xref: /freebsd/sys/kern/kern_umtx.c (revision 23f6875a43f7ce365f2d52cf857da010c47fb03b)
1 /*-
2  * Copyright (c) 2015, 2016 The FreeBSD Foundation
3  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
4  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
5  * All rights reserved.
6  *
7  * Portions of this software were developed by Konstantin Belousov
8  * under sponsorship from the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice unmodified, this list of conditions, and the following
15  *    disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_umtx_profiling.h"
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/fcntl.h>
41 #include <sys/file.h>
42 #include <sys/filedesc.h>
43 #include <sys/limits.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mman.h>
47 #include <sys/mutex.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/resource.h>
51 #include <sys/resourcevar.h>
52 #include <sys/rwlock.h>
53 #include <sys/sbuf.h>
54 #include <sys/sched.h>
55 #include <sys/smp.h>
56 #include <sys/sysctl.h>
57 #include <sys/sysent.h>
58 #include <sys/systm.h>
59 #include <sys/sysproto.h>
60 #include <sys/syscallsubr.h>
61 #include <sys/taskqueue.h>
62 #include <sys/eventhandler.h>
63 #include <sys/umtx.h>
64 
65 #include <security/mac/mac_framework.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_object.h>
72 
73 #include <machine/cpu.h>
74 
75 #ifdef COMPAT_FREEBSD32
76 #include <compat/freebsd32/freebsd32_proto.h>
77 #endif
78 
79 #define _UMUTEX_TRY		1
80 #define _UMUTEX_WAIT		2
81 
82 #ifdef UMTX_PROFILING
83 #define	UPROF_PERC_BIGGER(w, f, sw, sf)					\
84 	(((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
85 #endif
86 
87 /* Priority inheritance mutex info. */
88 struct umtx_pi {
89 	/* Owner thread */
90 	struct thread		*pi_owner;
91 
92 	/* Reference count */
93 	int			pi_refcount;
94 
95  	/* List entry to link umtx holding by thread */
96 	TAILQ_ENTRY(umtx_pi)	pi_link;
97 
98 	/* List entry in hash */
99 	TAILQ_ENTRY(umtx_pi)	pi_hashlink;
100 
101 	/* List for waiters */
102 	TAILQ_HEAD(,umtx_q)	pi_blocked;
103 
104 	/* Identify a userland lock object */
105 	struct umtx_key		pi_key;
106 };
107 
108 /* A userland synchronous object user. */
109 struct umtx_q {
110 	/* Linked list for the hash. */
111 	TAILQ_ENTRY(umtx_q)	uq_link;
112 
113 	/* Umtx key. */
114 	struct umtx_key		uq_key;
115 
116 	/* Umtx flags. */
117 	int			uq_flags;
118 #define UQF_UMTXQ	0x0001
119 
120 	/* The thread waits on. */
121 	struct thread		*uq_thread;
122 
123 	/*
124 	 * Blocked on PI mutex. read can use chain lock
125 	 * or umtx_lock, write must have both chain lock and
126 	 * umtx_lock being hold.
127 	 */
128 	struct umtx_pi		*uq_pi_blocked;
129 
130 	/* On blocked list */
131 	TAILQ_ENTRY(umtx_q)	uq_lockq;
132 
133 	/* Thread contending with us */
134 	TAILQ_HEAD(,umtx_pi)	uq_pi_contested;
135 
136 	/* Inherited priority from PP mutex */
137 	u_char			uq_inherited_pri;
138 
139 	/* Spare queue ready to be reused */
140 	struct umtxq_queue	*uq_spare_queue;
141 
142 	/* The queue we on */
143 	struct umtxq_queue	*uq_cur_queue;
144 };
145 
146 TAILQ_HEAD(umtxq_head, umtx_q);
147 
148 /* Per-key wait-queue */
149 struct umtxq_queue {
150 	struct umtxq_head	head;
151 	struct umtx_key		key;
152 	LIST_ENTRY(umtxq_queue)	link;
153 	int			length;
154 };
155 
156 LIST_HEAD(umtxq_list, umtxq_queue);
157 
158 /* Userland lock object's wait-queue chain */
159 struct umtxq_chain {
160 	/* Lock for this chain. */
161 	struct mtx		uc_lock;
162 
163 	/* List of sleep queues. */
164 	struct umtxq_list	uc_queue[2];
165 #define UMTX_SHARED_QUEUE	0
166 #define UMTX_EXCLUSIVE_QUEUE	1
167 
168 	LIST_HEAD(, umtxq_queue) uc_spare_queue;
169 
170 	/* Busy flag */
171 	char			uc_busy;
172 
173 	/* Chain lock waiters */
174 	int			uc_waiters;
175 
176 	/* All PI in the list */
177 	TAILQ_HEAD(,umtx_pi)	uc_pi_list;
178 
179 #ifdef UMTX_PROFILING
180 	u_int 			length;
181 	u_int			max_length;
182 #endif
183 };
184 
185 #define	UMTXQ_LOCKED_ASSERT(uc)		mtx_assert(&(uc)->uc_lock, MA_OWNED)
186 
187 /*
188  * Don't propagate time-sharing priority, there is a security reason,
189  * a user can simply introduce PI-mutex, let thread A lock the mutex,
190  * and let another thread B block on the mutex, because B is
191  * sleeping, its priority will be boosted, this causes A's priority to
192  * be boosted via priority propagating too and will never be lowered even
193  * if it is using 100%CPU, this is unfair to other processes.
194  */
195 
196 #define UPRI(td)	(((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
197 			  (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
198 			 PRI_MAX_TIMESHARE : (td)->td_user_pri)
199 
200 #define	GOLDEN_RATIO_PRIME	2654404609U
201 #ifndef	UMTX_CHAINS
202 #define	UMTX_CHAINS		512
203 #endif
204 #define	UMTX_SHIFTS		(__WORD_BIT - 9)
205 
206 #define	GET_SHARE(flags)	\
207     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
208 
209 #define BUSY_SPINS		200
210 
211 struct abs_timeout {
212 	int clockid;
213 	struct timespec cur;
214 	struct timespec end;
215 };
216 
217 #ifdef COMPAT_FREEBSD32
218 struct umutex32 {
219 	volatile __lwpid_t	m_owner;	/* Owner of the mutex */
220 	__uint32_t		m_flags;	/* Flags of the mutex */
221 	__uint32_t		m_ceilings[2];	/* Priority protect ceiling */
222 	__uint32_t		m_rb_lnk;	/* Robust linkage */
223 	__uint32_t		m_pad;
224 	__uint32_t		m_spare[2];
225 };
226 
227 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
228 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
229     __offsetof(struct umutex32, m_spare[0]), "m_spare32");
230 #endif
231 
232 int umtx_shm_vnobj_persistent = 0;
233 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
234     &umtx_shm_vnobj_persistent, 0,
235     "False forces destruction of umtx attached to file, on last close");
236 static int umtx_max_rb = 1000;
237 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
238     &umtx_max_rb, 0,
239     "");
240 
241 static uma_zone_t		umtx_pi_zone;
242 static struct umtxq_chain	umtxq_chains[2][UMTX_CHAINS];
243 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
244 static int			umtx_pi_allocated;
245 
246 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW, 0, "umtx debug");
247 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
248     &umtx_pi_allocated, 0, "Allocated umtx_pi");
249 static int umtx_verbose_rb = 1;
250 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
251     &umtx_verbose_rb, 0,
252     "");
253 
254 #ifdef UMTX_PROFILING
255 static long max_length;
256 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
257 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD, 0, "umtx chain stats");
258 #endif
259 
260 static void umtx_shm_init(void);
261 static void umtxq_sysinit(void *);
262 static void umtxq_hash(struct umtx_key *key);
263 static struct umtxq_chain *umtxq_getchain(struct umtx_key *key);
264 static void umtxq_lock(struct umtx_key *key);
265 static void umtxq_unlock(struct umtx_key *key);
266 static void umtxq_busy(struct umtx_key *key);
267 static void umtxq_unbusy(struct umtx_key *key);
268 static void umtxq_insert_queue(struct umtx_q *uq, int q);
269 static void umtxq_remove_queue(struct umtx_q *uq, int q);
270 static int umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *);
271 static int umtxq_count(struct umtx_key *key);
272 static struct umtx_pi *umtx_pi_alloc(int);
273 static void umtx_pi_free(struct umtx_pi *pi);
274 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
275     bool rb);
276 static void umtx_thread_cleanup(struct thread *td);
277 static void umtx_exec_hook(void *arg __unused, struct proc *p __unused,
278     struct image_params *imgp __unused);
279 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
280 
281 #define umtxq_signal(key, nwake)	umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
282 #define umtxq_insert(uq)	umtxq_insert_queue((uq), UMTX_SHARED_QUEUE)
283 #define umtxq_remove(uq)	umtxq_remove_queue((uq), UMTX_SHARED_QUEUE)
284 
285 static struct mtx umtx_lock;
286 
287 #ifdef UMTX_PROFILING
288 static void
289 umtx_init_profiling(void)
290 {
291 	struct sysctl_oid *chain_oid;
292 	char chain_name[10];
293 	int i;
294 
295 	for (i = 0; i < UMTX_CHAINS; ++i) {
296 		snprintf(chain_name, sizeof(chain_name), "%d", i);
297 		chain_oid = SYSCTL_ADD_NODE(NULL,
298 		    SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
299 		    chain_name, CTLFLAG_RD, NULL, "umtx hash stats");
300 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
301 		    "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
302 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
303 		    "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
304 	}
305 }
306 
307 static int
308 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
309 {
310 	char buf[512];
311 	struct sbuf sb;
312 	struct umtxq_chain *uc;
313 	u_int fract, i, j, tot, whole;
314 	u_int sf0, sf1, sf2, sf3, sf4;
315 	u_int si0, si1, si2, si3, si4;
316 	u_int sw0, sw1, sw2, sw3, sw4;
317 
318 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
319 	for (i = 0; i < 2; i++) {
320 		tot = 0;
321 		for (j = 0; j < UMTX_CHAINS; ++j) {
322 			uc = &umtxq_chains[i][j];
323 			mtx_lock(&uc->uc_lock);
324 			tot += uc->max_length;
325 			mtx_unlock(&uc->uc_lock);
326 		}
327 		if (tot == 0)
328 			sbuf_printf(&sb, "%u) Empty ", i);
329 		else {
330 			sf0 = sf1 = sf2 = sf3 = sf4 = 0;
331 			si0 = si1 = si2 = si3 = si4 = 0;
332 			sw0 = sw1 = sw2 = sw3 = sw4 = 0;
333 			for (j = 0; j < UMTX_CHAINS; j++) {
334 				uc = &umtxq_chains[i][j];
335 				mtx_lock(&uc->uc_lock);
336 				whole = uc->max_length * 100;
337 				mtx_unlock(&uc->uc_lock);
338 				fract = (whole % tot) * 100;
339 				if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
340 					sf0 = fract;
341 					si0 = j;
342 					sw0 = whole;
343 				} else if (UPROF_PERC_BIGGER(whole, fract, sw1,
344 				    sf1)) {
345 					sf1 = fract;
346 					si1 = j;
347 					sw1 = whole;
348 				} else if (UPROF_PERC_BIGGER(whole, fract, sw2,
349 				    sf2)) {
350 					sf2 = fract;
351 					si2 = j;
352 					sw2 = whole;
353 				} else if (UPROF_PERC_BIGGER(whole, fract, sw3,
354 				    sf3)) {
355 					sf3 = fract;
356 					si3 = j;
357 					sw3 = whole;
358 				} else if (UPROF_PERC_BIGGER(whole, fract, sw4,
359 				    sf4)) {
360 					sf4 = fract;
361 					si4 = j;
362 					sw4 = whole;
363 				}
364 			}
365 			sbuf_printf(&sb, "queue %u:\n", i);
366 			sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
367 			    sf0 / tot, si0);
368 			sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
369 			    sf1 / tot, si1);
370 			sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
371 			    sf2 / tot, si2);
372 			sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
373 			    sf3 / tot, si3);
374 			sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
375 			    sf4 / tot, si4);
376 		}
377 	}
378 	sbuf_trim(&sb);
379 	sbuf_finish(&sb);
380 	sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
381 	sbuf_delete(&sb);
382 	return (0);
383 }
384 
385 static int
386 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
387 {
388 	struct umtxq_chain *uc;
389 	u_int i, j;
390 	int clear, error;
391 
392 	clear = 0;
393 	error = sysctl_handle_int(oidp, &clear, 0, req);
394 	if (error != 0 || req->newptr == NULL)
395 		return (error);
396 
397 	if (clear != 0) {
398 		for (i = 0; i < 2; ++i) {
399 			for (j = 0; j < UMTX_CHAINS; ++j) {
400 				uc = &umtxq_chains[i][j];
401 				mtx_lock(&uc->uc_lock);
402 				uc->length = 0;
403 				uc->max_length = 0;
404 				mtx_unlock(&uc->uc_lock);
405 			}
406 		}
407 	}
408 	return (0);
409 }
410 
411 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
412     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
413     sysctl_debug_umtx_chains_clear, "I", "Clear umtx chains statistics");
414 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
415     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
416     sysctl_debug_umtx_chains_peaks, "A", "Highest peaks in chains max length");
417 #endif
418 
419 static void
420 umtxq_sysinit(void *arg __unused)
421 {
422 	int i, j;
423 
424 	umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
425 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
426 	for (i = 0; i < 2; ++i) {
427 		for (j = 0; j < UMTX_CHAINS; ++j) {
428 			mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
429 				 MTX_DEF | MTX_DUPOK);
430 			LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
431 			LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
432 			LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
433 			TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
434 			umtxq_chains[i][j].uc_busy = 0;
435 			umtxq_chains[i][j].uc_waiters = 0;
436 #ifdef UMTX_PROFILING
437 			umtxq_chains[i][j].length = 0;
438 			umtxq_chains[i][j].max_length = 0;
439 #endif
440 		}
441 	}
442 #ifdef UMTX_PROFILING
443 	umtx_init_profiling();
444 #endif
445 	mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
446 	EVENTHANDLER_REGISTER(process_exec, umtx_exec_hook, NULL,
447 	    EVENTHANDLER_PRI_ANY);
448 	umtx_shm_init();
449 }
450 
451 struct umtx_q *
452 umtxq_alloc(void)
453 {
454 	struct umtx_q *uq;
455 
456 	uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
457 	uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
458 	    M_WAITOK | M_ZERO);
459 	TAILQ_INIT(&uq->uq_spare_queue->head);
460 	TAILQ_INIT(&uq->uq_pi_contested);
461 	uq->uq_inherited_pri = PRI_MAX;
462 	return (uq);
463 }
464 
465 void
466 umtxq_free(struct umtx_q *uq)
467 {
468 
469 	MPASS(uq->uq_spare_queue != NULL);
470 	free(uq->uq_spare_queue, M_UMTX);
471 	free(uq, M_UMTX);
472 }
473 
474 static inline void
475 umtxq_hash(struct umtx_key *key)
476 {
477 	unsigned n;
478 
479 	n = (uintptr_t)key->info.both.a + key->info.both.b;
480 	key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
481 }
482 
483 static inline struct umtxq_chain *
484 umtxq_getchain(struct umtx_key *key)
485 {
486 
487 	if (key->type <= TYPE_SEM)
488 		return (&umtxq_chains[1][key->hash]);
489 	return (&umtxq_chains[0][key->hash]);
490 }
491 
492 /*
493  * Lock a chain.
494  */
495 static inline void
496 umtxq_lock(struct umtx_key *key)
497 {
498 	struct umtxq_chain *uc;
499 
500 	uc = umtxq_getchain(key);
501 	mtx_lock(&uc->uc_lock);
502 }
503 
504 /*
505  * Unlock a chain.
506  */
507 static inline void
508 umtxq_unlock(struct umtx_key *key)
509 {
510 	struct umtxq_chain *uc;
511 
512 	uc = umtxq_getchain(key);
513 	mtx_unlock(&uc->uc_lock);
514 }
515 
516 /*
517  * Set chain to busy state when following operation
518  * may be blocked (kernel mutex can not be used).
519  */
520 static inline void
521 umtxq_busy(struct umtx_key *key)
522 {
523 	struct umtxq_chain *uc;
524 
525 	uc = umtxq_getchain(key);
526 	mtx_assert(&uc->uc_lock, MA_OWNED);
527 	if (uc->uc_busy) {
528 #ifdef SMP
529 		if (smp_cpus > 1) {
530 			int count = BUSY_SPINS;
531 			if (count > 0) {
532 				umtxq_unlock(key);
533 				while (uc->uc_busy && --count > 0)
534 					cpu_spinwait();
535 				umtxq_lock(key);
536 			}
537 		}
538 #endif
539 		while (uc->uc_busy) {
540 			uc->uc_waiters++;
541 			msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
542 			uc->uc_waiters--;
543 		}
544 	}
545 	uc->uc_busy = 1;
546 }
547 
548 /*
549  * Unbusy a chain.
