xref: /freebsd/sys/kern/kern_umtx.c (revision b633e08c705fe43180567eae26923d6f6f98c8d9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2015, 2016 The FreeBSD Foundation
5  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
6  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice unmodified, this list of conditions, and the following
17  *    disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_umtx_profiling.h"
38 
39 #include <sys/param.h>
40 #include <sys/kernel.h>
41 #include <sys/fcntl.h>
42 #include <sys/file.h>
43 #include <sys/filedesc.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/resource.h>
52 #include <sys/resourcevar.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysent.h>
59 #include <sys/systm.h>
60 #include <sys/sysproto.h>
61 #include <sys/syscallsubr.h>
62 #include <sys/taskqueue.h>
63 #include <sys/time.h>
64 #include <sys/eventhandler.h>
65 #include <sys/umtx.h>
66 
67 #include <security/mac/mac_framework.h>
68 
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_object.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/cpu.h>
77 
78 #include <compat/freebsd32/freebsd32.h>
79 #ifdef COMPAT_FREEBSD32
80 #include <compat/freebsd32/freebsd32_proto.h>
81 #endif
82 
83 #define _UMUTEX_TRY		1
84 #define _UMUTEX_WAIT		2
85 
86 #ifdef UMTX_PROFILING
87 #define	UPROF_PERC_BIGGER(w, f, sw, sf)					\
88 	(((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
89 #endif
90 
91 /* Priority inheritance mutex info. */
92 struct umtx_pi {
93 	/* Owner thread */
94 	struct thread		*pi_owner;
95 
96 	/* Reference count */
97 	int			pi_refcount;
98 
99 	/* List entry to link umtx holding by thread */
100 	TAILQ_ENTRY(umtx_pi)	pi_link;
101 
102 	/* List entry in hash */
103 	TAILQ_ENTRY(umtx_pi)	pi_hashlink;
104 
105 	/* List for waiters */
106 	TAILQ_HEAD(,umtx_q)	pi_blocked;
107 
108 	/* Identify a userland lock object */
109 	struct umtx_key		pi_key;
110 };
111 
112 /* A userland synchronous object user. */
113 struct umtx_q {
114 	/* Linked list for the hash. */
115 	TAILQ_ENTRY(umtx_q)	uq_link;
116 
117 	/* Umtx key. */
118 	struct umtx_key		uq_key;
119 
120 	/* Umtx flags. */
121 	int			uq_flags;
122 #define UQF_UMTXQ	0x0001
123 
124 	/* The thread waits on. */
125 	struct thread		*uq_thread;
126 
127 	/*
128 	 * Blocked on PI mutex. read can use chain lock
129 	 * or umtx_lock, write must have both chain lock and
130 	 * umtx_lock being hold.
131 	 */
132 	struct umtx_pi		*uq_pi_blocked;
133 
134 	/* On blocked list */
135 	TAILQ_ENTRY(umtx_q)	uq_lockq;
136 
137 	/* Thread contending with us */
138 	TAILQ_HEAD(,umtx_pi)	uq_pi_contested;
139 
140 	/* Inherited priority from PP mutex */
141 	u_char			uq_inherited_pri;
142 
143 	/* Spare queue ready to be reused */
144 	struct umtxq_queue	*uq_spare_queue;
145 
146 	/* The queue we on */
147 	struct umtxq_queue	*uq_cur_queue;
148 };
149 
150 TAILQ_HEAD(umtxq_head, umtx_q);
151 
152 /* Per-key wait-queue */
153 struct umtxq_queue {
154 	struct umtxq_head	head;
155 	struct umtx_key		key;
156 	LIST_ENTRY(umtxq_queue)	link;
157 	int			length;
158 };
159 
160 LIST_HEAD(umtxq_list, umtxq_queue);
161 
162 /* Userland lock object's wait-queue chain */
163 struct umtxq_chain {
164 	/* Lock for this chain. */
165 	struct mtx		uc_lock;
166 
167 	/* List of sleep queues. */
168 	struct umtxq_list	uc_queue[2];
169 #define UMTX_SHARED_QUEUE	0
170 #define UMTX_EXCLUSIVE_QUEUE	1
171 
172 	LIST_HEAD(, umtxq_queue) uc_spare_queue;
173 
174 	/* Busy flag */
175 	char			uc_busy;
176 
177 	/* Chain lock waiters */
178 	int			uc_waiters;
179 
180 	/* All PI in the list */
181 	TAILQ_HEAD(,umtx_pi)	uc_pi_list;
182 
183 #ifdef UMTX_PROFILING
184 	u_int			length;
185 	u_int			max_length;
186 #endif
187 };
188 
189 #define	UMTXQ_LOCKED_ASSERT(uc)		mtx_assert(&(uc)->uc_lock, MA_OWNED)
190 
191 /*
192  * Don't propagate time-sharing priority, there is a security reason,
193  * a user can simply introduce PI-mutex, let thread A lock the mutex,
194  * and let another thread B block on the mutex, because B is
195  * sleeping, its priority will be boosted, this causes A's priority to
196  * be boosted via priority propagating too and will never be lowered even
197  * if it is using 100%CPU, this is unfair to other processes.
198  */
199 
200 #define UPRI(td)	(((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
201 			  (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
202 			 PRI_MAX_TIMESHARE : (td)->td_user_pri)
203 
204 #define	GOLDEN_RATIO_PRIME	2654404609U
205 #ifndef	UMTX_CHAINS
206 #define	UMTX_CHAINS		512
207 #endif
208 #define	UMTX_SHIFTS		(__WORD_BIT - 9)
209 
210 #define	GET_SHARE(flags)	\
211     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
212 
213 #define BUSY_SPINS		200
214 
215 struct abs_timeout {
216 	int clockid;
217 	bool is_abs_real;	/* TIMER_ABSTIME && CLOCK_REALTIME* */
218 	struct timespec cur;
219 	struct timespec end;
220 };
221 
222 struct umtx_copyops {
223 	int	(*copyin_timeout)(const void *uaddr, struct timespec *tsp);
224 	int	(*copyin_umtx_time)(const void *uaddr, size_t size,
225 	    struct _umtx_time *tp);
226 	int	(*copyin_robust_lists)(const void *uaddr, size_t size,
227 	    struct umtx_robust_lists_params *rbp);
228 	int	(*copyout_timeout)(void *uaddr, size_t size,
229 	    struct timespec *tsp);
230 	const size_t	timespec_sz;
231 	const size_t	umtx_time_sz;
232 	const bool	compat32;
233 };
234 
235 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
236 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
237     __offsetof(struct umutex32, m_spare[0]), "m_spare32");
238 
239 int umtx_shm_vnobj_persistent = 0;
240 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
241     &umtx_shm_vnobj_persistent, 0,
242     "False forces destruction of umtx attached to file, on last close");
243 static int umtx_max_rb = 1000;
244 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
245     &umtx_max_rb, 0,
246     "Maximum number of robust mutexes allowed for each thread");
247 
248 static uma_zone_t		umtx_pi_zone;
249 static struct umtxq_chain	umtxq_chains[2][UMTX_CHAINS];
250 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
251 static int			umtx_pi_allocated;
252 
253 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
254     "umtx debug");
255 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
256     &umtx_pi_allocated, 0, "Allocated umtx_pi");
257 static int umtx_verbose_rb = 1;
258 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
259     &umtx_verbose_rb, 0,
260     "");
261 
262 #ifdef UMTX_PROFILING
263 static long max_length;
264 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
265 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
266     "umtx chain stats");
267 #endif
268 
269 static void abs_timeout_update(struct abs_timeout *timo);
270 
271 static void umtx_shm_init(void);
272 static void umtxq_sysinit(void *);
273 static void umtxq_hash(struct umtx_key *key);
274 static struct umtxq_chain *umtxq_getchain(struct umtx_key *key);
275 static void umtxq_unlock(struct umtx_key *key);
276 static void umtxq_busy(struct umtx_key *key);
277 static void umtxq_unbusy(struct umtx_key *key);
278 static void umtxq_insert_queue(struct umtx_q *uq, int q);
279 static void umtxq_remove_queue(struct umtx_q *uq, int q);
280 static int umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *);
281 static int umtxq_count(struct umtx_key *key);
282 static struct umtx_pi *umtx_pi_alloc(int);
283 static void umtx_pi_free(struct umtx_pi *pi);
284 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
285     bool rb);
286 static void umtx_thread_cleanup(struct thread *td);
287 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
288 
289 #define umtxq_signal(key, nwake)	umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
290 #define umtxq_insert(uq)	umtxq_insert_queue((uq), UMTX_SHARED_QUEUE)
291 #define umtxq_remove(uq)	umtxq_remove_queue((uq), UMTX_SHARED_QUEUE)
292 
293 static struct mtx umtx_lock;
294 
295 #ifdef UMTX_PROFILING
296 static void
297 umtx_init_profiling(void)
298 {
299 	struct sysctl_oid *chain_oid;
300 	char chain_name[10];
301 	int i;
302 
303 	for (i = 0; i < UMTX_CHAINS; ++i) {
304 		snprintf(chain_name, sizeof(chain_name), "%d", i);
305 		chain_oid = SYSCTL_ADD_NODE(NULL,
306 		    SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
307 		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
308 		    "umtx hash stats");
309 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
310 		    "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
311 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
312 		    "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
313 	}
314 }
315 
316 static int
317 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
318 {
319 	char buf[512];
320 	struct sbuf sb;
321 	struct umtxq_chain *uc;
322 	u_int fract, i, j, tot, whole;
323 	u_int sf0, sf1, sf2, sf3, sf4;
324 	u_int si0, si1, si2, si3, si4;
325 	u_int sw0, sw1, sw2, sw3, sw4;
326 
327 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
328 	for (i = 0; i < 2; i++) {
329 		tot = 0;
330 		for (j = 0; j < UMTX_CHAINS; ++j) {
331 			uc = &umtxq_chains[i][j];
332 			mtx_lock(&uc->uc_lock);
333 			tot += uc->max_length;
334 			mtx_unlock(&uc->uc_lock);
335 		}
336 		if (tot == 0)
337 			sbuf_printf(&sb, "%u) Empty ", i);
338 		else {
339 			sf0 = sf1 = sf2 = sf3 = sf4 = 0;
340 			si0 = si1 = si2 = si3 = si4 = 0;
341 			sw0 = sw1 = sw2 = sw3 = sw4 = 0;
342 			for (j = 0; j < UMTX_CHAINS; j++) {
343 				uc = &umtxq_chains[i][j];
344 				mtx_lock(&uc->uc_lock);
345 				whole = uc->max_length * 100;
346 				mtx_unlock(&uc->uc_lock);
347 				fract = (whole % tot) * 100;
348 				if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
349 					sf0 = fract;
350 					si0 = j;
351 					sw0 = whole;
352 				} else if (UPROF_PERC_BIGGER(whole, fract, sw1,
353 				    sf1)) {
354 					sf1 = fract;
355 					si1 = j;
356 					sw1 = whole;
357 				} else if (UPROF_PERC_BIGGER(whole, fract, sw2,
358 				    sf2)) {
359 					sf2 = fract;
360 					si2 = j;
361 					sw2 = whole;
362 				} else if (UPROF_PERC_BIGGER(whole, fract, sw3,
363 				    sf3)) {
364 					sf3 = fract;
365 					si3 = j;
366 					sw3 = whole;
367 				} else if (UPROF_PERC_BIGGER(whole, fract, sw4,
368 				    sf4)) {
369 					sf4 = fract;
370 					si4 = j;
371 					sw4 = whole;
372 				}
373 			}
374 			sbuf_printf(&sb, "queue %u:\n", i);
375 			sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
376 			    sf0 / tot, si0);
377 			sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
378 			    sf1 / tot, si1);
379 			sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
380 			    sf2 / tot, si2);
381 			sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
382 			    sf3 / tot, si3);
383 			sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
384 			    sf4 / tot, si4);
385 		}
386 	}
387 	sbuf_trim(&sb);
388 	sbuf_finish(&sb);
389 	sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
390 	sbuf_delete(&sb);
391 	return (0);
392 }
393 
394 static int
395 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
396 {
397 	struct umtxq_chain *uc;
398 	u_int i, j;
399 	int clear, error;
400 
401 	clear = 0;
402 	error = sysctl_handle_int(oidp, &clear, 0, req);
403 	if (error != 0 || req->newptr == NULL)
404 		return (error);
405 
406 	if (clear != 0) {
407 		for (i = 0; i < 2; ++i) {
408 			for (j = 0; j < UMTX_CHAINS; ++j) {
409 				uc = &umtxq_chains[i][j];
410 				mtx_lock(&uc->uc_lock);
411 				uc->length = 0;
412 				uc->max_length = 0;
413 				mtx_unlock(&uc->uc_lock);
414 			}
415 		}
416 	}
417 	return (0);
418 }
419 
420 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
421     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
422     sysctl_debug_umtx_chains_clear, "I",
423     "Clear umtx chains statistics");
424 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
425     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
426     sysctl_debug_umtx_chains_peaks, "A",
427     "Highest peaks in chains max length");
428 #endif
429 
430 static void
431 umtxq_sysinit(void *arg __unused)
432 {
433 	int i, j;
434 
435 	umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
436 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
437 	for (i = 0; i < 2; ++i) {
438 		for (j = 0; j < UMTX_CHAINS; ++j) {
439 			mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
440 				 MTX_DEF | MTX_DUPOK);
441 			LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
442 			LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
443 			LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
444 			TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
445 			umtxq_chains[i][j].uc_busy = 0;
446 			umtxq_chains[i][j].uc_waiters = 0;
447 #ifdef UMTX_PROFILING
448 			umtxq_chains[i][j].length = 0;
449 			umtxq_chains[i][j].max_length = 0;
450 #endif
451 		}
452 	}
453 #ifdef UMTX_PROFILING
454 	umtx_init_profiling();
455 #endif
456 	mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
457 	umtx_shm_init();
458 }
459 
460 struct umtx_q *
461 umtxq_alloc(void)
462 {
463 	struct umtx_q *uq;
464 
465 	uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
466 	uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
467 	    M_WAITOK | M_ZERO);
468 	TAILQ_INIT(&uq->uq_spare_queue->head);
469 	TAILQ_INIT(&uq->uq_pi_contested);
470 	uq->uq_inherited_pri = PRI_MAX;
471 	return (uq);
472 }
473 
474 void
475 umtxq_free(struct umtx_q *uq)
476 {
477 
478 	MPASS(uq->uq_spare_queue != NULL);
479 	free(uq->uq_spare_queue, M_UMTX);
480 	free(uq, M_UMTX);
481 }
482 
483 static inline void
484 umtxq_hash(struct umtx_key *key)
485 {
486 	unsigned n;
487 
488 	n = (uintptr_t)key->info.both.a + key->info.both.b;
489 	key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
490 }
491 
492 static inline struct umtxq_chain *
493 umtxq_getchain(struct umtx_key *key)
494 {
495 
496 	if (key->type <= TYPE_SEM)
497 		return (&umtxq_chains[1][key->hash]);
498 	return (&umtxq_chains[0][key->hash]);
499 }
500 
501 /*
502  * Lock a chain.
503  *
504  * The code is a macro so that file/line information is taken from the caller.
505  */
506 #define umtxq_lock(key) do {		\
507 	struct umtx_key *_key = (key);	\
508 	struct umtxq_chain *_uc;	\
509 					\
510 	_uc = umtxq_getchain(_key);	\
511 	mtx_lock(&_uc->uc_lock);	\
512 } while (0)
513 
514 /*
515  * Unlock a chain.
516  */
517 static inline void
518 umtxq_unlock(struct umtx_key *key)
519 {
520 	struct umtxq_chain *uc;
521 
522 	uc = umtxq_getchain(key);
523 	mtx_unlock(&uc->uc_lock);
524 }
525 
526 /*
527  * Set chain to busy state when following operation
528  * may be blocked (kernel mutex can not be used).
529  */
530 static inline void
531 umtxq_busy(struct umtx_key *key)
532 {
533 	struct umtxq_chain *uc;
534 
535 	uc = umtxq_getchain(key);
536 	mtx_assert(&uc->uc_lock, MA_OWNED);
537 	if (uc->uc_busy) {
538 #ifdef SMP
539 		if (smp_cpus > 1) {
540 			int count = BUSY_SPINS;
541 			if (count > 0) {
542 				umtxq_unlock(key);
543 				while (uc->uc_busy && --count > 0)
544 					cpu_spinwait();
545 				umtxq_lock(key);
546 			}
547 		}
548 #endif
549 		while (uc->uc_busy) {
550 			uc->uc_waiters++;
551 			msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
552 			uc->uc_waiters--;
553 		}
554 	}
555 	uc->uc_busy = 1;
556 }
557 
558 /*
559  * Unbusy a chain.
560  */
561 static inline void
562 umtxq_unbusy(struct umtx_key *key)
563 {
564 	struct umtxq_chain *uc;
565 
566 	uc = umtxq_getchain(key);
567 	mtx_assert(&uc->uc_lock, MA_OWNED);
568 	KASSERT(uc->uc_busy != 0, ("not busy"));
569 	uc->uc_busy = 0;
570 	if (uc->uc_waiters)
571 		wakeup_one(uc);
572 }
573 
574 static inline void
575 umtxq_unbusy_unlocked(struct umtx_key *key)
576 {
577 
578 	umtxq_lock(key);
579 	umtxq_unbusy(key);
580 	umtxq_unlock(key);
581 }
582 
583 static struct umtxq_queue *
584 umtxq_queue_lookup(struct umtx_key *key, int q)
585 {
586 	struct umtxq_queue *uh;
587 	struct umtxq_chain *uc;
588 
589 	uc = umtxq_getchain(key);
590 	UMTXQ_LOCKED_ASSERT(uc);
591 	LIST_FOREACH(uh, &uc->uc_queue[q], link) {
592 		if (umtx_key_match(&uh->key, key))
593 			return (uh);
594 	}
595 
596 	return (NULL);
597 }
598 
599 static inline void
600 umtxq_insert_queue(struct umtx_q *uq, int q)
601 {
602 	struct umtxq_queue *uh;
603 	struct umtxq_chain *uc;
604 
605 	uc = umtxq_getchain(&uq->uq_key);
606 	UMTXQ_LOCKED_ASSERT(uc);
607 	KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
608 	uh = umtxq_queue_lookup(&uq->uq_key, q);
609 	if (uh != NULL) {
610 		LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
611 	} else {
612 		uh = uq->uq_spare_queue;
613 		uh->key = uq->uq_key;
614 		LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
615 #ifdef UMTX_PROFILING
616 		uc->length++;
617 		if (uc->length > uc->max_length) {
618 			uc->max_length = uc->length;
619 			if (uc->max_length > max_length)
620 				max_length = uc->max_length;
621 		}
622 #endif
623 	}
624 	uq->uq_spare_queue = NULL;
625 
626 	TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
627 	uh->length++;
628 	uq->uq_flags |= UQF_UMTXQ;
629 	uq->uq_cur_queue = uh;
630 	return;
631 }
632 
633 static inline void
634 umtxq_remove_queue(struct umtx_q *uq, int q)
635 {
636 	struct umtxq_chain *uc;
637 	struct umtxq_queue *uh;
638 
639 	uc = umtxq_getchain(&uq->uq_key);
640 	UMTXQ_LOCKED_ASSERT(uc);
641 	if (uq->uq_flags & UQF_UMTXQ) {
642 		uh = uq->uq_cur_queue;
643 		TAILQ_REMOVE(&uh->head, uq, uq_link);
644 		uh->length--;
645 		uq->uq_flags &= ~UQF_UMTXQ;
646 		if (TAILQ_EMPTY(&uh->head)) {
647 			KASSERT(uh->length == 0,
648 			    ("inconsistent umtxq_queue length"));
649 #ifdef UMTX_PROFILING
650 			uc->length--;
651 #endif
652 			LIST_REMOVE(uh, link);
653 		} else {
654 			uh = LIST_FIRST(&uc->uc_spare_queue);
655 			KASSERT(uh != NULL, ("uc_spare_queue is empty"));
656 			LIST_REMOVE(uh, link);
657 		}
658 		uq->uq_spare_queue = uh;
659 		uq->uq_cur_queue = NULL;
660 	}
661 }
662 
663 /*
664  * Check if there are multiple waiters
665  */
666 static int
667 umtxq_count(struct umtx_key *key)
668 {
669 	struct umtxq_queue *uh;
670 
671 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
672 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
673 	if (uh != NULL)
674 		return (uh->length);
675 	return (0);
676 }
677 
678 /*
679  * Check if there are multiple PI waiters and returns first
680  * waiter.
681  */
682 static int
683 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
684 {
685 	struct umtxq_queue *uh;
686 
687 	*first = NULL;
688 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
689 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
690 	if (uh != NULL) {
691 		*first = TAILQ_FIRST(&uh->head);
692 		return (uh->length);
693 	}
694 	return (0);
695 }
696 
697 /*
698  * Wake up threads waiting on an userland object.
