xref: /freebsd/sys/kern/kern_umtx.c (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2015, 2016 The FreeBSD Foundation
5  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
6  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice unmodified, this list of conditions, and the following
17  *    disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_umtx_profiling.h"
38 
39 #include <sys/param.h>
40 #include <sys/kernel.h>
41 #include <sys/fcntl.h>
42 #include <sys/file.h>
43 #include <sys/filedesc.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/resource.h>
52 #include <sys/resourcevar.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysent.h>
59 #include <sys/systm.h>
60 #include <sys/sysproto.h>
61 #include <sys/syscallsubr.h>
62 #include <sys/taskqueue.h>
63 #include <sys/time.h>
64 #include <sys/eventhandler.h>
65 #include <sys/umtx.h>
66 
67 #include <security/mac/mac_framework.h>
68 
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_object.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/cpu.h>
77 
78 #ifdef COMPAT_FREEBSD32
79 #include <compat/freebsd32/freebsd32_proto.h>
80 #endif
81 
82 #define _UMUTEX_TRY		1
83 #define _UMUTEX_WAIT		2
84 
85 #ifdef UMTX_PROFILING
86 #define	UPROF_PERC_BIGGER(w, f, sw, sf)					\
87 	(((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
88 #endif
89 
90 /* Priority inheritance mutex info. */
91 struct umtx_pi {
92 	/* Owner thread */
93 	struct thread		*pi_owner;
94 
95 	/* Reference count */
96 	int			pi_refcount;
97 
98 	/* List entry to link umtx holding by thread */
99 	TAILQ_ENTRY(umtx_pi)	pi_link;
100 
101 	/* List entry in hash */
102 	TAILQ_ENTRY(umtx_pi)	pi_hashlink;
103 
104 	/* List for waiters */
105 	TAILQ_HEAD(,umtx_q)	pi_blocked;
106 
107 	/* Identify a userland lock object */
108 	struct umtx_key		pi_key;
109 };
110 
111 /* A userland synchronous object user. */
112 struct umtx_q {
113 	/* Linked list for the hash. */
114 	TAILQ_ENTRY(umtx_q)	uq_link;
115 
116 	/* Umtx key. */
117 	struct umtx_key		uq_key;
118 
119 	/* Umtx flags. */
120 	int			uq_flags;
121 #define UQF_UMTXQ	0x0001
122 
123 	/* The thread waits on. */
124 	struct thread		*uq_thread;
125 
126 	/*
127 	 * Blocked on PI mutex. read can use chain lock
128 	 * or umtx_lock, write must have both chain lock and
129 	 * umtx_lock being hold.
130 	 */
131 	struct umtx_pi		*uq_pi_blocked;
132 
133 	/* On blocked list */
134 	TAILQ_ENTRY(umtx_q)	uq_lockq;
135 
136 	/* Thread contending with us */
137 	TAILQ_HEAD(,umtx_pi)	uq_pi_contested;
138 
139 	/* Inherited priority from PP mutex */
140 	u_char			uq_inherited_pri;
141 
142 	/* Spare queue ready to be reused */
143 	struct umtxq_queue	*uq_spare_queue;
144 
145 	/* The queue we on */
146 	struct umtxq_queue	*uq_cur_queue;
147 };
148 
149 TAILQ_HEAD(umtxq_head, umtx_q);
150 
151 /* Per-key wait-queue */
152 struct umtxq_queue {
153 	struct umtxq_head	head;
154 	struct umtx_key		key;
155 	LIST_ENTRY(umtxq_queue)	link;
156 	int			length;
157 };
158 
159 LIST_HEAD(umtxq_list, umtxq_queue);
160 
161 /* Userland lock object's wait-queue chain */
162 struct umtxq_chain {
163 	/* Lock for this chain. */
164 	struct mtx		uc_lock;
165 
166 	/* List of sleep queues. */
167 	struct umtxq_list	uc_queue[2];
168 #define UMTX_SHARED_QUEUE	0
169 #define UMTX_EXCLUSIVE_QUEUE	1
170 
171 	LIST_HEAD(, umtxq_queue) uc_spare_queue;
172 
173 	/* Busy flag */
174 	char			uc_busy;
175 
176 	/* Chain lock waiters */
177 	int			uc_waiters;
178 
179 	/* All PI in the list */
180 	TAILQ_HEAD(,umtx_pi)	uc_pi_list;
181 
182 #ifdef UMTX_PROFILING
183 	u_int			length;
184 	u_int			max_length;
185 #endif
186 };
187 
188 #define	UMTXQ_LOCKED_ASSERT(uc)		mtx_assert(&(uc)->uc_lock, MA_OWNED)
189 
190 /*
191  * Don't propagate time-sharing priority, there is a security reason,
192  * a user can simply introduce PI-mutex, let thread A lock the mutex,
193  * and let another thread B block on the mutex, because B is
194  * sleeping, its priority will be boosted, this causes A's priority to
195  * be boosted via priority propagating too and will never be lowered even
196  * if it is using 100%CPU, this is unfair to other processes.
197  */
198 
199 #define UPRI(td)	(((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
200 			  (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
201 			 PRI_MAX_TIMESHARE : (td)->td_user_pri)
202 
203 #define	GOLDEN_RATIO_PRIME	2654404609U
204 #ifndef	UMTX_CHAINS
205 #define	UMTX_CHAINS		512
206 #endif
207 #define	UMTX_SHIFTS		(__WORD_BIT - 9)
208 
209 #define	GET_SHARE(flags)	\
210     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
211 
212 #define BUSY_SPINS		200
213 
214 struct abs_timeout {
215 	int clockid;
216 	bool is_abs_real;	/* TIMER_ABSTIME && CLOCK_REALTIME* */
217 	struct timespec cur;
218 	struct timespec end;
219 };
220 
221 #ifdef COMPAT_FREEBSD32
222 struct umutex32 {
223 	volatile __lwpid_t	m_owner;	/* Owner of the mutex */
224 	__uint32_t		m_flags;	/* Flags of the mutex */
225 	__uint32_t		m_ceilings[2];	/* Priority protect ceiling */
226 	__uint32_t		m_rb_lnk;	/* Robust linkage */
227 	__uint32_t		m_pad;
228 	__uint32_t		m_spare[2];
229 };
230 
231 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
232 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
233     __offsetof(struct umutex32, m_spare[0]), "m_spare32");
234 #endif
235 
236 int umtx_shm_vnobj_persistent = 0;
237 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
238     &umtx_shm_vnobj_persistent, 0,
239     "False forces destruction of umtx attached to file, on last close");
240 static int umtx_max_rb = 1000;
241 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
242     &umtx_max_rb, 0,
243     "Maximum number of robust mutexes allowed for each thread");
244 
245 static uma_zone_t		umtx_pi_zone;
246 static struct umtxq_chain	umtxq_chains[2][UMTX_CHAINS];
247 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
248 static int			umtx_pi_allocated;
249 
250 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
251     "umtx debug");
252 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
253     &umtx_pi_allocated, 0, "Allocated umtx_pi");
254 static int umtx_verbose_rb = 1;
255 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
256     &umtx_verbose_rb, 0,
257     "");
258 
259 #ifdef UMTX_PROFILING
260 static long max_length;
261 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
262 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
263     "umtx chain stats");
264 #endif
265 
266 static void abs_timeout_update(struct abs_timeout *timo);
267 
268 static void umtx_shm_init(void);
269 static void umtxq_sysinit(void *);
270 static void umtxq_hash(struct umtx_key *key);
271 static struct umtxq_chain *umtxq_getchain(struct umtx_key *key);
272 static void umtxq_lock(struct umtx_key *key);
273 static void umtxq_unlock(struct umtx_key *key);
274 static void umtxq_busy(struct umtx_key *key);
275 static void umtxq_unbusy(struct umtx_key *key);
276 static void umtxq_insert_queue(struct umtx_q *uq, int q);
277 static void umtxq_remove_queue(struct umtx_q *uq, int q);
278 static int umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *);
279 static int umtxq_count(struct umtx_key *key);
280 static struct umtx_pi *umtx_pi_alloc(int);
281 static void umtx_pi_free(struct umtx_pi *pi);
282 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
283     bool rb);
284 static void umtx_thread_cleanup(struct thread *td);
285 static void umtx_exec_hook(void *arg __unused, struct proc *p __unused,
286     struct image_params *imgp __unused);
287 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
288 
289 #define umtxq_signal(key, nwake)	umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
290 #define umtxq_insert(uq)	umtxq_insert_queue((uq), UMTX_SHARED_QUEUE)
291 #define umtxq_remove(uq)	umtxq_remove_queue((uq), UMTX_SHARED_QUEUE)
292 
293 static struct mtx umtx_lock;
294 
295 #ifdef UMTX_PROFILING
296 static void
297 umtx_init_profiling(void)
298 {
299 	struct sysctl_oid *chain_oid;
300 	char chain_name[10];
301 	int i;
302 
303 	for (i = 0; i < UMTX_CHAINS; ++i) {
304 		snprintf(chain_name, sizeof(chain_name), "%d", i);
305 		chain_oid = SYSCTL_ADD_NODE(NULL,
306 		    SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
307 		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
308 		    "umtx hash stats");
309 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
310 		    "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
311 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
312 		    "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
313 	}
314 }
315 
316 static int
317 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
318 {
319 	char buf[512];
320 	struct sbuf sb;
321 	struct umtxq_chain *uc;
322 	u_int fract, i, j, tot, whole;
323 	u_int sf0, sf1, sf2, sf3, sf4;
324 	u_int si0, si1, si2, si3, si4;
325 	u_int sw0, sw1, sw2, sw3, sw4;
326 
327 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
328 	for (i = 0; i < 2; i++) {
329 		tot = 0;
330 		for (j = 0; j < UMTX_CHAINS; ++j) {
331 			uc = &umtxq_chains[i][j];
332 			mtx_lock(&uc->uc_lock);
333 			tot += uc->max_length;
334 			mtx_unlock(&uc->uc_lock);
335 		}
336 		if (tot == 0)
337 			sbuf_printf(&sb, "%u) Empty ", i);
338 		else {
339 			sf0 = sf1 = sf2 = sf3 = sf4 = 0;
340 			si0 = si1 = si2 = si3 = si4 = 0;
341 			sw0 = sw1 = sw2 = sw3 = sw4 = 0;
342 			for (j = 0; j < UMTX_CHAINS; j++) {
343 				uc = &umtxq_chains[i][j];
344 				mtx_lock(&uc->uc_lock);
345 				whole = uc->max_length * 100;
346 				mtx_unlock(&uc->uc_lock);
347 				fract = (whole % tot) * 100;
348 				if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
349 					sf0 = fract;
350 					si0 = j;
351 					sw0 = whole;
352 				} else if (UPROF_PERC_BIGGER(whole, fract, sw1,
353 				    sf1)) {
354 					sf1 = fract;
355 					si1 = j;
356 					sw1 = whole;
357 				} else if (UPROF_PERC_BIGGER(whole, fract, sw2,
358 				    sf2)) {
359 					sf2 = fract;
360 					si2 = j;
361 					sw2 = whole;
362 				} else if (UPROF_PERC_BIGGER(whole, fract, sw3,
363 				    sf3)) {
364 					sf3 = fract;
365 					si3 = j;
366 					sw3 = whole;
367 				} else if (UPROF_PERC_BIGGER(whole, fract, sw4,
368 				    sf4)) {
369 					sf4 = fract;
370 					si4 = j;
371 					sw4 = whole;
372 				}
373 			}
374 			sbuf_printf(&sb, "queue %u:\n", i);
375 			sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
376 			    sf0 / tot, si0);
377 			sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
378 			    sf1 / tot, si1);
379 			sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
380 			    sf2 / tot, si2);
381 			sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
382 			    sf3 / tot, si3);
383 			sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
384 			    sf4 / tot, si4);
385 		}
386 	}
387 	sbuf_trim(&sb);
388 	sbuf_finish(&sb);
389 	sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
390 	sbuf_delete(&sb);
391 	return (0);
392 }
393 
394 static int
395 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
396 {
397 	struct umtxq_chain *uc;
398 	u_int i, j;
399 	int clear, error;
400 
401 	clear = 0;
402 	error = sysctl_handle_int(oidp, &clear, 0, req);
403 	if (error != 0 || req->newptr == NULL)
404 		return (error);
405 
406 	if (clear != 0) {
407 		for (i = 0; i < 2; ++i) {
408 			for (j = 0; j < UMTX_CHAINS; ++j) {
409 				uc = &umtxq_chains[i][j];
410 				mtx_lock(&uc->uc_lock);
411 				uc->length = 0;
412 				uc->max_length = 0;
413 				mtx_unlock(&uc->uc_lock);
414 			}
415 		}
416 	}
417 	return (0);
418 }
419 
420 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
421     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
422     sysctl_debug_umtx_chains_clear, "I",
423     "Clear umtx chains statistics");
424 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
425     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
426     sysctl_debug_umtx_chains_peaks, "A",
427     "Highest peaks in chains max length");
428 #endif
429 
430 static void
431 umtxq_sysinit(void *arg __unused)
432 {
433 	int i, j;
434 
435 	umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
436 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
437 	for (i = 0; i < 2; ++i) {
438 		for (j = 0; j < UMTX_CHAINS; ++j) {
439 			mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
440 				 MTX_DEF | MTX_DUPOK);
441 			LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
442 			LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
443 			LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
444 			TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
445 			umtxq_chains[i][j].uc_busy = 0;
446 			umtxq_chains[i][j].uc_waiters = 0;
447 #ifdef UMTX_PROFILING
448 			umtxq_chains[i][j].length = 0;
449 			umtxq_chains[i][j].max_length = 0;
450 #endif
451 		}
452 	}
453 #ifdef UMTX_PROFILING
454 	umtx_init_profiling();
455 #endif
456 	mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
457 	EVENTHANDLER_REGISTER(process_exec, umtx_exec_hook, NULL,
458 	    EVENTHANDLER_PRI_ANY);
459 	umtx_shm_init();
460 }
461 
462 struct umtx_q *
463 umtxq_alloc(void)
464 {
465 	struct umtx_q *uq;
466 
467 	uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
468 	uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
469 	    M_WAITOK | M_ZERO);
470 	TAILQ_INIT(&uq->uq_spare_queue->head);
471 	TAILQ_INIT(&uq->uq_pi_contested);
472 	uq->uq_inherited_pri = PRI_MAX;
473 	return (uq);
474 }
475 
476 void
477 umtxq_free(struct umtx_q *uq)
478 {
479 
480 	MPASS(uq->uq_spare_queue != NULL);
481 	free(uq->uq_spare_queue, M_UMTX);
482 	free(uq, M_UMTX);
483 }
484 
485 static inline void
486 umtxq_hash(struct umtx_key *key)
487 {
488 	unsigned n;
489 
490 	n = (uintptr_t)key->info.both.a + key->info.both.b;
491 	key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
492 }
493 
494 static inline struct umtxq_chain *
495 umtxq_getchain(struct umtx_key *key)
496 {
497 
498 	if (key->type <= TYPE_SEM)
499 		return (&umtxq_chains[1][key->hash]);
500 	return (&umtxq_chains[0][key->hash]);
501 }
502 
503 /*
504  * Lock a chain.
505  */
506 static inline void
507 umtxq_lock(struct umtx_key *key)
508 {
509 	struct umtxq_chain *uc;
510 
511 	uc = umtxq_getchain(key);
512 	mtx_lock(&uc->uc_lock);
513 }
514 
515 /*
516  * Unlock a chain.
517  */
518 static inline void
519 umtxq_unlock(struct umtx_key *key)
520 {
521 	struct umtxq_chain *uc;
522 
523 	uc = umtxq_getchain(key);
524 	mtx_unlock(&uc->uc_lock);
525 }
526 
527 /*
528  * Set chain to busy state when following operation
529  * may be blocked (kernel mutex can not be used).
530  */
531 static inline void
532 umtxq_busy(struct umtx_key *key)
533 {
534 	struct umtxq_chain *uc;
535 
536 	uc = umtxq_getchain(key);
537 	mtx_assert(&uc->uc_lock, MA_OWNED);
538 	if (uc->uc_busy) {
539 #ifdef SMP
540 		if (smp_cpus > 1) {
541 			int count = BUSY_SPINS;
542 			if (count > 0) {
543 				umtxq_unlock(key);
544 				while (uc->uc_busy && --count > 0)
545 					cpu_spinwait();
546 				umtxq_lock(key);
547 			}
548 		}
549 #endif
550 		while (uc->uc_busy) {
551 			uc->uc_waiters++;
552 			msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
553 			uc->uc_waiters--;
554 		}
555 	}
556 	uc->uc_busy = 1;
557 }
558 
559 /*
560  * Unbusy a chain.
561  */
562 static inline void
563 umtxq_unbusy(struct umtx_key *key)
564 {
565 	struct umtxq_chain *uc;
566 
567 	uc = umtxq_getchain(key);
568 	mtx_assert(&uc->uc_lock, MA_OWNED);
569 	KASSERT(uc->uc_busy != 0, ("not busy"));
570 	uc->uc_busy = 0;
571 	if (uc->uc_waiters)
572 		wakeup_one(uc);
573 }
574 
575 static inline void
576 umtxq_unbusy_unlocked(struct umtx_key *key)
577 {
578 
579 	umtxq_lock(key);
580 	umtxq_unbusy(key);
581 	umtxq_unlock(key);
582 }
583 
584 static struct umtxq_queue *
585 umtxq_queue_lookup(struct umtx_key *key, int q)
586 {
587 	struct umtxq_queue *uh;
588 	struct umtxq_chain *uc;
589 
590 	uc = umtxq_getchain(key);
591 	UMTXQ_LOCKED_ASSERT(uc);
592 	LIST_FOREACH(uh, &uc->uc_queue[q], link) {
593 		if (umtx_key_match(&uh->key, key))
594 			return (uh);
595 	}
596 
597 	return (NULL);
598 }
599 
600 static inline void
601 umtxq_insert_queue(struct umtx_q *uq, int q)
602 {
603 	struct umtxq_queue *uh;
604 	struct umtxq_chain *uc;
605 
606 	uc = umtxq_getchain(&uq->uq_key);
607 	UMTXQ_LOCKED_ASSERT(uc);
608 	KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
609 	uh = umtxq_queue_lookup(&uq->uq_key, q);
610 	if (uh != NULL) {
611 		LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
612 	} else {
613 		uh = uq->uq_spare_queue;
614 		uh->key = uq->uq_key;
615 		LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
616 #ifdef UMTX_PROFILING
617 		uc->length++;
618 		if (uc->length > uc->max_length) {
619 			uc->max_length = uc->length;
620 			if (uc->max_length > max_length)
621 				max_length = uc->max_length;
622 		}
623 #endif
624 	}
625 	uq->uq_spare_queue = NULL;
626 
627 	TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
628 	uh->length++;
629 	uq->uq_flags |= UQF_UMTXQ;
630 	uq->uq_cur_queue = uh;
631 	return;
632 }
633 
634 static inline void
635 umtxq_remove_queue(struct umtx_q *uq, int q)
636 {
637 	struct umtxq_chain *uc;
638 	struct umtxq_queue *uh;
639 
640 	uc = umtxq_getchain(&uq->uq_key);
641 	UMTXQ_LOCKED_ASSERT(uc);
642 	if (uq->uq_flags & UQF_UMTXQ) {
643 		uh = uq->uq_cur_queue;
644 		TAILQ_REMOVE(&uh->head, uq, uq_link);
645 		uh->length--;
646 		uq->uq_flags &= ~UQF_UMTXQ;
647 		if (TAILQ_EMPTY(&uh->head)) {
648 			KASSERT(uh->length == 0,
649 			    ("inconsistent umtxq_queue length"));
650 #ifdef UMTX_PROFILING
651 			uc->length--;
652 #endif
653 			LIST_REMOVE(uh, link);
654 		} else {
655 			uh = LIST_FIRST(&uc->uc_spare_queue);
656 			KASSERT(uh != NULL, ("uc_spare_queue is empty"));
657 			LIST_REMOVE(uh, link);
658 		}
659 		uq->uq_spare_queue = uh;
660 		uq->uq_cur_queue = NULL;
661 	}
662 }
663 
664 /*
665  * Check if there are multiple waiters
666  */
667 static int
668 umtxq_count(struct umtx_key *key)
669 {
670 	struct umtxq_queue *uh;
671 
672 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
673 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
674 	if (uh != NULL)
675 		return (uh->length);
676 	return (0);
677 }
678 
679 /*
680  * Check if there are multiple PI waiters and returns first
681  * waiter.
