xref: /freebsd/sys/kern/kern_timeout.c (revision bb15ca603fa442c72dde3f3cb8b46db6970e3950)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_kdtrace.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bus.h>
45 #include <sys/callout.h>
46 #include <sys/condvar.h>
47 #include <sys/interrupt.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/sdt.h>
55 #include <sys/sleepqueue.h>
56 #include <sys/sysctl.h>
57 #include <sys/smp.h>
58 
59 #ifdef SMP
60 #include <machine/cpu.h>
61 #endif
62 
63 SDT_PROVIDER_DEFINE(callout_execute);
64 SDT_PROBE_DEFINE(callout_execute, kernel, , callout_start, callout-start);
65 SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_start, 0,
66     "struct callout *");
67 SDT_PROBE_DEFINE(callout_execute, kernel, , callout_end, callout-end);
68 SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_end, 0,
69     "struct callout *");
70 
71 static int avg_depth;
72 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
73     "Average number of items examined per softclock call. Units = 1/1000");
74 static int avg_gcalls;
75 SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
76     "Average number of Giant callouts made per softclock call. Units = 1/1000");
77 static int avg_lockcalls;
78 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
79     "Average number of lock callouts made per softclock call. Units = 1/1000");
80 static int avg_mpcalls;
81 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
82     "Average number of MP callouts made per softclock call. Units = 1/1000");
83 /*
84  * TODO:
85  *	allocate more timeout table slots when table overflows.
86  */
87 int callwheelsize, callwheelbits, callwheelmask;
88 
89 /*
90  * The callout cpu migration entity represents informations necessary for
91  * describing the migrating callout to the new callout cpu.
92  * The cached informations are very important for deferring migration when
93  * the migrating callout is already running.
94  */
95 struct cc_mig_ent {
96 #ifdef SMP
97 	void	(*ce_migration_func)(void *);
98 	void	*ce_migration_arg;
99 	int	ce_migration_cpu;
100 	int	ce_migration_ticks;
101 #endif
102 };
103 
104 /*
105  * There is one struct callout_cpu per cpu, holding all relevant
106  * state for the callout processing thread on the individual CPU.
107  * In particular:
108  *	cc_ticks is incremented once per tick in callout_cpu().
109  *	It tracks the global 'ticks' but in a way that the individual
110  *	threads should not worry about races in the order in which
111  *	hardclock() and hardclock_cpu() run on the various CPUs.
112  *	cc_softclock is advanced in callout_cpu() to point to the
113  *	first entry in cc_callwheel that may need handling. In turn,
114  *	a softclock() is scheduled so it can serve the various entries i
115  *	such that cc_softclock <= i <= cc_ticks .
116  *	XXX maybe cc_softclock and cc_ticks should be volatile ?
117  *
118  *	cc_ticks is also used in callout_reset_cpu() to determine
119  *	when the callout should be served.
120  */
121 struct callout_cpu {
122 	struct cc_mig_ent	cc_migrating_entity;
123 	struct mtx		cc_lock;
124 	struct callout		*cc_callout;
125 	struct callout_tailq	*cc_callwheel;
126 	struct callout_list	cc_callfree;
127 	struct callout		*cc_next;
128 	struct callout		*cc_curr;
129 	void			*cc_cookie;
130 	int 			cc_ticks;
131 	int 			cc_softticks;
132 	int			cc_cancel;
133 	int			cc_waiting;
134 	int 			cc_firsttick;
135 };
136 
137 #ifdef SMP
138 #define	cc_migration_func	cc_migrating_entity.ce_migration_func
139 #define	cc_migration_arg	cc_migrating_entity.ce_migration_arg
140 #define	cc_migration_cpu	cc_migrating_entity.ce_migration_cpu
141 #define	cc_migration_ticks	cc_migrating_entity.ce_migration_ticks
142 
143 struct callout_cpu cc_cpu[MAXCPU];
144 #define	CPUBLOCK	MAXCPU
145 #define	CC_CPU(cpu)	(&cc_cpu[(cpu)])
146 #define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
147 #else
148 struct callout_cpu cc_cpu;
149 #define	CC_CPU(cpu)	&cc_cpu
150 #define	CC_SELF()	&cc_cpu
151 #endif
152 #define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
153 #define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
154 #define	CC_LOCK_ASSERT(cc)	mtx_assert(&(cc)->cc_lock, MA_OWNED)
155 
156 static int timeout_cpu;
157 void (*callout_new_inserted)(int cpu, int ticks) = NULL;
158 
159 static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
160 
161 /**
162  * Locked by cc_lock:
163  *   cc_curr         - If a callout is in progress, it is curr_callout.