550  */
551 static inline void
552 umtxq_unbusy(struct umtx_key *key)
553 {
554 	struct umtxq_chain *uc;
555 
556 	uc = umtxq_getchain(key);
557 	mtx_assert(&uc->uc_lock, MA_OWNED);
558 	KASSERT(uc->uc_busy != 0, ("not busy"));
559 	uc->uc_busy = 0;
560 	if (uc->uc_waiters)
561 		wakeup_one(uc);
562 }
563 
564 static inline void
565 umtxq_unbusy_unlocked(struct umtx_key *key)
566 {
567 
568 	umtxq_lock(key);
569 	umtxq_unbusy(key);
570 	umtxq_unlock(key);
571 }
572 
573 static struct umtxq_queue *
574 umtxq_queue_lookup(struct umtx_key *key, int q)
575 {
576 	struct umtxq_queue *uh;
577 	struct umtxq_chain *uc;
578 
579 	uc = umtxq_getchain(key);
580 	UMTXQ_LOCKED_ASSERT(uc);
581 	LIST_FOREACH(uh, &uc->uc_queue[q], link) {
582 		if (umtx_key_match(&uh->key, key))
583 			return (uh);
584 	}
585 
586 	return (NULL);
587 }
588 
589 static inline void
590 umtxq_insert_queue(struct umtx_q *uq, int q)
591 {
592 	struct umtxq_queue *uh;
593 	struct umtxq_chain *uc;
594 
595 	uc = umtxq_getchain(&uq->uq_key);
596 	UMTXQ_LOCKED_ASSERT(uc);
597 	KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
598 	uh = umtxq_queue_lookup(&uq->uq_key, q);
599 	if (uh != NULL) {
600 		LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
601 	} else {
602 		uh = uq->uq_spare_queue;
603 		uh->key = uq->uq_key;
604 		LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
605 #ifdef UMTX_PROFILING
606 		uc->length++;
607 		if (uc->length > uc->max_length) {
608 			uc->max_length = uc->length;
609 			if (uc->max_length > max_length)
610 				max_length = uc->max_length;
611 		}
612 #endif
613 	}
614 	uq->uq_spare_queue = NULL;
615 
616 	TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
617 	uh->length++;
618 	uq->uq_flags |= UQF_UMTXQ;
619 	uq->uq_cur_queue = uh;
620 	return;
621 }
622 
623 static inline void
624 umtxq_remove_queue(struct umtx_q *uq, int q)
625 {
626 	struct umtxq_chain *uc;
627 	struct umtxq_queue *uh;
628 
629 	uc = umtxq_getchain(&uq->uq_key);
630 	UMTXQ_LOCKED_ASSERT(uc);
631 	if (uq->uq_flags & UQF_UMTXQ) {
632 		uh = uq->uq_cur_queue;
633 		TAILQ_REMOVE(&uh->head, uq, uq_link);
634 		uh->length--;
635 		uq->uq_flags &= ~UQF_UMTXQ;
636 		if (TAILQ_EMPTY(&uh->head)) {
637 			KASSERT(uh->length == 0,
638 			    ("inconsistent umtxq_queue length"));
639 #ifdef UMTX_PROFILING
640 			uc->length--;
641 #endif
642 			LIST_REMOVE(uh, link);
643 		} else {
644 			uh = LIST_FIRST(&uc->uc_spare_queue);
645 			KASSERT(uh != NULL, ("uc_spare_queue is empty"));
646 			LIST_REMOVE(uh, link);
647 		}
648 		uq->uq_spare_queue = uh;
649 		uq->uq_cur_queue = NULL;
650 	}
651 }
652 
653 /*
654  * Check if there are multiple waiters
655  */
656 static int
657 umtxq_count(struct umtx_key *key)
658 {
659 	struct umtxq_chain *uc;
660 	struct umtxq_queue *uh;
661 
662 	uc = umtxq_getchain(key);
663 	UMTXQ_LOCKED_ASSERT(uc);
664 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
665 	if (uh != NULL)
666 		return (uh->length);
667 	return (0);
668 }
669 
670 /*
671  * Check if there are multiple PI waiters and returns first
672  * waiter.
673  */
674 static int
675 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
676 {
677 	struct umtxq_chain *uc;
678 	struct umtxq_queue *uh;
679 
680 	*first = NULL;
681 	uc = umtxq_getchain(key);
682 	UMTXQ_LOCKED_ASSERT(uc);
683 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
684 	if (uh != NULL) {
685 		*first = TAILQ_FIRST(&uh->head);
686 		return (uh->length);
687 	}
688 	return (0);
689 }
690 
691 static int
692 umtxq_check_susp(struct thread *td)
693 {
694 	struct proc *p;
695 	int error;
696 
697 	/*
698 	 * The check for TDF_NEEDSUSPCHK is racy, but it is enough to
699 	 * eventually break the lockstep loop.
700 	 */
701 	if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
702 		return (0);
703 	error = 0;
704 	p = td->td_proc;
705 	PROC_LOCK(p);
706 	if (P_SHOULDSTOP(p) ||
707 	    ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
708 		if (p->p_flag & P_SINGLE_EXIT)
709 			error = EINTR;
710 		else
711 			error = ERESTART;
712 	}
713 	PROC_UNLOCK(p);
714 	return (error);
715 }
716 
717 /*
718  * Wake up threads waiting on an userland object.
719  */
720 
721 static int
722 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
723 {
724 	struct umtxq_chain *uc;
725 	struct umtxq_queue *uh;
726 	struct umtx_q *uq;
727 	int ret;
728 
729 	ret = 0;
730 	uc = umtxq_getchain(key);
731 	UMTXQ_LOCKED_ASSERT(uc);
732 	uh = umtxq_queue_lookup(key, q);
733 	if (uh != NULL) {
734 		while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
735 			umtxq_remove_queue(uq, q);
736 			wakeup(uq);
737 			if (++ret >= n_wake)
738 				return (ret);
739 		}
740 	}
741 	return (ret);
742 }
743 
744 
745 /*
746  * Wake up specified thread.
747  */
748 static inline void
749 umtxq_signal_thread(struct umtx_q *uq)
750 {
751 	struct umtxq_chain *uc;
752 
753 	uc = umtxq_getchain(&uq->uq_key);
754 	UMTXQ_LOCKED_ASSERT(uc);
755 	umtxq_remove(uq);
756 	wakeup(uq);
757 }
758 
759 static inline int
760 tstohz(const struct timespec *tsp)
761 {
762 	struct timeval tv;
763 
764 	TIMESPEC_TO_TIMEVAL(&tv, tsp);
765 	return tvtohz(&tv);
766 }
767 
768 static void
769 abs_timeout_init(struct abs_timeout *timo, int clockid, int absolute,
770 	const struct timespec *timeout)
771 {
772 
773 	timo->clockid = clockid;
774 	if (!absolute) {
775 		kern_clock_gettime(curthread, clockid, &timo->end);
776 		timo->cur = timo->end;
777 		timespecadd(&timo->end, timeout);
778 	} else {
779 		timo->end = *timeout;
780 		kern_clock_gettime(curthread, clockid, &timo->cur);
781 	}
782 }
783 
784 static void
785 abs_timeout_init2(struct abs_timeout *timo, const struct _umtx_time *umtxtime)
786 {
787 
788 	abs_timeout_init(timo, umtxtime->_clockid,
789 	    (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
790 }
791 
792 static inline void
793 abs_timeout_update(struct abs_timeout *timo)
794 {
795 
796 	kern_clock_gettime(curthread, timo->clockid, &timo->cur);
797 }
798 
799 static int
800 abs_timeout_gethz(struct abs_timeout *timo)
801 {
802 	struct timespec tts;
803 
804 	if (timespeccmp(&timo->end, &timo->cur, <=))
805 		return (-1);
806 	tts = timo->end;
807 	timespecsub(&tts, &timo->cur);
808 	return (tstohz(&tts));
809 }
810 
811 static uint32_t
812 umtx_unlock_val(uint32_t flags, bool rb)
813 {
814 
815 	if (rb)
816 		return (UMUTEX_RB_OWNERDEAD);
817 	else if ((flags & UMUTEX_NONCONSISTENT) != 0)
818 		return (UMUTEX_RB_NOTRECOV);
819 	else
820 		return (UMUTEX_UNOWNED);
821 
822 }
823 
824 /*
825  * Put thread into sleep state, before sleeping, check if
826  * thread was removed from umtx queue.
827  */
828 static inline int
829 umtxq_sleep(struct umtx_q *uq, const char *wmesg, struct abs_timeout *abstime)
830 {
831 	struct umtxq_chain *uc;
832 	int error, timo;
833 
834 	uc = umtxq_getchain(&uq->uq_key);
835 	UMTXQ_LOCKED_ASSERT(uc);
836 	for (;;) {
837 		if (!(uq->uq_flags & UQF_UMTXQ))
838 			return (0);
839 		if (abstime != NULL) {
840 			timo = abs_timeout_gethz(abstime);
841 			if (timo < 0)
842 				return (ETIMEDOUT);
843 		} else
844 			timo = 0;
845 		error = msleep(uq, &uc->uc_lock, PCATCH | PDROP, wmesg, timo);
846 		if (error != EWOULDBLOCK) {
847 			umtxq_lock(&uq->uq_key);
848 			break;
849 		}
850 		if (abstime != NULL)
851 			abs_timeout_update(abstime);
852 		umtxq_lock(&uq->uq_key);
853 	}
854 	return (error);
855 }
856 
857 /*
858  * Convert userspace address into unique logical address.
859  */
860 int
861 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
862 {
863 	struct thread *td = curthread;
864 	vm_map_t map;
865 	vm_map_entry_t entry;
866 	vm_pindex_t pindex;
867 	vm_prot_t prot;
868 	boolean_t wired;
869 
870 	key->type = type;
871 	if (share == THREAD_SHARE) {
872 		key->shared = 0;
873 		key->info.private.vs = td->td_proc->p_vmspace;
874 		key->info.private.addr = (uintptr_t)addr;
875 	} else {
876 		MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
877 		map = &td->td_proc->p_vmspace->vm_map;
878 		if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
879 		    &entry, &key->info.shared.object, &pindex, &prot,
880 		    &wired) != KERN_SUCCESS) {
881 			return (EFAULT);
882 		}
883 
884 		if ((share == PROCESS_SHARE) ||
885 		    (share == AUTO_SHARE &&
886 		     VM_INHERIT_SHARE == entry->inheritance)) {
887 			key->shared = 1;
888 			key->info.shared.offset = (vm_offset_t)addr -
889 			    entry->start + entry->offset;
890 			vm_object_reference(key->info.shared.object);
891 		} else {
892 			key->shared = 0;
893 			key->info.private.vs = td->td_proc->p_vmspace;
894 			key->info.private.addr = (uintptr_t)addr;
895 		}
896 		vm_map_lookup_done(map, entry);
897 	}
898 
899 	umtxq_hash(key);
900 	return (0);
901 }
902 
903 /*
904  * Release key.
905  */
906 void
907 umtx_key_release(struct umtx_key *key)
908 {
909 	if (key->shared)
910 		vm_object_deallocate(key->info.shared.object);
911 }
912 
913 /*
914  * Fetch and compare value, sleep on the address if value is not changed.
915  */
916 static int
917 do_wait(struct thread *td, void *addr, u_long id,
918     struct _umtx_time *timeout, int compat32, int is_private)
919 {
920 	struct abs_timeout timo;
921 	struct umtx_q *uq;
922 	u_long tmp;
923 	uint32_t tmp32;
924 	int error = 0;
925 
926 	uq = td->td_umtxq;
927 	if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
928 		is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
929 		return (error);
930 
931 	if (timeout != NULL)
932 		abs_timeout_init2(&timo, timeout);
933 
934 	umtxq_lock(&uq->uq_key);
935 	umtxq_insert(uq);
936 	umtxq_unlock(&uq->uq_key);
937 	if (compat32 == 0) {
938 		error = fueword(addr, &tmp);
939 		if (error != 0)
940 			error = EFAULT;
941 	} else {
942 		error = fueword32(addr, &tmp32);
943 		if (error == 0)
944 			tmp = tmp32;
945 		else
946 			error = EFAULT;
947 	}
948 	umtxq_lock(&uq->uq_key);
949 	if (error == 0) {
950 		if (tmp == id)
951 			error = umtxq_sleep(uq, "uwait", timeout == NULL ?
952 			    NULL : &timo);
953 		if ((uq->uq_flags & UQF_UMTXQ) == 0)
954 			error = 0;
955 		else
956 			umtxq_remove(uq);
957 	} else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
958 		umtxq_remove(uq);
959 	}
960 	umtxq_unlock(&uq->uq_key);
961 	umtx_key_release(&uq->uq_key);
962 	if (error == ERESTART)
963 		error = EINTR;
964 	return (error);
965 }
966 
967 /*
968  * Wake up threads sleeping on the specified address.
969  */
970 int
971 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
972 {
973 	struct umtx_key key;
974 	int ret;
975 
976 	if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
977 	    is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
978 		return (ret);
979 	umtxq_lock(&key);
980 	umtxq_signal(&key, n_wake);
981 	umtxq_unlock(&key);
982 	umtx_key_release(&key);
983 	return (0);
984 }
985 
986 /*
987  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
988  */
989 static int
990 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
991     struct _umtx_time *timeout, int mode)
992 {
993 	struct abs_timeout timo;
994 	struct umtx_q *uq;
995 	uint32_t owner, old, id;
996 	int error, rv;
997 
998 	id = td->td_tid;
999 	uq = td->td_umtxq;
1000 	error = 0;
1001 	if (timeout != NULL)
1002 		abs_timeout_init2(&timo, timeout);
1003 
1004 	/*
1005 	 * Care must be exercised when dealing with umtx structure. It
1006 	 * can fault on any access.
1007 	 */
1008 	for (;;) {
1009 		rv = fueword32(&m->m_owner, &owner);
1010 		if (rv == -1)
1011 			return (EFAULT);
1012 		if (mode == _UMUTEX_WAIT) {
1013 			if (owner == UMUTEX_UNOWNED ||
1014 			    owner == UMUTEX_CONTESTED ||
1015 			    owner == UMUTEX_RB_OWNERDEAD ||
1016 			    owner == UMUTEX_RB_NOTRECOV)
1017 				return (0);
1018 		} else {
1019 			/*
1020 			 * Robust mutex terminated.  Kernel duty is to
1021 			 * return EOWNERDEAD to the userspace.  The
1022 			 * umutex.m_flags UMUTEX_NONCONSISTENT is set
1023 			 * by the common userspace code.
1024 			 */
1025 			if (owner == UMUTEX_RB_OWNERDEAD) {
1026 				rv = casueword32(&m->m_owner,
1027 				    UMUTEX_RB_OWNERDEAD, &owner,
1028 				    id | UMUTEX_CONTESTED);
1029 				if (rv == -1)
1030 					return (EFAULT);
1031 				if (owner == UMUTEX_RB_OWNERDEAD)
1032 					return (EOWNERDEAD); /* success */
1033 				rv = umtxq_check_susp(td);
1034 				if (rv != 0)
1035 					return (rv);
1036 				continue;
1037 			}
1038 			if (owner == UMUTEX_RB_NOTRECOV)
1039 				return (ENOTRECOVERABLE);
1040 
1041 
1042 			/*
1043 			 * Try the uncontested case.  This should be
1044 			 * done in userland.
1045 			 */
1046 			rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
1047 			    &owner, id);
1048 			/* The address was invalid. */
1049 			if (rv == -1)
1050 				return (EFAULT);
1051 
1052 			/* The acquire succeeded. */
1053 			if (owner == UMUTEX_UNOWNED)
1054 				return (0);
1055 
1056 			/*
1057 			 * If no one owns it but it is contested try
1058 			 * to acquire it.
1059 			 */
1060 			if (owner == UMUTEX_CONTESTED) {
1061 				rv = casueword32(&m->m_owner,
1062 				    UMUTEX_CONTESTED, &owner,
1063 				    id | UMUTEX_CONTESTED);
1064 				/* The address was invalid. */
1065 				if (rv == -1)
1066 					return (EFAULT);
1067 
1068 				if (owner == UMUTEX_CONTESTED)
1069 					return (0);
1070 
1071 				rv = umtxq_check_susp(td);
1072 				if (rv != 0)
1073 					return (rv);
1074 
1075 				/*
1076 				 * If this failed the lock has
1077 				 * changed, restart.
1078 				 */
1079 				continue;
1080 			}
1081 		}
1082 
1083 		if (mode == _UMUTEX_TRY)
1084 			return (EBUSY);
1085 
1086 		/*
1087 		 * If we caught a signal, we have retried and now
1088 		 * exit immediately.
1089 		 */
1090 		if (error != 0)
1091 			return (error);
1092 
1093 		if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
1094 		    GET_SHARE(flags), &uq->uq_key)) != 0)
1095 			return (error);
1096 
1097 		umtxq_lock(&uq->uq_key);
1098 		umtxq_busy(&uq->uq_key);
1099 		umtxq_insert(uq);
1100 		umtxq_unlock(&uq->uq_key);
1101 
1102 		/*
1103 		 * Set the contested bit so that a release in user space
1104 		 * knows to use the system call for unlock.  If this fails
1105 		 * either some one else has acquired the lock or it has been
1106 		 * released.
1107 		 */
1108 		rv = casueword32(&m->m_owner, owner, &old,
1109 		    owner | UMUTEX_CONTESTED);
1110 
1111 		/* The address was invalid. */
1112 		if (rv == -1) {
1113 			umtxq_lock(&uq->uq_key);
1114 			umtxq_remove(uq);
1115 			umtxq_unbusy(&uq->uq_key);
1116 			umtxq_unlock(&uq->uq_key);
1117 			umtx_key_release(&uq->uq_key);
1118 			return (EFAULT);
1119 		}
1120 
1121 		/*
1122 		 * We set the contested bit, sleep. Otherwise the lock changed
1123 		 * and we need to retry or we lost a race to the thread
1124 		 * unlocking the umtx.
1125 		 */
1126 		umtxq_lock(&uq->uq_key);
1127 		umtxq_unbusy(&uq->uq_key);
1128 		if (old == owner)
1129 			error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
1130 			    NULL : &timo);
1131 		umtxq_remove(uq);
1132 		umtxq_unlock(&uq->uq_key);
1133 		umtx_key_release(&uq->uq_key);
1134 
1135 		if (error == 0)
1136 			error = umtxq_check_susp(td);
1137 	}
1138 
1139 	return (0);
1140 }
1141 
1142 /*
1143  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
1144  */
1145 static int
1146 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1147 {
1148 	struct umtx_key key;
1149 	uint32_t owner, old, id, newlock;
1150 	int error, count;
1151 
1152 	id = td->td_tid;
1153 	/*
1154 	 * Make sure we own this mtx.
1155 	 */
1156 	error = fueword32(&m->m_owner, &owner);
1157 	if (error == -1)
1158 		return (EFAULT);
1159 
1160 	if ((owner & ~UMUTEX_CONTESTED) != id)
1161 		return (EPERM);
1162 
1163 	newlock = umtx_unlock_val(flags, rb);
1164 	if ((owner & UMUTEX_CONTESTED) == 0) {
1165 		error = casueword32(&m->m_owner, owner, &old, newlock);
1166 		if (error == -1)
1167 			return (EFAULT);
1168 		if (old == owner)
1169 			return (0);
1170 		owner = old;
1171 	}
1172 
1173 	/* We should only ever be in here for contested locks */
1174 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1175 	    &key)) != 0)
1176 		return (error);
1177 
1178 	umtxq_lock(&key);
1179 	umtxq_busy(&key);
1180 	count = umtxq_count(&key);
1181 	umtxq_unlock(&key);
1182 
1183 	/*
1184 	 * When unlocking the umtx, it must be marked as unowned if
1185 	 * there is zero or one thread only waiting for it.
1186 	 * Otherwise, it must be marked as contested.