682  */
683 static int
684 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
685 {
686 	struct umtxq_queue *uh;
687 
688 	*first = NULL;
689 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
690 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
691 	if (uh != NULL) {
692 		*first = TAILQ_FIRST(&uh->head);
693 		return (uh->length);
694 	}
695 	return (0);
696 }
697 
698 /*
699  * Wake up threads waiting on an userland object.
700  */
701 
702 static int
703 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
704 {
705 	struct umtxq_queue *uh;
706 	struct umtx_q *uq;
707 	int ret;
708 
709 	ret = 0;
710 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
711 	uh = umtxq_queue_lookup(key, q);
712 	if (uh != NULL) {
713 		while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
714 			umtxq_remove_queue(uq, q);
715 			wakeup(uq);
716 			if (++ret >= n_wake)
717 				return (ret);
718 		}
719 	}
720 	return (ret);
721 }
722 
723 /*
724  * Wake up specified thread.
725  */
726 static inline void
727 umtxq_signal_thread(struct umtx_q *uq)
728 {
729 
730 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
731 	umtxq_remove(uq);
732 	wakeup(uq);
733 }
734 
735 static inline int
736 tstohz(const struct timespec *tsp)
737 {
738 	struct timeval tv;
739 
740 	TIMESPEC_TO_TIMEVAL(&tv, tsp);
741 	return tvtohz(&tv);
742 }
743 
744 static void
745 abs_timeout_init(struct abs_timeout *timo, int clockid, int absolute,
746 	const struct timespec *timeout)
747 {
748 
749 	timo->clockid = clockid;
750 	if (!absolute) {
751 		timo->is_abs_real = false;
752 		abs_timeout_update(timo);
753 		timespecadd(&timo->cur, timeout, &timo->end);
754 	} else {
755 		timo->end = *timeout;
756 		timo->is_abs_real = clockid == CLOCK_REALTIME ||
757 		    clockid == CLOCK_REALTIME_FAST ||
758 		    clockid == CLOCK_REALTIME_PRECISE;
759 		/*
760 		 * If is_abs_real, umtxq_sleep will read the clock
761 		 * after setting td_rtcgen; otherwise, read it here.
762 		 */
763 		if (!timo->is_abs_real) {
764 			abs_timeout_update(timo);
765 		}
766 	}
767 }
768 
769 static void
770 abs_timeout_init2(struct abs_timeout *timo, const struct _umtx_time *umtxtime)
771 {
772 
773 	abs_timeout_init(timo, umtxtime->_clockid,
774 	    (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
775 }
776 
777 static inline void
778 abs_timeout_update(struct abs_timeout *timo)
779 {
780 
781 	kern_clock_gettime(curthread, timo->clockid, &timo->cur);
782 }
783 
784 static int
785 abs_timeout_gethz(struct abs_timeout *timo)
786 {
787 	struct timespec tts;
788 
789 	if (timespeccmp(&timo->end, &timo->cur, <=))
790 		return (-1);
791 	timespecsub(&timo->end, &timo->cur, &tts);
792 	return (tstohz(&tts));
793 }
794 
795 static uint32_t
796 umtx_unlock_val(uint32_t flags, bool rb)
797 {
798 
799 	if (rb)
800 		return (UMUTEX_RB_OWNERDEAD);
801 	else if ((flags & UMUTEX_NONCONSISTENT) != 0)
802 		return (UMUTEX_RB_NOTRECOV);
803 	else
804 		return (UMUTEX_UNOWNED);
805 
806 }
807 
808 /*
809  * Put thread into sleep state, before sleeping, check if
810  * thread was removed from umtx queue.
811  */
812 static inline int
813 umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *abstime)
814 {
815 	struct umtxq_chain *uc;
816 	int error, timo;
817 
818 	if (abstime != NULL && abstime->is_abs_real) {
819 		curthread->td_rtcgen = atomic_load_acq_int(&rtc_generation);
820 		abs_timeout_update(abstime);
821 	}
822 
823 	uc = umtxq_getchain(&uq->uq_key);
824 	UMTXQ_LOCKED_ASSERT(uc);
825 	for (;;) {
826 		if (!(uq->uq_flags & UQF_UMTXQ)) {
827 			error = 0;
828 			break;
829 		}
830 		if (abstime != NULL) {
831 			timo = abs_timeout_gethz(abstime);
832 			if (timo < 0) {
833 				error = ETIMEDOUT;
834 				break;
835 			}
836 		} else
837 			timo = 0;
838 		error = msleep(uq, &uc->uc_lock, PCATCH | PDROP, wmesg, timo);
839 		if (error == EINTR || error == ERESTART) {
840 			umtxq_lock(&uq->uq_key);
841 			break;
842 		}
843 		if (abstime != NULL) {
844 			if (abstime->is_abs_real)
845 				curthread->td_rtcgen =
846 				    atomic_load_acq_int(&rtc_generation);
847 			abs_timeout_update(abstime);
848 		}
849 		umtxq_lock(&uq->uq_key);
850 	}
851 
852 	curthread->td_rtcgen = 0;
853 	return (error);
854 }
855 
856 /*
857  * Convert userspace address into unique logical address.
858  */
859 int
860 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
861 {
862 	struct thread *td = curthread;
863 	vm_map_t map;
864 	vm_map_entry_t entry;
865 	vm_pindex_t pindex;
866 	vm_prot_t prot;
867 	boolean_t wired;
868 
869 	key->type = type;
870 	if (share == THREAD_SHARE) {
871 		key->shared = 0;
872 		key->info.private.vs = td->td_proc->p_vmspace;
873 		key->info.private.addr = (uintptr_t)addr;
874 	} else {
875 		MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
876 		map = &td->td_proc->p_vmspace->vm_map;
877 		if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
878 		    &entry, &key->info.shared.object, &pindex, &prot,
879 		    &wired) != KERN_SUCCESS) {
880 			return (EFAULT);
881 		}
882 
883 		if ((share == PROCESS_SHARE) ||
884 		    (share == AUTO_SHARE &&
885 		     VM_INHERIT_SHARE == entry->inheritance)) {
886 			key->shared = 1;
887 			key->info.shared.offset = (vm_offset_t)addr -
888 			    entry->start + entry->offset;
889 			vm_object_reference(key->info.shared.object);
890 		} else {
891 			key->shared = 0;
892 			key->info.private.vs = td->td_proc->p_vmspace;
893 			key->info.private.addr = (uintptr_t)addr;
894 		}
895 		vm_map_lookup_done(map, entry);
896 	}
897 
898 	umtxq_hash(key);
899 	return (0);
900 }
901 
902 /*
903  * Release key.
904  */
905 void
906 umtx_key_release(struct umtx_key *key)
907 {
908 	if (key->shared)
909 		vm_object_deallocate(key->info.shared.object);
910 }
911 
912 /*
913  * Fetch and compare value, sleep on the address if value is not changed.
914  */
915 static int
916 do_wait(struct thread *td, void *addr, u_long id,
917     struct _umtx_time *timeout, int compat32, int is_private)
918 {
919 	struct abs_timeout timo;
920 	struct umtx_q *uq;
921 	u_long tmp;
922 	uint32_t tmp32;
923 	int error = 0;
924 
925 	uq = td->td_umtxq;
926 	if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
927 		is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
928 		return (error);
929 
930 	if (timeout != NULL)
931 		abs_timeout_init2(&timo, timeout);
932 
933 	umtxq_lock(&uq->uq_key);
934 	umtxq_insert(uq);
935 	umtxq_unlock(&uq->uq_key);
936 	if (compat32 == 0) {
937 		error = fueword(addr, &tmp);
938 		if (error != 0)
939 			error = EFAULT;
940 	} else {
941 		error = fueword32(addr, &tmp32);
942 		if (error == 0)
943 			tmp = tmp32;
944 		else
945 			error = EFAULT;
946 	}
947 	umtxq_lock(&uq->uq_key);
948 	if (error == 0) {
949 		if (tmp == id)
950 			error = umtxq_sleep(uq, "uwait", timeout == NULL ?
951 			    NULL : &timo);
952 		if ((uq->uq_flags & UQF_UMTXQ) == 0)
953 			error = 0;
954 		else
955 			umtxq_remove(uq);
956 	} else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
957 		umtxq_remove(uq);
958 	}
959 	umtxq_unlock(&uq->uq_key);
960 	umtx_key_release(&uq->uq_key);
961 	if (error == ERESTART)
962 		error = EINTR;
963 	return (error);
964 }
965 
966 /*
967  * Wake up threads sleeping on the specified address.
968  */
969 int
970 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
971 {
972 	struct umtx_key key;
973 	int ret;
974 
975 	if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
976 	    is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
977 		return (ret);
978 	umtxq_lock(&key);
979 	umtxq_signal(&key, n_wake);
980 	umtxq_unlock(&key);
981 	umtx_key_release(&key);
982 	return (0);
983 }
984 
985 /*
986  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
987  */
988 static int
989 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
990     struct _umtx_time *timeout, int mode)
991 {
992 	struct abs_timeout timo;
993 	struct umtx_q *uq;
994 	uint32_t owner, old, id;
995 	int error, rv;
996 
997 	id = td->td_tid;
998 	uq = td->td_umtxq;
999 	error = 0;
1000 	if (timeout != NULL)
1001 		abs_timeout_init2(&timo, timeout);
1002 
1003 	/*
1004 	 * Care must be exercised when dealing with umtx structure. It
1005 	 * can fault on any access.
1006 	 */
1007 	for (;;) {
1008 		rv = fueword32(&m->m_owner, &owner);
1009 		if (rv == -1)
1010 			return (EFAULT);
1011 		if (mode == _UMUTEX_WAIT) {
1012 			if (owner == UMUTEX_UNOWNED ||
1013 			    owner == UMUTEX_CONTESTED ||
1014 			    owner == UMUTEX_RB_OWNERDEAD ||
1015 			    owner == UMUTEX_RB_NOTRECOV)
1016 				return (0);
1017 		} else {
1018 			/*
1019 			 * Robust mutex terminated.  Kernel duty is to
1020 			 * return EOWNERDEAD to the userspace.  The
1021 			 * umutex.m_flags UMUTEX_NONCONSISTENT is set
1022 			 * by the common userspace code.
1023 			 */
1024 			if (owner == UMUTEX_RB_OWNERDEAD) {
1025 				rv = casueword32(&m->m_owner,
1026 				    UMUTEX_RB_OWNERDEAD, &owner,
1027 				    id | UMUTEX_CONTESTED);
1028 				if (rv == -1)
1029 					return (EFAULT);
1030 				if (rv == 0) {
1031 					MPASS(owner == UMUTEX_RB_OWNERDEAD);
1032 					return (EOWNERDEAD); /* success */
1033 				}
1034 				MPASS(rv == 1);
1035 				rv = thread_check_susp(td, false);
1036 				if (rv != 0)
1037 					return (rv);
1038 				continue;
1039 			}
1040 			if (owner == UMUTEX_RB_NOTRECOV)
1041 				return (ENOTRECOVERABLE);
1042 
1043 			/*
1044 			 * Try the uncontested case.  This should be
1045 			 * done in userland.
1046 			 */
1047 			rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
1048 			    &owner, id);
1049 			/* The address was invalid. */
1050 			if (rv == -1)
1051 				return (EFAULT);
1052 
1053 			/* The acquire succeeded. */
1054 			if (rv == 0) {
1055 				MPASS(owner == UMUTEX_UNOWNED);
1056 				return (0);
1057 			}
1058 
1059 			/*
1060 			 * If no one owns it but it is contested try
1061 			 * to acquire it.
1062 			 */
1063 			MPASS(rv == 1);
1064 			if (owner == UMUTEX_CONTESTED) {
1065 				rv = casueword32(&m->m_owner,
1066 				    UMUTEX_CONTESTED, &owner,
1067 				    id | UMUTEX_CONTESTED);
1068 				/* The address was invalid. */
1069 				if (rv == -1)
1070 					return (EFAULT);
1071 				if (rv == 0) {
1072 					MPASS(owner == UMUTEX_CONTESTED);
1073 					return (0);
1074 				}
1075 				if (rv == 1) {
1076 					rv = thread_check_susp(td, false);
1077 					if (rv != 0)
1078 						return (rv);
1079 				}
1080 
1081 				/*
1082 				 * If this failed the lock has
1083 				 * changed, restart.
1084 				 */
1085 				continue;
1086 			}
1087 
1088 			/* rv == 1 but not contested, likely store failure */
1089 			rv = thread_check_susp(td, false);
1090 			if (rv != 0)
1091 				return (rv);
1092 		}
1093 
1094 		if (mode == _UMUTEX_TRY)
1095 			return (EBUSY);
1096 
1097 		/*
1098 		 * If we caught a signal, we have retried and now
1099 		 * exit immediately.
1100 		 */
1101 		if (error != 0)
1102 			return (error);
1103 
1104 		if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
1105 		    GET_SHARE(flags), &uq->uq_key)) != 0)
1106 			return (error);
1107 
1108 		umtxq_lock(&uq->uq_key);
1109 		umtxq_busy(&uq->uq_key);
1110 		umtxq_insert(uq);
1111 		umtxq_unlock(&uq->uq_key);
1112 
1113 		/*
1114 		 * Set the contested bit so that a release in user space
1115 		 * knows to use the system call for unlock.  If this fails
1116 		 * either some one else has acquired the lock or it has been
1117 		 * released.
1118 		 */
1119 		rv = casueword32(&m->m_owner, owner, &old,
1120 		    owner | UMUTEX_CONTESTED);
1121 
1122 		/* The address was invalid or casueword failed to store. */
1123 		if (rv == -1 || rv == 1) {
1124 			umtxq_lock(&uq->uq_key);
1125 			umtxq_remove(uq);
1126 			umtxq_unbusy(&uq->uq_key);
1127 			umtxq_unlock(&uq->uq_key);
1128 			umtx_key_release(&uq->uq_key);
1129 			if (rv == -1)
1130 				return (EFAULT);
1131 			if (rv == 1) {
1132 				rv = thread_check_susp(td, false);
1133 				if (rv != 0)
1134 					return (rv);
1135 			}
1136 			continue;
1137 		}
1138 
1139 		/*
1140 		 * We set the contested bit, sleep. Otherwise the lock changed
1141 		 * and we need to retry or we lost a race to the thread
1142 		 * unlocking the umtx.
1143 		 */
1144 		umtxq_lock(&uq->uq_key);
1145 		umtxq_unbusy(&uq->uq_key);
1146 		MPASS(old == owner);
1147 		error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
1148 		    NULL : &timo);
1149 		umtxq_remove(uq);
1150 		umtxq_unlock(&uq->uq_key);
1151 		umtx_key_release(&uq->uq_key);
1152 
1153 		if (error == 0)
1154 			error = thread_check_susp(td, false);
1155 	}
1156 
1157 	return (0);
1158 }
1159 
1160 /*
1161  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
1162  */
1163 static int
1164 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1165 {
1166 	struct umtx_key key;
1167 	uint32_t owner, old, id, newlock;
1168 	int error, count;
1169 
1170 	id = td->td_tid;
1171 
1172 again:
1173 	/*
1174 	 * Make sure we own this mtx.
1175 	 */
1176 	error = fueword32(&m->m_owner, &owner);
1177 	if (error == -1)
1178 		return (EFAULT);
1179 
1180 	if ((owner & ~UMUTEX_CONTESTED) != id)
1181 		return (EPERM);
1182 
1183 	newlock = umtx_unlock_val(flags, rb);
1184 	if ((owner & UMUTEX_CONTESTED) == 0) {
1185 		error = casueword32(&m->m_owner, owner, &old, newlock);
1186 		if (error == -1)
1187 			return (EFAULT);
1188 		if (error == 1) {
1189 			error = thread_check_susp(td, false);
1190 			if (error != 0)
1191 				return (error);
1192 			goto again;
1193 		}
1194 		MPASS(old == owner);
1195 		return (0);
1196 	}
1197 
1198 	/* We should only ever be in here for contested locks */
1199 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1200 	    &key)) != 0)
1201 		return (error);
1202 
1203 	umtxq_lock(&key);
1204 	umtxq_busy(&key);
1205 	count = umtxq_count(&key);
1206 	umtxq_unlock(&key);
1207 
1208 	/*
1209 	 * When unlocking the umtx, it must be marked as unowned if
1210 	 * there is zero or one thread only waiting for it.
1211 	 * Otherwise, it must be marked as contested.
1212 	 */
1213 	if (count > 1)
1214 		newlock |= UMUTEX_CONTESTED;
1215 	error = casueword32(&m->m_owner, owner, &old, newlock);
1216 	umtxq_lock(&key);
1217 	umtxq_signal(&key, 1);
1218 	umtxq_unbusy(&key);
1219 	umtxq_unlock(&key);
1220 	umtx_key_release(&key);
1221 	if (error == -1)
1222 		return (EFAULT);
1223 	if (error == 1) {
1224 		if (old != owner)
1225 			return (EINVAL);
1226 		error = thread_check_susp(td, false);
1227 		if (error != 0)
1228 			return (error);
1229 		goto again;
1230 	}
1231 	return (0);
1232 }
1233 
1234 /*
1235  * Check if the mutex is available and wake up a waiter,
1236  * only for simple mutex.