164  *                     If curr_callout is non-NULL, threads waiting in
165  *                     callout_drain() will be woken up as soon as the
166  *                     relevant callout completes.
167  *   cc_cancel       - Changing to 1 with both callout_lock and c_lock held
168  *                     guarantees that the current callout will not run.
169  *                     The softclock() function sets this to 0 before it
170  *                     drops callout_lock to acquire c_lock, and it calls
171  *                     the handler only if curr_cancelled is still 0 after
172  *                     c_lock is successfully acquired.
173  *   cc_waiting      - If a thread is waiting in callout_drain(), then
174  *                     callout_wait is nonzero.  Set only when
175  *                     curr_callout is non-NULL.
176  */
177 
178 /*
179  * Resets the migration entity tied to a specific callout cpu.
180  */
181 static void
182 cc_cme_cleanup(struct callout_cpu *cc)
183 {
184 
185 #ifdef SMP
186 	cc->cc_migration_cpu = CPUBLOCK;
187 	cc->cc_migration_ticks = 0;
188 	cc->cc_migration_func = NULL;
189 	cc->cc_migration_arg = NULL;
190 #endif
191 }
192 
193 /*
194  * Checks if migration is requested by a specific callout cpu.
195  */
196 static int
197 cc_cme_migrating(struct callout_cpu *cc)
198 {
199 
200 #ifdef SMP
201 	return (cc->cc_migration_cpu != CPUBLOCK);
202 #else
203 	return (0);
204 #endif
205 }
206 
207 /*
208  * kern_timeout_callwheel_alloc() - kernel low level callwheel initialization
209  *
210  *	This code is called very early in the kernel initialization sequence,
211  *	and may be called more then once.
212  */
213 caddr_t
214 kern_timeout_callwheel_alloc(caddr_t v)
215 {
216 	struct callout_cpu *cc;
217 
218 	timeout_cpu = PCPU_GET(cpuid);
219 	cc = CC_CPU(timeout_cpu);
220 	/*
221 	 * Calculate callout wheel size
222 	 */
223 	for (callwheelsize = 1, callwheelbits = 0;
224 	     callwheelsize < ncallout;
225 	     callwheelsize <<= 1, ++callwheelbits)
226 		;
227 	callwheelmask = callwheelsize - 1;
228 
229 	cc->cc_callout = (struct callout *)v;
230 	v = (caddr_t)(cc->cc_callout + ncallout);
231 	cc->cc_callwheel = (struct callout_tailq *)v;
232 	v = (caddr_t)(cc->cc_callwheel + callwheelsize);
233 	return(v);
234 }
235 
236 static void
237 callout_cpu_init(struct callout_cpu *cc)
238 {
239 	struct callout *c;
240 	int i;
241 
242 	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
243 	SLIST_INIT(&cc->cc_callfree);
244 	for (i = 0; i < callwheelsize; i++) {
245 		TAILQ_INIT(&cc->cc_callwheel[i]);
246 	}
247 	cc_cme_cleanup(cc);
248 	if (cc->cc_callout == NULL)
249 		return;
250 	for (i = 0; i < ncallout; i++) {
251 		c = &cc->cc_callout[i];
252 		callout_init(c, 0);
253 		c->c_flags = CALLOUT_LOCAL_ALLOC;
254 		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
255 	}
256 }
257 
258 #ifdef SMP
259 /*
260  * Switches the cpu tied to a specific callout.
261  * The function expects a locked incoming callout cpu and returns with
262  * locked outcoming callout cpu.
263  */
264 static struct callout_cpu *
265 callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
266 {
267 	struct callout_cpu *new_cc;
268 
269 	MPASS(c != NULL && cc != NULL);
270 	CC_LOCK_ASSERT(cc);
271 
272 	/*
273 	 * Avoid interrupts and preemption firing after the callout cpu
274 	 * is blocked in order to avoid deadlocks as the new thread
275 	 * may be willing to acquire the callout cpu lock.
276 	 */
277 	c->c_cpu = CPUBLOCK;
278 	spinlock_enter();
279 	CC_UNLOCK(cc);
280 	new_cc = CC_CPU(new_cpu);
281 	CC_LOCK(new_cc);
282 	spinlock_exit();
283 	c->c_cpu = new_cpu;
284 	return (new_cc);
285 }
286 #endif
287 
288 /*
289  * kern_timeout_callwheel_init() - initialize previously reserved callwheel
290  *				   space.
291  *
292  *	This code is called just once, after the space reserved for the
293  *	callout wheel has been finalized.
294  */
295 void
296 kern_timeout_callwheel_init(void)
297 {
298 	callout_cpu_init(CC_CPU(timeout_cpu));
299 }
300 
301 /*
302  * Start standard softclock thread.
