compat32,
4334 	[UMTX_OP_RW_WRLOCK]	= __umtx_op_rw_wrlock_compat32,
4335 	[UMTX_OP_RW_UNLOCK]	= __umtx_op_rw_unlock,
4336 	[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private_compat32,
4337 	[UMTX_OP_WAKE_PRIVATE]	= __umtx_op_wake_private,
4338 	[UMTX_OP_MUTEX_WAIT]	= __umtx_op_wait_umutex_compat32,
4339 	[UMTX_OP_MUTEX_WAKE]	= __umtx_op_wake_umutex,
4340 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4341 	[UMTX_OP_SEM_WAIT]	= __umtx_op_sem_wait_compat32,
4342 	[UMTX_OP_SEM_WAKE]	= __umtx_op_sem_wake,
4343 #else
4344 	[UMTX_OP_SEM_WAIT]	= __umtx_op_unimpl,
4345 	[UMTX_OP_SEM_WAKE]	= __umtx_op_unimpl,
4346 #endif
4347 	[UMTX_OP_NWAKE_PRIVATE]	= __umtx_op_nwake_private32,
4348 	[UMTX_OP_MUTEX_WAKE2]	= __umtx_op_wake2_umutex,
4349 	[UMTX_OP_SEM2_WAIT]	= __umtx_op_sem2_wait_compat32,
4350 	[UMTX_OP_SEM2_WAKE]	= __umtx_op_sem2_wake,
4351 	[UMTX_OP_SHM]		= __umtx_op_shm,
4352 	[UMTX_OP_ROBUST_LISTS]	= __umtx_op_robust_lists_compat32,
4353 };
4354 
4355 int
4356 freebsd32_umtx_op(struct thread *td, struct freebsd32_umtx_op_args *uap)
4357 {
4358 
4359 	if ((unsigned)uap->op < nitems(op_table_compat32)) {
4360 		return (*op_table_compat32[uap->op])(td,
4361 		    (struct _umtx_op_args *)uap);
4362 	}
4363 	return (EINVAL);
4364 }
4365 #endif
4366 
4367 void
4368 umtx_thread_init(struct thread *td)
4369 {
4370 
4371 	td->td_umtxq = umtxq_alloc();
4372 	td->td_umtxq->uq_thread = td;
4373 }
4374 
4375 void
4376 umtx_thread_fini(struct thread *td)
4377 {
4378 
4379 	umtxq_free(td->td_umtxq);
4380 }
4381 
4382 /*
4383  * It will be called when new thread is created, e.g fork().
4384  */
4385 void
4386 umtx_thread_alloc(struct thread *td)
4387 {
4388 	struct umtx_q *uq;
4389 
4390 	uq = td->td_umtxq;
4391 	uq->uq_inherited_pri = PRI_MAX;
4392 
4393 	KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
4394 	KASSERT(uq->uq_thread == td, ("uq_thread != td"));
4395 	KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
4396 	KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
4397 }
4398 
4399 /*
4400  * exec() hook.
4401  *
4402  * Clear robust lists for all process' threads, not delaying the
4403  * cleanup to thread_exit hook, since the relevant address space is
4404  * destroyed right now.
4405  */
4406 static void
4407 umtx_exec_hook(void *arg __unused, struct proc *p,
4408     struct image_params *imgp __unused)
4409 {
4410 	struct thread *td;
4411 
4412 	KASSERT(p == curproc, ("need curproc"));
4413 	PROC_LOCK(p);
4414 	KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
4415 	    (p->p_flag & P_STOPPED_SINGLE) != 0,
4416 	    ("curproc must be single-threaded"));
4417 	FOREACH_THREAD_IN_PROC(p, td) {
4418 		KASSERT(td == curthread ||
4419 		    ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
4420 		    ("running thread %p %p", p, td));
4421 		PROC_UNLOCK(p);
4422 		umtx_thread_cleanup(td);
4423 		PROC_LOCK(p);
4424 		td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
4425 	}
4426 	PROC_UNLOCK(p);
4427 }
4428 
4429 /*
4430  * thread_exit() hook.