1237  */
1238 static int
1239 do_wake_umutex(struct thread *td, struct umutex *m)
1240 {
1241 	struct umtx_key key;
1242 	uint32_t owner;
1243 	uint32_t flags;
1244 	int error;
1245 	int count;
1246 
1247 again:
1248 	error = fueword32(&m->m_owner, &owner);
1249 	if (error == -1)
1250 		return (EFAULT);
1251 
1252 	if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
1253 	    owner != UMUTEX_RB_NOTRECOV)
1254 		return (0);
1255 
1256 	error = fueword32(&m->m_flags, &flags);
1257 	if (error == -1)
1258 		return (EFAULT);
1259 
1260 	/* We should only ever be in here for contested locks */
1261 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1262 	    &key)) != 0)
1263 		return (error);
1264 
1265 	umtxq_lock(&key);
1266 	umtxq_busy(&key);
1267 	count = umtxq_count(&key);
1268 	umtxq_unlock(&key);
1269 
1270 	if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
1271 	    owner != UMUTEX_RB_NOTRECOV) {
1272 		error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
1273 		    UMUTEX_UNOWNED);
1274 		if (error == -1) {
1275 			error = EFAULT;
1276 		} else if (error == 1) {
1277 			umtxq_lock(&key);
1278 			umtxq_unbusy(&key);
1279 			umtxq_unlock(&key);
1280 			umtx_key_release(&key);
1281 			error = thread_check_susp(td, false);
1282 			if (error != 0)
1283 				return (error);
1284 			goto again;
1285 		}
1286 	}
1287 
1288 	umtxq_lock(&key);
1289 	if (error == 0 && count != 0) {
1290 		MPASS((owner & ~UMUTEX_CONTESTED) == 0 ||
1291 		    owner == UMUTEX_RB_OWNERDEAD ||
1292 		    owner == UMUTEX_RB_NOTRECOV);
1293 		umtxq_signal(&key, 1);
1294 	}
1295 	umtxq_unbusy(&key);
1296 	umtxq_unlock(&key);
1297 	umtx_key_release(&key);
1298 	return (error);
1299 }
1300 
1301 /*
1302  * Check if the mutex has waiters and tries to fix contention bit.
1303  */
1304 static int
1305 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
1306 {
1307 	struct umtx_key key;
1308 	uint32_t owner, old;
1309 	int type;
1310 	int error;
1311 	int count;
1312 
1313 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
1314 	    UMUTEX_ROBUST)) {
1315 	case 0:
1316 	case UMUTEX_ROBUST:
1317 		type = TYPE_NORMAL_UMUTEX;
1318 		break;
1319 	case UMUTEX_PRIO_INHERIT:
1320 		type = TYPE_PI_UMUTEX;
1321 		break;
1322 	case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
1323 		type = TYPE_PI_ROBUST_UMUTEX;
1324 		break;
1325 	case UMUTEX_PRIO_PROTECT:
1326 		type = TYPE_PP_UMUTEX;
1327 		break;
1328 	case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
1329 		type = TYPE_PP_ROBUST_UMUTEX;
1330 		break;
1331 	default:
1332 		return (EINVAL);
1333 	}
1334 	if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
1335 		return (error);
1336 
1337 	owner = 0;
1338 	umtxq_lock(&key);
1339 	umtxq_busy(&key);
1340 	count = umtxq_count(&key);
1341 	umtxq_unlock(&key);
1342 
1343 	error = fueword32(&m->m_owner, &owner);
1344 	if (error == -1)
1345 		error = EFAULT;
1346 
1347 	/*
1348 	 * Only repair contention bit if there is a waiter, this means
1349 	 * the mutex is still being referenced by userland code,
1350 	 * otherwise don't update any memory.
1351 	 */
1352 	while (error == 0 && (owner & UMUTEX_CONTESTED) == 0 &&
1353 	    (count > 1 || (count == 1 && (owner & ~UMUTEX_CONTESTED) != 0))) {
1354 		error = casueword32(&m->m_owner, owner, &old,
1355 		    owner | UMUTEX_CONTESTED);
1356 		if (error == -1) {
1357 			error = EFAULT;
1358 			break;
1359 		}
1360 		if (error == 0) {
1361 			MPASS(old == owner);
1362 			break;
1363 		}
1364 		owner = old;
1365 		error = thread_check_susp(td, false);
1366 	}
1367 
1368 	umtxq_lock(&key);
1369 	if (error == EFAULT) {
1370 		umtxq_signal(&key, INT_MAX);
1371 	} else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1372 	    owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1373 		umtxq_signal(&key, 1);
1374 	umtxq_unbusy(&key);
1375 	umtxq_unlock(&key);
1376 	umtx_key_release(&key);
1377 	return (error);
1378 }
1379 
1380 static inline struct umtx_pi *
1381 umtx_pi_alloc(int flags)
1382 {
1383 	struct umtx_pi *pi;
1384 
1385 	pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
1386 	TAILQ_INIT(&pi->pi_blocked);
1387 	atomic_add_int(&umtx_pi_allocated, 1);
1388 	return (pi);
1389 }
1390 
1391 static inline void
1392 umtx_pi_free(struct umtx_pi *pi)
1393 {
1394 	uma_zfree(umtx_pi_zone, pi);
1395 	atomic_add_int(&umtx_pi_allocated, -1);
1396 }
1397 
1398 /*
1399  * Adjust the thread's position on a pi_state after its priority has been
1400  * changed.
1401  */
1402 static int
1403 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
1404 {
1405 	struct umtx_q *uq, *uq1, *uq2;
1406 	struct thread *td1;
1407 
1408 	mtx_assert(&umtx_lock, MA_OWNED);
1409 	if (pi == NULL)
1410 		return (0);
1411 
1412 	uq = td->td_umtxq;
1413 
1414 	/*
1415 	 * Check if the thread needs to be moved on the blocked chain.
1416 	 * It needs to be moved if either its priority is lower than
1417 	 * the previous thread or higher than the next thread.
1418 	 */
1419 	uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
1420 	uq2 = TAILQ_NEXT(uq, uq_lockq);
1421 	if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
1422 	    (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
1423 		/*
1424 		 * Remove thread from blocked chain and determine where
1425 		 * it should be moved to.
1426 		 */
1427 		TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1428 		TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1429 			td1 = uq1->uq_thread;
1430 			MPASS(td1->td_proc->p_magic == P_MAGIC);
1431 			if (UPRI(td1) > UPRI(td))
1432 				break;
1433 		}
1434 
1435 		if (uq1 == NULL)
1436 			TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1437 		else
1438 			TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1439 	}
1440 	return (1);
1441 }
1442 
1443 static struct umtx_pi *
1444 umtx_pi_next(struct umtx_pi *pi)
1445 {
1446 	struct umtx_q *uq_owner;
1447 
1448 	if (pi->pi_owner == NULL)
1449 		return (NULL);
1450 	uq_owner = pi->pi_owner->td_umtxq;
1451 	if (uq_owner == NULL)
1452 		return (NULL);
1453 	return (uq_owner->uq_pi_blocked);
1454 }
1455 
1456 /*
1457  * Floyd's Cycle-Finding Algorithm.
1458  */
1459 static bool
1460 umtx_pi_check_loop(struct umtx_pi *pi)
1461 {
1462 	struct umtx_pi *pi1;	/* fast iterator */
1463 
1464 	mtx_assert(&umtx_lock, MA_OWNED);
1465 	if (pi == NULL)
1466 		return (false);
1467 	pi1 = pi;
1468 	for (;;) {
1469 		pi = umtx_pi_next(pi);
1470 		if (pi == NULL)
1471 			break;
1472 		pi1 = umtx_pi_next(pi1);
1473 		if (pi1 == NULL)
1474 			break;
1475 		pi1 = umtx_pi_next(pi1);
1476 		if (pi1 == NULL)
1477 			break;
1478 		if (pi == pi1)
1479 			return (true);
1480 	}
1481 	return (false);
1482 }
1483 
1484 /*
1485  * Propagate priority when a thread is blocked on POSIX
1486  * PI mutex.
1487  */
1488 static void
1489 umtx_propagate_priority(struct thread *td)
1490 {
1491 	struct umtx_q *uq;
1492 	struct umtx_pi *pi;
1493 	int pri;
1494 
1495 	mtx_assert(&umtx_lock, MA_OWNED);
1496 	pri = UPRI(td);
1497 	uq = td->td_umtxq;
1498 	pi = uq->uq_pi_blocked;
1499 	if (pi == NULL)
1500 		return;
1501 	if (umtx_pi_check_loop(pi))
1502 		return;
1503 
1504 	for (;;) {
1505 		td = pi->pi_owner;
1506 		if (td == NULL || td == curthread)
1507 			return;
1508 
1509 		MPASS(td->td_proc != NULL);
1510 		MPASS(td->td_proc->p_magic == P_MAGIC);
1511 
1512 		thread_lock(td);
1513 		if (td->td_lend_user_pri > pri)
1514 			sched_lend_user_prio(td, pri);
1515 		else {
1516 			thread_unlock(td);
1517 			break;
1518 		}
1519 		thread_unlock(td);
1520 
1521 		/*
1522 		 * Pick up the lock that td is blocked on.
1523 		 */
1524 		uq = td->td_umtxq;
1525 		pi = uq->uq_pi_blocked;
1526 		if (pi == NULL)
1527 			break;
1528 		/* Resort td on the list if needed. */
1529 		umtx_pi_adjust_thread(pi, td);
1530 	}
1531 }
1532 
1533 /*
1534  * Unpropagate priority for a PI mutex when a thread blocked on
1535  * it is interrupted by signal or resumed by others.
1536  */
1537 static void
1538 umtx_repropagate_priority(struct umtx_pi *pi)
1539 {
1540 	struct umtx_q *uq, *uq_owner;
1541 	struct umtx_pi *pi2;
1542 	int pri;
1543 
1544 	mtx_assert(&umtx_lock, MA_OWNED);
1545 
1546 	if (umtx_pi_check_loop(pi))
1547 		return;
1548 	while (pi != NULL && pi->pi_owner != NULL) {
1549 		pri = PRI_MAX;
1550 		uq_owner = pi->pi_owner->td_umtxq;
1551 
1552 		TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
1553 			uq = TAILQ_FIRST(&pi2->pi_blocked);
1554 			if (uq != NULL) {
1555 				if (pri > UPRI(uq->uq_thread))
1556 					pri = UPRI(uq->uq_thread);
1557 			}
1558 		}
1559 
1560 		if (pri > uq_owner->uq_inherited_pri)
1561 			pri = uq_owner->uq_inherited_pri;
1562 		thread_lock(pi->pi_owner);
1563 		sched_lend_user_prio(pi->pi_owner, pri);
1564 		thread_unlock(pi->pi_owner);
1565 		if ((pi = uq_owner->uq_pi_blocked) != NULL)
1566 			umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
1567 	}
1568 }
1569 
1570 /*
1571  * Insert a PI mutex into owned list.
1572  */
1573 static void
1574 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
1575 {
1576 	struct umtx_q *uq_owner;
1577 
1578 	uq_owner = owner->td_umtxq;
1579 	mtx_assert(&umtx_lock, MA_OWNED);
1580 	MPASS(pi->pi_owner == NULL);
1581 	pi->pi_owner = owner;
1582 	TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
1583 }
1584 
1585 /*
1586  * Disown a PI mutex, and remove it from the owned list.
1587  */
1588 static void
1589 umtx_pi_disown(struct umtx_pi *pi)
1590 {
1591 
1592 	mtx_assert(&umtx_lock, MA_OWNED);
1593 	TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
1594 	pi->pi_owner = NULL;
1595 }
1596 
1597 /*
1598  * Claim ownership of a PI mutex.
1599  */
1600 static int
1601 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
1602 {
1603 	struct umtx_q *uq;
1604 	int pri;
1605 
1606 	mtx_lock(&umtx_lock);
1607 	if (pi->pi_owner == owner) {
1608 		mtx_unlock(&umtx_lock);
1609 		return (0);
1610 	}
1611 
1612 	if (pi->pi_owner != NULL) {
1613 		/*
1614 		 * userland may have already messed the mutex, sigh.
1615 		 */
1616 		mtx_unlock(&umtx_lock);
1617 		return (EPERM);
1618 	}
1619 	umtx_pi_setowner(pi, owner);
1620 	uq = TAILQ_FIRST(&pi->pi_blocked);
1621 	if (uq != NULL) {
1622 		pri = UPRI(uq->uq_thread);
1623 		thread_lock(owner);
1624 		if (pri < UPRI(owner))
1625 			sched_lend_user_prio(owner, pri);
1626 		thread_unlock(owner);
1627 	}
1628 	mtx_unlock(&umtx_lock);
1629 	return (0);
1630 }
1631 
1632 /*
1633  * Adjust a thread's order position in its blocked PI mutex,
1634  * this may result new priority propagating process.
1635  */
1636 void
1637 umtx_pi_adjust(struct thread *td, u_char oldpri)
1638 {
1639 	struct umtx_q *uq;
1640 	struct umtx_pi *pi;
1641 
1642 	uq = td->td_umtxq;
1643 	mtx_lock(&umtx_lock);
1644 	/*
1645 	 * Pick up the lock that td is blocked on.
1646 	 */
1647 	pi = uq->uq_pi_blocked;
1648 	if (pi != NULL) {
1649 		umtx_pi_adjust_thread(pi, td);
1650 		umtx_repropagate_priority(pi);
1651 	}
1652 	mtx_unlock(&umtx_lock);
1653 }
1654 
1655 /*
1656  * Sleep on a PI mutex.
1657  */
1658 static int
1659 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
1660     const char *wmesg, struct abs_timeout *timo, bool shared)
1661 {
1662 	struct thread *td, *td1;
1663 	struct umtx_q *uq1;
1664 	int error, pri;
1665 #ifdef INVARIANTS
1666 	struct umtxq_chain *uc;
1667 
1668 	uc = umtxq_getchain(&pi->pi_key);
1669 #endif
1670 	error = 0;
1671 	td = uq->uq_thread;
1672 	KASSERT(td == curthread, ("inconsistent uq_thread"));
1673 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
1674 	KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
1675 	umtxq_insert(uq);
1676 	mtx_lock(&umtx_lock);
1677 	if (pi->pi_owner == NULL) {
1678 		mtx_unlock(&umtx_lock);
1679 		td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
1680 		mtx_lock(&umtx_lock);
1681 		if (td1 != NULL) {
1682 			if (pi->pi_owner == NULL)
1683 				umtx_pi_setowner(pi, td1);
1684 			PROC_UNLOCK(td1->td_proc);
1685 		}
1686 	}
1687 
1688 	TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1689 		pri = UPRI(uq1->uq_thread);
1690 		if (pri > UPRI(td))
1691 			break;
1692 	}
1693 
1694 	if (uq1 != NULL)
1695 		TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1696 	else
1697 		TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1698 
1699 	uq->uq_pi_blocked = pi;
1700 	thread_lock(td);
1701 	td->td_flags |= TDF_UPIBLOCKED;
1702 	thread_unlock(td);
1703 	umtx_propagate_priority(td);
1704 	mtx_unlock(&umtx_lock);
1705 	umtxq_unbusy(&uq->uq_key);
1706 
1707 	error = umtxq_sleep(uq, wmesg, timo);
1708 	umtxq_remove(uq);
1709 
1710 	mtx_lock(&umtx_lock);
1711 	uq->uq_pi_blocked = NULL;
1712 	thread_lock(td);
1713 	td->td_flags &= ~TDF_UPIBLOCKED;
1714 	thread_unlock(td);
1715 	TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1716 	umtx_repropagate_priority(pi);
1717 	mtx_unlock(&umtx_lock);
1718 	umtxq_unlock(&uq->uq_key);
1719 
1720 	return (error);
1721 }
1722 
1723 /*
1724  * Add reference count for a PI mutex.
1725  */
1726 static void
1727 umtx_pi_ref(struct umtx_pi *pi)
1728 {
1729 
1730 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
1731 	pi->pi_refcount++;
1732 }
1733 
1734 /*
1735  * Decrease reference count for a PI mutex, if the counter
1736  * is decreased to zero, its memory space is freed.
1737  */
1738 static void
1739 umtx_pi_unref(struct umtx_pi *pi)
1740 {
1741 	struct umtxq_chain *uc;
1742 
1743 	uc = umtxq_getchain(&pi->pi_key);
1744 	UMTXQ_LOCKED_ASSERT(uc);
1745 	KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
1746 	if (--pi->pi_refcount == 0) {
1747 		mtx_lock(&umtx_lock);
1748 		if (pi->pi_owner != NULL)
1749 			umtx_pi_disown(pi);
1750 		KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
1751 			("blocked queue not empty"));
1752 		mtx_unlock(&umtx_lock);
1753 		TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
1754 		umtx_pi_free(pi);
1755 	}
1756 }
1757 
1758 /*
1759  * Find a PI mutex in hash table.
1760  */
1761 static struct umtx_pi *
1762 umtx_pi_lookup(struct umtx_key *key)
1763 {
1764 	struct umtxq_chain *uc;
1765 	struct umtx_pi *pi;
1766 
1767 	uc = umtxq_getchain(key);
1768 	UMTXQ_LOCKED_ASSERT(uc);
1769 
1770 	TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
1771 		if (umtx_key_match(&pi->pi_key, key)) {
1772 			return (pi);
1773 		}
1774 	}
1775 	return (NULL);
1776 }
1777 
1778 /*
1779  * Insert a PI mutex into hash table.
1780  */
1781 static inline void
1782 umtx_pi_insert(struct umtx_pi *pi)
1783 {
1784 	struct umtxq_chain *uc;
1785 
1786 	uc = umtxq_getchain(&pi->pi_key);
1787 	UMTXQ_LOCKED_ASSERT(uc);
1788 	TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
1789 }
1790 
1791 /*
1792  * Lock a PI mutex.
1793  */
1794 static int
1795 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
1796     struct _umtx_time *timeout, int try)
1797 {
1798 	struct abs_timeout timo;
1799 	struct umtx_q *uq;
1800 	struct umtx_pi *pi, *new_pi;
1801 	uint32_t id, old_owner, owner, old;
1802 	int error, rv;
1803 
1804 	id = td->td_tid;
1805 	uq = td->td_umtxq;
1806 
1807 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
1808 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
1809 	    &uq->uq_key)) != 0)
1810 		return (error);
1811 
1812 	if (timeout != NULL)
1813 		abs_timeout_init2(&timo, timeout);
1814 
1815 	umtxq_lock(&uq->uq_key);
1816 	pi = umtx_pi_lookup(&uq->uq_key);
1817 	if (pi == NULL) {
1818 		new_pi = umtx_pi_alloc(M_NOWAIT);
1819 		if (new_pi == NULL) {
1820 			umtxq_unlock(&uq->uq_key);
1821 			new_pi = umtx_pi_alloc(M_WAITOK);
1822 			umtxq_lock(&uq->uq_key);
1823 			pi = umtx_pi_lookup(&uq->uq_key);
1824 			if (pi != NULL) {
1825 				umtx_pi_free(new_pi);
1826 				new_pi = NULL;
1827 			}
1828 		}
1829 		if (new_pi != NULL) {
1830 			new_pi->pi_key = uq->uq_key;
1831 			umtx_pi_insert(new_pi);
1832 			pi = new_pi;
1833 		}
1834 	}
1835 	umtx_pi_ref(pi);
1836 	umtxq_unlock(&uq->uq_key);
1837 
1838 	/*
1839 	 * Care must be exercised when dealing with umtx structure.  It
1840 	 * can fault on any access.
1841 	 */
1842 	for (;;) {
1843 		/*
1844 		 * Try the uncontested case.  This should be done in userland.