303  */
304 static void
305 start_softclock(void *dummy)
306 {
307 	struct callout_cpu *cc;
308 #ifdef SMP
309 	int cpu;
310 #endif
311 
312 	cc = CC_CPU(timeout_cpu);
313 	if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK,
314 	    INTR_MPSAFE, &cc->cc_cookie))
315 		panic("died while creating standard software ithreads");
316 #ifdef SMP
317 	CPU_FOREACH(cpu) {
318 		if (cpu == timeout_cpu)
319 			continue;
320 		cc = CC_CPU(cpu);
321 		if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK,
322 		    INTR_MPSAFE, &cc->cc_cookie))
323 			panic("died while creating standard software ithreads");
324 		cc->cc_callout = NULL;	/* Only cpu0 handles timeout(). */
325 		cc->cc_callwheel = malloc(
326 		    sizeof(struct callout_tailq) * callwheelsize, M_CALLOUT,
327 		    M_WAITOK);
328 		callout_cpu_init(cc);
329 	}
330 #endif
331 }
332 
333 SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
334 
335 void
336 callout_tick(void)
337 {
338 	struct callout_cpu *cc;
339 	int need_softclock;
340 	int bucket;
341 
342 	/*
343 	 * Process callouts at a very low cpu priority, so we don't keep the
344 	 * relatively high clock interrupt priority any longer than necessary.
345 	 */
346 	need_softclock = 0;
347 	cc = CC_SELF();
348 	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
349 	cc->cc_firsttick = cc->cc_ticks = ticks;
350 	for (; (cc->cc_softticks - cc->cc_ticks) <= 0; cc->cc_softticks++) {
351 		bucket = cc->cc_softticks & callwheelmask;
352 		if (!TAILQ_EMPTY(&cc->cc_callwheel[bucket])) {
353 			need_softclock = 1;
354 			break;
355 		}
356 	}
357 	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
358 	/*
359 	 * swi_sched acquires the thread lock, so we don't want to call it
360 	 * with cc_lock held; incorrect locking order.
361 	 */
362 	if (need_softclock)
363 		swi_sched(cc->cc_cookie, 0);
364 }
365 
366 int
367 callout_tickstofirst(int limit)
368 {
369 	struct callout_cpu *cc;
370 	struct callout *c;
371 	struct callout_tailq *sc;
372 	int curticks;
373 	int skip = 1;
374 
375 	cc = CC_SELF();
376 	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
377 	curticks = cc->cc_ticks;
378 	while( skip < ncallout && skip < limit ) {
379 		sc = &cc->cc_callwheel[ (curticks+skip) & callwheelmask ];
380 		/* search scanning ticks */
381 		TAILQ_FOREACH( c, sc, c_links.tqe ){
382 			if (c->c_time - curticks <= ncallout)
383 				goto out;
384 		}
385 		skip++;
386 	}
387 out:
388 	cc->cc_firsttick = curticks + skip;
389 	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
390 	return (skip);
391 }
392 
393 static struct callout_cpu *
394 callout_lock(struct callout *c)
395 {
396 	struct callout_cpu *cc;
397 	int cpu;
398 
399 	for (;;) {
400 		cpu = c->c_cpu;
401 #ifdef SMP
402 		if (cpu == CPUBLOCK) {
403 			while (c->c_cpu == CPUBLOCK)
404 				cpu_spinwait();
405 			continue;
406 		}
407 #endif
408 		cc = CC_CPU(cpu);
409 		CC_LOCK(cc);
410 		if (cpu == c->c_cpu)
411 			break;
412 		CC_UNLOCK(cc);
413 	}
414 	return (cc);
415 }
416 
417 static void
418 callout_cc_add(struct callout *c, struct callout_cpu *cc, int to_ticks,
419     void (*func)(void *), void *arg, int cpu)
420 {
421 
422 	CC_LOCK_ASSERT(cc);
423 
424 	if (to_ticks <= 0)
425 		to_ticks = 1;
426 	c->c_arg = arg;
427 	c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
428 	c->c_func = func;
429 	c->c_time = ticks + to_ticks;
430 	TAILQ_INSERT_TAIL(&cc->cc_callwheel[c->c_time & callwheelmask],
431 	    c, c_links.tqe);
432 	if ((c->c_time - cc->cc_firsttick) < 0 &&
433 	    callout_new_inserted != NULL) {
434 		cc->cc_firsttick = c->c_time;
435 		(*callout_new_inserted)(cpu,
436 		    to_ticks + (ticks - cc->cc_ticks));
437 	}
438 }
439 
440 /*
441  * The callout mechanism is based on the work of Adam M. Costello and
442  * George Varghese, published in a technical report entitled "Redesigning
443  * the BSD Callout and Timer Facilities" and modified slightly for inclusion
444  * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
445  * used in this implementation was published by G. Varghese and T. Lauck in
446  * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
447  * the Efficient Implementation of a Timer Facility" in the Proceedings of
448  * the 11th ACM Annual Symposium on Operating Systems Principles,
449  * Austin, Texas Nov 1987.
