xref: /freebsd/sys/kern/kern_timeout.c (revision b28624fde638caadd4a89f50c9b7e7da0f98c4d2)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/condvar.h>
44 #include <sys/kernel.h>
45 #include <sys/ktr.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/sleepqueue.h>
50 #include <sys/sysctl.h>
51 
52 static int avg_depth;
53 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
54     "Average number of items examined per softclock call. Units = 1/1000");
55 static int avg_gcalls;
56 SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
57     "Average number of Giant callouts made per softclock call. Units = 1/1000");
58 static int avg_mtxcalls;
59 SYSCTL_INT(_debug, OID_AUTO, to_avg_mtxcalls, CTLFLAG_RD, &avg_mtxcalls, 0,
60     "Average number of mtx callouts made per softclock call. Units = 1/1000");
61 static int avg_mpcalls;
62 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
63     "Average number of MP callouts made per softclock call. Units = 1/1000");
64 /*
65  * TODO:
66  *	allocate more timeout table slots when table overflows.
67  */
68 
69 /* Exported to machdep.c and/or kern_clock.c.  */
70 struct callout *callout;
71 struct callout_list callfree;
72 int callwheelsize, callwheelbits, callwheelmask;
73 struct callout_tailq *callwheel;
74 int softticks;			/* Like ticks, but for softclock(). */
75 struct mtx callout_lock;
76 
77 static struct callout *nextsoftcheck;	/* Next callout to be checked. */
78 
79 /**
80  * Locked by callout_lock:
81  *   curr_callout    - If a callout is in progress, it is curr_callout.
82  *                     If curr_callout is non-NULL, threads waiting in
83  *                     callout_drain() will be woken up as soon as the
84  *                     relevant callout completes.
85  *   curr_cancelled  - Changing to 1 with both callout_lock and c_mtx held
86  *                     guarantees that the current callout will not run.
87  *                     The softclock() function sets this to 0 before it
88  *                     drops callout_lock to acquire c_mtx, and it calls
89  *                     the handler only if curr_cancelled is still 0 after
90  *                     c_mtx is successfully acquired.
91  *   callout_wait    - If a thread is waiting in callout_drain(), then
92  *                     callout_wait is nonzero.  Set only when
93  *                     curr_callout is non-NULL.
94  */
95 static struct callout *curr_callout;
96 static int curr_cancelled;
97 static int callout_wait;
98 
99 /*
100  * kern_timeout_callwheel_alloc() - kernel low level callwheel initialization
101  *
102  *	This code is called very early in the kernel initialization sequence,
103  *	and may be called more then once.
104  */
105 caddr_t
106 kern_timeout_callwheel_alloc(caddr_t v)
107 {
108 	/*
109 	 * Calculate callout wheel size
110 	 */
111 	for (callwheelsize = 1, callwheelbits = 0;
112 	     callwheelsize < ncallout;
113 	     callwheelsize <<= 1, ++callwheelbits)
114 		;
115 	callwheelmask = callwheelsize - 1;
116 
117 	callout = (struct callout *)v;
118 	v = (caddr_t)(callout + ncallout);
119 	callwheel = (struct callout_tailq *)v;
120 	v = (caddr_t)(callwheel + callwheelsize);
121 	return(v);
122 }
123 
124 /*
125  * kern_timeout_callwheel_init() - initialize previously reserved callwheel
126  *				   space.
127  *
128  *	This code is called just once, after the space reserved for the
129  *	callout wheel has been finalized.
130  */
131 void
132 kern_timeout_callwheel_init(void)
133 {
134 	int i;
135 
136 	SLIST_INIT(&callfree);
137 	for (i = 0; i < ncallout; i++) {
138 		callout_init(&callout[i], 0);
139 		callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
140 		SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
141 	}
142 	for (i = 0; i < callwheelsize; i++) {
143 		TAILQ_INIT(&callwheel[i]);
144 	}
145 	mtx_init(&callout_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
146 }
147 
148 /*
149  * The callout mechanism is based on the work of Adam M. Costello and
150  * George Varghese, published in a technical report entitled "Redesigning
151  * the BSD Callout and Timer Facilities" and modified slightly for inclusion
152  * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
153  * used in this implementation was published by G. Varghese and T. Lauck in
154  * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
155  * the Efficient Implementation of a Timer Facility" in the Proceedings of
156  * the 11th ACM Annual Symposium on Operating Systems Principles,
157  * Austin, Texas Nov 1987.