1845 		 */
1846 		rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
1847 		/* The address was invalid. */
1848 		if (rv == -1) {
1849 			error = EFAULT;
1850 			break;
1851 		}
1852 		/* The acquire succeeded. */
1853 		if (rv == 0) {
1854 			MPASS(owner == UMUTEX_UNOWNED);
1855 			error = 0;
1856 			break;
1857 		}
1858 
1859 		if (owner == UMUTEX_RB_NOTRECOV) {
1860 			error = ENOTRECOVERABLE;
1861 			break;
1862 		}
1863 
1864 		/*
1865 		 * Avoid overwriting a possible error from sleep due
1866 		 * to the pending signal with suspension check result.
1867 		 */
1868 		if (error == 0) {
1869 			error = thread_check_susp(td, true);
1870 			if (error != 0)
1871 				break;
1872 		}
1873 
1874 		/* If no one owns it but it is contested try to acquire it. */
1875 		if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
1876 			old_owner = owner;
1877 			rv = casueword32(&m->m_owner, owner, &owner,
1878 			    id | UMUTEX_CONTESTED);
1879 			/* The address was invalid. */
1880 			if (rv == -1) {
1881 				error = EFAULT;
1882 				break;
1883 			}
1884 			if (rv == 1) {
1885 				if (error == 0) {
1886 					error = thread_check_susp(td, true);
1887 					if (error != 0)
1888 						break;
1889 				}
1890 
1891 				/*
1892 				 * If this failed the lock could
1893 				 * changed, restart.
1894 				 */
1895 				continue;
1896 			}
1897 
1898 			MPASS(rv == 0);
1899 			MPASS(owner == old_owner);
1900 			umtxq_lock(&uq->uq_key);
1901 			umtxq_busy(&uq->uq_key);
1902 			error = umtx_pi_claim(pi, td);
1903 			umtxq_unbusy(&uq->uq_key);
1904 			umtxq_unlock(&uq->uq_key);
1905 			if (error != 0) {
1906 				/*
1907 				 * Since we're going to return an
1908 				 * error, restore the m_owner to its
1909 				 * previous, unowned state to avoid
1910 				 * compounding the problem.
1911 				 */
1912 				(void)casuword32(&m->m_owner,
1913 				    id | UMUTEX_CONTESTED, old_owner);
1914 			}
1915 			if (error == 0 && old_owner == UMUTEX_RB_OWNERDEAD)
1916 				error = EOWNERDEAD;
1917 			break;
1918 		}
1919 
1920 		if ((owner & ~UMUTEX_CONTESTED) == id) {
1921 			error = EDEADLK;
1922 			break;
1923 		}
1924 
1925 		if (try != 0) {
1926 			error = EBUSY;
1927 			break;
1928 		}
1929 
1930 		/*
1931 		 * If we caught a signal, we have retried and now
1932 		 * exit immediately.
1933 		 */
1934 		if (error != 0)
1935 			break;
1936 
1937 		umtxq_lock(&uq->uq_key);
1938 		umtxq_busy(&uq->uq_key);
1939 		umtxq_unlock(&uq->uq_key);
1940 
1941 		/*
1942 		 * Set the contested bit so that a release in user space
1943 		 * knows to use the system call for unlock.  If this fails
1944 		 * either some one else has acquired the lock or it has been
1945 		 * released.
1946 		 */
1947 		rv = casueword32(&m->m_owner, owner, &old, owner |
1948 		    UMUTEX_CONTESTED);
1949 
1950 		/* The address was invalid. */
1951 		if (rv == -1) {
1952 			umtxq_unbusy_unlocked(&uq->uq_key);
1953 			error = EFAULT;
1954 			break;
1955 		}
1956 		if (rv == 1) {
1957 			umtxq_unbusy_unlocked(&uq->uq_key);
1958 			error = thread_check_susp(td, true);
1959 			if (error != 0)
1960 				break;
1961 
1962 			/*
1963 			 * The lock changed and we need to retry or we
1964 			 * lost a race to the thread unlocking the
1965 			 * umtx.  Note that the UMUTEX_RB_OWNERDEAD
1966 			 * value for owner is impossible there.
1967 			 */
1968 			continue;
1969 		}
1970 
1971 		umtxq_lock(&uq->uq_key);
1972 
1973 		/* We set the contested bit, sleep. */
1974 		MPASS(old == owner);
1975 		error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
1976 		    "umtxpi", timeout == NULL ? NULL : &timo,
1977 		    (flags & USYNC_PROCESS_SHARED) != 0);
1978 		if (error != 0)
1979 			continue;
1980 
1981 		error = thread_check_susp(td, false);
1982 		if (error != 0)
1983 			break;
1984 	}
1985 
1986 	umtxq_lock(&uq->uq_key);
1987 	umtx_pi_unref(pi);
1988 	umtxq_unlock(&uq->uq_key);
1989 
1990 	umtx_key_release(&uq->uq_key);
1991 	return (error);
1992 }
1993 
1994 /*
1995  * Unlock a PI mutex.
1996  */
1997 static int
1998 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1999 {
2000 	struct umtx_key key;
2001 	struct umtx_q *uq_first, *uq_first2, *uq_me;
2002 	struct umtx_pi *pi, *pi2;
2003 	uint32_t id, new_owner, old, owner;
2004 	int count, error, pri;
2005 
2006 	id = td->td_tid;
2007 
2008 usrloop:
2009 	/*
2010 	 * Make sure we own this mtx.
2011 	 */
2012 	error = fueword32(&m->m_owner, &owner);
2013 	if (error == -1)
2014 		return (EFAULT);
2015 
2016 	if ((owner & ~UMUTEX_CONTESTED) != id)
2017 		return (EPERM);
2018 
2019 	new_owner = umtx_unlock_val(flags, rb);
2020 
2021 	/* This should be done in userland */
2022 	if ((owner & UMUTEX_CONTESTED) == 0) {
2023 		error = casueword32(&m->m_owner, owner, &old, new_owner);
2024 		if (error == -1)
2025 			return (EFAULT);
2026 		if (error == 1) {
2027 			error = thread_check_susp(td, true);
2028 			if (error != 0)
2029 				return (error);
2030 			goto usrloop;
2031 		}
2032 		if (old == owner)
2033 			return (0);
2034 		owner = old;
2035 	}
2036 
2037 	/* We should only ever be in here for contested locks */
2038 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2039 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2040 	    &key)) != 0)
2041 		return (error);
2042 
2043 	umtxq_lock(&key);
2044 	umtxq_busy(&key);
2045 	count = umtxq_count_pi(&key, &uq_first);
2046 	if (uq_first != NULL) {
2047 		mtx_lock(&umtx_lock);
2048 		pi = uq_first->uq_pi_blocked;
2049 		KASSERT(pi != NULL, ("pi == NULL?"));
2050 		if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
2051 			mtx_unlock(&umtx_lock);
2052 			umtxq_unbusy(&key);
2053 			umtxq_unlock(&key);
2054 			umtx_key_release(&key);
2055 			/* userland messed the mutex */
2056 			return (EPERM);
2057 		}
2058 		uq_me = td->td_umtxq;
2059 		if (pi->pi_owner == td)
2060 			umtx_pi_disown(pi);
2061 		/* get highest priority thread which is still sleeping. */
2062 		uq_first = TAILQ_FIRST(&pi->pi_blocked);
2063 		while (uq_first != NULL &&
2064 		    (uq_first->uq_flags & UQF_UMTXQ) == 0) {
2065 			uq_first = TAILQ_NEXT(uq_first, uq_lockq);
2066 		}
2067 		pri = PRI_MAX;
2068 		TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
2069 			uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
2070 			if (uq_first2 != NULL) {
2071 				if (pri > UPRI(uq_first2->uq_thread))
2072 					pri = UPRI(uq_first2->uq_thread);
2073 			}
2074 		}
2075 		thread_lock(td);
2076 		sched_lend_user_prio(td, pri);
2077 		thread_unlock(td);
2078 		mtx_unlock(&umtx_lock);
2079 		if (uq_first)
2080 			umtxq_signal_thread(uq_first);
2081 	} else {
2082 		pi = umtx_pi_lookup(&key);
2083 		/*
2084 		 * A umtx_pi can exist if a signal or timeout removed the
2085 		 * last waiter from the umtxq, but there is still
2086 		 * a thread in do_lock_pi() holding the umtx_pi.
2087 		 */
2088 		if (pi != NULL) {
2089 			/*
2090 			 * The umtx_pi can be unowned, such as when a thread
2091 			 * has just entered do_lock_pi(), allocated the
2092 			 * umtx_pi, and unlocked the umtxq.
2093 			 * If the current thread owns it, it must disown it.
2094 			 */
2095 			mtx_lock(&umtx_lock);
2096 			if (pi->pi_owner == td)
2097 				umtx_pi_disown(pi);
2098 			mtx_unlock(&umtx_lock);
2099 		}
2100 	}
2101 	umtxq_unlock(&key);
2102 
2103 	/*
2104 	 * When unlocking the umtx, it must be marked as unowned if
2105 	 * there is zero or one thread only waiting for it.
2106 	 * Otherwise, it must be marked as contested.
2107 	 */
2108 
2109 	if (count > 1)
2110 		new_owner |= UMUTEX_CONTESTED;
2111 again:
2112 	error = casueword32(&m->m_owner, owner, &old, new_owner);
2113 	if (error == 1) {
2114 		error = thread_check_susp(td, false);
2115 		if (error == 0)
2116 			goto again;
2117 	}
2118 	umtxq_unbusy_unlocked(&key);
2119 	umtx_key_release(&key);
2120 	if (error == -1)
2121 		return (EFAULT);
2122 	if (error == 0 && old != owner)
2123 		return (EINVAL);
2124 	return (error);
2125 }
2126 
2127 /*
2128  * Lock a PP mutex.
2129  */
2130 static int
2131 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
2132     struct _umtx_time *timeout, int try)
2133 {
2134 	struct abs_timeout timo;
2135 	struct umtx_q *uq, *uq2;
2136 	struct umtx_pi *pi;
2137 	uint32_t ceiling;
2138 	uint32_t owner, id;
2139 	int error, pri, old_inherited_pri, su, rv;
2140 
2141 	id = td->td_tid;
2142 	uq = td->td_umtxq;
2143 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2144 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2145 	    &uq->uq_key)) != 0)
2146 		return (error);
2147 
2148 	if (timeout != NULL)
2149 		abs_timeout_init2(&timo, timeout);
2150 
2151 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2152 	for (;;) {
2153 		old_inherited_pri = uq->uq_inherited_pri;
2154 		umtxq_lock(&uq->uq_key);
2155 		umtxq_busy(&uq->uq_key);
2156 		umtxq_unlock(&uq->uq_key);
2157 
2158 		rv = fueword32(&m->m_ceilings[0], &ceiling);
2159 		if (rv == -1) {
2160 			error = EFAULT;
2161 			goto out;
2162 		}
2163 		ceiling = RTP_PRIO_MAX - ceiling;
2164 		if (ceiling > RTP_PRIO_MAX) {
2165 			error = EINVAL;
2166 			goto out;
2167 		}
2168 
2169 		mtx_lock(&umtx_lock);
2170 		if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
2171 			mtx_unlock(&umtx_lock);
2172 			error = EINVAL;
2173 			goto out;
2174 		}
2175 		if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
2176 			uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
2177 			thread_lock(td);
2178 			if (uq->uq_inherited_pri < UPRI(td))
2179 				sched_lend_user_prio(td, uq->uq_inherited_pri);
2180 			thread_unlock(td);
2181 		}
2182 		mtx_unlock(&umtx_lock);
2183 
2184 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2185 		    id | UMUTEX_CONTESTED);
2186 		/* The address was invalid. */
2187 		if (rv == -1) {
2188 			error = EFAULT;
2189 			break;
2190 		}
2191 		if (rv == 0) {
2192 			MPASS(owner == UMUTEX_CONTESTED);
2193 			error = 0;
2194 			break;
2195 		}
2196 		/* rv == 1 */
2197 		if (owner == UMUTEX_RB_OWNERDEAD) {
2198 			rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
2199 			    &owner, id | UMUTEX_CONTESTED);
2200 			if (rv == -1) {
2201 				error = EFAULT;
2202 				break;
2203 			}
2204 			if (rv == 0) {
2205 				MPASS(owner == UMUTEX_RB_OWNERDEAD);
2206 				error = EOWNERDEAD; /* success */
2207 				break;
2208 			}
2209 
2210 			/*
2211 			 *  rv == 1, only check for suspension if we
2212 			 *  did not already catched a signal.  If we
2213 			 *  get an error from the check, the same
2214 			 *  condition is checked by the umtxq_sleep()
2215 			 *  call below, so we should obliterate the
2216 			 *  error to not skip the last loop iteration.
2217 			 */
2218 			if (error == 0) {
2219 				error = thread_check_susp(td, false);
2220 				if (error == 0) {
2221 					if (try != 0)
2222 						error = EBUSY;
2223 					else
2224 						continue;
2225 				}
2226 				error = 0;
2227 			}
2228 		} else if (owner == UMUTEX_RB_NOTRECOV) {
2229 			error = ENOTRECOVERABLE;
2230 		}
2231 
2232 		if (try != 0)
2233 			error = EBUSY;
2234 
2235 		/*
2236 		 * If we caught a signal, we have retried and now
2237 		 * exit immediately.
2238 		 */
2239 		if (error != 0)
2240 			break;
2241 
2242 		umtxq_lock(&uq->uq_key);
2243 		umtxq_insert(uq);
2244 		umtxq_unbusy(&uq->uq_key);
2245 		error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
2246 		    NULL : &timo);
2247 		umtxq_remove(uq);
2248 		umtxq_unlock(&uq->uq_key);
2249 
2250 		mtx_lock(&umtx_lock);
2251 		uq->uq_inherited_pri = old_inherited_pri;
2252 		pri = PRI_MAX;
2253 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2254 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2255 			if (uq2 != NULL) {
2256 				if (pri > UPRI(uq2->uq_thread))
2257 					pri = UPRI(uq2->uq_thread);
2258 			}
2259 		}
2260 		if (pri > uq->uq_inherited_pri)
2261 			pri = uq->uq_inherited_pri;
2262 		thread_lock(td);
2263 		sched_lend_user_prio(td, pri);
2264 		thread_unlock(td);
2265 		mtx_unlock(&umtx_lock);
2266 	}
2267 
2268 	if (error != 0 && error != EOWNERDEAD) {
2269 		mtx_lock(&umtx_lock);
2270 		uq->uq_inherited_pri = old_inherited_pri;
2271 		pri = PRI_MAX;
2272 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2273 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2274 			if (uq2 != NULL) {
2275 				if (pri > UPRI(uq2->uq_thread))
2276 					pri = UPRI(uq2->uq_thread);
2277 			}
2278 		}
2279 		if (pri > uq->uq_inherited_pri)
2280 			pri = uq->uq_inherited_pri;
2281 		thread_lock(td);
2282 		sched_lend_user_prio(td, pri);
2283 		thread_unlock(td);
2284 		mtx_unlock(&umtx_lock);
2285 	}
2286 
2287 out:
2288 	umtxq_unbusy_unlocked(&uq->uq_key);
2289 	umtx_key_release(&uq->uq_key);
2290 	return (error);
2291 }
2292 
2293 /*
2294  * Unlock a PP mutex.
2295  */
2296 static int
2297 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2298 {
2299 	struct umtx_key key;
2300 	struct umtx_q *uq, *uq2;
2301 	struct umtx_pi *pi;
2302 	uint32_t id, owner, rceiling;
2303 	int error, pri, new_inherited_pri, su;
2304 
2305 	id = td->td_tid;
2306 	uq = td->td_umtxq;
2307 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2308 
2309 	/*
2310 	 * Make sure we own this mtx.
2311 	 */
2312 	error = fueword32(&m->m_owner, &owner);
2313 	if (error == -1)
2314 		return (EFAULT);
2315 
2316 	if ((owner & ~UMUTEX_CONTESTED) != id)
2317 		return (EPERM);
2318 
2319 	error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
2320 	if (error != 0)
2321 		return (error);
2322 
2323 	if (rceiling == -1)
2324 		new_inherited_pri = PRI_MAX;
2325 	else {
2326 		rceiling = RTP_PRIO_MAX - rceiling;
2327 		if (rceiling > RTP_PRIO_MAX)
2328 			return (EINVAL);
2329 		new_inherited_pri = PRI_MIN_REALTIME + rceiling;
2330 	}
2331 
2332 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2333 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2334 	    &key)) != 0)
2335 		return (error);
2336 	umtxq_lock(&key);
2337 	umtxq_busy(&key);
2338 	umtxq_unlock(&key);
2339 	/*
2340 	 * For priority protected mutex, always set unlocked state
2341 	 * to UMUTEX_CONTESTED, so that userland always enters kernel
2342 	 * to lock the mutex, it is necessary because thread priority
2343 	 * has to be adjusted for such mutex.
2344 	 */
2345 	error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
2346 	    UMUTEX_CONTESTED);
2347 
2348 	umtxq_lock(&key);
2349 	if (error == 0)
2350 		umtxq_signal(&key, 1);
2351 	umtxq_unbusy(&key);
2352 	umtxq_unlock(&key);
2353 
2354 	if (error == -1)
2355 		error = EFAULT;
2356 	else {
2357 		mtx_lock(&umtx_lock);
2358 		if (su != 0)
2359 			uq->uq_inherited_pri = new_inherited_pri;
2360 		pri = PRI_MAX;
2361 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2362 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2363 			if (uq2 != NULL) {
2364 				if (pri > UPRI(uq2->uq_thread))
2365 					pri = UPRI(uq2->uq_thread);
2366 			}
2367 		}
2368 		if (pri > uq->uq_inherited_pri)
2369 			pri = uq->uq_inherited_pri;
2370 		thread_lock(td);
2371 		sched_lend_user_prio(td, pri);
2372 		thread_unlock(td);
2373 		mtx_unlock(&umtx_lock);
2374 	}
2375 	umtx_key_release(&key);
2376 	return (error);
2377 }
2378 
2379 static int
2380 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
2381     uint32_t *old_ceiling)
2382 {
2383 	struct umtx_q *uq;
2384 	uint32_t flags, id, owner, save_ceiling;
2385 	int error, rv, rv1;
2386 
2387 	error = fueword32(&m->m_flags, &flags);
2388 	if (error == -1)
2389 		return (EFAULT);
2390 	if ((flags & UMUTEX_PRIO_PROTECT) == 0)
2391 		return (EINVAL);
2392 	if (ceiling > RTP_PRIO_MAX)
2393 		return (EINVAL);
2394 	id = td->td_tid;
2395 	uq = td->td_umtxq;
2396 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2397 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2398 	    &uq->uq_key)) != 0)
2399 		return (error);
2400 	for (;;) {
2401 		umtxq_lock(&uq->uq_key);
2402 		umtxq_busy(&uq->uq_key);
2403 		umtxq_unlock(&uq->uq_key);
2404 
2405 		rv = fueword32(&m->m_ceilings[0], &save_ceiling);
2406 		if (rv == -1) {
2407 			error = EFAULT;
2408 			break;
2409 		}
2410 
2411 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2412 		    id | UMUTEX_CONTESTED);
2413 		if (rv == -1) {
2414 			error = EFAULT;
2415 			break;
2416 		}
2417 
2418 		if (rv == 0) {
2419 			MPASS(owner == UMUTEX_CONTESTED);
2420 			rv = suword32(&m->m_ceilings[0], ceiling);
2421 			rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
2422 			error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
2423 			break;
2424 		}
2425 
2426 		if ((owner & ~UMUTEX_CONTESTED) == id) {
2427 			rv = suword32(&m->m_ceilings[0], ceiling);
2428 			error = rv == 0 ? 0 : EFAULT;
2429 			break;
2430 		}
2431 
2432 		if (owner == UMUTEX_RB_OWNERDEAD) {
2433 			error = EOWNERDEAD;
2434 			break;
2435 		} else if (owner == UMUTEX_RB_NOTRECOV) {
2436 			error = ENOTRECOVERABLE;
2437 			break;
2438 		}
2439 
2440 		/*
2441 		 * If we caught a signal, we have retried and now
2442 		 * exit immediately.
