xref: /freebsd/sys/kern/kern_timeout.c (revision b2db760808f74bb53c232900091c9da801ebbfcc)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_kdtrace.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bus.h>
45 #include <sys/callout.h>
46 #include <sys/condvar.h>
47 #include <sys/interrupt.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/sdt.h>
55 #include <sys/sleepqueue.h>
56 #include <sys/sysctl.h>
57 #include <sys/smp.h>
58 
59 SDT_PROVIDER_DEFINE(callout_execute);
60 SDT_PROBE_DEFINE(callout_execute, kernel, , callout_start);
61 SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_start, 0,
62     "struct callout *");
63 SDT_PROBE_DEFINE(callout_execute, kernel, , callout_end);
64 SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_end, 0,
65     "struct callout *");
66 
67 static int avg_depth;
68 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
69     "Average number of items examined per softclock call. Units = 1/1000");
70 static int avg_gcalls;
71 SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
72     "Average number of Giant callouts made per softclock call. Units = 1/1000");
73 static int avg_lockcalls;
74 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
75     "Average number of lock callouts made per softclock call. Units = 1/1000");
76 static int avg_mpcalls;
77 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
78     "Average number of MP callouts made per softclock call. Units = 1/1000");
79 /*
80  * TODO:
81  *	allocate more timeout table slots when table overflows.
82  */
83 int callwheelsize, callwheelbits, callwheelmask;
84 
85 /*
86  * There is one struct callout_cpu per cpu, holding all relevant
87  * state for the callout processing thread on the individual CPU.
88  * In particular:
89  *	cc_ticks is incremented once per tick in callout_cpu().
90  *	It tracks the global 'ticks' but in a way that the individual
91  *	threads should not worry about races in the order in which
92  *	hardclock() and hardclock_cpu() run on the various CPUs.
93  *	cc_softclock is advanced in callout_cpu() to point to the
94  *	first entry in cc_callwheel that may need handling. In turn,
95  *	a softclock() is scheduled so it can serve the various entries i
96  *	such that cc_softclock <= i <= cc_ticks .
97  *	XXX maybe cc_softclock and cc_ticks should be volatile ?
98  *
99  *	cc_ticks is also used in callout_reset_cpu() to determine
100  *	when the callout should be served.
101  */
102 struct callout_cpu {
103 	struct mtx		cc_lock;
104 	struct callout		*cc_callout;
105 	struct callout_tailq	*cc_callwheel;
106 	struct callout_list	cc_callfree;
107 	struct callout		*cc_next;
108 	struct callout		*cc_curr;
109 	void			*cc_cookie;
110 	int 			cc_ticks;
111 	int 			cc_softticks;
112 	int			cc_cancel;
113 	int			cc_waiting;
114 };
115 
116 #ifdef SMP
117 struct callout_cpu cc_cpu[MAXCPU];
118 #define	CC_CPU(cpu)	(&cc_cpu[(cpu)])
119 #define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
120 #else
121 struct callout_cpu cc_cpu;
122 #define	CC_CPU(cpu)	&cc_cpu
123 #define	CC_SELF()	&cc_cpu
124 #endif
125 #define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
126 #define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
127 
128 static int timeout_cpu;
129 
130 MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
131 
132 /**
133  * Locked by cc_lock:
134  *   cc_curr         - If a callout is in progress, it is curr_callout.
135  *                     If curr_callout is non-NULL, threads waiting in
136  *                     callout_drain() will be woken up as soon as the
137  *                     relevant callout completes.
138  *   cc_cancel       - Changing to 1 with both callout_lock and c_lock held
139  *                     guarantees that the current callout will not run.
140  *                     The softclock() function sets this to 0 before it
141  *                     drops callout_lock to acquire c_lock, and it calls
142  *                     the handler only if curr_cancelled is still 0 after
143  *                     c_lock is successfully acquired.
144  *   cc_waiting      - If a thread is waiting in callout_drain(), then
145  *                     callout_wait is nonzero.  Set only when
146  *                     curr_callout is non-NULL.
147  */
148 
149 /*
150  * kern_timeout_callwheel_alloc() - kernel low level callwheel initialization
151  *
152  *	This code is called very early in the kernel initialization sequence,
153  *	and may be called more then once.