450  */
451 
452 /*
453  * Software (low priority) clock interrupt.
454  * Run periodic events from timeout queue.
455  */
456 void
457 softclock(void *arg)
458 {
459 	struct callout_cpu *cc;
460 	struct callout *c;
461 	struct callout_tailq *bucket;
462 	int curticks;
463 	int steps;	/* #steps since we last allowed interrupts */
464 	int depth;
465 	int mpcalls;
466 	int lockcalls;
467 	int gcalls;
468 #ifdef DIAGNOSTIC
469 	struct bintime bt1, bt2;
470 	struct timespec ts2;
471 	static uint64_t maxdt = 36893488147419102LL;	/* 2 msec */
472 	static timeout_t *lastfunc;
473 #endif
474 
475 #ifndef MAX_SOFTCLOCK_STEPS
476 #define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */
477 #endif /* MAX_SOFTCLOCK_STEPS */
478 
479 	mpcalls = 0;
480 	lockcalls = 0;
481 	gcalls = 0;
482 	depth = 0;
483 	steps = 0;
484 	cc = (struct callout_cpu *)arg;
485 	CC_LOCK(cc);
486 	while (cc->cc_softticks - 1 != cc->cc_ticks) {
487 		/*
488 		 * cc_softticks may be modified by hard clock, so cache
489 		 * it while we work on a given bucket.
490 		 */
491 		curticks = cc->cc_softticks;
492 		cc->cc_softticks++;
493 		bucket = &cc->cc_callwheel[curticks & callwheelmask];
494 		c = TAILQ_FIRST(bucket);
495 		while (c) {
496 			depth++;
497 			if (c->c_time != curticks) {
498 				c = TAILQ_NEXT(c, c_links.tqe);
499 				++steps;
500 				if (steps >= MAX_SOFTCLOCK_STEPS) {
501 					cc->cc_next = c;
502 					/* Give interrupts a chance. */
503 					CC_UNLOCK(cc);
504 					;	/* nothing */
505 					CC_LOCK(cc);
506 					c = cc->cc_next;
507 					steps = 0;
508 				}
509 			} else {
510 				void (*c_func)(void *);
511 				void *c_arg;
512 				struct lock_class *class;
513 				struct lock_object *c_lock;
514 				int c_flags, sharedlock;
515 
516 				cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
517 				TAILQ_REMOVE(bucket, c, c_links.tqe);
518 				class = (c->c_lock != NULL) ?
519 				    LOCK_CLASS(c->c_lock) : NULL;
520 				sharedlock = (c->c_flags & CALLOUT_SHAREDLOCK) ?
521 				    0 : 1;
522 				c_lock = c->c_lock;
523 				c_func = c->c_func;
524 				c_arg = c->c_arg;
525 				c_flags = c->c_flags;
526 				if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
527 					c->c_flags = CALLOUT_LOCAL_ALLOC;
528 				} else {
529 					c->c_flags =
530 					    (c->c_flags & ~CALLOUT_PENDING);
531 				}
532 				cc->cc_curr = c;
533 				cc->cc_cancel = 0;
534 				CC_UNLOCK(cc);
535 				if (c_lock != NULL) {
536 					class->lc_lock(c_lock, sharedlock);
537 					/*
538 					 * The callout may have been cancelled
539 					 * while we switched locks.