1187 	 */
1188 	if (count > 1)
1189 		newlock |= UMUTEX_CONTESTED;
1190 	error = casueword32(&m->m_owner, owner, &old, newlock);
1191 	umtxq_lock(&key);
1192 	umtxq_signal(&key, 1);
1193 	umtxq_unbusy(&key);
1194 	umtxq_unlock(&key);
1195 	umtx_key_release(&key);
1196 	if (error == -1)
1197 		return (EFAULT);
1198 	if (old != owner)
1199 		return (EINVAL);
1200 	return (0);
1201 }
1202 
1203 /*
1204  * Check if the mutex is available and wake up a waiter,
1205  * only for simple mutex.
1206  */
1207 static int
1208 do_wake_umutex(struct thread *td, struct umutex *m)
1209 {
1210 	struct umtx_key key;
1211 	uint32_t owner;
1212 	uint32_t flags;
1213 	int error;
1214 	int count;
1215 
1216 	error = fueword32(&m->m_owner, &owner);
1217 	if (error == -1)
1218 		return (EFAULT);
1219 
1220 	if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
1221 	    owner != UMUTEX_RB_NOTRECOV)
1222 		return (0);
1223 
1224 	error = fueword32(&m->m_flags, &flags);
1225 	if (error == -1)
1226 		return (EFAULT);
1227 
1228 	/* We should only ever be in here for contested locks */
1229 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1230 	    &key)) != 0)
1231 		return (error);
1232 
1233 	umtxq_lock(&key);
1234 	umtxq_busy(&key);
1235 	count = umtxq_count(&key);
1236 	umtxq_unlock(&key);
1237 
1238 	if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
1239 	    owner != UMUTEX_RB_NOTRECOV) {
1240 		error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
1241 		    UMUTEX_UNOWNED);
1242 		if (error == -1)
1243 			error = EFAULT;
1244 	}
1245 
1246 	umtxq_lock(&key);
1247 	if (error == 0 && count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1248 	    owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1249 		umtxq_signal(&key, 1);
1250 	umtxq_unbusy(&key);
1251 	umtxq_unlock(&key);
1252 	umtx_key_release(&key);
1253 	return (error);
1254 }
1255 
1256 /*
1257  * Check if the mutex has waiters and tries to fix contention bit.
1258  */
1259 static int
1260 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
1261 {
1262 	struct umtx_key key;
1263 	uint32_t owner, old;
1264 	int type;
1265 	int error;
1266 	int count;
1267 
1268 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
1269 	    UMUTEX_ROBUST)) {
1270 	case 0:
1271 	case UMUTEX_ROBUST:
1272 		type = TYPE_NORMAL_UMUTEX;
1273 		break;
1274 	case UMUTEX_PRIO_INHERIT:
1275 		type = TYPE_PI_UMUTEX;
1276 		break;
1277 	case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
1278 		type = TYPE_PI_ROBUST_UMUTEX;
1279 		break;
1280 	case UMUTEX_PRIO_PROTECT:
1281 		type = TYPE_PP_UMUTEX;
1282 		break;
1283 	case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
1284 		type = TYPE_PP_ROBUST_UMUTEX;
1285 		break;
1286 	default:
1287 		return (EINVAL);
1288 	}
1289 	if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
1290 		return (error);
1291 
1292 	owner = 0;
1293 	umtxq_lock(&key);
1294 	umtxq_busy(&key);
1295 	count = umtxq_count(&key);
1296 	umtxq_unlock(&key);
1297 	/*
1298 	 * Only repair contention bit if there is a waiter, this means the mutex
1299 	 * is still being referenced by userland code, otherwise don't update
1300 	 * any memory.
1301 	 */
1302 	if (count > 1) {
1303 		error = fueword32(&m->m_owner, &owner);
1304 		if (error == -1)
1305 			error = EFAULT;
1306 		while (error == 0 && (owner & UMUTEX_CONTESTED) == 0) {
1307 			error = casueword32(&m->m_owner, owner, &old,
1308 			    owner | UMUTEX_CONTESTED);
1309 			if (error == -1) {
1310 				error = EFAULT;
1311 				break;
1312 			}
1313 			if (old == owner)
1314 				break;
1315 			owner = old;
1316 			error = umtxq_check_susp(td);
1317 			if (error != 0)
1318 				break;
1319 		}
1320 	} else if (count == 1) {
1321 		error = fueword32(&m->m_owner, &owner);
1322 		if (error == -1)
1323 			error = EFAULT;
1324 		while (error == 0 && (owner & ~UMUTEX_CONTESTED) != 0 &&
1325 		    (owner & UMUTEX_CONTESTED) == 0) {
1326 			error = casueword32(&m->m_owner, owner, &old,
1327 			    owner | UMUTEX_CONTESTED);
1328 			if (error == -1) {
1329 				error = EFAULT;
1330 				break;
1331 			}
1332 			if (old == owner)
1333 				break;
1334 			owner = old;
1335 			error = umtxq_check_susp(td);
1336 			if (error != 0)
1337 				break;
1338 		}
1339 	}
1340 	umtxq_lock(&key);
1341 	if (error == EFAULT) {
1342 		umtxq_signal(&key, INT_MAX);
1343 	} else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1344 	    owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1345 		umtxq_signal(&key, 1);
1346 	umtxq_unbusy(&key);
1347 	umtxq_unlock(&key);
1348 	umtx_key_release(&key);
1349 	return (error);
1350 }
1351 
1352 static inline struct umtx_pi *
1353 umtx_pi_alloc(int flags)
1354 {
1355 	struct umtx_pi *pi;
1356 
1357 	pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
1358 	TAILQ_INIT(&pi->pi_blocked);
1359 	atomic_add_int(&umtx_pi_allocated, 1);
1360 	return (pi);
1361 }
1362 
1363 static inline void
1364 umtx_pi_free(struct umtx_pi *pi)
1365 {
1366 	uma_zfree(umtx_pi_zone, pi);
1367 	atomic_add_int(&umtx_pi_allocated, -1);
1368 }
1369 
1370 /*
1371  * Adjust the thread's position on a pi_state after its priority has been
1372  * changed.
1373  */
1374 static int
1375 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
1376 {
1377 	struct umtx_q *uq, *uq1, *uq2;
1378 	struct thread *td1;
1379 
1380 	mtx_assert(&umtx_lock, MA_OWNED);
1381 	if (pi == NULL)
1382 		return (0);
1383 
1384 	uq = td->td_umtxq;
1385 
1386 	/*
1387 	 * Check if the thread needs to be moved on the blocked chain.
1388 	 * It needs to be moved if either its priority is lower than
1389 	 * the previous thread or higher than the next thread.
1390 	 */
1391 	uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
1392 	uq2 = TAILQ_NEXT(uq, uq_lockq);
1393 	if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
1394 	    (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
1395 		/*
1396 		 * Remove thread from blocked chain and determine where
1397 		 * it should be moved to.
1398 		 */
1399 		TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1400 		TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1401 			td1 = uq1->uq_thread;
1402 			MPASS(td1->td_proc->p_magic == P_MAGIC);
1403 			if (UPRI(td1) > UPRI(td))
1404 				break;
1405 		}
1406 
1407 		if (uq1 == NULL)
1408 			TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1409 		else
1410 			TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1411 	}
1412 	return (1);
1413 }
1414 
1415 static struct umtx_pi *
1416 umtx_pi_next(struct umtx_pi *pi)
1417 {
1418 	struct umtx_q *uq_owner;
1419 
1420 	if (pi->pi_owner == NULL)
1421 		return (NULL);
1422 	uq_owner = pi->pi_owner->td_umtxq;
1423 	if (uq_owner == NULL)
1424 		return (NULL);
1425 	return (uq_owner->uq_pi_blocked);
1426 }
1427 
1428 /*
1429  * Floyd's Cycle-Finding Algorithm.
1430  */
1431 static bool
1432 umtx_pi_check_loop(struct umtx_pi *pi)
1433 {
1434 	struct umtx_pi *pi1;	/* fast iterator */
1435 
1436 	mtx_assert(&umtx_lock, MA_OWNED);
1437 	if (pi == NULL)
1438 		return (false);
1439 	pi1 = pi;
1440 	for (;;) {
1441 		pi = umtx_pi_next(pi);
1442 		if (pi == NULL)
1443 			break;
1444 		pi1 = umtx_pi_next(pi1);
1445 		if (pi1 == NULL)
1446 			break;
1447 		pi1 = umtx_pi_next(pi1);
1448 		if (pi1 == NULL)
1449 			break;
1450 		if (pi == pi1)
1451 			return (true);
1452 	}
1453 	return (false);
1454 }
1455 
1456 /*
1457  * Propagate priority when a thread is blocked on POSIX
1458  * PI mutex.
1459  */
1460 static void
1461 umtx_propagate_priority(struct thread *td)
1462 {
1463 	struct umtx_q *uq;
1464 	struct umtx_pi *pi;
1465 	int pri;
1466 
1467 	mtx_assert(&umtx_lock, MA_OWNED);
1468 	pri = UPRI(td);
1469 	uq = td->td_umtxq;
1470 	pi = uq->uq_pi_blocked;
1471 	if (pi == NULL)
1472 		return;
1473 	if (umtx_pi_check_loop(pi))
1474 		return;
1475 
1476 	for (;;) {
1477 		td = pi->pi_owner;
1478 		if (td == NULL || td == curthread)
1479 			return;
1480 
1481 		MPASS(td->td_proc != NULL);
1482 		MPASS(td->td_proc->p_magic == P_MAGIC);
1483 
1484 		thread_lock(td);
1485 		if (td->td_lend_user_pri > pri)
1486 			sched_lend_user_prio(td, pri);
1487 		else {
1488 			thread_unlock(td);
1489 			break;
1490 		}
1491 		thread_unlock(td);
1492 
1493 		/*
1494 		 * Pick up the lock that td is blocked on.
1495 		 */
1496 		uq = td->td_umtxq;
1497 		pi = uq->uq_pi_blocked;
1498 		if (pi == NULL)
1499 			break;
1500 		/* Resort td on the list if needed. */
1501 		umtx_pi_adjust_thread(pi, td);
1502 	}
1503 }
1504 
1505 /*
1506  * Unpropagate priority for a PI mutex when a thread blocked on
1507  * it is interrupted by signal or resumed by others.
1508  */
1509 static void
1510 umtx_repropagate_priority(struct umtx_pi *pi)
1511 {
1512 	struct umtx_q *uq, *uq_owner;
1513 	struct umtx_pi *pi2;
1514 	int pri;
1515 
1516 	mtx_assert(&umtx_lock, MA_OWNED);
1517 
1518 	if (umtx_pi_check_loop(pi))
1519 		return;
1520 	while (pi != NULL && pi->pi_owner != NULL) {
1521 		pri = PRI_MAX;
1522 		uq_owner = pi->pi_owner->td_umtxq;
1523 
1524 		TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
1525 			uq = TAILQ_FIRST(&pi2->pi_blocked);
1526 			if (uq != NULL) {
1527 				if (pri > UPRI(uq->uq_thread))
1528 					pri = UPRI(uq->uq_thread);
1529 			}
1530 		}
1531 
1532 		if (pri > uq_owner->uq_inherited_pri)
1533 			pri = uq_owner->uq_inherited_pri;
1534 		thread_lock(pi->pi_owner);
1535 		sched_lend_user_prio(pi->pi_owner, pri);
1536 		thread_unlock(pi->pi_owner);
1537 		if ((pi = uq_owner->uq_pi_blocked) != NULL)
1538 			umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
1539 	}
1540 }
1541 
1542 /*
1543  * Insert a PI mutex into owned list.
1544  */
1545 static void
1546 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
1547 {
1548 	struct umtx_q *uq_owner;
1549 
1550 	uq_owner = owner->td_umtxq;
1551 	mtx_assert(&umtx_lock, MA_OWNED);
1552 	if (pi->pi_owner != NULL)
1553 		panic("pi_owner != NULL");
1554 	pi->pi_owner = owner;
1555 	TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
1556 }
1557 
1558 
1559 /*
1560  * Disown a PI mutex, and remove it from the owned list.
1561  */
1562 static void
1563 umtx_pi_disown(struct umtx_pi *pi)
1564 {
1565 
1566 	mtx_assert(&umtx_lock, MA_OWNED);
1567 	TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
1568 	pi->pi_owner = NULL;
1569 }
1570 
1571 /*
1572  * Claim ownership of a PI mutex.
1573  */
1574 static int
1575 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
1576 {
1577 	struct umtx_q *uq;
1578 	int pri;
1579 
1580 	mtx_lock(&umtx_lock);
1581 	if (pi->pi_owner == owner) {
1582 		mtx_unlock(&umtx_lock);
1583 		return (0);
1584 	}
1585 
1586 	if (pi->pi_owner != NULL) {
1587 		/*
1588 		 * userland may have already messed the mutex, sigh.
1589 		 */
1590 		mtx_unlock(&umtx_lock);
1591 		return (EPERM);
1592 	}
1593 	umtx_pi_setowner(pi, owner);
1594 	uq = TAILQ_FIRST(&pi->pi_blocked);
1595 	if (uq != NULL) {
1596 		pri = UPRI(uq->uq_thread);
1597 		thread_lock(owner);
1598 		if (pri < UPRI(owner))
1599 			sched_lend_user_prio(owner, pri);
1600 		thread_unlock(owner);
1601 	}
1602 	mtx_unlock(&umtx_lock);
1603 	return (0);
1604 }
1605 
1606 /*
1607  * Adjust a thread's order position in its blocked PI mutex,
1608  * this may result new priority propagating process.
1609  */
1610 void
1611 umtx_pi_adjust(struct thread *td, u_char oldpri)
1612 {
1613 	struct umtx_q *uq;
1614 	struct umtx_pi *pi;
1615 
1616 	uq = td->td_umtxq;
1617 	mtx_lock(&umtx_lock);
1618 	/*
1619 	 * Pick up the lock that td is blocked on.
1620 	 */
1621 	pi = uq->uq_pi_blocked;
1622 	if (pi != NULL) {
1623 		umtx_pi_adjust_thread(pi, td);
1624 		umtx_repropagate_priority(pi);
1625 	}
1626 	mtx_unlock(&umtx_lock);
1627 }
1628 
1629 /*
1630  * Sleep on a PI mutex.
1631  */
1632 static int
1633 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
1634     const char *wmesg, struct abs_timeout *timo, bool shared)
1635 {
1636 	struct umtxq_chain *uc;
1637 	struct thread *td, *td1;
1638 	struct umtx_q *uq1;
1639 	int error, pri;
1640 
1641 	error = 0;
1642 	td = uq->uq_thread;
1643 	KASSERT(td == curthread, ("inconsistent uq_thread"));
1644 	uc = umtxq_getchain(&uq->uq_key);
1645 	UMTXQ_LOCKED_ASSERT(uc);
1646 	KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
1647 	umtxq_insert(uq);
1648 	mtx_lock(&umtx_lock);
1649 	if (pi->pi_owner == NULL) {
1650 		mtx_unlock(&umtx_lock);
1651 		td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
1652 		mtx_lock(&umtx_lock);
1653 		if (td1 != NULL) {
1654 			if (pi->pi_owner == NULL)
1655 				umtx_pi_setowner(pi, td1);
1656 			PROC_UNLOCK(td1->td_proc);
1657 		}
1658 	}
1659 
1660 	TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1661 		pri = UPRI(uq1->uq_thread);
1662 		if (pri > UPRI(td))
1663 			break;
1664 	}
1665 
1666 	if (uq1 != NULL)
1667 		TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1668 	else
1669 		TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1670 
1671 	uq->uq_pi_blocked = pi;
1672 	thread_lock(td);
1673 	td->td_flags |= TDF_UPIBLOCKED;
1674 	thread_unlock(td);
1675 	umtx_propagate_priority(td);
1676 	mtx_unlock(&umtx_lock);
1677 	umtxq_unbusy(&uq->uq_key);
1678 
1679 	error = umtxq_sleep(uq, wmesg, timo);
1680 	umtxq_remove(uq);
1681 
1682 	mtx_lock(&umtx_lock);
1683 	uq->uq_pi_blocked = NULL;
1684 	thread_lock(td);
1685 	td->td_flags &= ~TDF_UPIBLOCKED;
1686 	thread_unlock(td);
1687 	TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1688 	umtx_repropagate_priority(pi);
1689 	mtx_unlock(&umtx_lock);
1690 	umtxq_unlock(&uq->uq_key);
1691 
1692 	return (error);
1693 }
1694 
1695 /*
1696  * Add reference count for a PI mutex.
1697  */
1698 static void
1699 umtx_pi_ref(struct umtx_pi *pi)
1700 {
1701 	struct umtxq_chain *uc;
1702 
1703 	uc = umtxq_getchain(&pi->pi_key);
1704 	UMTXQ_LOCKED_ASSERT(uc);
1705 	pi->pi_refcount++;
1706 }
1707 
1708 /*
1709  * Decrease reference count for a PI mutex, if the counter
1710  * is decreased to zero, its memory space is freed.
1711  */
1712 static void
1713 umtx_pi_unref(struct umtx_pi *pi)
1714 {
1715 	struct umtxq_chain *uc;
1716 
1717 	uc = umtxq_getchain(&pi->pi_key);
1718 	UMTXQ_LOCKED_ASSERT(uc);
1719 	KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
1720 	if (--pi->pi_refcount == 0) {
1721 		mtx_lock(&umtx_lock);
1722 		if (pi->pi_owner != NULL)
1723 			umtx_pi_disown(pi);
1724 		KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
1725 			("blocked queue not empty"));
1726 		mtx_unlock(&umtx_lock);
1727 		TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
1728 		umtx_pi_free(pi);
1729 	}
1730 }
1731 
1732 /*
1733  * Find a PI mutex in hash table.
1734  */
1735 static struct umtx_pi *
1736 umtx_pi_lookup(struct umtx_key *key)
1737 {
1738 	struct umtxq_chain *uc;
1739 	struct umtx_pi *pi;
1740 
1741 	uc = umtxq_getchain(key);
1742 	UMTXQ_LOCKED_ASSERT(uc);
1743 
1744 	TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
1745 		if (umtx_key_match(&pi->pi_key, key)) {
1746 			return (pi);
1747 		}
1748 	}
1749 	return (NULL);
1750 }
1751 
1752 /*
1753  * Insert a PI mutex into hash table.
1754  */
1755 static inline void
1756 umtx_pi_insert(struct umtx_pi *pi)
1757 {
1758 	struct umtxq_chain *uc;
1759 
1760 	uc = umtxq_getchain(&pi->pi_key);
1761 	UMTXQ_LOCKED_ASSERT(uc);
1762 	TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
1763 }
1764 
1765 /*
1766  * Lock a PI mutex.