154  */
155 caddr_t
156 kern_timeout_callwheel_alloc(caddr_t v)
157 {
158 	struct callout_cpu *cc;
159 
160 	timeout_cpu = PCPU_GET(cpuid);
161 	cc = CC_CPU(timeout_cpu);
162 	/*
163 	 * Calculate callout wheel size
164 	 */
165 	for (callwheelsize = 1, callwheelbits = 0;
166 	     callwheelsize < ncallout;
167 	     callwheelsize <<= 1, ++callwheelbits)
168 		;
169 	callwheelmask = callwheelsize - 1;
170 
171 	cc->cc_callout = (struct callout *)v;
172 	v = (caddr_t)(cc->cc_callout + ncallout);
173 	cc->cc_callwheel = (struct callout_tailq *)v;
174 	v = (caddr_t)(cc->cc_callwheel + callwheelsize);
175 	return(v);
176 }
177 
178 static void
179 callout_cpu_init(struct callout_cpu *cc)
180 {
181 	struct callout *c;
182 	int i;
183 
184 	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
185 	SLIST_INIT(&cc->cc_callfree);
186 	for (i = 0; i < callwheelsize; i++) {
187 		TAILQ_INIT(&cc->cc_callwheel[i]);
188 	}
189 	if (cc->cc_callout == NULL)
190 		return;
191 	for (i = 0; i < ncallout; i++) {
192 		c = &cc->cc_callout[i];
193 		callout_init(c, 0);
194 		c->c_flags = CALLOUT_LOCAL_ALLOC;
195 		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
196 	}
197 }
198 
199 /*
200  * kern_timeout_callwheel_init() - initialize previously reserved callwheel
201  *				   space.
202  *
203  *	This code is called just once, after the space reserved for the
204  *	callout wheel has been finalized.
205  */
206 void
207 kern_timeout_callwheel_init(void)
208 {
209 	callout_cpu_init(CC_CPU(timeout_cpu));
210 }
211 
212 /*
213  * Start standard softclock thread.
214  */
215 void    *softclock_ih;
216 
217 static void
218 start_softclock(void *dummy)
219 {
220 	struct callout_cpu *cc;
221 #ifdef SMP
222 	int cpu;
223 #endif
224 
225 	cc = CC_CPU(timeout_cpu);
226 	if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK,
227 	    INTR_MPSAFE, &softclock_ih))
228 		panic("died while creating standard software ithreads");
229 	cc->cc_cookie = softclock_ih;
230 #ifdef SMP
231 	CPU_FOREACH(cpu) {
232 		if (cpu == timeout_cpu)
233 			continue;
234 		cc = CC_CPU(cpu);
235 		if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK,
236 		    INTR_MPSAFE, &cc->cc_cookie))
237 			panic("died while creating standard software ithreads");
238 		cc->cc_callout = NULL;	/* Only cpu0 handles timeout(). */
239 		cc->cc_callwheel = malloc(
240 		    sizeof(struct callout_tailq) * callwheelsize, M_CALLOUT,
241 		    M_WAITOK);
242 		callout_cpu_init(cc);
243 	}
244 #endif
245 }
246 
247 SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
248 
249 void
250 callout_tick(void)
251 {
252 	struct callout_cpu *cc;
253 	int need_softclock;
254 	int bucket;
255 
256 	/*
257 	 * Process callouts at a very low cpu priority, so we don't keep the
258 	 * relatively high clock interrupt priority any longer than necessary.
259 	 */
260 	need_softclock = 0;
261 	cc = CC_SELF();
262 	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
263 	cc->cc_ticks++;
264 	for (; (cc->cc_softticks - cc->cc_ticks) <= 0; cc->cc_softticks++) {
265 		bucket = cc->cc_softticks & callwheelmask;
266 		if (!TAILQ_EMPTY(&cc->cc_callwheel[bucket])) {
267 			need_softclock = 1;
268 			break;
269 		}
270 	}
271 	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
272 	/*
273 	 * swi_sched acquires the thread lock, so we don't want to call it
274 	 * with cc_lock held; incorrect locking order.