540 					 */
541 					if (cc->cc_cancel) {
542 						class->lc_unlock(c_lock);
543 						goto skip;
544 					}
545 					/* The callout cannot be stopped now. */
546 					cc->cc_cancel = 1;
547 
548 					if (c_lock == &Giant.lock_object) {
549 						gcalls++;
550 						CTR3(KTR_CALLOUT,
551 						    "callout %p func %p arg %p",
552 						    c, c_func, c_arg);
553 					} else {
554 						lockcalls++;
555 						CTR3(KTR_CALLOUT, "callout lock"
556 						    " %p func %p arg %p",
557 						    c, c_func, c_arg);
558 					}
559 				} else {
560 					mpcalls++;
561 					CTR3(KTR_CALLOUT,
562 					    "callout mpsafe %p func %p arg %p",
563 					    c, c_func, c_arg);
564 				}
565 #ifdef DIAGNOSTIC
566 				binuptime(&bt1);
567 #endif
568 				THREAD_NO_SLEEPING();
569 				SDT_PROBE(callout_execute, kernel, ,
570 				    callout_start, c, 0, 0, 0, 0);
571 				c_func(c_arg);
572 				SDT_PROBE(callout_execute, kernel, ,
573 				    callout_end, c, 0, 0, 0, 0);
574 				THREAD_SLEEPING_OK();
575 #ifdef DIAGNOSTIC
576 				binuptime(&bt2);
577 				bintime_sub(&bt2, &bt1);
578 				if (bt2.frac > maxdt) {
579 					if (lastfunc != c_func ||
580 					    bt2.frac > maxdt * 2) {
581 						bintime2timespec(&bt2, &ts2);
582 						printf(
583 			"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
584 						    c_func, c_arg,
585 						    (intmax_t)ts2.tv_sec,
586 						    ts2.tv_nsec);
587 					}
588 					maxdt = bt2.frac;
589 					lastfunc = c_func;
590 				}
591 #endif
592 				CTR1(KTR_CALLOUT, "callout %p finished", c);
593 				if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0)
594 					class->lc_unlock(c_lock);
595 			skip:
596 				CC_LOCK(cc);
597 				/*
598 				 * If the current callout is locally
599 				 * allocated (from timeout(9))
600 				 * then put it on the freelist.
601 				 *
602 				 * Note: we need to check the cached
603 				 * copy of c_flags because if it was not
604 				 * local, then it's not safe to deref the
605 				 * callout pointer.
606 				 */
607 				if (c_flags & CALLOUT_LOCAL_ALLOC) {
608 					KASSERT(c->c_flags ==
609 					    CALLOUT_LOCAL_ALLOC,
610 					    ("corrupted callout"));
611 					c->c_func = NULL;
612 					SLIST_INSERT_HEAD(&cc->cc_callfree, c,
613 					    c_links.sle);
614 				}
615 				cc->cc_curr = NULL;
616 				if (cc->cc_waiting) {
617 
618 					/*
619 					 * There is someone waiting for the
620 					 * callout to complete.
621 					 * If the callout was scheduled for
622 					 * migration just cancel it.
623 					 */
624 					if (cc_cme_migrating(cc))
625 						cc_cme_cleanup(cc);
626 					cc->cc_waiting = 0;
627 					CC_UNLOCK(cc);
628 					wakeup(&cc->cc_waiting);
629 					CC_LOCK(cc);
630 				} else if (cc_cme_migrating(cc)) {
631 #ifdef SMP
632 					struct callout_cpu *new_cc;
633 					void (*new_func)(void *);
634 					void *new_arg;
635 					int new_cpu, new_ticks;
636 
637 					/*
638 					 * If the callout was scheduled for
639 					 * migration just perform it now.
640 					 */
641 					new_cpu = cc->cc_migration_cpu;
642 					new_ticks = cc->cc_migration_ticks;
643 					new_func = cc->cc_migration_func;
644 					new_arg = cc->cc_migration_arg;
645 					cc_cme_cleanup(cc);
646 
647 					/*
648 					 * It should be assert here that the
649 					 * callout is not destroyed but that
650 					 * is not easy.
651 					 */
652 					new_cc = callout_cpu_switch(c, cc,
653 					    new_cpu);
654 					callout_cc_add(c, new_cc, new_ticks,
655 					    new_func, new_arg, new_cpu);
656 					CC_UNLOCK(new_cc);
657 					CC_LOCK(cc);
658 #else
659 					panic("migration should not happen");
660 #endif
661 				}
662 				steps = 0;
663 				c = cc->cc_next;
664 			}
665 		}
666 	}
667 	avg_depth += (depth * 1000 - avg_depth) >> 8;
668 	avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
669 	avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
670 	avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
671 	cc->cc_next = NULL;
672 	CC_UNLOCK(cc);
673 }
674 
675 /*
676  * timeout --
677  *	Execute a function after a specified length of time.
678  *
679  * untimeout --
680  *	Cancel previous timeout function call.
681  *
682  * callout_handle_init --
683  *	Initialize a handle so that using it with untimeout is benign.
684  *
685  *	See AT&T BCI Driver Reference Manual for specification.  This
686  *	implementation differs from that one in that although an
687  *	identification value is returned from timeout, the original
688  *	arguments to timeout as well as the identifier are used to
689  *	identify entries for untimeout.