1767  */
1768 static int
1769 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
1770     struct _umtx_time *timeout, int try)
1771 {
1772 	struct abs_timeout timo;
1773 	struct umtx_q *uq;
1774 	struct umtx_pi *pi, *new_pi;
1775 	uint32_t id, old_owner, owner, old;
1776 	int error, rv;
1777 
1778 	id = td->td_tid;
1779 	uq = td->td_umtxq;
1780 
1781 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
1782 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
1783 	    &uq->uq_key)) != 0)
1784 		return (error);
1785 
1786 	if (timeout != NULL)
1787 		abs_timeout_init2(&timo, timeout);
1788 
1789 	umtxq_lock(&uq->uq_key);
1790 	pi = umtx_pi_lookup(&uq->uq_key);
1791 	if (pi == NULL) {
1792 		new_pi = umtx_pi_alloc(M_NOWAIT);
1793 		if (new_pi == NULL) {
1794 			umtxq_unlock(&uq->uq_key);
1795 			new_pi = umtx_pi_alloc(M_WAITOK);
1796 			umtxq_lock(&uq->uq_key);
1797 			pi = umtx_pi_lookup(&uq->uq_key);
1798 			if (pi != NULL) {
1799 				umtx_pi_free(new_pi);
1800 				new_pi = NULL;
1801 			}
1802 		}
1803 		if (new_pi != NULL) {
1804 			new_pi->pi_key = uq->uq_key;
1805 			umtx_pi_insert(new_pi);
1806 			pi = new_pi;
1807 		}
1808 	}
1809 	umtx_pi_ref(pi);
1810 	umtxq_unlock(&uq->uq_key);
1811 
1812 	/*
1813 	 * Care must be exercised when dealing with umtx structure.  It
1814 	 * can fault on any access.
1815 	 */
1816 	for (;;) {
1817 		/*
1818 		 * Try the uncontested case.  This should be done in userland.
1819 		 */
1820 		rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
1821 		/* The address was invalid. */
1822 		if (rv == -1) {
1823 			error = EFAULT;
1824 			break;
1825 		}
1826 
1827 		/* The acquire succeeded. */
1828 		if (owner == UMUTEX_UNOWNED) {
1829 			error = 0;
1830 			break;
1831 		}
1832 
1833 		if (owner == UMUTEX_RB_NOTRECOV) {
1834 			error = ENOTRECOVERABLE;
1835 			break;
1836 		}
1837 
1838 		/* If no one owns it but it is contested try to acquire it. */
1839 		if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
1840 			old_owner = owner;
1841 			rv = casueword32(&m->m_owner, owner, &owner,
1842 			    id | UMUTEX_CONTESTED);
1843 			/* The address was invalid. */
1844 			if (rv == -1) {
1845 				error = EFAULT;
1846 				break;
1847 			}
1848 
1849 			if (owner == old_owner) {
1850 				umtxq_lock(&uq->uq_key);
1851 				umtxq_busy(&uq->uq_key);
1852 				error = umtx_pi_claim(pi, td);
1853 				umtxq_unbusy(&uq->uq_key);
1854 				umtxq_unlock(&uq->uq_key);
1855 				if (error != 0) {
1856 					/*
1857 					 * Since we're going to return an
1858 					 * error, restore the m_owner to its
1859 					 * previous, unowned state to avoid
1860 					 * compounding the problem.
1861 					 */
1862 					(void)casuword32(&m->m_owner,
1863 					    id | UMUTEX_CONTESTED,
1864 					    old_owner);
1865 				}
1866 				if (error == 0 &&
1867 				    old_owner == UMUTEX_RB_OWNERDEAD)
1868 					error = EOWNERDEAD;
1869 				break;
1870 			}
1871 
1872 			error = umtxq_check_susp(td);
1873 			if (error != 0)
1874 				break;
1875 
1876 			/* If this failed the lock has changed, restart. */
1877 			continue;
1878 		}
1879 
1880 		if ((owner & ~UMUTEX_CONTESTED) == id) {
1881 			error = EDEADLK;
1882 			break;
1883 		}
1884 
1885 		if (try != 0) {
1886 			error = EBUSY;
1887 			break;
1888 		}
1889 
1890 		/*
1891 		 * If we caught a signal, we have retried and now
1892 		 * exit immediately.
1893 		 */
1894 		if (error != 0)
1895 			break;
1896 
1897 		umtxq_lock(&uq->uq_key);
1898 		umtxq_busy(&uq->uq_key);
1899 		umtxq_unlock(&uq->uq_key);
1900 
1901 		/*
1902 		 * Set the contested bit so that a release in user space
1903 		 * knows to use the system call for unlock.  If this fails
1904 		 * either some one else has acquired the lock or it has been
1905 		 * released.
1906 		 */
1907 		rv = casueword32(&m->m_owner, owner, &old, owner |
1908 		    UMUTEX_CONTESTED);
1909 
1910 		/* The address was invalid. */
1911 		if (rv == -1) {
1912 			umtxq_unbusy_unlocked(&uq->uq_key);
1913 			error = EFAULT;
1914 			break;
1915 		}
1916 
1917 		umtxq_lock(&uq->uq_key);
1918 		/*
1919 		 * We set the contested bit, sleep. Otherwise the lock changed
1920 		 * and we need to retry or we lost a race to the thread
1921 		 * unlocking the umtx.  Note that the UMUTEX_RB_OWNERDEAD
1922 		 * value for owner is impossible there.
1923 		 */
1924 		if (old == owner) {
1925 			error = umtxq_sleep_pi(uq, pi,
1926 			    owner & ~UMUTEX_CONTESTED,
1927 			    "umtxpi", timeout == NULL ? NULL : &timo,
1928 			    (flags & USYNC_PROCESS_SHARED) != 0);
1929 			if (error != 0)
1930 				continue;
1931 		} else {
1932 			umtxq_unbusy(&uq->uq_key);
1933 			umtxq_unlock(&uq->uq_key);
1934 		}
1935 
1936 		error = umtxq_check_susp(td);
1937 		if (error != 0)
1938 			break;
1939 	}
1940 
1941 	umtxq_lock(&uq->uq_key);
1942 	umtx_pi_unref(pi);
1943 	umtxq_unlock(&uq->uq_key);
1944 
1945 	umtx_key_release(&uq->uq_key);
1946 	return (error);
1947 }
1948 
1949 /*
1950  * Unlock a PI mutex.
1951  */
1952 static int
1953 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1954 {
1955 	struct umtx_key key;
1956 	struct umtx_q *uq_first, *uq_first2, *uq_me;
1957 	struct umtx_pi *pi, *pi2;
1958 	uint32_t id, new_owner, old, owner;
1959 	int count, error, pri;
1960 
1961 	id = td->td_tid;
1962 	/*
1963 	 * Make sure we own this mtx.
1964 	 */
1965 	error = fueword32(&m->m_owner, &owner);
1966 	if (error == -1)
1967 		return (EFAULT);
1968 
1969 	if ((owner & ~UMUTEX_CONTESTED) != id)
1970 		return (EPERM);
1971 
1972 	new_owner = umtx_unlock_val(flags, rb);
1973 
1974 	/* This should be done in userland */
1975 	if ((owner & UMUTEX_CONTESTED) == 0) {
1976 		error = casueword32(&m->m_owner, owner, &old, new_owner);
1977 		if (error == -1)
1978 			return (EFAULT);
1979 		if (old == owner)
1980 			return (0);
1981 		owner = old;
1982 	}
1983 
1984 	/* We should only ever be in here for contested locks */
1985 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
1986 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
1987 	    &key)) != 0)
1988 		return (error);
1989 
1990 	umtxq_lock(&key);
1991 	umtxq_busy(&key);
1992 	count = umtxq_count_pi(&key, &uq_first);
1993 	if (uq_first != NULL) {
1994 		mtx_lock(&umtx_lock);
1995 		pi = uq_first->uq_pi_blocked;
1996 		KASSERT(pi != NULL, ("pi == NULL?"));
1997 		if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
1998 			mtx_unlock(&umtx_lock);
1999 			umtxq_unbusy(&key);
2000 			umtxq_unlock(&key);
2001 			umtx_key_release(&key);
2002 			/* userland messed the mutex */
2003 			return (EPERM);
2004 		}
2005 		uq_me = td->td_umtxq;
2006 		if (pi->pi_owner == td)
2007 			umtx_pi_disown(pi);
2008 		/* get highest priority thread which is still sleeping. */
2009 		uq_first = TAILQ_FIRST(&pi->pi_blocked);
2010 		while (uq_first != NULL &&
2011 		    (uq_first->uq_flags & UQF_UMTXQ) == 0) {
2012 			uq_first = TAILQ_NEXT(uq_first, uq_lockq);
2013 		}
2014 		pri = PRI_MAX;
2015 		TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
2016 			uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
2017 			if (uq_first2 != NULL) {
2018 				if (pri > UPRI(uq_first2->uq_thread))
2019 					pri = UPRI(uq_first2->uq_thread);
2020 			}
2021 		}
2022 		thread_lock(td);
2023 		sched_lend_user_prio(td, pri);
2024 		thread_unlock(td);
2025 		mtx_unlock(&umtx_lock);
2026 		if (uq_first)
2027 			umtxq_signal_thread(uq_first);
2028 	} else {
2029 		pi = umtx_pi_lookup(&key);
2030 		/*
2031 		 * A umtx_pi can exist if a signal or timeout removed the
2032 		 * last waiter from the umtxq, but there is still
2033 		 * a thread in do_lock_pi() holding the umtx_pi.
2034 		 */
2035 		if (pi != NULL) {
2036 			/*
2037 			 * The umtx_pi can be unowned, such as when a thread
2038 			 * has just entered do_lock_pi(), allocated the
2039 			 * umtx_pi, and unlocked the umtxq.
2040 			 * If the current thread owns it, it must disown it.
2041 			 */
2042 			mtx_lock(&umtx_lock);
2043 			if (pi->pi_owner == td)
2044 				umtx_pi_disown(pi);
2045 			mtx_unlock(&umtx_lock);
2046 		}
2047 	}
2048 	umtxq_unlock(&key);
2049 
2050 	/*
2051 	 * When unlocking the umtx, it must be marked as unowned if
2052 	 * there is zero or one thread only waiting for it.
2053 	 * Otherwise, it must be marked as contested.
2054 	 */
2055 
2056 	if (count > 1)
2057 		new_owner |= UMUTEX_CONTESTED;
2058 	error = casueword32(&m->m_owner, owner, &old, new_owner);
2059 
2060 	umtxq_unbusy_unlocked(&key);
2061 	umtx_key_release(&key);
2062 	if (error == -1)
2063 		return (EFAULT);
2064 	if (old != owner)
2065 		return (EINVAL);
2066 	return (0);
2067 }
2068 
2069 /*
2070  * Lock a PP mutex.
2071  */
2072 static int
2073 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
2074     struct _umtx_time *timeout, int try)
2075 {
2076 	struct abs_timeout timo;
2077 	struct umtx_q *uq, *uq2;
2078 	struct umtx_pi *pi;
2079 	uint32_t ceiling;
2080 	uint32_t owner, id;
2081 	int error, pri, old_inherited_pri, su, rv;
2082 
2083 	id = td->td_tid;
2084 	uq = td->td_umtxq;
2085 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2086 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2087 	    &uq->uq_key)) != 0)
2088 		return (error);
2089 
2090 	if (timeout != NULL)
2091 		abs_timeout_init2(&timo, timeout);
2092 
2093 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2094 	for (;;) {
2095 		old_inherited_pri = uq->uq_inherited_pri;
2096 		umtxq_lock(&uq->uq_key);
2097 		umtxq_busy(&uq->uq_key);
2098 		umtxq_unlock(&uq->uq_key);
2099 
2100 		rv = fueword32(&m->m_ceilings[0], &ceiling);
2101 		if (rv == -1) {
2102 			error = EFAULT;
2103 			goto out;
2104 		}
2105 		ceiling = RTP_PRIO_MAX - ceiling;
2106 		if (ceiling > RTP_PRIO_MAX) {
2107 			error = EINVAL;
2108 			goto out;
2109 		}
2110 
2111 		mtx_lock(&umtx_lock);
2112 		if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
2113 			mtx_unlock(&umtx_lock);
2114 			error = EINVAL;
2115 			goto out;
2116 		}
2117 		if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
2118 			uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
2119 			thread_lock(td);
2120 			if (uq->uq_inherited_pri < UPRI(td))
2121 				sched_lend_user_prio(td, uq->uq_inherited_pri);
2122 			thread_unlock(td);
2123 		}
2124 		mtx_unlock(&umtx_lock);
2125 
2126 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2127 		    id | UMUTEX_CONTESTED);
2128 		/* The address was invalid. */
2129 		if (rv == -1) {
2130 			error = EFAULT;
2131 			break;
2132 		}
2133 
2134 		if (owner == UMUTEX_CONTESTED) {
2135 			error = 0;
2136 			break;
2137 		} else if (owner == UMUTEX_RB_OWNERDEAD) {
2138 			rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
2139 			    &owner, id | UMUTEX_CONTESTED);
2140 			if (rv == -1) {
2141 				error = EFAULT;
2142 				break;
2143 			}
2144 			if (owner == UMUTEX_RB_OWNERDEAD) {
2145 				error = EOWNERDEAD; /* success */
2146 				break;
2147 			}
2148 			error = 0;
2149 		} else if (owner == UMUTEX_RB_NOTRECOV) {
2150 			error = ENOTRECOVERABLE;
2151 			break;
2152 		}
2153 
2154 		if (try != 0) {
2155 			error = EBUSY;
2156 			break;
2157 		}
2158 
2159 		/*
2160 		 * If we caught a signal, we have retried and now
2161 		 * exit immediately.
2162 		 */
2163 		if (error != 0)
2164 			break;
2165 
2166 		umtxq_lock(&uq->uq_key);
2167 		umtxq_insert(uq);
2168 		umtxq_unbusy(&uq->uq_key);
2169 		error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
2170 		    NULL : &timo);
2171 		umtxq_remove(uq);
2172 		umtxq_unlock(&uq->uq_key);
2173 
2174 		mtx_lock(&umtx_lock);
2175 		uq->uq_inherited_pri = old_inherited_pri;
2176 		pri = PRI_MAX;
2177 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2178 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2179 			if (uq2 != NULL) {
2180 				if (pri > UPRI(uq2->uq_thread))
2181 					pri = UPRI(uq2->uq_thread);
2182 			}
2183 		}
2184 		if (pri > uq->uq_inherited_pri)
2185 			pri = uq->uq_inherited_pri;
2186 		thread_lock(td);
2187 		sched_lend_user_prio(td, pri);
2188 		thread_unlock(td);
2189 		mtx_unlock(&umtx_lock);
2190 	}
2191 
2192 	if (error != 0 && error != EOWNERDEAD) {
2193 		mtx_lock(&umtx_lock);
2194 		uq->uq_inherited_pri = old_inherited_pri;
2195 		pri = PRI_MAX;
2196 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2197 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2198 			if (uq2 != NULL) {
2199 				if (pri > UPRI(uq2->uq_thread))
2200 					pri = UPRI(uq2->uq_thread);
2201 			}
2202 		}
2203 		if (pri > uq->uq_inherited_pri)
2204 			pri = uq->uq_inherited_pri;
2205 		thread_lock(td);
2206 		sched_lend_user_prio(td, pri);
2207 		thread_unlock(td);
2208 		mtx_unlock(&umtx_lock);
2209 	}
2210 
2211 out:
2212 	umtxq_unbusy_unlocked(&uq->uq_key);
2213 	umtx_key_release(&uq->uq_key);
2214 	return (error);
2215 }
2216 
2217 /*
2218  * Unlock a PP mutex.
2219  */
2220 static int
2221 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2222 {
2223 	struct umtx_key key;
2224 	struct umtx_q *uq, *uq2;
2225 	struct umtx_pi *pi;
2226 	uint32_t id, owner, rceiling;
2227 	int error, pri, new_inherited_pri, su;
2228 
2229 	id = td->td_tid;
2230 	uq = td->td_umtxq;
2231 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2232 
2233 	/*
2234 	 * Make sure we own this mtx.
2235 	 */
2236 	error = fueword32(&m->m_owner, &owner);
2237 	if (error == -1)
2238 		return (EFAULT);
2239 
2240 	if ((owner & ~UMUTEX_CONTESTED) != id)
2241 		return (EPERM);
2242 
2243 	error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
2244 	if (error != 0)
2245 		return (error);
2246 
2247 	if (rceiling == -1)
2248 		new_inherited_pri = PRI_MAX;
2249 	else {
2250 		rceiling = RTP_PRIO_MAX - rceiling;
2251 		if (rceiling > RTP_PRIO_MAX)
2252 			return (EINVAL);
2253 		new_inherited_pri = PRI_MIN_REALTIME + rceiling;
2254 	}
2255 
2256 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2257 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2258 	    &key)) != 0)
2259 		return (error);
2260 	umtxq_lock(&key);
2261 	umtxq_busy(&key);
2262 	umtxq_unlock(&key);
2263 	/*
2264 	 * For priority protected mutex, always set unlocked state
2265 	 * to UMUTEX_CONTESTED, so that userland always enters kernel
2266 	 * to lock the mutex, it is necessary because thread priority
2267 	 * has to be adjusted for such mutex.
