xref: /freebsd/sys/kern/kern_timeout.c (revision eea7c61590ae8968b3f1f609cf0bc8633222a94f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_callout_profiling.h"
43 #include "opt_ddb.h"
44 #include "opt_rss.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bus.h>
49 #include <sys/callout.h>
50 #include <sys/domainset.h>
51 #include <sys/file.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/ktr.h>
55 #include <sys/kthread.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mutex.h>
59 #include <sys/proc.h>
60 #include <sys/sched.h>
61 #include <sys/sdt.h>
62 #include <sys/sleepqueue.h>
63 #include <sys/sysctl.h>
64 #include <sys/smp.h>
65 #include <sys/unistd.h>
66 
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #include <ddb/db_sym.h>
70 #include <machine/_inttypes.h>
71 #endif
72 
73 #ifdef SMP
74 #include <machine/cpu.h>
75 #endif
76 
77 DPCPU_DECLARE(sbintime_t, hardclocktime);
78 
79 SDT_PROVIDER_DEFINE(callout_execute);
80 SDT_PROBE_DEFINE1(callout_execute, , , callout__start, "struct callout *");
81 SDT_PROBE_DEFINE1(callout_execute, , , callout__end, "struct callout *");
82 
83 static void	softclock_thread(void *arg);
84 
85 #ifdef CALLOUT_PROFILING
86 static int avg_depth;
87 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
88     "Average number of items examined per softclock call. Units = 1/1000");
89 static int avg_gcalls;
90 SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
91     "Average number of Giant callouts made per softclock call. Units = 1/1000");
92 static int avg_lockcalls;
93 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
94     "Average number of lock callouts made per softclock call. Units = 1/1000");
95 static int avg_mpcalls;
96 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
97     "Average number of MP callouts made per softclock call. Units = 1/1000");
98 static int avg_depth_dir;
99 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
100     "Average number of direct callouts examined per callout_process call. "
101     "Units = 1/1000");
102 static int avg_lockcalls_dir;
103 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
104     &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
105     "callout_process call. Units = 1/1000");
106 static int avg_mpcalls_dir;
107 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
108     0, "Average number of MP direct callouts made per callout_process call. "
109     "Units = 1/1000");
110 #endif
111 
112 static int ncallout;
113 SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &ncallout, 0,
114     "Number of entries in callwheel and size of timeout() preallocation");
115 
116 #ifdef	RSS
117 static int pin_default_swi = 1;
118 static int pin_pcpu_swi = 1;
119 #else
120 static int pin_default_swi = 0;
121 static int pin_pcpu_swi = 0;
122 #endif
123 
124 SYSCTL_INT(_kern, OID_AUTO, pin_default_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_default_swi,
125     0, "Pin the default (non-per-cpu) swi (shared with PCPU 0 swi)");
126 SYSCTL_INT(_kern, OID_AUTO, pin_pcpu_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_pcpu_swi,
127     0, "Pin the per-CPU swis (except PCPU 0, which is also default)");
128 
129 /*
130  * TODO:
131  *	allocate more timeout table slots when table overflows.
132  */
133 static u_int __read_mostly callwheelsize;
134 static u_int __read_mostly callwheelmask;
135 
136 /*
137  * The callout cpu exec entities represent informations necessary for
138  * describing the state of callouts currently running on the CPU and the ones
139  * necessary for migrating callouts to the new callout cpu. In particular,
140  * the first entry of the array cc_exec_entity holds informations for callout
141  * running in SWI thread context, while the second one holds informations
142  * for callout running directly from hardware interrupt context.
143  * The cached informations are very important for deferring migration when
144  * the migrating callout is already running.
145  */
146 struct cc_exec {
147 	struct callout		*cc_curr;
148 	callout_func_t		*cc_drain;
149 	void			*cc_last_func;
150 	void			*cc_last_arg;
151 #ifdef SMP
152 	callout_func_t		*ce_migration_func;
153 	void			*ce_migration_arg;
154 	sbintime_t		ce_migration_time;
155 	sbintime_t		ce_migration_prec;
156 	int			ce_migration_cpu;
157 #endif
158 	bool			cc_cancel;
159 	bool			cc_waiting;
160 };
161 
162 /*
163  * There is one struct callout_cpu per cpu, holding all relevant
164  * state for the callout processing thread on the individual CPU.
165  */
166 struct callout_cpu {
167 	struct mtx_padalign	cc_lock;
168 	struct cc_exec 		cc_exec_entity[2];
169 	struct callout		*cc_next;
170 	struct callout_list	*cc_callwheel;
171 	struct callout_tailq	cc_expireq;
172 	sbintime_t		cc_firstevent;
173 	sbintime_t		cc_lastscan;
174 	struct thread		*cc_thread;
175 	u_int			cc_bucket;
176 	u_int			cc_inited;
177 #ifdef KTR
178 	char			cc_ktr_event_name[20];
179 #endif
180 };
181 
182 #define	callout_migrating(c)	((c)->c_iflags & CALLOUT_DFRMIGRATION)
183 
184 #define	cc_exec_curr(cc, dir)		cc->cc_exec_entity[dir].cc_curr
185 #define	cc_exec_last_func(cc, dir)	cc->cc_exec_entity[dir].cc_last_func
186 #define	cc_exec_last_arg(cc, dir)	cc->cc_exec_entity[dir].cc_last_arg
187 #define	cc_exec_drain(cc, dir)		cc->cc_exec_entity[dir].cc_drain
188 #define	cc_exec_next(cc)		cc->cc_next
189 #define	cc_exec_cancel(cc, dir)		cc->cc_exec_entity[dir].cc_cancel
190 #define	cc_exec_waiting(cc, dir)	cc->cc_exec_entity[dir].cc_waiting
191 #ifdef SMP
192 #define	cc_migration_func(cc, dir)	cc->cc_exec_entity[dir].ce_migration_func
193 #define	cc_migration_arg(cc, dir)	cc->cc_exec_entity[dir].ce_migration_arg
194 #define	cc_migration_cpu(cc, dir)	cc->cc_exec_entity[dir].ce_migration_cpu
195 #define	cc_migration_time(cc, dir)	cc->cc_exec_entity[dir].ce_migration_time
196 #define	cc_migration_prec(cc, dir)	cc->cc_exec_entity[dir].ce_migration_prec
197 
198 static struct callout_cpu cc_cpu[MAXCPU];
199 #define	CPUBLOCK	MAXCPU
200 #define	CC_CPU(cpu)	(&cc_cpu[(cpu)])
201 #define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
202 #else
203 static struct callout_cpu cc_cpu;
204 #define	CC_CPU(cpu)	(&cc_cpu)
205 #define	CC_SELF()	(&cc_cpu)
206 #endif
207 #define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
208 #define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
209 #define	CC_LOCK_ASSERT(cc)	mtx_assert(&(cc)->cc_lock, MA_OWNED)
210 
211 static int __read_mostly cc_default_cpu;
212 
213 static void	callout_cpu_init(struct callout_cpu *cc, int cpu);
214 static void	softclock_call_cc(struct callout *c, struct callout_cpu *cc,
215 #ifdef CALLOUT_PROFILING
216 		    int *mpcalls, int *lockcalls, int *gcalls,
217 #endif
218 		    int direct);
219 
220 static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
221 
222 /**
223  * Locked by cc_lock:
224  *   cc_curr         - If a callout is in progress, it is cc_curr.
