xref: /freebsd/sys/kern/kern_umtx.c (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2015, 2016 The FreeBSD Foundation
5  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
6  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice unmodified, this list of conditions, and the following
17  *    disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_umtx_profiling.h"
38 
39 #include <sys/param.h>
40 #include <sys/kernel.h>
41 #include <sys/fcntl.h>
42 #include <sys/file.h>
43 #include <sys/filedesc.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/resource.h>
52 #include <sys/resourcevar.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/sysproto.h>
60 #include <sys/syscallsubr.h>
61 #include <sys/taskqueue.h>
62 #include <sys/time.h>
63 #include <sys/eventhandler.h>
64 #include <sys/umtx.h>
65 #include <sys/umtxvar.h>
66 
67 #include <security/mac/mac_framework.h>
68 
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_object.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/cpu.h>
77 
78 #include <compat/freebsd32/freebsd32.h>
79 #ifdef COMPAT_FREEBSD32
80 #include <compat/freebsd32/freebsd32_proto.h>
81 #endif
82 
83 #define _UMUTEX_TRY		1
84 #define _UMUTEX_WAIT		2
85 
86 #ifdef UMTX_PROFILING
87 #define	UPROF_PERC_BIGGER(w, f, sw, sf)					\
88 	(((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
89 #endif
90 
91 #define	UMTXQ_LOCKED_ASSERT(uc)		mtx_assert(&(uc)->uc_lock, MA_OWNED)
92 #ifdef INVARIANTS
93 #define	UMTXQ_ASSERT_LOCKED_BUSY(key) do {				\
94 	struct umtxq_chain *uc;						\
95 									\
96 	uc = umtxq_getchain(key);					\
97 	mtx_assert(&uc->uc_lock, MA_OWNED);				\
98 	KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));		\
99 } while (0)
100 #else
101 #define	UMTXQ_ASSERT_LOCKED_BUSY(key) do {} while (0)
102 #endif
103 
104 /*
105  * Don't propagate time-sharing priority, there is a security reason,
106  * a user can simply introduce PI-mutex, let thread A lock the mutex,
107  * and let another thread B block on the mutex, because B is
108  * sleeping, its priority will be boosted, this causes A's priority to
109  * be boosted via priority propagating too and will never be lowered even
110  * if it is using 100%CPU, this is unfair to other processes.
111  */
112 
113 #define UPRI(td)	(((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
114 			  (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
115 			 PRI_MAX_TIMESHARE : (td)->td_user_pri)
116 
117 #define	GOLDEN_RATIO_PRIME	2654404609U
118 #ifndef	UMTX_CHAINS
119 #define	UMTX_CHAINS		512
120 #endif
121 #define	UMTX_SHIFTS		(__WORD_BIT - 9)
122 
123 #define	GET_SHARE(flags)	\
124     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
125 
126 #define BUSY_SPINS		200
127 
128 struct umtx_copyops {
129 	int	(*copyin_timeout)(const void *uaddr, struct timespec *tsp);
130 	int	(*copyin_umtx_time)(const void *uaddr, size_t size,
131 	    struct _umtx_time *tp);
132 	int	(*copyin_robust_lists)(const void *uaddr, size_t size,
133 	    struct umtx_robust_lists_params *rbp);
134 	int	(*copyout_timeout)(void *uaddr, size_t size,
135 	    struct timespec *tsp);
136 	const size_t	timespec_sz;
137 	const size_t	umtx_time_sz;
138 	const bool	compat32;
139 };
140 
141 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
142 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
143     __offsetof(struct umutex32, m_spare[0]), "m_spare32");
144 
145 int umtx_shm_vnobj_persistent = 0;
146 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
147     &umtx_shm_vnobj_persistent, 0,
148     "False forces destruction of umtx attached to file, on last close");
149 static int umtx_max_rb = 1000;
150 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
151     &umtx_max_rb, 0,
152     "Maximum number of robust mutexes allowed for each thread");
153 
154 static uma_zone_t		umtx_pi_zone;
155 static struct umtxq_chain	umtxq_chains[2][UMTX_CHAINS];
156 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
157 static int			umtx_pi_allocated;
158 
159 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
160     "umtx debug");
161 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
162     &umtx_pi_allocated, 0, "Allocated umtx_pi");
163 static int umtx_verbose_rb = 1;
164 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
165     &umtx_verbose_rb, 0,
166     "");
167 
168 #ifdef UMTX_PROFILING
169 static long max_length;
170 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
171 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
172     "umtx chain stats");
173 #endif
174 
175 static inline void umtx_abs_timeout_init2(struct umtx_abs_timeout *timo,
176     const struct _umtx_time *umtxtime);
177 
178 static void umtx_shm_init(void);
179 static void umtxq_sysinit(void *);
180 static void umtxq_hash(struct umtx_key *key);
181 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
182     bool rb);
183 static void umtx_thread_cleanup(struct thread *td);
184 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
185 
186 #define umtxq_signal(key, nwake)	umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
187 
188 static struct mtx umtx_lock;
189 
190 #ifdef UMTX_PROFILING
191 static void
192 umtx_init_profiling(void)
193 {
194 	struct sysctl_oid *chain_oid;
195 	char chain_name[10];
196 	int i;
197 
198 	for (i = 0; i < UMTX_CHAINS; ++i) {
199 		snprintf(chain_name, sizeof(chain_name), "%d", i);
200 		chain_oid = SYSCTL_ADD_NODE(NULL,
201 		    SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
202 		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
203 		    "umtx hash stats");
204 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
205 		    "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
206 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
207 		    "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
208 	}
209 }
210 
211 static int
212 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
213 {
214 	char buf[512];
215 	struct sbuf sb;
216 	struct umtxq_chain *uc;
217 	u_int fract, i, j, tot, whole;
218 	u_int sf0, sf1, sf2, sf3, sf4;
219 	u_int si0, si1, si2, si3, si4;
220 	u_int sw0, sw1, sw2, sw3, sw4;
221 
222 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
223 	for (i = 0; i < 2; i++) {
224 		tot = 0;
225 		for (j = 0; j < UMTX_CHAINS; ++j) {
226 			uc = &umtxq_chains[i][j];
227 			mtx_lock(&uc->uc_lock);
228 			tot += uc->max_length;
229 			mtx_unlock(&uc->uc_lock);
230 		}
231 		if (tot == 0)
232 			sbuf_printf(&sb, "%u) Empty ", i);
233 		else {
234 			sf0 = sf1 = sf2 = sf3 = sf4 = 0;
235 			si0 = si1 = si2 = si3 = si4 = 0;
236 			sw0 = sw1 = sw2 = sw3 = sw4 = 0;
237 			for (j = 0; j < UMTX_CHAINS; j++) {
238 				uc = &umtxq_chains[i][j];
239 				mtx_lock(&uc->uc_lock);
240 				whole = uc->max_length * 100;
241 				mtx_unlock(&uc->uc_lock);
242 				fract = (whole % tot) * 100;
243 				if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
244 					sf0 = fract;
245 					si0 = j;
246 					sw0 = whole;
247 				} else if (UPROF_PERC_BIGGER(whole, fract, sw1,
248 				    sf1)) {
249 					sf1 = fract;
250 					si1 = j;
251 					sw1 = whole;
252 				} else if (UPROF_PERC_BIGGER(whole, fract, sw2,
253 				    sf2)) {
254 					sf2 = fract;
255 					si2 = j;
256 					sw2 = whole;
257 				} else if (UPROF_PERC_BIGGER(whole, fract, sw3,
258 				    sf3)) {
259 					sf3 = fract;
260 					si3 = j;
261 					sw3 = whole;
262 				} else if (UPROF_PERC_BIGGER(whole, fract, sw4,
263 				    sf4)) {
264 					sf4 = fract;
265 					si4 = j;
266 					sw4 = whole;
267 				}
268 			}
269 			sbuf_printf(&sb, "queue %u:\n", i);
270 			sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
271 			    sf0 / tot, si0);
272 			sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
273 			    sf1 / tot, si1);
274 			sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
275 			    sf2 / tot, si2);
276 			sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
277 			    sf3 / tot, si3);
278 			sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
279 			    sf4 / tot, si4);
280 		}
281 	}
282 	sbuf_trim(&sb);
283 	sbuf_finish(&sb);
284 	sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
285 	sbuf_delete(&sb);
286 	return (0);
287 }
288 
289 static int
290 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
291 {
292 	struct umtxq_chain *uc;
293 	u_int i, j;
294 	int clear, error;
295 
296 	clear = 0;
297 	error = sysctl_handle_int(oidp, &clear, 0, req);
298 	if (error != 0 || req->newptr == NULL)
299 		return (error);
300 
301 	if (clear != 0) {
302 		for (i = 0; i < 2; ++i) {
303 			for (j = 0; j < UMTX_CHAINS; ++j) {
304 				uc = &umtxq_chains[i][j];
305 				mtx_lock(&uc->uc_lock);
306 				uc->length = 0;
307 				uc->max_length = 0;
308 				mtx_unlock(&uc->uc_lock);
309 			}
310 		}
311 	}
312 	return (0);
313 }
314 
315 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
316     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
317     sysctl_debug_umtx_chains_clear, "I",
318     "Clear umtx chains statistics");
319 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
320     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
321     sysctl_debug_umtx_chains_peaks, "A",
322     "Highest peaks in chains max length");
323 #endif
324 
325 static void
326 umtxq_sysinit(void *arg __unused)
327 {
328 	int i, j;
329 
330 	umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
331 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
332 	for (i = 0; i < 2; ++i) {
333 		for (j = 0; j < UMTX_CHAINS; ++j) {
334 			mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
335 				 MTX_DEF | MTX_DUPOK);
336 			LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
337 			LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
338 			LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
339 			TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
340 			umtxq_chains[i][j].uc_busy = 0;
341 			umtxq_chains[i][j].uc_waiters = 0;
342 #ifdef UMTX_PROFILING
343 			umtxq_chains[i][j].length = 0;
344 			umtxq_chains[i][j].max_length = 0;
345 #endif
346 		}
347 	}
348 #ifdef UMTX_PROFILING
349 	umtx_init_profiling();
350 #endif
351 	mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
352 	umtx_shm_init();
353 }
354 
355 struct umtx_q *
356 umtxq_alloc(void)
357 {
358 	struct umtx_q *uq;
359 
360 	uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
361 	uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
362 	    M_WAITOK | M_ZERO);
363 	TAILQ_INIT(&uq->uq_spare_queue->head);
364 	TAILQ_INIT(&uq->uq_pi_contested);
365 	uq->uq_inherited_pri = PRI_MAX;
366 	return (uq);
367 }
368 
369 void
370 umtxq_free(struct umtx_q *uq)
371 {
372 
373 	MPASS(uq->uq_spare_queue != NULL);
374 	free(uq->uq_spare_queue, M_UMTX);
375 	free(uq, M_UMTX);
376 }
377 
378 static inline void
379 umtxq_hash(struct umtx_key *key)
380 {
381 	unsigned n;
382 
383 	n = (uintptr_t)key->info.both.a + key->info.both.b;
384 	key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
385 }
386 
387 struct umtxq_chain *
388 umtxq_getchain(struct umtx_key *key)
389 {
390 
391 	if (key->type <= TYPE_SEM)
392 		return (&umtxq_chains[1][key->hash]);
393 	return (&umtxq_chains[0][key->hash]);
394 }
395 
396 /*
397  * Set chain to busy state when following operation
398  * may be blocked (kernel mutex can not be used).
399  */
400 void
401 umtxq_busy(struct umtx_key *key)
402 {
403 	struct umtxq_chain *uc;
404 
405 	uc = umtxq_getchain(key);
406 	mtx_assert(&uc->uc_lock, MA_OWNED);
407 	if (uc->uc_busy) {
408 #ifdef SMP
409 		if (smp_cpus > 1) {
410 			int count = BUSY_SPINS;
411 			if (count > 0) {
412 				umtxq_unlock(key);
413 				while (uc->uc_busy && --count > 0)
414 					cpu_spinwait();
415 				umtxq_lock(key);
416 			}
417 		}
418 #endif
419 		while (uc->uc_busy) {
420 			uc->uc_waiters++;
421 			msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
422 			uc->uc_waiters--;
423 		}
424 	}
425 	uc->uc_busy = 1;
426 }
427 
428 /*
429  * Unbusy a chain.
430  */
431 void
432 umtxq_unbusy(struct umtx_key *key)
433 {
434 	struct umtxq_chain *uc;
435 
436 	uc = umtxq_getchain(key);
437 	mtx_assert(&uc->uc_lock, MA_OWNED);
438 	KASSERT(uc->uc_busy != 0, ("not busy"));
439 	uc->uc_busy = 0;
440 	if (uc->uc_waiters)
441 		wakeup_one(uc);
442 }
443 
444 void
445 umtxq_unbusy_unlocked(struct umtx_key *key)
446 {
447 
448 	umtxq_lock(key);
449 	umtxq_unbusy(key);
450 	umtxq_unlock(key);
451 }
452 
453 static struct umtxq_queue *
454 umtxq_queue_lookup(struct umtx_key *key, int q)
455 {
456 	struct umtxq_queue *uh;
457 	struct umtxq_chain *uc;
458 
459 	uc = umtxq_getchain(key);
460 	UMTXQ_LOCKED_ASSERT(uc);
461 	LIST_FOREACH(uh, &uc->uc_queue[q], link) {
462 		if (umtx_key_match(&uh->key, key))
463 			return (uh);
464 	}
465 
466 	return (NULL);
467 }
468 
469 void
470 umtxq_insert_queue(struct umtx_q *uq, int q)
471 {
472 	struct umtxq_queue *uh;
473 	struct umtxq_chain *uc;
474 
475 	uc = umtxq_getchain(&uq->uq_key);
476 	UMTXQ_LOCKED_ASSERT(uc);
477 	KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
478 	uh = umtxq_queue_lookup(&uq->uq_key, q);
479 	if (uh != NULL) {
480 		LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
481 	} else {
482 		uh = uq->uq_spare_queue;
483 		uh->key = uq->uq_key;
484 		LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
485 #ifdef UMTX_PROFILING
486 		uc->length++;
487 		if (uc->length > uc->max_length) {
488 			uc->max_length = uc->length;
489 			if (uc->max_length > max_length)
490 				max_length = uc->max_length;
491 		}
492 #endif
493 	}
494 	uq->uq_spare_queue = NULL;
495 
496 	TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
497 	uh->length++;
498 	uq->uq_flags |= UQF_UMTXQ;
499 	uq->uq_cur_queue = uh;
500 	return;
501 }
502 
503 void
504 umtxq_remove_queue(struct umtx_q *uq, int q)
505 {
506 	struct umtxq_chain *uc;
507 	struct umtxq_queue *uh;
508 
509 	uc = umtxq_getchain(&uq->uq_key);
510 	UMTXQ_LOCKED_ASSERT(uc);
511 	if (uq->uq_flags & UQF_UMTXQ) {
512 		uh = uq->uq_cur_queue;
513 		TAILQ_REMOVE(&uh->head, uq, uq_link);
514 		uh->length--;
515 		uq->uq_flags &= ~UQF_UMTXQ;
516 		if (TAILQ_EMPTY(&uh->head)) {
517 			KASSERT(uh->length == 0,
518 			    ("inconsistent umtxq_queue length"));
519 #ifdef UMTX_PROFILING
520 			uc->length--;
521 #endif
522 			LIST_REMOVE(uh, link);
523 		} else {
524 			uh = LIST_FIRST(&uc->uc_spare_queue);
525 			KASSERT(uh != NULL, ("uc_spare_queue is empty"));
526 			LIST_REMOVE(uh, link);
527 		}
528 		uq->uq_spare_queue = uh;
529 		uq->uq_cur_queue = NULL;
530 	}
531 }
532 
533 /*
534  * Check if there are multiple waiters
535  */
536 int
537 umtxq_count(struct umtx_key *key)
538 {
539 	struct umtxq_queue *uh;
540 
541 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
542 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
543 	if (uh != NULL)
544 		return (uh->length);
545 	return (0);
546 }
547 
548 /*
549  * Check if there are multiple PI waiters and returns first
550  * waiter.
551  */
552 static int
553 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
554 {
555 	struct umtxq_queue *uh;
556 
557 	*first = NULL;
558 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
559 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
560 	if (uh != NULL) {
561 		*first = TAILQ_FIRST(&uh->head);
562 		return (uh->length);
563 	}
564 	return (0);
565 }
566 
567 /*
568  * Wake up threads waiting on an userland object by a bit mask.
569  */
570 int
571 umtxq_signal_mask(struct umtx_key *key, int n_wake, u_int bitset)
572 {
573 	struct umtxq_queue *uh;
574 	struct umtx_q *uq, *uq_temp;
575 	int ret;
576 
577 	ret = 0;
578 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
579 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
580 	if (uh == NULL)
581 		return (0);
582 	TAILQ_FOREACH_SAFE(uq, &uh->head, uq_link, uq_temp) {
583 		if ((uq->uq_bitset & bitset) == 0)
584 			continue;
585 		umtxq_remove_queue(uq, UMTX_SHARED_QUEUE);
586 		wakeup_one(uq);
587 		if (++ret >= n_wake)
588 			break;
589 	}
590 	return (ret);
591 }
592 
593 /*
594  * Wake up threads waiting on an userland object.
595  */
596 
597 static int
598 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
599 {
600 	struct umtxq_queue *uh;
601 	struct umtx_q *uq;
602 	int ret;
603 
604 	ret = 0;
605 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
606 	uh = umtxq_queue_lookup(key, q);
607 	if (uh != NULL) {
608 		while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
609 			umtxq_remove_queue(uq, q);
610 			wakeup(uq);
611 			if (++ret >= n_wake)
612 				return (ret);
613 		}
614 	}
615 	return (ret);
616 }
617 
618 /*
619  * Wake up specified thread.
620  */
621 static inline void
622 umtxq_signal_thread(struct umtx_q *uq)
623 {
624 
625 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
626 	umtxq_remove(uq);
627 	wakeup(uq);
628 }
629 
630 /*
631  * Wake up a maximum of n_wake threads that are waiting on an userland
632  * object identified by key. The remaining threads are removed from queue
633  * identified by key and added to the queue identified by key2 (requeued).
634  * The n_requeue specifies an upper limit on the number of threads that
635  * are requeued to the second queue.
636  */
637 int
638 umtxq_requeue(struct umtx_key *key, int n_wake, struct umtx_key *key2,
639     int n_requeue)
640 {
641 	struct umtxq_queue *uh;
642 	struct umtx_q *uq, *uq_temp;
643 	int ret;
644 
645 	ret = 0;
646 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
647 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key2));
648 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
649 	if (uh == NULL)
650 		return (0);
651 	TAILQ_FOREACH_SAFE(uq, &uh->head, uq_link, uq_temp) {
652 		if (++ret <= n_wake) {
653 			umtxq_remove(uq);
654 			wakeup_one(uq);
655 		} else {
656 			umtxq_remove(uq);
657 			uq->uq_key = *key2;
658 			umtxq_insert(uq);
659 			if (ret - n_wake == n_requeue)
660 				break;
661 		}
662 	}
663 	return (ret);
664 }
665 
666 static inline int
667 tstohz(const struct timespec *tsp)
668 {
669 	struct timeval tv;
670 
671 	TIMESPEC_TO_TIMEVAL(&tv, tsp);
672 	return tvtohz(&tv);
673 }
674 
675 void
676 umtx_abs_timeout_init(struct umtx_abs_timeout *timo, int clockid,
677     int absolute, const struct timespec *timeout)
678 {
679 
680 	timo->clockid = clockid;
681 	if (!absolute) {
682 		timo->is_abs_real = false;
683 		kern_clock_gettime(curthread, timo->clockid, &timo->cur);
684 		timespecadd(&timo->cur, timeout, &timo->end);
685 	} else {
686 		timo->end = *timeout;
687 		timo->is_abs_real = clockid == CLOCK_REALTIME ||
688 		    clockid == CLOCK_REALTIME_FAST ||
689 		    clockid == CLOCK_REALTIME_PRECISE ||
690 		    clockid == CLOCK_SECOND;
691 	}
692 }
693 
694 static void
695 umtx_abs_timeout_init2(struct umtx_abs_timeout *timo,
696     const struct _umtx_time *umtxtime)
697 {
698 
699 	umtx_abs_timeout_init(timo, umtxtime->_clockid,
700 	    (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
701 }
702 
703 static int
704 umtx_abs_timeout_getsbt(struct umtx_abs_timeout *timo, sbintime_t *sbt,
705     int *flags)
706 {
707 	struct bintime bt, bbt;
708 	struct timespec tts;
709 
710 	switch (timo->clockid) {
711 
712 	/* Clocks that can be converted into absolute time. */
713 	case CLOCK_REALTIME:
714 	case CLOCK_REALTIME_PRECISE:
715 	case CLOCK_REALTIME_FAST:
716 	case CLOCK_MONOTONIC:
717 	case CLOCK_MONOTONIC_PRECISE:
718 	case CLOCK_MONOTONIC_FAST:
719 	case CLOCK_UPTIME:
720 	case CLOCK_UPTIME_PRECISE:
721 	case CLOCK_UPTIME_FAST:
722 	case CLOCK_SECOND:
723 		timespec2bintime(&timo->end, &bt);
724 		switch (timo->clockid) {
725 		case CLOCK_REALTIME:
726 		case CLOCK_REALTIME_PRECISE:
727 		case CLOCK_REALTIME_FAST:
728 		case CLOCK_SECOND:
729 			getboottimebin(&bbt);
730 			bintime_sub(&bt, &bbt);
731 			break;
732 		}
733 		if (bt.sec < 0)
734 			return (ETIMEDOUT);
735 		if (bt.sec >= (SBT_MAX >> 32)) {
736 			*sbt = 0;
737 			*flags = 0;
738 			return (0);
739 		}
740 		*sbt = bttosbt(bt);
741 		switch (timo->clockid) {
742 		case CLOCK_REALTIME_FAST:
743 		case CLOCK_MONOTONIC_FAST:
744 		case CLOCK_UPTIME_FAST:
745 			*sbt += tc_tick_sbt;
746 			break;
747 		case CLOCK_SECOND:
748 			*sbt += SBT_1S;
749 			break;
750 		}
751 		*flags = C_ABSOLUTE;
752 		return (0);
753 
754 	/* Clocks that has to be periodically polled. */
755 	case CLOCK_VIRTUAL:
756 	case CLOCK_PROF:
757 	case CLOCK_THREAD_CPUTIME_ID:
758 	case CLOCK_PROCESS_CPUTIME_ID:
759 	default:
760 		kern_clock_gettime(curthread, timo->clockid, &timo->cur);
761 		if (timespeccmp(&timo->end, &timo->cur, <=))
762 			return (ETIMEDOUT);
763 		timespecsub(&timo->end, &timo->cur, &tts);
764 		*sbt = tick_sbt * tstohz(&tts);
765 		*flags = C_HARDCLOCK;
766 		return (0);
767 	}
768 }
769 
770 static uint32_t
771 umtx_unlock_val(uint32_t flags, bool rb)
772 {
773 
774 	if (rb)
775 		return (UMUTEX_RB_OWNERDEAD);
776 	else if ((flags & UMUTEX_NONCONSISTENT) != 0)
777 		return (UMUTEX_RB_NOTRECOV);
778 	else
779 		return (UMUTEX_UNOWNED);
780 
781 }
782 
783 /*
784  * Put thread into sleep state, before sleeping, check if
785  * thread was removed from umtx queue.