699  */
700 
701 static int
702 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
703 {
704 	struct umtxq_queue *uh;
705 	struct umtx_q *uq;
706 	int ret;
707 
708 	ret = 0;
709 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
710 	uh = umtxq_queue_lookup(key, q);
711 	if (uh != NULL) {
712 		while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
713 			umtxq_remove_queue(uq, q);
714 			wakeup(uq);
715 			if (++ret >= n_wake)
716 				return (ret);
717 		}
718 	}
719 	return (ret);
720 }
721 
722 /*
723  * Wake up specified thread.
724  */
725 static inline void
726 umtxq_signal_thread(struct umtx_q *uq)
727 {
728 
729 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
730 	umtxq_remove(uq);
731 	wakeup(uq);
732 }
733 
734 static inline int
735 tstohz(const struct timespec *tsp)
736 {
737 	struct timeval tv;
738 
739 	TIMESPEC_TO_TIMEVAL(&tv, tsp);
740 	return tvtohz(&tv);
741 }
742 
743 static void
744 abs_timeout_init(struct abs_timeout *timo, int clockid, int absolute,
745 	const struct timespec *timeout)
746 {
747 
748 	timo->clockid = clockid;
749 	if (!absolute) {
750 		timo->is_abs_real = false;
751 		abs_timeout_update(timo);
752 		timespecadd(&timo->cur, timeout, &timo->end);
753 	} else {
754 		timo->end = *timeout;
755 		timo->is_abs_real = clockid == CLOCK_REALTIME ||
756 		    clockid == CLOCK_REALTIME_FAST ||
757 		    clockid == CLOCK_REALTIME_PRECISE;
758 		/*
759 		 * If is_abs_real, umtxq_sleep will read the clock
760 		 * after setting td_rtcgen; otherwise, read it here.
761 		 */
762 		if (!timo->is_abs_real) {
763 			abs_timeout_update(timo);
764 		}
765 	}
766 }
767 
768 static void
769 abs_timeout_init2(struct abs_timeout *timo, const struct _umtx_time *umtxtime)
770 {
771 
772 	abs_timeout_init(timo, umtxtime->_clockid,
773 	    (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
774 }
775 
776 static inline void
777 abs_timeout_update(struct abs_timeout *timo)
778 {
779 
780 	kern_clock_gettime(curthread, timo->clockid, &timo->cur);
781 }
782 
783 static int
784 abs_timeout_gethz(struct abs_timeout *timo)
785 {
786 	struct timespec tts;
787 
788 	if (timespeccmp(&timo->end, &timo->cur, <=))
789 		return (-1);
790 	timespecsub(&timo->end, &timo->cur, &tts);
791 	return (tstohz(&tts));
792 }
793 
794 static uint32_t
795 umtx_unlock_val(uint32_t flags, bool rb)
796 {
797 
798 	if (rb)
799 		return (UMUTEX_RB_OWNERDEAD);
800 	else if ((flags & UMUTEX_NONCONSISTENT) != 0)
801 		return (UMUTEX_RB_NOTRECOV);
802 	else
803 		return (UMUTEX_UNOWNED);
804 
805 }
806 
807 /*
808  * Put thread into sleep state, before sleeping, check if
809  * thread was removed from umtx queue.
810  */
811 static inline int
812 umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *abstime)
813 {
814 	struct umtxq_chain *uc;
815 	int error, timo;
816 
817 	if (abstime != NULL && abstime->is_abs_real) {
818 		curthread->td_rtcgen = atomic_load_acq_int(&rtc_generation);
819 		abs_timeout_update(abstime);
820 	}
821 
822 	uc = umtxq_getchain(&uq->uq_key);
823 	UMTXQ_LOCKED_ASSERT(uc);
824 	for (;;) {
825 		if (!(uq->uq_flags & UQF_UMTXQ)) {
826 			error = 0;
827 			break;
828 		}
829 		if (abstime != NULL) {
830 			timo = abs_timeout_gethz(abstime);
831 			if (timo < 0) {
832 				error = ETIMEDOUT;
833 				break;
834 			}
835 		} else
836 			timo = 0;
837 		error = msleep(uq, &uc->uc_lock, PCATCH | PDROP, wmesg, timo);
838 		if (error == EINTR || error == ERESTART) {
839 			umtxq_lock(&uq->uq_key);
840 			break;
841 		}
842 		if (abstime != NULL) {
843 			if (abstime->is_abs_real)
844 				curthread->td_rtcgen =
845 				    atomic_load_acq_int(&rtc_generation);
846 			abs_timeout_update(abstime);
847 		}
848 		umtxq_lock(&uq->uq_key);
849 	}
850 
851 	curthread->td_rtcgen = 0;
852 	return (error);
853 }
854 
855 /*
856  * Convert userspace address into unique logical address.
857  */
858 int
859 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
860 {
861 	struct thread *td = curthread;
862 	vm_map_t map;
863 	vm_map_entry_t entry;
864 	vm_pindex_t pindex;
865 	vm_prot_t prot;
866 	boolean_t wired;
867 
868 	key->type = type;
869 	if (share == THREAD_SHARE) {
870 		key->shared = 0;
871 		key->info.private.vs = td->td_proc->p_vmspace;
872 		key->info.private.addr = (uintptr_t)addr;
873 	} else {
874 		MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
875 		map = &td->td_proc->p_vmspace->vm_map;
876 		if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
877 		    &entry, &key->info.shared.object, &pindex, &prot,
878 		    &wired) != KERN_SUCCESS) {
879 			return (EFAULT);
880 		}
881 
882 		if ((share == PROCESS_SHARE) ||
883 		    (share == AUTO_SHARE &&
884 		     VM_INHERIT_SHARE == entry->inheritance)) {
885 			key->shared = 1;
886 			key->info.shared.offset = (vm_offset_t)addr -
887 			    entry->start + entry->offset;
888 			vm_object_reference(key->info.shared.object);
889 		} else {
890 			key->shared = 0;
891 			key->info.private.vs = td->td_proc->p_vmspace;
892 			key->info.private.addr = (uintptr_t)addr;
893 		}
894 		vm_map_lookup_done(map, entry);
895 	}
896 
897 	umtxq_hash(key);
898 	return (0);
899 }
900 
901 /*
902  * Release key.
903  */
904 void
905 umtx_key_release(struct umtx_key *key)
906 {
907 	if (key->shared)
908 		vm_object_deallocate(key->info.shared.object);
909 }
910 
911 #ifdef COMPAT_FREEBSD10
912 /*
913  * Lock a umtx object.
914  */
915 static int
916 do_lock_umtx(struct thread *td, struct umtx *umtx, u_long id,
917     const struct timespec *timeout)
918 {
919 	struct abs_timeout timo;
920 	struct umtx_q *uq;
921 	u_long owner;
922 	u_long old;
923 	int error = 0;
924 
925 	uq = td->td_umtxq;
926 	if (timeout != NULL)
927 		abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
928 
929 	/*
930 	 * Care must be exercised when dealing with umtx structure. It
931 	 * can fault on any access.
932 	 */
933 	for (;;) {
934 		/*
935 		 * Try the uncontested case.  This should be done in userland.
936 		 */
937 		owner = casuword(&umtx->u_owner, UMTX_UNOWNED, id);
938 
939 		/* The acquire succeeded. */
940 		if (owner == UMTX_UNOWNED)
941 			return (0);
942 
943 		/* The address was invalid. */
944 		if (owner == -1)
945 			return (EFAULT);
946 
947 		/* If no one owns it but it is contested try to acquire it. */
948 		if (owner == UMTX_CONTESTED) {
949 			owner = casuword(&umtx->u_owner,
950 			    UMTX_CONTESTED, id | UMTX_CONTESTED);
951 
952 			if (owner == UMTX_CONTESTED)
953 				return (0);
954 
955 			/* The address was invalid. */
956 			if (owner == -1)
957 				return (EFAULT);
958 
959 			error = thread_check_susp(td, false);
960 			if (error != 0)
961 				break;
962 
963 			/* If this failed the lock has changed, restart. */
964 			continue;
965 		}
966 
967 		/*
968 		 * If we caught a signal, we have retried and now
969 		 * exit immediately.
970 		 */
971 		if (error != 0)
972 			break;
973 
974 		if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK,
975 			AUTO_SHARE, &uq->uq_key)) != 0)
976 			return (error);
977 
978 		umtxq_lock(&uq->uq_key);
979 		umtxq_busy(&uq->uq_key);
980 		umtxq_insert(uq);
981 		umtxq_unbusy(&uq->uq_key);
982 		umtxq_unlock(&uq->uq_key);
983 
984 		/*
985 		 * Set the contested bit so that a release in user space
986 		 * knows to use the system call for unlock.  If this fails
987 		 * either some one else has acquired the lock or it has been
988 		 * released.
989 		 */
990 		old = casuword(&umtx->u_owner, owner, owner | UMTX_CONTESTED);
991 
992 		/* The address was invalid. */
993 		if (old == -1) {
994 			umtxq_lock(&uq->uq_key);
995 			umtxq_remove(uq);
996 			umtxq_unlock(&uq->uq_key);
997 			umtx_key_release(&uq->uq_key);
998 			return (EFAULT);
999 		}
1000 
1001 		/*
1002 		 * We set the contested bit, sleep. Otherwise the lock changed
1003 		 * and we need to retry or we lost a race to the thread
1004 		 * unlocking the umtx.
1005 		 */
1006 		umtxq_lock(&uq->uq_key);
1007 		if (old == owner)
1008 			error = umtxq_sleep(uq, "umtx", timeout == NULL ? NULL :
1009 			    &timo);
1010 		umtxq_remove(uq);
1011 		umtxq_unlock(&uq->uq_key);
1012 		umtx_key_release(&uq->uq_key);
1013 
1014 		if (error == 0)
1015 			error = thread_check_susp(td, false);
1016 	}
1017 
1018 	if (timeout == NULL) {
1019 		/* Mutex locking is restarted if it is interrupted. */
1020 		if (error == EINTR)
1021 			error = ERESTART;
1022 	} else {
1023 		/* Timed-locking is not restarted. */
1024 		if (error == ERESTART)
1025 			error = EINTR;
1026 	}
1027 	return (error);
1028 }
1029 
1030 /*
1031  * Unlock a umtx object.
1032  */
1033 static int
1034 do_unlock_umtx(struct thread *td, struct umtx *umtx, u_long id)
1035 {
1036 	struct umtx_key key;
1037 	u_long owner;
1038 	u_long old;
1039 	int error;
1040 	int count;
1041 
1042 	/*
1043 	 * Make sure we own this mtx.
1044 	 */
1045 	owner = fuword(__DEVOLATILE(u_long *, &umtx->u_owner));
1046 	if (owner == -1)
1047 		return (EFAULT);
1048 
1049 	if ((owner & ~UMTX_CONTESTED) != id)
1050 		return (EPERM);
1051 
1052 	/* This should be done in userland */
1053 	if ((owner & UMTX_CONTESTED) == 0) {
1054 		old = casuword(&umtx->u_owner, owner, UMTX_UNOWNED);
1055 		if (old == -1)
1056 			return (EFAULT);
1057 		if (old == owner)
1058 			return (0);
1059 		owner = old;
1060 	}
1061 
1062 	/* We should only ever be in here for contested locks */
1063 	if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1064 	    &key)) != 0)
1065 		return (error);
1066 
1067 	umtxq_lock(&key);
1068 	umtxq_busy(&key);
1069 	count = umtxq_count(&key);
1070 	umtxq_unlock(&key);
1071 
1072 	/*
1073 	 * When unlocking the umtx, it must be marked as unowned if
1074 	 * there is zero or one thread only waiting for it.
1075 	 * Otherwise, it must be marked as contested.
1076 	 */
1077 	old = casuword(&umtx->u_owner, owner,
1078 	    count <= 1 ? UMTX_UNOWNED : UMTX_CONTESTED);
1079 	umtxq_lock(&key);
1080 	umtxq_signal(&key,1);
1081 	umtxq_unbusy(&key);
1082 	umtxq_unlock(&key);
1083 	umtx_key_release(&key);
1084 	if (old == -1)
1085 		return (EFAULT);
1086 	if (old != owner)
1087 		return (EINVAL);
1088 	return (0);
1089 }
1090 
1091 #ifdef COMPAT_FREEBSD32
1092 
1093 /*
1094  * Lock a umtx object.
1095  */
1096 static int
1097 do_lock_umtx32(struct thread *td, uint32_t *m, uint32_t id,
1098 	const struct timespec *timeout)
1099 {
1100 	struct abs_timeout timo;
1101 	struct umtx_q *uq;
1102 	uint32_t owner;
1103 	uint32_t old;
1104 	int error = 0;
1105 
1106 	uq = td->td_umtxq;
1107 
1108 	if (timeout != NULL)
1109 		abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
1110 
1111 	/*
1112 	 * Care must be exercised when dealing with umtx structure. It
1113 	 * can fault on any access.
1114 	 */
1115 	for (;;) {
1116 		/*
1117 		 * Try the uncontested case.  This should be done in userland.
1118 		 */
1119 		owner = casuword32(m, UMUTEX_UNOWNED, id);
1120 
1121 		/* The acquire succeeded. */
1122 		if (owner == UMUTEX_UNOWNED)
1123 			return (0);
1124 
1125 		/* The address was invalid. */
1126 		if (owner == -1)
1127 			return (EFAULT);
1128 
1129 		/* If no one owns it but it is contested try to acquire it. */
1130 		if (owner == UMUTEX_CONTESTED) {
1131 			owner = casuword32(m,
1132 			    UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
1133 			if (owner == UMUTEX_CONTESTED)
1134 				return (0);
1135 
1136 			/* The address was invalid. */
1137 			if (owner == -1)
1138 				return (EFAULT);
1139 
1140 			error = thread_check_susp(td, false);
1141 			if (error != 0)
1142 				break;
1143 
1144 			/* If this failed the lock has changed, restart. */
1145 			continue;
1146 		}
1147 
1148 		/*
1149 		 * If we caught a signal, we have retried and now
1150 		 * exit immediately.
1151 		 */
1152 		if (error != 0)
1153 			return (error);
1154 
1155 		if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK,
1156 			AUTO_SHARE, &uq->uq_key)) != 0)
1157 			return (error);
1158 
1159 		umtxq_lock(&uq->uq_key);
1160 		umtxq_busy(&uq->uq_key);
1161 		umtxq_insert(uq);
1162 		umtxq_unbusy(&uq->uq_key);
1163 		umtxq_unlock(&uq->uq_key);
1164 
1165 		/*
1166 		 * Set the contested bit so that a release in user space
1167 		 * knows to use the system call for unlock.  If this fails
1168 		 * either some one else has acquired the lock or it has been
1169 		 * released.
1170 		 */
1171 		old = casuword32(m, owner, owner | UMUTEX_CONTESTED);
1172 
1173 		/* The address was invalid. */
1174 		if (old == -1) {
1175 			umtxq_lock(&uq->uq_key);
1176 			umtxq_remove(uq);
1177 			umtxq_unlock(&uq->uq_key);
1178 			umtx_key_release(&uq->uq_key);
1179 			return (EFAULT);
1180 		}
1181 
1182 		/*
1183 		 * We set the contested bit, sleep. Otherwise the lock changed
1184 		 * and we need to retry or we lost a race to the thread
1185 		 * unlocking the umtx.
1186 		 */
1187 		umtxq_lock(&uq->uq_key);
1188 		if (old == owner)
1189 			error = umtxq_sleep(uq, "umtx", timeout == NULL ?
1190 			    NULL : &timo);
1191 		umtxq_remove(uq);
1192 		umtxq_unlock(&uq->uq_key);
1193 		umtx_key_release(&uq->uq_key);
1194 
1195 		if (error == 0)
1196 			error = thread_check_susp(td, false);
1197 	}
1198 
1199 	if (timeout == NULL) {
1200 		/* Mutex locking is restarted if it is interrupted. */
1201 		if (error == EINTR)
1202 			error = ERESTART;
1203 	} else {
1204 		/* Timed-locking is not restarted. */
1205 		if (error == ERESTART)
1206 			error = EINTR;
1207 	}
1208 	return (error);
1209 }
1210 
1211 /*
1212  * Unlock a umtx object.
1213  */
1214 static int
1215 do_unlock_umtx32(struct thread *td, uint32_t *m, uint32_t id)
1216 {
1217 	struct umtx_key key;
1218 	uint32_t owner;
1219 	uint32_t old;
1220 	int error;
1221 	int count;
1222 
1223 	/*
1224 	 * Make sure we own this mtx.
1225 	 */
1226 	owner = fuword32(m);
1227 	if (owner == -1)
1228 		return (EFAULT);
1229 
1230 	if ((owner & ~UMUTEX_CONTESTED) != id)
1231 		return (EPERM);
1232 
1233 	/* This should be done in userland */
1234 	if ((owner & UMUTEX_CONTESTED) == 0) {
1235 		old = casuword32(m, owner, UMUTEX_UNOWNED);
1236 		if (old == -1)
1237 			return (EFAULT);
1238 		if (old == owner)
1239 			return (0);
1240 		owner = old;
1241 	}
1242 
1243 	/* We should only ever be in here for contested locks */
1244 	if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1245 		&key)) != 0)
1246 		return (error);
1247 
1248 	umtxq_lock(&key);
1249 	umtxq_busy(&key);
1250 	count = umtxq_count(&key);
1251 	umtxq_unlock(&key);
1252 
1253 	/*
1254 	 * When unlocking the umtx, it must be marked as unowned if
1255 	 * there is zero or one thread only waiting for it.
1256 	 * Otherwise, it must be marked as contested.
1257 	 */
1258 	old = casuword32(m, owner,
1259 		count <= 1 ? UMUTEX_UNOWNED : UMUTEX_CONTESTED);
1260 	umtxq_lock(&key);
1261 	umtxq_signal(&key,1);
1262 	umtxq_unbusy(&key);
1263 	umtxq_unlock(&key);
1264 	umtx_key_release(&key);
1265 	if (old == -1)
1266 		return (EFAULT);
1267 	if (old != owner)
1268 		return (EINVAL);
1269 	return (0);
1270 }
1271 #endif	/* COMPAT_FREEBSD32 */
1272 #endif	/* COMPAT_FREEBSD10 */
1273 
1274 /*
1275  * Fetch and compare value, sleep on the address if value is not changed.
1276  */
1277 static int
1278 do_wait(struct thread *td, void *addr, u_long id,
1279     struct _umtx_time *timeout, int compat32, int is_private)
1280 {
1281 	struct abs_timeout timo;
1282 	struct umtx_q *uq;
1283 	u_long tmp;
1284 	uint32_t tmp32;
1285 	int error = 0;
1286 
1287 	uq = td->td_umtxq;
1288 	if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
1289 		is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
1290 		return (error);
1291 
1292 	if (timeout != NULL)
1293 		abs_timeout_init2(&timo, timeout);
1294 
1295 	umtxq_lock(&uq->uq_key);
1296 	umtxq_insert(uq);
1297 	umtxq_unlock(&uq->uq_key);
1298 	if (compat32 == 0) {
1299 		error = fueword(addr, &tmp);
1300 		if (error != 0)
1301 			error = EFAULT;
1302 	} else {
1303 		error = fueword32(addr, &tmp32);
1304 		if (error == 0)
1305 			tmp = tmp32;
1306 		else
1307 			error = EFAULT;
1308 	}
1309 	umtxq_lock(&uq->uq_key);
1310 	if (error == 0) {
1311 		if (tmp == id)
1312 			error = umtxq_sleep(uq, "uwait", timeout == NULL ?
1313 			    NULL : &timo);
1314 		if ((uq->uq_flags & UQF_UMTXQ) == 0)
1315 			error = 0;
1316 		else
1317 			umtxq_remove(uq);
1318 	} else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
1319 		umtxq_remove(uq);
1320 	}
1321 	umtxq_unlock(&uq->uq_key);
1322 	umtx_key_release(&uq->uq_key);
1323 	if (error == ERESTART)
1324 		error = EINTR;
1325 	return (error);
1326 }
1327 
1328 /*
1329  * Wake up threads sleeping on the specified address.
1330  */
1331 int
1332 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
1333 {
1334 	struct umtx_key key;
1335 	int ret;
1336 
1337 	if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
1338 	    is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
1339 		return (ret);
1340 	umtxq_lock(&key);
1341 	umtxq_signal(&key, n_wake);
1342 	umtxq_unlock(&key);
1343 	umtx_key_release(&key);
1344 	return (0);
1345 }
1346 
1347 /*
1348  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
1349  */
1350 static int
1351 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
1352     struct _umtx_time *timeout, int mode)
1353 {
1354 	struct abs_timeout timo;
1355 	struct umtx_q *uq;
1356 	uint32_t owner, old, id;
1357 	int error, rv;
1358 
1359 	id = td->td_tid;
1360 	uq = td->td_umtxq;
1361 	error = 0;
1362 	if (timeout != NULL)
1363 		abs_timeout_init2(&timo, timeout);
1364 
1365 	/*
1366 	 * Care must be exercised when dealing with umtx structure. It
1367 	 * can fault on any access.