158  */
159 
160 /*
161  * Software (low priority) clock interrupt.
162  * Run periodic events from timeout queue.
163  */
164 void
165 softclock(void *dummy)
166 {
167 	struct callout *c;
168 	struct callout_tailq *bucket;
169 	int curticks;
170 	int steps;	/* #steps since we last allowed interrupts */
171 	int depth;
172 	int mpcalls;
173 	int mtxcalls;
174 	int gcalls;
175 #ifdef DIAGNOSTIC
176 	struct bintime bt1, bt2;
177 	struct timespec ts2;
178 	static uint64_t maxdt = 36893488147419102LL;	/* 2 msec */
179 	static timeout_t *lastfunc;
180 #endif
181 
182 #ifndef MAX_SOFTCLOCK_STEPS
183 #define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */
184 #endif /* MAX_SOFTCLOCK_STEPS */
185 
186 	mpcalls = 0;
187 	mtxcalls = 0;
188 	gcalls = 0;
189 	depth = 0;
190 	steps = 0;
191 	mtx_lock_spin(&callout_lock);
192 	while (softticks != ticks) {
193 		softticks++;
194 		/*
195 		 * softticks may be modified by hard clock, so cache
196 		 * it while we work on a given bucket.
197 		 */
198 		curticks = softticks;
199 		bucket = &callwheel[curticks & callwheelmask];
200 		c = TAILQ_FIRST(bucket);
201 		while (c) {
202 			depth++;
203 			if (c->c_time != curticks) {
204 				c = TAILQ_NEXT(c, c_links.tqe);
205 				++steps;
206 				if (steps >= MAX_SOFTCLOCK_STEPS) {
207 					nextsoftcheck = c;
208 					/* Give interrupts a chance. */
209 					mtx_unlock_spin(&callout_lock);
210 					;	/* nothing */
211 					mtx_lock_spin(&callout_lock);
212 					c = nextsoftcheck;
213 					steps = 0;
214 				}
215 			} else {
216 				void (*c_func)(void *);
217 				void *c_arg;
218 				struct mtx *c_mtx;
219 				int c_flags;
220 
221 				nextsoftcheck = TAILQ_NEXT(c, c_links.tqe);
222 				TAILQ_REMOVE(bucket, c, c_links.tqe);
223 				c_func = c->c_func;
224 				c_arg = c->c_arg;
225 				c_mtx = c->c_mtx;
226 				c_flags = c->c_flags;
227 				if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
228 					c->c_func = NULL;
229 					c->c_flags = CALLOUT_LOCAL_ALLOC;
230 					SLIST_INSERT_HEAD(&callfree, c,
231 							  c_links.sle);
232 					curr_callout = NULL;
233 				} else {
234 					c->c_flags =
235 					    (c->c_flags & ~CALLOUT_PENDING);
236 					curr_callout = c;
237 				}
238 				curr_cancelled = 0;
239 				mtx_unlock_spin(&callout_lock);
240 				if (c_mtx != NULL) {
241 					if (c_flags & CALLOUT_NETGIANT) {
242 						mtx_lock(&Giant);
243 						gcalls++;
244 						CTR3(KTR_CALLOUT, "netgiant"
245 						    " %p func %p arg %p",
246 						    c, c_func, c_arg);
247 					}
248 					mtx_lock(c_mtx);
249 					/*
250 					 * The callout may have been cancelled
251 					 * while we switched locks.