786  */
787 int
788 umtxq_sleep(struct umtx_q *uq, const char *wmesg,
789     struct umtx_abs_timeout *timo)
790 {
791 	struct umtxq_chain *uc;
792 	sbintime_t sbt = 0;
793 	int error, flags = 0;
794 
795 	uc = umtxq_getchain(&uq->uq_key);
796 	UMTXQ_LOCKED_ASSERT(uc);
797 	for (;;) {
798 		if (!(uq->uq_flags & UQF_UMTXQ)) {
799 			error = 0;
800 			break;
801 		}
802 		if (timo != NULL) {
803 			if (timo->is_abs_real)
804 				curthread->td_rtcgen =
805 				    atomic_load_acq_int(&rtc_generation);
806 			error = umtx_abs_timeout_getsbt(timo, &sbt, &flags);
807 			if (error != 0)
808 				break;
809 		}
810 		error = msleep_sbt(uq, &uc->uc_lock, PCATCH | PDROP, wmesg,
811 		    sbt, 0, flags);
812 		uc = umtxq_getchain(&uq->uq_key);
813 		mtx_lock(&uc->uc_lock);
814 		if (error == EINTR || error == ERESTART)
815 			break;
816 		if (error == EWOULDBLOCK && (flags & C_ABSOLUTE) != 0) {
817 			error = ETIMEDOUT;
818 			break;
819 		}
820 	}
821 
822 	curthread->td_rtcgen = 0;
823 	return (error);
824 }
825 
826 /*
827  * Convert userspace address into unique logical address.
828  */
829 int
830 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
831 {
832 	struct thread *td = curthread;
833 	vm_map_t map;
834 	vm_map_entry_t entry;
835 	vm_pindex_t pindex;
836 	vm_prot_t prot;
837 	boolean_t wired;
838 
839 	key->type = type;
840 	if (share == THREAD_SHARE) {
841 		key->shared = 0;
842 		key->info.private.vs = td->td_proc->p_vmspace;
843 		key->info.private.addr = (uintptr_t)addr;
844 	} else {
845 		MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
846 		map = &td->td_proc->p_vmspace->vm_map;
847 		if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
848 		    &entry, &key->info.shared.object, &pindex, &prot,
849 		    &wired) != KERN_SUCCESS) {
850 			return (EFAULT);
851 		}
852 
853 		if ((share == PROCESS_SHARE) ||
854 		    (share == AUTO_SHARE &&
855 		     VM_INHERIT_SHARE == entry->inheritance)) {
856 			key->shared = 1;
857 			key->info.shared.offset = (vm_offset_t)addr -
858 			    entry->start + entry->offset;
859 			vm_object_reference(key->info.shared.object);
860 		} else {
861 			key->shared = 0;
862 			key->info.private.vs = td->td_proc->p_vmspace;
863 			key->info.private.addr = (uintptr_t)addr;
864 		}
865 		vm_map_lookup_done(map, entry);
866 	}
867 
868 	umtxq_hash(key);
869 	return (0);
870 }
871 
872 /*
873  * Release key.
874  */
875 void
876 umtx_key_release(struct umtx_key *key)
877 {
878 	if (key->shared)
879 		vm_object_deallocate(key->info.shared.object);
880 }
881 
882 #ifdef COMPAT_FREEBSD10
883 /*
884  * Lock a umtx object.
885  */
886 static int
887 do_lock_umtx(struct thread *td, struct umtx *umtx, u_long id,
888     const struct timespec *timeout)
889 {
890 	struct umtx_abs_timeout timo;
891 	struct umtx_q *uq;
892 	u_long owner;
893 	u_long old;
894 	int error = 0;
895 
896 	uq = td->td_umtxq;
897 	if (timeout != NULL)
898 		umtx_abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
899 
900 	/*
901 	 * Care must be exercised when dealing with umtx structure. It
902 	 * can fault on any access.
903 	 */
904 	for (;;) {
905 		/*
906 		 * Try the uncontested case.  This should be done in userland.
907 		 */
908 		owner = casuword(&umtx->u_owner, UMTX_UNOWNED, id);
909 
910 		/* The acquire succeeded. */
911 		if (owner == UMTX_UNOWNED)
912 			return (0);
913 
914 		/* The address was invalid. */
915 		if (owner == -1)
916 			return (EFAULT);
917 
918 		/* If no one owns it but it is contested try to acquire it. */
919 		if (owner == UMTX_CONTESTED) {
920 			owner = casuword(&umtx->u_owner,
921 			    UMTX_CONTESTED, id | UMTX_CONTESTED);
922 
923 			if (owner == UMTX_CONTESTED)
924 				return (0);
925 
926 			/* The address was invalid. */
927 			if (owner == -1)
928 				return (EFAULT);
929 
930 			error = thread_check_susp(td, false);
931 			if (error != 0)
932 				break;
933 
934 			/* If this failed the lock has changed, restart. */
935 			continue;
936 		}
937 
938 		/*
939 		 * If we caught a signal, we have retried and now
940 		 * exit immediately.
941 		 */
942 		if (error != 0)
943 			break;
944 
945 		if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK,
946 			AUTO_SHARE, &uq->uq_key)) != 0)
947 			return (error);
948 
949 		umtxq_lock(&uq->uq_key);
950 		umtxq_busy(&uq->uq_key);
951 		umtxq_insert(uq);
952 		umtxq_unbusy(&uq->uq_key);
953 		umtxq_unlock(&uq->uq_key);
954 
955 		/*
956 		 * Set the contested bit so that a release in user space
957 		 * knows to use the system call for unlock.  If this fails
958 		 * either some one else has acquired the lock or it has been
959 		 * released.
960 		 */
961 		old = casuword(&umtx->u_owner, owner, owner | UMTX_CONTESTED);
962 
963 		/* The address was invalid. */
964 		if (old == -1) {
965 			umtxq_lock(&uq->uq_key);
966 			umtxq_remove(uq);
967 			umtxq_unlock(&uq->uq_key);
968 			umtx_key_release(&uq->uq_key);
969 			return (EFAULT);
970 		}
971 
972 		/*
973 		 * We set the contested bit, sleep. Otherwise the lock changed
974 		 * and we need to retry or we lost a race to the thread
975 		 * unlocking the umtx.
976 		 */
977 		umtxq_lock(&uq->uq_key);
978 		if (old == owner)
979 			error = umtxq_sleep(uq, "umtx", timeout == NULL ? NULL :
980 			    &timo);
981 		umtxq_remove(uq);
982 		umtxq_unlock(&uq->uq_key);
983 		umtx_key_release(&uq->uq_key);
984 
985 		if (error == 0)
986 			error = thread_check_susp(td, false);
987 	}
988 
989 	if (timeout == NULL) {
990 		/* Mutex locking is restarted if it is interrupted. */
991 		if (error == EINTR)
992 			error = ERESTART;
993 	} else {
994 		/* Timed-locking is not restarted. */
995 		if (error == ERESTART)
996 			error = EINTR;
997 	}
998 	return (error);
999 }
1000 
1001 /*
1002  * Unlock a umtx object.
1003  */
1004 static int
1005 do_unlock_umtx(struct thread *td, struct umtx *umtx, u_long id)
1006 {
1007 	struct umtx_key key;
1008 	u_long owner;
1009 	u_long old;
1010 	int error;
1011 	int count;
1012 
1013 	/*
1014 	 * Make sure we own this mtx.
1015 	 */
1016 	owner = fuword(__DEVOLATILE(u_long *, &umtx->u_owner));
1017 	if (owner == -1)
1018 		return (EFAULT);
1019 
1020 	if ((owner & ~UMTX_CONTESTED) != id)
1021 		return (EPERM);
1022 
1023 	/* This should be done in userland */
1024 	if ((owner & UMTX_CONTESTED) == 0) {
1025 		old = casuword(&umtx->u_owner, owner, UMTX_UNOWNED);
1026 		if (old == -1)
1027 			return (EFAULT);
1028 		if (old == owner)
1029 			return (0);
1030 		owner = old;
1031 	}
1032 
1033 	/* We should only ever be in here for contested locks */
1034 	if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1035 	    &key)) != 0)
1036 		return (error);
1037 
1038 	umtxq_lock(&key);
1039 	umtxq_busy(&key);
1040 	count = umtxq_count(&key);
1041 	umtxq_unlock(&key);
1042 
1043 	/*
1044 	 * When unlocking the umtx, it must be marked as unowned if
1045 	 * there is zero or one thread only waiting for it.
1046 	 * Otherwise, it must be marked as contested.
1047 	 */
1048 	old = casuword(&umtx->u_owner, owner,
1049 	    count <= 1 ? UMTX_UNOWNED : UMTX_CONTESTED);
1050 	umtxq_lock(&key);
1051 	umtxq_signal(&key,1);
1052 	umtxq_unbusy(&key);
1053 	umtxq_unlock(&key);
1054 	umtx_key_release(&key);
1055 	if (old == -1)
1056 		return (EFAULT);
1057 	if (old != owner)
1058 		return (EINVAL);
1059 	return (0);
1060 }
1061 
1062 #ifdef COMPAT_FREEBSD32
1063 
1064 /*
1065  * Lock a umtx object.
1066  */
1067 static int
1068 do_lock_umtx32(struct thread *td, uint32_t *m, uint32_t id,
1069 	const struct timespec *timeout)
1070 {
1071 	struct umtx_abs_timeout timo;
1072 	struct umtx_q *uq;
1073 	uint32_t owner;
1074 	uint32_t old;
1075 	int error = 0;
1076 
1077 	uq = td->td_umtxq;
1078 
1079 	if (timeout != NULL)
1080 		umtx_abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
1081 
1082 	/*
1083 	 * Care must be exercised when dealing with umtx structure. It
1084 	 * can fault on any access.
1085 	 */
1086 	for (;;) {
1087 		/*
1088 		 * Try the uncontested case.  This should be done in userland.
1089 		 */
1090 		owner = casuword32(m, UMUTEX_UNOWNED, id);
1091 
1092 		/* The acquire succeeded. */
1093 		if (owner == UMUTEX_UNOWNED)
1094 			return (0);
1095 
1096 		/* The address was invalid. */
1097 		if (owner == -1)
1098 			return (EFAULT);
1099 
1100 		/* If no one owns it but it is contested try to acquire it. */
1101 		if (owner == UMUTEX_CONTESTED) {
1102 			owner = casuword32(m,
1103 			    UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
1104 			if (owner == UMUTEX_CONTESTED)
1105 				return (0);
1106 
1107 			/* The address was invalid. */
1108 			if (owner == -1)
1109 				return (EFAULT);
1110 
1111 			error = thread_check_susp(td, false);
1112 			if (error != 0)
1113 				break;
1114 
1115 			/* If this failed the lock has changed, restart. */
1116 			continue;
1117 		}
1118 
1119 		/*
1120 		 * If we caught a signal, we have retried and now
1121 		 * exit immediately.
1122 		 */
1123 		if (error != 0)
1124 			return (error);
1125 
1126 		if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK,
1127 			AUTO_SHARE, &uq->uq_key)) != 0)
1128 			return (error);
1129 
1130 		umtxq_lock(&uq->uq_key);
1131 		umtxq_busy(&uq->uq_key);
1132 		umtxq_insert(uq);
1133 		umtxq_unbusy(&uq->uq_key);
1134 		umtxq_unlock(&uq->uq_key);
1135 
1136 		/*
1137 		 * Set the contested bit so that a release in user space
1138 		 * knows to use the system call for unlock.  If this fails
1139 		 * either some one else has acquired the lock or it has been
1140 		 * released.
1141 		 */
1142 		old = casuword32(m, owner, owner | UMUTEX_CONTESTED);
1143 
1144 		/* The address was invalid. */
1145 		if (old == -1) {
1146 			umtxq_lock(&uq->uq_key);
1147 			umtxq_remove(uq);
1148 			umtxq_unlock(&uq->uq_key);
1149 			umtx_key_release(&uq->uq_key);
1150 			return (EFAULT);
1151 		}
1152 
1153 		/*
1154 		 * We set the contested bit, sleep. Otherwise the lock changed
1155 		 * and we need to retry or we lost a race to the thread
1156 		 * unlocking the umtx.
1157 		 */
1158 		umtxq_lock(&uq->uq_key);
1159 		if (old == owner)
1160 			error = umtxq_sleep(uq, "umtx", timeout == NULL ?
1161 			    NULL : &timo);
1162 		umtxq_remove(uq);
1163 		umtxq_unlock(&uq->uq_key);
1164 		umtx_key_release(&uq->uq_key);
1165 
1166 		if (error == 0)
1167 			error = thread_check_susp(td, false);
1168 	}
1169 
1170 	if (timeout == NULL) {
1171 		/* Mutex locking is restarted if it is interrupted. */
1172 		if (error == EINTR)
1173 			error = ERESTART;
1174 	} else {
1175 		/* Timed-locking is not restarted. */
1176 		if (error == ERESTART)
1177 			error = EINTR;
1178 	}
1179 	return (error);
1180 }
1181 
1182 /*
1183  * Unlock a umtx object.
1184  */
1185 static int
1186 do_unlock_umtx32(struct thread *td, uint32_t *m, uint32_t id)
1187 {
1188 	struct umtx_key key;
1189 	uint32_t owner;
1190 	uint32_t old;
1191 	int error;
1192 	int count;
1193 
1194 	/*
1195 	 * Make sure we own this mtx.
1196 	 */
1197 	owner = fuword32(m);
1198 	if (owner == -1)
1199 		return (EFAULT);
1200 
1201 	if ((owner & ~UMUTEX_CONTESTED) != id)
1202 		return (EPERM);
1203 
1204 	/* This should be done in userland */
1205 	if ((owner & UMUTEX_CONTESTED) == 0) {
1206 		old = casuword32(m, owner, UMUTEX_UNOWNED);
1207 		if (old == -1)
1208 			return (EFAULT);
1209 		if (old == owner)
1210 			return (0);
1211 		owner = old;
1212 	}
1213 
1214 	/* We should only ever be in here for contested locks */
1215 	if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1216 		&key)) != 0)
1217 		return (error);
1218 
1219 	umtxq_lock(&key);
1220 	umtxq_busy(&key);
1221 	count = umtxq_count(&key);
1222 	umtxq_unlock(&key);
1223 
1224 	/*
1225 	 * When unlocking the umtx, it must be marked as unowned if
1226 	 * there is zero or one thread only waiting for it.
1227 	 * Otherwise, it must be marked as contested.
1228 	 */
1229 	old = casuword32(m, owner,
1230 		count <= 1 ? UMUTEX_UNOWNED : UMUTEX_CONTESTED);
1231 	umtxq_lock(&key);
1232 	umtxq_signal(&key,1);
1233 	umtxq_unbusy(&key);
1234 	umtxq_unlock(&key);
1235 	umtx_key_release(&key);
1236 	if (old == -1)
1237 		return (EFAULT);
1238 	if (old != owner)
1239 		return (EINVAL);
1240 	return (0);
1241 }
1242 #endif	/* COMPAT_FREEBSD32 */
1243 #endif	/* COMPAT_FREEBSD10 */
1244 
1245 /*
1246  * Fetch and compare value, sleep on the address if value is not changed.
1247  */
1248 static int
1249 do_wait(struct thread *td, void *addr, u_long id,
1250     struct _umtx_time *timeout, int compat32, int is_private)
1251 {
1252 	struct umtx_abs_timeout timo;
1253 	struct umtx_q *uq;
1254 	u_long tmp;
1255 	uint32_t tmp32;
1256 	int error = 0;
1257 
1258 	uq = td->td_umtxq;
1259 	if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
1260 		is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
1261 		return (error);
1262 
1263 	if (timeout != NULL)
1264 		umtx_abs_timeout_init2(&timo, timeout);
1265 
1266 	umtxq_lock(&uq->uq_key);
1267 	umtxq_insert(uq);
1268 	umtxq_unlock(&uq->uq_key);
1269 	if (compat32 == 0) {
1270 		error = fueword(addr, &tmp);
1271 		if (error != 0)
1272 			error = EFAULT;
1273 	} else {
1274 		error = fueword32(addr, &tmp32);
1275 		if (error == 0)
1276 			tmp = tmp32;
1277 		else
1278 			error = EFAULT;
1279 	}
1280 	umtxq_lock(&uq->uq_key);
1281 	if (error == 0) {
1282 		if (tmp == id)
1283 			error = umtxq_sleep(uq, "uwait", timeout == NULL ?
1284 			    NULL : &timo);
1285 		if ((uq->uq_flags & UQF_UMTXQ) == 0)
1286 			error = 0;
1287 		else
1288 			umtxq_remove(uq);
1289 	} else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
1290 		umtxq_remove(uq);
1291 	}
1292 	umtxq_unlock(&uq->uq_key);
1293 	umtx_key_release(&uq->uq_key);
1294 	if (error == ERESTART)
1295 		error = EINTR;
1296 	return (error);
1297 }
1298 
1299 /*
1300  * Wake up threads sleeping on the specified address.
1301  */
1302 int
1303 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
1304 {
1305 	struct umtx_key key;
1306 	int ret;
1307 
1308 	if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
1309 	    is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
1310 		return (ret);
1311 	umtxq_lock(&key);
1312 	umtxq_signal(&key, n_wake);
1313 	umtxq_unlock(&key);
1314 	umtx_key_release(&key);
1315 	return (0);
1316 }
1317 
1318 /*
1319  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
1320  */
1321 static int
1322 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
1323     struct _umtx_time *timeout, int mode)
1324 {
1325 	struct umtx_abs_timeout timo;
1326 	struct umtx_q *uq;
1327 	uint32_t owner, old, id;
1328 	int error, rv;
1329 
1330 	id = td->td_tid;
1331 	uq = td->td_umtxq;
1332 	error = 0;
1333 	if (timeout != NULL)
1334 		umtx_abs_timeout_init2(&timo, timeout);
1335 
1336 	/*
1337 	 * Care must be exercised when dealing with umtx structure. It
1338 	 * can fault on any access.
1339 	 */
1340 	for (;;) {
1341 		rv = fueword32(&m->m_owner, &owner);
1342 		if (rv == -1)
1343 			return (EFAULT);
1344 		if (mode == _UMUTEX_WAIT) {
1345 			if (owner == UMUTEX_UNOWNED ||
1346 			    owner == UMUTEX_CONTESTED ||
1347 			    owner == UMUTEX_RB_OWNERDEAD ||
1348 			    owner == UMUTEX_RB_NOTRECOV)
1349 				return (0);
1350 		} else {
1351 			/*
1352 			 * Robust mutex terminated.  Kernel duty is to
1353 			 * return EOWNERDEAD to the userspace.  The
1354 			 * umutex.m_flags UMUTEX_NONCONSISTENT is set
1355 			 * by the common userspace code.