225  *                     If cc_curr is non-NULL, threads waiting in
226  *                     callout_drain() will be woken up as soon as the
227  *                     relevant callout completes.
228  *   cc_cancel       - Changing to 1 with both callout_lock and cc_lock held
229  *                     guarantees that the current callout will not run.
230  *                     The softclock_call_cc() function sets this to 0 before it
231  *                     drops callout_lock to acquire c_lock, and it calls
232  *                     the handler only if curr_cancelled is still 0 after
233  *                     cc_lock is successfully acquired.
234  *   cc_waiting      - If a thread is waiting in callout_drain(), then
235  *                     callout_wait is nonzero.  Set only when
236  *                     cc_curr is non-NULL.
237  */
238 
239 /*
240  * Resets the execution entity tied to a specific callout cpu.
241  */
242 static void
243 cc_cce_cleanup(struct callout_cpu *cc, int direct)
244 {
245 
246 	cc_exec_curr(cc, direct) = NULL;
247 	cc_exec_cancel(cc, direct) = false;
248 	cc_exec_waiting(cc, direct) = false;
249 #ifdef SMP
250 	cc_migration_cpu(cc, direct) = CPUBLOCK;
251 	cc_migration_time(cc, direct) = 0;
252 	cc_migration_prec(cc, direct) = 0;
253 	cc_migration_func(cc, direct) = NULL;
254 	cc_migration_arg(cc, direct) = NULL;
255 #endif
256 }
257 
258 /*
259  * Checks if migration is requested by a specific callout cpu.
260  */
261 static int
262 cc_cce_migrating(struct callout_cpu *cc, int direct)
263 {
264 
265 #ifdef SMP
266 	return (cc_migration_cpu(cc, direct) != CPUBLOCK);
267 #else
268 	return (0);
269 #endif
270 }
271 
272 /*
273  * Kernel low level callwheel initialization
274  * called on the BSP during kernel startup.
275  */
276 static void
277 callout_callwheel_init(void *dummy)
278 {
279 	struct callout_cpu *cc;
280 	int cpu;
281 
282 	/*
283 	 * Calculate the size of the callout wheel and the preallocated
284 	 * timeout() structures.
285 	 * XXX: Clip callout to result of previous function of maxusers
286 	 * maximum 384.  This is still huge, but acceptable.
287 	 */
288 	ncallout = imin(16 + maxproc + maxfiles, 18508);
289 	TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
290 
291 	/*
292 	 * Calculate callout wheel size, should be next power of two higher
293 	 * than 'ncallout'.
294 	 */
295 	callwheelsize = 1 << fls(ncallout);
296 	callwheelmask = callwheelsize - 1;
297 
298 	/*
299 	 * Fetch whether we're pinning the swi's or not.
300 	 */
301 	TUNABLE_INT_FETCH("kern.pin_default_swi", &pin_default_swi);
302 	TUNABLE_INT_FETCH("kern.pin_pcpu_swi", &pin_pcpu_swi);
303 
304 	/*
305 	 * Initialize callout wheels.  The software interrupt threads
306 	 * are created later.
307 	 */
308 	cc_default_cpu = PCPU_GET(cpuid);
309 	CPU_FOREACH(cpu) {
310 		cc = CC_CPU(cpu);
311 		callout_cpu_init(cc, cpu);
312 	}
313 }
314 SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
315 
316 /*
317  * Initialize the per-cpu callout structures.
318  */
319 static void
320 callout_cpu_init(struct callout_cpu *cc, int cpu)
321 {
322 	int i;
323 
324 	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN);
325 	cc->cc_inited = 1;
326 	cc->cc_callwheel = malloc_domainset(sizeof(struct callout_list) *
327 	    callwheelsize, M_CALLOUT,
328 	    DOMAINSET_PREF(pcpu_find(cpu)->pc_domain), M_WAITOK);
329 	for (i = 0; i < callwheelsize; i++)
330 		LIST_INIT(&cc->cc_callwheel[i]);
331 	TAILQ_INIT(&cc->cc_expireq);
332 	cc->cc_firstevent = SBT_MAX;
333 	for (i = 0; i < 2; i++)
334 		cc_cce_cleanup(cc, i);
335 #ifdef KTR
336 	snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name),
337 	    "callwheel cpu %d", cpu);
338 #endif
339 }
340 
341 #ifdef SMP
342 /*
343  * Switches the cpu tied to a specific callout.
344  * The function expects a locked incoming callout cpu and returns with
345  * locked outcoming callout cpu.
346  */
347 static struct callout_cpu *
348 callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
349 {
350 	struct callout_cpu *new_cc;
351 
352 	MPASS(c != NULL && cc != NULL);
353 	CC_LOCK_ASSERT(cc);
354 
355 	/*
356 	 * Avoid interrupts and preemption firing after the callout cpu
357 	 * is blocked in order to avoid deadlocks as the new thread
358 	 * may be willing to acquire the callout cpu lock.
359 	 */
360 	c->c_cpu = CPUBLOCK;
361 	spinlock_enter();
362 	CC_UNLOCK(cc);
363 	new_cc = CC_CPU(new_cpu);
364 	CC_LOCK(new_cc);
365 	spinlock_exit();
366 	c->c_cpu = new_cpu;
367 	return (new_cc);
368 }
369 #endif
370 
371 /*
372  * Start softclock threads.
373  */
374 static void
375 start_softclock(void *dummy)
376 {
377 	struct proc *p;
378 	struct thread *td;
379 	struct callout_cpu *cc;
380 	int cpu, error;
381 	bool pin_swi;
382 
383 	p = NULL;
384 	CPU_FOREACH(cpu) {
385 		cc = CC_CPU(cpu);
386 		error = kproc_kthread_add(softclock_thread, cc, &p, &td,
387 		    RFSTOPPED, 0, "clock", "clock (%d)", cpu);
388 		if (error != 0)
389 			panic("failed to create softclock thread for cpu %d: %d",
390 			    cpu, error);
391 		CC_LOCK(cc);
392 		cc->cc_thread = td;
393 		thread_lock(td);
394 		sched_class(td, PRI_ITHD);
395 		sched_prio(td, PI_SWI(SWI_CLOCK));
396 		TD_SET_IWAIT(td);
397 		thread_lock_set(td, (struct mtx *)&cc->cc_lock);
398 		thread_unlock(td);
399 		if (cpu == cc_default_cpu)
400 			pin_swi = pin_default_swi;
401 		else
402 			pin_swi = pin_pcpu_swi;
403 		if (pin_swi) {
404 			error = cpuset_setithread(td->td_tid, cpu);
405 			if (error != 0)
406 				printf("%s: %s clock couldn't be pinned to cpu %d: %d\n",
407 				    __func__, cpu == cc_default_cpu ?