275 	 */
276 	if (need_softclock)
277 		swi_sched(cc->cc_cookie, 0);
278 }
279 
280 static struct callout_cpu *
281 callout_lock(struct callout *c)
282 {
283 	struct callout_cpu *cc;
284 	int cpu;
285 
286 	for (;;) {
287 		cpu = c->c_cpu;
288 		cc = CC_CPU(cpu);
289 		CC_LOCK(cc);
290 		if (cpu == c->c_cpu)
291 			break;
292 		CC_UNLOCK(cc);
293 	}
294 	return (cc);
295 }
296 
297 /*
298  * The callout mechanism is based on the work of Adam M. Costello and
299  * George Varghese, published in a technical report entitled "Redesigning
300  * the BSD Callout and Timer Facilities" and modified slightly for inclusion
301  * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
302  * used in this implementation was published by G. Varghese and T. Lauck in
303  * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
304  * the Efficient Implementation of a Timer Facility" in the Proceedings of
305  * the 11th ACM Annual Symposium on Operating Systems Principles,
306  * Austin, Texas Nov 1987.
307  */
308 
309 /*
310  * Software (low priority) clock interrupt.
311  * Run periodic events from timeout queue.
312  */
313 void
314 softclock(void *arg)
315 {
316 	struct callout_cpu *cc;
317 	struct callout *c;
318 	struct callout_tailq *bucket;
319 	int curticks;
320 	int steps;	/* #steps since we last allowed interrupts */
321 	int depth;
322 	int mpcalls;
323 	int lockcalls;
324 	int gcalls;
325 #ifdef DIAGNOSTIC
326 	struct bintime bt1, bt2;
327 	struct timespec ts2;
328 	static uint64_t maxdt = 36893488147419102LL;	/* 2 msec */
329 	static timeout_t *lastfunc;
330 #endif
331 
332 #ifndef MAX_SOFTCLOCK_STEPS
333 #define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */
334 #endif /* MAX_SOFTCLOCK_STEPS */
335 
336 	mpcalls = 0;
337 	lockcalls = 0;
338 	gcalls = 0;
339 	depth = 0;
340 	steps = 0;
341 	cc = (struct callout_cpu *)arg;
342 	CC_LOCK(cc);
343 	while (cc->cc_softticks - 1 != cc->cc_ticks) {
344 		/*
345 		 * cc_softticks may be modified by hard clock, so cache
346 		 * it while we work on a given bucket.
347 		 */
348 		curticks = cc->cc_softticks;
349 		cc->cc_softticks++;
350 		bucket = &cc->cc_callwheel[curticks & callwheelmask];
351 		c = TAILQ_FIRST(bucket);
352 		while (c) {
353 			depth++;
354 			if (c->c_time != curticks) {
355 				c = TAILQ_NEXT(c, c_links.tqe);
356 				++steps;
357 				if (steps >= MAX_SOFTCLOCK_STEPS) {
358 					cc->cc_next = c;
359 					/* Give interrupts a chance. */
360 					CC_UNLOCK(cc);
361 					;	/* nothing */
362 					CC_LOCK(cc);
363 					c = cc->cc_next;
364 					steps = 0;
365 				}
366 			} else {
367 				void (*c_func)(void *);
368 				void *c_arg;
369 				struct lock_class *class;
370 				struct lock_object *c_lock;
371 				int c_flags, sharedlock;
372 
373 				cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
374 				TAILQ_REMOVE(bucket, c, c_links.tqe);
375 				class = (c->c_lock != NULL) ?
376 				    LOCK_CLASS(c->c_lock) : NULL;
377 				sharedlock = (c->c_flags & CALLOUT_SHAREDLOCK) ?
378 				    0 : 1;
379 				c_lock = c->c_lock;
380 				c_func = c->c_func;
381 				c_arg = c->c_arg;
382 				c_flags = c->c_flags;
383 				if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
384 					c->c_flags = CALLOUT_LOCAL_ALLOC;
385 				} else {
386 					c->c_flags =
387 					    (c->c_flags & ~CALLOUT_PENDING);
388 				}
389 				cc->cc_curr = c;
390 				cc->cc_cancel = 0;
391 				CC_UNLOCK(cc);
392 				if (c_lock != NULL) {
393 					class->lc_lock(c_lock, sharedlock);
394 					/*
395 					 * The callout may have been cancelled
396 					 * while we switched locks.