690  */
691 struct callout_handle
692 timeout(ftn, arg, to_ticks)
693 	timeout_t *ftn;
694 	void *arg;
695 	int to_ticks;
696 {
697 	struct callout_cpu *cc;
698 	struct callout *new;
699 	struct callout_handle handle;
700 
701 	cc = CC_CPU(timeout_cpu);
702 	CC_LOCK(cc);
703 	/* Fill in the next free callout structure. */
704 	new = SLIST_FIRST(&cc->cc_callfree);
705 	if (new == NULL)
706 		/* XXX Attempt to malloc first */
707 		panic("timeout table full");
708 	SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
709 	callout_reset(new, to_ticks, ftn, arg);
710 	handle.callout = new;
711 	CC_UNLOCK(cc);
712 
713 	return (handle);
714 }
715 
716 void
717 untimeout(ftn, arg, handle)
718 	timeout_t *ftn;
719 	void *arg;
720 	struct callout_handle handle;
721 {
722 	struct callout_cpu *cc;
723 
724 	/*
725 	 * Check for a handle that was initialized
726 	 * by callout_handle_init, but never used
727 	 * for a real timeout.
728 	 */
729 	if (handle.callout == NULL)
730 		return;
731 
732 	cc = callout_lock(handle.callout);
733 	if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
734 		callout_stop(handle.callout);
735 	CC_UNLOCK(cc);
736 }
737 
738 void
739 callout_handle_init(struct callout_handle *handle)
740 {
741 	handle->callout = NULL;
742 }
743 
744 /*
745  * New interface; clients allocate their own callout structures.
746  *
747  * callout_reset() - establish or change a timeout
748  * callout_stop() - disestablish a timeout
749  * callout_init() - initialize a callout structure so that it can
750  *	safely be passed to callout_reset() and callout_stop()
751  *
752  * <sys/callout.h> defines three convenience macros:
753  *
754  * callout_active() - returns truth if callout has not been stopped,
755  *	drained, or deactivated since the last time the callout was
756  *	reset.
757  * callout_pending() - returns truth if callout is still waiting for timeout
758  * callout_deactivate() - marks the callout as having been serviced
759  */
760 int
761 callout_reset_on(struct callout *c, int to_ticks, void (*ftn)(void *),
762     void *arg, int cpu)
763 {
764 	struct callout_cpu *cc;
765 	int cancelled = 0;
766 
767 	/*
768 	 * Don't allow migration of pre-allocated callouts lest they
769 	 * become unbalanced.
770 	 */
771 	if (c->c_flags & CALLOUT_LOCAL_ALLOC)
772 		cpu = c->c_cpu;
773 	cc = callout_lock(c);
774 	if (cc->cc_curr == c) {
775 		/*
776 		 * We're being asked to reschedule a callout which is
777 		 * currently in progress.  If there is a lock then we
778 		 * can cancel the callout if it has not really started.
779 		 */
780 		if (c->c_lock != NULL && !cc->cc_cancel)
781 			cancelled = cc->cc_cancel = 1;
782 		if (cc->cc_waiting) {
783 			/*
784 			 * Someone has called callout_drain to kill this
785 			 * callout.  Don't reschedule.
786 			 */
787 			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
788 			    cancelled ? "cancelled" : "failed to cancel",
789 			    c, c->c_func, c->c_arg);
790 			CC_UNLOCK(cc);
791 			return (cancelled);
792 		}
793 	}
794 	if (c->c_flags & CALLOUT_PENDING) {
795 		if (cc->cc_next == c) {
796 			cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
797 		}
798 		TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
799 		    c_links.tqe);
800 
801 		cancelled = 1;
802 		c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
803 	}
804 
805 #ifdef SMP
806 	/*
807 	 * If the callout must migrate try to perform it immediately.
808 	 * If the callout is currently running, just defer the migration
809 	 * to a more appropriate moment.
810 	 */
811 	if (c->c_cpu != cpu) {
812 		if (cc->cc_curr == c) {
813 			cc->cc_migration_cpu = cpu;
814 			cc->cc_migration_ticks = to_ticks;
815 			cc->cc_migration_func = ftn;
816 			cc->cc_migration_arg = arg;
817 			CTR5(KTR_CALLOUT,
818 		    "migration of %p func %p arg %p in %d to %u deferred",
819 			    c, c->c_func, c->c_arg, to_ticks, cpu);
820 			CC_UNLOCK(cc);
821 			return (cancelled);
822 		}
823 		cc = callout_cpu_switch(c, cc, cpu);
824 	}
825 #endif
826 
827 	callout_cc_add(c, cc, to_ticks, ftn, arg, cpu);
828 	CTR5(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d",
829 	    cancelled ? "re" : "", c, c->c_func, c->c_arg, to_ticks);
830 	CC_UNLOCK(cc);
831 
832 	return (cancelled);
833 }
834 
835 /*
836  * Common idioms that can be optimized in the future.