408 				    "default" : "per-cpu", cpu, error);
409 		}
410 	}
411 }
412 SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
413 
414 #define	CC_HASH_SHIFT	8
415 
416 static inline u_int
417 callout_hash(sbintime_t sbt)
418 {
419 
420 	return (sbt >> (32 - CC_HASH_SHIFT));
421 }
422 
423 static inline u_int
424 callout_get_bucket(sbintime_t sbt)
425 {
426 
427 	return (callout_hash(sbt) & callwheelmask);
428 }
429 
430 void
431 callout_process(sbintime_t now)
432 {
433 	struct callout *tmp, *tmpn;
434 	struct callout_cpu *cc;
435 	struct callout_list *sc;
436 	struct thread *td;
437 	sbintime_t first, last, lookahead, max, tmp_max;
438 	u_int firstb, lastb, nowb;
439 #ifdef CALLOUT_PROFILING
440 	int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
441 #endif
442 
443 	cc = CC_SELF();
444 	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
445 
446 	/* Compute the buckets of the last scan and present times. */
447 	firstb = callout_hash(cc->cc_lastscan);
448 	cc->cc_lastscan = now;
449 	nowb = callout_hash(now);
450 
451 	/* Compute the last bucket and minimum time of the bucket after it. */
452 	if (nowb == firstb)
453 		lookahead = (SBT_1S / 16);
454 	else if (nowb - firstb == 1)
455 		lookahead = (SBT_1S / 8);
456 	else
457 		lookahead = SBT_1S;
458 	first = last = now;
459 	first += (lookahead / 2);
460 	last += lookahead;
461 	last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
462 	lastb = callout_hash(last) - 1;
463 	max = last;
464 
465 	/*
466 	 * Check if we wrapped around the entire wheel from the last scan.
467 	 * In case, we need to scan entirely the wheel for pending callouts.
468 	 */
469 	if (lastb - firstb >= callwheelsize) {
470 		lastb = firstb + callwheelsize - 1;
471 		if (nowb - firstb >= callwheelsize)
472 			nowb = lastb;
473 	}
474 
475 	/* Iterate callwheel from firstb to nowb and then up to lastb. */
476 	do {
477 		sc = &cc->cc_callwheel[firstb & callwheelmask];
478 		tmp = LIST_FIRST(sc);
479 		while (tmp != NULL) {
480 			/* Run the callout if present time within allowed. */
481 			if (tmp->c_time <= now) {
482 				/*
483 				 * Consumer told us the callout may be run
484 				 * directly from hardware interrupt context.
485 				 */
486 				if (tmp->c_iflags & CALLOUT_DIRECT) {
487 #ifdef CALLOUT_PROFILING
488 					++depth_dir;
489 #endif
490 					cc_exec_next(cc) =
491 					    LIST_NEXT(tmp, c_links.le);
492 					cc->cc_bucket = firstb & callwheelmask;
493 					LIST_REMOVE(tmp, c_links.le);
494 					softclock_call_cc(tmp, cc,
495 #ifdef CALLOUT_PROFILING
496 					    &mpcalls_dir, &lockcalls_dir, NULL,
497 #endif
498 					    1);
499 					tmp = cc_exec_next(cc);
500 					cc_exec_next(cc) = NULL;
501 				} else {
502 					tmpn = LIST_NEXT(tmp, c_links.le);
503 					LIST_REMOVE(tmp, c_links.le);
504 					TAILQ_INSERT_TAIL(&cc->cc_expireq,
505 					    tmp, c_links.tqe);
506 					tmp->c_iflags |= CALLOUT_PROCESSED;
507 					tmp = tmpn;
508 				}
509 				continue;
510 			}
511 			/* Skip events from distant future. */
512 			if (tmp->c_time >= max)
513 				goto next;
514 			/*
515 			 * Event minimal time is bigger than present maximal
516 			 * time, so it cannot be aggregated.
517 			 */
518 			if (tmp->c_time > last) {
519 				lastb = nowb;
520 				goto next;
521 			}
522 			/* Update first and last time, respecting this event. */
523 			if (tmp->c_time < first)
524 				first = tmp->c_time;
525 			tmp_max = tmp->c_time + tmp->c_precision;
526 			if (tmp_max < last)
527 				last = tmp_max;
528 next:
529 			tmp = LIST_NEXT(tmp, c_links.le);
530 		}
531 		/* Proceed with the next bucket. */
532 		firstb++;
533 		/*
534 		 * Stop if we looked after present time and found
535 		 * some event we can't execute at now.
536 		 * Stop if we looked far enough into the future.
537 		 */
538 	} while (((int)(firstb - lastb)) <= 0);
539 	cc->cc_firstevent = last;
540 	cpu_new_callout(curcpu, last, first);
541 
542 #ifdef CALLOUT_PROFILING
543 	avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
544 	avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
545 	avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
546 #endif
547 	if (!TAILQ_EMPTY(&cc->cc_expireq)) {
548 		td = cc->cc_thread;
549 		if (TD_AWAITING_INTR(td)) {
550 			thread_lock_block_wait(td);
551 			THREAD_LOCK_ASSERT(td, MA_OWNED);
552 			TD_CLR_IWAIT(td);
553 			sched_add(td, SRQ_INTR);
554 		} else
555 			mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
556 	} else
557 		mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
558 }
559 
560 static struct callout_cpu *
561 callout_lock(struct callout *c)
562 {
563 	struct callout_cpu *cc;
564 	int cpu;
565 
566 	for (;;) {
567 		cpu = c->c_cpu;
568 #ifdef SMP
569 		if (cpu == CPUBLOCK) {
570 			while (c->c_cpu == CPUBLOCK)
571 				cpu_spinwait();
572 			continue;
573 		}
574 #endif
575 		cc = CC_CPU(cpu);
576 		CC_LOCK(cc);
577 		if (cpu == c->c_cpu)
578 			break;
579 		CC_UNLOCK(cc);
580 	}
581 	return (cc);
582 }
583 
584 static void
585 callout_cc_add(struct callout *c, struct callout_cpu *cc,
586     sbintime_t sbt, sbintime_t precision, void (*func)(void *),
587     void *arg, int cpu, int flags)
588 {
589 	int bucket;
590 
591 	CC_LOCK_ASSERT(cc);
592 	if (sbt < cc->cc_lastscan)
593 		sbt = cc->cc_lastscan;
594 	c->c_arg = arg;
595 	c->c_iflags |= CALLOUT_PENDING;
596 	c->c_iflags &= ~CALLOUT_PROCESSED;
597 	c->c_flags |= CALLOUT_ACTIVE;
598 	if (flags & C_DIRECT_EXEC)
599 		c->c_iflags |= CALLOUT_DIRECT;
600 	c->c_func = func;
601 	c->c_time = sbt;
602 	c->c_precision = precision;
603 	bucket = callout_get_bucket(c->c_time);
604 	CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
605 	    c, (int)(c->c_precision >> 32),
606 	    (u_int)(c->c_precision & 0xffffffff));
607 	LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
608 	if (cc->cc_bucket == bucket)
609 		cc_exec_next(cc) = c;
610 
611 	/*
612 	 * Inform the eventtimers(4) subsystem there's a new callout
613 	 * that has been inserted, but only if really required.