1356 			 */
1357 			if (owner == UMUTEX_RB_OWNERDEAD) {
1358 				rv = casueword32(&m->m_owner,
1359 				    UMUTEX_RB_OWNERDEAD, &owner,
1360 				    id | UMUTEX_CONTESTED);
1361 				if (rv == -1)
1362 					return (EFAULT);
1363 				if (rv == 0) {
1364 					MPASS(owner == UMUTEX_RB_OWNERDEAD);
1365 					return (EOWNERDEAD); /* success */
1366 				}
1367 				MPASS(rv == 1);
1368 				rv = thread_check_susp(td, false);
1369 				if (rv != 0)
1370 					return (rv);
1371 				continue;
1372 			}
1373 			if (owner == UMUTEX_RB_NOTRECOV)
1374 				return (ENOTRECOVERABLE);
1375 
1376 			/*
1377 			 * Try the uncontested case.  This should be
1378 			 * done in userland.
1379 			 */
1380 			rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
1381 			    &owner, id);
1382 			/* The address was invalid. */
1383 			if (rv == -1)
1384 				return (EFAULT);
1385 
1386 			/* The acquire succeeded. */
1387 			if (rv == 0) {
1388 				MPASS(owner == UMUTEX_UNOWNED);
1389 				return (0);
1390 			}
1391 
1392 			/*
1393 			 * If no one owns it but it is contested try
1394 			 * to acquire it.
1395 			 */
1396 			MPASS(rv == 1);
1397 			if (owner == UMUTEX_CONTESTED) {
1398 				rv = casueword32(&m->m_owner,
1399 				    UMUTEX_CONTESTED, &owner,
1400 				    id | UMUTEX_CONTESTED);
1401 				/* The address was invalid. */
1402 				if (rv == -1)
1403 					return (EFAULT);
1404 				if (rv == 0) {
1405 					MPASS(owner == UMUTEX_CONTESTED);
1406 					return (0);
1407 				}
1408 				if (rv == 1) {
1409 					rv = thread_check_susp(td, false);
1410 					if (rv != 0)
1411 						return (rv);
1412 				}
1413 
1414 				/*
1415 				 * If this failed the lock has
1416 				 * changed, restart.
1417 				 */
1418 				continue;
1419 			}
1420 
1421 			/* rv == 1 but not contested, likely store failure */
1422 			rv = thread_check_susp(td, false);
1423 			if (rv != 0)
1424 				return (rv);
1425 		}
1426 
1427 		if (mode == _UMUTEX_TRY)
1428 			return (EBUSY);
1429 
1430 		/*
1431 		 * If we caught a signal, we have retried and now
1432 		 * exit immediately.
1433 		 */
1434 		if (error != 0)
1435 			return (error);
1436 
1437 		if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
1438 		    GET_SHARE(flags), &uq->uq_key)) != 0)
1439 			return (error);
1440 
1441 		umtxq_lock(&uq->uq_key);
1442 		umtxq_busy(&uq->uq_key);
1443 		umtxq_insert(uq);
1444 		umtxq_unlock(&uq->uq_key);
1445 
1446 		/*
1447 		 * Set the contested bit so that a release in user space
1448 		 * knows to use the system call for unlock.  If this fails
1449 		 * either some one else has acquired the lock or it has been
1450 		 * released.
1451 		 */
1452 		rv = casueword32(&m->m_owner, owner, &old,
1453 		    owner | UMUTEX_CONTESTED);
1454 
1455 		/* The address was invalid or casueword failed to store. */
1456 		if (rv == -1 || rv == 1) {
1457 			umtxq_lock(&uq->uq_key);
1458 			umtxq_remove(uq);
1459 			umtxq_unbusy(&uq->uq_key);
1460 			umtxq_unlock(&uq->uq_key);
1461 			umtx_key_release(&uq->uq_key);
1462 			if (rv == -1)
1463 				return (EFAULT);
1464 			if (rv == 1) {
1465 				rv = thread_check_susp(td, false);
1466 				if (rv != 0)
1467 					return (rv);
1468 			}
1469 			continue;
1470 		}
1471 
1472 		/*
1473 		 * We set the contested bit, sleep. Otherwise the lock changed
1474 		 * and we need to retry or we lost a race to the thread
1475 		 * unlocking the umtx.
1476 		 */
1477 		umtxq_lock(&uq->uq_key);
1478 		umtxq_unbusy(&uq->uq_key);
1479 		MPASS(old == owner);
1480 		error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
1481 		    NULL : &timo);
1482 		umtxq_remove(uq);
1483 		umtxq_unlock(&uq->uq_key);
1484 		umtx_key_release(&uq->uq_key);
1485 
1486 		if (error == 0)
1487 			error = thread_check_susp(td, false);
1488 	}
1489 
1490 	return (0);
1491 }
1492 
1493 /*
1494  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
1495  */
1496 static int
1497 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1498 {
1499 	struct umtx_key key;
1500 	uint32_t owner, old, id, newlock;
1501 	int error, count;
1502 
1503 	id = td->td_tid;
1504 
1505 again:
1506 	/*
1507 	 * Make sure we own this mtx.
1508 	 */
1509 	error = fueword32(&m->m_owner, &owner);
1510 	if (error == -1)
1511 		return (EFAULT);
1512 
1513 	if ((owner & ~UMUTEX_CONTESTED) != id)
1514 		return (EPERM);
1515 
1516 	newlock = umtx_unlock_val(flags, rb);
1517 	if ((owner & UMUTEX_CONTESTED) == 0) {
1518 		error = casueword32(&m->m_owner, owner, &old, newlock);
1519 		if (error == -1)
1520 			return (EFAULT);
1521 		if (error == 1) {
1522 			error = thread_check_susp(td, false);
1523 			if (error != 0)
1524 				return (error);
1525 			goto again;
1526 		}
1527 		MPASS(old == owner);
1528 		return (0);
1529 	}
1530 
1531 	/* We should only ever be in here for contested locks */
1532 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1533 	    &key)) != 0)
1534 		return (error);
1535 
1536 	umtxq_lock(&key);
1537 	umtxq_busy(&key);
1538 	count = umtxq_count(&key);
1539 	umtxq_unlock(&key);
1540 
1541 	/*
1542 	 * When unlocking the umtx, it must be marked as unowned if
1543 	 * there is zero or one thread only waiting for it.
1544 	 * Otherwise, it must be marked as contested.
1545 	 */
1546 	if (count > 1)
1547 		newlock |= UMUTEX_CONTESTED;
1548 	error = casueword32(&m->m_owner, owner, &old, newlock);
1549 	umtxq_lock(&key);
1550 	umtxq_signal(&key, 1);
1551 	umtxq_unbusy(&key);
1552 	umtxq_unlock(&key);
1553 	umtx_key_release(&key);
1554 	if (error == -1)
1555 		return (EFAULT);
1556 	if (error == 1) {
1557 		if (old != owner)
1558 			return (EINVAL);
1559 		error = thread_check_susp(td, false);
1560 		if (error != 0)
1561 			return (error);
1562 		goto again;
1563 	}
1564 	return (0);
1565 }
1566 
1567 /*
1568  * Check if the mutex is available and wake up a waiter,
1569  * only for simple mutex.
1570  */
1571 static int
1572 do_wake_umutex(struct thread *td, struct umutex *m)
1573 {
1574 	struct umtx_key key;
1575 	uint32_t owner;
1576 	uint32_t flags;
1577 	int error;
1578 	int count;
1579 
1580 again:
1581 	error = fueword32(&m->m_owner, &owner);
1582 	if (error == -1)
1583 		return (EFAULT);
1584 
1585 	if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
1586 	    owner != UMUTEX_RB_NOTRECOV)
1587 		return (0);
1588 
1589 	error = fueword32(&m->m_flags, &flags);
1590 	if (error == -1)
1591 		return (EFAULT);
1592 
1593 	/* We should only ever be in here for contested locks */
1594 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1595 	    &key)) != 0)
1596 		return (error);
1597 
1598 	umtxq_lock(&key);
1599 	umtxq_busy(&key);
1600 	count = umtxq_count(&key);
1601 	umtxq_unlock(&key);
1602 
1603 	if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
1604 	    owner != UMUTEX_RB_NOTRECOV) {
1605 		error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
1606 		    UMUTEX_UNOWNED);
1607 		if (error == -1) {
1608 			error = EFAULT;
1609 		} else if (error == 1) {
1610 			umtxq_lock(&key);
1611 			umtxq_unbusy(&key);
1612 			umtxq_unlock(&key);
1613 			umtx_key_release(&key);
1614 			error = thread_check_susp(td, false);
1615 			if (error != 0)
1616 				return (error);
1617 			goto again;
1618 		}
1619 	}
1620 
1621 	umtxq_lock(&key);
1622 	if (error == 0 && count != 0) {
1623 		MPASS((owner & ~UMUTEX_CONTESTED) == 0 ||
1624 		    owner == UMUTEX_RB_OWNERDEAD ||
1625 		    owner == UMUTEX_RB_NOTRECOV);
1626 		umtxq_signal(&key, 1);
1627 	}
1628 	umtxq_unbusy(&key);
1629 	umtxq_unlock(&key);
1630 	umtx_key_release(&key);
1631 	return (error);
1632 }
1633 
1634 /*
1635  * Check if the mutex has waiters and tries to fix contention bit.
1636  */
1637 static int
1638 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
1639 {
1640 	struct umtx_key key;
1641 	uint32_t owner, old;
1642 	int type;
1643 	int error;
1644 	int count;
1645 
1646 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
1647 	    UMUTEX_ROBUST)) {
1648 	case 0:
1649 	case UMUTEX_ROBUST:
1650 		type = TYPE_NORMAL_UMUTEX;
1651 		break;
1652 	case UMUTEX_PRIO_INHERIT:
1653 		type = TYPE_PI_UMUTEX;
1654 		break;
1655 	case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
1656 		type = TYPE_PI_ROBUST_UMUTEX;
1657 		break;
1658 	case UMUTEX_PRIO_PROTECT:
1659 		type = TYPE_PP_UMUTEX;
1660 		break;
1661 	case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
1662 		type = TYPE_PP_ROBUST_UMUTEX;
1663 		break;
1664 	default:
1665 		return (EINVAL);
1666 	}
1667 	if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
1668 		return (error);
1669 
1670 	owner = 0;
1671 	umtxq_lock(&key);
1672 	umtxq_busy(&key);
1673 	count = umtxq_count(&key);
1674 	umtxq_unlock(&key);
1675 
1676 	error = fueword32(&m->m_owner, &owner);
1677 	if (error == -1)
1678 		error = EFAULT;
1679 
1680 	/*
1681 	 * Only repair contention bit if there is a waiter, this means
1682 	 * the mutex is still being referenced by userland code,
1683 	 * otherwise don't update any memory.
1684 	 */
1685 	while (error == 0 && (owner & UMUTEX_CONTESTED) == 0 &&
1686 	    (count > 1 || (count == 1 && (owner & ~UMUTEX_CONTESTED) != 0))) {
1687 		error = casueword32(&m->m_owner, owner, &old,
1688 		    owner | UMUTEX_CONTESTED);
1689 		if (error == -1) {
1690 			error = EFAULT;
1691 			break;
1692 		}
1693 		if (error == 0) {
1694 			MPASS(old == owner);
1695 			break;
1696 		}
1697 		owner = old;
1698 		error = thread_check_susp(td, false);
1699 	}
1700 
1701 	umtxq_lock(&key);
1702 	if (error == EFAULT) {
1703 		umtxq_signal(&key, INT_MAX);
1704 	} else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1705 	    owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1706 		umtxq_signal(&key, 1);
1707 	umtxq_unbusy(&key);
1708 	umtxq_unlock(&key);
1709 	umtx_key_release(&key);
1710 	return (error);
1711 }
1712 
1713 struct umtx_pi *
1714 umtx_pi_alloc(int flags)
1715 {
1716 	struct umtx_pi *pi;
1717 
1718 	pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
1719 	TAILQ_INIT(&pi->pi_blocked);
1720 	atomic_add_int(&umtx_pi_allocated, 1);
1721 	return (pi);
1722 }
1723 
1724 void
1725 umtx_pi_free(struct umtx_pi *pi)
1726 {
1727 	uma_zfree(umtx_pi_zone, pi);
1728 	atomic_add_int(&umtx_pi_allocated, -1);
1729 }
1730 
1731 /*
1732  * Adjust the thread's position on a pi_state after its priority has been
1733  * changed.
1734  */
1735 static int
1736 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
1737 {
1738 	struct umtx_q *uq, *uq1, *uq2;
1739 	struct thread *td1;
1740 
1741 	mtx_assert(&umtx_lock, MA_OWNED);
1742 	if (pi == NULL)
1743 		return (0);
1744 
1745 	uq = td->td_umtxq;
1746 
1747 	/*
1748 	 * Check if the thread needs to be moved on the blocked chain.
1749 	 * It needs to be moved if either its priority is lower than
1750 	 * the previous thread or higher than the next thread.
1751 	 */
1752 	uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
1753 	uq2 = TAILQ_NEXT(uq, uq_lockq);
1754 	if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
1755 	    (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
1756 		/*
1757 		 * Remove thread from blocked chain and determine where
1758 		 * it should be moved to.
1759 		 */
1760 		TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1761 		TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1762 			td1 = uq1->uq_thread;
1763 			MPASS(td1->td_proc->p_magic == P_MAGIC);
1764 			if (UPRI(td1) > UPRI(td))
1765 				break;
1766 		}
1767 
1768 		if (uq1 == NULL)
1769 			TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1770 		else
1771 			TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1772 	}
1773 	return (1);
1774 }
1775 
1776 static struct umtx_pi *
1777 umtx_pi_next(struct umtx_pi *pi)
1778 {
1779 	struct umtx_q *uq_owner;
1780 
1781 	if (pi->pi_owner == NULL)
1782 		return (NULL);
1783 	uq_owner = pi->pi_owner->td_umtxq;
1784 	if (uq_owner == NULL)
1785 		return (NULL);
1786 	return (uq_owner->uq_pi_blocked);
1787 }
1788 
1789 /*
1790  * Floyd's Cycle-Finding Algorithm.
1791  */
1792 static bool
1793 umtx_pi_check_loop(struct umtx_pi *pi)
1794 {
1795 	struct umtx_pi *pi1;	/* fast iterator */
1796 
1797 	mtx_assert(&umtx_lock, MA_OWNED);
1798 	if (pi == NULL)
1799 		return (false);
1800 	pi1 = pi;
1801 	for (;;) {
1802 		pi = umtx_pi_next(pi);
1803 		if (pi == NULL)
1804 			break;
1805 		pi1 = umtx_pi_next(pi1);
1806 		if (pi1 == NULL)
1807 			break;
1808 		pi1 = umtx_pi_next(pi1);
1809 		if (pi1 == NULL)
1810 			break;
1811 		if (pi == pi1)
1812 			return (true);
1813 	}
1814 	return (false);
1815 }
1816 
1817 /*
1818  * Propagate priority when a thread is blocked on POSIX
1819  * PI mutex.
1820  */
1821 static void
1822 umtx_propagate_priority(struct thread *td)
1823 {
1824 	struct umtx_q *uq;
1825 	struct umtx_pi *pi;
1826 	int pri;
1827 
1828 	mtx_assert(&umtx_lock, MA_OWNED);
1829 	pri = UPRI(td);
1830 	uq = td->td_umtxq;
1831 	pi = uq->uq_pi_blocked;
1832 	if (pi == NULL)
1833 		return;
1834 	if (umtx_pi_check_loop(pi))
1835 		return;
1836 
1837 	for (;;) {
1838 		td = pi->pi_owner;
1839 		if (td == NULL || td == curthread)
1840 			return;
1841 
1842 		MPASS(td->td_proc != NULL);
1843 		MPASS(td->td_proc->p_magic == P_MAGIC);
1844 
1845 		thread_lock(td);
1846 		if (td->td_lend_user_pri > pri)
1847 			sched_lend_user_prio(td, pri);
1848 		else {
1849 			thread_unlock(td);
1850 			break;
1851 		}
1852 		thread_unlock(td);
1853 
1854 		/*
1855 		 * Pick up the lock that td is blocked on.
1856 		 */
1857 		uq = td->td_umtxq;
1858 		pi = uq->uq_pi_blocked;
1859 		if (pi == NULL)
1860 			break;
1861 		/* Resort td on the list if needed. */
1862 		umtx_pi_adjust_thread(pi, td);
1863 	}
1864 }
1865 
1866 /*
1867  * Unpropagate priority for a PI mutex when a thread blocked on
1868  * it is interrupted by signal or resumed by others.
1869  */
1870 static void
1871 umtx_repropagate_priority(struct umtx_pi *pi)
1872 {
1873 	struct umtx_q *uq, *uq_owner;
1874 	struct umtx_pi *pi2;
1875 	int pri;
1876 
1877 	mtx_assert(&umtx_lock, MA_OWNED);
1878 
1879 	if (umtx_pi_check_loop(pi))
1880 		return;
1881 	while (pi != NULL && pi->pi_owner != NULL) {
1882 		pri = PRI_MAX;
1883 		uq_owner = pi->pi_owner->td_umtxq;
1884 
1885 		TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
1886 			uq = TAILQ_FIRST(&pi2->pi_blocked);
1887 			if (uq != NULL) {
1888 				if (pri > UPRI(uq->uq_thread))
1889 					pri = UPRI(uq->uq_thread);
1890 			}
1891 		}
1892 
1893 		if (pri > uq_owner->uq_inherited_pri)
1894 			pri = uq_owner->uq_inherited_pri;
1895 		thread_lock(pi->pi_owner);
1896 		sched_lend_user_prio(pi->pi_owner, pri);
1897 		thread_unlock(pi->pi_owner);
1898 		if ((pi = uq_owner->uq_pi_blocked) != NULL)
1899 			umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
1900 	}
1901 }
1902 
1903 /*
1904  * Insert a PI mutex into owned list.
1905  */
1906 static void
1907 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
1908 {
1909 	struct umtx_q *uq_owner;
1910 
1911 	uq_owner = owner->td_umtxq;
1912 	mtx_assert(&umtx_lock, MA_OWNED);
1913 	MPASS(pi->pi_owner == NULL);
1914 	pi->pi_owner = owner;
1915 	TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
1916 }
1917 
1918 /*
1919  * Disown a PI mutex, and remove it from the owned list.
1920  */
1921 static void
1922 umtx_pi_disown(struct umtx_pi *pi)
1923 {
1924 
1925 	mtx_assert(&umtx_lock, MA_OWNED);
1926 	TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
1927 	pi->pi_owner = NULL;
1928 }
1929 
1930 /*
1931  * Claim ownership of a PI mutex.
1932  */
1933 int
1934 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
1935 {
1936 	struct umtx_q *uq;
1937 	int pri;
1938 
1939 	mtx_lock(&umtx_lock);
1940 	if (pi->pi_owner == owner) {
1941 		mtx_unlock(&umtx_lock);
1942 		return (0);
1943 	}
1944 
1945 	if (pi->pi_owner != NULL) {
1946 		/*
1947 		 * userland may have already messed the mutex, sigh.
1948 		 */
1949 		mtx_unlock(&umtx_lock);
1950 		return (EPERM);
1951 	}
1952 	umtx_pi_setowner(pi, owner);
1953 	uq = TAILQ_FIRST(&pi->pi_blocked);
1954 	if (uq != NULL) {
1955 		pri = UPRI(uq->uq_thread);
1956 		thread_lock(owner);
1957 		if (pri < UPRI(owner))
1958 			sched_lend_user_prio(owner, pri);
1959 		thread_unlock(owner);
1960 	}
1961 	mtx_unlock(&umtx_lock);
1962 	return (0);
1963 }
1964 
1965 /*
1966  * Adjust a thread's order position in its blocked PI mutex,
1967  * this may result new priority propagating process.
1968  */
1969 void
1970 umtx_pi_adjust(struct thread *td, u_char oldpri)
1971 {
1972 	struct umtx_q *uq;
1973 	struct umtx_pi *pi;
1974 
1975 	uq = td->td_umtxq;
1976 	mtx_lock(&umtx_lock);
1977 	/*
1978 	 * Pick up the lock that td is blocked on.
1979 	 */
1980 	pi = uq->uq_pi_blocked;
1981 	if (pi != NULL) {
1982 		umtx_pi_adjust_thread(pi, td);
1983 		umtx_repropagate_priority(pi);
1984 	}
1985 	mtx_unlock(&umtx_lock);
1986 }
1987 
1988 /*
1989  * Sleep on a PI mutex.