2443 		 */
2444 		if (error != 0)
2445 			break;
2446 
2447 		/*
2448 		 * We set the contested bit, sleep. Otherwise the lock changed
2449 		 * and we need to retry or we lost a race to the thread
2450 		 * unlocking the umtx.
2451 		 */
2452 		umtxq_lock(&uq->uq_key);
2453 		umtxq_insert(uq);
2454 		umtxq_unbusy(&uq->uq_key);
2455 		error = umtxq_sleep(uq, "umtxpp", NULL);
2456 		umtxq_remove(uq);
2457 		umtxq_unlock(&uq->uq_key);
2458 	}
2459 	umtxq_lock(&uq->uq_key);
2460 	if (error == 0)
2461 		umtxq_signal(&uq->uq_key, INT_MAX);
2462 	umtxq_unbusy(&uq->uq_key);
2463 	umtxq_unlock(&uq->uq_key);
2464 	umtx_key_release(&uq->uq_key);
2465 	if (error == 0 && old_ceiling != NULL) {
2466 		rv = suword32(old_ceiling, save_ceiling);
2467 		error = rv == 0 ? 0 : EFAULT;
2468 	}
2469 	return (error);
2470 }
2471 
2472 /*
2473  * Lock a userland POSIX mutex.
2474  */
2475 static int
2476 do_lock_umutex(struct thread *td, struct umutex *m,
2477     struct _umtx_time *timeout, int mode)
2478 {
2479 	uint32_t flags;
2480 	int error;
2481 
2482 	error = fueword32(&m->m_flags, &flags);
2483 	if (error == -1)
2484 		return (EFAULT);
2485 
2486 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2487 	case 0:
2488 		error = do_lock_normal(td, m, flags, timeout, mode);
2489 		break;
2490 	case UMUTEX_PRIO_INHERIT:
2491 		error = do_lock_pi(td, m, flags, timeout, mode);
2492 		break;
2493 	case UMUTEX_PRIO_PROTECT:
2494 		error = do_lock_pp(td, m, flags, timeout, mode);
2495 		break;
2496 	default:
2497 		return (EINVAL);
2498 	}
2499 	if (timeout == NULL) {
2500 		if (error == EINTR && mode != _UMUTEX_WAIT)
2501 			error = ERESTART;
2502 	} else {
2503 		/* Timed-locking is not restarted. */
2504 		if (error == ERESTART)
2505 			error = EINTR;
2506 	}
2507 	return (error);
2508 }
2509 
2510 /*
2511  * Unlock a userland POSIX mutex.
2512  */
2513 static int
2514 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
2515 {
2516 	uint32_t flags;
2517 	int error;
2518 
2519 	error = fueword32(&m->m_flags, &flags);
2520 	if (error == -1)
2521 		return (EFAULT);
2522 
2523 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2524 	case 0:
2525 		return (do_unlock_normal(td, m, flags, rb));
2526 	case UMUTEX_PRIO_INHERIT:
2527 		return (do_unlock_pi(td, m, flags, rb));
2528 	case UMUTEX_PRIO_PROTECT:
2529 		return (do_unlock_pp(td, m, flags, rb));
2530 	}
2531 
2532 	return (EINVAL);
2533 }
2534 
2535 static int
2536 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
2537     struct timespec *timeout, u_long wflags)
2538 {
2539 	struct abs_timeout timo;
2540 	struct umtx_q *uq;
2541 	uint32_t flags, clockid, hasw;
2542 	int error;
2543 
2544 	uq = td->td_umtxq;
2545 	error = fueword32(&cv->c_flags, &flags);
2546 	if (error == -1)
2547 		return (EFAULT);
2548 	error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
2549 	if (error != 0)
2550 		return (error);
2551 
2552 	if ((wflags & CVWAIT_CLOCKID) != 0) {
2553 		error = fueword32(&cv->c_clockid, &clockid);
2554 		if (error == -1) {
2555 			umtx_key_release(&uq->uq_key);
2556 			return (EFAULT);
2557 		}
2558 		if (clockid < CLOCK_REALTIME ||
2559 		    clockid >= CLOCK_THREAD_CPUTIME_ID) {
2560 			/* hmm, only HW clock id will work. */
2561 			umtx_key_release(&uq->uq_key);
2562 			return (EINVAL);
2563 		}
2564 	} else {
2565 		clockid = CLOCK_REALTIME;
2566 	}
2567 
2568 	umtxq_lock(&uq->uq_key);
2569 	umtxq_busy(&uq->uq_key);
2570 	umtxq_insert(uq);
2571 	umtxq_unlock(&uq->uq_key);
2572 
2573 	/*
2574 	 * Set c_has_waiters to 1 before releasing user mutex, also
2575 	 * don't modify cache line when unnecessary.
2576 	 */
2577 	error = fueword32(&cv->c_has_waiters, &hasw);
2578 	if (error == 0 && hasw == 0)
2579 		suword32(&cv->c_has_waiters, 1);
2580 
2581 	umtxq_unbusy_unlocked(&uq->uq_key);
2582 
2583 	error = do_unlock_umutex(td, m, false);
2584 
2585 	if (timeout != NULL)
2586 		abs_timeout_init(&timo, clockid, (wflags & CVWAIT_ABSTIME) != 0,
2587 		    timeout);
2588 
2589 	umtxq_lock(&uq->uq_key);
2590 	if (error == 0) {
2591 		error = umtxq_sleep(uq, "ucond", timeout == NULL ?
2592 		    NULL : &timo);
2593 	}
2594 
2595 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
2596 		error = 0;
2597 	else {
2598 		/*
2599 		 * This must be timeout,interrupted by signal or
2600 		 * surprious wakeup, clear c_has_waiter flag when
2601 		 * necessary.
2602 		 */
2603 		umtxq_busy(&uq->uq_key);
2604 		if ((uq->uq_flags & UQF_UMTXQ) != 0) {
2605 			int oldlen = uq->uq_cur_queue->length;
2606 			umtxq_remove(uq);
2607 			if (oldlen == 1) {
2608 				umtxq_unlock(&uq->uq_key);
2609 				suword32(&cv->c_has_waiters, 0);
2610 				umtxq_lock(&uq->uq_key);
2611 			}
2612 		}
2613 		umtxq_unbusy(&uq->uq_key);
2614 		if (error == ERESTART)
2615 			error = EINTR;
2616 	}
2617 
2618 	umtxq_unlock(&uq->uq_key);
2619 	umtx_key_release(&uq->uq_key);
2620 	return (error);
2621 }
2622 
2623 /*
2624  * Signal a userland condition variable.
2625  */
2626 static int
2627 do_cv_signal(struct thread *td, struct ucond *cv)
2628 {
2629 	struct umtx_key key;
2630 	int error, cnt, nwake;
2631 	uint32_t flags;
2632 
2633 	error = fueword32(&cv->c_flags, &flags);
2634 	if (error == -1)
2635 		return (EFAULT);
2636 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2637 		return (error);
2638 	umtxq_lock(&key);
2639 	umtxq_busy(&key);
2640 	cnt = umtxq_count(&key);
2641 	nwake = umtxq_signal(&key, 1);
2642 	if (cnt <= nwake) {
2643 		umtxq_unlock(&key);
2644 		error = suword32(&cv->c_has_waiters, 0);
2645 		if (error == -1)
2646 			error = EFAULT;
2647 		umtxq_lock(&key);
2648 	}
2649 	umtxq_unbusy(&key);
2650 	umtxq_unlock(&key);
2651 	umtx_key_release(&key);
2652 	return (error);
2653 }
2654 
2655 static int
2656 do_cv_broadcast(struct thread *td, struct ucond *cv)
2657 {
2658 	struct umtx_key key;
2659 	int error;
2660 	uint32_t flags;
2661 
2662 	error = fueword32(&cv->c_flags, &flags);
2663 	if (error == -1)
2664 		return (EFAULT);
2665 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2666 		return (error);
2667 
2668 	umtxq_lock(&key);
2669 	umtxq_busy(&key);
2670 	umtxq_signal(&key, INT_MAX);
2671 	umtxq_unlock(&key);
2672 
2673 	error = suword32(&cv->c_has_waiters, 0);
2674 	if (error == -1)
2675 		error = EFAULT;
2676 
2677 	umtxq_unbusy_unlocked(&key);
2678 
2679 	umtx_key_release(&key);
2680 	return (error);
2681 }
2682 
2683 static int
2684 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag,
2685     struct _umtx_time *timeout)
2686 {
2687 	struct abs_timeout timo;
2688 	struct umtx_q *uq;
2689 	uint32_t flags, wrflags;
2690 	int32_t state, oldstate;
2691 	int32_t blocked_readers;
2692 	int error, error1, rv;
2693 
2694 	uq = td->td_umtxq;
2695 	error = fueword32(&rwlock->rw_flags, &flags);
2696 	if (error == -1)
2697 		return (EFAULT);
2698 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2699 	if (error != 0)
2700 		return (error);
2701 
2702 	if (timeout != NULL)
2703 		abs_timeout_init2(&timo, timeout);
2704 
2705 	wrflags = URWLOCK_WRITE_OWNER;
2706 	if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
2707 		wrflags |= URWLOCK_WRITE_WAITERS;
2708 
2709 	for (;;) {
2710 		rv = fueword32(&rwlock->rw_state, &state);
2711 		if (rv == -1) {
2712 			umtx_key_release(&uq->uq_key);
2713 			return (EFAULT);
2714 		}
2715 
2716 		/* try to lock it */
2717 		while (!(state & wrflags)) {
2718 			if (__predict_false(URWLOCK_READER_COUNT(state) ==
2719 			    URWLOCK_MAX_READERS)) {
2720 				umtx_key_release(&uq->uq_key);
2721 				return (EAGAIN);
2722 			}
2723 			rv = casueword32(&rwlock->rw_state, state,
2724 			    &oldstate, state + 1);
2725 			if (rv == -1) {
2726 				umtx_key_release(&uq->uq_key);
2727 				return (EFAULT);
2728 			}
2729 			if (rv == 0) {
2730 				MPASS(oldstate == state);
2731 				umtx_key_release(&uq->uq_key);
2732 				return (0);
2733 			}
2734 			error = thread_check_susp(td, true);
2735 			if (error != 0)
2736 				break;
2737 			state = oldstate;
2738 		}
2739 
2740 		if (error)
2741 			break;
2742 
2743 		/* grab monitor lock */
2744 		umtxq_lock(&uq->uq_key);
2745 		umtxq_busy(&uq->uq_key);
2746 		umtxq_unlock(&uq->uq_key);
2747 
2748 		/*
2749 		 * re-read the state, in case it changed between the try-lock above
2750 		 * and the check below
2751 		 */
2752 		rv = fueword32(&rwlock->rw_state, &state);
2753 		if (rv == -1)
2754 			error = EFAULT;
2755 
2756 		/* set read contention bit */
2757 		while (error == 0 && (state & wrflags) &&
2758 		    !(state & URWLOCK_READ_WAITERS)) {
2759 			rv = casueword32(&rwlock->rw_state, state,
2760 			    &oldstate, state | URWLOCK_READ_WAITERS);
2761 			if (rv == -1) {
2762 				error = EFAULT;
2763 				break;
2764 			}
2765 			if (rv == 0) {
2766 				MPASS(oldstate == state);
2767 				goto sleep;
2768 			}
2769 			state = oldstate;
2770 			error = thread_check_susp(td, false);
2771 			if (error != 0)
2772 				break;
2773 		}
2774 		if (error != 0) {
2775 			umtxq_unbusy_unlocked(&uq->uq_key);
2776 			break;
2777 		}
2778 
2779 		/* state is changed while setting flags, restart */
2780 		if (!(state & wrflags)) {
2781 			umtxq_unbusy_unlocked(&uq->uq_key);
2782 			error = thread_check_susp(td, true);
2783 			if (error != 0)
2784 				break;
2785 			continue;
2786 		}
2787 
2788 sleep:
2789 		/*
2790 		 * Contention bit is set, before sleeping, increase
2791 		 * read waiter count.
2792 		 */
2793 		rv = fueword32(&rwlock->rw_blocked_readers,
2794 		    &blocked_readers);
2795 		if (rv == -1) {
2796 			umtxq_unbusy_unlocked(&uq->uq_key);
2797 			error = EFAULT;
2798 			break;
2799 		}
2800 		suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
2801 
2802 		while (state & wrflags) {
2803 			umtxq_lock(&uq->uq_key);
2804 			umtxq_insert(uq);
2805 			umtxq_unbusy(&uq->uq_key);
2806 
2807 			error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
2808 			    NULL : &timo);
2809 
2810 			umtxq_busy(&uq->uq_key);
2811 			umtxq_remove(uq);
2812 			umtxq_unlock(&uq->uq_key);
2813 			if (error)
2814 				break;
2815 			rv = fueword32(&rwlock->rw_state, &state);
2816 			if (rv == -1) {
2817 				error = EFAULT;
2818 				break;
2819 			}
2820 		}
2821 
2822 		/* decrease read waiter count, and may clear read contention bit */
2823 		rv = fueword32(&rwlock->rw_blocked_readers,
2824 		    &blocked_readers);
2825 		if (rv == -1) {
2826 			umtxq_unbusy_unlocked(&uq->uq_key);
2827 			error = EFAULT;
2828 			break;
2829 		}
2830 		suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
2831 		if (blocked_readers == 1) {
2832 			rv = fueword32(&rwlock->rw_state, &state);
2833 			if (rv == -1) {
2834 				umtxq_unbusy_unlocked(&uq->uq_key);
2835 				error = EFAULT;
2836 				break;
2837 			}
2838 			for (;;) {
2839 				rv = casueword32(&rwlock->rw_state, state,
2840 				    &oldstate, state & ~URWLOCK_READ_WAITERS);
2841 				if (rv == -1) {
2842 					error = EFAULT;
2843 					break;
2844 				}
2845 				if (rv == 0) {
2846 					MPASS(oldstate == state);
2847 					break;
2848 				}
2849 				state = oldstate;
2850 				error1 = thread_check_susp(td, false);
2851 				if (error1 != 0) {
2852 					if (error == 0)
2853 						error = error1;
2854 					break;
2855 				}
2856 			}
2857 		}
2858 
2859 		umtxq_unbusy_unlocked(&uq->uq_key);
2860 		if (error != 0)
2861 			break;
2862 	}
2863 	umtx_key_release(&uq->uq_key);
2864 	if (error == ERESTART)
2865 		error = EINTR;
2866 	return (error);
2867 }
2868 
2869 static int
2870 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
2871 {
2872 	struct abs_timeout timo;
2873 	struct umtx_q *uq;
2874 	uint32_t flags;
2875 	int32_t state, oldstate;
2876 	int32_t blocked_writers;
2877 	int32_t blocked_readers;
2878 	int error, error1, rv;
2879 
2880 	uq = td->td_umtxq;
2881 	error = fueword32(&rwlock->rw_flags, &flags);
2882 	if (error == -1)
2883 		return (EFAULT);
2884 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2885 	if (error != 0)
2886 		return (error);
2887 
2888 	if (timeout != NULL)
2889 		abs_timeout_init2(&timo, timeout);
2890 
2891 	blocked_readers = 0;
2892 	for (;;) {
2893 		rv = fueword32(&rwlock->rw_state, &state);
2894 		if (rv == -1) {
2895 			umtx_key_release(&uq->uq_key);
2896 			return (EFAULT);
2897 		}
2898 		while ((state & URWLOCK_WRITE_OWNER) == 0 &&
2899 		    URWLOCK_READER_COUNT(state) == 0) {
2900 			rv = casueword32(&rwlock->rw_state, state,
2901 			    &oldstate, state | URWLOCK_WRITE_OWNER);
2902 			if (rv == -1) {
2903 				umtx_key_release(&uq->uq_key);
2904 				return (EFAULT);
2905 			}
2906 			if (rv == 0) {
2907 				MPASS(oldstate == state);
2908 				umtx_key_release(&uq->uq_key);
2909 				return (0);
2910 			}
2911 			state = oldstate;
2912 			error = thread_check_susp(td, true);
2913 			if (error != 0)
2914 				break;
2915 		}
2916 
2917 		if (error) {
2918 			if ((state & (URWLOCK_WRITE_OWNER |
2919 			    URWLOCK_WRITE_WAITERS)) == 0 &&
2920 			    blocked_readers != 0) {
2921 				umtxq_lock(&uq->uq_key);
2922 				umtxq_busy(&uq->uq_key);
2923 				umtxq_signal_queue(&uq->uq_key, INT_MAX,
2924 				    UMTX_SHARED_QUEUE);
2925 				umtxq_unbusy(&uq->uq_key);
2926 				umtxq_unlock(&uq->uq_key);
2927 			}
2928 
2929 			break;
2930 		}
2931 
2932 		/* grab monitor lock */
2933 		umtxq_lock(&uq->uq_key);
2934 		umtxq_busy(&uq->uq_key);
2935 		umtxq_unlock(&uq->uq_key);
2936 
2937 		/*
2938 		 * Re-read the state, in case it changed between the
2939 		 * try-lock above and the check below.