397 					 */
398 					if (cc->cc_cancel) {
399 						class->lc_unlock(c_lock);
400 						goto skip;
401 					}
402 					/* The callout cannot be stopped now. */
403 					cc->cc_cancel = 1;
404 
405 					if (c_lock == &Giant.lock_object) {
406 						gcalls++;
407 						CTR3(KTR_CALLOUT,
408 						    "callout %p func %p arg %p",
409 						    c, c_func, c_arg);
410 					} else {
411 						lockcalls++;
412 						CTR3(KTR_CALLOUT, "callout lock"
413 						    " %p func %p arg %p",
414 						    c, c_func, c_arg);
415 					}
416 				} else {
417 					mpcalls++;
418 					CTR3(KTR_CALLOUT,
419 					    "callout mpsafe %p func %p arg %p",
420 					    c, c_func, c_arg);
421 				}
422 #ifdef DIAGNOSTIC
423 				binuptime(&bt1);
424 #endif
425 				THREAD_NO_SLEEPING();
426 				SDT_PROBE(callout_execute, kernel, ,
427 				    callout_start, c, 0, 0, 0, 0);
428 				c_func(c_arg);
429 				SDT_PROBE(callout_execute, kernel, ,
430 				    callout_end, c, 0, 0, 0, 0);
431 				THREAD_SLEEPING_OK();
432 #ifdef DIAGNOSTIC
433 				binuptime(&bt2);
434 				bintime_sub(&bt2, &bt1);
435 				if (bt2.frac > maxdt) {
436 					if (lastfunc != c_func ||
437 					    bt2.frac > maxdt * 2) {
438 						bintime2timespec(&bt2, &ts2);
439 						printf(
440 			"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
441 						    c_func, c_arg,
442 						    (intmax_t)ts2.tv_sec,
443 						    ts2.tv_nsec);
444 					}
445 					maxdt = bt2.frac;
446 					lastfunc = c_func;
447 				}
448 #endif
449 				CTR1(KTR_CALLOUT, "callout %p finished", c);
450 				if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0)
451 					class->lc_unlock(c_lock);
452 			skip:
453 				CC_LOCK(cc);
454 				/*
455 				 * If the current callout is locally
456 				 * allocated (from timeout(9))
457 				 * then put it on the freelist.
458 				 *
459 				 * Note: we need to check the cached
460 				 * copy of c_flags because if it was not
461 				 * local, then it's not safe to deref the
462 				 * callout pointer.
463 				 */
464 				if (c_flags & CALLOUT_LOCAL_ALLOC) {
465 					KASSERT(c->c_flags ==
466 					    CALLOUT_LOCAL_ALLOC,
467 					    ("corrupted callout"));
468 					c->c_func = NULL;
469 					SLIST_INSERT_HEAD(&cc->cc_callfree, c,
470 					    c_links.sle);
471 				}
472 				cc->cc_curr = NULL;
473 				if (cc->cc_waiting) {
474 					/*
475 					 * There is someone waiting
476 					 * for the callout to complete.
477 					 */
478 					cc->cc_waiting = 0;
479 					CC_UNLOCK(cc);
480 					wakeup(&cc->cc_waiting);
481 					CC_LOCK(cc);
482 				}
483 				steps = 0;
484 				c = cc->cc_next;
485 			}
486 		}
487 	}
488 	avg_depth += (depth * 1000 - avg_depth) >> 8;
489 	avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
490 	avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
491 	avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
492 	cc->cc_next = NULL;
493 	CC_UNLOCK(cc);
494 }
495 
496 /*
497  * timeout --
498  *	Execute a function after a specified length of time.
499  *
500  * untimeout --
501  *	Cancel previous timeout function call.
502  *
503  * callout_handle_init --
504  *	Initialize a handle so that using it with untimeout is benign.
505  *
506  *	See AT&T BCI Driver Reference Manual for specification.  This
507  *	implementation differs from that one in that although an
508  *	identification value is returned from timeout, the original
509  *	arguments to timeout as well as the identifier are used to
510  *	identify entries for untimeout.