1368 	 */
1369 	for (;;) {
1370 		rv = fueword32(&m->m_owner, &owner);
1371 		if (rv == -1)
1372 			return (EFAULT);
1373 		if (mode == _UMUTEX_WAIT) {
1374 			if (owner == UMUTEX_UNOWNED ||
1375 			    owner == UMUTEX_CONTESTED ||
1376 			    owner == UMUTEX_RB_OWNERDEAD ||
1377 			    owner == UMUTEX_RB_NOTRECOV)
1378 				return (0);
1379 		} else {
1380 			/*
1381 			 * Robust mutex terminated.  Kernel duty is to
1382 			 * return EOWNERDEAD to the userspace.  The
1383 			 * umutex.m_flags UMUTEX_NONCONSISTENT is set
1384 			 * by the common userspace code.
1385 			 */
1386 			if (owner == UMUTEX_RB_OWNERDEAD) {
1387 				rv = casueword32(&m->m_owner,
1388 				    UMUTEX_RB_OWNERDEAD, &owner,
1389 				    id | UMUTEX_CONTESTED);
1390 				if (rv == -1)
1391 					return (EFAULT);
1392 				if (rv == 0) {
1393 					MPASS(owner == UMUTEX_RB_OWNERDEAD);
1394 					return (EOWNERDEAD); /* success */
1395 				}
1396 				MPASS(rv == 1);
1397 				rv = thread_check_susp(td, false);
1398 				if (rv != 0)
1399 					return (rv);
1400 				continue;
1401 			}
1402 			if (owner == UMUTEX_RB_NOTRECOV)
1403 				return (ENOTRECOVERABLE);
1404 
1405 			/*
1406 			 * Try the uncontested case.  This should be
1407 			 * done in userland.
1408 			 */
1409 			rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
1410 			    &owner, id);
1411 			/* The address was invalid. */
1412 			if (rv == -1)
1413 				return (EFAULT);
1414 
1415 			/* The acquire succeeded. */
1416 			if (rv == 0) {
1417 				MPASS(owner == UMUTEX_UNOWNED);
1418 				return (0);
1419 			}
1420 
1421 			/*
1422 			 * If no one owns it but it is contested try
1423 			 * to acquire it.
1424 			 */
1425 			MPASS(rv == 1);
1426 			if (owner == UMUTEX_CONTESTED) {
1427 				rv = casueword32(&m->m_owner,
1428 				    UMUTEX_CONTESTED, &owner,
1429 				    id | UMUTEX_CONTESTED);
1430 				/* The address was invalid. */
1431 				if (rv == -1)
1432 					return (EFAULT);
1433 				if (rv == 0) {
1434 					MPASS(owner == UMUTEX_CONTESTED);
1435 					return (0);
1436 				}
1437 				if (rv == 1) {
1438 					rv = thread_check_susp(td, false);
1439 					if (rv != 0)
1440 						return (rv);
1441 				}
1442 
1443 				/*
1444 				 * If this failed the lock has
1445 				 * changed, restart.
1446 				 */
1447 				continue;
1448 			}
1449 
1450 			/* rv == 1 but not contested, likely store failure */
1451 			rv = thread_check_susp(td, false);
1452 			if (rv != 0)
1453 				return (rv);
1454 		}
1455 
1456 		if (mode == _UMUTEX_TRY)
1457 			return (EBUSY);
1458 
1459 		/*
1460 		 * If we caught a signal, we have retried and now
1461 		 * exit immediately.
1462 		 */
1463 		if (error != 0)
1464 			return (error);
1465 
1466 		if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
1467 		    GET_SHARE(flags), &uq->uq_key)) != 0)
1468 			return (error);
1469 
1470 		umtxq_lock(&uq->uq_key);
1471 		umtxq_busy(&uq->uq_key);
1472 		umtxq_insert(uq);
1473 		umtxq_unlock(&uq->uq_key);
1474 
1475 		/*
1476 		 * Set the contested bit so that a release in user space
1477 		 * knows to use the system call for unlock.  If this fails
1478 		 * either some one else has acquired the lock or it has been
1479 		 * released.
1480 		 */
1481 		rv = casueword32(&m->m_owner, owner, &old,
1482 		    owner | UMUTEX_CONTESTED);
1483 
1484 		/* The address was invalid or casueword failed to store. */
1485 		if (rv == -1 || rv == 1) {
1486 			umtxq_lock(&uq->uq_key);
1487 			umtxq_remove(uq);
1488 			umtxq_unbusy(&uq->uq_key);
1489 			umtxq_unlock(&uq->uq_key);
1490 			umtx_key_release(&uq->uq_key);
1491 			if (rv == -1)
1492 				return (EFAULT);
1493 			if (rv == 1) {
1494 				rv = thread_check_susp(td, false);
1495 				if (rv != 0)
1496 					return (rv);
1497 			}
1498 			continue;
1499 		}
1500 
1501 		/*
1502 		 * We set the contested bit, sleep. Otherwise the lock changed
1503 		 * and we need to retry or we lost a race to the thread
1504 		 * unlocking the umtx.
1505 		 */
1506 		umtxq_lock(&uq->uq_key);
1507 		umtxq_unbusy(&uq->uq_key);
1508 		MPASS(old == owner);
1509 		error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
1510 		    NULL : &timo);
1511 		umtxq_remove(uq);
1512 		umtxq_unlock(&uq->uq_key);
1513 		umtx_key_release(&uq->uq_key);
1514 
1515 		if (error == 0)
1516 			error = thread_check_susp(td, false);
1517 	}
1518 
1519 	return (0);
1520 }
1521 
1522 /*
1523  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
1524  */
1525 static int
1526 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1527 {
1528 	struct umtx_key key;
1529 	uint32_t owner, old, id, newlock;
1530 	int error, count;
1531 
1532 	id = td->td_tid;
1533 
1534 again:
1535 	/*
1536 	 * Make sure we own this mtx.
1537 	 */
1538 	error = fueword32(&m->m_owner, &owner);
1539 	if (error == -1)
1540 		return (EFAULT);
1541 
1542 	if ((owner & ~UMUTEX_CONTESTED) != id)
1543 		return (EPERM);
1544 
1545 	newlock = umtx_unlock_val(flags, rb);
1546 	if ((owner & UMUTEX_CONTESTED) == 0) {
1547 		error = casueword32(&m->m_owner, owner, &old, newlock);
1548 		if (error == -1)
1549 			return (EFAULT);
1550 		if (error == 1) {
1551 			error = thread_check_susp(td, false);
1552 			if (error != 0)
1553 				return (error);
1554 			goto again;
1555 		}
1556 		MPASS(old == owner);
1557 		return (0);
1558 	}
1559 
1560 	/* We should only ever be in here for contested locks */
1561 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1562 	    &key)) != 0)
1563 		return (error);
1564 
1565 	umtxq_lock(&key);
1566 	umtxq_busy(&key);
1567 	count = umtxq_count(&key);
1568 	umtxq_unlock(&key);
1569 
1570 	/*
1571 	 * When unlocking the umtx, it must be marked as unowned if
1572 	 * there is zero or one thread only waiting for it.
1573 	 * Otherwise, it must be marked as contested.
1574 	 */
1575 	if (count > 1)
1576 		newlock |= UMUTEX_CONTESTED;
1577 	error = casueword32(&m->m_owner, owner, &old, newlock);
1578 	umtxq_lock(&key);
1579 	umtxq_signal(&key, 1);
1580 	umtxq_unbusy(&key);
1581 	umtxq_unlock(&key);
1582 	umtx_key_release(&key);
1583 	if (error == -1)
1584 		return (EFAULT);
1585 	if (error == 1) {
1586 		if (old != owner)
1587 			return (EINVAL);
1588 		error = thread_check_susp(td, false);
1589 		if (error != 0)
1590 			return (error);
1591 		goto again;
1592 	}
1593 	return (0);
1594 }
1595 
1596 /*
1597  * Check if the mutex is available and wake up a waiter,
1598  * only for simple mutex.
1599  */
1600 static int
1601 do_wake_umutex(struct thread *td, struct umutex *m)
1602 {
1603 	struct umtx_key key;
1604 	uint32_t owner;
1605 	uint32_t flags;
1606 	int error;
1607 	int count;
1608 
1609 again:
1610 	error = fueword32(&m->m_owner, &owner);
1611 	if (error == -1)
1612 		return (EFAULT);
1613 
1614 	if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
1615 	    owner != UMUTEX_RB_NOTRECOV)
1616 		return (0);
1617 
1618 	error = fueword32(&m->m_flags, &flags);
1619 	if (error == -1)
1620 		return (EFAULT);
1621 
1622 	/* We should only ever be in here for contested locks */
1623 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1624 	    &key)) != 0)
1625 		return (error);
1626 
1627 	umtxq_lock(&key);
1628 	umtxq_busy(&key);
1629 	count = umtxq_count(&key);
1630 	umtxq_unlock(&key);
1631 
1632 	if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
1633 	    owner != UMUTEX_RB_NOTRECOV) {
1634 		error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
1635 		    UMUTEX_UNOWNED);
1636 		if (error == -1) {
1637 			error = EFAULT;
1638 		} else if (error == 1) {
1639 			umtxq_lock(&key);
1640 			umtxq_unbusy(&key);
1641 			umtxq_unlock(&key);
1642 			umtx_key_release(&key);
1643 			error = thread_check_susp(td, false);
1644 			if (error != 0)
1645 				return (error);
1646 			goto again;
1647 		}
1648 	}
1649 
1650 	umtxq_lock(&key);
1651 	if (error == 0 && count != 0) {
1652 		MPASS((owner & ~UMUTEX_CONTESTED) == 0 ||
1653 		    owner == UMUTEX_RB_OWNERDEAD ||
1654 		    owner == UMUTEX_RB_NOTRECOV);
1655 		umtxq_signal(&key, 1);
1656 	}
1657 	umtxq_unbusy(&key);
1658 	umtxq_unlock(&key);
1659 	umtx_key_release(&key);
1660 	return (error);
1661 }
1662 
1663 /*
1664  * Check if the mutex has waiters and tries to fix contention bit.
1665  */
1666 static int
1667 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
1668 {
1669 	struct umtx_key key;
1670 	uint32_t owner, old;
1671 	int type;
1672 	int error;
1673 	int count;
1674 
1675 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
1676 	    UMUTEX_ROBUST)) {
1677 	case 0:
1678 	case UMUTEX_ROBUST:
1679 		type = TYPE_NORMAL_UMUTEX;
1680 		break;
1681 	case UMUTEX_PRIO_INHERIT:
1682 		type = TYPE_PI_UMUTEX;
1683 		break;
1684 	case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
1685 		type = TYPE_PI_ROBUST_UMUTEX;
1686 		break;
1687 	case UMUTEX_PRIO_PROTECT:
1688 		type = TYPE_PP_UMUTEX;
1689 		break;
1690 	case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
1691 		type = TYPE_PP_ROBUST_UMUTEX;
1692 		break;
1693 	default:
1694 		return (EINVAL);
1695 	}
1696 	if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
1697 		return (error);
1698 
1699 	owner = 0;
1700 	umtxq_lock(&key);
1701 	umtxq_busy(&key);
1702 	count = umtxq_count(&key);
1703 	umtxq_unlock(&key);
1704 
1705 	error = fueword32(&m->m_owner, &owner);
1706 	if (error == -1)
1707 		error = EFAULT;
1708 
1709 	/*
1710 	 * Only repair contention bit if there is a waiter, this means
1711 	 * the mutex is still being referenced by userland code,
1712 	 * otherwise don't update any memory.
1713 	 */
1714 	while (error == 0 && (owner & UMUTEX_CONTESTED) == 0 &&
1715 	    (count > 1 || (count == 1 && (owner & ~UMUTEX_CONTESTED) != 0))) {
1716 		error = casueword32(&m->m_owner, owner, &old,
1717 		    owner | UMUTEX_CONTESTED);
1718 		if (error == -1) {
1719 			error = EFAULT;
1720 			break;
1721 		}
1722 		if (error == 0) {
1723 			MPASS(old == owner);
1724 			break;
1725 		}
1726 		owner = old;
1727 		error = thread_check_susp(td, false);
1728 	}
1729 
1730 	umtxq_lock(&key);
1731 	if (error == EFAULT) {
1732 		umtxq_signal(&key, INT_MAX);
1733 	} else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1734 	    owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1735 		umtxq_signal(&key, 1);
1736 	umtxq_unbusy(&key);
1737 	umtxq_unlock(&key);
1738 	umtx_key_release(&key);
1739 	return (error);
1740 }
1741 
1742 static inline struct umtx_pi *
1743 umtx_pi_alloc(int flags)
1744 {
1745 	struct umtx_pi *pi;
1746 
1747 	pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
1748 	TAILQ_INIT(&pi->pi_blocked);
1749 	atomic_add_int(&umtx_pi_allocated, 1);
1750 	return (pi);
1751 }
1752 
1753 static inline void
1754 umtx_pi_free(struct umtx_pi *pi)
1755 {
1756 	uma_zfree(umtx_pi_zone, pi);
1757 	atomic_add_int(&umtx_pi_allocated, -1);
1758 }
1759 
1760 /*
1761  * Adjust the thread's position on a pi_state after its priority has been
1762  * changed.
1763  */
1764 static int
1765 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
1766 {
1767 	struct umtx_q *uq, *uq1, *uq2;
1768 	struct thread *td1;
1769 
1770 	mtx_assert(&umtx_lock, MA_OWNED);
1771 	if (pi == NULL)
1772 		return (0);
1773 
1774 	uq = td->td_umtxq;
1775 
1776 	/*
1777 	 * Check if the thread needs to be moved on the blocked chain.
1778 	 * It needs to be moved if either its priority is lower than
1779 	 * the previous thread or higher than the next thread.
1780 	 */
1781 	uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
1782 	uq2 = TAILQ_NEXT(uq, uq_lockq);
1783 	if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
1784 	    (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
1785 		/*
1786 		 * Remove thread from blocked chain and determine where
1787 		 * it should be moved to.
1788 		 */
1789 		TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1790 		TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1791 			td1 = uq1->uq_thread;
1792 			MPASS(td1->td_proc->p_magic == P_MAGIC);
1793 			if (UPRI(td1) > UPRI(td))
1794 				break;
1795 		}
1796 
1797 		if (uq1 == NULL)
1798 			TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1799 		else
1800 			TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1801 	}
1802 	return (1);
1803 }
1804 
1805 static struct umtx_pi *
1806 umtx_pi_next(struct umtx_pi *pi)
1807 {
1808 	struct umtx_q *uq_owner;
1809 
1810 	if (pi->pi_owner == NULL)
1811 		return (NULL);
1812 	uq_owner = pi->pi_owner->td_umtxq;
1813 	if (uq_owner == NULL)
1814 		return (NULL);
1815 	return (uq_owner->uq_pi_blocked);
1816 }
1817 
1818 /*
1819  * Floyd's Cycle-Finding Algorithm.
1820  */
1821 static bool
1822 umtx_pi_check_loop(struct umtx_pi *pi)
1823 {
1824 	struct umtx_pi *pi1;	/* fast iterator */
1825 
1826 	mtx_assert(&umtx_lock, MA_OWNED);
1827 	if (pi == NULL)
1828 		return (false);
1829 	pi1 = pi;
1830 	for (;;) {
1831 		pi = umtx_pi_next(pi);
1832 		if (pi == NULL)
1833 			break;
1834 		pi1 = umtx_pi_next(pi1);
1835 		if (pi1 == NULL)
1836 			break;
1837 		pi1 = umtx_pi_next(pi1);
1838 		if (pi1 == NULL)
1839 			break;
1840 		if (pi == pi1)
1841 			return (true);
1842 	}
1843 	return (false);
1844 }
1845 
1846 /*
1847  * Propagate priority when a thread is blocked on POSIX
1848  * PI mutex.
1849  */
1850 static void
1851 umtx_propagate_priority(struct thread *td)
1852 {
1853 	struct umtx_q *uq;
1854 	struct umtx_pi *pi;
1855 	int pri;
1856 
1857 	mtx_assert(&umtx_lock, MA_OWNED);
1858 	pri = UPRI(td);
1859 	uq = td->td_umtxq;
1860 	pi = uq->uq_pi_blocked;
1861 	if (pi == NULL)
1862 		return;
1863 	if (umtx_pi_check_loop(pi))
1864 		return;
1865 
1866 	for (;;) {
1867 		td = pi->pi_owner;
1868 		if (td == NULL || td == curthread)
1869 			return;
1870 
1871 		MPASS(td->td_proc != NULL);
1872 		MPASS(td->td_proc->p_magic == P_MAGIC);
1873 
1874 		thread_lock(td);
1875 		if (td->td_lend_user_pri > pri)
1876 			sched_lend_user_prio(td, pri);
1877 		else {
1878 			thread_unlock(td);
1879 			break;
1880 		}
1881 		thread_unlock(td);
1882 
1883 		/*
1884 		 * Pick up the lock that td is blocked on.
1885 		 */
1886 		uq = td->td_umtxq;
1887 		pi = uq->uq_pi_blocked;
1888 		if (pi == NULL)
1889 			break;
1890 		/* Resort td on the list if needed. */
1891 		umtx_pi_adjust_thread(pi, td);
1892 	}
1893 }
1894 
1895 /*
1896  * Unpropagate priority for a PI mutex when a thread blocked on
1897  * it is interrupted by signal or resumed by others.
1898  */
1899 static void
1900 umtx_repropagate_priority(struct umtx_pi *pi)
1901 {
1902 	struct umtx_q *uq, *uq_owner;
1903 	struct umtx_pi *pi2;
1904 	int pri;
1905 
1906 	mtx_assert(&umtx_lock, MA_OWNED);
1907 
1908 	if (umtx_pi_check_loop(pi))
1909 		return;
1910 	while (pi != NULL && pi->pi_owner != NULL) {
1911 		pri = PRI_MAX;
1912 		uq_owner = pi->pi_owner->td_umtxq;
1913 
1914 		TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
1915 			uq = TAILQ_FIRST(&pi2->pi_blocked);
1916 			if (uq != NULL) {
1917 				if (pri > UPRI(uq->uq_thread))
1918 					pri = UPRI(uq->uq_thread);
1919 			}
1920 		}
1921 
1922 		if (pri > uq_owner->uq_inherited_pri)
1923 			pri = uq_owner->uq_inherited_pri;
1924 		thread_lock(pi->pi_owner);
1925 		sched_lend_user_prio(pi->pi_owner, pri);
1926 		thread_unlock(pi->pi_owner);
1927 		if ((pi = uq_owner->uq_pi_blocked) != NULL)
1928 			umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
1929 	}
1930 }
1931 
1932 /*
1933  * Insert a PI mutex into owned list.
1934  */
1935 static void
1936 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
1937 {
1938 	struct umtx_q *uq_owner;
1939 
1940 	uq_owner = owner->td_umtxq;
1941 	mtx_assert(&umtx_lock, MA_OWNED);
1942 	MPASS(pi->pi_owner == NULL);
1943 	pi->pi_owner = owner;
1944 	TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
1945 }
1946 
1947 /*
1948  * Disown a PI mutex, and remove it from the owned list.
1949  */
1950 static void
1951 umtx_pi_disown(struct umtx_pi *pi)
1952 {
1953 
1954 	mtx_assert(&umtx_lock, MA_OWNED);
1955 	TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
1956 	pi->pi_owner = NULL;
1957 }
1958 
1959 /*
1960  * Claim ownership of a PI mutex.
1961  */
1962 static int
1963 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
1964 {
1965 	struct umtx_q *uq;
1966 	int pri;
1967 
1968 	mtx_lock(&umtx_lock);
1969 	if (pi->pi_owner == owner) {
1970 		mtx_unlock(&umtx_lock);
1971 		return (0);
1972 	}
1973 
1974 	if (pi->pi_owner != NULL) {
1975 		/*
1976 		 * userland may have already messed the mutex, sigh.
1977 		 */
1978 		mtx_unlock(&umtx_lock);
1979 		return (EPERM);
1980 	}
1981 	umtx_pi_setowner(pi, owner);
1982 	uq = TAILQ_FIRST(&pi->pi_blocked);
1983 	if (uq != NULL) {
1984 		pri = UPRI(uq->uq_thread);
1985 		thread_lock(owner);
1986 		if (pri < UPRI(owner))
1987 			sched_lend_user_prio(owner, pri);
1988 		thread_unlock(owner);
1989 	}
1990 	mtx_unlock(&umtx_lock);
1991 	return (0);
1992 }
1993 
1994 /*
1995  * Adjust a thread's order position in its blocked PI mutex,
1996  * this may result new priority propagating process.
1997  */
1998 void
1999 umtx_pi_adjust(struct thread *td, u_char oldpri)
2000 {
2001 	struct umtx_q *uq;
2002 	struct umtx_pi *pi;
2003 
2004 	uq = td->td_umtxq;
2005 	mtx_lock(&umtx_lock);
2006 	/*
2007 	 * Pick up the lock that td is blocked on.
2008 	 */
2009 	pi = uq->uq_pi_blocked;
2010 	if (pi != NULL) {
2011 		umtx_pi_adjust_thread(pi, td);
2012 		umtx_repropagate_priority(pi);
2013 	}
2014 	mtx_unlock(&umtx_lock);
2015 }
2016 
2017 /*
2018  * Sleep on a PI mutex.