1990  */
1991 int
1992 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
1993     const char *wmesg, struct umtx_abs_timeout *timo, bool shared)
1994 {
1995 	struct thread *td, *td1;
1996 	struct umtx_q *uq1;
1997 	int error, pri;
1998 #ifdef INVARIANTS
1999 	struct umtxq_chain *uc;
2000 
2001 	uc = umtxq_getchain(&pi->pi_key);
2002 #endif
2003 	error = 0;
2004 	td = uq->uq_thread;
2005 	KASSERT(td == curthread, ("inconsistent uq_thread"));
2006 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
2007 	KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
2008 	umtxq_insert(uq);
2009 	mtx_lock(&umtx_lock);
2010 	if (pi->pi_owner == NULL) {
2011 		mtx_unlock(&umtx_lock);
2012 		td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
2013 		mtx_lock(&umtx_lock);
2014 		if (td1 != NULL) {
2015 			if (pi->pi_owner == NULL)
2016 				umtx_pi_setowner(pi, td1);
2017 			PROC_UNLOCK(td1->td_proc);
2018 		}
2019 	}
2020 
2021 	TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
2022 		pri = UPRI(uq1->uq_thread);
2023 		if (pri > UPRI(td))
2024 			break;
2025 	}
2026 
2027 	if (uq1 != NULL)
2028 		TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
2029 	else
2030 		TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
2031 
2032 	uq->uq_pi_blocked = pi;
2033 	thread_lock(td);
2034 	td->td_flags |= TDF_UPIBLOCKED;
2035 	thread_unlock(td);
2036 	umtx_propagate_priority(td);
2037 	mtx_unlock(&umtx_lock);
2038 	umtxq_unbusy(&uq->uq_key);
2039 
2040 	error = umtxq_sleep(uq, wmesg, timo);
2041 	umtxq_remove(uq);
2042 
2043 	mtx_lock(&umtx_lock);
2044 	uq->uq_pi_blocked = NULL;
2045 	thread_lock(td);
2046 	td->td_flags &= ~TDF_UPIBLOCKED;
2047 	thread_unlock(td);
2048 	TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
2049 	umtx_repropagate_priority(pi);
2050 	mtx_unlock(&umtx_lock);
2051 	umtxq_unlock(&uq->uq_key);
2052 
2053 	return (error);
2054 }
2055 
2056 /*
2057  * Add reference count for a PI mutex.
2058  */
2059 void
2060 umtx_pi_ref(struct umtx_pi *pi)
2061 {
2062 
2063 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
2064 	pi->pi_refcount++;
2065 }
2066 
2067 /*
2068  * Decrease reference count for a PI mutex, if the counter
2069  * is decreased to zero, its memory space is freed.
2070  */
2071 void
2072 umtx_pi_unref(struct umtx_pi *pi)
2073 {
2074 	struct umtxq_chain *uc;
2075 
2076 	uc = umtxq_getchain(&pi->pi_key);
2077 	UMTXQ_LOCKED_ASSERT(uc);
2078 	KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
2079 	if (--pi->pi_refcount == 0) {
2080 		mtx_lock(&umtx_lock);
2081 		if (pi->pi_owner != NULL)
2082 			umtx_pi_disown(pi);
2083 		KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
2084 			("blocked queue not empty"));
2085 		mtx_unlock(&umtx_lock);
2086 		TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
2087 		umtx_pi_free(pi);
2088 	}
2089 }
2090 
2091 /*
2092  * Find a PI mutex in hash table.
2093  */
2094 struct umtx_pi *
2095 umtx_pi_lookup(struct umtx_key *key)
2096 {
2097 	struct umtxq_chain *uc;
2098 	struct umtx_pi *pi;
2099 
2100 	uc = umtxq_getchain(key);
2101 	UMTXQ_LOCKED_ASSERT(uc);
2102 
2103 	TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
2104 		if (umtx_key_match(&pi->pi_key, key)) {
2105 			return (pi);
2106 		}
2107 	}
2108 	return (NULL);
2109 }
2110 
2111 /*
2112  * Insert a PI mutex into hash table.
2113  */
2114 void
2115 umtx_pi_insert(struct umtx_pi *pi)
2116 {
2117 	struct umtxq_chain *uc;
2118 
2119 	uc = umtxq_getchain(&pi->pi_key);
2120 	UMTXQ_LOCKED_ASSERT(uc);
2121 	TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
2122 }
2123 
2124 /*
2125  * Drop a PI mutex and wakeup a top waiter.
2126  */
2127 int
2128 umtx_pi_drop(struct thread *td, struct umtx_key *key, bool rb, int *count)
2129 {
2130 	struct umtx_q *uq_first, *uq_first2, *uq_me;
2131 	struct umtx_pi *pi, *pi2;
2132 	int pri;
2133 
2134 	UMTXQ_ASSERT_LOCKED_BUSY(key);
2135 	*count = umtxq_count_pi(key, &uq_first);
2136 	if (uq_first != NULL) {
2137 		mtx_lock(&umtx_lock);
2138 		pi = uq_first->uq_pi_blocked;
2139 		KASSERT(pi != NULL, ("pi == NULL?"));
2140 		if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
2141 			mtx_unlock(&umtx_lock);
2142 			/* userland messed the mutex */
2143 			return (EPERM);
2144 		}
2145 		uq_me = td->td_umtxq;
2146 		if (pi->pi_owner == td)
2147 			umtx_pi_disown(pi);
2148 		/* get highest priority thread which is still sleeping. */
2149 		uq_first = TAILQ_FIRST(&pi->pi_blocked);
2150 		while (uq_first != NULL &&
2151 		    (uq_first->uq_flags & UQF_UMTXQ) == 0) {
2152 			uq_first = TAILQ_NEXT(uq_first, uq_lockq);
2153 		}
2154 		pri = PRI_MAX;
2155 		TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
2156 			uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
2157 			if (uq_first2 != NULL) {
2158 				if (pri > UPRI(uq_first2->uq_thread))
2159 					pri = UPRI(uq_first2->uq_thread);
2160 			}
2161 		}
2162 		thread_lock(td);
2163 		sched_lend_user_prio(td, pri);
2164 		thread_unlock(td);
2165 		mtx_unlock(&umtx_lock);
2166 		if (uq_first)
2167 			umtxq_signal_thread(uq_first);
2168 	} else {
2169 		pi = umtx_pi_lookup(key);
2170 		/*
2171 		 * A umtx_pi can exist if a signal or timeout removed the
2172 		 * last waiter from the umtxq, but there is still
2173 		 * a thread in do_lock_pi() holding the umtx_pi.
2174 		 */
2175 		if (pi != NULL) {
2176 			/*
2177 			 * The umtx_pi can be unowned, such as when a thread
2178 			 * has just entered do_lock_pi(), allocated the
2179 			 * umtx_pi, and unlocked the umtxq.
2180 			 * If the current thread owns it, it must disown it.
2181 			 */
2182 			mtx_lock(&umtx_lock);
2183 			if (pi->pi_owner == td)
2184 				umtx_pi_disown(pi);
2185 			mtx_unlock(&umtx_lock);
2186 		}
2187 	}
2188 	return (0);
2189 }
2190 
2191 /*
2192  * Lock a PI mutex.
2193  */
2194 static int
2195 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
2196     struct _umtx_time *timeout, int try)
2197 {
2198 	struct umtx_abs_timeout timo;
2199 	struct umtx_q *uq;
2200 	struct umtx_pi *pi, *new_pi;
2201 	uint32_t id, old_owner, owner, old;
2202 	int error, rv;
2203 
2204 	id = td->td_tid;
2205 	uq = td->td_umtxq;
2206 
2207 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2208 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2209 	    &uq->uq_key)) != 0)
2210 		return (error);
2211 
2212 	if (timeout != NULL)
2213 		umtx_abs_timeout_init2(&timo, timeout);
2214 
2215 	umtxq_lock(&uq->uq_key);
2216 	pi = umtx_pi_lookup(&uq->uq_key);
2217 	if (pi == NULL) {
2218 		new_pi = umtx_pi_alloc(M_NOWAIT);
2219 		if (new_pi == NULL) {
2220 			umtxq_unlock(&uq->uq_key);
2221 			new_pi = umtx_pi_alloc(M_WAITOK);
2222 			umtxq_lock(&uq->uq_key);
2223 			pi = umtx_pi_lookup(&uq->uq_key);
2224 			if (pi != NULL) {
2225 				umtx_pi_free(new_pi);
2226 				new_pi = NULL;
2227 			}
2228 		}
2229 		if (new_pi != NULL) {
2230 			new_pi->pi_key = uq->uq_key;
2231 			umtx_pi_insert(new_pi);
2232 			pi = new_pi;
2233 		}
2234 	}
2235 	umtx_pi_ref(pi);
2236 	umtxq_unlock(&uq->uq_key);
2237 
2238 	/*
2239 	 * Care must be exercised when dealing with umtx structure.  It
2240 	 * can fault on any access.
2241 	 */
2242 	for (;;) {
2243 		/*
2244 		 * Try the uncontested case.  This should be done in userland.
2245 		 */
2246 		rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
2247 		/* The address was invalid. */
2248 		if (rv == -1) {
2249 			error = EFAULT;
2250 			break;
2251 		}
2252 		/* The acquire succeeded. */
2253 		if (rv == 0) {
2254 			MPASS(owner == UMUTEX_UNOWNED);
2255 			error = 0;
2256 			break;
2257 		}
2258 
2259 		if (owner == UMUTEX_RB_NOTRECOV) {
2260 			error = ENOTRECOVERABLE;
2261 			break;
2262 		}
2263 
2264 		/*
2265 		 * Nobody owns it, but the acquire failed. This can happen
2266 		 * with ll/sc atomics.
2267 		 */
2268 		if (owner == UMUTEX_UNOWNED) {
2269 			error = thread_check_susp(td, true);
2270 			if (error != 0)
2271 				break;
2272 			continue;
2273 		}
2274 
2275 		/*
2276 		 * Avoid overwriting a possible error from sleep due
2277 		 * to the pending signal with suspension check result.
2278 		 */
2279 		if (error == 0) {
2280 			error = thread_check_susp(td, true);
2281 			if (error != 0)
2282 				break;
2283 		}
2284 
2285 		/* If no one owns it but it is contested try to acquire it. */
2286 		if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
2287 			old_owner = owner;
2288 			rv = casueword32(&m->m_owner, owner, &owner,
2289 			    id | UMUTEX_CONTESTED);
2290 			/* The address was invalid. */
2291 			if (rv == -1) {
2292 				error = EFAULT;
2293 				break;
2294 			}
2295 			if (rv == 1) {
2296 				if (error == 0) {
2297 					error = thread_check_susp(td, true);
2298 					if (error != 0)
2299 						break;
2300 				}
2301 
2302 				/*
2303 				 * If this failed the lock could
2304 				 * changed, restart.
2305 				 */
2306 				continue;
2307 			}
2308 
2309 			MPASS(rv == 0);
2310 			MPASS(owner == old_owner);
2311 			umtxq_lock(&uq->uq_key);
2312 			umtxq_busy(&uq->uq_key);
2313 			error = umtx_pi_claim(pi, td);
2314 			umtxq_unbusy(&uq->uq_key);
2315 			umtxq_unlock(&uq->uq_key);
2316 			if (error != 0) {
2317 				/*
2318 				 * Since we're going to return an
2319 				 * error, restore the m_owner to its
2320 				 * previous, unowned state to avoid
2321 				 * compounding the problem.
2322 				 */
2323 				(void)casuword32(&m->m_owner,
2324 				    id | UMUTEX_CONTESTED, old_owner);
2325 			}
2326 			if (error == 0 && old_owner == UMUTEX_RB_OWNERDEAD)
2327 				error = EOWNERDEAD;
2328 			break;
2329 		}
2330 
2331 		if ((owner & ~UMUTEX_CONTESTED) == id) {
2332 			error = EDEADLK;
2333 			break;
2334 		}
2335 
2336 		if (try != 0) {
2337 			error = EBUSY;
2338 			break;
2339 		}
2340 
2341 		/*
2342 		 * If we caught a signal, we have retried and now
2343 		 * exit immediately.
2344 		 */
2345 		if (error != 0)
2346 			break;
2347 
2348 		umtxq_lock(&uq->uq_key);
2349 		umtxq_busy(&uq->uq_key);
2350 		umtxq_unlock(&uq->uq_key);
2351 
2352 		/*
2353 		 * Set the contested bit so that a release in user space
2354 		 * knows to use the system call for unlock.  If this fails
2355 		 * either some one else has acquired the lock or it has been
2356 		 * released.
2357 		 */
2358 		rv = casueword32(&m->m_owner, owner, &old, owner |
2359 		    UMUTEX_CONTESTED);
2360 
2361 		/* The address was invalid. */
2362 		if (rv == -1) {
2363 			umtxq_unbusy_unlocked(&uq->uq_key);
2364 			error = EFAULT;
2365 			break;
2366 		}
2367 		if (rv == 1) {
2368 			umtxq_unbusy_unlocked(&uq->uq_key);
2369 			error = thread_check_susp(td, true);
2370 			if (error != 0)
2371 				break;
2372 
2373 			/*
2374 			 * The lock changed and we need to retry or we
2375 			 * lost a race to the thread unlocking the
2376 			 * umtx.  Note that the UMUTEX_RB_OWNERDEAD
2377 			 * value for owner is impossible there.
2378 			 */
2379 			continue;
2380 		}
2381 
2382 		umtxq_lock(&uq->uq_key);
2383 
2384 		/* We set the contested bit, sleep. */
2385 		MPASS(old == owner);
2386 		error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
2387 		    "umtxpi", timeout == NULL ? NULL : &timo,
2388 		    (flags & USYNC_PROCESS_SHARED) != 0);
2389 		if (error != 0)
2390 			continue;
2391 
2392 		error = thread_check_susp(td, false);
2393 		if (error != 0)
2394 			break;
2395 	}
2396 
2397 	umtxq_lock(&uq->uq_key);
2398 	umtx_pi_unref(pi);
2399 	umtxq_unlock(&uq->uq_key);
2400 
2401 	umtx_key_release(&uq->uq_key);
2402 	return (error);
2403 }
2404 
2405 /*
2406  * Unlock a PI mutex.
2407  */
2408 static int
2409 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2410 {
2411 	struct umtx_key key;
2412 	uint32_t id, new_owner, old, owner;
2413 	int count, error;
2414 
2415 	id = td->td_tid;
2416 
2417 usrloop:
2418 	/*
2419 	 * Make sure we own this mtx.
2420 	 */
2421 	error = fueword32(&m->m_owner, &owner);
2422 	if (error == -1)
2423 		return (EFAULT);
2424 
2425 	if ((owner & ~UMUTEX_CONTESTED) != id)
2426 		return (EPERM);
2427 
2428 	new_owner = umtx_unlock_val(flags, rb);
2429 
2430 	/* This should be done in userland */
2431 	if ((owner & UMUTEX_CONTESTED) == 0) {
2432 		error = casueword32(&m->m_owner, owner, &old, new_owner);
2433 		if (error == -1)
2434 			return (EFAULT);
2435 		if (error == 1) {
2436 			error = thread_check_susp(td, true);
2437 			if (error != 0)
2438 				return (error);
2439 			goto usrloop;
2440 		}
2441 		if (old == owner)
2442 			return (0);
2443 		owner = old;
2444 	}
2445 
2446 	/* We should only ever be in here for contested locks */
2447 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2448 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2449 	    &key)) != 0)
2450 		return (error);
2451 
2452 	umtxq_lock(&key);
2453 	umtxq_busy(&key);
2454 	error = umtx_pi_drop(td, &key, rb, &count);
2455 	if (error != 0) {
2456 		umtxq_unbusy(&key);
2457 		umtxq_unlock(&key);
2458 		umtx_key_release(&key);
2459 		/* userland messed the mutex */
2460 		return (error);
2461 	}
2462 	umtxq_unlock(&key);
2463 
2464 	/*
2465 	 * When unlocking the umtx, it must be marked as unowned if
2466 	 * there is zero or one thread only waiting for it.
2467 	 * Otherwise, it must be marked as contested.
2468 	 */
2469 
2470 	if (count > 1)
2471 		new_owner |= UMUTEX_CONTESTED;
2472 again:
2473 	error = casueword32(&m->m_owner, owner, &old, new_owner);
2474 	if (error == 1) {
2475 		error = thread_check_susp(td, false);
2476 		if (error == 0)
2477 			goto again;
2478 	}
2479 	umtxq_unbusy_unlocked(&key);
2480 	umtx_key_release(&key);
2481 	if (error == -1)
2482 		return (EFAULT);
2483 	if (error == 0 && old != owner)
2484 		return (EINVAL);
2485 	return (error);
2486 }
2487 
2488 /*
2489  * Lock a PP mutex.
2490  */
2491 static int
2492 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
2493     struct _umtx_time *timeout, int try)
2494 {
2495 	struct umtx_abs_timeout timo;
2496 	struct umtx_q *uq, *uq2;
2497 	struct umtx_pi *pi;
2498 	uint32_t ceiling;
2499 	uint32_t owner, id;
2500 	int error, pri, old_inherited_pri, su, rv;
2501 
2502 	id = td->td_tid;
2503 	uq = td->td_umtxq;
2504 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2505 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2506 	    &uq->uq_key)) != 0)
2507 		return (error);
2508 
2509 	if (timeout != NULL)
2510 		umtx_abs_timeout_init2(&timo, timeout);
2511 
2512 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2513 	for (;;) {
2514 		old_inherited_pri = uq->uq_inherited_pri;
2515 		umtxq_lock(&uq->uq_key);
2516 		umtxq_busy(&uq->uq_key);
2517 		umtxq_unlock(&uq->uq_key);
2518 
2519 		rv = fueword32(&m->m_ceilings[0], &ceiling);
2520 		if (rv == -1) {
2521 			error = EFAULT;
2522 			goto out;
2523 		}
2524 		ceiling = RTP_PRIO_MAX - ceiling;
2525 		if (ceiling > RTP_PRIO_MAX) {
2526 			error = EINVAL;
2527 			goto out;
2528 		}
2529 
2530 		mtx_lock(&umtx_lock);
2531 		if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
2532 			mtx_unlock(&umtx_lock);
2533 			error = EINVAL;
2534 			goto out;
2535 		}
2536 		if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
2537 			uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
2538 			thread_lock(td);
2539 			if (uq->uq_inherited_pri < UPRI(td))
2540 				sched_lend_user_prio(td, uq->uq_inherited_pri);
2541 			thread_unlock(td);
2542 		}
2543 		mtx_unlock(&umtx_lock);
2544 
2545 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2546 		    id | UMUTEX_CONTESTED);
2547 		/* The address was invalid. */
2548 		if (rv == -1) {
2549 			error = EFAULT;
2550 			break;
2551 		}
2552 		if (rv == 0) {
2553 			MPASS(owner == UMUTEX_CONTESTED);
2554 			error = 0;
2555 			break;
2556 		}
2557 		/* rv == 1 */
2558 		if (owner == UMUTEX_RB_OWNERDEAD) {
2559 			rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
2560 			    &owner, id | UMUTEX_CONTESTED);
2561 			if (rv == -1) {
2562 				error = EFAULT;
2563 				break;
2564 			}
2565 			if (rv == 0) {
2566 				MPASS(owner == UMUTEX_RB_OWNERDEAD);
2567 				error = EOWNERDEAD; /* success */
2568 				break;
2569 			}
2570 
2571 			/*
2572 			 *  rv == 1, only check for suspension if we
2573 			 *  did not already catched a signal.  If we
2574 			 *  get an error from the check, the same
2575 			 *  condition is checked by the umtxq_sleep()
2576 			 *  call below, so we should obliterate the
2577 			 *  error to not skip the last loop iteration.
2578 			 */
2579 			if (error == 0) {
2580 				error = thread_check_susp(td, false);
2581 				if (error == 0) {
2582 					if (try != 0)
2583 						error = EBUSY;
2584 					else
2585 						continue;
2586 				}
2587 				error = 0;
2588 			}
2589 		} else if (owner == UMUTEX_RB_NOTRECOV) {
2590 			error = ENOTRECOVERABLE;
2591 		}
2592 
2593 		if (try != 0)
2594 			error = EBUSY;
2595 
2596 		/*
2597 		 * If we caught a signal, we have retried and now
2598 		 * exit immediately.
2599 		 */
2600 		if (error != 0)
2601 			break;
2602 
2603 		umtxq_lock(&uq->uq_key);
2604 		umtxq_insert(uq);
2605 		umtxq_unbusy(&uq->uq_key);
2606 		error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
2607 		    NULL : &timo);
2608 		umtxq_remove(uq);
2609 		umtxq_unlock(&uq->uq_key);
2610 
2611 		mtx_lock(&umtx_lock);
2612 		uq->uq_inherited_pri = old_inherited_pri;
2613 		pri = PRI_MAX;
2614 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2615 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2616 			if (uq2 != NULL) {
2617 				if (pri > UPRI(uq2->uq_thread))
2618 					pri = UPRI(uq2->uq_thread);
2619 			}
2620 		}
2621 		if (pri > uq->uq_inherited_pri)
2622 			pri = uq->uq_inherited_pri;
2623 		thread_lock(td);
2624 		sched_lend_user_prio(td, pri);
2625 		thread_unlock(td);
2626 		mtx_unlock(&umtx_lock);
2627 	}
2628 
2629 	if (error != 0 && error != EOWNERDEAD) {
2630 		mtx_lock(&umtx_lock);
2631 		uq->uq_inherited_pri = old_inherited_pri;
2632 		pri = PRI_MAX;
2633 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2634 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2635 			if (uq2 != NULL) {
2636 				if (pri > UPRI(uq2->uq_thread))
2637 					pri = UPRI(uq2->uq_thread);
2638 			}
2639 		}
2640 		if (pri > uq->uq_inherited_pri)
2641 			pri = uq->uq_inherited_pri;
2642 		thread_lock(td);
2643 		sched_lend_user_prio(td, pri);
2644 		thread_unlock(td);
2645 		mtx_unlock(&umtx_lock);
2646 	}
2647 
2648 out:
2649 	umtxq_unbusy_unlocked(&uq->uq_key);
2650 	umtx_key_release(&uq->uq_key);
2651 	return (error);
2652 }
2653 
2654 /*
2655  * Unlock a PP mutex.