2940 		 */
2941 		rv = fueword32(&rwlock->rw_state, &state);
2942 		if (rv == -1)
2943 			error = EFAULT;
2944 
2945 		while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
2946 		    URWLOCK_READER_COUNT(state) != 0) &&
2947 		    (state & URWLOCK_WRITE_WAITERS) == 0) {
2948 			rv = casueword32(&rwlock->rw_state, state,
2949 			    &oldstate, state | URWLOCK_WRITE_WAITERS);
2950 			if (rv == -1) {
2951 				error = EFAULT;
2952 				break;
2953 			}
2954 			if (rv == 0) {
2955 				MPASS(oldstate == state);
2956 				goto sleep;
2957 			}
2958 			state = oldstate;
2959 			error = thread_check_susp(td, false);
2960 			if (error != 0)
2961 				break;
2962 		}
2963 		if (error != 0) {
2964 			umtxq_unbusy_unlocked(&uq->uq_key);
2965 			break;
2966 		}
2967 
2968 		if ((state & URWLOCK_WRITE_OWNER) == 0 &&
2969 		    URWLOCK_READER_COUNT(state) == 0) {
2970 			umtxq_unbusy_unlocked(&uq->uq_key);
2971 			error = thread_check_susp(td, false);
2972 			if (error != 0)
2973 				break;
2974 			continue;
2975 		}
2976 sleep:
2977 		rv = fueword32(&rwlock->rw_blocked_writers,
2978 		    &blocked_writers);
2979 		if (rv == -1) {
2980 			umtxq_unbusy_unlocked(&uq->uq_key);
2981 			error = EFAULT;
2982 			break;
2983 		}
2984 		suword32(&rwlock->rw_blocked_writers, blocked_writers + 1);
2985 
2986 		while ((state & URWLOCK_WRITE_OWNER) ||
2987 		    URWLOCK_READER_COUNT(state) != 0) {
2988 			umtxq_lock(&uq->uq_key);
2989 			umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
2990 			umtxq_unbusy(&uq->uq_key);
2991 
2992 			error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
2993 			    NULL : &timo);
2994 
2995 			umtxq_busy(&uq->uq_key);
2996 			umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
2997 			umtxq_unlock(&uq->uq_key);
2998 			if (error)
2999 				break;
3000 			rv = fueword32(&rwlock->rw_state, &state);
3001 			if (rv == -1) {
3002 				error = EFAULT;
3003 				break;
3004 			}
3005 		}
3006 
3007 		rv = fueword32(&rwlock->rw_blocked_writers,
3008 		    &blocked_writers);
3009 		if (rv == -1) {
3010 			umtxq_unbusy_unlocked(&uq->uq_key);
3011 			error = EFAULT;
3012 			break;
3013 		}
3014 		suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
3015 		if (blocked_writers == 1) {
3016 			rv = fueword32(&rwlock->rw_state, &state);
3017 			if (rv == -1) {
3018 				umtxq_unbusy_unlocked(&uq->uq_key);
3019 				error = EFAULT;
3020 				break;
3021 			}
3022 			for (;;) {
3023 				rv = casueword32(&rwlock->rw_state, state,
3024 				    &oldstate, state & ~URWLOCK_WRITE_WAITERS);
3025 				if (rv == -1) {
3026 					error = EFAULT;
3027 					break;
3028 				}
3029 				if (rv == 0) {
3030 					MPASS(oldstate == state);
3031 					break;
3032 				}
3033 				state = oldstate;
3034 				error1 = thread_check_susp(td, false);
3035 				/*
3036 				 * We are leaving the URWLOCK_WRITE_WAITERS
3037 				 * behind, but this should not harm the
3038 				 * correctness.
3039 				 */
3040 				if (error1 != 0) {
3041 					if (error == 0)
3042 						error = error1;
3043 					break;
3044 				}
3045 			}
3046 			rv = fueword32(&rwlock->rw_blocked_readers,
3047 			    &blocked_readers);
3048 			if (rv == -1) {
3049 				umtxq_unbusy_unlocked(&uq->uq_key);
3050 				error = EFAULT;
3051 				break;
3052 			}
3053 		} else
3054 			blocked_readers = 0;
3055 
3056 		umtxq_unbusy_unlocked(&uq->uq_key);
3057 	}
3058 
3059 	umtx_key_release(&uq->uq_key);
3060 	if (error == ERESTART)
3061 		error = EINTR;
3062 	return (error);
3063 }
3064 
3065 static int
3066 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
3067 {
3068 	struct umtx_q *uq;
3069 	uint32_t flags;
3070 	int32_t state, oldstate;
3071 	int error, rv, q, count;
3072 
3073 	uq = td->td_umtxq;
3074 	error = fueword32(&rwlock->rw_flags, &flags);
3075 	if (error == -1)
3076 		return (EFAULT);
3077 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3078 	if (error != 0)
3079 		return (error);
3080 
3081 	error = fueword32(&rwlock->rw_state, &state);
3082 	if (error == -1) {
3083 		error = EFAULT;
3084 		goto out;
3085 	}
3086 	if (state & URWLOCK_WRITE_OWNER) {
3087 		for (;;) {
3088 			rv = casueword32(&rwlock->rw_state, state,
3089 			    &oldstate, state & ~URWLOCK_WRITE_OWNER);
3090 			if (rv == -1) {
3091 				error = EFAULT;
3092 				goto out;
3093 			}
3094 			if (rv == 1) {
3095 				state = oldstate;
3096 				if (!(oldstate & URWLOCK_WRITE_OWNER)) {
3097 					error = EPERM;
3098 					goto out;
3099 				}
3100 				error = thread_check_susp(td, true);
3101 				if (error != 0)
3102 					goto out;
3103 			} else
3104 				break;
3105 		}
3106 	} else if (URWLOCK_READER_COUNT(state) != 0) {
3107 		for (;;) {
3108 			rv = casueword32(&rwlock->rw_state, state,
3109 			    &oldstate, state - 1);
3110 			if (rv == -1) {
3111 				error = EFAULT;
3112 				goto out;
3113 			}
3114 			if (rv == 1) {
3115 				state = oldstate;
3116 				if (URWLOCK_READER_COUNT(oldstate) == 0) {
3117 					error = EPERM;
3118 					goto out;
3119 				}
3120 				error = thread_check_susp(td, true);
3121 				if (error != 0)
3122 					goto out;
3123 			} else
3124 				break;
3125 		}
3126 	} else {
3127 		error = EPERM;
3128 		goto out;
3129 	}
3130 
3131 	count = 0;
3132 
3133 	if (!(flags & URWLOCK_PREFER_READER)) {
3134 		if (state & URWLOCK_WRITE_WAITERS) {
3135 			count = 1;
3136 			q = UMTX_EXCLUSIVE_QUEUE;
3137 		} else if (state & URWLOCK_READ_WAITERS) {
3138 			count = INT_MAX;
3139 			q = UMTX_SHARED_QUEUE;
3140 		}
3141 	} else {
3142 		if (state & URWLOCK_READ_WAITERS) {
3143 			count = INT_MAX;
3144 			q = UMTX_SHARED_QUEUE;
3145 		} else if (state & URWLOCK_WRITE_WAITERS) {
3146 			count = 1;
3147 			q = UMTX_EXCLUSIVE_QUEUE;
3148 		}
3149 	}
3150 
3151 	if (count) {
3152 		umtxq_lock(&uq->uq_key);
3153 		umtxq_busy(&uq->uq_key);
3154 		umtxq_signal_queue(&uq->uq_key, count, q);
3155 		umtxq_unbusy(&uq->uq_key);
3156 		umtxq_unlock(&uq->uq_key);
3157 	}
3158 out:
3159 	umtx_key_release(&uq->uq_key);
3160 	return (error);
3161 }
3162 
3163 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3164 static int
3165 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
3166 {
3167 	struct abs_timeout timo;
3168 	struct umtx_q *uq;
3169 	uint32_t flags, count, count1;
3170 	int error, rv, rv1;
3171 
3172 	uq = td->td_umtxq;
3173 	error = fueword32(&sem->_flags, &flags);
3174 	if (error == -1)
3175 		return (EFAULT);
3176 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3177 	if (error != 0)
3178 		return (error);
3179 
3180 	if (timeout != NULL)
3181 		abs_timeout_init2(&timo, timeout);
3182 
3183 again:
3184 	umtxq_lock(&uq->uq_key);
3185 	umtxq_busy(&uq->uq_key);
3186 	umtxq_insert(uq);
3187 	umtxq_unlock(&uq->uq_key);
3188 	rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
3189 	if (rv == 0)
3190 		rv1 = fueword32(&sem->_count, &count);
3191 	if (rv == -1 || (rv == 0 && (rv1 == -1 || count != 0)) ||
3192 	    (rv == 1 && count1 == 0)) {
3193 		umtxq_lock(&uq->uq_key);
3194 		umtxq_unbusy(&uq->uq_key);
3195 		umtxq_remove(uq);
3196 		umtxq_unlock(&uq->uq_key);
3197 		if (rv == 1) {
3198 			rv = thread_check_susp(td, true);
3199 			if (rv == 0)
3200 				goto again;
3201 			error = rv;
3202 			goto out;
3203 		}
3204 		if (rv == 0)
3205 			rv = rv1;
3206 		error = rv == -1 ? EFAULT : 0;
3207 		goto out;
3208 	}
3209 	umtxq_lock(&uq->uq_key);
3210 	umtxq_unbusy(&uq->uq_key);
3211 
3212 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3213 
3214 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3215 		error = 0;
3216 	else {
3217 		umtxq_remove(uq);
3218 		/* A relative timeout cannot be restarted. */
3219 		if (error == ERESTART && timeout != NULL &&
3220 		    (timeout->_flags & UMTX_ABSTIME) == 0)
3221 			error = EINTR;
3222 	}
3223 	umtxq_unlock(&uq->uq_key);
3224 out:
3225 	umtx_key_release(&uq->uq_key);
3226 	return (error);
3227 }
3228 
3229 /*
3230  * Signal a userland semaphore.
3231  */
3232 static int
3233 do_sem_wake(struct thread *td, struct _usem *sem)
3234 {
3235 	struct umtx_key key;
3236 	int error, cnt;
3237 	uint32_t flags;
3238 
3239 	error = fueword32(&sem->_flags, &flags);
3240 	if (error == -1)
3241 		return (EFAULT);
3242 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3243 		return (error);
3244 	umtxq_lock(&key);
3245 	umtxq_busy(&key);
3246 	cnt = umtxq_count(&key);
3247 	if (cnt > 0) {
3248 		/*
3249 		 * Check if count is greater than 0, this means the memory is
3250 		 * still being referenced by user code, so we can safely
3251 		 * update _has_waiters flag.
3252 		 */
3253 		if (cnt == 1) {
3254 			umtxq_unlock(&key);
3255 			error = suword32(&sem->_has_waiters, 0);
3256 			umtxq_lock(&key);
3257 			if (error == -1)
3258 				error = EFAULT;
3259 		}
3260 		umtxq_signal(&key, 1);
3261 	}
3262 	umtxq_unbusy(&key);
3263 	umtxq_unlock(&key);
3264 	umtx_key_release(&key);
3265 	return (error);
3266 }
3267 #endif
3268 
3269 static int
3270 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
3271 {
3272 	struct abs_timeout timo;
3273 	struct umtx_q *uq;
3274 	uint32_t count, flags;
3275 	int error, rv;
3276 
3277 	uq = td->td_umtxq;
3278 	flags = fuword32(&sem->_flags);
3279 	if (timeout != NULL)
3280 		abs_timeout_init2(&timo, timeout);
3281 
3282 again:
3283 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3284 	if (error != 0)
3285 		return (error);
3286 	umtxq_lock(&uq->uq_key);
3287 	umtxq_busy(&uq->uq_key);
3288 	umtxq_insert(uq);
3289 	umtxq_unlock(&uq->uq_key);
3290 	rv = fueword32(&sem->_count, &count);
3291 	if (rv == -1) {
3292 		umtxq_lock(&uq->uq_key);
3293 		umtxq_unbusy(&uq->uq_key);
3294 		umtxq_remove(uq);
3295 		umtxq_unlock(&uq->uq_key);
3296 		umtx_key_release(&uq->uq_key);
3297 		return (EFAULT);
3298 	}
3299 	for (;;) {
3300 		if (USEM_COUNT(count) != 0) {
3301 			umtxq_lock(&uq->uq_key);
3302 			umtxq_unbusy(&uq->uq_key);
3303 			umtxq_remove(uq);
3304 			umtxq_unlock(&uq->uq_key);
3305 			umtx_key_release(&uq->uq_key);
3306 			return (0);
3307 		}
3308 		if (count == USEM_HAS_WAITERS)
3309 			break;
3310 		rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
3311 		if (rv == 0)
3312 			break;
3313 		umtxq_lock(&uq->uq_key);
3314 		umtxq_unbusy(&uq->uq_key);
3315 		umtxq_remove(uq);
3316 		umtxq_unlock(&uq->uq_key);
3317 		umtx_key_release(&uq->uq_key);
3318 		if (rv == -1)
3319 			return (EFAULT);
3320 		rv = thread_check_susp(td, true);
3321 		if (rv != 0)
3322 			return (rv);
3323 		goto again;
3324 	}
3325 	umtxq_lock(&uq->uq_key);
3326 	umtxq_unbusy(&uq->uq_key);
3327 
3328 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3329 
3330 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3331 		error = 0;
3332 	else {
3333 		umtxq_remove(uq);
3334 		if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
3335 			/* A relative timeout cannot be restarted. */
3336 			if (error == ERESTART)
3337 				error = EINTR;
3338 			if (error == EINTR) {
3339 				abs_timeout_update(&timo);
3340 				timespecsub(&timo.end, &timo.cur,
3341 				    &timeout->_timeout);
3342 			}
3343 		}
3344 	}
3345 	umtxq_unlock(&uq->uq_key);
3346 	umtx_key_release(&uq->uq_key);
3347 	return (error);
3348 }
3349 
3350 /*
3351  * Signal a userland semaphore.
3352  */
3353 static int
3354 do_sem2_wake(struct thread *td, struct _usem2 *sem)
3355 {
3356 	struct umtx_key key;
3357 	int error, cnt, rv;
3358 	uint32_t count, flags;
3359 
3360 	rv = fueword32(&sem->_flags, &flags);
3361 	if (rv == -1)
3362 		return (EFAULT);
3363 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3364 		return (error);
3365 	umtxq_lock(&key);
3366 	umtxq_busy(&key);
3367 	cnt = umtxq_count(&key);
3368 	if (cnt > 0) {
3369 		/*
3370 		 * If this was the last sleeping thread, clear the waiters
3371 		 * flag in _count.