837  */
838 int
839 callout_schedule_on(struct callout *c, int to_ticks, int cpu)
840 {
841 	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
842 }
843 
844 int
845 callout_schedule(struct callout *c, int to_ticks)
846 {
847 	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
848 }
849 
850 int
851 _callout_stop_safe(c, safe)
852 	struct	callout *c;
853 	int	safe;
854 {
855 	struct callout_cpu *cc, *old_cc;
856 	struct lock_class *class;
857 	int use_lock, sq_locked;
858 
859 	/*
860 	 * Some old subsystems don't hold Giant while running a callout_stop(),
861 	 * so just discard this check for the moment.
862 	 */
863 	if (!safe && c->c_lock != NULL) {
864 		if (c->c_lock == &Giant.lock_object)
865 			use_lock = mtx_owned(&Giant);
866 		else {
867 			use_lock = 1;
868 			class = LOCK_CLASS(c->c_lock);
869 			class->lc_assert(c->c_lock, LA_XLOCKED);
870 		}
871 	} else
872 		use_lock = 0;
873 
874 	sq_locked = 0;
875 	old_cc = NULL;
876 again:
877 	cc = callout_lock(c);
878 
879 	/*
880 	 * If the callout was migrating while the callout cpu lock was
881 	 * dropped,  just drop the sleepqueue lock and check the states
882 	 * again.
883 	 */
884 	if (sq_locked != 0 && cc != old_cc) {
885 #ifdef SMP
886 		CC_UNLOCK(cc);
887 		sleepq_release(&old_cc->cc_waiting);
888 		sq_locked = 0;
889 		old_cc = NULL;
890 		goto again;
891 #else
892 		panic("migration should not happen");
893 #endif
894 	}
895 
896 	/*
897 	 * If the callout isn't pending, it's not on the queue, so
898 	 * don't attempt to remove it from the queue.  We can try to
899 	 * stop it by other means however.
900 	 */
901 	if (!(c->c_flags & CALLOUT_PENDING)) {
902 		c->c_flags &= ~CALLOUT_ACTIVE;
903 
904 		/*
905 		 * If it wasn't on the queue and it isn't the current
906 		 * callout, then we can't stop it, so just bail.
907 		 */
908 		if (cc->cc_curr != c) {
909 			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
910 			    c, c->c_func, c->c_arg);
911 			CC_UNLOCK(cc);
912 			if (sq_locked)
913 				sleepq_release(&cc->cc_waiting);
914 			return (0);
915 		}
916 
917 		if (safe) {
918 			/*
919 			 * The current callout is running (or just
920 			 * about to run) and blocking is allowed, so
921 			 * just wait for the current invocation to
922 			 * finish.
923 			 */
924 			while (cc->cc_curr == c) {
925 
926 				/*
927 				 * Use direct calls to sleepqueue interface
928 				 * instead of cv/msleep in order to avoid
929 				 * a LOR between cc_lock and sleepqueue
930 				 * chain spinlocks.  This piece of code
931 				 * emulates a msleep_spin() call actually.
932 				 *
933 				 * If we already have the sleepqueue chain
934 				 * locked, then we can safely block.  If we
935 				 * don't already have it locked, however,
936 				 * we have to drop the cc_lock to lock
937 				 * it.  This opens several races, so we
938 				 * restart at the beginning once we have
939 				 * both locks.  If nothing has changed, then
940 				 * we will end up back here with sq_locked
941 				 * set.
942 				 */
943 				if (!sq_locked) {
944 					CC_UNLOCK(cc);
945 					sleepq_lock(&cc->cc_waiting);
946 					sq_locked = 1;
947 					old_cc = cc;
948 					goto again;
949 				}
950 
951 				/*
952 				 * Migration could be cancelled here, but
953 				 * as long as it is still not sure when it
954 				 * will be packed up, just let softclock()
955 				 * take care of it.
956 				 */
957 				cc->cc_waiting = 1;
958 				DROP_GIANT();
959 				CC_UNLOCK(cc);
960 				sleepq_add(&cc->cc_waiting,
961 				    &cc->cc_lock.lock_object, "codrain",
962 				    SLEEPQ_SLEEP, 0);
963 				sleepq_wait(&cc->cc_waiting, 0);
964 				sq_locked = 0;
965 				old_cc = NULL;
966 
967 				/* Reacquire locks previously released. */
968 				PICKUP_GIANT();
969 				CC_LOCK(cc);
970 			}
971 		} else if (use_lock && !cc->cc_cancel) {
972 			/*
973 			 * The current callout is waiting for its
974 			 * lock which we hold.  Cancel the callout
975 			 * and return.  After our caller drops the
976 			 * lock, the callout will be skipped in
977 			 * softclock().