614 	 */
615 	if (SBT_MAX - c->c_time < c->c_precision)
616 		c->c_precision = SBT_MAX - c->c_time;
617 	sbt = c->c_time + c->c_precision;
618 	if (sbt < cc->cc_firstevent) {
619 		cc->cc_firstevent = sbt;
620 		cpu_new_callout(cpu, sbt, c->c_time);
621 	}
622 }
623 
624 static void
625 softclock_call_cc(struct callout *c, struct callout_cpu *cc,
626 #ifdef CALLOUT_PROFILING
627     int *mpcalls, int *lockcalls, int *gcalls,
628 #endif
629     int direct)
630 {
631 	struct rm_priotracker tracker;
632 	callout_func_t *c_func, *drain;
633 	void *c_arg;
634 	struct lock_class *class;
635 	struct lock_object *c_lock;
636 	uintptr_t lock_status;
637 	int c_iflags;
638 #ifdef SMP
639 	struct callout_cpu *new_cc;
640 	callout_func_t *new_func;
641 	void *new_arg;
642 	int flags, new_cpu;
643 	sbintime_t new_prec, new_time;
644 #endif
645 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
646 	sbintime_t sbt1, sbt2;
647 	struct timespec ts2;
648 	static sbintime_t maxdt = 2 * SBT_1MS;	/* 2 msec */
649 	static callout_func_t *lastfunc;
650 #endif
651 
652 	KASSERT((c->c_iflags & CALLOUT_PENDING) == CALLOUT_PENDING,
653 	    ("softclock_call_cc: pend %p %x", c, c->c_iflags));
654 	KASSERT((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE,
655 	    ("softclock_call_cc: act %p %x", c, c->c_flags));
656 	class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
657 	lock_status = 0;
658 	if (c->c_flags & CALLOUT_SHAREDLOCK) {
659 		if (class == &lock_class_rm)
660 			lock_status = (uintptr_t)&tracker;
661 		else
662 			lock_status = 1;
663 	}
664 	c_lock = c->c_lock;
665 	c_func = c->c_func;
666 	c_arg = c->c_arg;
667 	c_iflags = c->c_iflags;
668 	c->c_iflags &= ~CALLOUT_PENDING;
669 
670 	cc_exec_curr(cc, direct) = c;
671 	cc_exec_last_func(cc, direct) = c_func;
672 	cc_exec_last_arg(cc, direct) = c_arg;
673 	cc_exec_cancel(cc, direct) = false;
674 	cc_exec_drain(cc, direct) = NULL;
675 	CC_UNLOCK(cc);
676 	if (c_lock != NULL) {
677 		class->lc_lock(c_lock, lock_status);
678 		/*
679 		 * The callout may have been cancelled
680 		 * while we switched locks.
681 		 */
682 		if (cc_exec_cancel(cc, direct)) {
683 			class->lc_unlock(c_lock);
684 			goto skip;
685 		}
686 		/* The callout cannot be stopped now. */
687 		cc_exec_cancel(cc, direct) = true;
688 		if (c_lock == &Giant.lock_object) {
689 #ifdef CALLOUT_PROFILING
690 			(*gcalls)++;
691 #endif
692 			CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
693 			    c, c_func, c_arg);
694 		} else {
695 #ifdef CALLOUT_PROFILING
696 			(*lockcalls)++;
697 #endif
698 			CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
699 			    c, c_func, c_arg);
700 		}
701 	} else {
702 #ifdef CALLOUT_PROFILING
703 		(*mpcalls)++;
704 #endif
705 		CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
706 		    c, c_func, c_arg);
707 	}
708 	KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running",
709 	    "func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct);
710 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
711 	sbt1 = sbinuptime();
712 #endif
713 	THREAD_NO_SLEEPING();
714 	SDT_PROBE1(callout_execute, , , callout__start, c);
715 	c_func(c_arg);
716 	SDT_PROBE1(callout_execute, , , callout__end, c);
717 	THREAD_SLEEPING_OK();
718 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
719 	sbt2 = sbinuptime();
720 	sbt2 -= sbt1;
721 	if (sbt2 > maxdt) {
722 		if (lastfunc != c_func || sbt2 > maxdt * 2) {
723 			ts2 = sbttots(sbt2);
724 			printf(
725 		"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
726 			    c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
727 		}
728 		maxdt = sbt2;
729 		lastfunc = c_func;
730 	}
731 #endif
732 	KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle");
733 	CTR1(KTR_CALLOUT, "callout %p finished", c);
734 	if ((c_iflags & CALLOUT_RETURNUNLOCKED) == 0)
735 		class->lc_unlock(c_lock);
736 skip:
737 	CC_LOCK(cc);
738 	KASSERT(cc_exec_curr(cc, direct) == c, ("mishandled cc_curr"));
739 	cc_exec_curr(cc, direct) = NULL;
740 	if (cc_exec_drain(cc, direct)) {
741 		drain = cc_exec_drain(cc, direct);
742 		cc_exec_drain(cc, direct) = NULL;
743 		CC_UNLOCK(cc);
744 		drain(c_arg);
745 		CC_LOCK(cc);
746 	}
747 	if (cc_exec_waiting(cc, direct)) {
748 		/*
749 		 * There is someone waiting for the
750 		 * callout to complete.
751 		 * If the callout was scheduled for
752 		 * migration just cancel it.
753 		 */
754 		if (cc_cce_migrating(cc, direct)) {
755 			cc_cce_cleanup(cc, direct);
756 
757 			/*
758 			 * It should be assert here that the callout is not
759 			 * destroyed but that is not easy.
760 			 */
761 			c->c_iflags &= ~CALLOUT_DFRMIGRATION;
762 		}
763 		cc_exec_waiting(cc, direct) = false;
764 		CC_UNLOCK(cc);
765 		wakeup(&cc_exec_waiting(cc, direct));
766 		CC_LOCK(cc);
767 	} else if (cc_cce_migrating(cc, direct)) {
768 #ifdef SMP
769 		/*
770 		 * If the callout was scheduled for
771 		 * migration just perform it now.
772 		 */
773 		new_cpu = cc_migration_cpu(cc, direct);
774 		new_time = cc_migration_time(cc, direct);
775 		new_prec = cc_migration_prec(cc, direct);
776 		new_func = cc_migration_func(cc, direct);
777 		new_arg = cc_migration_arg(cc, direct);
778 		cc_cce_cleanup(cc, direct);
779 
780 		/*
781 		 * It should be assert here that the callout is not destroyed
782 		 * but that is not easy.
783 		 *
784 		 * As first thing, handle deferred callout stops.
785 		 */
786 		if (!callout_migrating(c)) {
787 			CTR3(KTR_CALLOUT,
788 			     "deferred cancelled %p func %p arg %p",
789 			     c, new_func, new_arg);
790 			return;
791 		}
792 		c->c_iflags &= ~CALLOUT_DFRMIGRATION;
793 
794 		new_cc = callout_cpu_switch(c, cc, new_cpu);
795 		flags = (direct) ? C_DIRECT_EXEC : 0;
796 		callout_cc_add(c, new_cc, new_time, new_prec, new_func,
797 		    new_arg, new_cpu, flags);
798 		CC_UNLOCK(new_cc);
799 		CC_LOCK(cc);
800 #else
801 		panic("migration should not happen");
802 #endif
803 	}
804 }
805 
806 /*
807  * The callout mechanism is based on the work of Adam M. Costello and
808  * George Varghese, published in a technical report entitled "Redesigning
809  * the BSD Callout and Timer Facilities" and modified slightly for inclusion
810  * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
811  * used in this implementation was published by G. Varghese and T. Lauck in
812  * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
813  * the Efficient Implementation of a Timer Facility" in the Proceedings of
814  * the 11th ACM Annual Symposium on Operating Systems Principles,
815  * Austin, Texas Nov 1987.