511  */
512 struct callout_handle
513 timeout(ftn, arg, to_ticks)
514 	timeout_t *ftn;
515 	void *arg;
516 	int to_ticks;
517 {
518 	struct callout_cpu *cc;
519 	struct callout *new;
520 	struct callout_handle handle;
521 
522 	cc = CC_CPU(timeout_cpu);
523 	CC_LOCK(cc);
524 	/* Fill in the next free callout structure. */
525 	new = SLIST_FIRST(&cc->cc_callfree);
526 	if (new == NULL)
527 		/* XXX Attempt to malloc first */
528 		panic("timeout table full");
529 	SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
530 	callout_reset(new, to_ticks, ftn, arg);
531 	handle.callout = new;
532 	CC_UNLOCK(cc);
533 
534 	return (handle);
535 }
536 
537 void
538 untimeout(ftn, arg, handle)
539 	timeout_t *ftn;
540 	void *arg;
541 	struct callout_handle handle;
542 {
543 	struct callout_cpu *cc;
544 
545 	/*
546 	 * Check for a handle that was initialized
547 	 * by callout_handle_init, but never used
548 	 * for a real timeout.
549 	 */
550 	if (handle.callout == NULL)
551 		return;
552 
553 	cc = callout_lock(handle.callout);
554 	if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
555 		callout_stop(handle.callout);
556 	CC_UNLOCK(cc);
557 }
558 
559 void
560 callout_handle_init(struct callout_handle *handle)
561 {
562 	handle->callout = NULL;
563 }
564 
565 /*
566  * New interface; clients allocate their own callout structures.
567  *
568  * callout_reset() - establish or change a timeout
569  * callout_stop() - disestablish a timeout
570  * callout_init() - initialize a callout structure so that it can
571  *	safely be passed to callout_reset() and callout_stop()
572  *
573  * <sys/callout.h> defines three convenience macros:
574  *
575  * callout_active() - returns truth if callout has not been stopped,
576  *	drained, or deactivated since the last time the callout was
577  *	reset.
578  * callout_pending() - returns truth if callout is still waiting for timeout
579  * callout_deactivate() - marks the callout as having been serviced
580  */
581 int
582 callout_reset_on(struct callout *c, int to_ticks, void (*ftn)(void *),
583     void *arg, int cpu)
584 {
585 	struct callout_cpu *cc;
586 	int cancelled = 0;
587 
588 	/*
589 	 * Don't allow migration of pre-allocated callouts lest they
590 	 * become unbalanced.
591 	 */
592 	if (c->c_flags & CALLOUT_LOCAL_ALLOC)
593 		cpu = c->c_cpu;
594 retry:
595 	cc = callout_lock(c);
596 	if (cc->cc_curr == c) {
597 		/*
598 		 * We're being asked to reschedule a callout which is
599 		 * currently in progress.  If there is a lock then we
600 		 * can cancel the callout if it has not really started.
601 		 */
602 		if (c->c_lock != NULL && !cc->cc_cancel)
603 			cancelled = cc->cc_cancel = 1;
604 		if (cc->cc_waiting) {
605 			/*
606 			 * Someone has called callout_drain to kill this
607 			 * callout.  Don't reschedule.
608 			 */
609 			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
610 			    cancelled ? "cancelled" : "failed to cancel",
611 			    c, c->c_func, c->c_arg);
612 			CC_UNLOCK(cc);
613 			return (cancelled);
614 		}
615 	}
616 	if (c->c_flags & CALLOUT_PENDING) {
617 		if (cc->cc_next == c) {
618 			cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
619 		}
620 		TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
621 		    c_links.tqe);
622 
623 		cancelled = 1;
624 		c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
625 	}
626 	/*
627 	 * If the lock must migrate we have to check the state again as
628 	 * we can't hold both the new and old locks simultaneously.
629 	 */
630 	if (c->c_cpu != cpu) {
631 		c->c_cpu = cpu;
632 		CC_UNLOCK(cc);
633 		goto retry;
634 	}
635 
636 	if (to_ticks <= 0)
637 		to_ticks = 1;
638 
639 	c->c_arg = arg;
640 	c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
641 	c->c_func = ftn;
642 	c->c_time = cc->cc_ticks + to_ticks;
643 	TAILQ_INSERT_TAIL(&cc->cc_callwheel[c->c_time & callwheelmask],
644 			  c, c_links.tqe);
645 	CTR5(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d",
646 	    cancelled ? "re" : "", c, c->c_func, c->c_arg, to_ticks);
647 	CC_UNLOCK(cc);
648 
649 	return (cancelled);
650 }
651 
652 /*
653  * Common idioms that can be optimized in the future.