252 					 */
253 					if (curr_cancelled) {
254 						mtx_unlock(c_mtx);
255 						goto skip;
256 					}
257 					/* The callout cannot be stopped now. */
258 					curr_cancelled = 1;
259 
260 					if (c_mtx == &Giant) {
261 						gcalls++;
262 						CTR3(KTR_CALLOUT,
263 						    "callout %p func %p arg %p",
264 						    c, c_func, c_arg);
265 					} else {
266 						mtxcalls++;
267 						CTR3(KTR_CALLOUT, "callout mtx"
268 						    " %p func %p arg %p",
269 						    c, c_func, c_arg);
270 					}
271 				} else {
272 					mpcalls++;
273 					CTR3(KTR_CALLOUT,
274 					    "callout mpsafe %p func %p arg %p",
275 					    c, c_func, c_arg);
276 				}
277 #ifdef DIAGNOSTIC
278 				binuptime(&bt1);
279 #endif
280 				THREAD_NO_SLEEPING();
281 				c_func(c_arg);
282 				THREAD_SLEEPING_OK();
283 #ifdef DIAGNOSTIC
284 				binuptime(&bt2);
285 				bintime_sub(&bt2, &bt1);
286 				if (bt2.frac > maxdt) {
287 					if (lastfunc != c_func ||
288 					    bt2.frac > maxdt * 2) {
289 						bintime2timespec(&bt2, &ts2);
290 						printf(
291 			"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
292 						    c_func, c_arg,
293 						    (intmax_t)ts2.tv_sec,
294 						    ts2.tv_nsec);
295 					}
296 					maxdt = bt2.frac;
297 					lastfunc = c_func;
298 				}
299 #endif
300 				if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0)
301 					mtx_unlock(c_mtx);
302 				if (c_flags & CALLOUT_NETGIANT)
303 					mtx_unlock(&Giant);
304 			skip:
305 				mtx_lock_spin(&callout_lock);
306 				curr_callout = NULL;
307 				if (callout_wait) {
308 					/*
309 					 * There is someone waiting
310 					 * for the callout to complete.
311 					 */
312 					callout_wait = 0;
313 					mtx_unlock_spin(&callout_lock);
314 					wakeup(&callout_wait);
315 					mtx_lock_spin(&callout_lock);
316 				}
317 				steps = 0;
318 				c = nextsoftcheck;
319 			}
320 		}
321 	}
322 	avg_depth += (depth * 1000 - avg_depth) >> 8;
323 	avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
324 	avg_mtxcalls += (mtxcalls * 1000 - avg_mtxcalls) >> 8;
325 	avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
326 	nextsoftcheck = NULL;
327 	mtx_unlock_spin(&callout_lock);
328 }
329 
330 /*
331  * timeout --
332  *	Execute a function after a specified length of time.
333  *
334  * untimeout --
335  *	Cancel previous timeout function call.
336  *
337  * callout_handle_init --
338  *	Initialize a handle so that using it with untimeout is benign.
339  *
340  *	See AT&T BCI Driver Reference Manual for specification.  This
341  *	implementation differs from that one in that although an
342  *	identification value is returned from timeout, the original
343  *	arguments to timeout as well as the identifier are used to
344  *	identify entries for untimeout.
345  */
346 struct callout_handle
347 timeout(ftn, arg, to_ticks)
348 	timeout_t *ftn;
349 	void *arg;
350 	int to_ticks;
351 {
352 	struct callout *new;
353 	struct callout_handle handle;
354 
355 	mtx_lock_spin(&callout_lock);
356 
357 	/* Fill in the next free callout structure. */
358 	new = SLIST_FIRST(&callfree);
359 	if (new == NULL)
360 		/* XXX Attempt to malloc first */
361 		panic("timeout table full");
362 	SLIST_REMOVE_HEAD(&callfree, c_links.sle);
363 
364 	callout_reset(new, to_ticks, ftn, arg);
365 
366 	handle.callout = new;
367 	mtx_unlock_spin(&callout_lock);
368 	return (handle);
369 }
370 
371 void
372 untimeout(ftn, arg, handle)
373 	timeout_t *ftn;
374 	void *arg;
375 	struct callout_handle handle;
376 {
377 
378 	/*
379 	 * Check for a handle that was initialized
380 	 * by callout_handle_init, but never used
381 	 * for a real timeout.
382 	 */
383 	if (handle.callout == NULL)
384 		return;
385 
386 	mtx_lock_spin(&callout_lock);
387 	if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
388 		callout_stop(handle.callout);
389 	mtx_unlock_spin(&callout_lock);
390 }
391 
392 void
393 callout_handle_init(struct callout_handle *handle)
394 {
395 	handle->callout = NULL;
396 }
397 
398 /*
399  * New interface; clients allocate their own callout structures.
400  *
401  * callout_reset() - establish or change a timeout
402  * callout_stop() - disestablish a timeout
403  * callout_init() - initialize a callout structure so that it can
404  *	safely be passed to callout_reset() and callout_stop()
405  *
406  * <sys/callout.h> defines three convenience macros:
407  *
408  * callout_active() - returns truth if callout has not been stopped,
409  *	drained, or deactivated since the last time the callout was
410  *	reset.