2268 	 */
2269 	error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
2270 	    UMUTEX_CONTESTED);
2271 
2272 	umtxq_lock(&key);
2273 	if (error == 0)
2274 		umtxq_signal(&key, 1);
2275 	umtxq_unbusy(&key);
2276 	umtxq_unlock(&key);
2277 
2278 	if (error == -1)
2279 		error = EFAULT;
2280 	else {
2281 		mtx_lock(&umtx_lock);
2282 		if (su != 0)
2283 			uq->uq_inherited_pri = new_inherited_pri;
2284 		pri = PRI_MAX;
2285 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2286 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2287 			if (uq2 != NULL) {
2288 				if (pri > UPRI(uq2->uq_thread))
2289 					pri = UPRI(uq2->uq_thread);
2290 			}
2291 		}
2292 		if (pri > uq->uq_inherited_pri)
2293 			pri = uq->uq_inherited_pri;
2294 		thread_lock(td);
2295 		sched_lend_user_prio(td, pri);
2296 		thread_unlock(td);
2297 		mtx_unlock(&umtx_lock);
2298 	}
2299 	umtx_key_release(&key);
2300 	return (error);
2301 }
2302 
2303 static int
2304 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
2305     uint32_t *old_ceiling)
2306 {
2307 	struct umtx_q *uq;
2308 	uint32_t flags, id, owner, save_ceiling;
2309 	int error, rv, rv1;
2310 
2311 	error = fueword32(&m->m_flags, &flags);
2312 	if (error == -1)
2313 		return (EFAULT);
2314 	if ((flags & UMUTEX_PRIO_PROTECT) == 0)
2315 		return (EINVAL);
2316 	if (ceiling > RTP_PRIO_MAX)
2317 		return (EINVAL);
2318 	id = td->td_tid;
2319 	uq = td->td_umtxq;
2320 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2321 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2322 	    &uq->uq_key)) != 0)
2323 		return (error);
2324 	for (;;) {
2325 		umtxq_lock(&uq->uq_key);
2326 		umtxq_busy(&uq->uq_key);
2327 		umtxq_unlock(&uq->uq_key);
2328 
2329 		rv = fueword32(&m->m_ceilings[0], &save_ceiling);
2330 		if (rv == -1) {
2331 			error = EFAULT;
2332 			break;
2333 		}
2334 
2335 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2336 		    id | UMUTEX_CONTESTED);
2337 		if (rv == -1) {
2338 			error = EFAULT;
2339 			break;
2340 		}
2341 
2342 		if (owner == UMUTEX_CONTESTED) {
2343 			rv = suword32(&m->m_ceilings[0], ceiling);
2344 			rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
2345 			error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
2346 			break;
2347 		}
2348 
2349 		if ((owner & ~UMUTEX_CONTESTED) == id) {
2350 			rv = suword32(&m->m_ceilings[0], ceiling);
2351 			error = rv == 0 ? 0 : EFAULT;
2352 			break;
2353 		}
2354 
2355 		if (owner == UMUTEX_RB_OWNERDEAD) {
2356 			error = EOWNERDEAD;
2357 			break;
2358 		} else if (owner == UMUTEX_RB_NOTRECOV) {
2359 			error = ENOTRECOVERABLE;
2360 			break;
2361 		}
2362 
2363 		/*
2364 		 * If we caught a signal, we have retried and now
2365 		 * exit immediately.
2366 		 */
2367 		if (error != 0)
2368 			break;
2369 
2370 		/*
2371 		 * We set the contested bit, sleep. Otherwise the lock changed
2372 		 * and we need to retry or we lost a race to the thread
2373 		 * unlocking the umtx.
2374 		 */
2375 		umtxq_lock(&uq->uq_key);
2376 		umtxq_insert(uq);
2377 		umtxq_unbusy(&uq->uq_key);
2378 		error = umtxq_sleep(uq, "umtxpp", NULL);
2379 		umtxq_remove(uq);
2380 		umtxq_unlock(&uq->uq_key);
2381 	}
2382 	umtxq_lock(&uq->uq_key);
2383 	if (error == 0)
2384 		umtxq_signal(&uq->uq_key, INT_MAX);
2385 	umtxq_unbusy(&uq->uq_key);
2386 	umtxq_unlock(&uq->uq_key);
2387 	umtx_key_release(&uq->uq_key);
2388 	if (error == 0 && old_ceiling != NULL) {
2389 		rv = suword32(old_ceiling, save_ceiling);
2390 		error = rv == 0 ? 0 : EFAULT;
2391 	}
2392 	return (error);
2393 }
2394 
2395 /*
2396  * Lock a userland POSIX mutex.
2397  */
2398 static int
2399 do_lock_umutex(struct thread *td, struct umutex *m,
2400     struct _umtx_time *timeout, int mode)
2401 {
2402 	uint32_t flags;
2403 	int error;
2404 
2405 	error = fueword32(&m->m_flags, &flags);
2406 	if (error == -1)
2407 		return (EFAULT);
2408 
2409 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2410 	case 0:
2411 		error = do_lock_normal(td, m, flags, timeout, mode);
2412 		break;
2413 	case UMUTEX_PRIO_INHERIT:
2414 		error = do_lock_pi(td, m, flags, timeout, mode);
2415 		break;
2416 	case UMUTEX_PRIO_PROTECT:
2417 		error = do_lock_pp(td, m, flags, timeout, mode);
2418 		break;
2419 	default:
2420 		return (EINVAL);
2421 	}
2422 	if (timeout == NULL) {
2423 		if (error == EINTR && mode != _UMUTEX_WAIT)
2424 			error = ERESTART;
2425 	} else {
2426 		/* Timed-locking is not restarted. */
2427 		if (error == ERESTART)
2428 			error = EINTR;
2429 	}
2430 	return (error);
2431 }
2432 
2433 /*
2434  * Unlock a userland POSIX mutex.
2435  */
2436 static int
2437 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
2438 {
2439 	uint32_t flags;
2440 	int error;
2441 
2442 	error = fueword32(&m->m_flags, &flags);
2443 	if (error == -1)
2444 		return (EFAULT);
2445 
2446 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2447 	case 0:
2448 		return (do_unlock_normal(td, m, flags, rb));
2449 	case UMUTEX_PRIO_INHERIT:
2450 		return (do_unlock_pi(td, m, flags, rb));
2451 	case UMUTEX_PRIO_PROTECT:
2452 		return (do_unlock_pp(td, m, flags, rb));
2453 	}
2454 
2455 	return (EINVAL);
2456 }
2457 
2458 static int
2459 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
2460     struct timespec *timeout, u_long wflags)
2461 {
2462 	struct abs_timeout timo;
2463 	struct umtx_q *uq;
2464 	uint32_t flags, clockid, hasw;
2465 	int error;
2466 
2467 	uq = td->td_umtxq;
2468 	error = fueword32(&cv->c_flags, &flags);
2469 	if (error == -1)
2470 		return (EFAULT);
2471 	error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
2472 	if (error != 0)
2473 		return (error);
2474 
2475 	if ((wflags & CVWAIT_CLOCKID) != 0) {
2476 		error = fueword32(&cv->c_clockid, &clockid);
2477 		if (error == -1) {
2478 			umtx_key_release(&uq->uq_key);
2479 			return (EFAULT);
2480 		}
2481 		if (clockid < CLOCK_REALTIME ||
2482 		    clockid >= CLOCK_THREAD_CPUTIME_ID) {
2483 			/* hmm, only HW clock id will work. */
2484 			umtx_key_release(&uq->uq_key);
2485 			return (EINVAL);
2486 		}
2487 	} else {
2488 		clockid = CLOCK_REALTIME;
2489 	}
2490 
2491 	umtxq_lock(&uq->uq_key);
2492 	umtxq_busy(&uq->uq_key);
2493 	umtxq_insert(uq);
2494 	umtxq_unlock(&uq->uq_key);
2495 
2496 	/*
2497 	 * Set c_has_waiters to 1 before releasing user mutex, also
2498 	 * don't modify cache line when unnecessary.
2499 	 */
2500 	error = fueword32(&cv->c_has_waiters, &hasw);
2501 	if (error == 0 && hasw == 0)
2502 		suword32(&cv->c_has_waiters, 1);
2503 
2504 	umtxq_unbusy_unlocked(&uq->uq_key);
2505 
2506 	error = do_unlock_umutex(td, m, false);
2507 
2508 	if (timeout != NULL)
2509 		abs_timeout_init(&timo, clockid, (wflags & CVWAIT_ABSTIME) != 0,
2510 		    timeout);
2511 
2512 	umtxq_lock(&uq->uq_key);
2513 	if (error == 0) {
2514 		error = umtxq_sleep(uq, "ucond", timeout == NULL ?
2515 		    NULL : &timo);
2516 	}
2517 
2518 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
2519 		error = 0;
2520 	else {
2521 		/*
2522 		 * This must be timeout,interrupted by signal or
2523 		 * surprious wakeup, clear c_has_waiter flag when
2524 		 * necessary.
2525 		 */
2526 		umtxq_busy(&uq->uq_key);
2527 		if ((uq->uq_flags & UQF_UMTXQ) != 0) {
2528 			int oldlen = uq->uq_cur_queue->length;
2529 			umtxq_remove(uq);
2530 			if (oldlen == 1) {
2531 				umtxq_unlock(&uq->uq_key);
2532 				suword32(&cv->c_has_waiters, 0);
2533 				umtxq_lock(&uq->uq_key);
2534 			}
2535 		}
2536 		umtxq_unbusy(&uq->uq_key);
2537 		if (error == ERESTART)
2538 			error = EINTR;
2539 	}
2540 
2541 	umtxq_unlock(&uq->uq_key);
2542 	umtx_key_release(&uq->uq_key);
2543 	return (error);
2544 }
2545 
2546 /*
2547  * Signal a userland condition variable.
2548  */
2549 static int
2550 do_cv_signal(struct thread *td, struct ucond *cv)
2551 {
2552 	struct umtx_key key;
2553 	int error, cnt, nwake;
2554 	uint32_t flags;
2555 
2556 	error = fueword32(&cv->c_flags, &flags);
2557 	if (error == -1)
2558 		return (EFAULT);
2559 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2560 		return (error);
2561 	umtxq_lock(&key);
2562 	umtxq_busy(&key);
2563 	cnt = umtxq_count(&key);
2564 	nwake = umtxq_signal(&key, 1);
2565 	if (cnt <= nwake) {
2566 		umtxq_unlock(&key);
2567 		error = suword32(&cv->c_has_waiters, 0);
2568 		if (error == -1)
2569 			error = EFAULT;
2570 		umtxq_lock(&key);
2571 	}
2572 	umtxq_unbusy(&key);
2573 	umtxq_unlock(&key);
2574 	umtx_key_release(&key);
2575 	return (error);
2576 }
2577 
2578 static int
2579 do_cv_broadcast(struct thread *td, struct ucond *cv)
2580 {
2581 	struct umtx_key key;
2582 	int error;
2583 	uint32_t flags;
2584 
2585 	error = fueword32(&cv->c_flags, &flags);
2586 	if (error == -1)
2587 		return (EFAULT);
2588 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2589 		return (error);
2590 
2591 	umtxq_lock(&key);
2592 	umtxq_busy(&key);
2593 	umtxq_signal(&key, INT_MAX);
2594 	umtxq_unlock(&key);
2595 
2596 	error = suword32(&cv->c_has_waiters, 0);
2597 	if (error == -1)
2598 		error = EFAULT;
2599 
2600 	umtxq_unbusy_unlocked(&key);
2601 
2602 	umtx_key_release(&key);
2603 	return (error);
2604 }
2605 
2606 static int
2607 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag, struct _umtx_time *timeout)
2608 {
2609 	struct abs_timeout timo;
2610 	struct umtx_q *uq;
2611 	uint32_t flags, wrflags;
2612 	int32_t state, oldstate;
2613 	int32_t blocked_readers;
2614 	int error, error1, rv;
2615 
2616 	uq = td->td_umtxq;
2617 	error = fueword32(&rwlock->rw_flags, &flags);
2618 	if (error == -1)
2619 		return (EFAULT);
2620 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2621 	if (error != 0)
2622 		return (error);
2623 
2624 	if (timeout != NULL)
2625 		abs_timeout_init2(&timo, timeout);
2626 
2627 	wrflags = URWLOCK_WRITE_OWNER;
2628 	if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
2629 		wrflags |= URWLOCK_WRITE_WAITERS;
2630 
2631 	for (;;) {
2632 		rv = fueword32(&rwlock->rw_state, &state);
2633 		if (rv == -1) {
2634 			umtx_key_release(&uq->uq_key);
2635 			return (EFAULT);
2636 		}
2637 
2638 		/* try to lock it */
2639 		while (!(state & wrflags)) {
2640 			if (__predict_false(URWLOCK_READER_COUNT(state) == URWLOCK_MAX_READERS)) {
2641 				umtx_key_release(&uq->uq_key);
2642 				return (EAGAIN);
2643 			}
2644 			rv = casueword32(&rwlock->rw_state, state,
2645 			    &oldstate, state + 1);
2646 			if (rv == -1) {
2647 				umtx_key_release(&uq->uq_key);
2648 				return (EFAULT);
2649 			}
2650 			if (oldstate == state) {
2651 				umtx_key_release(&uq->uq_key);
2652 				return (0);
2653 			}
2654 			error = umtxq_check_susp(td);
2655 			if (error != 0)
2656 				break;
2657 			state = oldstate;
2658 		}
2659 
2660 		if (error)
2661 			break;
2662 
2663 		/* grab monitor lock */
2664 		umtxq_lock(&uq->uq_key);
2665 		umtxq_busy(&uq->uq_key);
2666 		umtxq_unlock(&uq->uq_key);
2667 
2668 		/*
2669 		 * re-read the state, in case it changed between the try-lock above
2670 		 * and the check below
2671 		 */
2672 		rv = fueword32(&rwlock->rw_state, &state);
2673 		if (rv == -1)
2674 			error = EFAULT;
2675 
2676 		/* set read contention bit */
2677 		while (error == 0 && (state & wrflags) &&
2678 		    !(state & URWLOCK_READ_WAITERS)) {
2679 			rv = casueword32(&rwlock->rw_state, state,
2680 			    &oldstate, state | URWLOCK_READ_WAITERS);
2681 			if (rv == -1) {
2682 				error = EFAULT;
2683 				break;
2684 			}
2685 			if (oldstate == state)
2686 				goto sleep;
2687 			state = oldstate;
2688 			error = umtxq_check_susp(td);
2689 			if (error != 0)
2690 				break;
2691 		}
2692 		if (error != 0) {
2693 			umtxq_unbusy_unlocked(&uq->uq_key);
2694 			break;
2695 		}
2696 
2697 		/* state is changed while setting flags, restart */
2698 		if (!(state & wrflags)) {
2699 			umtxq_unbusy_unlocked(&uq->uq_key);
2700 			error = umtxq_check_susp(td);
2701 			if (error != 0)
2702 				break;
2703 			continue;
2704 		}
2705 
2706 sleep:
2707 		/* contention bit is set, before sleeping, increase read waiter count */
2708 		rv = fueword32(&rwlock->rw_blocked_readers,
2709 		    &blocked_readers);
2710 		if (rv == -1) {
2711 			umtxq_unbusy_unlocked(&uq->uq_key);
2712 			error = EFAULT;
2713 			break;
2714 		}
2715 		suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
2716 
2717 		while (state & wrflags) {
2718 			umtxq_lock(&uq->uq_key);
2719 			umtxq_insert(uq);
2720 			umtxq_unbusy(&uq->uq_key);
2721 
2722 			error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
2723 			    NULL : &timo);
2724 
2725 			umtxq_busy(&uq->uq_key);
2726 			umtxq_remove(uq);
2727 			umtxq_unlock(&uq->uq_key);
2728 			if (error)
2729 				break;
2730 			rv = fueword32(&rwlock->rw_state, &state);
2731 			if (rv == -1) {
2732 				error = EFAULT;
2733 				break;
2734 			}
2735 		}
2736 
2737 		/* decrease read waiter count, and may clear read contention bit */
2738 		rv = fueword32(&rwlock->rw_blocked_readers,
2739 		    &blocked_readers);
2740 		if (rv == -1) {
2741 			umtxq_unbusy_unlocked(&uq->uq_key);
2742 			error = EFAULT;
2743 			break;
2744 		}
2745 		suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
2746 		if (blocked_readers == 1) {
2747 			rv = fueword32(&rwlock->rw_state, &state);
2748 			if (rv == -1) {
2749 				umtxq_unbusy_unlocked(&uq->uq_key);
2750 				error = EFAULT;
2751 				break;
2752 			}
2753 			for (;;) {
2754 				rv = casueword32(&rwlock->rw_state, state,
2755 				    &oldstate, state & ~URWLOCK_READ_WAITERS);
2756 				if (rv == -1) {
2757 					error = EFAULT;
2758 					break;
2759 				}
2760 				if (oldstate == state)
2761 					break;
2762 				state = oldstate;
2763 				error1 = umtxq_check_susp(td);
2764 				if (error1 != 0) {
2765 					if (error == 0)
2766 						error = error1;
2767 					break;
2768 				}
2769 			}
2770 		}
2771 
2772 		umtxq_unbusy_unlocked(&uq->uq_key);
2773 		if (error != 0)
2774 			break;
2775 	}
2776 	umtx_key_release(&uq->uq_key);
2777 	if (error == ERESTART)
2778 		error = EINTR;
2779 	return (error);
2780 }
2781 
2782 static int
2783 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
2784 {
2785 	struct abs_timeout timo;
2786 	struct umtx_q *uq;
2787 	uint32_t flags;
2788 	int32_t state, oldstate;
2789 	int32_t blocked_writers;
2790 	int32_t blocked_readers;
2791 	int error, error1, rv;
2792 
2793 	uq = td->td_umtxq;
2794 	error = fueword32(&rwlock->rw_flags, &flags);
2795 	if (error == -1)
2796 		return (EFAULT);
2797 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2798 	if (error != 0)
2799 		return (error);
2800 
2801 	if (timeout != NULL)
2802 		abs_timeout_init2(&timo, timeout);
2803 
2804 	blocked_readers = 0;
2805 	for (;;) {
2806 		rv = fueword32(&rwlock->rw_state, &state);
2807 		if (rv == -1) {
2808 			umtx_key_release(&uq->uq_key);
2809 			return (EFAULT);
2810 		}
2811 		while (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
2812 			rv = casueword32(&rwlock->rw_state, state,
2813 			    &oldstate, state | URWLOCK_WRITE_OWNER);
2814 			if (rv == -1) {
2815 				umtx_key_release(&uq->uq_key);
2816 				return (EFAULT);
2817 			}
2818 			if (oldstate == state) {
2819 				umtx_key_release(&uq->uq_key);
2820 				return (0);
2821 			}
2822 			state = oldstate;
2823 			error = umtxq_check_susp(td);
2824 			if (error != 0)
2825 				break;
2826 		}
2827 
2828 		if (error) {
2829 			if (!(state & (URWLOCK_WRITE_OWNER|URWLOCK_WRITE_WAITERS)) &&
2830 			    blocked_readers != 0) {
2831 				umtxq_lock(&uq->uq_key);
2832 				umtxq_busy(&uq->uq_key);
2833 				umtxq_signal_queue(&uq->uq_key, INT_MAX, UMTX_SHARED_QUEUE);
2834 				umtxq_unbusy(&uq->uq_key);
2835 				umtxq_unlock(&uq->uq_key);
2836 			}
2837 
2838 			break;
2839 		}
2840 
2841 		/* grab monitor lock */
2842 		umtxq_lock(&uq->uq_key);
2843 		umtxq_busy(&uq->uq_key);
2844 		umtxq_unlock(&uq->uq_key);
2845 
2846 		/*
2847 		 * re-read the state, in case it changed between the try-lock above
2848 		 * and the check below
2849 		 */
2850 		rv = fueword32(&rwlock->rw_state, &state);
2851 		if (rv == -1)
2852 			error = EFAULT;
2853 
2854 		while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
2855 		    URWLOCK_READER_COUNT(state) != 0) &&
2856 		    (state & URWLOCK_WRITE_WAITERS) == 0) {
2857 			rv = casueword32(&rwlock->rw_state, state,
2858 			    &oldstate, state | URWLOCK_WRITE_WAITERS);
2859 			if (rv == -1) {
2860 				error = EFAULT;
2861 				break;
2862 			}
2863 			if (oldstate == state)
2864 				goto sleep;
2865 			state = oldstate;
2866 			error = umtxq_check_susp(td);
2867 			if (error != 0)
2868 				break;
2869 		}
2870 		if (error != 0) {
2871 			umtxq_unbusy_unlocked(&uq->uq_key);
2872 			break;
2873 		}
2874 
2875 		if (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
2876 			umtxq_unbusy_unlocked(&uq->uq_key);
2877 			error = umtxq_check_susp(td);
2878 			if (error != 0)
2879 				break;
2880 			continue;
2881 		}
2882 sleep:
2883 		rv = fueword32(&rwlock->rw_blocked_writers,
2884 		    &blocked_writers);
2885 		if (rv == -1) {
2886 			umtxq_unbusy_unlocked(&uq->uq_key);
2887 			error = EFAULT;
2888 			break;
2889 		}
2890 		suword32(&rwlock->rw_blocked_writers, blocked_writers+1);
2891 
2892 		while ((state & URWLOCK_WRITE_OWNER) || URWLOCK_READER_COUNT(state) != 0) {
2893 			umtxq_lock(&uq->uq_key);
2894 			umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
2895 			umtxq_unbusy(&uq->uq_key);
2896 
2897 			error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
2898 			    NULL : &timo);
2899 
2900 			umtxq_busy(&uq->uq_key);
2901 			umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
2902 			umtxq_unlock(&uq->uq_key);
2903 			if (error)
2904 				break;
2905 			rv = fueword32(&rwlock->rw_state, &state);
2906 			if (rv == -1) {
2907 				error = EFAULT;
2908 				break;
2909 			}
2910 		}
2911 
2912 		rv = fueword32(&rwlock->rw_blocked_writers,
2913 		    &blocked_writers);
2914 		if (rv == -1) {
2915 			umtxq_unbusy_unlocked(&uq->uq_key);
2916 			error = EFAULT;
2917 			break;
2918 		}
2919 		suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
2920 		if (blocked_writers == 1) {
2921 			rv = fueword32(&rwlock->rw_state, &state);
2922 			if (rv == -1) {
2923 				umtxq_unbusy_unlocked(&uq->uq_key);
2924 				error = EFAULT;
2925 				break;
2926 			}
2927 			for (;;) {
2928 				rv = casueword32(&rwlock->rw_state, state,
2929 				    &oldstate, state & ~URWLOCK_WRITE_WAITERS);
2930 				if (rv == -1) {
2931 					error = EFAULT;
2932 					break;
2933 				}
2934 				if (oldstate == state)
2935 					break;
2936 				state = oldstate;
2937 				error1 = umtxq_check_susp(td);
2938 				/*
2939 				 * We are leaving the URWLOCK_WRITE_WAITERS
2940 				 * behind, but this should not harm the
2941 				 * correctness.