2019  */
2020 static int
2021 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
2022     const char *wmesg, struct abs_timeout *timo, bool shared)
2023 {
2024 	struct thread *td, *td1;
2025 	struct umtx_q *uq1;
2026 	int error, pri;
2027 #ifdef INVARIANTS
2028 	struct umtxq_chain *uc;
2029 
2030 	uc = umtxq_getchain(&pi->pi_key);
2031 #endif
2032 	error = 0;
2033 	td = uq->uq_thread;
2034 	KASSERT(td == curthread, ("inconsistent uq_thread"));
2035 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
2036 	KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
2037 	umtxq_insert(uq);
2038 	mtx_lock(&umtx_lock);
2039 	if (pi->pi_owner == NULL) {
2040 		mtx_unlock(&umtx_lock);
2041 		td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
2042 		mtx_lock(&umtx_lock);
2043 		if (td1 != NULL) {
2044 			if (pi->pi_owner == NULL)
2045 				umtx_pi_setowner(pi, td1);
2046 			PROC_UNLOCK(td1->td_proc);
2047 		}
2048 	}
2049 
2050 	TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
2051 		pri = UPRI(uq1->uq_thread);
2052 		if (pri > UPRI(td))
2053 			break;
2054 	}
2055 
2056 	if (uq1 != NULL)
2057 		TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
2058 	else
2059 		TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
2060 
2061 	uq->uq_pi_blocked = pi;
2062 	thread_lock(td);
2063 	td->td_flags |= TDF_UPIBLOCKED;
2064 	thread_unlock(td);
2065 	umtx_propagate_priority(td);
2066 	mtx_unlock(&umtx_lock);
2067 	umtxq_unbusy(&uq->uq_key);
2068 
2069 	error = umtxq_sleep(uq, wmesg, timo);
2070 	umtxq_remove(uq);
2071 
2072 	mtx_lock(&umtx_lock);
2073 	uq->uq_pi_blocked = NULL;
2074 	thread_lock(td);
2075 	td->td_flags &= ~TDF_UPIBLOCKED;
2076 	thread_unlock(td);
2077 	TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
2078 	umtx_repropagate_priority(pi);
2079 	mtx_unlock(&umtx_lock);
2080 	umtxq_unlock(&uq->uq_key);
2081 
2082 	return (error);
2083 }
2084 
2085 /*
2086  * Add reference count for a PI mutex.
2087  */
2088 static void
2089 umtx_pi_ref(struct umtx_pi *pi)
2090 {
2091 
2092 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
2093 	pi->pi_refcount++;
2094 }
2095 
2096 /*
2097  * Decrease reference count for a PI mutex, if the counter
2098  * is decreased to zero, its memory space is freed.
2099  */
2100 static void
2101 umtx_pi_unref(struct umtx_pi *pi)
2102 {
2103 	struct umtxq_chain *uc;
2104 
2105 	uc = umtxq_getchain(&pi->pi_key);
2106 	UMTXQ_LOCKED_ASSERT(uc);
2107 	KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
2108 	if (--pi->pi_refcount == 0) {
2109 		mtx_lock(&umtx_lock);
2110 		if (pi->pi_owner != NULL)
2111 			umtx_pi_disown(pi);
2112 		KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
2113 			("blocked queue not empty"));
2114 		mtx_unlock(&umtx_lock);
2115 		TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
2116 		umtx_pi_free(pi);
2117 	}
2118 }
2119 
2120 /*
2121  * Find a PI mutex in hash table.
2122  */
2123 static struct umtx_pi *
2124 umtx_pi_lookup(struct umtx_key *key)
2125 {
2126 	struct umtxq_chain *uc;
2127 	struct umtx_pi *pi;
2128 
2129 	uc = umtxq_getchain(key);
2130 	UMTXQ_LOCKED_ASSERT(uc);
2131 
2132 	TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
2133 		if (umtx_key_match(&pi->pi_key, key)) {
2134 			return (pi);
2135 		}
2136 	}
2137 	return (NULL);
2138 }
2139 
2140 /*
2141  * Insert a PI mutex into hash table.
2142  */
2143 static inline void
2144 umtx_pi_insert(struct umtx_pi *pi)
2145 {
2146 	struct umtxq_chain *uc;
2147 
2148 	uc = umtxq_getchain(&pi->pi_key);
2149 	UMTXQ_LOCKED_ASSERT(uc);
2150 	TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
2151 }
2152 
2153 /*
2154  * Lock a PI mutex.
2155  */
2156 static int
2157 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
2158     struct _umtx_time *timeout, int try)
2159 {
2160 	struct abs_timeout timo;
2161 	struct umtx_q *uq;
2162 	struct umtx_pi *pi, *new_pi;
2163 	uint32_t id, old_owner, owner, old;
2164 	int error, rv;
2165 
2166 	id = td->td_tid;
2167 	uq = td->td_umtxq;
2168 
2169 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2170 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2171 	    &uq->uq_key)) != 0)
2172 		return (error);
2173 
2174 	if (timeout != NULL)
2175 		abs_timeout_init2(&timo, timeout);
2176 
2177 	umtxq_lock(&uq->uq_key);
2178 	pi = umtx_pi_lookup(&uq->uq_key);
2179 	if (pi == NULL) {
2180 		new_pi = umtx_pi_alloc(M_NOWAIT);
2181 		if (new_pi == NULL) {
2182 			umtxq_unlock(&uq->uq_key);
2183 			new_pi = umtx_pi_alloc(M_WAITOK);
2184 			umtxq_lock(&uq->uq_key);
2185 			pi = umtx_pi_lookup(&uq->uq_key);
2186 			if (pi != NULL) {
2187 				umtx_pi_free(new_pi);
2188 				new_pi = NULL;
2189 			}
2190 		}
2191 		if (new_pi != NULL) {
2192 			new_pi->pi_key = uq->uq_key;
2193 			umtx_pi_insert(new_pi);
2194 			pi = new_pi;
2195 		}
2196 	}
2197 	umtx_pi_ref(pi);
2198 	umtxq_unlock(&uq->uq_key);
2199 
2200 	/*
2201 	 * Care must be exercised when dealing with umtx structure.  It
2202 	 * can fault on any access.
2203 	 */
2204 	for (;;) {
2205 		/*
2206 		 * Try the uncontested case.  This should be done in userland.
2207 		 */
2208 		rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
2209 		/* The address was invalid. */
2210 		if (rv == -1) {
2211 			error = EFAULT;
2212 			break;
2213 		}
2214 		/* The acquire succeeded. */
2215 		if (rv == 0) {
2216 			MPASS(owner == UMUTEX_UNOWNED);
2217 			error = 0;
2218 			break;
2219 		}
2220 
2221 		if (owner == UMUTEX_RB_NOTRECOV) {
2222 			error = ENOTRECOVERABLE;
2223 			break;
2224 		}
2225 
2226 		/*
2227 		 * Avoid overwriting a possible error from sleep due
2228 		 * to the pending signal with suspension check result.
2229 		 */
2230 		if (error == 0) {
2231 			error = thread_check_susp(td, true);
2232 			if (error != 0)
2233 				break;
2234 		}
2235 
2236 		/* If no one owns it but it is contested try to acquire it. */
2237 		if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
2238 			old_owner = owner;
2239 			rv = casueword32(&m->m_owner, owner, &owner,
2240 			    id | UMUTEX_CONTESTED);
2241 			/* The address was invalid. */
2242 			if (rv == -1) {
2243 				error = EFAULT;
2244 				break;
2245 			}
2246 			if (rv == 1) {
2247 				if (error == 0) {
2248 					error = thread_check_susp(td, true);
2249 					if (error != 0)
2250 						break;
2251 				}
2252 
2253 				/*
2254 				 * If this failed the lock could
2255 				 * changed, restart.
2256 				 */
2257 				continue;
2258 			}
2259 
2260 			MPASS(rv == 0);
2261 			MPASS(owner == old_owner);
2262 			umtxq_lock(&uq->uq_key);
2263 			umtxq_busy(&uq->uq_key);
2264 			error = umtx_pi_claim(pi, td);
2265 			umtxq_unbusy(&uq->uq_key);
2266 			umtxq_unlock(&uq->uq_key);
2267 			if (error != 0) {
2268 				/*
2269 				 * Since we're going to return an
2270 				 * error, restore the m_owner to its
2271 				 * previous, unowned state to avoid
2272 				 * compounding the problem.
2273 				 */
2274 				(void)casuword32(&m->m_owner,
2275 				    id | UMUTEX_CONTESTED, old_owner);
2276 			}
2277 			if (error == 0 && old_owner == UMUTEX_RB_OWNERDEAD)
2278 				error = EOWNERDEAD;
2279 			break;
2280 		}
2281 
2282 		if ((owner & ~UMUTEX_CONTESTED) == id) {
2283 			error = EDEADLK;
2284 			break;
2285 		}
2286 
2287 		if (try != 0) {
2288 			error = EBUSY;
2289 			break;
2290 		}
2291 
2292 		/*
2293 		 * If we caught a signal, we have retried and now
2294 		 * exit immediately.
2295 		 */
2296 		if (error != 0)
2297 			break;
2298 
2299 		umtxq_lock(&uq->uq_key);
2300 		umtxq_busy(&uq->uq_key);
2301 		umtxq_unlock(&uq->uq_key);
2302 
2303 		/*
2304 		 * Set the contested bit so that a release in user space
2305 		 * knows to use the system call for unlock.  If this fails
2306 		 * either some one else has acquired the lock or it has been
2307 		 * released.
2308 		 */
2309 		rv = casueword32(&m->m_owner, owner, &old, owner |
2310 		    UMUTEX_CONTESTED);
2311 
2312 		/* The address was invalid. */
2313 		if (rv == -1) {
2314 			umtxq_unbusy_unlocked(&uq->uq_key);
2315 			error = EFAULT;
2316 			break;
2317 		}
2318 		if (rv == 1) {
2319 			umtxq_unbusy_unlocked(&uq->uq_key);
2320 			error = thread_check_susp(td, true);
2321 			if (error != 0)
2322 				break;
2323 
2324 			/*
2325 			 * The lock changed and we need to retry or we
2326 			 * lost a race to the thread unlocking the
2327 			 * umtx.  Note that the UMUTEX_RB_OWNERDEAD
2328 			 * value for owner is impossible there.
2329 			 */
2330 			continue;
2331 		}
2332 
2333 		umtxq_lock(&uq->uq_key);
2334 
2335 		/* We set the contested bit, sleep. */
2336 		MPASS(old == owner);
2337 		error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
2338 		    "umtxpi", timeout == NULL ? NULL : &timo,
2339 		    (flags & USYNC_PROCESS_SHARED) != 0);
2340 		if (error != 0)
2341 			continue;
2342 
2343 		error = thread_check_susp(td, false);
2344 		if (error != 0)
2345 			break;
2346 	}
2347 
2348 	umtxq_lock(&uq->uq_key);
2349 	umtx_pi_unref(pi);
2350 	umtxq_unlock(&uq->uq_key);
2351 
2352 	umtx_key_release(&uq->uq_key);
2353 	return (error);
2354 }
2355 
2356 /*
2357  * Unlock a PI mutex.
2358  */
2359 static int
2360 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2361 {
2362 	struct umtx_key key;
2363 	struct umtx_q *uq_first, *uq_first2, *uq_me;
2364 	struct umtx_pi *pi, *pi2;
2365 	uint32_t id, new_owner, old, owner;
2366 	int count, error, pri;
2367 
2368 	id = td->td_tid;
2369 
2370 usrloop:
2371 	/*
2372 	 * Make sure we own this mtx.
2373 	 */
2374 	error = fueword32(&m->m_owner, &owner);
2375 	if (error == -1)
2376 		return (EFAULT);
2377 
2378 	if ((owner & ~UMUTEX_CONTESTED) != id)
2379 		return (EPERM);
2380 
2381 	new_owner = umtx_unlock_val(flags, rb);
2382 
2383 	/* This should be done in userland */
2384 	if ((owner & UMUTEX_CONTESTED) == 0) {
2385 		error = casueword32(&m->m_owner, owner, &old, new_owner);
2386 		if (error == -1)
2387 			return (EFAULT);
2388 		if (error == 1) {
2389 			error = thread_check_susp(td, true);
2390 			if (error != 0)
2391 				return (error);
2392 			goto usrloop;
2393 		}
2394 		if (old == owner)
2395 			return (0);
2396 		owner = old;
2397 	}
2398 
2399 	/* We should only ever be in here for contested locks */
2400 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2401 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2402 	    &key)) != 0)
2403 		return (error);
2404 
2405 	umtxq_lock(&key);
2406 	umtxq_busy(&key);
2407 	count = umtxq_count_pi(&key, &uq_first);
2408 	if (uq_first != NULL) {
2409 		mtx_lock(&umtx_lock);
2410 		pi = uq_first->uq_pi_blocked;
2411 		KASSERT(pi != NULL, ("pi == NULL?"));
2412 		if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
2413 			mtx_unlock(&umtx_lock);
2414 			umtxq_unbusy(&key);
2415 			umtxq_unlock(&key);
2416 			umtx_key_release(&key);
2417 			/* userland messed the mutex */
2418 			return (EPERM);
2419 		}
2420 		uq_me = td->td_umtxq;
2421 		if (pi->pi_owner == td)
2422 			umtx_pi_disown(pi);
2423 		/* get highest priority thread which is still sleeping. */
2424 		uq_first = TAILQ_FIRST(&pi->pi_blocked);
2425 		while (uq_first != NULL &&
2426 		    (uq_first->uq_flags & UQF_UMTXQ) == 0) {
2427 			uq_first = TAILQ_NEXT(uq_first, uq_lockq);
2428 		}
2429 		pri = PRI_MAX;
2430 		TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
2431 			uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
2432 			if (uq_first2 != NULL) {
2433 				if (pri > UPRI(uq_first2->uq_thread))
2434 					pri = UPRI(uq_first2->uq_thread);
2435 			}
2436 		}
2437 		thread_lock(td);
2438 		sched_lend_user_prio(td, pri);
2439 		thread_unlock(td);
2440 		mtx_unlock(&umtx_lock);
2441 		if (uq_first)
2442 			umtxq_signal_thread(uq_first);
2443 	} else {
2444 		pi = umtx_pi_lookup(&key);
2445 		/*
2446 		 * A umtx_pi can exist if a signal or timeout removed the
2447 		 * last waiter from the umtxq, but there is still
2448 		 * a thread in do_lock_pi() holding the umtx_pi.
2449 		 */
2450 		if (pi != NULL) {
2451 			/*
2452 			 * The umtx_pi can be unowned, such as when a thread
2453 			 * has just entered do_lock_pi(), allocated the
2454 			 * umtx_pi, and unlocked the umtxq.
2455 			 * If the current thread owns it, it must disown it.
2456 			 */
2457 			mtx_lock(&umtx_lock);
2458 			if (pi->pi_owner == td)
2459 				umtx_pi_disown(pi);
2460 			mtx_unlock(&umtx_lock);
2461 		}
2462 	}
2463 	umtxq_unlock(&key);
2464 
2465 	/*
2466 	 * When unlocking the umtx, it must be marked as unowned if
2467 	 * there is zero or one thread only waiting for it.
2468 	 * Otherwise, it must be marked as contested.
2469 	 */
2470 
2471 	if (count > 1)
2472 		new_owner |= UMUTEX_CONTESTED;
2473 again:
2474 	error = casueword32(&m->m_owner, owner, &old, new_owner);
2475 	if (error == 1) {
2476 		error = thread_check_susp(td, false);
2477 		if (error == 0)
2478 			goto again;
2479 	}
2480 	umtxq_unbusy_unlocked(&key);
2481 	umtx_key_release(&key);
2482 	if (error == -1)
2483 		return (EFAULT);
2484 	if (error == 0 && old != owner)
2485 		return (EINVAL);
2486 	return (error);
2487 }
2488 
2489 /*
2490  * Lock a PP mutex.
2491  */
2492 static int
2493 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
2494     struct _umtx_time *timeout, int try)
2495 {
2496 	struct abs_timeout timo;
2497 	struct umtx_q *uq, *uq2;
2498 	struct umtx_pi *pi;
2499 	uint32_t ceiling;
2500 	uint32_t owner, id;
2501 	int error, pri, old_inherited_pri, su, rv;
2502 
2503 	id = td->td_tid;
2504 	uq = td->td_umtxq;
2505 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2506 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2507 	    &uq->uq_key)) != 0)
2508 		return (error);
2509 
2510 	if (timeout != NULL)
2511 		abs_timeout_init2(&timo, timeout);
2512 
2513 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2514 	for (;;) {
2515 		old_inherited_pri = uq->uq_inherited_pri;
2516 		umtxq_lock(&uq->uq_key);
2517 		umtxq_busy(&uq->uq_key);
2518 		umtxq_unlock(&uq->uq_key);
2519 
2520 		rv = fueword32(&m->m_ceilings[0], &ceiling);
2521 		if (rv == -1) {
2522 			error = EFAULT;
2523 			goto out;
2524 		}
2525 		ceiling = RTP_PRIO_MAX - ceiling;
2526 		if (ceiling > RTP_PRIO_MAX) {
2527 			error = EINVAL;
2528 			goto out;
2529 		}
2530 
2531 		mtx_lock(&umtx_lock);
2532 		if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
2533 			mtx_unlock(&umtx_lock);
2534 			error = EINVAL;
2535 			goto out;
2536 		}
2537 		if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
2538 			uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
2539 			thread_lock(td);
2540 			if (uq->uq_inherited_pri < UPRI(td))
2541 				sched_lend_user_prio(td, uq->uq_inherited_pri);
2542 			thread_unlock(td);
2543 		}
2544 		mtx_unlock(&umtx_lock);
2545 
2546 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2547 		    id | UMUTEX_CONTESTED);
2548 		/* The address was invalid. */
2549 		if (rv == -1) {
2550 			error = EFAULT;
2551 			break;
2552 		}
2553 		if (rv == 0) {
2554 			MPASS(owner == UMUTEX_CONTESTED);
2555 			error = 0;
2556 			break;
2557 		}
2558 		/* rv == 1 */
2559 		if (owner == UMUTEX_RB_OWNERDEAD) {
2560 			rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
2561 			    &owner, id | UMUTEX_CONTESTED);
2562 			if (rv == -1) {
2563 				error = EFAULT;
2564 				break;
2565 			}
2566 			if (rv == 0) {
2567 				MPASS(owner == UMUTEX_RB_OWNERDEAD);
2568 				error = EOWNERDEAD; /* success */
2569 				break;
2570 			}
2571 
2572 			/*
2573 			 *  rv == 1, only check for suspension if we
2574 			 *  did not already catched a signal.  If we
2575 			 *  get an error from the check, the same
2576 			 *  condition is checked by the umtxq_sleep()
2577 			 *  call below, so we should obliterate the
2578 			 *  error to not skip the last loop iteration.
2579 			 */
2580 			if (error == 0) {
2581 				error = thread_check_susp(td, false);
2582 				if (error == 0) {
2583 					if (try != 0)
2584 						error = EBUSY;
2585 					else
2586 						continue;
2587 				}
2588 				error = 0;
2589 			}
2590 		} else if (owner == UMUTEX_RB_NOTRECOV) {
2591 			error = ENOTRECOVERABLE;
2592 		}
2593 
2594 		if (try != 0)
2595 			error = EBUSY;
2596 
2597 		/*
2598 		 * If we caught a signal, we have retried and now
2599 		 * exit immediately.
2600 		 */
2601 		if (error != 0)
2602 			break;
2603 
2604 		umtxq_lock(&uq->uq_key);
2605 		umtxq_insert(uq);
2606 		umtxq_unbusy(&uq->uq_key);
2607 		error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
2608 		    NULL : &timo);
2609 		umtxq_remove(uq);
2610 		umtxq_unlock(&uq->uq_key);
2611 
2612 		mtx_lock(&umtx_lock);
2613 		uq->uq_inherited_pri = old_inherited_pri;
2614 		pri = PRI_MAX;
2615 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2616 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2617 			if (uq2 != NULL) {
2618 				if (pri > UPRI(uq2->uq_thread))
2619 					pri = UPRI(uq2->uq_thread);
2620 			}
2621 		}
2622 		if (pri > uq->uq_inherited_pri)
2623 			pri = uq->uq_inherited_pri;
2624 		thread_lock(td);
2625 		sched_lend_user_prio(td, pri);
2626 		thread_unlock(td);
2627 		mtx_unlock(&umtx_lock);
2628 	}
2629 
2630 	if (error != 0 && error != EOWNERDEAD) {
2631 		mtx_lock(&umtx_lock);
2632 		uq->uq_inherited_pri = old_inherited_pri;
2633 		pri = PRI_MAX;
2634 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2635 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2636 			if (uq2 != NULL) {
2637 				if (pri > UPRI(uq2->uq_thread))
2638 					pri = UPRI(uq2->uq_thread);
2639 			}
2640 		}
2641 		if (pri > uq->uq_inherited_pri)
2642 			pri = uq->uq_inherited_pri;
2643 		thread_lock(td);
2644 		sched_lend_user_prio(td, pri);
2645 		thread_unlock(td);
2646 		mtx_unlock(&umtx_lock);
2647 	}
2648 
2649 out:
2650 	umtxq_unbusy_unlocked(&uq->uq_key);
2651 	umtx_key_release(&uq->uq_key);
2652 	return (error);
2653 }
2654 
2655 /*
2656  * Unlock a PP mutex.