2656  */
2657 static int
2658 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2659 {
2660 	struct umtx_key key;
2661 	struct umtx_q *uq, *uq2;
2662 	struct umtx_pi *pi;
2663 	uint32_t id, owner, rceiling;
2664 	int error, pri, new_inherited_pri, su;
2665 
2666 	id = td->td_tid;
2667 	uq = td->td_umtxq;
2668 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2669 
2670 	/*
2671 	 * Make sure we own this mtx.
2672 	 */
2673 	error = fueword32(&m->m_owner, &owner);
2674 	if (error == -1)
2675 		return (EFAULT);
2676 
2677 	if ((owner & ~UMUTEX_CONTESTED) != id)
2678 		return (EPERM);
2679 
2680 	error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
2681 	if (error != 0)
2682 		return (error);
2683 
2684 	if (rceiling == -1)
2685 		new_inherited_pri = PRI_MAX;
2686 	else {
2687 		rceiling = RTP_PRIO_MAX - rceiling;
2688 		if (rceiling > RTP_PRIO_MAX)
2689 			return (EINVAL);
2690 		new_inherited_pri = PRI_MIN_REALTIME + rceiling;
2691 	}
2692 
2693 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2694 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2695 	    &key)) != 0)
2696 		return (error);
2697 	umtxq_lock(&key);
2698 	umtxq_busy(&key);
2699 	umtxq_unlock(&key);
2700 	/*
2701 	 * For priority protected mutex, always set unlocked state
2702 	 * to UMUTEX_CONTESTED, so that userland always enters kernel
2703 	 * to lock the mutex, it is necessary because thread priority
2704 	 * has to be adjusted for such mutex.
2705 	 */
2706 	error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
2707 	    UMUTEX_CONTESTED);
2708 
2709 	umtxq_lock(&key);
2710 	if (error == 0)
2711 		umtxq_signal(&key, 1);
2712 	umtxq_unbusy(&key);
2713 	umtxq_unlock(&key);
2714 
2715 	if (error == -1)
2716 		error = EFAULT;
2717 	else {
2718 		mtx_lock(&umtx_lock);
2719 		if (su != 0)
2720 			uq->uq_inherited_pri = new_inherited_pri;
2721 		pri = PRI_MAX;
2722 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2723 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2724 			if (uq2 != NULL) {
2725 				if (pri > UPRI(uq2->uq_thread))
2726 					pri = UPRI(uq2->uq_thread);
2727 			}
2728 		}
2729 		if (pri > uq->uq_inherited_pri)
2730 			pri = uq->uq_inherited_pri;
2731 		thread_lock(td);
2732 		sched_lend_user_prio(td, pri);
2733 		thread_unlock(td);
2734 		mtx_unlock(&umtx_lock);
2735 	}
2736 	umtx_key_release(&key);
2737 	return (error);
2738 }
2739 
2740 static int
2741 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
2742     uint32_t *old_ceiling)
2743 {
2744 	struct umtx_q *uq;
2745 	uint32_t flags, id, owner, save_ceiling;
2746 	int error, rv, rv1;
2747 
2748 	error = fueword32(&m->m_flags, &flags);
2749 	if (error == -1)
2750 		return (EFAULT);
2751 	if ((flags & UMUTEX_PRIO_PROTECT) == 0)
2752 		return (EINVAL);
2753 	if (ceiling > RTP_PRIO_MAX)
2754 		return (EINVAL);
2755 	id = td->td_tid;
2756 	uq = td->td_umtxq;
2757 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2758 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2759 	    &uq->uq_key)) != 0)
2760 		return (error);
2761 	for (;;) {
2762 		umtxq_lock(&uq->uq_key);
2763 		umtxq_busy(&uq->uq_key);
2764 		umtxq_unlock(&uq->uq_key);
2765 
2766 		rv = fueword32(&m->m_ceilings[0], &save_ceiling);
2767 		if (rv == -1) {
2768 			error = EFAULT;
2769 			break;
2770 		}
2771 
2772 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2773 		    id | UMUTEX_CONTESTED);
2774 		if (rv == -1) {
2775 			error = EFAULT;
2776 			break;
2777 		}
2778 
2779 		if (rv == 0) {
2780 			MPASS(owner == UMUTEX_CONTESTED);
2781 			rv = suword32(&m->m_ceilings[0], ceiling);
2782 			rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
2783 			error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
2784 			break;
2785 		}
2786 
2787 		if ((owner & ~UMUTEX_CONTESTED) == id) {
2788 			rv = suword32(&m->m_ceilings[0], ceiling);
2789 			error = rv == 0 ? 0 : EFAULT;
2790 			break;
2791 		}
2792 
2793 		if (owner == UMUTEX_RB_OWNERDEAD) {
2794 			error = EOWNERDEAD;
2795 			break;
2796 		} else if (owner == UMUTEX_RB_NOTRECOV) {
2797 			error = ENOTRECOVERABLE;
2798 			break;
2799 		}
2800 
2801 		/*
2802 		 * If we caught a signal, we have retried and now
2803 		 * exit immediately.
2804 		 */
2805 		if (error != 0)
2806 			break;
2807 
2808 		/*
2809 		 * We set the contested bit, sleep. Otherwise the lock changed
2810 		 * and we need to retry or we lost a race to the thread
2811 		 * unlocking the umtx.
2812 		 */
2813 		umtxq_lock(&uq->uq_key);
2814 		umtxq_insert(uq);
2815 		umtxq_unbusy(&uq->uq_key);
2816 		error = umtxq_sleep(uq, "umtxpp", NULL);
2817 		umtxq_remove(uq);
2818 		umtxq_unlock(&uq->uq_key);
2819 	}
2820 	umtxq_lock(&uq->uq_key);
2821 	if (error == 0)
2822 		umtxq_signal(&uq->uq_key, INT_MAX);
2823 	umtxq_unbusy(&uq->uq_key);
2824 	umtxq_unlock(&uq->uq_key);
2825 	umtx_key_release(&uq->uq_key);
2826 	if (error == 0 && old_ceiling != NULL) {
2827 		rv = suword32(old_ceiling, save_ceiling);
2828 		error = rv == 0 ? 0 : EFAULT;
2829 	}
2830 	return (error);
2831 }
2832 
2833 /*
2834  * Lock a userland POSIX mutex.
2835  */
2836 static int
2837 do_lock_umutex(struct thread *td, struct umutex *m,
2838     struct _umtx_time *timeout, int mode)
2839 {
2840 	uint32_t flags;
2841 	int error;
2842 
2843 	error = fueword32(&m->m_flags, &flags);
2844 	if (error == -1)
2845 		return (EFAULT);
2846 
2847 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2848 	case 0:
2849 		error = do_lock_normal(td, m, flags, timeout, mode);
2850 		break;
2851 	case UMUTEX_PRIO_INHERIT:
2852 		error = do_lock_pi(td, m, flags, timeout, mode);
2853 		break;
2854 	case UMUTEX_PRIO_PROTECT:
2855 		error = do_lock_pp(td, m, flags, timeout, mode);
2856 		break;
2857 	default:
2858 		return (EINVAL);
2859 	}
2860 	if (timeout == NULL) {
2861 		if (error == EINTR && mode != _UMUTEX_WAIT)
2862 			error = ERESTART;
2863 	} else {
2864 		/* Timed-locking is not restarted. */
2865 		if (error == ERESTART)
2866 			error = EINTR;
2867 	}
2868 	return (error);
2869 }
2870 
2871 /*
2872  * Unlock a userland POSIX mutex.
2873  */
2874 static int
2875 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
2876 {
2877 	uint32_t flags;
2878 	int error;
2879 
2880 	error = fueword32(&m->m_flags, &flags);
2881 	if (error == -1)
2882 		return (EFAULT);
2883 
2884 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2885 	case 0:
2886 		return (do_unlock_normal(td, m, flags, rb));
2887 	case UMUTEX_PRIO_INHERIT:
2888 		return (do_unlock_pi(td, m, flags, rb));
2889 	case UMUTEX_PRIO_PROTECT:
2890 		return (do_unlock_pp(td, m, flags, rb));
2891 	}
2892 
2893 	return (EINVAL);
2894 }
2895 
2896 static int
2897 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
2898     struct timespec *timeout, u_long wflags)
2899 {
2900 	struct umtx_abs_timeout timo;
2901 	struct umtx_q *uq;
2902 	uint32_t flags, clockid, hasw;
2903 	int error;
2904 
2905 	uq = td->td_umtxq;
2906 	error = fueword32(&cv->c_flags, &flags);
2907 	if (error == -1)
2908 		return (EFAULT);
2909 	error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
2910 	if (error != 0)
2911 		return (error);
2912 
2913 	if ((wflags & CVWAIT_CLOCKID) != 0) {
2914 		error = fueword32(&cv->c_clockid, &clockid);
2915 		if (error == -1) {
2916 			umtx_key_release(&uq->uq_key);
2917 			return (EFAULT);
2918 		}
2919 		if (clockid < CLOCK_REALTIME ||
2920 		    clockid >= CLOCK_THREAD_CPUTIME_ID) {
2921 			/* hmm, only HW clock id will work. */
2922 			umtx_key_release(&uq->uq_key);
2923 			return (EINVAL);
2924 		}
2925 	} else {
2926 		clockid = CLOCK_REALTIME;
2927 	}
2928 
2929 	umtxq_lock(&uq->uq_key);
2930 	umtxq_busy(&uq->uq_key);
2931 	umtxq_insert(uq);
2932 	umtxq_unlock(&uq->uq_key);
2933 
2934 	/*
2935 	 * Set c_has_waiters to 1 before releasing user mutex, also
2936 	 * don't modify cache line when unnecessary.
2937 	 */
2938 	error = fueword32(&cv->c_has_waiters, &hasw);
2939 	if (error == 0 && hasw == 0)
2940 		suword32(&cv->c_has_waiters, 1);
2941 
2942 	umtxq_unbusy_unlocked(&uq->uq_key);
2943 
2944 	error = do_unlock_umutex(td, m, false);
2945 
2946 	if (timeout != NULL)
2947 		umtx_abs_timeout_init(&timo, clockid,
2948 		    (wflags & CVWAIT_ABSTIME) != 0, timeout);
2949 
2950 	umtxq_lock(&uq->uq_key);
2951 	if (error == 0) {
2952 		error = umtxq_sleep(uq, "ucond", timeout == NULL ?
2953 		    NULL : &timo);
2954 	}
2955 
2956 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
2957 		error = 0;
2958 	else {
2959 		/*
2960 		 * This must be timeout,interrupted by signal or
2961 		 * surprious wakeup, clear c_has_waiter flag when
2962 		 * necessary.
2963 		 */
2964 		umtxq_busy(&uq->uq_key);
2965 		if ((uq->uq_flags & UQF_UMTXQ) != 0) {
2966 			int oldlen = uq->uq_cur_queue->length;
2967 			umtxq_remove(uq);
2968 			if (oldlen == 1) {
2969 				umtxq_unlock(&uq->uq_key);
2970 				suword32(&cv->c_has_waiters, 0);
2971 				umtxq_lock(&uq->uq_key);
2972 			}
2973 		}
2974 		umtxq_unbusy(&uq->uq_key);
2975 		if (error == ERESTART)
2976 			error = EINTR;
2977 	}
2978 
2979 	umtxq_unlock(&uq->uq_key);
2980 	umtx_key_release(&uq->uq_key);
2981 	return (error);
2982 }
2983 
2984 /*
2985  * Signal a userland condition variable.
2986  */
2987 static int
2988 do_cv_signal(struct thread *td, struct ucond *cv)
2989 {
2990 	struct umtx_key key;
2991 	int error, cnt, nwake;
2992 	uint32_t flags;
2993 
2994 	error = fueword32(&cv->c_flags, &flags);
2995 	if (error == -1)
2996 		return (EFAULT);
2997 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2998 		return (error);
2999 	umtxq_lock(&key);
3000 	umtxq_busy(&key);
3001 	cnt = umtxq_count(&key);
3002 	nwake = umtxq_signal(&key, 1);
3003 	if (cnt <= nwake) {
3004 		umtxq_unlock(&key);
3005 		error = suword32(&cv->c_has_waiters, 0);
3006 		if (error == -1)
3007 			error = EFAULT;
3008 		umtxq_lock(&key);
3009 	}
3010 	umtxq_unbusy(&key);
3011 	umtxq_unlock(&key);
3012 	umtx_key_release(&key);
3013 	return (error);
3014 }
3015 
3016 static int
3017 do_cv_broadcast(struct thread *td, struct ucond *cv)
3018 {
3019 	struct umtx_key key;
3020 	int error;
3021 	uint32_t flags;
3022 
3023 	error = fueword32(&cv->c_flags, &flags);
3024 	if (error == -1)
3025 		return (EFAULT);
3026 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
3027 		return (error);
3028 
3029 	umtxq_lock(&key);
3030 	umtxq_busy(&key);
3031 	umtxq_signal(&key, INT_MAX);
3032 	umtxq_unlock(&key);
3033 
3034 	error = suword32(&cv->c_has_waiters, 0);
3035 	if (error == -1)
3036 		error = EFAULT;
3037 
3038 	umtxq_unbusy_unlocked(&key);
3039 
3040 	umtx_key_release(&key);
3041 	return (error);
3042 }
3043 
3044 static int
3045 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag,
3046     struct _umtx_time *timeout)
3047 {
3048 	struct umtx_abs_timeout timo;
3049 	struct umtx_q *uq;
3050 	uint32_t flags, wrflags;
3051 	int32_t state, oldstate;
3052 	int32_t blocked_readers;
3053 	int error, error1, rv;
3054 
3055 	uq = td->td_umtxq;
3056 	error = fueword32(&rwlock->rw_flags, &flags);
3057 	if (error == -1)
3058 		return (EFAULT);
3059 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3060 	if (error != 0)
3061 		return (error);
3062 
3063 	if (timeout != NULL)
3064 		umtx_abs_timeout_init2(&timo, timeout);
3065 
3066 	wrflags = URWLOCK_WRITE_OWNER;
3067 	if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
3068 		wrflags |= URWLOCK_WRITE_WAITERS;
3069 
3070 	for (;;) {
3071 		rv = fueword32(&rwlock->rw_state, &state);
3072 		if (rv == -1) {
3073 			umtx_key_release(&uq->uq_key);
3074 			return (EFAULT);
3075 		}
3076 
3077 		/* try to lock it */
3078 		while (!(state & wrflags)) {
3079 			if (__predict_false(URWLOCK_READER_COUNT(state) ==
3080 			    URWLOCK_MAX_READERS)) {
3081 				umtx_key_release(&uq->uq_key);
3082 				return (EAGAIN);
3083 			}
3084 			rv = casueword32(&rwlock->rw_state, state,
3085 			    &oldstate, state + 1);
3086 			if (rv == -1) {
3087 				umtx_key_release(&uq->uq_key);
3088 				return (EFAULT);
3089 			}
3090 			if (rv == 0) {
3091 				MPASS(oldstate == state);
3092 				umtx_key_release(&uq->uq_key);
3093 				return (0);
3094 			}
3095 			error = thread_check_susp(td, true);
3096 			if (error != 0)
3097 				break;
3098 			state = oldstate;
3099 		}
3100 
3101 		if (error)
3102 			break;
3103 
3104 		/* grab monitor lock */
3105 		umtxq_lock(&uq->uq_key);
3106 		umtxq_busy(&uq->uq_key);
3107 		umtxq_unlock(&uq->uq_key);
3108 
3109 		/*
3110 		 * re-read the state, in case it changed between the try-lock above
3111 		 * and the check below
3112 		 */
3113 		rv = fueword32(&rwlock->rw_state, &state);
3114 		if (rv == -1)
3115 			error = EFAULT;
3116 
3117 		/* set read contention bit */
3118 		while (error == 0 && (state & wrflags) &&
3119 		    !(state & URWLOCK_READ_WAITERS)) {
3120 			rv = casueword32(&rwlock->rw_state, state,
3121 			    &oldstate, state | URWLOCK_READ_WAITERS);
3122 			if (rv == -1) {
3123 				error = EFAULT;
3124 				break;
3125 			}
3126 			if (rv == 0) {
3127 				MPASS(oldstate == state);
3128 				goto sleep;
3129 			}
3130 			state = oldstate;
3131 			error = thread_check_susp(td, false);
3132 			if (error != 0)
3133 				break;
3134 		}
3135 		if (error != 0) {
3136 			umtxq_unbusy_unlocked(&uq->uq_key);
3137 			break;
3138 		}
3139 
3140 		/* state is changed while setting flags, restart */
3141 		if (!(state & wrflags)) {
3142 			umtxq_unbusy_unlocked(&uq->uq_key);
3143 			error = thread_check_susp(td, true);
3144 			if (error != 0)
3145 				break;
3146 			continue;
3147 		}
3148 
3149 sleep:
3150 		/*
3151 		 * Contention bit is set, before sleeping, increase
3152 		 * read waiter count.
3153 		 */
3154 		rv = fueword32(&rwlock->rw_blocked_readers,
3155 		    &blocked_readers);
3156 		if (rv == -1) {
3157 			umtxq_unbusy_unlocked(&uq->uq_key);
3158 			error = EFAULT;
3159 			break;
3160 		}
3161 		suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
3162 
3163 		while (state & wrflags) {
3164 			umtxq_lock(&uq->uq_key);
3165 			umtxq_insert(uq);
3166 			umtxq_unbusy(&uq->uq_key);
3167 
3168 			error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
3169 			    NULL : &timo);
3170 
3171 			umtxq_busy(&uq->uq_key);
3172 			umtxq_remove(uq);
3173 			umtxq_unlock(&uq->uq_key);
3174 			if (error)
3175 				break;
3176 			rv = fueword32(&rwlock->rw_state, &state);
3177 			if (rv == -1) {
3178 				error = EFAULT;
3179 				break;
3180 			}
3181 		}
3182 
3183 		/* decrease read waiter count, and may clear read contention bit */
3184 		rv = fueword32(&rwlock->rw_blocked_readers,
3185 		    &blocked_readers);
3186 		if (rv == -1) {
3187 			umtxq_unbusy_unlocked(&uq->uq_key);
3188 			error = EFAULT;
3189 			break;
3190 		}
3191 		suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
3192 		if (blocked_readers == 1) {
3193 			rv = fueword32(&rwlock->rw_state, &state);
3194 			if (rv == -1) {
3195 				umtxq_unbusy_unlocked(&uq->uq_key);
3196 				error = EFAULT;
3197 				break;
3198 			}
3199 			for (;;) {
3200 				rv = casueword32(&rwlock->rw_state, state,
3201 				    &oldstate, state & ~URWLOCK_READ_WAITERS);
3202 				if (rv == -1) {
3203 					error = EFAULT;
3204 					break;
3205 				}
3206 				if (rv == 0) {
3207 					MPASS(oldstate == state);
3208 					break;
3209 				}
3210 				state = oldstate;
3211 				error1 = thread_check_susp(td, false);
3212 				if (error1 != 0) {
3213 					if (error == 0)
3214 						error = error1;
3215 					break;
3216 				}
3217 			}
3218 		}
3219 
3220 		umtxq_unbusy_unlocked(&uq->uq_key);
3221 		if (error != 0)
3222 			break;
3223 	}
3224 	umtx_key_release(&uq->uq_key);
3225 	if (error == ERESTART)
3226 		error = EINTR;
3227 	return (error);
3228 }
3229 
3230 static int
3231 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
3232 {
3233 	struct umtx_abs_timeout timo;
3234 	struct umtx_q *uq;
3235 	uint32_t flags;
3236 	int32_t state, oldstate;
3237 	int32_t blocked_writers;
3238 	int32_t blocked_readers;
3239 	int error, error1, rv;
3240 
3241 	uq = td->td_umtxq;
3242 	error = fueword32(&rwlock->rw_flags, &flags);
3243 	if (error == -1)
3244 		return (EFAULT);
3245 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3246 	if (error != 0)
3247 		return (error);
3248 
3249 	if (timeout != NULL)
3250 		umtx_abs_timeout_init2(&timo, timeout);
3251 
3252 	blocked_readers = 0;
3253 	for (;;) {
3254 		rv = fueword32(&rwlock->rw_state, &state);
3255 		if (rv == -1) {
3256 			umtx_key_release(&uq->uq_key);
3257 			return (EFAULT);
3258 		}
3259 		while ((state & URWLOCK_WRITE_OWNER) == 0 &&
3260 		    URWLOCK_READER_COUNT(state) == 0) {
3261 			rv = casueword32(&rwlock->rw_state, state,
3262 			    &oldstate, state | URWLOCK_WRITE_OWNER);
3263 			if (rv == -1) {
3264 				umtx_key_release(&uq->uq_key);
3265 				return (EFAULT);
3266 			}
3267 			if (rv == 0) {
3268 				MPASS(oldstate == state);
3269 				umtx_key_release(&uq->uq_key);
3270 				return (0);
3271 			}
3272 			state = oldstate;
3273 			error = thread_check_susp(td, true);
3274 			if (error != 0)
3275 				break;
3276 		}
3277 
3278 		if (error) {
3279 			if ((state & (URWLOCK_WRITE_OWNER |
3280 			    URWLOCK_WRITE_WAITERS)) == 0 &&
3281 			    blocked_readers != 0) {
3282 				umtxq_lock(&uq->uq_key);
3283 				umtxq_busy(&uq->uq_key);
3284 				umtxq_signal_queue(&uq->uq_key, INT_MAX,
3285 				    UMTX_SHARED_QUEUE);
3286 				umtxq_unbusy(&uq->uq_key);
3287 				umtxq_unlock(&uq->uq_key);
3288 			}
3289 
3290 			break;
3291 		}
3292 
3293 		/* grab monitor lock */
3294 		umtxq_lock(&uq->uq_key);
3295 		umtxq_busy(&uq->uq_key);
3296 		umtxq_unlock(&uq->uq_key);
3297 
3298 		/*
3299 		 * Re-read the state, in case it changed between the
3300 		 * try-lock above and the check below.