2942 				 */
2943 				if (error1 != 0) {
2944 					if (error == 0)
2945 						error = error1;
2946 					break;
2947 				}
2948 			}
2949 			rv = fueword32(&rwlock->rw_blocked_readers,
2950 			    &blocked_readers);
2951 			if (rv == -1) {
2952 				umtxq_unbusy_unlocked(&uq->uq_key);
2953 				error = EFAULT;
2954 				break;
2955 			}
2956 		} else
2957 			blocked_readers = 0;
2958 
2959 		umtxq_unbusy_unlocked(&uq->uq_key);
2960 	}
2961 
2962 	umtx_key_release(&uq->uq_key);
2963 	if (error == ERESTART)
2964 		error = EINTR;
2965 	return (error);
2966 }
2967 
2968 static int
2969 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
2970 {
2971 	struct umtx_q *uq;
2972 	uint32_t flags;
2973 	int32_t state, oldstate;
2974 	int error, rv, q, count;
2975 
2976 	uq = td->td_umtxq;
2977 	error = fueword32(&rwlock->rw_flags, &flags);
2978 	if (error == -1)
2979 		return (EFAULT);
2980 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2981 	if (error != 0)
2982 		return (error);
2983 
2984 	error = fueword32(&rwlock->rw_state, &state);
2985 	if (error == -1) {
2986 		error = EFAULT;
2987 		goto out;
2988 	}
2989 	if (state & URWLOCK_WRITE_OWNER) {
2990 		for (;;) {
2991 			rv = casueword32(&rwlock->rw_state, state,
2992 			    &oldstate, state & ~URWLOCK_WRITE_OWNER);
2993 			if (rv == -1) {
2994 				error = EFAULT;
2995 				goto out;
2996 			}
2997 			if (oldstate != state) {
2998 				state = oldstate;
2999 				if (!(oldstate & URWLOCK_WRITE_OWNER)) {
3000 					error = EPERM;
3001 					goto out;
3002 				}
3003 				error = umtxq_check_susp(td);
3004 				if (error != 0)
3005 					goto out;
3006 			} else
3007 				break;
3008 		}
3009 	} else if (URWLOCK_READER_COUNT(state) != 0) {
3010 		for (;;) {
3011 			rv = casueword32(&rwlock->rw_state, state,
3012 			    &oldstate, state - 1);
3013 			if (rv == -1) {
3014 				error = EFAULT;
3015 				goto out;
3016 			}
3017 			if (oldstate != state) {
3018 				state = oldstate;
3019 				if (URWLOCK_READER_COUNT(oldstate) == 0) {
3020 					error = EPERM;
3021 					goto out;
3022 				}
3023 				error = umtxq_check_susp(td);
3024 				if (error != 0)
3025 					goto out;
3026 			} else
3027 				break;
3028 		}
3029 	} else {
3030 		error = EPERM;
3031 		goto out;
3032 	}
3033 
3034 	count = 0;
3035 
3036 	if (!(flags & URWLOCK_PREFER_READER)) {
3037 		if (state & URWLOCK_WRITE_WAITERS) {
3038 			count = 1;
3039 			q = UMTX_EXCLUSIVE_QUEUE;
3040 		} else if (state & URWLOCK_READ_WAITERS) {
3041 			count = INT_MAX;
3042 			q = UMTX_SHARED_QUEUE;
3043 		}
3044 	} else {
3045 		if (state & URWLOCK_READ_WAITERS) {
3046 			count = INT_MAX;
3047 			q = UMTX_SHARED_QUEUE;
3048 		} else if (state & URWLOCK_WRITE_WAITERS) {
3049 			count = 1;
3050 			q = UMTX_EXCLUSIVE_QUEUE;
3051 		}
3052 	}
3053 
3054 	if (count) {
3055 		umtxq_lock(&uq->uq_key);
3056 		umtxq_busy(&uq->uq_key);
3057 		umtxq_signal_queue(&uq->uq_key, count, q);
3058 		umtxq_unbusy(&uq->uq_key);
3059 		umtxq_unlock(&uq->uq_key);
3060 	}
3061 out:
3062 	umtx_key_release(&uq->uq_key);
3063 	return (error);
3064 }
3065 
3066 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3067 static int
3068 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
3069 {
3070 	struct abs_timeout timo;
3071 	struct umtx_q *uq;
3072 	uint32_t flags, count, count1;
3073 	int error, rv;
3074 
3075 	uq = td->td_umtxq;
3076 	error = fueword32(&sem->_flags, &flags);
3077 	if (error == -1)
3078 		return (EFAULT);
3079 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3080 	if (error != 0)
3081 		return (error);
3082 
3083 	if (timeout != NULL)
3084 		abs_timeout_init2(&timo, timeout);
3085 
3086 	umtxq_lock(&uq->uq_key);
3087 	umtxq_busy(&uq->uq_key);
3088 	umtxq_insert(uq);
3089 	umtxq_unlock(&uq->uq_key);
3090 	rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
3091 	if (rv == 0)
3092 		rv = fueword32(&sem->_count, &count);
3093 	if (rv == -1 || count != 0) {
3094 		umtxq_lock(&uq->uq_key);
3095 		umtxq_unbusy(&uq->uq_key);
3096 		umtxq_remove(uq);
3097 		umtxq_unlock(&uq->uq_key);
3098 		umtx_key_release(&uq->uq_key);
3099 		return (rv == -1 ? EFAULT : 0);
3100 	}
3101 	umtxq_lock(&uq->uq_key);
3102 	umtxq_unbusy(&uq->uq_key);
3103 
3104 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3105 
3106 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3107 		error = 0;
3108 	else {
3109 		umtxq_remove(uq);
3110 		/* A relative timeout cannot be restarted. */
3111 		if (error == ERESTART && timeout != NULL &&
3112 		    (timeout->_flags & UMTX_ABSTIME) == 0)
3113 			error = EINTR;
3114 	}
3115 	umtxq_unlock(&uq->uq_key);
3116 	umtx_key_release(&uq->uq_key);
3117 	return (error);
3118 }
3119 
3120 /*
3121  * Signal a userland semaphore.
3122  */
3123 static int
3124 do_sem_wake(struct thread *td, struct _usem *sem)
3125 {
3126 	struct umtx_key key;
3127 	int error, cnt;
3128 	uint32_t flags;
3129 
3130 	error = fueword32(&sem->_flags, &flags);
3131 	if (error == -1)
3132 		return (EFAULT);
3133 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3134 		return (error);
3135 	umtxq_lock(&key);
3136 	umtxq_busy(&key);
3137 	cnt = umtxq_count(&key);
3138 	if (cnt > 0) {
3139 		/*
3140 		 * Check if count is greater than 0, this means the memory is
3141 		 * still being referenced by user code, so we can safely
3142 		 * update _has_waiters flag.
3143 		 */
3144 		if (cnt == 1) {
3145 			umtxq_unlock(&key);
3146 			error = suword32(&sem->_has_waiters, 0);
3147 			umtxq_lock(&key);
3148 			if (error == -1)
3149 				error = EFAULT;
3150 		}
3151 		umtxq_signal(&key, 1);
3152 	}
3153 	umtxq_unbusy(&key);
3154 	umtxq_unlock(&key);
3155 	umtx_key_release(&key);
3156 	return (error);
3157 }
3158 #endif
3159 
3160 static int
3161 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
3162 {
3163 	struct abs_timeout timo;
3164 	struct umtx_q *uq;
3165 	uint32_t count, flags;
3166 	int error, rv;
3167 
3168 	uq = td->td_umtxq;
3169 	flags = fuword32(&sem->_flags);
3170 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3171 	if (error != 0)
3172 		return (error);
3173 
3174 	if (timeout != NULL)
3175 		abs_timeout_init2(&timo, timeout);
3176 
3177 	umtxq_lock(&uq->uq_key);
3178 	umtxq_busy(&uq->uq_key);
3179 	umtxq_insert(uq);
3180 	umtxq_unlock(&uq->uq_key);
3181 	rv = fueword32(&sem->_count, &count);
3182 	if (rv == -1) {
3183 		umtxq_lock(&uq->uq_key);
3184 		umtxq_unbusy(&uq->uq_key);
3185 		umtxq_remove(uq);
3186 		umtxq_unlock(&uq->uq_key);
3187 		umtx_key_release(&uq->uq_key);
3188 		return (EFAULT);
3189 	}
3190 	for (;;) {
3191 		if (USEM_COUNT(count) != 0) {
3192 			umtxq_lock(&uq->uq_key);
3193 			umtxq_unbusy(&uq->uq_key);
3194 			umtxq_remove(uq);
3195 			umtxq_unlock(&uq->uq_key);
3196 			umtx_key_release(&uq->uq_key);
3197 			return (0);
3198 		}
3199 		if (count == USEM_HAS_WAITERS)
3200 			break;
3201 		rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
3202 		if (rv == -1) {
3203 			umtxq_lock(&uq->uq_key);
3204 			umtxq_unbusy(&uq->uq_key);
3205 			umtxq_remove(uq);
3206 			umtxq_unlock(&uq->uq_key);
3207 			umtx_key_release(&uq->uq_key);
3208 			return (EFAULT);
3209 		}
3210 		if (count == 0)
3211 			break;
3212 	}
3213 	umtxq_lock(&uq->uq_key);
3214 	umtxq_unbusy(&uq->uq_key);
3215 
3216 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3217 
3218 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3219 		error = 0;
3220 	else {
3221 		umtxq_remove(uq);
3222 		/* A relative timeout cannot be restarted. */
3223 		if (error == ERESTART && timeout != NULL &&
3224 		    (timeout->_flags & UMTX_ABSTIME) == 0)
3225 			error = EINTR;
3226 	}
3227 	umtxq_unlock(&uq->uq_key);
3228 	umtx_key_release(&uq->uq_key);
3229 	return (error);
3230 }
3231 
3232 /*
3233  * Signal a userland semaphore.
3234  */
3235 static int
3236 do_sem2_wake(struct thread *td, struct _usem2 *sem)
3237 {
3238 	struct umtx_key key;
3239 	int error, cnt, rv;
3240 	uint32_t count, flags;
3241 
3242 	rv = fueword32(&sem->_flags, &flags);
3243 	if (rv == -1)
3244 		return (EFAULT);
3245 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3246 		return (error);
3247 	umtxq_lock(&key);
3248 	umtxq_busy(&key);
3249 	cnt = umtxq_count(&key);
3250 	if (cnt > 0) {
3251 		/*
3252 		 * If this was the last sleeping thread, clear the waiters
3253 		 * flag in _count.