2657  */
2658 static int
2659 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2660 {
2661 	struct umtx_key key;
2662 	struct umtx_q *uq, *uq2;
2663 	struct umtx_pi *pi;
2664 	uint32_t id, owner, rceiling;
2665 	int error, pri, new_inherited_pri, su;
2666 
2667 	id = td->td_tid;
2668 	uq = td->td_umtxq;
2669 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2670 
2671 	/*
2672 	 * Make sure we own this mtx.
2673 	 */
2674 	error = fueword32(&m->m_owner, &owner);
2675 	if (error == -1)
2676 		return (EFAULT);
2677 
2678 	if ((owner & ~UMUTEX_CONTESTED) != id)
2679 		return (EPERM);
2680 
2681 	error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
2682 	if (error != 0)
2683 		return (error);
2684 
2685 	if (rceiling == -1)
2686 		new_inherited_pri = PRI_MAX;
2687 	else {
2688 		rceiling = RTP_PRIO_MAX - rceiling;
2689 		if (rceiling > RTP_PRIO_MAX)
2690 			return (EINVAL);
2691 		new_inherited_pri = PRI_MIN_REALTIME + rceiling;
2692 	}
2693 
2694 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2695 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2696 	    &key)) != 0)
2697 		return (error);
2698 	umtxq_lock(&key);
2699 	umtxq_busy(&key);
2700 	umtxq_unlock(&key);
2701 	/*
2702 	 * For priority protected mutex, always set unlocked state
2703 	 * to UMUTEX_CONTESTED, so that userland always enters kernel
2704 	 * to lock the mutex, it is necessary because thread priority
2705 	 * has to be adjusted for such mutex.
2706 	 */
2707 	error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
2708 	    UMUTEX_CONTESTED);
2709 
2710 	umtxq_lock(&key);
2711 	if (error == 0)
2712 		umtxq_signal(&key, 1);
2713 	umtxq_unbusy(&key);
2714 	umtxq_unlock(&key);
2715 
2716 	if (error == -1)
2717 		error = EFAULT;
2718 	else {
2719 		mtx_lock(&umtx_lock);
2720 		if (su != 0)
2721 			uq->uq_inherited_pri = new_inherited_pri;
2722 		pri = PRI_MAX;
2723 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2724 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2725 			if (uq2 != NULL) {
2726 				if (pri > UPRI(uq2->uq_thread))
2727 					pri = UPRI(uq2->uq_thread);
2728 			}
2729 		}
2730 		if (pri > uq->uq_inherited_pri)
2731 			pri = uq->uq_inherited_pri;
2732 		thread_lock(td);
2733 		sched_lend_user_prio(td, pri);
2734 		thread_unlock(td);
2735 		mtx_unlock(&umtx_lock);
2736 	}
2737 	umtx_key_release(&key);
2738 	return (error);
2739 }
2740 
2741 static int
2742 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
2743     uint32_t *old_ceiling)
2744 {
2745 	struct umtx_q *uq;
2746 	uint32_t flags, id, owner, save_ceiling;
2747 	int error, rv, rv1;
2748 
2749 	error = fueword32(&m->m_flags, &flags);
2750 	if (error == -1)
2751 		return (EFAULT);
2752 	if ((flags & UMUTEX_PRIO_PROTECT) == 0)
2753 		return (EINVAL);
2754 	if (ceiling > RTP_PRIO_MAX)
2755 		return (EINVAL);
2756 	id = td->td_tid;
2757 	uq = td->td_umtxq;
2758 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2759 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2760 	    &uq->uq_key)) != 0)
2761 		return (error);
2762 	for (;;) {
2763 		umtxq_lock(&uq->uq_key);
2764 		umtxq_busy(&uq->uq_key);
2765 		umtxq_unlock(&uq->uq_key);
2766 
2767 		rv = fueword32(&m->m_ceilings[0], &save_ceiling);
2768 		if (rv == -1) {
2769 			error = EFAULT;
2770 			break;
2771 		}
2772 
2773 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2774 		    id | UMUTEX_CONTESTED);
2775 		if (rv == -1) {
2776 			error = EFAULT;
2777 			break;
2778 		}
2779 
2780 		if (rv == 0) {
2781 			MPASS(owner == UMUTEX_CONTESTED);
2782 			rv = suword32(&m->m_ceilings[0], ceiling);
2783 			rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
2784 			error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
2785 			break;
2786 		}
2787 
2788 		if ((owner & ~UMUTEX_CONTESTED) == id) {
2789 			rv = suword32(&m->m_ceilings[0], ceiling);
2790 			error = rv == 0 ? 0 : EFAULT;
2791 			break;
2792 		}
2793 
2794 		if (owner == UMUTEX_RB_OWNERDEAD) {
2795 			error = EOWNERDEAD;
2796 			break;
2797 		} else if (owner == UMUTEX_RB_NOTRECOV) {
2798 			error = ENOTRECOVERABLE;
2799 			break;
2800 		}
2801 
2802 		/*
2803 		 * If we caught a signal, we have retried and now
2804 		 * exit immediately.
2805 		 */
2806 		if (error != 0)
2807 			break;
2808 
2809 		/*
2810 		 * We set the contested bit, sleep. Otherwise the lock changed
2811 		 * and we need to retry or we lost a race to the thread
2812 		 * unlocking the umtx.
2813 		 */
2814 		umtxq_lock(&uq->uq_key);
2815 		umtxq_insert(uq);
2816 		umtxq_unbusy(&uq->uq_key);
2817 		error = umtxq_sleep(uq, "umtxpp", NULL);
2818 		umtxq_remove(uq);
2819 		umtxq_unlock(&uq->uq_key);
2820 	}
2821 	umtxq_lock(&uq->uq_key);
2822 	if (error == 0)
2823 		umtxq_signal(&uq->uq_key, INT_MAX);
2824 	umtxq_unbusy(&uq->uq_key);
2825 	umtxq_unlock(&uq->uq_key);
2826 	umtx_key_release(&uq->uq_key);
2827 	if (error == 0 && old_ceiling != NULL) {
2828 		rv = suword32(old_ceiling, save_ceiling);
2829 		error = rv == 0 ? 0 : EFAULT;
2830 	}
2831 	return (error);
2832 }
2833 
2834 /*
2835  * Lock a userland POSIX mutex.
2836  */
2837 static int
2838 do_lock_umutex(struct thread *td, struct umutex *m,
2839     struct _umtx_time *timeout, int mode)
2840 {
2841 	uint32_t flags;
2842 	int error;
2843 
2844 	error = fueword32(&m->m_flags, &flags);
2845 	if (error == -1)
2846 		return (EFAULT);
2847 
2848 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2849 	case 0:
2850 		error = do_lock_normal(td, m, flags, timeout, mode);
2851 		break;
2852 	case UMUTEX_PRIO_INHERIT:
2853 		error = do_lock_pi(td, m, flags, timeout, mode);
2854 		break;
2855 	case UMUTEX_PRIO_PROTECT:
2856 		error = do_lock_pp(td, m, flags, timeout, mode);
2857 		break;
2858 	default:
2859 		return (EINVAL);
2860 	}
2861 	if (timeout == NULL) {
2862 		if (error == EINTR && mode != _UMUTEX_WAIT)
2863 			error = ERESTART;
2864 	} else {
2865 		/* Timed-locking is not restarted. */
2866 		if (error == ERESTART)
2867 			error = EINTR;
2868 	}
2869 	return (error);
2870 }
2871 
2872 /*
2873  * Unlock a userland POSIX mutex.
2874  */
2875 static int
2876 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
2877 {
2878 	uint32_t flags;
2879 	int error;
2880 
2881 	error = fueword32(&m->m_flags, &flags);
2882 	if (error == -1)
2883 		return (EFAULT);
2884 
2885 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2886 	case 0:
2887 		return (do_unlock_normal(td, m, flags, rb));
2888 	case UMUTEX_PRIO_INHERIT:
2889 		return (do_unlock_pi(td, m, flags, rb));
2890 	case UMUTEX_PRIO_PROTECT:
2891 		return (do_unlock_pp(td, m, flags, rb));
2892 	}
2893 
2894 	return (EINVAL);
2895 }
2896 
2897 static int
2898 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
2899     struct timespec *timeout, u_long wflags)
2900 {
2901 	struct abs_timeout timo;
2902 	struct umtx_q *uq;
2903 	uint32_t flags, clockid, hasw;
2904 	int error;
2905 
2906 	uq = td->td_umtxq;
2907 	error = fueword32(&cv->c_flags, &flags);
2908 	if (error == -1)
2909 		return (EFAULT);
2910 	error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
2911 	if (error != 0)
2912 		return (error);
2913 
2914 	if ((wflags & CVWAIT_CLOCKID) != 0) {
2915 		error = fueword32(&cv->c_clockid, &clockid);
2916 		if (error == -1) {
2917 			umtx_key_release(&uq->uq_key);
2918 			return (EFAULT);
2919 		}
2920 		if (clockid < CLOCK_REALTIME ||
2921 		    clockid >= CLOCK_THREAD_CPUTIME_ID) {
2922 			/* hmm, only HW clock id will work. */
2923 			umtx_key_release(&uq->uq_key);
2924 			return (EINVAL);
2925 		}
2926 	} else {
2927 		clockid = CLOCK_REALTIME;
2928 	}
2929 
2930 	umtxq_lock(&uq->uq_key);
2931 	umtxq_busy(&uq->uq_key);
2932 	umtxq_insert(uq);
2933 	umtxq_unlock(&uq->uq_key);
2934 
2935 	/*
2936 	 * Set c_has_waiters to 1 before releasing user mutex, also
2937 	 * don't modify cache line when unnecessary.
2938 	 */
2939 	error = fueword32(&cv->c_has_waiters, &hasw);
2940 	if (error == 0 && hasw == 0)
2941 		suword32(&cv->c_has_waiters, 1);
2942 
2943 	umtxq_unbusy_unlocked(&uq->uq_key);
2944 
2945 	error = do_unlock_umutex(td, m, false);
2946 
2947 	if (timeout != NULL)
2948 		abs_timeout_init(&timo, clockid, (wflags & CVWAIT_ABSTIME) != 0,
2949 		    timeout);
2950 
2951 	umtxq_lock(&uq->uq_key);
2952 	if (error == 0) {
2953 		error = umtxq_sleep(uq, "ucond", timeout == NULL ?
2954 		    NULL : &timo);
2955 	}
2956 
2957 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
2958 		error = 0;
2959 	else {
2960 		/*
2961 		 * This must be timeout,interrupted by signal or
2962 		 * surprious wakeup, clear c_has_waiter flag when
2963 		 * necessary.
2964 		 */
2965 		umtxq_busy(&uq->uq_key);
2966 		if ((uq->uq_flags & UQF_UMTXQ) != 0) {
2967 			int oldlen = uq->uq_cur_queue->length;
2968 			umtxq_remove(uq);
2969 			if (oldlen == 1) {
2970 				umtxq_unlock(&uq->uq_key);
2971 				suword32(&cv->c_has_waiters, 0);
2972 				umtxq_lock(&uq->uq_key);
2973 			}
2974 		}
2975 		umtxq_unbusy(&uq->uq_key);
2976 		if (error == ERESTART)
2977 			error = EINTR;
2978 	}
2979 
2980 	umtxq_unlock(&uq->uq_key);
2981 	umtx_key_release(&uq->uq_key);
2982 	return (error);
2983 }
2984 
2985 /*
2986  * Signal a userland condition variable.
2987  */
2988 static int
2989 do_cv_signal(struct thread *td, struct ucond *cv)
2990 {
2991 	struct umtx_key key;
2992 	int error, cnt, nwake;
2993 	uint32_t flags;
2994 
2995 	error = fueword32(&cv->c_flags, &flags);
2996 	if (error == -1)
2997 		return (EFAULT);
2998 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2999 		return (error);
3000 	umtxq_lock(&key);
3001 	umtxq_busy(&key);
3002 	cnt = umtxq_count(&key);
3003 	nwake = umtxq_signal(&key, 1);
3004 	if (cnt <= nwake) {
3005 		umtxq_unlock(&key);
3006 		error = suword32(&cv->c_has_waiters, 0);
3007 		if (error == -1)
3008 			error = EFAULT;
3009 		umtxq_lock(&key);
3010 	}
3011 	umtxq_unbusy(&key);
3012 	umtxq_unlock(&key);
3013 	umtx_key_release(&key);
3014 	return (error);
3015 }
3016 
3017 static int
3018 do_cv_broadcast(struct thread *td, struct ucond *cv)
3019 {
3020 	struct umtx_key key;
3021 	int error;
3022 	uint32_t flags;
3023 
3024 	error = fueword32(&cv->c_flags, &flags);
3025 	if (error == -1)
3026 		return (EFAULT);
3027 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
3028 		return (error);
3029 
3030 	umtxq_lock(&key);
3031 	umtxq_busy(&key);
3032 	umtxq_signal(&key, INT_MAX);
3033 	umtxq_unlock(&key);
3034 
3035 	error = suword32(&cv->c_has_waiters, 0);
3036 	if (error == -1)
3037 		error = EFAULT;
3038 
3039 	umtxq_unbusy_unlocked(&key);
3040 
3041 	umtx_key_release(&key);
3042 	return (error);
3043 }
3044 
3045 static int
3046 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag,
3047     struct _umtx_time *timeout)
3048 {
3049 	struct abs_timeout timo;
3050 	struct umtx_q *uq;
3051 	uint32_t flags, wrflags;
3052 	int32_t state, oldstate;
3053 	int32_t blocked_readers;
3054 	int error, error1, rv;
3055 
3056 	uq = td->td_umtxq;
3057 	error = fueword32(&rwlock->rw_flags, &flags);
3058 	if (error == -1)
3059 		return (EFAULT);
3060 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3061 	if (error != 0)
3062 		return (error);
3063 
3064 	if (timeout != NULL)
3065 		abs_timeout_init2(&timo, timeout);
3066 
3067 	wrflags = URWLOCK_WRITE_OWNER;
3068 	if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
3069 		wrflags |= URWLOCK_WRITE_WAITERS;
3070 
3071 	for (;;) {
3072 		rv = fueword32(&rwlock->rw_state, &state);
3073 		if (rv == -1) {
3074 			umtx_key_release(&uq->uq_key);
3075 			return (EFAULT);
3076 		}
3077 
3078 		/* try to lock it */
3079 		while (!(state & wrflags)) {
3080 			if (__predict_false(URWLOCK_READER_COUNT(state) ==
3081 			    URWLOCK_MAX_READERS)) {
3082 				umtx_key_release(&uq->uq_key);
3083 				return (EAGAIN);
3084 			}
3085 			rv = casueword32(&rwlock->rw_state, state,
3086 			    &oldstate, state + 1);
3087 			if (rv == -1) {
3088 				umtx_key_release(&uq->uq_key);
3089 				return (EFAULT);
3090 			}
3091 			if (rv == 0) {
3092 				MPASS(oldstate == state);
3093 				umtx_key_release(&uq->uq_key);
3094 				return (0);
3095 			}
3096 			error = thread_check_susp(td, true);
3097 			if (error != 0)
3098 				break;
3099 			state = oldstate;
3100 		}
3101 
3102 		if (error)
3103 			break;
3104 
3105 		/* grab monitor lock */
3106 		umtxq_lock(&uq->uq_key);
3107 		umtxq_busy(&uq->uq_key);
3108 		umtxq_unlock(&uq->uq_key);
3109 
3110 		/*
3111 		 * re-read the state, in case it changed between the try-lock above
3112 		 * and the check below
3113 		 */
3114 		rv = fueword32(&rwlock->rw_state, &state);
3115 		if (rv == -1)
3116 			error = EFAULT;
3117 
3118 		/* set read contention bit */
3119 		while (error == 0 && (state & wrflags) &&
3120 		    !(state & URWLOCK_READ_WAITERS)) {
3121 			rv = casueword32(&rwlock->rw_state, state,
3122 			    &oldstate, state | URWLOCK_READ_WAITERS);
3123 			if (rv == -1) {
3124 				error = EFAULT;
3125 				break;
3126 			}
3127 			if (rv == 0) {
3128 				MPASS(oldstate == state);
3129 				goto sleep;
3130 			}
3131 			state = oldstate;
3132 			error = thread_check_susp(td, false);
3133 			if (error != 0)
3134 				break;
3135 		}
3136 		if (error != 0) {
3137 			umtxq_unbusy_unlocked(&uq->uq_key);
3138 			break;
3139 		}
3140 
3141 		/* state is changed while setting flags, restart */
3142 		if (!(state & wrflags)) {
3143 			umtxq_unbusy_unlocked(&uq->uq_key);
3144 			error = thread_check_susp(td, true);
3145 			if (error != 0)
3146 				break;
3147 			continue;
3148 		}
3149 
3150 sleep:
3151 		/*
3152 		 * Contention bit is set, before sleeping, increase
3153 		 * read waiter count.
3154 		 */
3155 		rv = fueword32(&rwlock->rw_blocked_readers,
3156 		    &blocked_readers);
3157 		if (rv == -1) {
3158 			umtxq_unbusy_unlocked(&uq->uq_key);
3159 			error = EFAULT;
3160 			break;
3161 		}
3162 		suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
3163 
3164 		while (state & wrflags) {
3165 			umtxq_lock(&uq->uq_key);
3166 			umtxq_insert(uq);
3167 			umtxq_unbusy(&uq->uq_key);
3168 
3169 			error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
3170 			    NULL : &timo);
3171 
3172 			umtxq_busy(&uq->uq_key);
3173 			umtxq_remove(uq);
3174 			umtxq_unlock(&uq->uq_key);
3175 			if (error)
3176 				break;
3177 			rv = fueword32(&rwlock->rw_state, &state);
3178 			if (rv == -1) {
3179 				error = EFAULT;
3180 				break;
3181 			}
3182 		}
3183 
3184 		/* decrease read waiter count, and may clear read contention bit */
3185 		rv = fueword32(&rwlock->rw_blocked_readers,
3186 		    &blocked_readers);
3187 		if (rv == -1) {
3188 			umtxq_unbusy_unlocked(&uq->uq_key);
3189 			error = EFAULT;
3190 			break;
3191 		}
3192 		suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
3193 		if (blocked_readers == 1) {
3194 			rv = fueword32(&rwlock->rw_state, &state);
3195 			if (rv == -1) {
3196 				umtxq_unbusy_unlocked(&uq->uq_key);
3197 				error = EFAULT;
3198 				break;
3199 			}
3200 			for (;;) {
3201 				rv = casueword32(&rwlock->rw_state, state,
3202 				    &oldstate, state & ~URWLOCK_READ_WAITERS);
3203 				if (rv == -1) {
3204 					error = EFAULT;
3205 					break;
3206 				}
3207 				if (rv == 0) {
3208 					MPASS(oldstate == state);
3209 					break;
3210 				}
3211 				state = oldstate;
3212 				error1 = thread_check_susp(td, false);
3213 				if (error1 != 0) {
3214 					if (error == 0)
3215 						error = error1;
3216 					break;
3217 				}
3218 			}
3219 		}
3220 
3221 		umtxq_unbusy_unlocked(&uq->uq_key);
3222 		if (error != 0)
3223 			break;
3224 	}
3225 	umtx_key_release(&uq->uq_key);
3226 	if (error == ERESTART)
3227 		error = EINTR;
3228 	return (error);
3229 }
3230 
3231 static int
3232 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
3233 {
3234 	struct abs_timeout timo;
3235 	struct umtx_q *uq;
3236 	uint32_t flags;
3237 	int32_t state, oldstate;
3238 	int32_t blocked_writers;
3239 	int32_t blocked_readers;
3240 	int error, error1, rv;
3241 
3242 	uq = td->td_umtxq;
3243 	error = fueword32(&rwlock->rw_flags, &flags);
3244 	if (error == -1)
3245 		return (EFAULT);
3246 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3247 	if (error != 0)
3248 		return (error);
3249 
3250 	if (timeout != NULL)
3251 		abs_timeout_init2(&timo, timeout);
3252 
3253 	blocked_readers = 0;
3254 	for (;;) {
3255 		rv = fueword32(&rwlock->rw_state, &state);
3256 		if (rv == -1) {
3257 			umtx_key_release(&uq->uq_key);
3258 			return (EFAULT);
3259 		}
3260 		while ((state & URWLOCK_WRITE_OWNER) == 0 &&
3261 		    URWLOCK_READER_COUNT(state) == 0) {
3262 			rv = casueword32(&rwlock->rw_state, state,
3263 			    &oldstate, state | URWLOCK_WRITE_OWNER);
3264 			if (rv == -1) {
3265 				umtx_key_release(&uq->uq_key);
3266 				return (EFAULT);
3267 			}
3268 			if (rv == 0) {
3269 				MPASS(oldstate == state);
3270 				umtx_key_release(&uq->uq_key);
3271 				return (0);
3272 			}
3273 			state = oldstate;
3274 			error = thread_check_susp(td, true);
3275 			if (error != 0)
3276 				break;
3277 		}
3278 
3279 		if (error) {
3280 			if ((state & (URWLOCK_WRITE_OWNER |
3281 			    URWLOCK_WRITE_WAITERS)) == 0 &&
3282 			    blocked_readers != 0) {
3283 				umtxq_lock(&uq->uq_key);
3284 				umtxq_busy(&uq->uq_key);
3285 				umtxq_signal_queue(&uq->uq_key, INT_MAX,
3286 				    UMTX_SHARED_QUEUE);
3287 				umtxq_unbusy(&uq->uq_key);
3288 				umtxq_unlock(&uq->uq_key);
3289 			}
3290 
3291 			break;
3292 		}
3293 
3294 		/* grab monitor lock */
3295 		umtxq_lock(&uq->uq_key);
3296 		umtxq_busy(&uq->uq_key);
3297 		umtxq_unlock(&uq->uq_key);
3298 
3299 		/*
3300 		 * Re-read the state, in case it changed between the
3301 		 * try-lock above and the check below.