654  */
655 int
656 callout_schedule_on(struct callout *c, int to_ticks, int cpu)
657 {
658 	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
659 }
660 
661 int
662 callout_schedule(struct callout *c, int to_ticks)
663 {
664 	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
665 }
666 
667 int
668 _callout_stop_safe(c, safe)
669 	struct	callout *c;
670 	int	safe;
671 {
672 	struct callout_cpu *cc;
673 	struct lock_class *class;
674 	int use_lock, sq_locked;
675 
676 	/*
677 	 * Some old subsystems don't hold Giant while running a callout_stop(),
678 	 * so just discard this check for the moment.
679 	 */
680 	if (!safe && c->c_lock != NULL) {
681 		if (c->c_lock == &Giant.lock_object)
682 			use_lock = mtx_owned(&Giant);
683 		else {
684 			use_lock = 1;
685 			class = LOCK_CLASS(c->c_lock);
686 			class->lc_assert(c->c_lock, LA_XLOCKED);
687 		}
688 	} else
689 		use_lock = 0;
690 
691 	sq_locked = 0;
692 again:
693 	cc = callout_lock(c);
694 	/*
695 	 * If the callout isn't pending, it's not on the queue, so
696 	 * don't attempt to remove it from the queue.  We can try to
697 	 * stop it by other means however.
698 	 */
699 	if (!(c->c_flags & CALLOUT_PENDING)) {
700 		c->c_flags &= ~CALLOUT_ACTIVE;
701 
702 		/*
703 		 * If it wasn't on the queue and it isn't the current
704 		 * callout, then we can't stop it, so just bail.
705 		 */
706 		if (cc->cc_curr != c) {
707 			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
708 			    c, c->c_func, c->c_arg);
709 			CC_UNLOCK(cc);
710 			if (sq_locked)
711 				sleepq_release(&cc->cc_waiting);
712 			return (0);
713 		}
714 
715 		if (safe) {
716 			/*
717 			 * The current callout is running (or just
718 			 * about to run) and blocking is allowed, so
719 			 * just wait for the current invocation to
720 			 * finish.
721 			 */
722 			while (cc->cc_curr == c) {
723 
724 				/*
725 				 * Use direct calls to sleepqueue interface
726 				 * instead of cv/msleep in order to avoid
727 				 * a LOR between cc_lock and sleepqueue
728 				 * chain spinlocks.  This piece of code
729 				 * emulates a msleep_spin() call actually.
730 				 *
731 				 * If we already have the sleepqueue chain
732 				 * locked, then we can safely block.  If we
733 				 * don't already have it locked, however,
734 				 * we have to drop the cc_lock to lock
735 				 * it.  This opens several races, so we
736 				 * restart at the beginning once we have
737 				 * both locks.  If nothing has changed, then
738 				 * we will end up back here with sq_locked
739 				 * set.
740 				 */
741 				if (!sq_locked) {
742 					CC_UNLOCK(cc);
743 					sleepq_lock(&cc->cc_waiting);
744 					sq_locked = 1;
745 					goto again;
746 				}
747 				cc->cc_waiting = 1;
748 				DROP_GIANT();
749 				CC_UNLOCK(cc);
750 				sleepq_add(&cc->cc_waiting,
751 				    &cc->cc_lock.lock_object, "codrain",
752 				    SLEEPQ_SLEEP, 0);
753 				sleepq_wait(&cc->cc_waiting, 0);
754 				sq_locked = 0;
755 
756 				/* Reacquire locks previously released. */
757 				PICKUP_GIANT();
758 				CC_LOCK(cc);
759 			}
760 		} else if (use_lock && !cc->cc_cancel) {
761 			/*
762 			 * The current callout is waiting for its
763 			 * lock which we hold.  Cancel the callout
764 			 * and return.  After our caller drops the
765 			 * lock, the callout will be skipped in
766 			 * softclock().