3301 		 */
3302 		rv = fueword32(&rwlock->rw_state, &state);
3303 		if (rv == -1)
3304 			error = EFAULT;
3305 
3306 		while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
3307 		    URWLOCK_READER_COUNT(state) != 0) &&
3308 		    (state & URWLOCK_WRITE_WAITERS) == 0) {
3309 			rv = casueword32(&rwlock->rw_state, state,
3310 			    &oldstate, state | URWLOCK_WRITE_WAITERS);
3311 			if (rv == -1) {
3312 				error = EFAULT;
3313 				break;
3314 			}
3315 			if (rv == 0) {
3316 				MPASS(oldstate == state);
3317 				goto sleep;
3318 			}
3319 			state = oldstate;
3320 			error = thread_check_susp(td, false);
3321 			if (error != 0)
3322 				break;
3323 		}
3324 		if (error != 0) {
3325 			umtxq_unbusy_unlocked(&uq->uq_key);
3326 			break;
3327 		}
3328 
3329 		if ((state & URWLOCK_WRITE_OWNER) == 0 &&
3330 		    URWLOCK_READER_COUNT(state) == 0) {
3331 			umtxq_unbusy_unlocked(&uq->uq_key);
3332 			error = thread_check_susp(td, false);
3333 			if (error != 0)
3334 				break;
3335 			continue;
3336 		}
3337 sleep:
3338 		rv = fueword32(&rwlock->rw_blocked_writers,
3339 		    &blocked_writers);
3340 		if (rv == -1) {
3341 			umtxq_unbusy_unlocked(&uq->uq_key);
3342 			error = EFAULT;
3343 			break;
3344 		}
3345 		suword32(&rwlock->rw_blocked_writers, blocked_writers + 1);
3346 
3347 		while ((state & URWLOCK_WRITE_OWNER) ||
3348 		    URWLOCK_READER_COUNT(state) != 0) {
3349 			umtxq_lock(&uq->uq_key);
3350 			umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3351 			umtxq_unbusy(&uq->uq_key);
3352 
3353 			error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
3354 			    NULL : &timo);
3355 
3356 			umtxq_busy(&uq->uq_key);
3357 			umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3358 			umtxq_unlock(&uq->uq_key);
3359 			if (error)
3360 				break;
3361 			rv = fueword32(&rwlock->rw_state, &state);
3362 			if (rv == -1) {
3363 				error = EFAULT;
3364 				break;
3365 			}
3366 		}
3367 
3368 		rv = fueword32(&rwlock->rw_blocked_writers,
3369 		    &blocked_writers);
3370 		if (rv == -1) {
3371 			umtxq_unbusy_unlocked(&uq->uq_key);
3372 			error = EFAULT;
3373 			break;
3374 		}
3375 		suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
3376 		if (blocked_writers == 1) {
3377 			rv = fueword32(&rwlock->rw_state, &state);
3378 			if (rv == -1) {
3379 				umtxq_unbusy_unlocked(&uq->uq_key);
3380 				error = EFAULT;
3381 				break;
3382 			}
3383 			for (;;) {
3384 				rv = casueword32(&rwlock->rw_state, state,
3385 				    &oldstate, state & ~URWLOCK_WRITE_WAITERS);
3386 				if (rv == -1) {
3387 					error = EFAULT;
3388 					break;
3389 				}
3390 				if (rv == 0) {
3391 					MPASS(oldstate == state);
3392 					break;
3393 				}
3394 				state = oldstate;
3395 				error1 = thread_check_susp(td, false);
3396 				/*
3397 				 * We are leaving the URWLOCK_WRITE_WAITERS
3398 				 * behind, but this should not harm the
3399 				 * correctness.
3400 				 */
3401 				if (error1 != 0) {
3402 					if (error == 0)
3403 						error = error1;
3404 					break;
3405 				}
3406 			}
3407 			rv = fueword32(&rwlock->rw_blocked_readers,
3408 			    &blocked_readers);
3409 			if (rv == -1) {
3410 				umtxq_unbusy_unlocked(&uq->uq_key);
3411 				error = EFAULT;
3412 				break;
3413 			}
3414 		} else
3415 			blocked_readers = 0;
3416 
3417 		umtxq_unbusy_unlocked(&uq->uq_key);
3418 	}
3419 
3420 	umtx_key_release(&uq->uq_key);
3421 	if (error == ERESTART)
3422 		error = EINTR;
3423 	return (error);
3424 }
3425 
3426 static int
3427 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
3428 {
3429 	struct umtx_q *uq;
3430 	uint32_t flags;
3431 	int32_t state, oldstate;
3432 	int error, rv, q, count;
3433 
3434 	uq = td->td_umtxq;
3435 	error = fueword32(&rwlock->rw_flags, &flags);
3436 	if (error == -1)
3437 		return (EFAULT);
3438 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3439 	if (error != 0)
3440 		return (error);
3441 
3442 	error = fueword32(&rwlock->rw_state, &state);
3443 	if (error == -1) {
3444 		error = EFAULT;
3445 		goto out;
3446 	}
3447 	if (state & URWLOCK_WRITE_OWNER) {
3448 		for (;;) {
3449 			rv = casueword32(&rwlock->rw_state, state,
3450 			    &oldstate, state & ~URWLOCK_WRITE_OWNER);
3451 			if (rv == -1) {
3452 				error = EFAULT;
3453 				goto out;
3454 			}
3455 			if (rv == 1) {
3456 				state = oldstate;
3457 				if (!(oldstate & URWLOCK_WRITE_OWNER)) {
3458 					error = EPERM;
3459 					goto out;
3460 				}
3461 				error = thread_check_susp(td, true);
3462 				if (error != 0)
3463 					goto out;
3464 			} else
3465 				break;
3466 		}
3467 	} else if (URWLOCK_READER_COUNT(state) != 0) {
3468 		for (;;) {
3469 			rv = casueword32(&rwlock->rw_state, state,
3470 			    &oldstate, state - 1);
3471 			if (rv == -1) {
3472 				error = EFAULT;
3473 				goto out;
3474 			}
3475 			if (rv == 1) {
3476 				state = oldstate;
3477 				if (URWLOCK_READER_COUNT(oldstate) == 0) {
3478 					error = EPERM;
3479 					goto out;
3480 				}
3481 				error = thread_check_susp(td, true);
3482 				if (error != 0)
3483 					goto out;
3484 			} else
3485 				break;
3486 		}
3487 	} else {
3488 		error = EPERM;
3489 		goto out;
3490 	}
3491 
3492 	count = 0;
3493 
3494 	if (!(flags & URWLOCK_PREFER_READER)) {
3495 		if (state & URWLOCK_WRITE_WAITERS) {
3496 			count = 1;
3497 			q = UMTX_EXCLUSIVE_QUEUE;
3498 		} else if (state & URWLOCK_READ_WAITERS) {
3499 			count = INT_MAX;
3500 			q = UMTX_SHARED_QUEUE;
3501 		}
3502 	} else {
3503 		if (state & URWLOCK_READ_WAITERS) {
3504 			count = INT_MAX;
3505 			q = UMTX_SHARED_QUEUE;
3506 		} else if (state & URWLOCK_WRITE_WAITERS) {
3507 			count = 1;
3508 			q = UMTX_EXCLUSIVE_QUEUE;
3509 		}
3510 	}
3511 
3512 	if (count) {
3513 		umtxq_lock(&uq->uq_key);
3514 		umtxq_busy(&uq->uq_key);
3515 		umtxq_signal_queue(&uq->uq_key, count, q);
3516 		umtxq_unbusy(&uq->uq_key);
3517 		umtxq_unlock(&uq->uq_key);
3518 	}
3519 out:
3520 	umtx_key_release(&uq->uq_key);
3521 	return (error);
3522 }
3523 
3524 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3525 static int
3526 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
3527 {
3528 	struct umtx_abs_timeout timo;
3529 	struct umtx_q *uq;
3530 	uint32_t flags, count, count1;
3531 	int error, rv, rv1;
3532 
3533 	uq = td->td_umtxq;
3534 	error = fueword32(&sem->_flags, &flags);
3535 	if (error == -1)
3536 		return (EFAULT);
3537 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3538 	if (error != 0)
3539 		return (error);
3540 
3541 	if (timeout != NULL)
3542 		umtx_abs_timeout_init2(&timo, timeout);
3543 
3544 again:
3545 	umtxq_lock(&uq->uq_key);
3546 	umtxq_busy(&uq->uq_key);
3547 	umtxq_insert(uq);
3548 	umtxq_unlock(&uq->uq_key);
3549 	rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
3550 	if (rv == 0)
3551 		rv1 = fueword32(&sem->_count, &count);
3552 	if (rv == -1 || (rv == 0 && (rv1 == -1 || count != 0)) ||
3553 	    (rv == 1 && count1 == 0)) {
3554 		umtxq_lock(&uq->uq_key);
3555 		umtxq_unbusy(&uq->uq_key);
3556 		umtxq_remove(uq);
3557 		umtxq_unlock(&uq->uq_key);
3558 		if (rv == 1) {
3559 			rv = thread_check_susp(td, true);
3560 			if (rv == 0)
3561 				goto again;
3562 			error = rv;
3563 			goto out;
3564 		}
3565 		if (rv == 0)
3566 			rv = rv1;
3567 		error = rv == -1 ? EFAULT : 0;
3568 		goto out;
3569 	}
3570 	umtxq_lock(&uq->uq_key);
3571 	umtxq_unbusy(&uq->uq_key);
3572 
3573 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3574 
3575 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3576 		error = 0;
3577 	else {
3578 		umtxq_remove(uq);
3579 		/* A relative timeout cannot be restarted. */
3580 		if (error == ERESTART && timeout != NULL &&
3581 		    (timeout->_flags & UMTX_ABSTIME) == 0)
3582 			error = EINTR;
3583 	}
3584 	umtxq_unlock(&uq->uq_key);
3585 out:
3586 	umtx_key_release(&uq->uq_key);
3587 	return (error);
3588 }
3589 
3590 /*
3591  * Signal a userland semaphore.
3592  */
3593 static int
3594 do_sem_wake(struct thread *td, struct _usem *sem)
3595 {
3596 	struct umtx_key key;
3597 	int error, cnt;
3598 	uint32_t flags;
3599 
3600 	error = fueword32(&sem->_flags, &flags);
3601 	if (error == -1)
3602 		return (EFAULT);
3603 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3604 		return (error);
3605 	umtxq_lock(&key);
3606 	umtxq_busy(&key);
3607 	cnt = umtxq_count(&key);
3608 	if (cnt > 0) {
3609 		/*
3610 		 * Check if count is greater than 0, this means the memory is
3611 		 * still being referenced by user code, so we can safely
3612 		 * update _has_waiters flag.
3613 		 */
3614 		if (cnt == 1) {
3615 			umtxq_unlock(&key);
3616 			error = suword32(&sem->_has_waiters, 0);
3617 			umtxq_lock(&key);
3618 			if (error == -1)
3619 				error = EFAULT;
3620 		}
3621 		umtxq_signal(&key, 1);
3622 	}
3623 	umtxq_unbusy(&key);
3624 	umtxq_unlock(&key);
3625 	umtx_key_release(&key);
3626 	return (error);
3627 }
3628 #endif
3629 
3630 static int
3631 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
3632 {
3633 	struct umtx_abs_timeout timo;
3634 	struct umtx_q *uq;
3635 	uint32_t count, flags;
3636 	int error, rv;
3637 
3638 	uq = td->td_umtxq;
3639 	flags = fuword32(&sem->_flags);
3640 	if (timeout != NULL)
3641 		umtx_abs_timeout_init2(&timo, timeout);
3642 
3643 again:
3644 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3645 	if (error != 0)
3646 		return (error);
3647 	umtxq_lock(&uq->uq_key);
3648 	umtxq_busy(&uq->uq_key);
3649 	umtxq_insert(uq);
3650 	umtxq_unlock(&uq->uq_key);
3651 	rv = fueword32(&sem->_count, &count);
3652 	if (rv == -1) {
3653 		umtxq_lock(&uq->uq_key);
3654 		umtxq_unbusy(&uq->uq_key);
3655 		umtxq_remove(uq);
3656 		umtxq_unlock(&uq->uq_key);
3657 		umtx_key_release(&uq->uq_key);
3658 		return (EFAULT);
3659 	}
3660 	for (;;) {
3661 		if (USEM_COUNT(count) != 0) {
3662 			umtxq_lock(&uq->uq_key);
3663 			umtxq_unbusy(&uq->uq_key);
3664 			umtxq_remove(uq);
3665 			umtxq_unlock(&uq->uq_key);
3666 			umtx_key_release(&uq->uq_key);
3667 			return (0);
3668 		}
3669 		if (count == USEM_HAS_WAITERS)
3670 			break;
3671 		rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
3672 		if (rv == 0)
3673 			break;
3674 		umtxq_lock(&uq->uq_key);
3675 		umtxq_unbusy(&uq->uq_key);
3676 		umtxq_remove(uq);
3677 		umtxq_unlock(&uq->uq_key);
3678 		umtx_key_release(&uq->uq_key);
3679 		if (rv == -1)
3680 			return (EFAULT);
3681 		rv = thread_check_susp(td, true);
3682 		if (rv != 0)
3683 			return (rv);
3684 		goto again;
3685 	}
3686 	umtxq_lock(&uq->uq_key);
3687 	umtxq_unbusy(&uq->uq_key);
3688 
3689 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3690 
3691 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3692 		error = 0;
3693 	else {
3694 		umtxq_remove(uq);
3695 		if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
3696 			/* A relative timeout cannot be restarted. */
3697 			if (error == ERESTART)
3698 				error = EINTR;
3699 			if (error == EINTR) {
3700 				kern_clock_gettime(curthread, timo.clockid,
3701 				    &timo.cur);
3702 				timespecsub(&timo.end, &timo.cur,
3703 				    &timeout->_timeout);
3704 			}
3705 		}
3706 	}
3707 	umtxq_unlock(&uq->uq_key);
3708 	umtx_key_release(&uq->uq_key);
3709 	return (error);
3710 }
3711 
3712 /*
3713  * Signal a userland semaphore.
3714  */
3715 static int
3716 do_sem2_wake(struct thread *td, struct _usem2 *sem)
3717 {
3718 	struct umtx_key key;
3719 	int error, cnt, rv;
3720 	uint32_t count, flags;
3721 
3722 	rv = fueword32(&sem->_flags, &flags);
3723 	if (rv == -1)
3724 		return (EFAULT);
3725 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3726 		return (error);
3727 	umtxq_lock(&key);
3728 	umtxq_busy(&key);
3729 	cnt = umtxq_count(&key);
3730 	if (cnt > 0) {
3731 		/*
3732 		 * If this was the last sleeping thread, clear the waiters
3733 		 * flag in _count.
3734 		 */
3735 		if (cnt == 1) {
3736 			umtxq_unlock(&key);
3737 			rv = fueword32(&sem->_count, &count);
3738 			while (rv != -1 && count & USEM_HAS_WAITERS) {
3739 				rv = casueword32(&sem->_count, count, &count,
3740 				    count & ~USEM_HAS_WAITERS);
3741 				if (rv == 1) {
3742 					rv = thread_check_susp(td, true);
3743 					if (rv != 0)
3744 						break;
3745 				}
3746 			}
3747 			if (rv == -1)
3748 				error = EFAULT;
3749 			else if (rv > 0) {
3750 				error = rv;
3751 			}
3752 			umtxq_lock(&key);
3753 		}
3754 
3755 		umtxq_signal(&key, 1);
3756 	}
3757 	umtxq_unbusy(&key);
3758 	umtxq_unlock(&key);
3759 	umtx_key_release(&key);
3760 	return (error);
3761 }
3762 
3763 #ifdef COMPAT_FREEBSD10
3764 int
3765 freebsd10__umtx_lock(struct thread *td, struct freebsd10__umtx_lock_args *uap)
3766 {
3767 	return (do_lock_umtx(td, uap->umtx, td->td_tid, 0));
3768 }
3769 
3770 int
3771 freebsd10__umtx_unlock(struct thread *td,
3772     struct freebsd10__umtx_unlock_args *uap)
3773 {
3774 	return (do_unlock_umtx(td, uap->umtx, td->td_tid));
3775 }
3776 #endif
3777 
3778 inline int
3779 umtx_copyin_timeout(const void *uaddr, struct timespec *tsp)
3780 {
3781 	int error;
3782 
3783 	error = copyin(uaddr, tsp, sizeof(*tsp));
3784 	if (error == 0) {
3785 		if (!timespecvalid_interval(tsp))
3786 			error = EINVAL;
3787 	}
3788 	return (error);
3789 }
3790 
3791 static inline int
3792 umtx_copyin_umtx_time(const void *uaddr, size_t size, struct _umtx_time *tp)
3793 {
3794 	int error;
3795 
3796 	if (size <= sizeof(tp->_timeout)) {
3797 		tp->_clockid = CLOCK_REALTIME;
3798 		tp->_flags = 0;
3799 		error = copyin(uaddr, &tp->_timeout, sizeof(tp->_timeout));
3800 	} else
3801 		error = copyin(uaddr, tp, sizeof(*tp));
3802 	if (error != 0)
3803 		return (error);
3804 	if (!timespecvalid_interval(&tp->_timeout))
3805 		return (EINVAL);
3806 	return (0);
3807 }
3808 
3809 static int
3810 umtx_copyin_robust_lists(const void *uaddr, size_t size,
3811     struct umtx_robust_lists_params *rb)
3812 {
3813 
3814 	if (size > sizeof(*rb))
3815 		return (EINVAL);
3816 	return (copyin(uaddr, rb, size));
3817 }
3818 
3819 static int
3820 umtx_copyout_timeout(void *uaddr, size_t sz, struct timespec *tsp)
3821 {
3822 
3823 	/*
3824 	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
3825 	 * and we're only called if sz >= sizeof(timespec) as supplied in the
3826 	 * copyops.