3302 		 */
3303 		rv = fueword32(&rwlock->rw_state, &state);
3304 		if (rv == -1)
3305 			error = EFAULT;
3306 
3307 		while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
3308 		    URWLOCK_READER_COUNT(state) != 0) &&
3309 		    (state & URWLOCK_WRITE_WAITERS) == 0) {
3310 			rv = casueword32(&rwlock->rw_state, state,
3311 			    &oldstate, state | URWLOCK_WRITE_WAITERS);
3312 			if (rv == -1) {
3313 				error = EFAULT;
3314 				break;
3315 			}
3316 			if (rv == 0) {
3317 				MPASS(oldstate == state);
3318 				goto sleep;
3319 			}
3320 			state = oldstate;
3321 			error = thread_check_susp(td, false);
3322 			if (error != 0)
3323 				break;
3324 		}
3325 		if (error != 0) {
3326 			umtxq_unbusy_unlocked(&uq->uq_key);
3327 			break;
3328 		}
3329 
3330 		if ((state & URWLOCK_WRITE_OWNER) == 0 &&
3331 		    URWLOCK_READER_COUNT(state) == 0) {
3332 			umtxq_unbusy_unlocked(&uq->uq_key);
3333 			error = thread_check_susp(td, false);
3334 			if (error != 0)
3335 				break;
3336 			continue;
3337 		}
3338 sleep:
3339 		rv = fueword32(&rwlock->rw_blocked_writers,
3340 		    &blocked_writers);
3341 		if (rv == -1) {
3342 			umtxq_unbusy_unlocked(&uq->uq_key);
3343 			error = EFAULT;
3344 			break;
3345 		}
3346 		suword32(&rwlock->rw_blocked_writers, blocked_writers + 1);
3347 
3348 		while ((state & URWLOCK_WRITE_OWNER) ||
3349 		    URWLOCK_READER_COUNT(state) != 0) {
3350 			umtxq_lock(&uq->uq_key);
3351 			umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3352 			umtxq_unbusy(&uq->uq_key);
3353 
3354 			error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
3355 			    NULL : &timo);
3356 
3357 			umtxq_busy(&uq->uq_key);
3358 			umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3359 			umtxq_unlock(&uq->uq_key);
3360 			if (error)
3361 				break;
3362 			rv = fueword32(&rwlock->rw_state, &state);
3363 			if (rv == -1) {
3364 				error = EFAULT;
3365 				break;
3366 			}
3367 		}
3368 
3369 		rv = fueword32(&rwlock->rw_blocked_writers,
3370 		    &blocked_writers);
3371 		if (rv == -1) {
3372 			umtxq_unbusy_unlocked(&uq->uq_key);
3373 			error = EFAULT;
3374 			break;
3375 		}
3376 		suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
3377 		if (blocked_writers == 1) {
3378 			rv = fueword32(&rwlock->rw_state, &state);
3379 			if (rv == -1) {
3380 				umtxq_unbusy_unlocked(&uq->uq_key);
3381 				error = EFAULT;
3382 				break;
3383 			}
3384 			for (;;) {
3385 				rv = casueword32(&rwlock->rw_state, state,
3386 				    &oldstate, state & ~URWLOCK_WRITE_WAITERS);
3387 				if (rv == -1) {
3388 					error = EFAULT;
3389 					break;
3390 				}
3391 				if (rv == 0) {
3392 					MPASS(oldstate == state);
3393 					break;
3394 				}
3395 				state = oldstate;
3396 				error1 = thread_check_susp(td, false);
3397 				/*
3398 				 * We are leaving the URWLOCK_WRITE_WAITERS
3399 				 * behind, but this should not harm the
3400 				 * correctness.
3401 				 */
3402 				if (error1 != 0) {
3403 					if (error == 0)
3404 						error = error1;
3405 					break;
3406 				}
3407 			}
3408 			rv = fueword32(&rwlock->rw_blocked_readers,
3409 			    &blocked_readers);
3410 			if (rv == -1) {
3411 				umtxq_unbusy_unlocked(&uq->uq_key);
3412 				error = EFAULT;
3413 				break;
3414 			}
3415 		} else
3416 			blocked_readers = 0;
3417 
3418 		umtxq_unbusy_unlocked(&uq->uq_key);
3419 	}
3420 
3421 	umtx_key_release(&uq->uq_key);
3422 	if (error == ERESTART)
3423 		error = EINTR;
3424 	return (error);
3425 }
3426 
3427 static int
3428 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
3429 {
3430 	struct umtx_q *uq;
3431 	uint32_t flags;
3432 	int32_t state, oldstate;
3433 	int error, rv, q, count;
3434 
3435 	uq = td->td_umtxq;
3436 	error = fueword32(&rwlock->rw_flags, &flags);
3437 	if (error == -1)
3438 		return (EFAULT);
3439 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3440 	if (error != 0)
3441 		return (error);
3442 
3443 	error = fueword32(&rwlock->rw_state, &state);
3444 	if (error == -1) {
3445 		error = EFAULT;
3446 		goto out;
3447 	}
3448 	if (state & URWLOCK_WRITE_OWNER) {
3449 		for (;;) {
3450 			rv = casueword32(&rwlock->rw_state, state,
3451 			    &oldstate, state & ~URWLOCK_WRITE_OWNER);
3452 			if (rv == -1) {
3453 				error = EFAULT;
3454 				goto out;
3455 			}
3456 			if (rv == 1) {
3457 				state = oldstate;
3458 				if (!(oldstate & URWLOCK_WRITE_OWNER)) {
3459 					error = EPERM;
3460 					goto out;
3461 				}
3462 				error = thread_check_susp(td, true);
3463 				if (error != 0)
3464 					goto out;
3465 			} else
3466 				break;
3467 		}
3468 	} else if (URWLOCK_READER_COUNT(state) != 0) {
3469 		for (;;) {
3470 			rv = casueword32(&rwlock->rw_state, state,
3471 			    &oldstate, state - 1);
3472 			if (rv == -1) {
3473 				error = EFAULT;
3474 				goto out;
3475 			}
3476 			if (rv == 1) {
3477 				state = oldstate;
3478 				if (URWLOCK_READER_COUNT(oldstate) == 0) {
3479 					error = EPERM;
3480 					goto out;
3481 				}
3482 				error = thread_check_susp(td, true);
3483 				if (error != 0)
3484 					goto out;
3485 			} else
3486 				break;
3487 		}
3488 	} else {
3489 		error = EPERM;
3490 		goto out;
3491 	}
3492 
3493 	count = 0;
3494 
3495 	if (!(flags & URWLOCK_PREFER_READER)) {
3496 		if (state & URWLOCK_WRITE_WAITERS) {
3497 			count = 1;
3498 			q = UMTX_EXCLUSIVE_QUEUE;
3499 		} else if (state & URWLOCK_READ_WAITERS) {
3500 			count = INT_MAX;
3501 			q = UMTX_SHARED_QUEUE;
3502 		}
3503 	} else {
3504 		if (state & URWLOCK_READ_WAITERS) {
3505 			count = INT_MAX;
3506 			q = UMTX_SHARED_QUEUE;
3507 		} else if (state & URWLOCK_WRITE_WAITERS) {
3508 			count = 1;
3509 			q = UMTX_EXCLUSIVE_QUEUE;
3510 		}
3511 	}
3512 
3513 	if (count) {
3514 		umtxq_lock(&uq->uq_key);
3515 		umtxq_busy(&uq->uq_key);
3516 		umtxq_signal_queue(&uq->uq_key, count, q);
3517 		umtxq_unbusy(&uq->uq_key);
3518 		umtxq_unlock(&uq->uq_key);
3519 	}
3520 out:
3521 	umtx_key_release(&uq->uq_key);
3522 	return (error);
3523 }
3524 
3525 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3526 static int
3527 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
3528 {
3529 	struct abs_timeout timo;
3530 	struct umtx_q *uq;
3531 	uint32_t flags, count, count1;
3532 	int error, rv, rv1;
3533 
3534 	uq = td->td_umtxq;
3535 	error = fueword32(&sem->_flags, &flags);
3536 	if (error == -1)
3537 		return (EFAULT);
3538 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3539 	if (error != 0)
3540 		return (error);
3541 
3542 	if (timeout != NULL)
3543 		abs_timeout_init2(&timo, timeout);
3544 
3545 again:
3546 	umtxq_lock(&uq->uq_key);
3547 	umtxq_busy(&uq->uq_key);
3548 	umtxq_insert(uq);
3549 	umtxq_unlock(&uq->uq_key);
3550 	rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
3551 	if (rv == 0)
3552 		rv1 = fueword32(&sem->_count, &count);
3553 	if (rv == -1 || (rv == 0 && (rv1 == -1 || count != 0)) ||
3554 	    (rv == 1 && count1 == 0)) {
3555 		umtxq_lock(&uq->uq_key);
3556 		umtxq_unbusy(&uq->uq_key);
3557 		umtxq_remove(uq);
3558 		umtxq_unlock(&uq->uq_key);
3559 		if (rv == 1) {
3560 			rv = thread_check_susp(td, true);
3561 			if (rv == 0)
3562 				goto again;
3563 			error = rv;
3564 			goto out;
3565 		}
3566 		if (rv == 0)
3567 			rv = rv1;
3568 		error = rv == -1 ? EFAULT : 0;
3569 		goto out;
3570 	}
3571 	umtxq_lock(&uq->uq_key);
3572 	umtxq_unbusy(&uq->uq_key);
3573 
3574 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3575 
3576 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3577 		error = 0;
3578 	else {
3579 		umtxq_remove(uq);
3580 		/* A relative timeout cannot be restarted. */
3581 		if (error == ERESTART && timeout != NULL &&
3582 		    (timeout->_flags & UMTX_ABSTIME) == 0)
3583 			error = EINTR;
3584 	}
3585 	umtxq_unlock(&uq->uq_key);
3586 out:
3587 	umtx_key_release(&uq->uq_key);
3588 	return (error);
3589 }
3590 
3591 /*
3592  * Signal a userland semaphore.
3593  */
3594 static int
3595 do_sem_wake(struct thread *td, struct _usem *sem)
3596 {
3597 	struct umtx_key key;
3598 	int error, cnt;
3599 	uint32_t flags;
3600 
3601 	error = fueword32(&sem->_flags, &flags);
3602 	if (error == -1)
3603 		return (EFAULT);
3604 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3605 		return (error);
3606 	umtxq_lock(&key);
3607 	umtxq_busy(&key);
3608 	cnt = umtxq_count(&key);
3609 	if (cnt > 0) {
3610 		/*
3611 		 * Check if count is greater than 0, this means the memory is
3612 		 * still being referenced by user code, so we can safely
3613 		 * update _has_waiters flag.
3614 		 */
3615 		if (cnt == 1) {
3616 			umtxq_unlock(&key);
3617 			error = suword32(&sem->_has_waiters, 0);
3618 			umtxq_lock(&key);
3619 			if (error == -1)
3620 				error = EFAULT;
3621 		}
3622 		umtxq_signal(&key, 1);
3623 	}
3624 	umtxq_unbusy(&key);
3625 	umtxq_unlock(&key);
3626 	umtx_key_release(&key);
3627 	return (error);
3628 }
3629 #endif
3630 
3631 static int
3632 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
3633 {
3634 	struct abs_timeout timo;
3635 	struct umtx_q *uq;
3636 	uint32_t count, flags;
3637 	int error, rv;
3638 
3639 	uq = td->td_umtxq;
3640 	flags = fuword32(&sem->_flags);
3641 	if (timeout != NULL)
3642 		abs_timeout_init2(&timo, timeout);
3643 
3644 again:
3645 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3646 	if (error != 0)
3647 		return (error);
3648 	umtxq_lock(&uq->uq_key);
3649 	umtxq_busy(&uq->uq_key);
3650 	umtxq_insert(uq);
3651 	umtxq_unlock(&uq->uq_key);
3652 	rv = fueword32(&sem->_count, &count);
3653 	if (rv == -1) {
3654 		umtxq_lock(&uq->uq_key);
3655 		umtxq_unbusy(&uq->uq_key);
3656 		umtxq_remove(uq);
3657 		umtxq_unlock(&uq->uq_key);
3658 		umtx_key_release(&uq->uq_key);
3659 		return (EFAULT);
3660 	}
3661 	for (;;) {
3662 		if (USEM_COUNT(count) != 0) {
3663 			umtxq_lock(&uq->uq_key);
3664 			umtxq_unbusy(&uq->uq_key);
3665 			umtxq_remove(uq);
3666 			umtxq_unlock(&uq->uq_key);
3667 			umtx_key_release(&uq->uq_key);
3668 			return (0);
3669 		}
3670 		if (count == USEM_HAS_WAITERS)
3671 			break;
3672 		rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
3673 		if (rv == 0)
3674 			break;
3675 		umtxq_lock(&uq->uq_key);
3676 		umtxq_unbusy(&uq->uq_key);
3677 		umtxq_remove(uq);
3678 		umtxq_unlock(&uq->uq_key);
3679 		umtx_key_release(&uq->uq_key);
3680 		if (rv == -1)
3681 			return (EFAULT);
3682 		rv = thread_check_susp(td, true);
3683 		if (rv != 0)
3684 			return (rv);
3685 		goto again;
3686 	}
3687 	umtxq_lock(&uq->uq_key);
3688 	umtxq_unbusy(&uq->uq_key);
3689 
3690 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3691 
3692 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3693 		error = 0;
3694 	else {
3695 		umtxq_remove(uq);
3696 		if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
3697 			/* A relative timeout cannot be restarted. */
3698 			if (error == ERESTART)
3699 				error = EINTR;
3700 			if (error == EINTR) {
3701 				abs_timeout_update(&timo);
3702 				timespecsub(&timo.end, &timo.cur,
3703 				    &timeout->_timeout);
3704 			}
3705 		}
3706 	}
3707 	umtxq_unlock(&uq->uq_key);
3708 	umtx_key_release(&uq->uq_key);
3709 	return (error);
3710 }
3711 
3712 /*
3713  * Signal a userland semaphore.
3714  */
3715 static int
3716 do_sem2_wake(struct thread *td, struct _usem2 *sem)
3717 {
3718 	struct umtx_key key;
3719 	int error, cnt, rv;
3720 	uint32_t count, flags;
3721 
3722 	rv = fueword32(&sem->_flags, &flags);
3723 	if (rv == -1)
3724 		return (EFAULT);
3725 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3726 		return (error);
3727 	umtxq_lock(&key);
3728 	umtxq_busy(&key);
3729 	cnt = umtxq_count(&key);
3730 	if (cnt > 0) {
3731 		/*
3732 		 * If this was the last sleeping thread, clear the waiters
3733 		 * flag in _count.
3734 		 */
3735 		if (cnt == 1) {
3736 			umtxq_unlock(&key);
3737 			rv = fueword32(&sem->_count, &count);
3738 			while (rv != -1 && count & USEM_HAS_WAITERS) {
3739 				rv = casueword32(&sem->_count, count, &count,
3740 				    count & ~USEM_HAS_WAITERS);
3741 				if (rv == 1) {
3742 					rv = thread_check_susp(td, true);
3743 					if (rv != 0)
3744 						break;
3745 				}
3746 			}
3747 			if (rv == -1)
3748 				error = EFAULT;
3749 			else if (rv > 0) {
3750 				error = rv;
3751 			}
3752 			umtxq_lock(&key);
3753 		}
3754 
3755 		umtxq_signal(&key, 1);
3756 	}
3757 	umtxq_unbusy(&key);
3758 	umtxq_unlock(&key);
3759 	umtx_key_release(&key);
3760 	return (error);
3761 }
3762 
3763 #ifdef COMPAT_FREEBSD10
3764 int
3765 freebsd10__umtx_lock(struct thread *td, struct freebsd10__umtx_lock_args *uap)
3766 {
3767 	return (do_lock_umtx(td, uap->umtx, td->td_tid, 0));
3768 }
3769 
3770 int
3771 freebsd10__umtx_unlock(struct thread *td,
3772     struct freebsd10__umtx_unlock_args *uap)
3773 {
3774 	return (do_unlock_umtx(td, uap->umtx, td->td_tid));
3775 }
3776 #endif
3777 
3778 inline int
3779 umtx_copyin_timeout(const void *uaddr, struct timespec *tsp)
3780 {
3781 	int error;
3782 
3783 	error = copyin(uaddr, tsp, sizeof(*tsp));
3784 	if (error == 0) {
3785 		if (tsp->tv_sec < 0 ||
3786 		    tsp->tv_nsec >= 1000000000 ||
3787 		    tsp->tv_nsec < 0)
3788 			error = EINVAL;
3789 	}
3790 	return (error);
3791 }
3792 
3793 static inline int
3794 umtx_copyin_umtx_time(const void *uaddr, size_t size, struct _umtx_time *tp)
3795 {
3796 	int error;
3797 
3798 	if (size <= sizeof(tp->_timeout)) {
3799 		tp->_clockid = CLOCK_REALTIME;
3800 		tp->_flags = 0;
3801 		error = copyin(uaddr, &tp->_timeout, sizeof(tp->_timeout));
3802 	} else
3803 		error = copyin(uaddr, tp, sizeof(*tp));
3804 	if (error != 0)
3805 		return (error);
3806 	if (tp->_timeout.tv_sec < 0 ||
3807 	    tp->_timeout.tv_nsec >= 1000000000 || tp->_timeout.tv_nsec < 0)
3808 		return (EINVAL);
3809 	return (0);
3810 }
3811 
3812 static int
3813 umtx_copyin_robust_lists(const void *uaddr, size_t size,
3814     struct umtx_robust_lists_params *rb)
3815 {
3816 
3817 	if (size > sizeof(*rb))
3818 		return (EINVAL);
3819 	return (copyin(uaddr, rb, size));
3820 }
3821 
3822 static int
3823 umtx_copyout_timeout(void *uaddr, size_t sz, struct timespec *tsp)
3824 {
3825 
3826 	/*
3827 	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
3828 	 * and we're only called if sz >= sizeof(timespec) as supplied in the
3829 	 * copyops.