816  */
817 
818 /*
819  * Software (low priority) clock interrupt thread handler.
820  * Run periodic events from timeout queue.
821  */
822 static void
823 softclock_thread(void *arg)
824 {
825 	struct thread *td = curthread;
826 	struct callout_cpu *cc;
827 	struct callout *c;
828 #ifdef CALLOUT_PROFILING
829 	int depth, gcalls, lockcalls, mpcalls;
830 #endif
831 
832 	cc = (struct callout_cpu *)arg;
833 	CC_LOCK(cc);
834 	for (;;) {
835 		while (TAILQ_EMPTY(&cc->cc_expireq)) {
836 			/*
837 			 * Use CC_LOCK(cc) as the thread_lock while
838 			 * idle.
839 			 */
840 			thread_lock(td);
841 			thread_lock_set(td, (struct mtx *)&cc->cc_lock);
842 			TD_SET_IWAIT(td);
843 			mi_switch(SW_VOL | SWT_IWAIT);
844 
845 			/* mi_switch() drops thread_lock(). */
846 			CC_LOCK(cc);
847 		}
848 
849 #ifdef CALLOUT_PROFILING
850 		depth = gcalls = lockcalls = mpcalls = 0;
851 #endif
852 		while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
853 			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
854 			softclock_call_cc(c, cc,
855 #ifdef CALLOUT_PROFILING
856 			    &mpcalls, &lockcalls, &gcalls,
857 #endif
858 			    0);
859 #ifdef CALLOUT_PROFILING
860 			++depth;
861 #endif
862 		}
863 #ifdef CALLOUT_PROFILING
864 		avg_depth += (depth * 1000 - avg_depth) >> 8;
865 		avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
866 		avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
867 		avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
868 #endif
869 	}
870 }
871 
872 void
873 callout_when(sbintime_t sbt, sbintime_t precision, int flags,
874     sbintime_t *res, sbintime_t *prec_res)
875 {
876 	sbintime_t to_sbt, to_pr;
877 
878 	if ((flags & (C_ABSOLUTE | C_PRECALC)) != 0) {
879 		*res = sbt;
880 		*prec_res = precision;
881 		return;
882 	}
883 	if ((flags & C_HARDCLOCK) != 0 && sbt < tick_sbt)
884 		sbt = tick_sbt;
885 	if ((flags & C_HARDCLOCK) != 0 || sbt >= sbt_tickthreshold) {
886 		/*
887 		 * Obtain the time of the last hardclock() call on
888 		 * this CPU directly from the kern_clocksource.c.
889 		 * This value is per-CPU, but it is equal for all
890 		 * active ones.
891 		 */
892 #ifdef __LP64__
893 		to_sbt = DPCPU_GET(hardclocktime);
894 #else
895 		spinlock_enter();
896 		to_sbt = DPCPU_GET(hardclocktime);
897 		spinlock_exit();
898 #endif
899 		if (cold && to_sbt == 0)
900 			to_sbt = sbinuptime();
901 		if ((flags & C_HARDCLOCK) == 0)
902 			to_sbt += tick_sbt;
903 	} else
904 		to_sbt = sbinuptime();
905 	if (SBT_MAX - to_sbt < sbt)
906 		to_sbt = SBT_MAX;
907 	else
908 		to_sbt += sbt;
909 	*res = to_sbt;
910 	to_pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
911 	    sbt >> C_PRELGET(flags));
912 	*prec_res = to_pr > precision ? to_pr : precision;
913 }
914 
915 /*
916  * New interface; clients allocate their own callout structures.
917  *
918  * callout_reset() - establish or change a timeout
919  * callout_stop() - disestablish a timeout
920  * callout_init() - initialize a callout structure so that it can
921  *	safely be passed to callout_reset() and callout_stop()
922  *
923  * <sys/callout.h> defines three convenience macros:
924  *
925  * callout_active() - returns truth if callout has not been stopped,
926  *	drained, or deactivated since the last time the callout was
927  *	reset.
928  * callout_pending() - returns truth if callout is still waiting for timeout
929  * callout_deactivate() - marks the callout as having been serviced
930  */
931 int
932 callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t prec,
933     callout_func_t *ftn, void *arg, int cpu, int flags)
934 {
935 	sbintime_t to_sbt, precision;
936 	struct callout_cpu *cc;
937 	int cancelled, direct;
938 	int ignore_cpu=0;
939 
940 	cancelled = 0;
941 	if (cpu == -1) {
942 		ignore_cpu = 1;
943 	} else if ((cpu >= MAXCPU) ||
944 		   ((CC_CPU(cpu))->cc_inited == 0)) {
945 		/* Invalid CPU spec */
946 		panic("Invalid CPU in callout %d", cpu);
947 	}
948 	callout_when(sbt, prec, flags, &to_sbt, &precision);
949 
950 	/*
951 	 * This flag used to be added by callout_cc_add, but the
952 	 * first time you call this we could end up with the
953 	 * wrong direct flag if we don't do it before we add.
954 	 */
955 	if (flags & C_DIRECT_EXEC) {
956 		direct = 1;
957 	} else {
958 		direct = 0;
959 	}
960 	KASSERT(!direct || c->c_lock == NULL ||
961 	    (LOCK_CLASS(c->c_lock)->lc_flags & LC_SPINLOCK),
962 	    ("%s: direct callout %p has non-spin lock", __func__, c));
963 	cc = callout_lock(c);
964 	/*
965 	 * Don't allow migration if the user does not care.
966 	 */
967 	if (ignore_cpu) {
968 		cpu = c->c_cpu;
969 	}
970 
971 	if (cc_exec_curr(cc, direct) == c) {
972 		/*
973 		 * We're being asked to reschedule a callout which is
974 		 * currently in progress.  If there is a lock then we
975 		 * can cancel the callout if it has not really started.
976 		 */
977 		if (c->c_lock != NULL && !cc_exec_cancel(cc, direct))
978 			cancelled = cc_exec_cancel(cc, direct) = true;
979 		if (cc_exec_waiting(cc, direct) || cc_exec_drain(cc, direct)) {
980 			/*
981 			 * Someone has called callout_drain to kill this
982 			 * callout.  Don't reschedule.
983 			 */
984 			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
985 			    cancelled ? "cancelled" : "failed to cancel",
986 			    c, c->c_func, c->c_arg);
987 			CC_UNLOCK(cc);
988 			return (cancelled);
989 		}
990 #ifdef SMP
991 		if (callout_migrating(c)) {
992 			/*
993 			 * This only occurs when a second callout_reset_sbt_on
994 			 * is made after a previous one moved it into
995 			 * deferred migration (below). Note we do *not* change
996 			 * the prev_cpu even though the previous target may
997 			 * be different.