3827 	 */
3828 	KASSERT(sz >= sizeof(*tsp),
3829 	    ("umtx_copyops specifies incorrect sizes"));
3830 
3831 	return (copyout(tsp, uaddr, sizeof(*tsp)));
3832 }
3833 
3834 #ifdef COMPAT_FREEBSD10
3835 static int
3836 __umtx_op_lock_umtx(struct thread *td, struct _umtx_op_args *uap,
3837     const struct umtx_copyops *ops)
3838 {
3839 	struct timespec *ts, timeout;
3840 	int error;
3841 
3842 	/* Allow a null timespec (wait forever). */
3843 	if (uap->uaddr2 == NULL)
3844 		ts = NULL;
3845 	else {
3846 		error = ops->copyin_timeout(uap->uaddr2, &timeout);
3847 		if (error != 0)
3848 			return (error);
3849 		ts = &timeout;
3850 	}
3851 #ifdef COMPAT_FREEBSD32
3852 	if (ops->compat32)
3853 		return (do_lock_umtx32(td, uap->obj, uap->val, ts));
3854 #endif
3855 	return (do_lock_umtx(td, uap->obj, uap->val, ts));
3856 }
3857 
3858 static int
3859 __umtx_op_unlock_umtx(struct thread *td, struct _umtx_op_args *uap,
3860     const struct umtx_copyops *ops)
3861 {
3862 #ifdef COMPAT_FREEBSD32
3863 	if (ops->compat32)
3864 		return (do_unlock_umtx32(td, uap->obj, uap->val));
3865 #endif
3866 	return (do_unlock_umtx(td, uap->obj, uap->val));
3867 }
3868 #endif	/* COMPAT_FREEBSD10 */
3869 
3870 #if !defined(COMPAT_FREEBSD10)
3871 static int
3872 __umtx_op_unimpl(struct thread *td __unused, struct _umtx_op_args *uap __unused,
3873     const struct umtx_copyops *ops __unused)
3874 {
3875 	return (EOPNOTSUPP);
3876 }
3877 #endif	/* COMPAT_FREEBSD10 */
3878 
3879 static int
3880 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap,
3881     const struct umtx_copyops *ops)
3882 {
3883 	struct _umtx_time timeout, *tm_p;
3884 	int error;
3885 
3886 	if (uap->uaddr2 == NULL)
3887 		tm_p = NULL;
3888 	else {
3889 		error = ops->copyin_umtx_time(
3890 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3891 		if (error != 0)
3892 			return (error);
3893 		tm_p = &timeout;
3894 	}
3895 	return (do_wait(td, uap->obj, uap->val, tm_p, ops->compat32, 0));
3896 }
3897 
3898 static int
3899 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap,
3900     const struct umtx_copyops *ops)
3901 {
3902 	struct _umtx_time timeout, *tm_p;
3903 	int error;
3904 
3905 	if (uap->uaddr2 == NULL)
3906 		tm_p = NULL;
3907 	else {
3908 		error = ops->copyin_umtx_time(
3909 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3910 		if (error != 0)
3911 			return (error);
3912 		tm_p = &timeout;
3913 	}
3914 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
3915 }
3916 
3917 static int
3918 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap,
3919     const struct umtx_copyops *ops)
3920 {
3921 	struct _umtx_time *tm_p, timeout;
3922 	int error;
3923 
3924 	if (uap->uaddr2 == NULL)
3925 		tm_p = NULL;
3926 	else {
3927 		error = ops->copyin_umtx_time(
3928 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3929 		if (error != 0)
3930 			return (error);
3931 		tm_p = &timeout;
3932 	}
3933 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
3934 }
3935 
3936 static int
3937 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap,
3938     const struct umtx_copyops *ops __unused)
3939 {
3940 
3941 	return (kern_umtx_wake(td, uap->obj, uap->val, 0));
3942 }
3943 
3944 #define BATCH_SIZE	128
3945 static int
3946 __umtx_op_nwake_private_native(struct thread *td, struct _umtx_op_args *uap)
3947 {
3948 	char *uaddrs[BATCH_SIZE], **upp;
3949 	int count, error, i, pos, tocopy;
3950 
3951 	upp = (char **)uap->obj;
3952 	error = 0;
3953 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3954 	    pos += tocopy) {
3955 		tocopy = MIN(count, BATCH_SIZE);
3956 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
3957 		if (error != 0)
3958 			break;
3959 		for (i = 0; i < tocopy; ++i) {
3960 			kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
3961 		}
3962 		maybe_yield();
3963 	}
3964 	return (error);
3965 }
3966 
3967 static int
3968 __umtx_op_nwake_private_compat32(struct thread *td, struct _umtx_op_args *uap)
3969 {
3970 	uint32_t uaddrs[BATCH_SIZE], *upp;
3971 	int count, error, i, pos, tocopy;
3972 
3973 	upp = (uint32_t *)uap->obj;
3974 	error = 0;
3975 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3976 	    pos += tocopy) {
3977 		tocopy = MIN(count, BATCH_SIZE);
3978 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
3979 		if (error != 0)
3980 			break;
3981 		for (i = 0; i < tocopy; ++i) {
3982 			kern_umtx_wake(td, (void *)(uintptr_t)uaddrs[i],
3983 			    INT_MAX, 1);
3984 		}
3985 		maybe_yield();
3986 	}
3987 	return (error);
3988 }
3989 
3990 static int
3991 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap,
3992     const struct umtx_copyops *ops)
3993 {
3994 
3995 	if (ops->compat32)
3996 		return (__umtx_op_nwake_private_compat32(td, uap));
3997 	return (__umtx_op_nwake_private_native(td, uap));
3998 }
3999 
4000 static int
4001 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap,
4002     const struct umtx_copyops *ops __unused)
4003 {
4004 
4005 	return (kern_umtx_wake(td, uap->obj, uap->val, 1));
4006 }
4007 
4008 static int
4009 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap,
4010    const struct umtx_copyops *ops)
4011 {
4012 	struct _umtx_time *tm_p, timeout;
4013 	int error;
4014 
4015 	/* Allow a null timespec (wait forever). */
4016 	if (uap->uaddr2 == NULL)
4017 		tm_p = NULL;
4018 	else {
4019 		error = ops->copyin_umtx_time(
4020 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4021 		if (error != 0)
4022 			return (error);
4023 		tm_p = &timeout;
4024 	}
4025 	return (do_lock_umutex(td, uap->obj, tm_p, 0));
4026 }
4027 
4028 static int
4029 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap,
4030     const struct umtx_copyops *ops __unused)
4031 {
4032 
4033 	return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
4034 }
4035 
4036 static int
4037 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap,
4038     const struct umtx_copyops *ops)
4039 {
4040 	struct _umtx_time *tm_p, timeout;
4041 	int error;
4042 
4043 	/* Allow a null timespec (wait forever). */
4044 	if (uap->uaddr2 == NULL)
4045 		tm_p = NULL;
4046 	else {
4047 		error = ops->copyin_umtx_time(
4048 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4049 		if (error != 0)
4050 			return (error);
4051 		tm_p = &timeout;
4052 	}
4053 	return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
4054 }
4055 
4056 static int
4057 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap,
4058     const struct umtx_copyops *ops __unused)
4059 {
4060 
4061 	return (do_wake_umutex(td, uap->obj));
4062 }
4063 
4064 static int
4065 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap,
4066     const struct umtx_copyops *ops __unused)
4067 {
4068 
4069 	return (do_unlock_umutex(td, uap->obj, false));
4070 }
4071 
4072 static int
4073 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap,
4074     const struct umtx_copyops *ops __unused)
4075 {
4076 
4077 	return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
4078 }
4079 
4080 static int
4081 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap,
4082     const struct umtx_copyops *ops)
4083 {
4084 	struct timespec *ts, timeout;
4085 	int error;
4086 
4087 	/* Allow a null timespec (wait forever). */
4088 	if (uap->uaddr2 == NULL)
4089 		ts = NULL;
4090 	else {
4091 		error = ops->copyin_timeout(uap->uaddr2, &timeout);
4092 		if (error != 0)
4093 			return (error);
4094 		ts = &timeout;
4095 	}
4096 	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
4097 }
4098 
4099 static int
4100 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap,
4101     const struct umtx_copyops *ops __unused)
4102 {
4103 
4104 	return (do_cv_signal(td, uap->obj));
4105 }
4106 
4107 static int
4108 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap,
4109     const struct umtx_copyops *ops __unused)
4110 {
4111 
4112 	return (do_cv_broadcast(td, uap->obj));
4113 }
4114 
4115 static int
4116 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap,
4117     const struct umtx_copyops *ops)
4118 {
4119 	struct _umtx_time timeout;
4120 	int error;
4121 
4122 	/* Allow a null timespec (wait forever). */
4123 	if (uap->uaddr2 == NULL) {
4124 		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
4125 	} else {
4126 		error = ops->copyin_umtx_time(uap->uaddr2,
4127 		   (size_t)uap->uaddr1, &timeout);
4128 		if (error != 0)
4129 			return (error);
4130 		error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
4131 	}
4132 	return (error);
4133 }
4134 
4135 static int
4136 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap,
4137     const struct umtx_copyops *ops)
4138 {
4139 	struct _umtx_time timeout;
4140 	int error;
4141 
4142 	/* Allow a null timespec (wait forever). */
4143 	if (uap->uaddr2 == NULL) {
4144 		error = do_rw_wrlock(td, uap->obj, 0);
4145 	} else {
4146 		error = ops->copyin_umtx_time(uap->uaddr2,
4147 		   (size_t)uap->uaddr1, &timeout);
4148 		if (error != 0)
4149 			return (error);
4150 
4151 		error = do_rw_wrlock(td, uap->obj, &timeout);
4152 	}
4153 	return (error);
4154 }
4155 
4156 static int
4157 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap,
4158     const struct umtx_copyops *ops __unused)
4159 {
4160 
4161 	return (do_rw_unlock(td, uap->obj));
4162 }
4163 
4164 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4165 static int
4166 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap,
4167     const struct umtx_copyops *ops)
4168 {
4169 	struct _umtx_time *tm_p, timeout;
4170 	int error;
4171 
4172 	/* Allow a null timespec (wait forever). */
4173 	if (uap->uaddr2 == NULL)
4174 		tm_p = NULL;
4175 	else {
4176 		error = ops->copyin_umtx_time(
4177 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4178 		if (error != 0)
4179 			return (error);
4180 		tm_p = &timeout;
4181 	}
4182 	return (do_sem_wait(td, uap->obj, tm_p));
4183 }
4184 
4185 static int
4186 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap,
4187     const struct umtx_copyops *ops __unused)
4188 {
4189 
4190 	return (do_sem_wake(td, uap->obj));
4191 }
4192 #endif
4193 
4194 static int
4195 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap,
4196     const struct umtx_copyops *ops __unused)
4197 {
4198 
4199 	return (do_wake2_umutex(td, uap->obj, uap->val));
4200 }
4201 
4202 static int
4203 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap,
4204     const struct umtx_copyops *ops)
4205 {
4206 	struct _umtx_time *tm_p, timeout;
4207 	size_t uasize;
4208 	int error;
4209 
4210 	/* Allow a null timespec (wait forever). */
4211 	if (uap->uaddr2 == NULL) {
4212 		uasize = 0;
4213 		tm_p = NULL;
4214 	} else {
4215 		uasize = (size_t)uap->uaddr1;
4216 		error = ops->copyin_umtx_time(uap->uaddr2, uasize, &timeout);
4217 		if (error != 0)
4218 			return (error);
4219 		tm_p = &timeout;
4220 	}
4221 	error = do_sem2_wait(td, uap->obj, tm_p);
4222 	if (error == EINTR && uap->uaddr2 != NULL &&
4223 	    (timeout._flags & UMTX_ABSTIME) == 0 &&
4224 	    uasize >= ops->umtx_time_sz + ops->timespec_sz) {
4225 		error = ops->copyout_timeout(
4226 		    (void *)((uintptr_t)uap->uaddr2 + ops->umtx_time_sz),
4227 		    uasize - ops->umtx_time_sz, &timeout._timeout);
4228 		if (error == 0) {
4229 			error = EINTR;
4230 		}
4231 	}
4232 
4233 	return (error);
4234 }
4235 
4236 static int
4237 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap,
4238     const struct umtx_copyops *ops __unused)
4239 {
4240 
4241 	return (do_sem2_wake(td, uap->obj));
4242 }
4243 
4244 #define	USHM_OBJ_UMTX(o)						\
4245     ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
4246 
4247 #define	USHMF_REG_LINKED	0x0001
4248 #define	USHMF_OBJ_LINKED	0x0002
4249 struct umtx_shm_reg {
4250 	TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
4251 	LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
4252 	struct umtx_key		ushm_key;
4253 	struct ucred		*ushm_cred;
4254 	struct shmfd		*ushm_obj;
4255 	u_int			ushm_refcnt;
4256 	u_int			ushm_flags;
4257 };
4258 
4259 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
4260 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
4261 
4262 static uma_zone_t umtx_shm_reg_zone;
4263 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
4264 static struct mtx umtx_shm_lock;
4265 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
4266     TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
4267 
4268 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
4269 
4270 static void
4271 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
4272 {
4273 	struct umtx_shm_reg_head d;
4274 	struct umtx_shm_reg *reg, *reg1;
4275 
4276 	TAILQ_INIT(&d);
4277 	mtx_lock(&umtx_shm_lock);
4278 	TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
4279 	mtx_unlock(&umtx_shm_lock);
4280 	TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
4281 		TAILQ_REMOVE(&d, reg, ushm_reg_link);
4282 		umtx_shm_free_reg(reg);
4283 	}
4284 }
4285 
4286 static struct task umtx_shm_reg_delfree_task =
4287     TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
4288 
4289 static struct umtx_shm_reg *
4290 umtx_shm_find_reg_locked(const struct umtx_key *key)
4291 {
4292 	struct umtx_shm_reg *reg;
4293 	struct umtx_shm_reg_head *reg_head;
4294 
4295 	KASSERT(key->shared, ("umtx_p_find_rg: private key"));
4296 	mtx_assert(&umtx_shm_lock, MA_OWNED);
4297 	reg_head = &umtx_shm_registry[key->hash];
4298 	TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
4299 		KASSERT(reg->ushm_key.shared,
4300 		    ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
4301 		if (reg->ushm_key.info.shared.object ==
4302 		    key->info.shared.object &&
4303 		    reg->ushm_key.info.shared.offset ==
4304 		    key->info.shared.offset) {
4305 			KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
4306 			KASSERT(reg->ushm_refcnt > 0,
4307 			    ("reg %p refcnt 0 onlist", reg));
4308 			KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
4309 			    ("reg %p not linked", reg));
4310 			reg->ushm_refcnt++;
4311 			return (reg);
4312 		}
4313 	}
4314 	return (NULL);
4315 }
4316 
4317 static struct umtx_shm_reg *
4318 umtx_shm_find_reg(const struct umtx_key *key)
4319 {
4320 	struct umtx_shm_reg *reg;
4321 
4322 	mtx_lock(&umtx_shm_lock);
4323 	reg = umtx_shm_find_reg_locked(key);
4324 	mtx_unlock(&umtx_shm_lock);
4325 	return (reg);
4326 }
4327 
4328 static void
4329 umtx_shm_free_reg(struct umtx_shm_reg *reg)
4330 {
4331 
4332 	chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
4333 	crfree(reg->ushm_cred);
4334 	shm_drop(reg->ushm_obj);
4335 	uma_zfree(umtx_shm_reg_zone, reg);
4336 }
4337 
4338 static bool
4339 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
4340 {
4341 	bool res;
4342 
4343 	mtx_assert(&umtx_shm_lock, MA_OWNED);
4344 	KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
4345 	reg->ushm_refcnt--;
4346 	res = reg->ushm_refcnt == 0;
4347 	if (res || force) {
4348 		if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
4349 			TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
4350 			    reg, ushm_reg_link);
4351 			reg->ushm_flags &= ~USHMF_REG_LINKED;
4352 		}
4353 		if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
4354 			LIST_REMOVE(reg, ushm_obj_link);
4355 			reg->ushm_flags &= ~USHMF_OBJ_LINKED;
4356 		}
4357 	}
4358 	return (res);
4359 }
4360 
4361 static void
4362 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
4363 {
4364 	vm_object_t object;
4365 	bool dofree;
4366 
4367 	if (force) {
4368 		object = reg->ushm_obj->shm_object;
4369 		VM_OBJECT_WLOCK(object);
4370 		vm_object_set_flag(object, OBJ_UMTXDEAD);
4371 		VM_OBJECT_WUNLOCK(object);
4372 	}
4373 	mtx_lock(&umtx_shm_lock);
4374 	dofree = umtx_shm_unref_reg_locked(reg, force);
4375 	mtx_unlock(&umtx_shm_lock);
4376 	if (dofree)
4377 		umtx_shm_free_reg(reg);
4378 }
4379 
4380 void
4381 umtx_shm_object_init(vm_object_t object)
4382 {
4383 
4384 	LIST_INIT(USHM_OBJ_UMTX(object));
4385 }
4386 
4387 void
4388 umtx_shm_object_terminated(vm_object_t object)
4389 {
4390 	struct umtx_shm_reg *reg, *reg1;
4391 	bool dofree;
4392 
4393 	if (LIST_EMPTY(USHM_OBJ_UMTX(object)))
4394 		return;
4395 
4396 	dofree = false;
4397 	mtx_lock(&umtx_shm_lock);
4398 	LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
4399 		if (umtx_shm_unref_reg_locked(reg, true)) {
4400 			TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
4401 			    ushm_reg_link);
4402 			dofree = true;
4403 		}
4404 	}
4405 	mtx_unlock(&umtx_shm_lock);
4406 	if (dofree)
4407 		taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
4408 }
4409 
4410 static int
4411 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
4412     struct umtx_shm_reg **res)
4413 {
4414 	struct umtx_shm_reg *reg, *reg1;
4415 	struct ucred *cred;
4416 	int error;
4417 
4418 	reg = umtx_shm_find_reg(key);
4419 	if (reg != NULL) {
4420 		*res = reg;
4421 		return (0);
4422 	}
4423 	cred = td->td_ucred;
4424 	if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
4425 		return (ENOMEM);
4426 	reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
4427 	reg->ushm_refcnt = 1;
4428 	bcopy(key, &reg->ushm_key, sizeof(*key));
4429 	reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR, false);
4430 	reg->ushm_cred = crhold(cred);
4431 	error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
4432 	if (error != 0) {
4433 		umtx_shm_free_reg(reg);
4434 		return (error);
4435 	}
4436 	mtx_lock(&umtx_shm_lock);
4437 	reg1 = umtx_shm_find_reg_locked(key);
4438 	if (reg1 != NULL) {
4439 		mtx_unlock(&umtx_shm_lock);
4440 		umtx_shm_free_reg(reg);
4441 		*res = reg1;
4442 		return (0);
4443 	}
4444 	reg->ushm_refcnt++;
4445 	TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
4446 	LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
4447 	    ushm_obj_link);
4448 	reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
4449 	mtx_unlock(&umtx_shm_lock);
4450 	*res = reg;
4451 	return (0);
4452 }
4453 
4454 static int
4455 umtx_shm_alive(struct thread *td, void *addr)
4456 {
4457 	vm_map_t map;
4458 	vm_map_entry_t entry;
4459 	vm_object_t object;
4460 	vm_pindex_t pindex;
4461 	vm_prot_t prot;
4462 	int res, ret;
4463 	boolean_t wired;
4464 
4465 	map = &td->td_proc->p_vmspace->vm_map;
4466 	res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
4467 	    &object, &pindex, &prot, &wired);
4468 	if (res != KERN_SUCCESS)
4469 		return (EFAULT);
4470 	if (object == NULL)
4471 		ret = EINVAL;
4472 	else
4473 		ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
4474 	vm_map_lookup_done(map, entry);
4475 	return (ret);
4476 }
4477 
4478 static void
4479 umtx_shm_init(void)
4480 {
4481 	int i;
4482 
4483 	umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
4484 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
4485 	mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
4486 	for (i = 0; i < nitems(umtx_shm_registry); i++)
4487 		TAILQ_INIT(&umtx_shm_registry[i]);
4488 }
4489 
4490 static int
4491 umtx_shm(struct thread *td, void *addr, u_int flags)
4492 {
4493 	struct umtx_key key;
4494 	struct umtx_shm_reg *reg;
4495 	struct file *fp;
4496 	int error, fd;
4497 
4498 	if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
4499 	    UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
4500 		return (EINVAL);
4501 	if ((flags & UMTX_SHM_ALIVE) != 0)
4502 		return (umtx_shm_alive(td, addr));
4503 	error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
4504 	if (error != 0)
4505 		return (error);
4506 	KASSERT(key.shared == 1, ("non-shared key"));
4507 	if ((flags & UMTX_SHM_CREAT) != 0) {
4508 		error = umtx_shm_create_reg(td, &key, &reg);
4509 	} else {
4510 		reg = umtx_shm_find_reg(&key);
4511 		if (reg == NULL)
4512 			error = ESRCH;
4513 	}
4514 	umtx_key_release(&key);
4515 	if (error != 0)
4516 		return (error);
4517 	KASSERT(reg != NULL, ("no reg"));
4518 	if ((flags & UMTX_SHM_DESTROY) != 0) {
4519 		umtx_shm_unref_reg(reg, true);
4520 	} else {
4521 #if 0
4522 #ifdef MAC
4523 		error = mac_posixshm_check_open(td->td_ucred,
4524 		    reg->ushm_obj, FFLAGS(O_RDWR));
4525 		if (error == 0)
4526 #endif
4527 			error = shm_access(reg->ushm_obj, td->td_ucred,
4528 			    FFLAGS(O_RDWR));
4529 		if (error == 0)
4530 #endif
4531 			error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
4532 		if (error == 0) {
4533 			shm_hold(reg->ushm_obj);
4534 			finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
4535 			    &shm_ops);
4536 			td->td_retval[0] = fd;
4537 			fdrop(fp, td);
4538 		}
4539 	}
4540 	umtx_shm_unref_reg(reg, false);
4541 	return (error);
4542 }
4543 
4544 static int
4545 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap,
4546     const struct umtx_copyops *ops __unused)
4547 {
4548 
4549 	return (umtx_shm(td, uap->uaddr1, uap->val));
4550 }
4551 
4552 static int
4553 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap,
4554     const struct umtx_copyops *ops)
4555 {
4556 	struct umtx_robust_lists_params rb;
4557 	int error;
4558 
4559 	if (ops->compat32) {
4560 		if ((td->td_pflags2 & TDP2_COMPAT32RB) == 0 &&
4561 		    (td->td_rb_list != 0 || td->td_rbp_list != 0 ||
4562 		    td->td_rb_inact != 0))
4563 			return (EBUSY);
4564 	} else if ((td->td_pflags2 & TDP2_COMPAT32RB) != 0) {
4565 		return (EBUSY);
4566 	}
4567 
4568 	bzero(&rb, sizeof(rb));
4569 	error = ops->copyin_robust_lists(uap->uaddr1, uap->val, &rb);
4570 	if (error != 0)
4571 		return (error);
4572 
4573 	if (ops->compat32)
4574 		td->td_pflags2 |= TDP2_COMPAT32RB;
4575 
4576 	td->td_rb_list = rb.robust_list_offset;
4577 	td->td_rbp_list = rb.robust_priv_list_offset;
4578 	td->td_rb_inact = rb.robust_inact_offset;
4579 	return (0);
4580 }
4581 
4582 #if defined(__i386__) || defined(__amd64__)
4583 /*
4584  * Provide the standard 32-bit definitions for x86, since native/compat32 use a
4585  * 32-bit time_t there.  Other architectures just need the i386 definitions
4586  * along with their standard compat32.