3254 		 */
3255 		if (cnt == 1) {
3256 			umtxq_unlock(&key);
3257 			rv = fueword32(&sem->_count, &count);
3258 			while (rv != -1 && count & USEM_HAS_WAITERS)
3259 				rv = casueword32(&sem->_count, count, &count,
3260 				    count & ~USEM_HAS_WAITERS);
3261 			if (rv == -1)
3262 				error = EFAULT;
3263 			umtxq_lock(&key);
3264 		}
3265 
3266 		umtxq_signal(&key, 1);
3267 	}
3268 	umtxq_unbusy(&key);
3269 	umtxq_unlock(&key);
3270 	umtx_key_release(&key);
3271 	return (error);
3272 }
3273 
3274 inline int
3275 umtx_copyin_timeout(const void *addr, struct timespec *tsp)
3276 {
3277 	int error;
3278 
3279 	error = copyin(addr, tsp, sizeof(struct timespec));
3280 	if (error == 0) {
3281 		if (tsp->tv_sec < 0 ||
3282 		    tsp->tv_nsec >= 1000000000 ||
3283 		    tsp->tv_nsec < 0)
3284 			error = EINVAL;
3285 	}
3286 	return (error);
3287 }
3288 
3289 static inline int
3290 umtx_copyin_umtx_time(const void *addr, size_t size, struct _umtx_time *tp)
3291 {
3292 	int error;
3293 
3294 	if (size <= sizeof(struct timespec)) {
3295 		tp->_clockid = CLOCK_REALTIME;
3296 		tp->_flags = 0;
3297 		error = copyin(addr, &tp->_timeout, sizeof(struct timespec));
3298 	} else
3299 		error = copyin(addr, tp, sizeof(struct _umtx_time));
3300 	if (error != 0)
3301 		return (error);
3302 	if (tp->_timeout.tv_sec < 0 ||
3303 	    tp->_timeout.tv_nsec >= 1000000000 || tp->_timeout.tv_nsec < 0)
3304 		return (EINVAL);
3305 	return (0);
3306 }
3307 
3308 static int
3309 __umtx_op_unimpl(struct thread *td, struct _umtx_op_args *uap)
3310 {
3311 
3312 	return (EOPNOTSUPP);
3313 }
3314 
3315 static int
3316 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap)
3317 {
3318 	struct _umtx_time timeout, *tm_p;
3319 	int error;
3320 
3321 	if (uap->uaddr2 == NULL)
3322 		tm_p = NULL;
3323 	else {
3324 		error = umtx_copyin_umtx_time(
3325 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3326 		if (error != 0)
3327 			return (error);
3328 		tm_p = &timeout;
3329 	}
3330 	return (do_wait(td, uap->obj, uap->val, tm_p, 0, 0));
3331 }
3332 
3333 static int
3334 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap)
3335 {
3336 	struct _umtx_time timeout, *tm_p;
3337 	int error;
3338 
3339 	if (uap->uaddr2 == NULL)
3340 		tm_p = NULL;
3341 	else {
3342 		error = umtx_copyin_umtx_time(
3343 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3344 		if (error != 0)
3345 			return (error);
3346 		tm_p = &timeout;
3347 	}
3348 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
3349 }
3350 
3351 static int
3352 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap)
3353 {
3354 	struct _umtx_time *tm_p, timeout;
3355 	int error;
3356 
3357 	if (uap->uaddr2 == NULL)
3358 		tm_p = NULL;
3359 	else {
3360 		error = umtx_copyin_umtx_time(
3361 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3362 		if (error != 0)
3363 			return (error);
3364 		tm_p = &timeout;
3365 	}
3366 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
3367 }
3368 
3369 static int
3370 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap)
3371 {
3372 
3373 	return (kern_umtx_wake(td, uap->obj, uap->val, 0));
3374 }
3375 
3376 #define BATCH_SIZE	128
3377 static int
3378 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap)
3379 {
3380 	char *uaddrs[BATCH_SIZE], **upp;
3381 	int count, error, i, pos, tocopy;
3382 
3383 	upp = (char **)uap->obj;
3384 	error = 0;
3385 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3386 	    pos += tocopy) {
3387 		tocopy = MIN(count, BATCH_SIZE);
3388 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
3389 		if (error != 0)
3390 			break;
3391 		for (i = 0; i < tocopy; ++i)
3392 			kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
3393 		maybe_yield();
3394 	}
3395 	return (error);
3396 }
3397 
3398 static int
3399 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap)
3400 {
3401 
3402 	return (kern_umtx_wake(td, uap->obj, uap->val, 1));
3403 }
3404 
3405 static int
3406 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap)
3407 {
3408 	struct _umtx_time *tm_p, timeout;
3409 	int error;
3410 
3411 	/* Allow a null timespec (wait forever). */
3412 	if (uap->uaddr2 == NULL)
3413 		tm_p = NULL;
3414 	else {
3415 		error = umtx_copyin_umtx_time(
3416 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3417 		if (error != 0)
3418 			return (error);
3419 		tm_p = &timeout;
3420 	}
3421 	return (do_lock_umutex(td, uap->obj, tm_p, 0));
3422 }
3423 
3424 static int
3425 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap)
3426 {
3427 
3428 	return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
3429 }
3430 
3431 static int
3432 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap)
3433 {
3434 	struct _umtx_time *tm_p, timeout;
3435 	int error;
3436 
3437 	/* Allow a null timespec (wait forever). */
3438 	if (uap->uaddr2 == NULL)
3439 		tm_p = NULL;
3440 	else {
3441 		error = umtx_copyin_umtx_time(
3442 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3443 		if (error != 0)
3444 			return (error);
3445 		tm_p = &timeout;
3446 	}
3447 	return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
3448 }
3449 
3450 static int
3451 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap)
3452 {
3453 
3454 	return (do_wake_umutex(td, uap->obj));
3455 }
3456 
3457 static int
3458 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap)
3459 {
3460 
3461 	return (do_unlock_umutex(td, uap->obj, false));
3462 }
3463 
3464 static int
3465 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap)
3466 {
3467 
3468 	return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
3469 }
3470 
3471 static int
3472 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap)
3473 {
3474 	struct timespec *ts, timeout;
3475 	int error;
3476 
3477 	/* Allow a null timespec (wait forever). */
3478 	if (uap->uaddr2 == NULL)
3479 		ts = NULL;
3480 	else {
3481 		error = umtx_copyin_timeout(uap->uaddr2, &timeout);
3482 		if (error != 0)
3483 			return (error);
3484 		ts = &timeout;
3485 	}
3486 	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
3487 }
3488 
3489 static int
3490 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap)
3491 {
3492 
3493 	return (do_cv_signal(td, uap->obj));
3494 }
3495 
3496 static int
3497 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap)
3498 {
3499 
3500 	return (do_cv_broadcast(td, uap->obj));
3501 }
3502 
3503 static int
3504 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap)
3505 {
3506 	struct _umtx_time timeout;
3507 	int error;
3508 
3509 	/* Allow a null timespec (wait forever). */
3510 	if (uap->uaddr2 == NULL) {
3511 		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
3512 	} else {
3513 		error = umtx_copyin_umtx_time(uap->uaddr2,
3514 		   (size_t)uap->uaddr1, &timeout);
3515 		if (error != 0)
3516 			return (error);
3517 		error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
3518 	}
3519 	return (error);
3520 }
3521 
3522 static int
3523 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap)
3524 {
3525 	struct _umtx_time timeout;
3526 	int error;
3527 
3528 	/* Allow a null timespec (wait forever). */
3529 	if (uap->uaddr2 == NULL) {
3530 		error = do_rw_wrlock(td, uap->obj, 0);
3531 	} else {
3532 		error = umtx_copyin_umtx_time(uap->uaddr2,
3533 		   (size_t)uap->uaddr1, &timeout);
3534 		if (error != 0)
3535 			return (error);
3536 
3537 		error = do_rw_wrlock(td, uap->obj, &timeout);
3538 	}
3539 	return (error);
3540 }
3541 
3542 static int
3543 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap)
3544 {
3545 
3546 	return (do_rw_unlock(td, uap->obj));
3547 }
3548 
3549 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3550 static int
3551 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap)
3552 {
3553 	struct _umtx_time *tm_p, timeout;
3554 	int error;
3555 
3556 	/* Allow a null timespec (wait forever). */
3557 	if (uap->uaddr2 == NULL)
3558 		tm_p = NULL;
3559 	else {
3560 		error = umtx_copyin_umtx_time(
3561 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3562 		if (error != 0)
3563 			return (error);
3564 		tm_p = &timeout;
3565 	}
3566 	return (do_sem_wait(td, uap->obj, tm_p));
3567 }
3568 
3569 static int
3570 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap)
3571 {
3572 
3573 	return (do_sem_wake(td, uap->obj));
3574 }
3575 #endif
3576 
3577 static int
3578 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap)
3579 {
3580 
3581 	return (do_wake2_umutex(td, uap->obj, uap->val));
3582 }
3583 
3584 static int
3585 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap)
3586 {
3587 	struct _umtx_time *tm_p, timeout;
3588 	int error;
3589 
3590 	/* Allow a null timespec (wait forever). */
3591 	if (uap->uaddr2 == NULL)
3592 		tm_p = NULL;
3593 	else {
3594 		error = umtx_copyin_umtx_time(
3595 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3596 		if (error != 0)
3597 			return (error);
3598 		tm_p = &timeout;
3599 	}
3600 	return (do_sem2_wait(td, uap->obj, tm_p));
3601 }
3602 
3603 static int
3604 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap)
3605 {
3606 
3607 	return (do_sem2_wake(td, uap->obj));
3608 }
3609 
3610 #define	USHM_OBJ_UMTX(o)						\
3611     ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
3612 
3613 #define	USHMF_REG_LINKED	0x0001
3614 #define	USHMF_OBJ_LINKED	0x0002
3615 struct umtx_shm_reg {
3616 	TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
3617 	LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
3618 	struct umtx_key		ushm_key;
3619 	struct ucred		*ushm_cred;
3620 	struct shmfd		*ushm_obj;
3621 	u_int			ushm_refcnt;
3622 	u_int			ushm_flags;
3623 };
3624 
3625 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
3626 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
3627 
3628 static uma_zone_t umtx_shm_reg_zone;
3629 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
3630 static struct mtx umtx_shm_lock;
3631 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
3632     TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
3633 
3634 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
3635 
3636 static void
3637 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
3638 {
3639 	struct umtx_shm_reg_head d;
3640 	struct umtx_shm_reg *reg, *reg1;
3641 
3642 	TAILQ_INIT(&d);
3643 	mtx_lock(&umtx_shm_lock);
3644 	TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
3645 	mtx_unlock(&umtx_shm_lock);
3646 	TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
3647 		TAILQ_REMOVE(&d, reg, ushm_reg_link);
3648 		umtx_shm_free_reg(reg);
3649 	}
3650 }
3651 
3652 static struct task umtx_shm_reg_delfree_task =
3653     TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
3654 
3655 static struct umtx_shm_reg *
3656 umtx_shm_find_reg_locked(const struct umtx_key *key)
3657 {
3658 	struct umtx_shm_reg *reg;
3659 	struct umtx_shm_reg_head *reg_head;
3660 
3661 	KASSERT(key->shared, ("umtx_p_find_rg: private key"));
3662 	mtx_assert(&umtx_shm_lock, MA_OWNED);
3663 	reg_head = &umtx_shm_registry[key->hash];
3664 	TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
3665 		KASSERT(reg->ushm_key.shared,
3666 		    ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
3667 		if (reg->ushm_key.info.shared.object ==
3668 		    key->info.shared.object &&
3669 		    reg->ushm_key.info.shared.offset ==
3670 		    key->info.shared.offset) {
3671 			KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
3672 			KASSERT(reg->ushm_refcnt > 0,
3673 			    ("reg %p refcnt 0 onlist", reg));
3674 			KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
3675 			    ("reg %p not linked", reg));
3676 			reg->ushm_refcnt++;
3677 			return (reg);
3678 		}
3679 	}
3680 	return (NULL);
3681 }
3682 
3683 static struct umtx_shm_reg *
3684 umtx_shm_find_reg(const struct umtx_key *key)
3685 {
3686 	struct umtx_shm_reg *reg;
3687 
3688 	mtx_lock(&umtx_shm_lock);
3689 	reg = umtx_shm_find_reg_locked(key);
3690 	mtx_unlock(&umtx_shm_lock);
3691 	return (reg);
3692 }
3693 
3694 static void
3695 umtx_shm_free_reg(struct umtx_shm_reg *reg)
3696 {
3697 
3698 	chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
3699 	crfree(reg->ushm_cred);
3700 	shm_drop(reg->ushm_obj);
3701 	uma_zfree(umtx_shm_reg_zone, reg);
3702 }
3703 
3704 static bool
3705 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
3706 {
3707 	bool res;
3708 
3709 	mtx_assert(&umtx_shm_lock, MA_OWNED);
3710 	KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
3711 	reg->ushm_refcnt--;
3712 	res = reg->ushm_refcnt == 0;
3713 	if (res || force) {
3714 		if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
3715 			TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
3716 			    reg, ushm_reg_link);
3717 			reg->ushm_flags &= ~USHMF_REG_LINKED;
3718 		}
3719 		if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
3720 			LIST_REMOVE(reg, ushm_obj_link);
3721 			reg->ushm_flags &= ~USHMF_OBJ_LINKED;
3722 		}
3723 	}
3724 	return (res);
3725 }
3726 
3727 static void
3728 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
3729 {
3730 	vm_object_t object;
3731 	bool dofree;
3732 
3733 	if (force) {
3734 		object = reg->ushm_obj->shm_object;
3735 		VM_OBJECT_WLOCK(object);
3736 		object->flags |= OBJ_UMTXDEAD;
3737 		VM_OBJECT_WUNLOCK(object);
3738 	}
3739 	mtx_lock(&umtx_shm_lock);
3740 	dofree = umtx_shm_unref_reg_locked(reg, force);
3741 	mtx_unlock(&umtx_shm_lock);
3742 	if (dofree)
3743 		umtx_shm_free_reg(reg);
3744 }
3745 
3746 void
3747 umtx_shm_object_init(vm_object_t object)
3748 {
3749 
3750 	LIST_INIT(USHM_OBJ_UMTX(object));
3751 }
3752 
3753 void
3754 umtx_shm_object_terminated(vm_object_t object)
3755 {
3756 	struct umtx_shm_reg *reg, *reg1;
3757 	bool dofree;
3758 
3759 	dofree = false;
3760 	mtx_lock(&umtx_shm_lock);
3761 	LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
3762 		if (umtx_shm_unref_reg_locked(reg, true)) {
3763 			TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
3764 			    ushm_reg_link);
3765 			dofree = true;
3766 		}
3767 	}
3768 	mtx_unlock(&umtx_shm_lock);
3769 	if (dofree)
3770 		taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
3771 }
3772 
3773 static int
3774 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
3775     struct umtx_shm_reg **res)
3776 {
3777 	struct umtx_shm_reg *reg, *reg1;
3778 	struct ucred *cred;
3779 	int error;
3780 
3781 	reg = umtx_shm_find_reg(key);
3782 	if (reg != NULL) {
3783 		*res = reg;
3784 		return (0);
3785 	}
3786 	cred = td->td_ucred;
3787 	if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
3788 		return (ENOMEM);
3789 	reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
3790 	reg->ushm_refcnt = 1;
3791 	bcopy(key, &reg->ushm_key, sizeof(*key));
3792 	reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR);
3793 	reg->ushm_cred = crhold(cred);
3794 	error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
3795 	if (error != 0) {
3796 		umtx_shm_free_reg(reg);
3797 		return (error);
3798 	}
3799 	mtx_lock(&umtx_shm_lock);
3800 	reg1 = umtx_shm_find_reg_locked(key);
3801 	if (reg1 != NULL) {
3802 		mtx_unlock(&umtx_shm_lock);
3803 		umtx_shm_free_reg(reg);
3804 		*res = reg1;
3805 		return (0);
3806 	}
3807 	reg->ushm_refcnt++;
3808 	TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
3809 	LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
3810 	    ushm_obj_link);
3811 	reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
3812 	mtx_unlock(&umtx_shm_lock);
3813 	*res = reg;
3814 	return (0);
3815 }
3816 
3817 static int
3818 umtx_shm_alive(struct thread *td, void *addr)
3819 {
3820 	vm_map_t map;
3821 	vm_map_entry_t entry;
3822 	vm_object_t object;
3823 	vm_pindex_t pindex;
3824 	vm_prot_t prot;
3825 	int res, ret;
3826 	boolean_t wired;
3827 
3828 	map = &td->td_proc->p_vmspace->vm_map;
3829 	res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
3830 	    &object, &pindex, &prot, &wired);
3831 	if (res != KERN_SUCCESS)
3832 		return (EFAULT);
3833 	if (object == NULL)
3834 		ret = EINVAL;
3835 	else
3836 		ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
3837 	vm_map_lookup_done(map, entry);
3838 	return (ret);
3839 }
3840 
3841 static void
3842 umtx_shm_init(void)
3843 {
3844 	int i;
3845 
3846 	umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
3847 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
3848 	mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
3849 	for (i = 0; i < nitems(umtx_shm_registry); i++)
3850 		TAILQ_INIT(&umtx_shm_registry[i]);
3851 }
3852 
3853 static int
3854 umtx_shm(struct thread *td, void *addr, u_int flags)
3855 {
3856 	struct umtx_key key;
3857 	struct umtx_shm_reg *reg;
3858 	struct file *fp;
3859 	int error, fd;
3860 
3861 	if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
3862 	    UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
3863 		return (EINVAL);
3864 	if ((flags & UMTX_SHM_ALIVE) != 0)
3865 		return (umtx_shm_alive(td, addr));
3866 	error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
3867 	if (error != 0)
3868 		return (error);
3869 	KASSERT(key.shared == 1, ("non-shared key"));
3870 	if ((flags & UMTX_SHM_CREAT) != 0) {
3871 		error = umtx_shm_create_reg(td, &key, &reg);
3872 	} else {
3873 		reg = umtx_shm_find_reg(&key);
3874 		if (reg == NULL)
3875 			error = ESRCH;
3876 	}
3877 	umtx_key_release(&key);
3878 	if (error != 0)
3879 		return (error);
3880 	KASSERT(reg != NULL, ("no reg"));
3881 	if ((flags & UMTX_SHM_DESTROY) != 0) {
3882 		umtx_shm_unref_reg(reg, true);
3883 	} else {
3884 #if 0
3885 #ifdef MAC
3886 		error = mac_posixshm_check_open(td->td_ucred,
3887 		    reg->ushm_obj, FFLAGS(O_RDWR));
3888 		if (error == 0)
3889 #endif
3890 			error = shm_access(reg->ushm_obj, td->td_ucred,
3891 			    FFLAGS(O_RDWR));
3892 		if (error == 0)
3893 #endif
3894 			error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
3895 		if (error == 0) {
3896 			shm_hold(reg->ushm_obj);
3897 			finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
3898 			    &shm_ops);
3899 			td->td_retval[0] = fd;
3900 			fdrop(fp, td);
3901 		}