3830 	 */
3831 	KASSERT(sz >= sizeof(*tsp),
3832 	    ("umtx_copyops specifies incorrect sizes"));
3833 
3834 	return (copyout(tsp, uaddr, sizeof(*tsp)));
3835 }
3836 
3837 #ifdef COMPAT_FREEBSD10
3838 static int
3839 __umtx_op_lock_umtx(struct thread *td, struct _umtx_op_args *uap,
3840     const struct umtx_copyops *ops)
3841 {
3842 	struct timespec *ts, timeout;
3843 	int error;
3844 
3845 	/* Allow a null timespec (wait forever). */
3846 	if (uap->uaddr2 == NULL)
3847 		ts = NULL;
3848 	else {
3849 		error = ops->copyin_timeout(uap->uaddr2, &timeout);
3850 		if (error != 0)
3851 			return (error);
3852 		ts = &timeout;
3853 	}
3854 #ifdef COMPAT_FREEBSD32
3855 	if (ops->compat32)
3856 		return (do_lock_umtx32(td, uap->obj, uap->val, ts));
3857 #endif
3858 	return (do_lock_umtx(td, uap->obj, uap->val, ts));
3859 }
3860 
3861 static int
3862 __umtx_op_unlock_umtx(struct thread *td, struct _umtx_op_args *uap,
3863     const struct umtx_copyops *ops)
3864 {
3865 #ifdef COMPAT_FREEBSD32
3866 	if (ops->compat32)
3867 		return (do_unlock_umtx32(td, uap->obj, uap->val));
3868 #endif
3869 	return (do_unlock_umtx(td, uap->obj, uap->val));
3870 }
3871 #endif	/* COMPAT_FREEBSD10 */
3872 
3873 #if !defined(COMPAT_FREEBSD10)
3874 static int
3875 __umtx_op_unimpl(struct thread *td __unused, struct _umtx_op_args *uap __unused,
3876     const struct umtx_copyops *ops __unused)
3877 {
3878 	return (EOPNOTSUPP);
3879 }
3880 #endif	/* COMPAT_FREEBSD10 */
3881 
3882 static int
3883 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap,
3884     const struct umtx_copyops *ops)
3885 {
3886 	struct _umtx_time timeout, *tm_p;
3887 	int error;
3888 
3889 	if (uap->uaddr2 == NULL)
3890 		tm_p = NULL;
3891 	else {
3892 		error = ops->copyin_umtx_time(
3893 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3894 		if (error != 0)
3895 			return (error);
3896 		tm_p = &timeout;
3897 	}
3898 	return (do_wait(td, uap->obj, uap->val, tm_p, ops->compat32, 0));
3899 }
3900 
3901 static int
3902 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap,
3903     const struct umtx_copyops *ops)
3904 {
3905 	struct _umtx_time timeout, *tm_p;
3906 	int error;
3907 
3908 	if (uap->uaddr2 == NULL)
3909 		tm_p = NULL;
3910 	else {
3911 		error = ops->copyin_umtx_time(
3912 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3913 		if (error != 0)
3914 			return (error);
3915 		tm_p = &timeout;
3916 	}
3917 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
3918 }
3919 
3920 static int
3921 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap,
3922     const struct umtx_copyops *ops)
3923 {
3924 	struct _umtx_time *tm_p, timeout;
3925 	int error;
3926 
3927 	if (uap->uaddr2 == NULL)
3928 		tm_p = NULL;
3929 	else {
3930 		error = ops->copyin_umtx_time(
3931 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3932 		if (error != 0)
3933 			return (error);
3934 		tm_p = &timeout;
3935 	}
3936 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
3937 }
3938 
3939 static int
3940 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap,
3941     const struct umtx_copyops *ops __unused)
3942 {
3943 
3944 	return (kern_umtx_wake(td, uap->obj, uap->val, 0));
3945 }
3946 
3947 #define BATCH_SIZE	128
3948 static int
3949 __umtx_op_nwake_private_native(struct thread *td, struct _umtx_op_args *uap)
3950 {
3951 	char *uaddrs[BATCH_SIZE], **upp;
3952 	int count, error, i, pos, tocopy;
3953 
3954 	upp = (char **)uap->obj;
3955 	error = 0;
3956 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3957 	    pos += tocopy) {
3958 		tocopy = MIN(count, BATCH_SIZE);
3959 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
3960 		if (error != 0)
3961 			break;
3962 		for (i = 0; i < tocopy; ++i) {
3963 			kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
3964 		}
3965 		maybe_yield();
3966 	}
3967 	return (error);
3968 }
3969 
3970 static int
3971 __umtx_op_nwake_private_compat32(struct thread *td, struct _umtx_op_args *uap)
3972 {
3973 	uint32_t uaddrs[BATCH_SIZE], *upp;
3974 	int count, error, i, pos, tocopy;
3975 
3976 	upp = (uint32_t *)uap->obj;
3977 	error = 0;
3978 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3979 	    pos += tocopy) {
3980 		tocopy = MIN(count, BATCH_SIZE);
3981 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
3982 		if (error != 0)
3983 			break;
3984 		for (i = 0; i < tocopy; ++i) {
3985 			kern_umtx_wake(td, (void *)(uintptr_t)uaddrs[i],
3986 			    INT_MAX, 1);
3987 		}
3988 		maybe_yield();
3989 	}
3990 	return (error);
3991 }
3992 
3993 static int
3994 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap,
3995     const struct umtx_copyops *ops)
3996 {
3997 
3998 	if (ops->compat32)
3999 		return (__umtx_op_nwake_private_compat32(td, uap));
4000 	return (__umtx_op_nwake_private_native(td, uap));
4001 }
4002 
4003 static int
4004 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap,
4005     const struct umtx_copyops *ops __unused)
4006 {
4007 
4008 	return (kern_umtx_wake(td, uap->obj, uap->val, 1));
4009 }
4010 
4011 static int
4012 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap,
4013    const struct umtx_copyops *ops)
4014 {
4015 	struct _umtx_time *tm_p, timeout;
4016 	int error;
4017 
4018 	/* Allow a null timespec (wait forever). */
4019 	if (uap->uaddr2 == NULL)
4020 		tm_p = NULL;
4021 	else {
4022 		error = ops->copyin_umtx_time(
4023 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4024 		if (error != 0)
4025 			return (error);
4026 		tm_p = &timeout;
4027 	}
4028 	return (do_lock_umutex(td, uap->obj, tm_p, 0));
4029 }
4030 
4031 static int
4032 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap,
4033     const struct umtx_copyops *ops __unused)
4034 {
4035 
4036 	return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
4037 }
4038 
4039 static int
4040 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap,
4041     const struct umtx_copyops *ops)
4042 {
4043 	struct _umtx_time *tm_p, timeout;
4044 	int error;
4045 
4046 	/* Allow a null timespec (wait forever). */
4047 	if (uap->uaddr2 == NULL)
4048 		tm_p = NULL;
4049 	else {
4050 		error = ops->copyin_umtx_time(
4051 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4052 		if (error != 0)
4053 			return (error);
4054 		tm_p = &timeout;
4055 	}
4056 	return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
4057 }
4058 
4059 static int
4060 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap,
4061     const struct umtx_copyops *ops __unused)
4062 {
4063 
4064 	return (do_wake_umutex(td, uap->obj));
4065 }
4066 
4067 static int
4068 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap,
4069     const struct umtx_copyops *ops __unused)
4070 {
4071 
4072 	return (do_unlock_umutex(td, uap->obj, false));
4073 }
4074 
4075 static int
4076 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap,
4077     const struct umtx_copyops *ops __unused)
4078 {
4079 
4080 	return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
4081 }
4082 
4083 static int
4084 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap,
4085     const struct umtx_copyops *ops)
4086 {
4087 	struct timespec *ts, timeout;
4088 	int error;
4089 
4090 	/* Allow a null timespec (wait forever). */
4091 	if (uap->uaddr2 == NULL)
4092 		ts = NULL;
4093 	else {
4094 		error = ops->copyin_timeout(uap->uaddr2, &timeout);
4095 		if (error != 0)
4096 			return (error);
4097 		ts = &timeout;
4098 	}
4099 	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
4100 }
4101 
4102 static int
4103 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap,
4104     const struct umtx_copyops *ops __unused)
4105 {
4106 
4107 	return (do_cv_signal(td, uap->obj));
4108 }
4109 
4110 static int
4111 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap,
4112     const struct umtx_copyops *ops __unused)
4113 {
4114 
4115 	return (do_cv_broadcast(td, uap->obj));
4116 }
4117 
4118 static int
4119 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap,
4120     const struct umtx_copyops *ops)
4121 {
4122 	struct _umtx_time timeout;
4123 	int error;
4124 
4125 	/* Allow a null timespec (wait forever). */
4126 	if (uap->uaddr2 == NULL) {
4127 		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
4128 	} else {
4129 		error = ops->copyin_umtx_time(uap->uaddr2,
4130 		   (size_t)uap->uaddr1, &timeout);
4131 		if (error != 0)
4132 			return (error);
4133 		error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
4134 	}
4135 	return (error);
4136 }
4137 
4138 static int
4139 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap,
4140     const struct umtx_copyops *ops)
4141 {
4142 	struct _umtx_time timeout;
4143 	int error;
4144 
4145 	/* Allow a null timespec (wait forever). */
4146 	if (uap->uaddr2 == NULL) {
4147 		error = do_rw_wrlock(td, uap->obj, 0);
4148 	} else {
4149 		error = ops->copyin_umtx_time(uap->uaddr2,
4150 		   (size_t)uap->uaddr1, &timeout);
4151 		if (error != 0)
4152 			return (error);
4153 
4154 		error = do_rw_wrlock(td, uap->obj, &timeout);
4155 	}
4156 	return (error);
4157 }
4158 
4159 static int
4160 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap,
4161     const struct umtx_copyops *ops __unused)
4162 {
4163 
4164 	return (do_rw_unlock(td, uap->obj));
4165 }
4166 
4167 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4168 static int
4169 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap,
4170     const struct umtx_copyops *ops)
4171 {
4172 	struct _umtx_time *tm_p, timeout;
4173 	int error;
4174 
4175 	/* Allow a null timespec (wait forever). */
4176 	if (uap->uaddr2 == NULL)
4177 		tm_p = NULL;
4178 	else {
4179 		error = ops->copyin_umtx_time(
4180 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4181 		if (error != 0)
4182 			return (error);
4183 		tm_p = &timeout;
4184 	}
4185 	return (do_sem_wait(td, uap->obj, tm_p));
4186 }
4187 
4188 static int
4189 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap,
4190     const struct umtx_copyops *ops __unused)
4191 {
4192 
4193 	return (do_sem_wake(td, uap->obj));
4194 }
4195 #endif
4196 
4197 static int
4198 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap,
4199     const struct umtx_copyops *ops __unused)
4200 {
4201 
4202 	return (do_wake2_umutex(td, uap->obj, uap->val));
4203 }
4204 
4205 static int
4206 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap,
4207     const struct umtx_copyops *ops)
4208 {
4209 	struct _umtx_time *tm_p, timeout;
4210 	size_t uasize;
4211 	int error;
4212 
4213 	/* Allow a null timespec (wait forever). */
4214 	if (uap->uaddr2 == NULL) {
4215 		uasize = 0;
4216 		tm_p = NULL;
4217 	} else {
4218 		uasize = (size_t)uap->uaddr1;
4219 		error = ops->copyin_umtx_time(uap->uaddr2, uasize, &timeout);
4220 		if (error != 0)
4221 			return (error);
4222 		tm_p = &timeout;
4223 	}
4224 	error = do_sem2_wait(td, uap->obj, tm_p);
4225 	if (error == EINTR && uap->uaddr2 != NULL &&
4226 	    (timeout._flags & UMTX_ABSTIME) == 0 &&
4227 	    uasize >= ops->umtx_time_sz + ops->timespec_sz) {
4228 		error = ops->copyout_timeout(
4229 		    (void *)((uintptr_t)uap->uaddr2 + ops->umtx_time_sz),
4230 		    uasize - ops->umtx_time_sz, &timeout._timeout);
4231 		if (error == 0) {
4232 			error = EINTR;
4233 		}
4234 	}
4235 
4236 	return (error);
4237 }
4238 
4239 static int
4240 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap,
4241     const struct umtx_copyops *ops __unused)
4242 {
4243 
4244 	return (do_sem2_wake(td, uap->obj));
4245 }
4246 
4247 #define	USHM_OBJ_UMTX(o)						\
4248     ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
4249 
4250 #define	USHMF_REG_LINKED	0x0001
4251 #define	USHMF_OBJ_LINKED	0x0002
4252 struct umtx_shm_reg {
4253 	TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
4254 	LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
4255 	struct umtx_key		ushm_key;
4256 	struct ucred		*ushm_cred;
4257 	struct shmfd		*ushm_obj;
4258 	u_int			ushm_refcnt;
4259 	u_int			ushm_flags;
4260 };
4261 
4262 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
4263 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
4264 
4265 static uma_zone_t umtx_shm_reg_zone;
4266 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
4267 static struct mtx umtx_shm_lock;
4268 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
4269     TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
4270 
4271 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
4272 
4273 static void
4274 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
4275 {
4276 	struct umtx_shm_reg_head d;
4277 	struct umtx_shm_reg *reg, *reg1;
4278 
4279 	TAILQ_INIT(&d);
4280 	mtx_lock(&umtx_shm_lock);
4281 	TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
4282 	mtx_unlock(&umtx_shm_lock);
4283 	TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
4284 		TAILQ_REMOVE(&d, reg, ushm_reg_link);
4285 		umtx_shm_free_reg(reg);
4286 	}
4287 }
4288 
4289 static struct task umtx_shm_reg_delfree_task =
4290     TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
4291 
4292 static struct umtx_shm_reg *
4293 umtx_shm_find_reg_locked(const struct umtx_key *key)
4294 {
4295 	struct umtx_shm_reg *reg;
4296 	struct umtx_shm_reg_head *reg_head;
4297 
4298 	KASSERT(key->shared, ("umtx_p_find_rg: private key"));
4299 	mtx_assert(&umtx_shm_lock, MA_OWNED);
4300 	reg_head = &umtx_shm_registry[key->hash];
4301 	TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
4302 		KASSERT(reg->ushm_key.shared,
4303 		    ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
4304 		if (reg->ushm_key.info.shared.object ==
4305 		    key->info.shared.object &&
4306 		    reg->ushm_key.info.shared.offset ==
4307 		    key->info.shared.offset) {
4308 			KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
4309 			KASSERT(reg->ushm_refcnt > 0,
4310 			    ("reg %p refcnt 0 onlist", reg));
4311 			KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
4312 			    ("reg %p not linked", reg));
4313 			reg->ushm_refcnt++;
4314 			return (reg);
4315 		}
4316 	}
4317 	return (NULL);
4318 }
4319 
4320 static struct umtx_shm_reg *
4321 umtx_shm_find_reg(const struct umtx_key *key)
4322 {
4323 	struct umtx_shm_reg *reg;
4324 
4325 	mtx_lock(&umtx_shm_lock);
4326 	reg = umtx_shm_find_reg_locked(key);
4327 	mtx_unlock(&umtx_shm_lock);
4328 	return (reg);
4329 }
4330 
4331 static void
4332 umtx_shm_free_reg(struct umtx_shm_reg *reg)
4333 {
4334 
4335 	chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
4336 	crfree(reg->ushm_cred);
4337 	shm_drop(reg->ushm_obj);
4338 	uma_zfree(umtx_shm_reg_zone, reg);
4339 }
4340 
4341 static bool
4342 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
4343 {
4344 	bool res;
4345 
4346 	mtx_assert(&umtx_shm_lock, MA_OWNED);
4347 	KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
4348 	reg->ushm_refcnt--;
4349 	res = reg->ushm_refcnt == 0;
4350 	if (res || force) {
4351 		if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
4352 			TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
4353 			    reg, ushm_reg_link);
4354 			reg->ushm_flags &= ~USHMF_REG_LINKED;
4355 		}
4356 		if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
4357 			LIST_REMOVE(reg, ushm_obj_link);
4358 			reg->ushm_flags &= ~USHMF_OBJ_LINKED;
4359 		}
4360 	}
4361 	return (res);
4362 }
4363 
4364 static void
4365 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
4366 {
4367 	vm_object_t object;
4368 	bool dofree;
4369 
4370 	if (force) {
4371 		object = reg->ushm_obj->shm_object;
4372 		VM_OBJECT_WLOCK(object);
4373 		object->flags |= OBJ_UMTXDEAD;
4374 		VM_OBJECT_WUNLOCK(object);
4375 	}
4376 	mtx_lock(&umtx_shm_lock);
4377 	dofree = umtx_shm_unref_reg_locked(reg, force);
4378 	mtx_unlock(&umtx_shm_lock);
4379 	if (dofree)
4380 		umtx_shm_free_reg(reg);
4381 }
4382 
4383 void
4384 umtx_shm_object_init(vm_object_t object)
4385 {
4386 
4387 	LIST_INIT(USHM_OBJ_UMTX(object));
4388 }
4389 
4390 void
4391 umtx_shm_object_terminated(vm_object_t object)
4392 {
4393 	struct umtx_shm_reg *reg, *reg1;
4394 	bool dofree;
4395 
4396 	if (LIST_EMPTY(USHM_OBJ_UMTX(object)))
4397 		return;
4398 
4399 	dofree = false;
4400 	mtx_lock(&umtx_shm_lock);
4401 	LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
4402 		if (umtx_shm_unref_reg_locked(reg, true)) {
4403 			TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
4404 			    ushm_reg_link);
4405 			dofree = true;
4406 		}
4407 	}
4408 	mtx_unlock(&umtx_shm_lock);
4409 	if (dofree)
4410 		taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
4411 }
4412 
4413 static int
4414 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
4415     struct umtx_shm_reg **res)
4416 {
4417 	struct umtx_shm_reg *reg, *reg1;
4418 	struct ucred *cred;
4419 	int error;
4420 
4421 	reg = umtx_shm_find_reg(key);
4422 	if (reg != NULL) {
4423 		*res = reg;
4424 		return (0);
4425 	}
4426 	cred = td->td_ucred;
4427 	if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
4428 		return (ENOMEM);
4429 	reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
4430 	reg->ushm_refcnt = 1;
4431 	bcopy(key, &reg->ushm_key, sizeof(*key));
4432 	reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR, false);
4433 	reg->ushm_cred = crhold(cred);
4434 	error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
4435 	if (error != 0) {
4436 		umtx_shm_free_reg(reg);
4437 		return (error);
4438 	}
4439 	mtx_lock(&umtx_shm_lock);
4440 	reg1 = umtx_shm_find_reg_locked(key);
4441 	if (reg1 != NULL) {
4442 		mtx_unlock(&umtx_shm_lock);
4443 		umtx_shm_free_reg(reg);
4444 		*res = reg1;
4445 		return (0);
4446 	}
4447 	reg->ushm_refcnt++;
4448 	TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
4449 	LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
4450 	    ushm_obj_link);
4451 	reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
4452 	mtx_unlock(&umtx_shm_lock);
4453 	*res = reg;
4454 	return (0);
4455 }
4456 
4457 static int
4458 umtx_shm_alive(struct thread *td, void *addr)
4459 {
4460 	vm_map_t map;
4461 	vm_map_entry_t entry;
4462 	vm_object_t object;
4463 	vm_pindex_t pindex;
4464 	vm_prot_t prot;
4465 	int res, ret;
4466 	boolean_t wired;
4467 
4468 	map = &td->td_proc->p_vmspace->vm_map;
4469 	res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
4470 	    &object, &pindex, &prot, &wired);
4471 	if (res != KERN_SUCCESS)
4472 		return (EFAULT);
4473 	if (object == NULL)
4474 		ret = EINVAL;
4475 	else
4476 		ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
4477 	vm_map_lookup_done(map, entry);
4478 	return (ret);
4479 }
4480 
4481 static void
4482 umtx_shm_init(void)
4483 {
4484 	int i;
4485 
4486 	umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
4487 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
4488 	mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
4489 	for (i = 0; i < nitems(umtx_shm_registry); i++)
4490 		TAILQ_INIT(&umtx_shm_registry[i]);
4491 }
4492 
4493 static int
4494 umtx_shm(struct thread *td, void *addr, u_int flags)
4495 {
4496 	struct umtx_key key;
4497 	struct umtx_shm_reg *reg;
4498 	struct file *fp;
4499 	int error, fd;
4500 
4501 	if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
4502 	    UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
4503 		return (EINVAL);
4504 	if ((flags & UMTX_SHM_ALIVE) != 0)
4505 		return (umtx_shm_alive(td, addr));
4506 	error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
4507 	if (error != 0)
4508 		return (error);
4509 	KASSERT(key.shared == 1, ("non-shared key"));
4510 	if ((flags & UMTX_SHM_CREAT) != 0) {
4511 		error = umtx_shm_create_reg(td, &key, &reg);
4512 	} else {
4513 		reg = umtx_shm_find_reg(&key);
4514 		if (reg == NULL)
4515 			error = ESRCH;
4516 	}
4517 	umtx_key_release(&key);
4518 	if (error != 0)
4519 		return (error);
4520 	KASSERT(reg != NULL, ("no reg"));
4521 	if ((flags & UMTX_SHM_DESTROY) != 0) {
4522 		umtx_shm_unref_reg(reg, true);
4523 	} else {
4524 #if 0
4525 #ifdef MAC
4526 		error = mac_posixshm_check_open(td->td_ucred,
4527 		    reg->ushm_obj, FFLAGS(O_RDWR));
4528 		if (error == 0)
4529 #endif
4530 			error = shm_access(reg->ushm_obj, td->td_ucred,
4531 			    FFLAGS(O_RDWR));
4532 		if (error == 0)
4533 #endif
4534 			error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
4535 		if (error == 0) {
4536 			shm_hold(reg->ushm_obj);
4537 			finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
4538 			    &shm_ops);
4539 			td->td_retval[0] = fd;
4540 			fdrop(fp, td);
4541 		}
4542 	}
4543 	umtx_shm_unref_reg(reg, false);
4544 	return (error);
4545 }
4546 
4547 static int
4548 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap,
4549     const struct umtx_copyops *ops __unused)
4550 {
4551 
4552 	return (umtx_shm(td, uap->uaddr1, uap->val));
4553 }
4554 
4555 static int
4556 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap,
4557     const struct umtx_copyops *ops)
4558 {
4559 	struct umtx_robust_lists_params rb;
4560 	int error;
4561 
4562 	if (ops->compat32) {
4563 		if ((td->td_pflags2 & TDP2_COMPAT32RB) == 0 &&
4564 		    (td->td_rb_list != 0 || td->td_rbp_list != 0 ||
4565 		    td->td_rb_inact != 0))
4566 			return (EBUSY);
4567 	} else if ((td->td_pflags2 & TDP2_COMPAT32RB) != 0) {
4568 		return (EBUSY);
4569 	}
4570 
4571 	bzero(&rb, sizeof(rb));
4572 	error = ops->copyin_robust_lists(uap->uaddr1, uap->val, &rb);
4573 	if (error != 0)
4574 		return (error);
4575 
4576 	if (ops->compat32)
4577 		td->td_pflags2 |= TDP2_COMPAT32RB;
4578 
4579 	td->td_rb_list = rb.robust_list_offset;
4580 	td->td_rbp_list = rb.robust_priv_list_offset;
4581 	td->td_rb_inact = rb.robust_inact_offset;
4582 	return (0);
4583 }
4584 
4585 #if defined(__i386__) || defined(__amd64__)
4586 /*
4587  * Provide the standard 32-bit definitions for x86, since native/compat32 use a
4588  * 32-bit time_t there.  Other architectures just need the i386 definitions
4589  * along with their standard compat32.