4587  */
4588 struct timespecx32 {
4589 	int64_t			tv_sec;
4590 	int32_t			tv_nsec;
4591 };
4592 
4593 struct umtx_timex32 {
4594 	struct	timespecx32	_timeout;
4595 	uint32_t		_flags;
4596 	uint32_t		_clockid;
4597 };
4598 
4599 #ifndef __i386__
4600 #define	timespeci386	timespec32
4601 #define	umtx_timei386	umtx_time32
4602 #endif
4603 #else /* !__i386__ && !__amd64__ */
4604 /* 32-bit architectures can emulate i386, so define these almost everywhere. */
4605 struct timespeci386 {
4606 	int32_t			tv_sec;
4607 	int32_t			tv_nsec;
4608 };
4609 
4610 struct umtx_timei386 {
4611 	struct	timespeci386	_timeout;
4612 	uint32_t		_flags;
4613 	uint32_t		_clockid;
4614 };
4615 
4616 #if defined(__LP64__)
4617 #define	timespecx32	timespec32
4618 #define	umtx_timex32	umtx_time32
4619 #endif
4620 #endif
4621 
4622 static int
4623 umtx_copyin_robust_lists32(const void *uaddr, size_t size,
4624     struct umtx_robust_lists_params *rbp)
4625 {
4626 	struct umtx_robust_lists_params_compat32 rb32;
4627 	int error;
4628 
4629 	if (size > sizeof(rb32))
4630 		return (EINVAL);
4631 	bzero(&rb32, sizeof(rb32));
4632 	error = copyin(uaddr, &rb32, size);
4633 	if (error != 0)
4634 		return (error);
4635 	CP(rb32, *rbp, robust_list_offset);
4636 	CP(rb32, *rbp, robust_priv_list_offset);
4637 	CP(rb32, *rbp, robust_inact_offset);
4638 	return (0);
4639 }
4640 
4641 #ifndef __i386__
4642 static inline int
4643 umtx_copyin_timeouti386(const void *uaddr, struct timespec *tsp)
4644 {
4645 	struct timespeci386 ts32;
4646 	int error;
4647 
4648 	error = copyin(uaddr, &ts32, sizeof(ts32));
4649 	if (error == 0) {
4650 		if (!timespecvalid_interval(&ts32))
4651 			error = EINVAL;
4652 		else {
4653 			CP(ts32, *tsp, tv_sec);
4654 			CP(ts32, *tsp, tv_nsec);
4655 		}
4656 	}
4657 	return (error);
4658 }
4659 
4660 static inline int
4661 umtx_copyin_umtx_timei386(const void *uaddr, size_t size, struct _umtx_time *tp)
4662 {
4663 	struct umtx_timei386 t32;
4664 	int error;
4665 
4666 	t32._clockid = CLOCK_REALTIME;
4667 	t32._flags   = 0;
4668 	if (size <= sizeof(t32._timeout))
4669 		error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4670 	else
4671 		error = copyin(uaddr, &t32, sizeof(t32));
4672 	if (error != 0)
4673 		return (error);
4674 	if (!timespecvalid_interval(&t32._timeout))
4675 		return (EINVAL);
4676 	TS_CP(t32, *tp, _timeout);
4677 	CP(t32, *tp, _flags);
4678 	CP(t32, *tp, _clockid);
4679 	return (0);
4680 }
4681 
4682 static int
4683 umtx_copyout_timeouti386(void *uaddr, size_t sz, struct timespec *tsp)
4684 {
4685 	struct timespeci386 remain32 = {
4686 		.tv_sec = tsp->tv_sec,
4687 		.tv_nsec = tsp->tv_nsec,
4688 	};
4689 
4690 	/*
4691 	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4692 	 * and we're only called if sz >= sizeof(timespec) as supplied in the
4693 	 * copyops.
4694 	 */
4695 	KASSERT(sz >= sizeof(remain32),
4696 	    ("umtx_copyops specifies incorrect sizes"));
4697 
4698 	return (copyout(&remain32, uaddr, sizeof(remain32)));
4699 }
4700 #endif /* !__i386__ */
4701 
4702 #if defined(__i386__) || defined(__LP64__)
4703 static inline int
4704 umtx_copyin_timeoutx32(const void *uaddr, struct timespec *tsp)
4705 {
4706 	struct timespecx32 ts32;
4707 	int error;
4708 
4709 	error = copyin(uaddr, &ts32, sizeof(ts32));
4710 	if (error == 0) {
4711 		if (!timespecvalid_interval(&ts32))
4712 			error = EINVAL;
4713 		else {
4714 			CP(ts32, *tsp, tv_sec);
4715 			CP(ts32, *tsp, tv_nsec);
4716 		}
4717 	}
4718 	return (error);
4719 }
4720 
4721 static inline int
4722 umtx_copyin_umtx_timex32(const void *uaddr, size_t size, struct _umtx_time *tp)
4723 {
4724 	struct umtx_timex32 t32;
4725 	int error;
4726 
4727 	t32._clockid = CLOCK_REALTIME;
4728 	t32._flags   = 0;
4729 	if (size <= sizeof(t32._timeout))
4730 		error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4731 	else
4732 		error = copyin(uaddr, &t32, sizeof(t32));
4733 	if (error != 0)
4734 		return (error);
4735 	if (!timespecvalid_interval(&t32._timeout))
4736 		return (EINVAL);
4737 	TS_CP(t32, *tp, _timeout);
4738 	CP(t32, *tp, _flags);
4739 	CP(t32, *tp, _clockid);
4740 	return (0);
4741 }
4742 
4743 static int
4744 umtx_copyout_timeoutx32(void *uaddr, size_t sz, struct timespec *tsp)
4745 {
4746 	struct timespecx32 remain32 = {
4747 		.tv_sec = tsp->tv_sec,
4748 		.tv_nsec = tsp->tv_nsec,
4749 	};
4750 
4751 	/*
4752 	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4753 	 * and we're only called if sz >= sizeof(timespec) as supplied in the
4754 	 * copyops.
4755 	 */
4756 	KASSERT(sz >= sizeof(remain32),
4757 	    ("umtx_copyops specifies incorrect sizes"));
4758 
4759 	return (copyout(&remain32, uaddr, sizeof(remain32)));
4760 }
4761 #endif /* __i386__ || __LP64__ */
4762 
4763 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap,
4764     const struct umtx_copyops *umtx_ops);
4765 
4766 static const _umtx_op_func op_table[] = {
4767 #ifdef COMPAT_FREEBSD10
4768 	[UMTX_OP_LOCK]		= __umtx_op_lock_umtx,
4769 	[UMTX_OP_UNLOCK]	= __umtx_op_unlock_umtx,
4770 #else
4771 	[UMTX_OP_LOCK]		= __umtx_op_unimpl,
4772 	[UMTX_OP_UNLOCK]	= __umtx_op_unimpl,
4773 #endif
4774 	[UMTX_OP_WAIT]		= __umtx_op_wait,
4775 	[UMTX_OP_WAKE]		= __umtx_op_wake,
4776 	[UMTX_OP_MUTEX_TRYLOCK]	= __umtx_op_trylock_umutex,
4777 	[UMTX_OP_MUTEX_LOCK]	= __umtx_op_lock_umutex,
4778 	[UMTX_OP_MUTEX_UNLOCK]	= __umtx_op_unlock_umutex,
4779 	[UMTX_OP_SET_CEILING]	= __umtx_op_set_ceiling,
4780 	[UMTX_OP_CV_WAIT]	= __umtx_op_cv_wait,
4781 	[UMTX_OP_CV_SIGNAL]	= __umtx_op_cv_signal,
4782 	[UMTX_OP_CV_BROADCAST]	= __umtx_op_cv_broadcast,
4783 	[UMTX_OP_WAIT_UINT]	= __umtx_op_wait_uint,
4784 	[UMTX_OP_RW_RDLOCK]	= __umtx_op_rw_rdlock,
4785 	[UMTX_OP_RW_WRLOCK]	= __umtx_op_rw_wrlock,
4786 	[UMTX_OP_RW_UNLOCK]	= __umtx_op_rw_unlock,
4787 	[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
4788 	[UMTX_OP_WAKE_PRIVATE]	= __umtx_op_wake_private,
4789 	[UMTX_OP_MUTEX_WAIT]	= __umtx_op_wait_umutex,
4790 	[UMTX_OP_MUTEX_WAKE]	= __umtx_op_wake_umutex,
4791 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4792 	[UMTX_OP_SEM_WAIT]	= __umtx_op_sem_wait,
4793 	[UMTX_OP_SEM_WAKE]	= __umtx_op_sem_wake,
4794 #else
4795 	[UMTX_OP_SEM_WAIT]	= __umtx_op_unimpl,
4796 	[UMTX_OP_SEM_WAKE]	= __umtx_op_unimpl,
4797 #endif
4798 	[UMTX_OP_NWAKE_PRIVATE]	= __umtx_op_nwake_private,
4799 	[UMTX_OP_MUTEX_WAKE2]	= __umtx_op_wake2_umutex,
4800 	[UMTX_OP_SEM2_WAIT]	= __umtx_op_sem2_wait,
4801 	[UMTX_OP_SEM2_WAKE]	= __umtx_op_sem2_wake,
4802 	[UMTX_OP_SHM]		= __umtx_op_shm,
4803 	[UMTX_OP_ROBUST_LISTS]	= __umtx_op_robust_lists,
4804 };
4805 
4806 static const struct umtx_copyops umtx_native_ops = {
4807 	.copyin_timeout = umtx_copyin_timeout,
4808 	.copyin_umtx_time = umtx_copyin_umtx_time,
4809 	.copyin_robust_lists = umtx_copyin_robust_lists,
4810 	.copyout_timeout = umtx_copyout_timeout,
4811 	.timespec_sz = sizeof(struct timespec),
4812 	.umtx_time_sz = sizeof(struct _umtx_time),
4813 };
4814 
4815 #ifndef __i386__
4816 static const struct umtx_copyops umtx_native_opsi386 = {
4817 	.copyin_timeout = umtx_copyin_timeouti386,
4818 	.copyin_umtx_time = umtx_copyin_umtx_timei386,
4819 	.copyin_robust_lists = umtx_copyin_robust_lists32,
4820 	.copyout_timeout = umtx_copyout_timeouti386,
4821 	.timespec_sz = sizeof(struct timespeci386),
4822 	.umtx_time_sz = sizeof(struct umtx_timei386),
4823 	.compat32 = true,
4824 };
4825 #endif
4826 
4827 #if defined(__i386__) || defined(__LP64__)
4828 /* i386 can emulate other 32-bit archs, too! */
4829 static const struct umtx_copyops umtx_native_opsx32 = {
4830 	.copyin_timeout = umtx_copyin_timeoutx32,
4831 	.copyin_umtx_time = umtx_copyin_umtx_timex32,
4832 	.copyin_robust_lists = umtx_copyin_robust_lists32,
4833 	.copyout_timeout = umtx_copyout_timeoutx32,
4834 	.timespec_sz = sizeof(struct timespecx32),
4835 	.umtx_time_sz = sizeof(struct umtx_timex32),
4836 	.compat32 = true,
4837 };
4838 
4839 #ifdef COMPAT_FREEBSD32
4840 #ifdef __amd64__
4841 #define	umtx_native_ops32	umtx_native_opsi386
4842 #else
4843 #define	umtx_native_ops32	umtx_native_opsx32
4844 #endif
4845 #endif /* COMPAT_FREEBSD32 */
4846 #endif /* __i386__ || __LP64__ */
4847 
4848 #define	UMTX_OP__FLAGS	(UMTX_OP__32BIT | UMTX_OP__I386)
4849 
4850 static int
4851 kern__umtx_op(struct thread *td, void *obj, int op, unsigned long val,
4852     void *uaddr1, void *uaddr2, const struct umtx_copyops *ops)
4853 {
4854 	struct _umtx_op_args uap = {
4855 		.obj = obj,
4856 		.op = op & ~UMTX_OP__FLAGS,
4857 		.val = val,
4858 		.uaddr1 = uaddr1,
4859 		.uaddr2 = uaddr2
4860 	};
4861 
4862 	if ((uap.op >= nitems(op_table)))
4863 		return (EINVAL);
4864 	return ((*op_table[uap.op])(td, &uap, ops));
4865 }
4866 
4867 int
4868 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
4869 {
4870 	static const struct umtx_copyops *umtx_ops;
4871 
4872 	umtx_ops = &umtx_native_ops;
4873 #ifdef __LP64__
4874 	if ((uap->op & (UMTX_OP__32BIT | UMTX_OP__I386)) != 0) {
4875 		if ((uap->op & UMTX_OP__I386) != 0)
4876 			umtx_ops = &umtx_native_opsi386;
4877 		else
4878 			umtx_ops = &umtx_native_opsx32;
4879 	}
4880 #elif !defined(__i386__)
4881 	/* We consider UMTX_OP__32BIT a nop on !i386 ILP32. */
4882 	if ((uap->op & UMTX_OP__I386) != 0)
4883 		umtx_ops = &umtx_native_opsi386;
4884 #else
4885 	/* Likewise, UMTX_OP__I386 is a nop on i386. */
4886 	if ((uap->op & UMTX_OP__32BIT) != 0)
4887 		umtx_ops = &umtx_native_opsx32;
4888 #endif
4889 	return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
4890 	    uap->uaddr2, umtx_ops));
4891 }
4892 
4893 #ifdef COMPAT_FREEBSD32
4894 #ifdef COMPAT_FREEBSD10
4895 int
4896 freebsd10_freebsd32__umtx_lock(struct thread *td,
4897     struct freebsd10_freebsd32__umtx_lock_args *uap)
4898 {
4899 	return (do_lock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid, NULL));
4900 }
4901 
4902 int
4903 freebsd10_freebsd32__umtx_unlock(struct thread *td,
4904     struct freebsd10_freebsd32__umtx_unlock_args *uap)
4905 {
4906 	return (do_unlock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid));
4907 }
4908 #endif /* COMPAT_FREEBSD10 */
4909 
4910 int
4911 freebsd32__umtx_op(struct thread *td, struct freebsd32__umtx_op_args *uap)
4912 {
4913 
4914 	return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
4915 	    uap->uaddr2, &umtx_native_ops32));
4916 }
4917 #endif /* COMPAT_FREEBSD32 */
4918 
4919 void
4920 umtx_thread_init(struct thread *td)
4921 {
4922 
4923 	td->td_umtxq = umtxq_alloc();
4924 	td->td_umtxq->uq_thread = td;
4925 }
4926 
4927 void
4928 umtx_thread_fini(struct thread *td)
4929 {
4930 
4931 	umtxq_free(td->td_umtxq);
4932 }
4933 
4934 /*
4935  * It will be called when new thread is created, e.g fork().
4936  */
4937 void
4938 umtx_thread_alloc(struct thread *td)
4939 {
4940 	struct umtx_q *uq;
4941 
4942 	uq = td->td_umtxq;
4943 	uq->uq_inherited_pri = PRI_MAX;
4944 
4945 	KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
4946 	KASSERT(uq->uq_thread == td, ("uq_thread != td"));
4947 	KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
4948 	KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
4949 }
4950 
4951 /*
4952  * exec() hook.
4953  *
4954  * Clear robust lists for all process' threads, not delaying the
4955  * cleanup to thread exit, since the relevant address space is
4956  * destroyed right now.
4957  */
4958 void
4959 umtx_exec(struct proc *p)
4960 {
4961 	struct thread *td;
4962 
4963 	KASSERT(p == curproc, ("need curproc"));
4964 	KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
4965 	    (p->p_flag & P_STOPPED_SINGLE) != 0,
4966 	    ("curproc must be single-threaded"));
4967 	/*
4968 	 * There is no need to lock the list as only this thread can be
4969 	 * running.
4970 	 */
4971 	FOREACH_THREAD_IN_PROC(p, td) {
4972 		KASSERT(td == curthread ||
4973 		    ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
4974 		    ("running thread %p %p", p, td));
4975 		umtx_thread_cleanup(td);
4976 		td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
4977 	}
4978 }
4979 
4980 /*
4981  * thread exit hook.
4982  */
4983 void
4984 umtx_thread_exit(struct thread *td)
4985 {
4986 
4987 	umtx_thread_cleanup(td);
4988 }
4989 
4990 static int
4991 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res, bool compat32)
4992 {
4993 	u_long res1;
4994 	uint32_t res32;
4995 	int error;
4996 
4997 	if (compat32) {
4998 		error = fueword32((void *)ptr, &res32);
4999 		if (error == 0)
5000 			res1 = res32;
5001 	} else {
5002 		error = fueword((void *)ptr, &res1);
5003 	}
5004 	if (error == 0)
5005 		*res = res1;
5006 	else
5007 		error = EFAULT;
5008 	return (error);
5009 }
5010 
5011 static void
5012 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list,
5013     bool compat32)
5014 {
5015 	struct umutex32 m32;
5016 
5017 	if (compat32) {
5018 		memcpy(&m32, m, sizeof(m32));
5019 		*rb_list = m32.m_rb_lnk;
5020 	} else {
5021 		*rb_list = m->m_rb_lnk;
5022 	}
5023 }
5024 
5025 static int
5026 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact,
5027     bool compat32)
5028 {
5029 	struct umutex m;
5030 	int error;
5031 
5032 	KASSERT(td->td_proc == curproc, ("need current vmspace"));
5033 	error = copyin((void *)rbp, &m, sizeof(m));
5034 	if (error != 0)
5035 		return (error);
5036 	if (rb_list != NULL)
5037 		umtx_read_rb_list(td, &m, rb_list, compat32);
5038 	if ((m.m_flags & UMUTEX_ROBUST) == 0)
5039 		return (EINVAL);
5040 	if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
5041 		/* inact is cleared after unlock, allow the inconsistency */
5042 		return (inact ? 0 : EINVAL);
5043 	return (do_unlock_umutex(td, (struct umutex *)rbp, true));
5044 }
5045 
5046 static void
5047 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
5048     const char *name, bool compat32)
5049 {
5050 	int error, i;
5051 	uintptr_t rbp;
5052 	bool inact;
5053 
5054 	if (rb_list == 0)
5055 		return;
5056 	error = umtx_read_uptr(td, rb_list, &rbp, compat32);
5057 	for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
5058 		if (rbp == *rb_inact) {
5059 			inact = true;
5060 			*rb_inact = 0;
5061 		} else
5062 			inact = false;
5063 		error = umtx_handle_rb(td, rbp, &rbp, inact, compat32);
5064 	}
5065 	if (i == umtx_max_rb && umtx_verbose_rb) {
5066 		uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
5067 		    td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
5068 	}
5069 	if (error != 0 && umtx_verbose_rb) {
5070 		uprintf("comm %s pid %d: handling %srb error %d\n",
5071 		    td->td_proc->p_comm, td->td_proc->p_pid, name, error);
5072 	}
5073 }
5074 
5075 /*
5076  * Clean up umtx data.
5077  */
5078 static void
5079 umtx_thread_cleanup(struct thread *td)
5080 {
5081 	struct umtx_q *uq;
5082 	struct umtx_pi *pi;
5083 	uintptr_t rb_inact;
5084 	bool compat32;
5085 
5086 	/*
5087 	 * Disown pi mutexes.
5088 	 */
5089 	uq = td->td_umtxq;
5090 	if (uq != NULL) {
5091 		if (uq->uq_inherited_pri != PRI_MAX ||
5092 		    !TAILQ_EMPTY(&uq->uq_pi_contested)) {
5093 			mtx_lock(&umtx_lock);
5094 			uq->uq_inherited_pri = PRI_MAX;
5095 			while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
5096 				pi->pi_owner = NULL;
5097 				TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
5098 			}
5099 			mtx_unlock(&umtx_lock);
5100 		}
5101 		sched_lend_user_prio_cond(td, PRI_MAX);
5102 	}
5103 
5104 	compat32 = (td->td_pflags2 & TDP2_COMPAT32RB) != 0;
5105 	td->td_pflags2 &= ~TDP2_COMPAT32RB;
5106 
5107 	if (td->td_rb_inact == 0 && td->td_rb_list == 0 && td->td_rbp_list == 0)
5108 		return;
5109 
5110 	/*
5111 	 * Handle terminated robust mutexes.  Must be done after
5112 	 * robust pi disown, otherwise unlock could see unowned
5113 	 * entries.
5114 	 */
5115 	rb_inact = td->td_rb_inact;
5116 	if (rb_inact != 0)
5117 		(void)umtx_read_uptr(td, rb_inact, &rb_inact, compat32);
5118 	umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "", compat32);
5119 	umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ", compat32);
5120 	if (rb_inact != 0)
5121 		(void)umtx_handle_rb(td, rb_inact, NULL, true, compat32);
5122 }
5123