3372 		 */
3373 		if (cnt == 1) {
3374 			umtxq_unlock(&key);
3375 			rv = fueword32(&sem->_count, &count);
3376 			while (rv != -1 && count & USEM_HAS_WAITERS) {
3377 				rv = casueword32(&sem->_count, count, &count,
3378 				    count & ~USEM_HAS_WAITERS);
3379 				if (rv == 1) {
3380 					rv = thread_check_susp(td, true);
3381 					if (rv != 0)
3382 						break;
3383 				}
3384 			}
3385 			if (rv == -1)
3386 				error = EFAULT;
3387 			else if (rv > 0) {
3388 				error = rv;
3389 			}
3390 			umtxq_lock(&key);
3391 		}
3392 
3393 		umtxq_signal(&key, 1);
3394 	}
3395 	umtxq_unbusy(&key);
3396 	umtxq_unlock(&key);
3397 	umtx_key_release(&key);
3398 	return (error);
3399 }
3400 
3401 inline int
3402 umtx_copyin_timeout(const void *addr, struct timespec *tsp)
3403 {
3404 	int error;
3405 
3406 	error = copyin(addr, tsp, sizeof(struct timespec));
3407 	if (error == 0) {
3408 		if (tsp->tv_sec < 0 ||
3409 		    tsp->tv_nsec >= 1000000000 ||
3410 		    tsp->tv_nsec < 0)
3411 			error = EINVAL;
3412 	}
3413 	return (error);
3414 }
3415 
3416 static inline int
3417 umtx_copyin_umtx_time(const void *addr, size_t size, struct _umtx_time *tp)
3418 {
3419 	int error;
3420 
3421 	if (size <= sizeof(struct timespec)) {
3422 		tp->_clockid = CLOCK_REALTIME;
3423 		tp->_flags = 0;
3424 		error = copyin(addr, &tp->_timeout, sizeof(struct timespec));
3425 	} else
3426 		error = copyin(addr, tp, sizeof(struct _umtx_time));
3427 	if (error != 0)
3428 		return (error);
3429 	if (tp->_timeout.tv_sec < 0 ||
3430 	    tp->_timeout.tv_nsec >= 1000000000 || tp->_timeout.tv_nsec < 0)
3431 		return (EINVAL);
3432 	return (0);
3433 }
3434 
3435 static int
3436 __umtx_op_unimpl(struct thread *td, struct _umtx_op_args *uap)
3437 {
3438 
3439 	return (EOPNOTSUPP);
3440 }
3441 
3442 static int
3443 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap)
3444 {
3445 	struct _umtx_time timeout, *tm_p;
3446 	int error;
3447 
3448 	if (uap->uaddr2 == NULL)
3449 		tm_p = NULL;
3450 	else {
3451 		error = umtx_copyin_umtx_time(
3452 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3453 		if (error != 0)
3454 			return (error);
3455 		tm_p = &timeout;
3456 	}
3457 	return (do_wait(td, uap->obj, uap->val, tm_p, 0, 0));
3458 }
3459 
3460 static int
3461 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap)
3462 {
3463 	struct _umtx_time timeout, *tm_p;
3464 	int error;
3465 
3466 	if (uap->uaddr2 == NULL)
3467 		tm_p = NULL;
3468 	else {
3469 		error = umtx_copyin_umtx_time(
3470 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3471 		if (error != 0)
3472 			return (error);
3473 		tm_p = &timeout;
3474 	}
3475 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
3476 }
3477 
3478 static int
3479 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap)
3480 {
3481 	struct _umtx_time *tm_p, timeout;
3482 	int error;
3483 
3484 	if (uap->uaddr2 == NULL)
3485 		tm_p = NULL;
3486 	else {
3487 		error = umtx_copyin_umtx_time(
3488 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3489 		if (error != 0)
3490 			return (error);
3491 		tm_p = &timeout;
3492 	}
3493 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
3494 }
3495 
3496 static int
3497 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap)
3498 {
3499 
3500 	return (kern_umtx_wake(td, uap->obj, uap->val, 0));
3501 }
3502 
3503 #define BATCH_SIZE	128
3504 static int
3505 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap)
3506 {
3507 	char *uaddrs[BATCH_SIZE], **upp;
3508 	int count, error, i, pos, tocopy;
3509 
3510 	upp = (char **)uap->obj;
3511 	error = 0;
3512 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3513 	    pos += tocopy) {
3514 		tocopy = MIN(count, BATCH_SIZE);
3515 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
3516 		if (error != 0)
3517 			break;
3518 		for (i = 0; i < tocopy; ++i)
3519 			kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
3520 		maybe_yield();
3521 	}
3522 	return (error);
3523 }
3524 
3525 static int
3526 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap)
3527 {
3528 
3529 	return (kern_umtx_wake(td, uap->obj, uap->val, 1));
3530 }
3531 
3532 static int
3533 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap)
3534 {
3535 	struct _umtx_time *tm_p, timeout;
3536 	int error;
3537 
3538 	/* Allow a null timespec (wait forever). */
3539 	if (uap->uaddr2 == NULL)
3540 		tm_p = NULL;
3541 	else {
3542 		error = umtx_copyin_umtx_time(
3543 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3544 		if (error != 0)
3545 			return (error);
3546 		tm_p = &timeout;
3547 	}
3548 	return (do_lock_umutex(td, uap->obj, tm_p, 0));
3549 }
3550 
3551 static int
3552 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap)
3553 {
3554 
3555 	return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
3556 }
3557 
3558 static int
3559 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap)
3560 {
3561 	struct _umtx_time *tm_p, timeout;
3562 	int error;
3563 
3564 	/* Allow a null timespec (wait forever). */
3565 	if (uap->uaddr2 == NULL)
3566 		tm_p = NULL;
3567 	else {
3568 		error = umtx_copyin_umtx_time(
3569 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3570 		if (error != 0)
3571 			return (error);
3572 		tm_p = &timeout;
3573 	}
3574 	return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
3575 }
3576 
3577 static int
3578 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap)
3579 {
3580 
3581 	return (do_wake_umutex(td, uap->obj));
3582 }
3583 
3584 static int
3585 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap)
3586 {
3587 
3588 	return (do_unlock_umutex(td, uap->obj, false));
3589 }
3590 
3591 static int
3592 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap)
3593 {
3594 
3595 	return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
3596 }
3597 
3598 static int
3599 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap)
3600 {
3601 	struct timespec *ts, timeout;
3602 	int error;
3603 
3604 	/* Allow a null timespec (wait forever). */
3605 	if (uap->uaddr2 == NULL)
3606 		ts = NULL;
3607 	else {
3608 		error = umtx_copyin_timeout(uap->uaddr2, &timeout);
3609 		if (error != 0)
3610 			return (error);
3611 		ts = &timeout;
3612 	}
3613 	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
3614 }
3615 
3616 static int
3617 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap)
3618 {
3619 
3620 	return (do_cv_signal(td, uap->obj));
3621 }
3622 
3623 static int
3624 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap)
3625 {
3626 
3627 	return (do_cv_broadcast(td, uap->obj));
3628 }
3629 
3630 static int
3631 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap)
3632 {
3633 	struct _umtx_time timeout;
3634 	int error;
3635 
3636 	/* Allow a null timespec (wait forever). */
3637 	if (uap->uaddr2 == NULL) {
3638 		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
3639 	} else {
3640 		error = umtx_copyin_umtx_time(uap->uaddr2,
3641 		   (size_t)uap->uaddr1, &timeout);
3642 		if (error != 0)
3643 			return (error);
3644 		error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
3645 	}
3646 	return (error);
3647 }
3648 
3649 static int
3650 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap)
3651 {
3652 	struct _umtx_time timeout;
3653 	int error;
3654 
3655 	/* Allow a null timespec (wait forever). */
3656 	if (uap->uaddr2 == NULL) {
3657 		error = do_rw_wrlock(td, uap->obj, 0);
3658 	} else {
3659 		error = umtx_copyin_umtx_time(uap->uaddr2,
3660 		   (size_t)uap->uaddr1, &timeout);
3661 		if (error != 0)
3662 			return (error);
3663 
3664 		error = do_rw_wrlock(td, uap->obj, &timeout);
3665 	}
3666 	return (error);
3667 }
3668 
3669 static int
3670 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap)
3671 {
3672 
3673 	return (do_rw_unlock(td, uap->obj));
3674 }
3675 
3676 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3677 static int
3678 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap)
3679 {
3680 	struct _umtx_time *tm_p, timeout;
3681 	int error;
3682 
3683 	/* Allow a null timespec (wait forever). */
3684 	if (uap->uaddr2 == NULL)
3685 		tm_p = NULL;
3686 	else {
3687 		error = umtx_copyin_umtx_time(
3688 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3689 		if (error != 0)
3690 			return (error);
3691 		tm_p = &timeout;
3692 	}
3693 	return (do_sem_wait(td, uap->obj, tm_p));
3694 }
3695 
3696 static int
3697 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap)
3698 {
3699 
3700 	return (do_sem_wake(td, uap->obj));
3701 }
3702 #endif
3703 
3704 static int
3705 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap)
3706 {
3707 
3708 	return (do_wake2_umutex(td, uap->obj, uap->val));
3709 }
3710 
3711 static int
3712 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap)
3713 {
3714 	struct _umtx_time *tm_p, timeout;
3715 	size_t uasize;
3716 	int error;
3717 
3718 	/* Allow a null timespec (wait forever). */
3719 	if (uap->uaddr2 == NULL) {
3720 		uasize = 0;
3721 		tm_p = NULL;
3722 	} else {
3723 		uasize = (size_t)uap->uaddr1;
3724 		error = umtx_copyin_umtx_time(uap->uaddr2, uasize, &timeout);
3725 		if (error != 0)
3726 			return (error);
3727 		tm_p = &timeout;
3728 	}
3729 	error = do_sem2_wait(td, uap->obj, tm_p);
3730 	if (error == EINTR && uap->uaddr2 != NULL &&
3731 	    (timeout._flags & UMTX_ABSTIME) == 0 &&
3732 	    uasize >= sizeof(struct _umtx_time) + sizeof(struct timespec)) {
3733 		error = copyout(&timeout._timeout,
3734 		    (struct _umtx_time *)uap->uaddr2 + 1,
3735 		    sizeof(struct timespec));
3736 		if (error == 0) {
3737 			error = EINTR;
3738 		}
3739 	}
3740 
3741 	return (error);
3742 }
3743 
3744 static int
3745 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap)
3746 {
3747 
3748 	return (do_sem2_wake(td, uap->obj));
3749 }
3750 
3751 #define	USHM_OBJ_UMTX(o)						\
3752     ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
3753 
3754 #define	USHMF_REG_LINKED	0x0001
3755 #define	USHMF_OBJ_LINKED	0x0002
3756 struct umtx_shm_reg {
3757 	TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
3758 	LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
3759 	struct umtx_key		ushm_key;
3760 	struct ucred		*ushm_cred;
3761 	struct shmfd		*ushm_obj;
3762 	u_int			ushm_refcnt;
3763 	u_int			ushm_flags;
3764 };
3765 
3766 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
3767 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
3768 
3769 static uma_zone_t umtx_shm_reg_zone;
3770 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
3771 static struct mtx umtx_shm_lock;
3772 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
3773     TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
3774 
3775 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
3776 
3777 static void
3778 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
3779 {
3780 	struct umtx_shm_reg_head d;
3781 	struct umtx_shm_reg *reg, *reg1;
3782 
3783 	TAILQ_INIT(&d);
3784 	mtx_lock(&umtx_shm_lock);
3785 	TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
3786 	mtx_unlock(&umtx_shm_lock);
3787 	TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
3788 		TAILQ_REMOVE(&d, reg, ushm_reg_link);
3789 		umtx_shm_free_reg(reg);
3790 	}
3791 }
3792 
3793 static struct task umtx_shm_reg_delfree_task =
3794     TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
3795 
3796 static struct umtx_shm_reg *
3797 umtx_shm_find_reg_locked(const struct umtx_key *key)
3798 {
3799 	struct umtx_shm_reg *reg;
3800 	struct umtx_shm_reg_head *reg_head;
3801 
3802 	KASSERT(key->shared, ("umtx_p_find_rg: private key"));
3803 	mtx_assert(&umtx_shm_lock, MA_OWNED);
3804 	reg_head = &umtx_shm_registry[key->hash];
3805 	TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
3806 		KASSERT(reg->ushm_key.shared,
3807 		    ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
3808 		if (reg->ushm_key.info.shared.object ==
3809 		    key->info.shared.object &&
3810 		    reg->ushm_key.info.shared.offset ==
3811 		    key->info.shared.offset) {
3812 			KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
3813 			KASSERT(reg->ushm_refcnt > 0,
3814 			    ("reg %p refcnt 0 onlist", reg));
3815 			KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
3816 			    ("reg %p not linked", reg));
3817 			reg->ushm_refcnt++;
3818 			return (reg);
3819 		}
3820 	}
3821 	return (NULL);
3822 }
3823 
3824 static struct umtx_shm_reg *
3825 umtx_shm_find_reg(const struct umtx_key *key)
3826 {
3827 	struct umtx_shm_reg *reg;
3828 
3829 	mtx_lock(&umtx_shm_lock);
3830 	reg = umtx_shm_find_reg_locked(key);
3831 	mtx_unlock(&umtx_shm_lock);
3832 	return (reg);
3833 }
3834 
3835 static void
3836 umtx_shm_free_reg(struct umtx_shm_reg *reg)
3837 {
3838 
3839 	chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
3840 	crfree(reg->ushm_cred);
3841 	shm_drop(reg->ushm_obj);
3842 	uma_zfree(umtx_shm_reg_zone, reg);
3843 }
3844 
3845 static bool
3846 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
3847 {
3848 	bool res;
3849 
3850 	mtx_assert(&umtx_shm_lock, MA_OWNED);
3851 	KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
3852 	reg->ushm_refcnt--;
3853 	res = reg->ushm_refcnt == 0;
3854 	if (res || force) {
3855 		if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
3856 			TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
3857 			    reg, ushm_reg_link);
3858 			reg->ushm_flags &= ~USHMF_REG_LINKED;
3859 		}
3860 		if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
3861 			LIST_REMOVE(reg, ushm_obj_link);
3862 			reg->ushm_flags &= ~USHMF_OBJ_LINKED;
3863 		}
3864 	}
3865 	return (res);
3866 }
3867 
3868 static void
3869 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
3870 {
3871 	vm_object_t object;
3872 	bool dofree;
3873 
3874 	if (force) {
3875 		object = reg->ushm_obj->shm_object;
3876 		VM_OBJECT_WLOCK(object);
3877 		object->flags |= OBJ_UMTXDEAD;
3878 		VM_OBJECT_WUNLOCK(object);
3879 	}
3880 	mtx_lock(&umtx_shm_lock);
3881 	dofree = umtx_shm_unref_reg_locked(reg, force);
3882 	mtx_unlock(&umtx_shm_lock);
3883 	if (dofree)
3884 		umtx_shm_free_reg(reg);
3885 }
3886 
3887 void
3888 umtx_shm_object_init(vm_object_t object)
3889 {
3890 
3891 	LIST_INIT(USHM_OBJ_UMTX(object));
3892 }
3893 
3894 void
3895 umtx_shm_object_terminated(vm_object_t object)
3896 {
3897 	struct umtx_shm_reg *reg, *reg1;
3898 	bool dofree;
3899 
3900 	if (LIST_EMPTY(USHM_OBJ_UMTX(object)))
3901 		return;
3902 
3903 	dofree = false;
3904 	mtx_lock(&umtx_shm_lock);
3905 	LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
3906 		if (umtx_shm_unref_reg_locked(reg, true)) {
3907 			TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
3908 			    ushm_reg_link);
3909 			dofree = true;
3910 		}
3911 	}
3912 	mtx_unlock(&umtx_shm_lock);
3913 	if (dofree)
3914 		taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
3915 }
3916 
3917 static int
3918 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
3919     struct umtx_shm_reg **res)
3920 {
3921 	struct umtx_shm_reg *reg, *reg1;
3922 	struct ucred *cred;
3923 	int error;
3924 
3925 	reg = umtx_shm_find_reg(key);
3926 	if (reg != NULL) {
3927 		*res = reg;
3928 		return (0);
3929 	}
3930 	cred = td->td_ucred;
3931 	if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
3932 		return (ENOMEM);
3933 	reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
3934 	reg->ushm_refcnt = 1;
3935 	bcopy(key, &reg->ushm_key, sizeof(*key));
3936 	reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR, false);
3937 	reg->ushm_cred = crhold(cred);
3938 	error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
3939 	if (error != 0) {
3940 		umtx_shm_free_reg(reg);
3941 		return (error);
3942 	}
3943 	mtx_lock(&umtx_shm_lock);
3944 	reg1 = umtx_shm_find_reg_locked(key);
3945 	if (reg1 != NULL) {
3946 		mtx_unlock(&umtx_shm_lock);
3947 		umtx_shm_free_reg(reg);
3948 		*res = reg1;
3949 		return (0);
3950 	}
3951 	reg->ushm_refcnt++;
3952 	TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
3953 	LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
3954 	    ushm_obj_link);
3955 	reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
3956 	mtx_unlock(&umtx_shm_lock);
3957 	*res = reg;
3958 	return (0);
3959 }
3960 
3961 static int
3962 umtx_shm_alive(struct thread *td, void *addr)
3963 {
3964 	vm_map_t map;
3965 	vm_map_entry_t entry;
3966 	vm_object_t object;
3967 	vm_pindex_t pindex;
3968 	vm_prot_t prot;
3969 	int res, ret;
3970 	boolean_t wired;
3971 
3972 	map = &td->td_proc->p_vmspace->vm_map;
3973 	res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
3974 	    &object, &pindex, &prot, &wired);
3975 	if (res != KERN_SUCCESS)
3976 		return (EFAULT);
3977 	if (object == NULL)
3978 		ret = EINVAL;
3979 	else
3980 		ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
3981 	vm_map_lookup_done(map, entry);
3982 	return (ret);
3983 }
3984 
3985 static void
3986 umtx_shm_init(void)
3987 {
3988 	int i;
3989 
3990 	umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
3991 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
3992 	mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
3993 	for (i = 0; i < nitems(umtx_shm_registry); i++)
3994 		TAILQ_INIT(&umtx_shm_registry[i]);
3995 }
3996 
3997 static int
3998 umtx_shm(struct thread *td, void *addr, u_int flags)
3999 {
4000 	struct umtx_key key;
4001 	struct umtx_shm_reg *reg;
4002 	struct file *fp;
4003 	int error, fd;
4004 
4005 	if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
4006 	    UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
4007 		return (EINVAL);
4008 	if ((flags & UMTX_SHM_ALIVE) != 0)
4009 		return (umtx_shm_alive(td, addr));
4010 	error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
4011 	if (error != 0)
4012 		return (error);
4013 	KASSERT(key.shared == 1, ("non-shared key"));
4014 	if ((flags & UMTX_SHM_CREAT) != 0) {
4015 		error = umtx_shm_create_reg(td, &key, &reg);
4016 	} else {
4017 		reg = umtx_shm_find_reg(&key);
4018 		if (reg == NULL)
4019 			error = ESRCH;
4020 	}
4021 	umtx_key_release(&key);
4022 	if (error != 0)
4023 		return (error);
4024 	KASSERT(reg != NULL, ("no reg"));
4025 	if ((flags & UMTX_SHM_DESTROY) != 0) {
4026 		umtx_shm_unref_reg(reg, true);
4027 	} else {
4028 #if 0
4029 #ifdef MAC
4030 		error = mac_posixshm_check_open(td->td_ucred,
4031 		    reg->ushm_obj, FFLAGS(O_RDWR));
4032 		if (error == 0)
4033 #endif
4034 			error = shm_access(reg->ushm_obj, td->td_ucred,
4035 			    FFLAGS(O_RDWR));
4036 		if (error == 0)
4037 #endif
4038 			error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
4039 		if (error == 0) {
4040 			shm_hold(reg->ushm_obj);
4041 			finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
4042 			    &shm_ops);
4043 			td->td_retval[0] = fd;
4044 			fdrop(fp, td);
4045 		}
4046 	}
4047 	umtx_shm_unref_reg(reg, false);