998 			 */
999 			cc_migration_cpu(cc, direct) = cpu;
1000 			cc_migration_time(cc, direct) = to_sbt;
1001 			cc_migration_prec(cc, direct) = precision;
1002 			cc_migration_func(cc, direct) = ftn;
1003 			cc_migration_arg(cc, direct) = arg;
1004 			cancelled = 1;
1005 			CC_UNLOCK(cc);
1006 			return (cancelled);
1007 		}
1008 #endif
1009 	}
1010 	if (c->c_iflags & CALLOUT_PENDING) {
1011 		if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1012 			if (cc_exec_next(cc) == c)
1013 				cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1014 			LIST_REMOVE(c, c_links.le);
1015 		} else {
1016 			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1017 		}
1018 		cancelled = 1;
1019 		c->c_iflags &= ~ CALLOUT_PENDING;
1020 		c->c_flags &= ~ CALLOUT_ACTIVE;
1021 	}
1022 
1023 #ifdef SMP
1024 	/*
1025 	 * If the callout must migrate try to perform it immediately.
1026 	 * If the callout is currently running, just defer the migration
1027 	 * to a more appropriate moment.
1028 	 */
1029 	if (c->c_cpu != cpu) {
1030 		if (cc_exec_curr(cc, direct) == c) {
1031 			/*
1032 			 * Pending will have been removed since we are
1033 			 * actually executing the callout on another
1034 			 * CPU. That callout should be waiting on the
1035 			 * lock the caller holds. If we set both
1036 			 * active/and/pending after we return and the
1037 			 * lock on the executing callout proceeds, it
1038 			 * will then see pending is true and return.
1039 			 * At the return from the actual callout execution
1040 			 * the migration will occur in softclock_call_cc
1041 			 * and this new callout will be placed on the
1042 			 * new CPU via a call to callout_cpu_switch() which
1043 			 * will get the lock on the right CPU followed
1044 			 * by a call callout_cc_add() which will add it there.
1045 			 * (see above in softclock_call_cc()).
1046 			 */
1047 			cc_migration_cpu(cc, direct) = cpu;
1048 			cc_migration_time(cc, direct) = to_sbt;
1049 			cc_migration_prec(cc, direct) = precision;
1050 			cc_migration_func(cc, direct) = ftn;
1051 			cc_migration_arg(cc, direct) = arg;
1052 			c->c_iflags |= (CALLOUT_DFRMIGRATION | CALLOUT_PENDING);
1053 			c->c_flags |= CALLOUT_ACTIVE;
1054 			CTR6(KTR_CALLOUT,
1055 		    "migration of %p func %p arg %p in %d.%08x to %u deferred",
1056 			    c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1057 			    (u_int)(to_sbt & 0xffffffff), cpu);
1058 			CC_UNLOCK(cc);
1059 			return (cancelled);
1060 		}
1061 		cc = callout_cpu_switch(c, cc, cpu);
1062 	}
1063 #endif
1064 
1065 	callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags);
1066 	CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1067 	    cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1068 	    (u_int)(to_sbt & 0xffffffff));
1069 	CC_UNLOCK(cc);
1070 
1071 	return (cancelled);
1072 }
1073 
1074 /*
1075  * Common idioms that can be optimized in the future.
1076  */
1077 int
1078 callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1079 {
1080 	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1081 }
1082 
1083 int
1084 callout_schedule(struct callout *c, int to_ticks)
1085 {
1086 	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1087 }
1088 
1089 int
1090 _callout_stop_safe(struct callout *c, int flags, callout_func_t *drain)
1091 {
1092 	struct callout_cpu *cc, *old_cc;
1093 	struct lock_class *class;
1094 	int direct, sq_locked, use_lock;
1095 	int cancelled, not_on_a_list;
1096 
1097 	if ((flags & CS_DRAIN) != 0)
1098 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, c->c_lock,
1099 		    "calling %s", __func__);
1100 
1101 	KASSERT((flags & CS_DRAIN) == 0 || drain == NULL,
1102 	    ("Cannot set drain callback and CS_DRAIN flag at the same time"));
1103 
1104 	/*
1105 	 * Some old subsystems don't hold Giant while running a callout_stop(),
1106 	 * so just discard this check for the moment.
1107 	 */
1108 	if ((flags & CS_DRAIN) == 0 && c->c_lock != NULL) {
1109 		if (c->c_lock == &Giant.lock_object)
1110 			use_lock = mtx_owned(&Giant);
1111 		else {
1112 			use_lock = 1;
1113 			class = LOCK_CLASS(c->c_lock);
1114 			class->lc_assert(c->c_lock, LA_XLOCKED);
1115 		}
1116 	} else
1117 		use_lock = 0;
1118 	if (c->c_iflags & CALLOUT_DIRECT) {
1119 		direct = 1;
1120 	} else {
1121 		direct = 0;
1122 	}
1123 	sq_locked = 0;
1124 	old_cc = NULL;
1125 again:
1126 	cc = callout_lock(c);
1127 
1128 	if ((c->c_iflags & (CALLOUT_DFRMIGRATION | CALLOUT_PENDING)) ==
1129 	    (CALLOUT_DFRMIGRATION | CALLOUT_PENDING) &&
1130 	    ((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE)) {
1131 		/*
1132 		 * Special case where this slipped in while we
1133 		 * were migrating *as* the callout is about to
1134 		 * execute. The caller probably holds the lock
1135 		 * the callout wants.
1136 		 *
1137 		 * Get rid of the migration first. Then set
1138 		 * the flag that tells this code *not* to
1139 		 * try to remove it from any lists (its not
1140 		 * on one yet). When the callout wheel runs,
1141 		 * it will ignore this callout.
1142 		 */
1143 		c->c_iflags &= ~CALLOUT_PENDING;
1144 		c->c_flags &= ~CALLOUT_ACTIVE;
1145 		not_on_a_list = 1;
1146 	} else {
1147 		not_on_a_list = 0;
1148 	}
1149 
1150 	/*
1151 	 * If the callout was migrating while the callout cpu lock was
1152 	 * dropped,  just drop the sleepqueue lock and check the states
1153 	 * again.
1154 	 */
1155 	if (sq_locked != 0 && cc != old_cc) {
1156 #ifdef SMP
1157 		CC_UNLOCK(cc);
1158 		sleepq_release(&cc_exec_waiting(old_cc, direct));
1159 		sq_locked = 0;
1160 		old_cc = NULL;
1161 		goto again;
1162 #else
1163 		panic("migration should not happen");
1164 #endif
1165 	}
1166 
1167 	/*
1168 	 * If the callout is running, try to stop it or drain it.
1169 	 */
1170 	if (cc_exec_curr(cc, direct) == c) {
1171 		/*
1172 		 * Succeed we to stop it or not, we must clear the
1173 		 * active flag - this is what API users expect.  If we're
1174 		 * draining and the callout is currently executing, first wait
1175 		 * until it finishes.
1176 		 */
1177 		if ((flags & CS_DRAIN) == 0)
1178 			c->c_flags &= ~CALLOUT_ACTIVE;
1179 
1180 		if ((flags & CS_DRAIN) != 0) {
1181 			/*
1182 			 * The current callout is running (or just
1183 			 * about to run) and blocking is allowed, so
1184 			 * just wait for the current invocation to
1185 			 * finish.