4590  */
4591 struct timespecx32 {
4592 	int64_t			tv_sec;
4593 	int32_t			tv_nsec;
4594 };
4595 
4596 struct umtx_timex32 {
4597 	struct	timespecx32	_timeout;
4598 	uint32_t		_flags;
4599 	uint32_t		_clockid;
4600 };
4601 
4602 #ifndef __i386__
4603 #define	timespeci386	timespec32
4604 #define	umtx_timei386	umtx_time32
4605 #endif
4606 #else /* !__i386__ && !__amd64__ */
4607 /* 32-bit architectures can emulate i386, so define these almost everywhere. */
4608 struct timespeci386 {
4609 	int32_t			tv_sec;
4610 	int32_t			tv_nsec;
4611 };
4612 
4613 struct umtx_timei386 {
4614 	struct	timespeci386	_timeout;
4615 	uint32_t		_flags;
4616 	uint32_t		_clockid;
4617 };
4618 
4619 #if defined(__LP64__)
4620 #define	timespecx32	timespec32
4621 #define	umtx_timex32	umtx_time32
4622 #endif
4623 #endif
4624 
4625 static int
4626 umtx_copyin_robust_lists32(const void *uaddr, size_t size,
4627     struct umtx_robust_lists_params *rbp)
4628 {
4629 	struct umtx_robust_lists_params_compat32 rb32;
4630 	int error;
4631 
4632 	if (size > sizeof(rb32))
4633 		return (EINVAL);
4634 	bzero(&rb32, sizeof(rb32));
4635 	error = copyin(uaddr, &rb32, size);
4636 	if (error != 0)
4637 		return (error);
4638 	CP(rb32, *rbp, robust_list_offset);
4639 	CP(rb32, *rbp, robust_priv_list_offset);
4640 	CP(rb32, *rbp, robust_inact_offset);
4641 	return (0);
4642 }
4643 
4644 #ifndef __i386__
4645 static inline int
4646 umtx_copyin_timeouti386(const void *uaddr, struct timespec *tsp)
4647 {
4648 	struct timespeci386 ts32;
4649 	int error;
4650 
4651 	error = copyin(uaddr, &ts32, sizeof(ts32));
4652 	if (error == 0) {
4653 		if (ts32.tv_sec < 0 ||
4654 		    ts32.tv_nsec >= 1000000000 ||
4655 		    ts32.tv_nsec < 0)
4656 			error = EINVAL;
4657 		else {
4658 			CP(ts32, *tsp, tv_sec);
4659 			CP(ts32, *tsp, tv_nsec);
4660 		}
4661 	}
4662 	return (error);
4663 }
4664 
4665 static inline int
4666 umtx_copyin_umtx_timei386(const void *uaddr, size_t size, struct _umtx_time *tp)
4667 {
4668 	struct umtx_timei386 t32;
4669 	int error;
4670 
4671 	t32._clockid = CLOCK_REALTIME;
4672 	t32._flags   = 0;
4673 	if (size <= sizeof(t32._timeout))
4674 		error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4675 	else
4676 		error = copyin(uaddr, &t32, sizeof(t32));
4677 	if (error != 0)
4678 		return (error);
4679 	if (t32._timeout.tv_sec < 0 ||
4680 	    t32._timeout.tv_nsec >= 1000000000 || t32._timeout.tv_nsec < 0)
4681 		return (EINVAL);
4682 	TS_CP(t32, *tp, _timeout);
4683 	CP(t32, *tp, _flags);
4684 	CP(t32, *tp, _clockid);
4685 	return (0);
4686 }
4687 
4688 static int
4689 umtx_copyout_timeouti386(void *uaddr, size_t sz, struct timespec *tsp)
4690 {
4691 	struct timespeci386 remain32 = {
4692 		.tv_sec = tsp->tv_sec,
4693 		.tv_nsec = tsp->tv_nsec,
4694 	};
4695 
4696 	/*
4697 	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4698 	 * and we're only called if sz >= sizeof(timespec) as supplied in the
4699 	 * copyops.
4700 	 */
4701 	KASSERT(sz >= sizeof(remain32),
4702 	    ("umtx_copyops specifies incorrect sizes"));
4703 
4704 	return (copyout(&remain32, uaddr, sizeof(remain32)));
4705 }
4706 #endif /* !__i386__ */
4707 
4708 #if defined(__i386__) || defined(__LP64__)
4709 static inline int
4710 umtx_copyin_timeoutx32(const void *uaddr, struct timespec *tsp)
4711 {
4712 	struct timespecx32 ts32;
4713 	int error;
4714 
4715 	error = copyin(uaddr, &ts32, sizeof(ts32));
4716 	if (error == 0) {
4717 		if (ts32.tv_sec < 0 ||
4718 		    ts32.tv_nsec >= 1000000000 ||
4719 		    ts32.tv_nsec < 0)
4720 			error = EINVAL;
4721 		else {
4722 			CP(ts32, *tsp, tv_sec);
4723 			CP(ts32, *tsp, tv_nsec);
4724 		}
4725 	}
4726 	return (error);
4727 }
4728 
4729 static inline int
4730 umtx_copyin_umtx_timex32(const void *uaddr, size_t size, struct _umtx_time *tp)
4731 {
4732 	struct umtx_timex32 t32;
4733 	int error;
4734 
4735 	t32._clockid = CLOCK_REALTIME;
4736 	t32._flags   = 0;
4737 	if (size <= sizeof(t32._timeout))
4738 		error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4739 	else
4740 		error = copyin(uaddr, &t32, sizeof(t32));
4741 	if (error != 0)
4742 		return (error);
4743 	if (t32._timeout.tv_sec < 0 ||
4744 	    t32._timeout.tv_nsec >= 1000000000 || t32._timeout.tv_nsec < 0)
4745 		return (EINVAL);
4746 	TS_CP(t32, *tp, _timeout);
4747 	CP(t32, *tp, _flags);
4748 	CP(t32, *tp, _clockid);
4749 	return (0);
4750 }
4751 
4752 static int
4753 umtx_copyout_timeoutx32(void *uaddr, size_t sz, struct timespec *tsp)
4754 {
4755 	struct timespecx32 remain32 = {
4756 		.tv_sec = tsp->tv_sec,
4757 		.tv_nsec = tsp->tv_nsec,
4758 	};
4759 
4760 	/*
4761 	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4762 	 * and we're only called if sz >= sizeof(timespec) as supplied in the
4763 	 * copyops.
4764 	 */
4765 	KASSERT(sz >= sizeof(remain32),
4766 	    ("umtx_copyops specifies incorrect sizes"));
4767 
4768 	return (copyout(&remain32, uaddr, sizeof(remain32)));
4769 }
4770 #endif /* __i386__ || __LP64__ */
4771 
4772 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap,
4773     const struct umtx_copyops *umtx_ops);
4774 
4775 static const _umtx_op_func op_table[] = {
4776 #ifdef COMPAT_FREEBSD10
4777 	[UMTX_OP_LOCK]		= __umtx_op_lock_umtx,
4778 	[UMTX_OP_UNLOCK]	= __umtx_op_unlock_umtx,
4779 #else
4780 	[UMTX_OP_LOCK]		= __umtx_op_unimpl,
4781 	[UMTX_OP_UNLOCK]	= __umtx_op_unimpl,
4782 #endif
4783 	[UMTX_OP_WAIT]		= __umtx_op_wait,
4784 	[UMTX_OP_WAKE]		= __umtx_op_wake,
4785 	[UMTX_OP_MUTEX_TRYLOCK]	= __umtx_op_trylock_umutex,
4786 	[UMTX_OP_MUTEX_LOCK]	= __umtx_op_lock_umutex,
4787 	[UMTX_OP_MUTEX_UNLOCK]	= __umtx_op_unlock_umutex,
4788 	[UMTX_OP_SET_CEILING]	= __umtx_op_set_ceiling,
4789 	[UMTX_OP_CV_WAIT]	= __umtx_op_cv_wait,
4790 	[UMTX_OP_CV_SIGNAL]	= __umtx_op_cv_signal,
4791 	[UMTX_OP_CV_BROADCAST]	= __umtx_op_cv_broadcast,
4792 	[UMTX_OP_WAIT_UINT]	= __umtx_op_wait_uint,
4793 	[UMTX_OP_RW_RDLOCK]	= __umtx_op_rw_rdlock,
4794 	[UMTX_OP_RW_WRLOCK]	= __umtx_op_rw_wrlock,
4795 	[UMTX_OP_RW_UNLOCK]	= __umtx_op_rw_unlock,
4796 	[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
4797 	[UMTX_OP_WAKE_PRIVATE]	= __umtx_op_wake_private,
4798 	[UMTX_OP_MUTEX_WAIT]	= __umtx_op_wait_umutex,
4799 	[UMTX_OP_MUTEX_WAKE]	= __umtx_op_wake_umutex,
4800 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4801 	[UMTX_OP_SEM_WAIT]	= __umtx_op_sem_wait,
4802 	[UMTX_OP_SEM_WAKE]	= __umtx_op_sem_wake,
4803 #else
4804 	[UMTX_OP_SEM_WAIT]	= __umtx_op_unimpl,
4805 	[UMTX_OP_SEM_WAKE]	= __umtx_op_unimpl,
4806 #endif
4807 	[UMTX_OP_NWAKE_PRIVATE]	= __umtx_op_nwake_private,
4808 	[UMTX_OP_MUTEX_WAKE2]	= __umtx_op_wake2_umutex,
4809 	[UMTX_OP_SEM2_WAIT]	= __umtx_op_sem2_wait,
4810 	[UMTX_OP_SEM2_WAKE]	= __umtx_op_sem2_wake,
4811 	[UMTX_OP_SHM]		= __umtx_op_shm,
4812 	[UMTX_OP_ROBUST_LISTS]	= __umtx_op_robust_lists,
4813 };
4814 
4815 static const struct umtx_copyops umtx_native_ops = {
4816 	.copyin_timeout = umtx_copyin_timeout,
4817 	.copyin_umtx_time = umtx_copyin_umtx_time,
4818 	.copyin_robust_lists = umtx_copyin_robust_lists,
4819 	.copyout_timeout = umtx_copyout_timeout,
4820 	.timespec_sz = sizeof(struct timespec),
4821 	.umtx_time_sz = sizeof(struct _umtx_time),
4822 };
4823 
4824 #ifndef __i386__
4825 static const struct umtx_copyops umtx_native_opsi386 = {
4826 	.copyin_timeout = umtx_copyin_timeouti386,
4827 	.copyin_umtx_time = umtx_copyin_umtx_timei386,
4828 	.copyin_robust_lists = umtx_copyin_robust_lists32,
4829 	.copyout_timeout = umtx_copyout_timeouti386,
4830 	.timespec_sz = sizeof(struct timespeci386),
4831 	.umtx_time_sz = sizeof(struct umtx_timei386),
4832 	.compat32 = true,
4833 };
4834 #endif
4835 
4836 #if defined(__i386__) || defined(__LP64__)
4837 /* i386 can emulate other 32-bit archs, too! */
4838 static const struct umtx_copyops umtx_native_opsx32 = {
4839 	.copyin_timeout = umtx_copyin_timeoutx32,
4840 	.copyin_umtx_time = umtx_copyin_umtx_timex32,
4841 	.copyin_robust_lists = umtx_copyin_robust_lists32,
4842 	.copyout_timeout = umtx_copyout_timeoutx32,
4843 	.timespec_sz = sizeof(struct timespecx32),
4844 	.umtx_time_sz = sizeof(struct umtx_timex32),
4845 	.compat32 = true,
4846 };
4847 
4848 #ifdef COMPAT_FREEBSD32
4849 #ifdef __amd64__
4850 #define	umtx_native_ops32	umtx_native_opsi386
4851 #else
4852 #define	umtx_native_ops32	umtx_native_opsx32
4853 #endif
4854 #endif /* COMPAT_FREEBSD32 */
4855 #endif /* __i386__ || __LP64__ */
4856 
4857 #define	UMTX_OP__FLAGS	(UMTX_OP__32BIT | UMTX_OP__I386)
4858 
4859 static int
4860 kern__umtx_op(struct thread *td, void *obj, int op, unsigned long val,
4861     void *uaddr1, void *uaddr2, const struct umtx_copyops *ops)
4862 {
4863 	struct _umtx_op_args uap = {
4864 		.obj = obj,
4865 		.op = op & ~UMTX_OP__FLAGS,
4866 		.val = val,
4867 		.uaddr1 = uaddr1,
4868 		.uaddr2 = uaddr2
4869 	};
4870 
4871 	if ((uap.op >= nitems(op_table)))
4872 		return (EINVAL);
4873 	return ((*op_table[uap.op])(td, &uap, ops));
4874 }
4875 
4876 int
4877 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
4878 {
4879 	static const struct umtx_copyops *umtx_ops;
4880 
4881 	umtx_ops = &umtx_native_ops;
4882 #ifdef __LP64__
4883 	if ((uap->op & (UMTX_OP__32BIT | UMTX_OP__I386)) != 0) {
4884 		if ((uap->op & UMTX_OP__I386) != 0)
4885 			umtx_ops = &umtx_native_opsi386;
4886 		else
4887 			umtx_ops = &umtx_native_opsx32;
4888 	}
4889 #elif !defined(__i386__)
4890 	/* We consider UMTX_OP__32BIT a nop on !i386 ILP32. */
4891 	if ((uap->op & UMTX_OP__I386) != 0)
4892 		umtx_ops = &umtx_native_opsi386;
4893 #else
4894 	/* Likewise, UMTX_OP__I386 is a nop on i386. */
4895 	if ((uap->op & UMTX_OP__32BIT) != 0)
4896 		umtx_ops = &umtx_native_opsx32;
4897 #endif
4898 	return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
4899 	    uap->uaddr2, umtx_ops));
4900 }
4901 
4902 #ifdef COMPAT_FREEBSD32
4903 #ifdef COMPAT_FREEBSD10
4904 int
4905 freebsd10_freebsd32_umtx_lock(struct thread *td,
4906     struct freebsd10_freebsd32_umtx_lock_args *uap)
4907 {
4908 	return (do_lock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid, NULL));
4909 }
4910 
4911 int
4912 freebsd10_freebsd32_umtx_unlock(struct thread *td,
4913     struct freebsd10_freebsd32_umtx_unlock_args *uap)
4914 {
4915 	return (do_unlock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid));
4916 }
4917 #endif /* COMPAT_FREEBSD10 */
4918 
4919 int
4920 freebsd32__umtx_op(struct thread *td, struct freebsd32__umtx_op_args *uap)
4921 {
4922 
4923 	return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr,
4924 	    uap->uaddr2, &umtx_native_ops32));
4925 }
4926 #endif /* COMPAT_FREEBSD32 */
4927 
4928 void
4929 umtx_thread_init(struct thread *td)
4930 {
4931 
4932 	td->td_umtxq = umtxq_alloc();
4933 	td->td_umtxq->uq_thread = td;
4934 }
4935 
4936 void
4937 umtx_thread_fini(struct thread *td)
4938 {
4939 
4940 	umtxq_free(td->td_umtxq);
4941 }
4942 
4943 /*
4944  * It will be called when new thread is created, e.g fork().
4945  */
4946 void
4947 umtx_thread_alloc(struct thread *td)
4948 {
4949 	struct umtx_q *uq;
4950 
4951 	uq = td->td_umtxq;
4952 	uq->uq_inherited_pri = PRI_MAX;
4953 
4954 	KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
4955 	KASSERT(uq->uq_thread == td, ("uq_thread != td"));
4956 	KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
4957 	KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
4958 }
4959 
4960 /*
4961  * exec() hook.
4962  *
4963  * Clear robust lists for all process' threads, not delaying the
4964  * cleanup to thread exit, since the relevant address space is
4965  * destroyed right now.
4966  */
4967 void
4968 umtx_exec(struct proc *p)
4969 {
4970 	struct thread *td;
4971 
4972 	KASSERT(p == curproc, ("need curproc"));
4973 	KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
4974 	    (p->p_flag & P_STOPPED_SINGLE) != 0,
4975 	    ("curproc must be single-threaded"));
4976 	/*
4977 	 * There is no need to lock the list as only this thread can be
4978 	 * running.
4979 	 */
4980 	FOREACH_THREAD_IN_PROC(p, td) {
4981 		KASSERT(td == curthread ||
4982 		    ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
4983 		    ("running thread %p %p", p, td));
4984 		umtx_thread_cleanup(td);
4985 		td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
4986 	}
4987 }
4988 
4989 /*
4990  * thread exit hook.
4991  */
4992 void
4993 umtx_thread_exit(struct thread *td)
4994 {
4995 
4996 	umtx_thread_cleanup(td);
4997 }
4998 
4999 static int
5000 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res, bool compat32)
5001 {
5002 	u_long res1;
5003 	uint32_t res32;
5004 	int error;
5005 
5006 	if (compat32) {
5007 		error = fueword32((void *)ptr, &res32);
5008 		if (error == 0)
5009 			res1 = res32;
5010 	} else {
5011 		error = fueword((void *)ptr, &res1);
5012 	}
5013 	if (error == 0)
5014 		*res = res1;
5015 	else
5016 		error = EFAULT;
5017 	return (error);
5018 }
5019 
5020 static void
5021 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list,
5022     bool compat32)
5023 {
5024 	struct umutex32 m32;
5025 
5026 	if (compat32) {
5027 		memcpy(&m32, m, sizeof(m32));
5028 		*rb_list = m32.m_rb_lnk;
5029 	} else {
5030 		*rb_list = m->m_rb_lnk;
5031 	}
5032 }
5033 
5034 static int
5035 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact,
5036     bool compat32)
5037 {
5038 	struct umutex m;
5039 	int error;
5040 
5041 	KASSERT(td->td_proc == curproc, ("need current vmspace"));
5042 	error = copyin((void *)rbp, &m, sizeof(m));
5043 	if (error != 0)
5044 		return (error);
5045 	if (rb_list != NULL)
5046 		umtx_read_rb_list(td, &m, rb_list, compat32);
5047 	if ((m.m_flags & UMUTEX_ROBUST) == 0)
5048 		return (EINVAL);
5049 	if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
5050 		/* inact is cleared after unlock, allow the inconsistency */
5051 		return (inact ? 0 : EINVAL);
5052 	return (do_unlock_umutex(td, (struct umutex *)rbp, true));
5053 }
5054 
5055 static void
5056 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
5057     const char *name, bool compat32)
5058 {
5059 	int error, i;
5060 	uintptr_t rbp;
5061 	bool inact;
5062 
5063 	if (rb_list == 0)
5064 		return;
5065 	error = umtx_read_uptr(td, rb_list, &rbp, compat32);
5066 	for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
5067 		if (rbp == *rb_inact) {
5068 			inact = true;
5069 			*rb_inact = 0;
5070 		} else
5071 			inact = false;
5072 		error = umtx_handle_rb(td, rbp, &rbp, inact, compat32);
5073 	}
5074 	if (i == umtx_max_rb && umtx_verbose_rb) {
5075 		uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
5076 		    td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
5077 	}
5078 	if (error != 0 && umtx_verbose_rb) {
5079 		uprintf("comm %s pid %d: handling %srb error %d\n",
5080 		    td->td_proc->p_comm, td->td_proc->p_pid, name, error);
5081 	}
5082 }
5083 
5084 /*
5085  * Clean up umtx data.
5086  */
5087 static void
5088 umtx_thread_cleanup(struct thread *td)
5089 {
5090 	struct umtx_q *uq;
5091 	struct umtx_pi *pi;
5092 	uintptr_t rb_inact;
5093 	bool compat32;
5094 
5095 	/*
5096 	 * Disown pi mutexes.
5097 	 */
5098 	uq = td->td_umtxq;
5099 	if (uq != NULL) {
5100 		if (uq->uq_inherited_pri != PRI_MAX ||
5101 		    !TAILQ_EMPTY(&uq->uq_pi_contested)) {
5102 			mtx_lock(&umtx_lock);
5103 			uq->uq_inherited_pri = PRI_MAX;
5104 			while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
5105 				pi->pi_owner = NULL;
5106 				TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
5107 			}
5108 			mtx_unlock(&umtx_lock);
5109 		}
5110 		sched_lend_user_prio_cond(td, PRI_MAX);
5111 	}
5112 
5113 	compat32 = (td->td_pflags2 & TDP2_COMPAT32RB) != 0;
5114 	td->td_pflags2 &= ~TDP2_COMPAT32RB;
5115 
5116 	if (td->td_rb_inact == 0 && td->td_rb_list == 0 && td->td_rbp_list == 0)
5117 		return;
5118 
5119 	/*
5120 	 * Handle terminated robust mutexes.  Must be done after
5121 	 * robust pi disown, otherwise unlock could see unowned
5122 	 * entries.
5123 	 */
5124 	rb_inact = td->td_rb_inact;
5125 	if (rb_inact != 0)
5126 		(void)umtx_read_uptr(td, rb_inact, &rb_inact, compat32);
5127 	umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "", compat32);
5128 	umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ", compat32);
5129 	if (rb_inact != 0)
5130 		(void)umtx_handle_rb(td, rb_inact, NULL, true, compat32);
5131 }
5132