767 			 */
768 			cc->cc_cancel = 1;
769 			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
770 			    c, c->c_func, c->c_arg);
771 			CC_UNLOCK(cc);
772 			KASSERT(!sq_locked, ("sleepqueue chain locked"));
773 			return (1);
774 		}
775 		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
776 		    c, c->c_func, c->c_arg);
777 		CC_UNLOCK(cc);
778 		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
779 		return (0);
780 	}
781 	if (sq_locked)
782 		sleepq_release(&cc->cc_waiting);
783 
784 	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
785 
786 	if (cc->cc_next == c) {
787 		cc->cc_next = TAILQ_NEXT(c, c_links.tqe);
788 	}
789 	TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c,
790 	    c_links.tqe);
791 
792 	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
793 	    c, c->c_func, c->c_arg);
794 
795 	if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
796 		c->c_func = NULL;
797 		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
798 	}
799 	CC_UNLOCK(cc);
800 	return (1);
801 }
802 
803 void
804 callout_init(c, mpsafe)
805 	struct	callout *c;
806 	int mpsafe;
807 {
808 	bzero(c, sizeof *c);
809 	if (mpsafe) {
810 		c->c_lock = NULL;
811 		c->c_flags = CALLOUT_RETURNUNLOCKED;
812 	} else {
813 		c->c_lock = &Giant.lock_object;
814 		c->c_flags = 0;
815 	}
816 	c->c_cpu = timeout_cpu;
817 }
818 
819 void
820 _callout_init_lock(c, lock, flags)
821 	struct	callout *c;
822 	struct	lock_object *lock;
823 	int flags;
824 {
825 	bzero(c, sizeof *c);
826 	c->c_lock = lock;
827 	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
828 	    ("callout_init_lock: bad flags %d", flags));
829 	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
830 	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
831 	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
832 	    (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
833 	    __func__));
834 	c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
835 	c->c_cpu = timeout_cpu;
836 }
837 
838 #ifdef APM_FIXUP_CALLTODO
839 /*
840  * Adjust the kernel calltodo timeout list.  This routine is used after
841  * an APM resume to recalculate the calltodo timer list values with the
842  * number of hz's we have been sleeping.  The next hardclock() will detect
843  * that there are fired timers and run softclock() to execute them.
844  *
845  * Please note, I have not done an exhaustive analysis of what code this
846  * might break.  I am motivated to have my select()'s and alarm()'s that
847  * have expired during suspend firing upon resume so that the applications
848  * which set the timer can do the maintanence the timer was for as close
849  * as possible to the originally intended time.  Testing this code for a
850  * week showed that resuming from a suspend resulted in 22 to 25 timers
851  * firing, which seemed independant on whether the suspend was 2 hours or
852  * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
853  */
854 void
855 adjust_timeout_calltodo(time_change)
856     struct timeval *time_change;
857 {
858 	register struct callout *p;
859 	unsigned long delta_ticks;
860 
861 	/*
862 	 * How many ticks were we asleep?
863 	 * (stolen from tvtohz()).
864 	 */
865 
866 	/* Don't do anything */
867 	if (time_change->tv_sec < 0)
868 		return;
869 	else if (time_change->tv_sec <= LONG_MAX / 1000000)
870 		delta_ticks = (time_change->tv_sec * 1000000 +
871 			       time_change->tv_usec + (tick - 1)) / tick + 1;
872 	else if (time_change->tv_sec <= LONG_MAX / hz)
873 		delta_ticks = time_change->tv_sec * hz +
874 			      (time_change->tv_usec + (tick - 1)) / tick + 1;
875 	else
876 		delta_ticks = LONG_MAX;
877 
878 	if (delta_ticks > INT_MAX)
879 		delta_ticks = INT_MAX;
880 
881 	/*
882 	 * Now rip through the timer calltodo list looking for timers
883 	 * to expire.
884 	 */
885 
886 	/* don't collide with softclock() */
887 	CC_LOCK(cc);
888 	for (p = calltodo.c_next; p != NULL; p = p->c_next) {
889 		p->c_time -= delta_ticks;
890 
891 		/* Break if the timer had more time on it than delta_ticks */
892 		if (p->c_time > 0)
893 			break;
894 
895 		/* take back the ticks the timer didn't use (p->c_time <= 0) */
896 		delta_ticks = -p->c_time;
897 	}
898 	CC_UNLOCK(cc);
899 
900 	return;
901 }
902 #endif /* APM_FIXUP_CALLTODO */
903