1186 			 */
1187 			if (cc_exec_curr(cc, direct) == c) {
1188 				/*
1189 				 * Use direct calls to sleepqueue interface
1190 				 * instead of cv/msleep in order to avoid
1191 				 * a LOR between cc_lock and sleepqueue
1192 				 * chain spinlocks.  This piece of code
1193 				 * emulates a msleep_spin() call actually.
1194 				 *
1195 				 * If we already have the sleepqueue chain
1196 				 * locked, then we can safely block.  If we
1197 				 * don't already have it locked, however,
1198 				 * we have to drop the cc_lock to lock
1199 				 * it.  This opens several races, so we
1200 				 * restart at the beginning once we have
1201 				 * both locks.  If nothing has changed, then
1202 				 * we will end up back here with sq_locked
1203 				 * set.
1204 				 */
1205 				if (!sq_locked) {
1206 					CC_UNLOCK(cc);
1207 					sleepq_lock(
1208 					    &cc_exec_waiting(cc, direct));
1209 					sq_locked = 1;
1210 					old_cc = cc;
1211 					goto again;
1212 				}
1213 
1214 				/*
1215 				 * Migration could be cancelled here, but
1216 				 * as long as it is still not sure when it
1217 				 * will be packed up, just let softclock()
1218 				 * take care of it.
1219 				 */
1220 				cc_exec_waiting(cc, direct) = true;
1221 				DROP_GIANT();
1222 				CC_UNLOCK(cc);
1223 				sleepq_add(
1224 				    &cc_exec_waiting(cc, direct),
1225 				    &cc->cc_lock.lock_object, "codrain",
1226 				    SLEEPQ_SLEEP, 0);
1227 				sleepq_wait(
1228 				    &cc_exec_waiting(cc, direct),
1229 					     0);
1230 				sq_locked = 0;
1231 				old_cc = NULL;
1232 
1233 				/* Reacquire locks previously released. */
1234 				PICKUP_GIANT();
1235 				goto again;
1236 			}
1237 			c->c_flags &= ~CALLOUT_ACTIVE;
1238 		} else if (use_lock &&
1239 			   !cc_exec_cancel(cc, direct) && (drain == NULL)) {
1240 
1241 			/*
1242 			 * The current callout is waiting for its
1243 			 * lock which we hold.  Cancel the callout
1244 			 * and return.  After our caller drops the
1245 			 * lock, the callout will be skipped in
1246 			 * softclock(). This *only* works with a
1247 			 * callout_stop() *not* callout_drain() or
1248 			 * callout_async_drain().
1249 			 */
1250 			cc_exec_cancel(cc, direct) = true;
1251 			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1252 			    c, c->c_func, c->c_arg);
1253 			KASSERT(!cc_cce_migrating(cc, direct),
1254 			    ("callout wrongly scheduled for migration"));
1255 			if (callout_migrating(c)) {
1256 				c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1257 #ifdef SMP
1258 				cc_migration_cpu(cc, direct) = CPUBLOCK;
1259 				cc_migration_time(cc, direct) = 0;
1260 				cc_migration_prec(cc, direct) = 0;
1261 				cc_migration_func(cc, direct) = NULL;
1262 				cc_migration_arg(cc, direct) = NULL;
1263 #endif
1264 			}
1265 			CC_UNLOCK(cc);
1266 			KASSERT(!sq_locked, ("sleepqueue chain locked"));
1267 			return (1);
1268 		} else if (callout_migrating(c)) {
1269 			/*
1270 			 * The callout is currently being serviced
1271 			 * and the "next" callout is scheduled at
1272 			 * its completion with a migration. We remove
1273 			 * the migration flag so it *won't* get rescheduled,
1274 			 * but we can't stop the one thats running so
1275 			 * we return 0.
1276 			 */
1277 			c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1278 #ifdef SMP
1279 			/*
1280 			 * We can't call cc_cce_cleanup here since
1281 			 * if we do it will remove .ce_curr and
1282 			 * its still running. This will prevent a
1283 			 * reschedule of the callout when the
1284 			 * execution completes.
1285 			 */
1286 			cc_migration_cpu(cc, direct) = CPUBLOCK;
1287 			cc_migration_time(cc, direct) = 0;
1288 			cc_migration_prec(cc, direct) = 0;
1289 			cc_migration_func(cc, direct) = NULL;
1290 			cc_migration_arg(cc, direct) = NULL;
1291 #endif
1292 			CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1293 			    c, c->c_func, c->c_arg);
1294  			if (drain) {
1295 				KASSERT(cc_exec_drain(cc, direct) == NULL,
1296 				    ("callout drain function already set to %p",
1297 				    cc_exec_drain(cc, direct)));
1298 				cc_exec_drain(cc, direct) = drain;
1299 			}
1300 			CC_UNLOCK(cc);
1301 			return ((flags & CS_EXECUTING) != 0);
1302 		} else {
1303 			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1304 			    c, c->c_func, c->c_arg);
1305 			if (drain) {
1306 				KASSERT(cc_exec_drain(cc, direct) == NULL,
1307 				    ("callout drain function already set to %p",
1308 				    cc_exec_drain(cc, direct)));
1309 				cc_exec_drain(cc, direct) = drain;
1310 			}
1311 		}
1312 		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1313 		cancelled = ((flags & CS_EXECUTING) != 0);
1314 	} else
1315 		cancelled = 1;
1316 
1317 	if (sq_locked)
1318 		sleepq_release(&cc_exec_waiting(cc, direct));
1319 
1320 	if ((c->c_iflags & CALLOUT_PENDING) == 0) {
1321 		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1322 		    c, c->c_func, c->c_arg);
1323 		/*
1324 		 * For not scheduled and not executing callout return
1325 		 * negative value.
1326 		 */
1327 		if (cc_exec_curr(cc, direct) != c)
1328 			cancelled = -1;
1329 		CC_UNLOCK(cc);
1330 		return (cancelled);
1331 	}
1332 
1333 	c->c_iflags &= ~CALLOUT_PENDING;
1334 	c->c_flags &= ~CALLOUT_ACTIVE;
1335 
1336 	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1337 	    c, c->c_func, c->c_arg);
1338 	if (not_on_a_list == 0) {
1339 		if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1340 			if (cc_exec_next(cc) == c)
1341 				cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1342 			LIST_REMOVE(c, c_links.le);
1343 		} else {
1344 			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1345 		}
1346 	}
1347 	CC_UNLOCK(cc);
1348 	return (cancelled);
1349 }
1350 
1351 void
1352 callout_init(struct callout *c, int mpsafe)
1353 {
1354 	bzero(c, sizeof *c);
1355 	if (mpsafe) {
1356 		c->c_lock = NULL;
1357 		c->c_iflags = CALLOUT_RETURNUNLOCKED;
1358 	} else {
1359 		c->c_lock = &Giant.lock_object;
1360 		c->c_iflags = 0;
1361 	}
1362 	c->c_cpu = cc_default_cpu;
1363 }
1364 
1365 void
1366 _callout_init_lock(struct callout *c, struct lock_object *lock, int flags)
1367 {
1368 	bzero(c, sizeof *c);
1369 	c->c_lock = lock;
1370 	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1371 	    ("callout_init_lock: bad flags %d", flags));
1372 	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1373 	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1374 	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags & LC_SLEEPABLE),
1375 	    ("%s: callout %p has sleepable lock", __func__, c));
1376 	c->c_iflags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1377 	c->c_cpu = cc_default_cpu;
1378 }
1379 
1380 static int
1381 flssbt(sbintime_t sbt)
1382 {
1383 
1384 	sbt += (uint64_t)sbt >> 1;
1385 	if (sizeof(long) >= sizeof(sbintime_t))
1386 		return (flsl(sbt));
1387 	if (sbt >= SBT_1S)
1388 		return (flsl(((uint64_t)sbt) >> 32) + 32);
1389 	return (flsl(sbt));
1390 }
1391 
1392 /*
1393  * Dump immediate statistic snapshot of the scheduled callouts.