3902 	}
3903 	umtx_shm_unref_reg(reg, false);
3904 	return (error);
3905 }
3906 
3907 static int
3908 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap)
3909 {
3910 
3911 	return (umtx_shm(td, uap->uaddr1, uap->val));
3912 }
3913 
3914 static int
3915 umtx_robust_lists(struct thread *td, struct umtx_robust_lists_params *rbp)
3916 {
3917 
3918 	td->td_rb_list = rbp->robust_list_offset;
3919 	td->td_rbp_list = rbp->robust_priv_list_offset;
3920 	td->td_rb_inact = rbp->robust_inact_offset;
3921 	return (0);
3922 }
3923 
3924 static int
3925 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap)
3926 {
3927 	struct umtx_robust_lists_params rb;
3928 	int error;
3929 
3930 	if (uap->val > sizeof(rb))
3931 		return (EINVAL);
3932 	bzero(&rb, sizeof(rb));
3933 	error = copyin(uap->uaddr1, &rb, uap->val);
3934 	if (error != 0)
3935 		return (error);
3936 	return (umtx_robust_lists(td, &rb));
3937 }
3938 
3939 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap);
3940 
3941 static const _umtx_op_func op_table[] = {
3942 	[UMTX_OP_RESERVED0]	= __umtx_op_unimpl,
3943 	[UMTX_OP_RESERVED1]	= __umtx_op_unimpl,
3944 	[UMTX_OP_WAIT]		= __umtx_op_wait,
3945 	[UMTX_OP_WAKE]		= __umtx_op_wake,
3946 	[UMTX_OP_MUTEX_TRYLOCK]	= __umtx_op_trylock_umutex,
3947 	[UMTX_OP_MUTEX_LOCK]	= __umtx_op_lock_umutex,
3948 	[UMTX_OP_MUTEX_UNLOCK]	= __umtx_op_unlock_umutex,
3949 	[UMTX_OP_SET_CEILING]	= __umtx_op_set_ceiling,
3950 	[UMTX_OP_CV_WAIT]	= __umtx_op_cv_wait,
3951 	[UMTX_OP_CV_SIGNAL]	= __umtx_op_cv_signal,
3952 	[UMTX_OP_CV_BROADCAST]	= __umtx_op_cv_broadcast,
3953 	[UMTX_OP_WAIT_UINT]	= __umtx_op_wait_uint,
3954 	[UMTX_OP_RW_RDLOCK]	= __umtx_op_rw_rdlock,
3955 	[UMTX_OP_RW_WRLOCK]	= __umtx_op_rw_wrlock,
3956 	[UMTX_OP_RW_UNLOCK]	= __umtx_op_rw_unlock,
3957 	[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
3958 	[UMTX_OP_WAKE_PRIVATE]	= __umtx_op_wake_private,
3959 	[UMTX_OP_MUTEX_WAIT]	= __umtx_op_wait_umutex,
3960 	[UMTX_OP_MUTEX_WAKE]	= __umtx_op_wake_umutex,
3961 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3962 	[UMTX_OP_SEM_WAIT]	= __umtx_op_sem_wait,
3963 	[UMTX_OP_SEM_WAKE]	= __umtx_op_sem_wake,
3964 #else
3965 	[UMTX_OP_SEM_WAIT]	= __umtx_op_unimpl,
3966 	[UMTX_OP_SEM_WAKE]	= __umtx_op_unimpl,
3967 #endif
3968 	[UMTX_OP_NWAKE_PRIVATE]	= __umtx_op_nwake_private,
3969 	[UMTX_OP_MUTEX_WAKE2]	= __umtx_op_wake2_umutex,
3970 	[UMTX_OP_SEM2_WAIT]	= __umtx_op_sem2_wait,
3971 	[UMTX_OP_SEM2_WAKE]	= __umtx_op_sem2_wake,
3972 	[UMTX_OP_SHM]		= __umtx_op_shm,
3973 	[UMTX_OP_ROBUST_LISTS]	= __umtx_op_robust_lists,
3974 };
3975 
3976 int
3977 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
3978 {
3979 
3980 	if ((unsigned)uap->op < nitems(op_table))
3981 		return (*op_table[uap->op])(td, uap);
3982 	return (EINVAL);
3983 }
3984 
3985 #ifdef COMPAT_FREEBSD32
3986 
3987 struct timespec32 {
3988 	int32_t tv_sec;
3989 	int32_t tv_nsec;
3990 };
3991 
3992 struct umtx_time32 {
3993 	struct	timespec32	timeout;
3994 	uint32_t		flags;
3995 	uint32_t		clockid;
3996 };
3997 
3998 static inline int
3999 umtx_copyin_timeout32(void *addr, struct timespec *tsp)
4000 {
4001 	struct timespec32 ts32;
4002 	int error;
4003 
4004 	error = copyin(addr, &ts32, sizeof(struct timespec32));
4005 	if (error == 0) {
4006 		if (ts32.tv_sec < 0 ||
4007 		    ts32.tv_nsec >= 1000000000 ||
4008 		    ts32.tv_nsec < 0)
4009 			error = EINVAL;
4010 		else {
4011 			tsp->tv_sec = ts32.tv_sec;
4012 			tsp->tv_nsec = ts32.tv_nsec;
4013 		}
4014 	}
4015 	return (error);
4016 }
4017 
4018 static inline int
4019 umtx_copyin_umtx_time32(const void *addr, size_t size, struct _umtx_time *tp)
4020 {
4021 	struct umtx_time32 t32;
4022 	int error;
4023 
4024 	t32.clockid = CLOCK_REALTIME;
4025 	t32.flags   = 0;
4026 	if (size <= sizeof(struct timespec32))
4027 		error = copyin(addr, &t32.timeout, sizeof(struct timespec32));
4028 	else
4029 		error = copyin(addr, &t32, sizeof(struct umtx_time32));
4030 	if (error != 0)
4031 		return (error);
4032 	if (t32.timeout.tv_sec < 0 ||
4033 	    t32.timeout.tv_nsec >= 1000000000 || t32.timeout.tv_nsec < 0)
4034 		return (EINVAL);
4035 	tp->_timeout.tv_sec = t32.timeout.tv_sec;
4036 	tp->_timeout.tv_nsec = t32.timeout.tv_nsec;
4037 	tp->_flags = t32.flags;
4038 	tp->_clockid = t32.clockid;
4039 	return (0);
4040 }
4041 
4042 static int
4043 __umtx_op_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4044 {
4045 	struct _umtx_time *tm_p, timeout;
4046 	int error;
4047 
4048 	if (uap->uaddr2 == NULL)
4049 		tm_p = NULL;
4050 	else {
4051 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4052 			(size_t)uap->uaddr1, &timeout);
4053 		if (error != 0)
4054 			return (error);
4055 		tm_p = &timeout;
4056 	}
4057 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
4058 }
4059 
4060 static int
4061 __umtx_op_lock_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
4062 {
4063 	struct _umtx_time *tm_p, timeout;
4064 	int error;
4065 
4066 	/* Allow a null timespec (wait forever). */
4067 	if (uap->uaddr2 == NULL)
4068 		tm_p = NULL;
4069 	else {
4070 		error = umtx_copyin_umtx_time(uap->uaddr2,
4071 			    (size_t)uap->uaddr1, &timeout);
4072 		if (error != 0)
4073 			return (error);
4074 		tm_p = &timeout;
4075 	}
4076 	return (do_lock_umutex(td, uap->obj, tm_p, 0));
4077 }
4078 
4079 static int
4080 __umtx_op_wait_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
4081 {
4082 	struct _umtx_time *tm_p, timeout;
4083 	int error;
4084 
4085 	/* Allow a null timespec (wait forever). */
4086 	if (uap->uaddr2 == NULL)
4087 		tm_p = NULL;
4088 	else {
4089 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4090 		    (size_t)uap->uaddr1, &timeout);
4091 		if (error != 0)
4092 			return (error);
4093 		tm_p = &timeout;
4094 	}
4095 	return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
4096 }
4097 
4098 static int
4099 __umtx_op_cv_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4100 {
4101 	struct timespec *ts, timeout;
4102 	int error;
4103 
4104 	/* Allow a null timespec (wait forever). */
4105 	if (uap->uaddr2 == NULL)
4106 		ts = NULL;
4107 	else {
4108 		error = umtx_copyin_timeout32(uap->uaddr2, &timeout);
4109 		if (error != 0)
4110 			return (error);
4111 		ts = &timeout;
4112 	}
4113 	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
4114 }
4115 
4116 static int
4117 __umtx_op_rw_rdlock_compat32(struct thread *td, struct _umtx_op_args *uap)
4118 {
4119 	struct _umtx_time timeout;
4120 	int error;
4121 
4122 	/* Allow a null timespec (wait forever). */
4123 	if (uap->uaddr2 == NULL) {
4124 		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
4125 	} else {
4126 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4127 		    (size_t)uap->uaddr1, &timeout);
4128 		if (error != 0)
4129 			return (error);
4130 		error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
4131 	}
4132 	return (error);
4133 }
4134 
4135 static int
4136 __umtx_op_rw_wrlock_compat32(struct thread *td, struct _umtx_op_args *uap)
4137 {
4138 	struct _umtx_time timeout;
4139 	int error;
4140 
4141 	/* Allow a null timespec (wait forever). */
4142 	if (uap->uaddr2 == NULL) {
4143 		error = do_rw_wrlock(td, uap->obj, 0);
4144 	} else {
4145 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4146 		    (size_t)uap->uaddr1, &timeout);
4147 		if (error != 0)
4148 			return (error);
4149 		error = do_rw_wrlock(td, uap->obj, &timeout);
4150 	}
4151 	return (error);
4152 }
4153 
4154 static int
4155 __umtx_op_wait_uint_private_compat32(struct thread *td, struct _umtx_op_args *uap)
4156 {
4157 	struct _umtx_time *tm_p, timeout;
4158 	int error;
4159 
4160 	if (uap->uaddr2 == NULL)
4161 		tm_p = NULL;
4162 	else {
4163 		error = umtx_copyin_umtx_time32(
4164 		    uap->uaddr2, (size_t)uap->uaddr1,&timeout);
4165 		if (error != 0)
4166 			return (error);
4167 		tm_p = &timeout;
4168 	}
4169 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
4170 }
4171 
4172 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4173 static int
4174 __umtx_op_sem_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4175 {
4176 	struct _umtx_time *tm_p, timeout;
4177 	int error;
4178 
4179 	/* Allow a null timespec (wait forever). */
4180 	if (uap->uaddr2 == NULL)
4181 		tm_p = NULL;
4182 	else {
4183 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4184 		    (size_t)uap->uaddr1, &timeout);
4185 		if (error != 0)
4186 			return (error);
4187 		tm_p = &timeout;
4188 	}
4189 	return (do_sem_wait(td, uap->obj, tm_p));
4190 }
4191 #endif
4192 
4193 static int
4194 __umtx_op_sem2_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
4195 {
4196 	struct _umtx_time *tm_p, timeout;
4197 	int error;
4198 
4199 	/* Allow a null timespec (wait forever). */
4200 	if (uap->uaddr2 == NULL)
4201 		tm_p = NULL;
4202 	else {
4203 		error = umtx_copyin_umtx_time32(uap->uaddr2,
4204 		    (size_t)uap->uaddr1, &timeout);
4205 		if (error != 0)
4206 			return (error);
4207 		tm_p = &timeout;
4208 	}
4209 	return (do_sem2_wait(td, uap->obj, tm_p));
4210 }
4211 
4212 static int
4213 __umtx_op_nwake_private32(struct thread *td, struct _umtx_op_args *uap)
4214 {
4215 	uint32_t uaddrs[BATCH_SIZE], **upp;
4216 	int count, error, i, pos, tocopy;
4217 
4218 	upp = (uint32_t **)uap->obj;
4219 	error = 0;
4220 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
4221 	    pos += tocopy) {
4222 		tocopy = MIN(count, BATCH_SIZE);
4223 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
4224 		if (error != 0)
4225 			break;
4226 		for (i = 0; i < tocopy; ++i)
4227 			kern_umtx_wake(td, (void *)(intptr_t)uaddrs[i],
4228 			    INT_MAX, 1);
4229 		maybe_yield();
4230 	}
4231 	return (error);
4232 }
4233 
4234 struct umtx_robust_lists_params_compat32 {
4235 	uint32_t	robust_list_offset;
4236 	uint32_t	robust_priv_list_offset;
4237 	uint32_t	robust_inact_offset;
4238 };
4239 
4240 static int
4241 __umtx_op_robust_lists_compat32(struct thread *td, struct _umtx_op_args *uap)
4242 {
4243 	struct umtx_robust_lists_params rb;
4244 	struct umtx_robust_lists_params_compat32 rb32;
4245 	int error;
4246 
4247 	if (uap->val > sizeof(rb32))
4248 		return (EINVAL);
4249 	bzero(&rb, sizeof(rb));
4250 	bzero(&rb32, sizeof(rb32));
4251 	error = copyin(uap->uaddr1, &rb32, uap->val);
4252 	if (error != 0)
4253 		return (error);
4254 	rb.robust_list_offset = rb32.robust_list_offset;
4255 	rb.robust_priv_list_offset = rb32.robust_priv_list_offset;
4256 	rb.robust_inact_offset = rb32.robust_inact_offset;
4257 	return (umtx_robust_lists(td, &rb));
4258 }
4259 
4260 static const _umtx_op_func op_table_compat32[] = {
4261 	[UMTX_OP_RESERVED0]	= __umtx_op_unimpl,
4262 	[UMTX_OP_RESERVED1]	= __umtx_op_unimpl,
4263 	[UMTX_OP_WAIT]		= __umtx_op_wait_compat32,
4264 	[UMTX_OP_WAKE]		= __umtx_op_wake,
4265 	[UMTX_OP_MUTEX_TRYLOCK]	= __umtx_op_trylock_umutex,
4266 	[UMTX_OP_MUTEX_LOCK]	= __umtx_op_lock_umutex_compat32,
4267 	[UMTX_OP_MUTEX_UNLOCK]	= __umtx_op_unlock_umutex,
4268 	[UMTX_OP_SET_CEILING]	= __umtx_op_set_ceiling,
4269 	[UMTX_OP_CV_WAIT]	= __umtx_op_cv_wait_compat32,
4270 	[UMTX_OP_CV_SIGNAL]	= __umtx_op_cv_signal,
4271 	[UMTX_OP_CV_BROADCAST]	= __umtx_op_cv_broadcast,
4272 	[UMTX_OP_WAIT_UINT]	= __umtx_op_wait_compat32,
4273 	[UMTX_OP_RW_RDLOCK]	= __umtx_op_rw_rdlock_compat32,
4274 	[UMTX_OP_RW_WRLOCK]	= __umtx_op_rw_wrlock_compat32,
4275 	[UMTX_OP_RW_UNLOCK]	= __umtx_op_rw_unlock,
4276 	[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private_compat32,
4277 	[UMTX_OP_WAKE_PRIVATE]	= __umtx_op_wake_private,
4278 	[UMTX_OP_MUTEX_WAIT]	= __umtx_op_wait_umutex_compat32,
4279 	[UMTX_OP_MUTEX_WAKE]	= __umtx_op_wake_umutex,
4280 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4281 	[UMTX_OP_SEM_WAIT]	= __umtx_op_sem_wait_compat32,
4282 	[UMTX_OP_SEM_WAKE]	= __umtx_op_sem_wake,
4283 #else
4284 	[UMTX_OP_SEM_WAIT]	= __umtx_op_unimpl,
4285 	[UMTX_OP_SEM_WAKE]	= __umtx_op_unimpl,
4286 #endif
4287 	[UMTX_OP_NWAKE_PRIVATE]	= __umtx_op_nwake_private32,
4288 	[UMTX_OP_MUTEX_WAKE2]	= __umtx_op_wake2_umutex,
4289 	[UMTX_OP_SEM2_WAIT]	= __umtx_op_sem2_wait_compat32,
4290 	[UMTX_OP_SEM2_WAKE]	= __umtx_op_sem2_wake,
4291 	[UMTX_OP_SHM]		= __umtx_op_shm,
4292 	[UMTX_OP_ROBUST_LISTS]	= __umtx_op_robust_lists_compat32,
4293 };
4294 
4295 int
4296 freebsd32_umtx_op(struct thread *td, struct freebsd32_umtx_op_args *uap)
4297 {
4298 
4299 	if ((unsigned)uap->op < nitems(op_table_compat32)) {
4300 		return (*op_table_compat32[uap->op])(td,
4301 		    (struct _umtx_op_args *)uap);
4302 	}
4303 	return (EINVAL);
4304 }
4305 #endif
4306 
4307 void
4308 umtx_thread_init(struct thread *td)
4309 {
4310 
4311 	td->td_umtxq = umtxq_alloc();
4312 	td->td_umtxq->uq_thread = td;
4313 }
4314 
4315 void
4316 umtx_thread_fini(struct thread *td)
4317 {
4318 
4319 	umtxq_free(td->td_umtxq);
4320 }
4321 
4322 /*
4323  * It will be called when new thread is created, e.g fork().
4324  */
4325 void
4326 umtx_thread_alloc(struct thread *td)
4327 {
4328 	struct umtx_q *uq;
4329 
4330 	uq = td->td_umtxq;
4331 	uq->uq_inherited_pri = PRI_MAX;
4332 
4333 	KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
4334 	KASSERT(uq->uq_thread == td, ("uq_thread != td"));
4335 	KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
4336 	KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
4337 }
4338 
4339 /*
4340  * exec() hook.
4341  *
4342  * Clear robust lists for all process' threads, not delaying the
4343  * cleanup to thread_exit hook, since the relevant address space is
4344  * destroyed right now.
4345  */
4346 static void
4347 umtx_exec_hook(void *arg __unused, struct proc *p,
4348     struct image_params *imgp __unused)
4349 {
4350 	struct thread *td;
4351 
4352 	KASSERT(p == curproc, ("need curproc"));
4353 	PROC_LOCK(p);
4354 	KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
4355 	    (p->p_flag & P_STOPPED_SINGLE) != 0,
4356 	    ("curproc must be single-threaded"));
4357 	FOREACH_THREAD_IN_PROC(p, td) {
4358 		KASSERT(td == curthread ||
4359 		    ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
4360 		    ("running thread %p %p", p, td));
4361 		PROC_UNLOCK(p);
4362 		umtx_thread_cleanup(td);
4363 		PROC_LOCK(p);
4364 		td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
4365 	}
4366 	PROC_UNLOCK(p);
4367 }
4368 
4369 /*
4370  * thread_exit() hook.
4371  */
4372 void
4373 umtx_thread_exit(struct thread *td)
4374 {
4375 
4376 	umtx_thread_cleanup(td);
4377 }
4378 
4379 static int
4380 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res)
4381 {
4382 	u_long res1;
4383 #ifdef COMPAT_FREEBSD32
4384 	uint32_t res32;
4385 #endif
4386 	int error;
4387 
4388 #ifdef COMPAT_FREEBSD32
4389 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
4390 		error = fueword32((void *)ptr, &res32);
4391 		if (error == 0)
4392 			res1 = res32;
4393 	} else
4394 #endif
4395 	{
4396 		error = fueword((void *)ptr, &res1);
4397 	}
4398 	if (error == 0)
4399 		*res = res1;
4400 	else
4401 		error = EFAULT;
4402 	return (error);
4403 }
4404 
4405 static void
4406 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list)
4407 {
4408 #ifdef COMPAT_FREEBSD32
4409 	struct umutex32 m32;
4410 
4411 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
4412 		memcpy(&m32, m, sizeof(m32));
4413 		*rb_list = m32.m_rb_lnk;
4414 	} else
4415 #endif
4416 		*rb_list = m->m_rb_lnk;
4417 }
4418 
4419 static int
4420 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact)
4421 {
4422 	struct umutex m;
4423 	int error;
4424 
4425 	KASSERT(td->td_proc == curproc, ("need current vmspace"));
4426 	error = copyin((void *)rbp, &m, sizeof(m));
4427 	if (error != 0)
4428 		return (error);
4429 	if (rb_list != NULL)
4430 		umtx_read_rb_list(td, &m, rb_list);
4431 	if ((m.m_flags & UMUTEX_ROBUST) == 0)
4432 		return (EINVAL);
4433 	if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
4434 		/* inact is cleared after unlock, allow the inconsistency */
4435 		return (inact ? 0 : EINVAL);
4436 	return (do_unlock_umutex(td, (struct umutex *)rbp, true));
4437 }
4438 
4439 static void
4440 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
4441     const char *name)
4442 {
4443 	int error, i;
4444 	uintptr_t rbp;
4445 	bool inact;
4446 
4447 	if (rb_list == 0)
4448 		return;
4449 	error = umtx_read_uptr(td, rb_list, &rbp);
4450 	for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
4451 		if (rbp == *rb_inact) {
4452 			inact = true;
4453 			*rb_inact = 0;
4454 		} else
4455 			inact = false;
4456 		error = umtx_handle_rb(td, rbp, &rbp, inact);
4457 	}
4458 	if (i == umtx_max_rb && umtx_verbose_rb) {
4459 		uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
4460 		    td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
4461 	}
4462 	if (error != 0 && umtx_verbose_rb) {
4463 		uprintf("comm %s pid %d: handling %srb error %d\n",
4464 		    td->td_proc->p_comm, td->td_proc->p_pid, name, error);
4465 	}
4466 }
4467 
4468 /*
4469  * Clean up umtx data.
4470  */
4471 static void
4472 umtx_thread_cleanup(struct thread *td)
4473 {
4474 	struct umtx_q *uq;
4475 	struct umtx_pi *pi;
4476 	uintptr_t rb_inact;
4477 
4478 	/*
4479 	 * Disown pi mutexes.
4480 	 */
4481 	uq = td->td_umtxq;
4482 	if (uq != NULL) {
4483 		mtx_lock(&umtx_lock);
4484 		uq->uq_inherited_pri = PRI_MAX;
4485 		while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
4486 			pi->pi_owner = NULL;
4487 			TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
4488 		}
4489 		mtx_unlock(&umtx_lock);
4490 		thread_lock(td);
4491 		sched_lend_user_prio(td, PRI_MAX);
4492 		thread_unlock(td);
4493 	}
4494 
4495 	/*
4496 	 * Handle terminated robust mutexes.  Must be done after
4497 	 * robust pi disown, otherwise unlock could see unowned
4498 	 * entries.
4499 	 */
4500 	rb_inact = td->td_rb_inact;
4501 	if (rb_inact != 0)
4502 		(void)umtx_read_uptr(td, rb_inact, &rb_inact);
4503 	umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "");
4504 	umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ");
4505 	if (rb_inact != 0)
4506 		(void)umtx_handle_rb(td, rb_inact, NULL, true);
4507 }
4508