4431  */
4432 void
4433 umtx_thread_exit(struct thread *td)
4434 {
4435 
4436 	umtx_thread_cleanup(td);
4437 }
4438 
4439 static int
4440 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res)
4441 {
4442 	u_long res1;
4443 #ifdef COMPAT_FREEBSD32
4444 	uint32_t res32;
4445 #endif
4446 	int error;
4447 
4448 #ifdef COMPAT_FREEBSD32
4449 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
4450 		error = fueword32((void *)ptr, &res32);
4451 		if (error == 0)
4452 			res1 = res32;
4453 	} else
4454 #endif
4455 	{
4456 		error = fueword((void *)ptr, &res1);
4457 	}
4458 	if (error == 0)
4459 		*res = res1;
4460 	else
4461 		error = EFAULT;
4462 	return (error);
4463 }
4464 
4465 static void
4466 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list)
4467 {
4468 #ifdef COMPAT_FREEBSD32
4469 	struct umutex32 m32;
4470 
4471 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
4472 		memcpy(&m32, m, sizeof(m32));
4473 		*rb_list = m32.m_rb_lnk;
4474 	} else
4475 #endif
4476 		*rb_list = m->m_rb_lnk;
4477 }
4478 
4479 static int
4480 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact)
4481 {
4482 	struct umutex m;
4483 	int error;
4484 
4485 	KASSERT(td->td_proc == curproc, ("need current vmspace"));
4486 	error = copyin((void *)rbp, &m, sizeof(m));
4487 	if (error != 0)
4488 		return (error);
4489 	if (rb_list != NULL)
4490 		umtx_read_rb_list(td, &m, rb_list);
4491 	if ((m.m_flags & UMUTEX_ROBUST) == 0)
4492 		return (EINVAL);
4493 	if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
4494 		/* inact is cleared after unlock, allow the inconsistency */
4495 		return (inact ? 0 : EINVAL);
4496 	return (do_unlock_umutex(td, (struct umutex *)rbp, true));
4497 }
4498 
4499 static void
4500 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
4501     const char *name)
4502 {
4503 	int error, i;
4504 	uintptr_t rbp;
4505 	bool inact;
4506 
4507 	if (rb_list == 0)
4508 		return;
4509 	error = umtx_read_uptr(td, rb_list, &rbp);
4510 	for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
4511 		if (rbp == *rb_inact) {
4512 			inact = true;
4513 			*rb_inact = 0;
4514 		} else
4515 			inact = false;
4516 		error = umtx_handle_rb(td, rbp, &rbp, inact);
4517 	}
4518 	if (i == umtx_max_rb && umtx_verbose_rb) {
4519 		uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
4520 		    td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
4521 	}
4522 	if (error != 0 && umtx_verbose_rb) {
4523 		uprintf("comm %s pid %d: handling %srb error %d\n",
4524 		    td->td_proc->p_comm, td->td_proc->p_pid, name, error);
4525 	}
4526 }
4527 
4528 /*
4529  * Clean up umtx data.
4530  */
4531 static void
4532 umtx_thread_cleanup(struct thread *td)
4533 {
4534 	struct umtx_q *uq;
4535 	struct umtx_pi *pi;
4536 	uintptr_t rb_inact;
4537 
4538 	/*
4539 	 * Disown pi mutexes.
4540 	 */
4541 	uq = td->td_umtxq;
4542 	if (uq != NULL) {
4543 		mtx_lock(&umtx_lock);
4544 		uq->uq_inherited_pri = PRI_MAX;
4545 		while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
4546 			pi->pi_owner = NULL;
4547 			TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
4548 		}
4549 		mtx_unlock(&umtx_lock);
4550 		thread_lock(td);
4551 		sched_lend_user_prio(td, PRI_MAX);
4552 		thread_unlock(td);
4553 	}
4554 
4555 	/*
4556 	 * Handle terminated robust mutexes.  Must be done after
4557 	 * robust pi disown, otherwise unlock could see unowned
4558 	 * entries.
4559 	 */
4560 	rb_inact = td->td_rb_inact;
4561 	if (rb_inact != 0)
4562 		(void)umtx_read_uptr(td, rb_inact, &rb_inact);
4563 	umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "");
4564 	umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ");
4565 	if (rb_inact != 0)
4566 		(void)umtx_handle_rb(td, rb_inact, NULL, true);
4567 }
4568