1394  */
1395 static int
1396 sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1397 {
1398 	struct callout *tmp;
1399 	struct callout_cpu *cc;
1400 	struct callout_list *sc;
1401 	sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1402 	int ct[64], cpr[64], ccpbk[32];
1403 	int error, val, i, count, tcum, pcum, maxc, c, medc;
1404 	int cpu;
1405 
1406 	val = 0;
1407 	error = sysctl_handle_int(oidp, &val, 0, req);
1408 	if (error != 0 || req->newptr == NULL)
1409 		return (error);
1410 	count = maxc = 0;
1411 	st = spr = maxt = maxpr = 0;
1412 	bzero(ccpbk, sizeof(ccpbk));
1413 	bzero(ct, sizeof(ct));
1414 	bzero(cpr, sizeof(cpr));
1415 	now = sbinuptime();
1416 	CPU_FOREACH(cpu) {
1417 		cc = CC_CPU(cpu);
1418 		CC_LOCK(cc);
1419 		for (i = 0; i < callwheelsize; i++) {
1420 			sc = &cc->cc_callwheel[i];
1421 			c = 0;
1422 			LIST_FOREACH(tmp, sc, c_links.le) {
1423 				c++;
1424 				t = tmp->c_time - now;
1425 				if (t < 0)
1426 					t = 0;
1427 				st += t / SBT_1US;
1428 				spr += tmp->c_precision / SBT_1US;
1429 				if (t > maxt)
1430 					maxt = t;
1431 				if (tmp->c_precision > maxpr)
1432 					maxpr = tmp->c_precision;
1433 				ct[flssbt(t)]++;
1434 				cpr[flssbt(tmp->c_precision)]++;
1435 			}
1436 			if (c > maxc)
1437 				maxc = c;
1438 			ccpbk[fls(c + c / 2)]++;
1439 			count += c;
1440 		}
1441 		CC_UNLOCK(cc);
1442 	}
1443 
1444 	for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1445 		tcum += ct[i];
1446 	medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1447 	for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1448 		pcum += cpr[i];
1449 	medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1450 	for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1451 		c += ccpbk[i];
1452 	medc = (i >= 2) ? (1 << (i - 2)) : 0;
1453 
1454 	printf("Scheduled callouts statistic snapshot:\n");
1455 	printf("  Callouts: %6d  Buckets: %6d*%-3d  Bucket size: 0.%06ds\n",
1456 	    count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
1457 	printf("  C/Bk: med %5d         avg %6d.%06jd  max %6d\n",
1458 	    medc,
1459 	    count / callwheelsize / mp_ncpus,
1460 	    (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1461 	    maxc);
1462 	printf("  Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1463 	    medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1464 	    (st / count) / 1000000, (st / count) % 1000000,
1465 	    maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1466 	printf("  Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1467 	    medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1468 	    (spr / count) / 1000000, (spr / count) % 1000000,
1469 	    maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1470 	printf("  Distribution:       \tbuckets\t   time\t   tcum\t"
1471 	    "   prec\t   pcum\n");
1472 	for (i = 0, tcum = pcum = 0; i < 64; i++) {
1473 		if (ct[i] == 0 && cpr[i] == 0)
1474 			continue;
1475 		t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1476 		tcum += ct[i];
1477 		pcum += cpr[i];
1478 		printf("  %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1479 		    t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1480 		    i - 1 - (32 - CC_HASH_SHIFT),
1481 		    ct[i], tcum, cpr[i], pcum);
1482 	}
1483 	return (error);
1484 }
1485 SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1486     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1487     0, 0, sysctl_kern_callout_stat, "I",
1488     "Dump immediate statistic snapshot of the scheduled callouts");
1489 
1490 #ifdef DDB
1491 static void
1492 _show_callout(struct callout *c)
1493 {
1494 
1495 	db_printf("callout %p\n", c);
1496 #define	C_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, c->e);
1497 	db_printf("   &c_links = %p\n", &(c->c_links));
1498 	C_DB_PRINTF("%" PRId64,	c_time);
1499 	C_DB_PRINTF("%" PRId64,	c_precision);
1500 	C_DB_PRINTF("%p",	c_arg);
1501 	C_DB_PRINTF("%p",	c_func);
1502 	C_DB_PRINTF("%p",	c_lock);
1503 	C_DB_PRINTF("%#x",	c_flags);
1504 	C_DB_PRINTF("%#x",	c_iflags);
1505 	C_DB_PRINTF("%d",	c_cpu);
1506 #undef	C_DB_PRINTF
1507 }
1508 
1509 DB_SHOW_COMMAND(callout, db_show_callout)
1510 {
1511 
1512 	if (!have_addr) {
1513 		db_printf("usage: show callout <struct callout *>\n");
1514 		return;
1515 	}
1516 
1517 	_show_callout((struct callout *)addr);
1518 }
1519 
1520 static void
1521 _show_last_callout(int cpu, int direct, const char *dirstr)
1522 {
1523 	struct callout_cpu *cc;
1524 	void *func, *arg;
1525 
1526 	cc = CC_CPU(cpu);
1527 	func = cc_exec_last_func(cc, direct);
1528 	arg = cc_exec_last_arg(cc, direct);
1529 	db_printf("cpu %d last%s callout function: %p ", cpu, dirstr, func);
1530 	db_printsym((db_expr_t)func, DB_STGY_ANY);
1531 	db_printf("\ncpu %d last%s callout argument: %p\n", cpu, dirstr, arg);
1532 }
1533 
1534 DB_SHOW_COMMAND(callout_last, db_show_callout_last)
1535 {
1536 	int cpu, last;
1537 
1538 	if (have_addr) {
1539 		if (addr < 0 || addr > mp_maxid || CPU_ABSENT(addr)) {
1540 			db_printf("no such cpu: %d\n", (int)addr);
1541 			return;
1542 		}
1543 		cpu = last = addr;
1544 	} else {
1545 		cpu = 0;
1546 		last = mp_maxid;
1547 	}
1548 
1549 	while (cpu <= last) {
1550 		if (!CPU_ABSENT(cpu)) {
1551 			_show_last_callout(cpu, 0, "");
1552 			_show_last_callout(cpu, 1, " direct");
1553 		}
1554 		cpu++;
1555 	}
1556 }
1557 #endif /* DDB */
1558