4048 	return (error);
4049 }
4050 
4051 static int
4052 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap)
4053 {
4054 
4055 	return (umtx_shm(td, uap->uaddr1, uap->val));
4056 }
4057 
4058 static int
4059 umtx_robust_lists(struct thread *td, struct umtx_robust_lists_params *rbp)
4060 {
4061 
4062 	td->td_rb_list = rbp->robust_list_offset;
4063 	td->td_rbp_list = rbp->robust_priv_list_offset;
4064 	td->td_rb_inact = rbp->robust_inact_offset;
4065 	return (0);
4066 }
4067 
4068 static int
4069 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap)
4070 {
4071 	struct umtx_robust_lists_params rb;
4072 	int error;
4073 
4074 	if (uap->val > sizeof(rb))
4075 		return (EINVAL);
4076 	bzero(&rb, sizeof(rb));
4077 	error = copyin(uap->uaddr1, &rb, uap->val);
4078 	if (error != 0)
4079 		return (error);
4080 	return (umtx_robust_lists(td, &rb));
4081 }
4082 
4083 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap);
4084 
4085 static const _umtx_op_func op_table[] = {
4086 	[UMTX_OP_RESERVED0]	= __umtx_op_unimpl,
4087 	[UMTX_OP_RESERVED1]	= __umtx_op_unimpl,
4088 	[UMTX_OP_WAIT]		= __umtx_op_wait,
4089 	[UMTX_OP_WAKE]		= __umtx_op_wake,
4090 	[UMTX_OP_MUTEX_TRYLOCK]	= __umtx_op_trylock_umutex,
4091 	[UMTX_OP_MUTEX_LOCK]	= __umtx_op_lock_umutex,
4092 	[UMTX_OP_MUTEX_UNLOCK]	= __umtx_op_unlock_umutex,
4093 	[UMTX_OP_SET_CEILING]	= __umtx_op_set_ceiling,
4094 	[UMTX_OP_CV_WAIT]	= __umtx_op_cv_wait,
4095 	[UMTX_OP_CV_SIGNAL]	= __umtx_op_cv_signal,
4096 	[UMTX_OP_CV_BROADCAST]	= __umtx_op_cv_broadcast,
4097 	[UMTX_OP_WAIT_UINT]	= __umtx_op_wait_uint,
4098 	[UMTX_OP_RW_RDLOCK]	= __umtx_op_rw_rdlock,
4099 	[UMTX_OP_RW_WRLOCK]	= __umtx_op_rw_wrlock,
4100 	[UMTX_OP_RW_UNLOCK]	= __umtx_op_rw_unlock,
4101 	[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
4102 	[UMTX_OP_WAKE_PRIVATE]	= __umtx_op_wake_private,
4103 	[UMTX_OP_MUTEX_WAIT]	= __umtx_op_wait_umutex,
4104 	[UMTX_OP_MUTEX_WAKE]	= __umtx_op_wake_umutex,
4105 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4106 	[UMTX_OP_SEM_WAIT]	= __umtx_op_sem_wait,
4107 	[UMTX_OP_SEM_WAKE]	= __umtx_op_sem_wake,
4108 #else
4109 	[UMTX_OP_SEM_WAIT]	= __umtx_op_unimpl,
4110 	[UMTX_OP_SEM_WAKE]	= __umtx_op_unimpl,
4111 #endif
4112 	[UMTX_OP_NWAKE_PRIVATE]	= __umtx_op_nwake_private,
4113 	[UMTX_OP_MUTEX_WAKE2]	= __umtx_op_wake2_umutex,
4114 	[UMTX_OP_SEM2_WAIT]	= __umtx_op_sem2_wait,
4115 	[UMTX_OP_SEM2_WAKE]	= __umtx_op_sem2_wake,
4116 	[UMTX_OP_SHM]		= __umtx_op_shm,
4117 	[UMTX_OP_ROBUST_LISTS]	= __umtx_op_robust_lists,
4118 };
4119 
4120 int
4121 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
4122 {
4123 
4124 	if ((unsigned)uap->op < nitems(op_table))
4125 		return (*op_table[uap->op])(td, uap);
4126 	return (EINVAL);
4127 }
4128 
4129 #ifdef COMPAT_FREEBSD32
4130 
4131 struct timespec32 {
4132 	int32_t tv_sec;
4133 	int32_t tv_nsec;
4134 };
4135 
4136 struct umtx_time32 {
4137 	struct	timespec32	timeout;
4138 	uint32_t		flags;
4139 	uint32_t		clockid;
4140 };
4141 
4142 static inline int
4143 umtx_copyin_timeout32(void *addr, struct timespec *tsp)
4144 {
4145 	struct timespec32 ts32;
4146 	int error;
4147 
4148 	error = copyin(addr, &ts32, sizeof(struct timespec32));
4149 	if (error == 0) {
4150 		if (ts32.tv_sec < 0 ||
4151 		    ts32.tv_nsec >= 1000000000 ||
4152 		    ts32.tv_nsec < 0)
4153 			error = EINVAL;
4154 		else {
4155 			tsp->tv_sec = ts32.tv_sec;
4156 			tsp->tv_nsec = ts32.tv_nsec;
4157 		}
4158 	}
4159 	return (error);
4160 }
4161 
4162 static inline int
4163 umtx_copyin_umtx_time32(const void *addr, size_t size, struct _umtx_time *tp)
4164 {
4165 	struct umtx_time32 t32;
4166 	int error;
4167 
4168 	t32.clockid = CLOCK_REALTIME;
4169 	t32.flags   = 0;
4170 	if (size <= sizeof(struct timespec32))
4171 		error = copyin(addr, &t32.timeout, sizeof(struct timespec32));
4172 	else
4173 		error = copyin(addr, &t32, sizeof(struct umtx_time32));
4174 	if (error != 0)
4175 		return (error);
4176 	if (t32.timeout.tv_sec < 0 ||
4177 	    t32.timeout.tv_nsec >= 1000000000 || t32.timeout.tv_nsec < 0)
4178 		return (EINVAL);
4179 	tp->_timeout.tv_sec = t32.timeout.tv_sec;
4180 	tp->_timeout.tv_nsec = t32.timeout.tv_nsec;
4181 	tp->_flags = t32.flags;
4182 	tp->_clockid = t32.clockid;
4183 	return (0);
4184 }
4185 
4186 static int
4187 __umtx_op_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4188 {
4189 	struct _umtx_time *tm_p, timeout;
4190 	int error;
4191 
4192 	if (uap->uaddr2 == NULL)
4193 		tm_p = NULL;
4194 	else {
4195 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4196 			(size_t)uap->uaddr1, &timeout);
4197 		if (error != 0)
4198 			return (error);
4199 		tm_p = &timeout;
4200 	}
4201 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
4202 }
4203 
4204 static int
4205 __umtx_op_lock_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
4206 {
4207 	struct _umtx_time *tm_p, timeout;
4208 	int error;
4209 
4210 	/* Allow a null timespec (wait forever). */
4211 	if (uap->uaddr2 == NULL)
4212 		tm_p = NULL;
4213 	else {
4214 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4215 			    (size_t)uap->uaddr1, &timeout);
4216 		if (error != 0)
4217 			return (error);
4218 		tm_p = &timeout;
4219 	}
4220 	return (do_lock_umutex(td, uap->obj, tm_p, 0));
4221 }
4222 
4223 static int
4224 __umtx_op_wait_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
4225 {
4226 	struct _umtx_time *tm_p, timeout;
4227 	int error;
4228 
4229 	/* Allow a null timespec (wait forever). */
4230 	if (uap->uaddr2 == NULL)
4231 		tm_p = NULL;
4232 	else {
4233 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4234 		    (size_t)uap->uaddr1, &timeout);
4235 		if (error != 0)
4236 			return (error);
4237 		tm_p = &timeout;
4238 	}
4239 	return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
4240 }
4241 
4242 static int
4243 __umtx_op_cv_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4244 {
4245 	struct timespec *ts, timeout;
4246 	int error;
4247 
4248 	/* Allow a null timespec (wait forever). */
4249 	if (uap->uaddr2 == NULL)
4250 		ts = NULL;
4251 	else {
4252 		error = umtx_copyin_timeout32(uap->uaddr2, &timeout);
4253 		if (error != 0)
4254 			return (error);
4255 		ts = &timeout;
4256 	}
4257 	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
4258 }
4259 
4260 static int
4261 __umtx_op_rw_rdlock_compat32(struct thread *td, struct _umtx_op_args *uap)
4262 {
4263 	struct _umtx_time timeout;
4264 	int error;
4265 
4266 	/* Allow a null timespec (wait forever). */
4267 	if (uap->uaddr2 == NULL) {
4268 		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
4269 	} else {
4270 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4271 		    (size_t)uap->uaddr1, &timeout);
4272 		if (error != 0)
4273 			return (error);
4274 		error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
4275 	}
4276 	return (error);
4277 }
4278 
4279 static int
4280 __umtx_op_rw_wrlock_compat32(struct thread *td, struct _umtx_op_args *uap)
4281 {
4282 	struct _umtx_time timeout;
4283 	int error;
4284 
4285 	/* Allow a null timespec (wait forever). */
4286 	if (uap->uaddr2 == NULL) {
4287 		error = do_rw_wrlock(td, uap->obj, 0);
4288 	} else {
4289 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4290 		    (size_t)uap->uaddr1, &timeout);
4291 		if (error != 0)
4292 			return (error);
4293 		error = do_rw_wrlock(td, uap->obj, &timeout);
4294 	}
4295 	return (error);
4296 }
4297 
4298 static int
4299 __umtx_op_wait_uint_private_compat32(struct thread *td, struct _umtx_op_args *uap)
4300 {
4301 	struct _umtx_time *tm_p, timeout;
4302 	int error;
4303 
4304 	if (uap->uaddr2 == NULL)
4305 		tm_p = NULL;
4306 	else {
4307 		error = umtx_copyin_umtx_time32(
4308 		    uap->uaddr2, (size_t)uap->uaddr1,&timeout);
4309 		if (error != 0)
4310 			return (error);
4311 		tm_p = &timeout;
4312 	}
4313 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
4314 }
4315 
4316 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4317 static int
4318 __umtx_op_sem_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4319 {
4320 	struct _umtx_time *tm_p, timeout;
4321 	int error;
4322 
4323 	/* Allow a null timespec (wait forever). */
4324 	if (uap->uaddr2 == NULL)
4325 		tm_p = NULL;
4326 	else {
4327 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4328 		    (size_t)uap->uaddr1, &timeout);
4329 		if (error != 0)
4330 			return (error);
4331 		tm_p = &timeout;
4332 	}
4333 	return (do_sem_wait(td, uap->obj, tm_p));
4334 }
4335 #endif
4336 
4337 static int
4338 __umtx_op_sem2_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4339 {
4340 	struct _umtx_time *tm_p, timeout;
4341 	size_t uasize;
4342 	int error;
4343 
4344 	/* Allow a null timespec (wait forever). */
4345 	if (uap->uaddr2 == NULL) {
4346 		uasize = 0;
4347 		tm_p = NULL;
4348 	} else {
4349 		uasize = (size_t)uap->uaddr1;
4350 		error = umtx_copyin_umtx_time32(uap->uaddr2, uasize, &timeout);
4351 		if (error != 0)
4352 			return (error);
4353 		tm_p = &timeout;
4354 	}
4355 	error = do_sem2_wait(td, uap->obj, tm_p);
4356 	if (error == EINTR && uap->uaddr2 != NULL &&
4357 	    (timeout._flags & UMTX_ABSTIME) == 0 &&
4358 	    uasize >= sizeof(struct umtx_time32) + sizeof(struct timespec32)) {
4359 		struct timespec32 remain32 = {
4360 			.tv_sec = timeout._timeout.tv_sec,
4361 			.tv_nsec = timeout._timeout.tv_nsec
4362 		};
4363 		error = copyout(&remain32,
4364 		    (struct umtx_time32 *)uap->uaddr2 + 1,
4365 		    sizeof(struct timespec32));
4366 		if (error == 0) {
4367 			error = EINTR;
4368 		}
4369 	}
4370 
4371 	return (error);
4372 }
4373 
4374 static int
4375 __umtx_op_nwake_private32(struct thread *td, struct _umtx_op_args *uap)
4376 {
4377 	uint32_t uaddrs[BATCH_SIZE], **upp;
4378 	int count, error, i, pos, tocopy;
4379 
4380 	upp = (uint32_t **)uap->obj;
4381 	error = 0;
4382 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
4383 	    pos += tocopy) {
4384 		tocopy = MIN(count, BATCH_SIZE);
4385 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
4386 		if (error != 0)
4387 			break;
4388 		for (i = 0; i < tocopy; ++i)
4389 			kern_umtx_wake(td, (void *)(intptr_t)uaddrs[i],
4390 			    INT_MAX, 1);
4391 		maybe_yield();
4392 	}
4393 	return (error);
4394 }
4395 
4396 struct umtx_robust_lists_params_compat32 {
4397 	uint32_t	robust_list_offset;
4398 	uint32_t	robust_priv_list_offset;
4399 	uint32_t	robust_inact_offset;
4400 };
4401 
4402 static int
4403 __umtx_op_robust_lists_compat32(struct thread *td, struct _umtx_op_args *uap)
4404 {
4405 	struct umtx_robust_lists_params rb;
4406 	struct umtx_robust_lists_params_compat32 rb32;
4407 	int error;
4408 
4409 	if (uap->val > sizeof(rb32))
4410 		return (EINVAL);
4411 	bzero(&rb, sizeof(rb));
4412 	bzero(&rb32, sizeof(rb32));
4413 	error = copyin(uap->uaddr1, &rb32, uap->val);
4414 	if (error != 0)
4415 		return (error);
4416 	rb.robust_list_offset = rb32.robust_list_offset;
4417 	rb.robust_priv_list_offset = rb32.robust_priv_list_offset;
4418 	rb.robust_inact_offset = rb32.robust_inact_offset;
4419 	return (umtx_robust_lists(td, &rb));
4420 }
4421 
4422 static const _umtx_op_func op_table_compat32[] = {
4423 	[UMTX_OP_RESERVED0]	= __umtx_op_unimpl,
4424 	[UMTX_OP_RESERVED1]	= __umtx_op_unimpl,
4425 	[UMTX_OP_WAIT]		= __umtx_op_wait_compat32,
4426 	[UMTX_OP_WAKE]		= __umtx_op_wake,
4427 	[UMTX_OP_MUTEX_TRYLOCK]	= __umtx_op_trylock_umutex,
4428 	[UMTX_OP_MUTEX_LOCK]	= __umtx_op_lock_umutex_compat32,
4429 	[UMTX_OP_MUTEX_UNLOCK]	= __umtx_op_unlock_umutex,
4430 	[UMTX_OP_SET_CEILING]	= __umtx_op_set_ceiling,
4431 	[UMTX_OP_CV_WAIT]	= __umtx_op_cv_wait_compat32,
4432 	[UMTX_OP_CV_SIGNAL]	= __umtx_op_cv_signal,
4433 	[UMTX_OP_CV_BROADCAST]	= __umtx_op_cv_broadcast,
4434 	[UMTX_OP_WAIT_UINT]	= __umtx_op_wait_compat32,
4435 	[UMTX_OP_RW_RDLOCK]	= __umtx_op_rw_rdlock_compat32,
4436 	[UMTX_OP_RW_WRLOCK]	= __umtx_op_rw_wrlock_compat32,
4437 	[UMTX_OP_RW_UNLOCK]	= __umtx_op_rw_unlock,
4438 	[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private_compat32,
4439 	[UMTX_OP_WAKE_PRIVATE]	= __umtx_op_wake_private,
4440 	[UMTX_OP_MUTEX_WAIT]	= __umtx_op_wait_umutex_compat32,
4441 	[UMTX_OP_MUTEX_WAKE]	= __umtx_op_wake_umutex,
4442 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4443 	[UMTX_OP_SEM_WAIT]	= __umtx_op_sem_wait_compat32,
4444 	[UMTX_OP_SEM_WAKE]	= __umtx_op_sem_wake,
4445 #else
4446 	[UMTX_OP_SEM_WAIT]	= __umtx_op_unimpl,
4447 	[UMTX_OP_SEM_WAKE]	= __umtx_op_unimpl,
4448 #endif
4449 	[UMTX_OP_NWAKE_PRIVATE]	= __umtx_op_nwake_private32,
4450 	[UMTX_OP_MUTEX_WAKE2]	= __umtx_op_wake2_umutex,
4451 	[UMTX_OP_SEM2_WAIT]	= __umtx_op_sem2_wait_compat32,
4452 	[UMTX_OP_SEM2_WAKE]	= __umtx_op_sem2_wake,
4453 	[UMTX_OP_SHM]		= __umtx_op_shm,
4454 	[UMTX_OP_ROBUST_LISTS]	= __umtx_op_robust_lists_compat32,
4455 };
4456 
4457 int
4458 freebsd32__umtx_op(struct thread *td, struct freebsd32__umtx_op_args *uap)
4459 {
4460 
4461 	if ((unsigned)uap->op < nitems(op_table_compat32)) {
4462 		return (*op_table_compat32[uap->op])(td,
4463 		    (struct _umtx_op_args *)uap);
4464 	}
4465 	return (EINVAL);
4466 }
4467 #endif
4468 
4469 void
4470 umtx_thread_init(struct thread *td)
4471 {
4472 
4473 	td->td_umtxq = umtxq_alloc();
4474 	td->td_umtxq->uq_thread = td;
4475 }
4476 
4477 void
4478 umtx_thread_fini(struct thread *td)
4479 {
4480 
4481 	umtxq_free(td->td_umtxq);
4482 }
4483 
4484 /*
4485  * It will be called when new thread is created, e.g fork().
4486  */
4487 void
4488 umtx_thread_alloc(struct thread *td)
4489 {
4490 	struct umtx_q *uq;
4491 
4492 	uq = td->td_umtxq;
4493 	uq->uq_inherited_pri = PRI_MAX;
4494 
4495 	KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
4496 	KASSERT(uq->uq_thread == td, ("uq_thread != td"));
4497 	KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
4498 	KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
4499 }
4500 
4501 /*
4502  * exec() hook.
4503  *
4504  * Clear robust lists for all process' threads, not delaying the
4505  * cleanup to thread_exit hook, since the relevant address space is
4506  * destroyed right now.
4507  */
4508 static void
4509 umtx_exec_hook(void *arg __unused, struct proc *p,
4510     struct image_params *imgp __unused)
4511 {
4512 	struct thread *td;
4513 
4514 	KASSERT(p == curproc, ("need curproc"));
4515 	KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
4516 	    (p->p_flag & P_STOPPED_SINGLE) != 0,
4517 	    ("curproc must be single-threaded"));
4518 	/*
4519 	 * There is no need to lock the list as only this thread can be
4520 	 * running.
4521 	 */
4522 	FOREACH_THREAD_IN_PROC(p, td) {
4523 		KASSERT(td == curthread ||
4524 		    ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
4525 		    ("running thread %p %p", p, td));
4526 		umtx_thread_cleanup(td);
4527 		td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
4528 	}
4529 }
4530 
4531 /*
4532  * thread_exit() hook.
4533  */
4534 void
4535 umtx_thread_exit(struct thread *td)
4536 {
4537 
4538 	umtx_thread_cleanup(td);
4539 }
4540 
4541 static int
4542 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res)
4543 {
4544 	u_long res1;
4545 #ifdef COMPAT_FREEBSD32
4546 	uint32_t res32;
4547 #endif
4548 	int error;
4549 
4550 #ifdef COMPAT_FREEBSD32
4551 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
4552 		error = fueword32((void *)ptr, &res32);
4553 		if (error == 0)
4554 			res1 = res32;
4555 	} else
4556 #endif
4557 	{
4558 		error = fueword((void *)ptr, &res1);
4559 	}
4560 	if (error == 0)
4561 		*res = res1;
4562 	else
4563 		error = EFAULT;
4564 	return (error);
4565 }
4566 
4567 static void
4568 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list)
4569 {
4570 #ifdef COMPAT_FREEBSD32
4571 	struct umutex32 m32;
4572 
4573 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
4574 		memcpy(&m32, m, sizeof(m32));
4575 		*rb_list = m32.m_rb_lnk;
4576 	} else
4577 #endif
4578 		*rb_list = m->m_rb_lnk;
4579 }
4580 
4581 static int
4582 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact)
4583 {
4584 	struct umutex m;
4585 	int error;
4586 
4587 	KASSERT(td->td_proc == curproc, ("need current vmspace"));
4588 	error = copyin((void *)rbp, &m, sizeof(m));
4589 	if (error != 0)
4590 		return (error);
4591 	if (rb_list != NULL)
4592 		umtx_read_rb_list(td, &m, rb_list);
4593 	if ((m.m_flags & UMUTEX_ROBUST) == 0)
4594 		return (EINVAL);
4595 	if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
4596 		/* inact is cleared after unlock, allow the inconsistency */
4597 		return (inact ? 0 : EINVAL);
4598 	return (do_unlock_umutex(td, (struct umutex *)rbp, true));
4599 }
4600 
4601 static void
4602 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
4603     const char *name)
4604 {
4605 	int error, i;
4606 	uintptr_t rbp;
4607 	bool inact;
4608 
4609 	if (rb_list == 0)
4610 		return;
4611 	error = umtx_read_uptr(td, rb_list, &rbp);
4612 	for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
4613 		if (rbp == *rb_inact) {
4614 			inact = true;
4615 			*rb_inact = 0;
4616 		} else
4617 			inact = false;
4618 		error = umtx_handle_rb(td, rbp, &rbp, inact);
4619 	}
4620 	if (i == umtx_max_rb && umtx_verbose_rb) {
4621 		uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
4622 		    td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
4623 	}
4624 	if (error != 0 && umtx_verbose_rb) {
4625 		uprintf("comm %s pid %d: handling %srb error %d\n",
4626 		    td->td_proc->p_comm, td->td_proc->p_pid, name, error);
4627 	}
4628 }
4629 
4630 /*
4631  * Clean up umtx data.
4632  */
4633 static void
4634 umtx_thread_cleanup(struct thread *td)
4635 {
4636 	struct umtx_q *uq;
4637 	struct umtx_pi *pi;
4638 	uintptr_t rb_inact;
4639 
4640 	/*
4641 	 * Disown pi mutexes.
4642 	 */
4643 	uq = td->td_umtxq;
4644 	if (uq != NULL) {
4645 		if (uq->uq_inherited_pri != PRI_MAX ||
4646 		    !TAILQ_EMPTY(&uq->uq_pi_contested)) {
4647 			mtx_lock(&umtx_lock);
4648 			uq->uq_inherited_pri = PRI_MAX;
4649 			while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
4650 				pi->pi_owner = NULL;
4651 				TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
4652 			}
4653 			mtx_unlock(&umtx_lock);
4654 		}
4655 		sched_lend_user_prio_cond(td, PRI_MAX);
4656 	}
4657 
4658 	if (td->td_rb_inact == 0 && td->td_rb_list == 0 && td->td_rbp_list == 0)
4659 		return;
4660 
4661 	/*
4662 	 * Handle terminated robust mutexes.  Must be done after
4663 	 * robust pi disown, otherwise unlock could see unowned
4664 	 * entries.
4665 	 */
4666 	rb_inact = td->td_rb_inact;
4667 	if (rb_inact != 0)
4668 		(void)umtx_read_uptr(td, rb_inact, &rb_inact);
4669 	umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "");
4670 	umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ");
4671 	if (rb_inact != 0)
4672 		(void)umtx_handle_rb(td, rb_inact, NULL, true);
4673 }
4674