978 			 */
979 			cc->cc_cancel = 1;
980 			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
981 			    c, c->c_func, c->c_arg);
982 			KASSERT(!cc_cme_migrating(cc),
983 			    ("callout wrongly scheduled for migration"));
984 			CC_UNLOCK(cc);
985 			KASSERT(!sq_locked, ("sleepqueue chain locked"));
986 			return (1);
987 		}
988 		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
989 		    c, c->c_func, c->c_arg);
990 		CC_UNLOCK(cc);
991 		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
992 		return (0);
993 	}
994 	if (sq_locked)
995 		sleepq_release(&cc->cc_waiting);
996 
997 	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
998 
999 	if (cc->cc_next == c) {
1000 		cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
1001 	}
1002 	TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
1003 	    c_links.tqe);
1004 
1005 	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1006 	    c, c->c_func, c->c_arg);
1007 
1008 	if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
1009 		c->c_func = NULL;
1010 		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
1011 	}
1012 	CC_UNLOCK(cc);
1013 	return (1);
1014 }
1015 
1016 void
1017 callout_init(c, mpsafe)
1018 	struct	callout *c;
1019 	int mpsafe;
1020 {
1021 	bzero(c, sizeof *c);
1022 	if (mpsafe) {
1023 		c->c_lock = NULL;
1024 		c->c_flags = CALLOUT_RETURNUNLOCKED;
1025 	} else {
1026 		c->c_lock = &Giant.lock_object;
1027 		c->c_flags = 0;
1028 	}
1029 	c->c_cpu = timeout_cpu;
1030 }
1031 
1032 void
1033 _callout_init_lock(c, lock, flags)
1034 	struct	callout *c;
1035 	struct	lock_object *lock;
1036 	int flags;
1037 {
1038 	bzero(c, sizeof *c);
1039 	c->c_lock = lock;
1040 	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1041 	    ("callout_init_lock: bad flags %d", flags));
1042 	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1043 	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1044 	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
1045 	    (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
1046 	    __func__));
1047 	c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1048 	c->c_cpu = timeout_cpu;
1049 }
1050 
1051 #ifdef APM_FIXUP_CALLTODO
1052 /*
1053  * Adjust the kernel calltodo timeout list.  This routine is used after
1054  * an APM resume to recalculate the calltodo timer list values with the
1055  * number of hz's we have been sleeping.  The next hardclock() will detect
1056  * that there are fired timers and run softclock() to execute them.
1057  *
1058  * Please note, I have not done an exhaustive analysis of what code this
1059  * might break.  I am motivated to have my select()'s and alarm()'s that
1060  * have expired during suspend firing upon resume so that the applications
1061  * which set the timer can do the maintanence the timer was for as close
1062  * as possible to the originally intended time.  Testing this code for a
1063  * week showed that resuming from a suspend resulted in 22 to 25 timers
1064  * firing, which seemed independant on whether the suspend was 2 hours or
1065  * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
1066  */
1067 void
1068 adjust_timeout_calltodo(time_change)
1069     struct timeval *time_change;
1070 {
1071 	register struct callout *p;
1072 	unsigned long delta_ticks;
1073 
1074 	/*
1075 	 * How many ticks were we asleep?
1076 	 * (stolen from tvtohz()).
1077 	 */
1078 
1079 	/* Don't do anything */
1080 	if (time_change->tv_sec < 0)
1081 		return;
1082 	else if (time_change->tv_sec <= LONG_MAX / 1000000)
1083 		delta_ticks = (time_change->tv_sec * 1000000 +
1084 			       time_change->tv_usec + (tick - 1)) / tick + 1;
1085 	else if (time_change->tv_sec <= LONG_MAX / hz)
1086 		delta_ticks = time_change->tv_sec * hz +
1087 			      (time_change->tv_usec + (tick - 1)) / tick + 1;
1088 	else
1089 		delta_ticks = LONG_MAX;
1090 
1091 	if (delta_ticks > INT_MAX)
1092 		delta_ticks = INT_MAX;
1093 
1094 	/*
1095 	 * Now rip through the timer calltodo list looking for timers
1096 	 * to expire.
1097 	 */
1098 
1099 	/* don't collide with softclock() */
1100 	CC_LOCK(cc);
1101 	for (p = calltodo.c_next; p != NULL; p = p->c_next) {
1102 		p->c_time -= delta_ticks;
1103 
1104 		/* Break if the timer had more time on it than delta_ticks */
1105 		if (p->c_time > 0)
1106 			break;
1107 
1108 		/* take back the ticks the timer didn't use (p->c_time <= 0) */
1109 		delta_ticks = -p->c_time;
1110 	}
1111 	CC_UNLOCK(cc);
1112 
1113 	return;
1114 }
1115 #endif /* APM_FIXUP_CALLTODO */
1116