411  * callout_pending() - returns truth if callout is still waiting for timeout
412  * callout_deactivate() - marks the callout as having been serviced
413  */
414 int
415 callout_reset(c, to_ticks, ftn, arg)
416 	struct	callout *c;
417 	int	to_ticks;
418 	void	(*ftn)(void *);
419 	void	*arg;
420 {
421 	int cancelled = 0;
422 
423 #ifdef notyet /* Some callers of timeout() do not hold Giant. */
424 	if (c->c_mtx != NULL)
425 		mtx_assert(c->c_mtx, MA_OWNED);
426 #endif
427 
428 	mtx_lock_spin(&callout_lock);
429 	if (c == curr_callout) {
430 		/*
431 		 * We're being asked to reschedule a callout which is
432 		 * currently in progress.  If there is a mutex then we
433 		 * can cancel the callout if it has not really started.
434 		 */
435 		if (c->c_mtx != NULL && !curr_cancelled)
436 			cancelled = curr_cancelled = 1;
437 		if (callout_wait) {
438 			/*
439 			 * Someone has called callout_drain to kill this
440 			 * callout.  Don't reschedule.
441 			 */
442 			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
443 			    cancelled ? "cancelled" : "failed to cancel",
444 			    c, c->c_func, c->c_arg);
445 			mtx_unlock_spin(&callout_lock);
446 			return (cancelled);
447 		}
448 	}
449 	if (c->c_flags & CALLOUT_PENDING) {
450 		if (nextsoftcheck == c) {
451 			nextsoftcheck = TAILQ_NEXT(c, c_links.tqe);
452 		}
453 		TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c,
454 		    c_links.tqe);
455 
456 		cancelled = 1;
457 
458 		/*
459 		 * Part of the normal "stop a pending callout" process
460 		 * is to clear the CALLOUT_ACTIVE and CALLOUT_PENDING
461 		 * flags.  We're not going to bother doing that here,
462 		 * because we're going to be setting those flags ten lines
463 		 * after this point, and we're holding callout_lock
464 		 * between now and then.
465 		 */
466 	}
467 
468 	/*
469 	 * We could unlock callout_lock here and lock it again before the
470 	 * TAILQ_INSERT_TAIL, but there's no point since doing this setup
471 	 * doesn't take much time.
472 	 */
473 	if (to_ticks <= 0)
474 		to_ticks = 1;
475 
476 	c->c_arg = arg;
477 	c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
478 	c->c_func = ftn;
479 	c->c_time = ticks + to_ticks;
480 	TAILQ_INSERT_TAIL(&callwheel[c->c_time & callwheelmask],
481 			  c, c_links.tqe);
482 	CTR5(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d",
483 	    cancelled ? "re" : "", c, c->c_func, c->c_arg, to_ticks);
484 	mtx_unlock_spin(&callout_lock);
485 
486 	return (cancelled);
487 }
488 
489 int
490 _callout_stop_safe(c, safe)
491 	struct	callout *c;
492 	int	safe;
493 {
494 	int use_mtx, sq_locked;
495 
496 	if (!safe && c->c_mtx != NULL) {
497 #ifdef notyet /* Some callers do not hold Giant for Giant-locked callouts. */
498 		mtx_assert(c->c_mtx, MA_OWNED);
499 		use_mtx = 1;
500 #else
501 		use_mtx = mtx_owned(c->c_mtx);
502 #endif
503 	} else {
504 		use_mtx = 0;
505 	}
506 
507 	sq_locked = 0;
508 again:
509 	mtx_lock_spin(&callout_lock);
510 	/*
511 	 * If the callout isn't pending, it's not on the queue, so
512 	 * don't attempt to remove it from the queue.  We can try to
513 	 * stop it by other means however.
514 	 */
515 	if (!(c->c_flags & CALLOUT_PENDING)) {
516 		c->c_flags &= ~CALLOUT_ACTIVE;
517 
518 		/*
519 		 * If it wasn't on the queue and it isn't the current
520 		 * callout, then we can't stop it, so just bail.
521 		 */
522 		if (c != curr_callout) {
523 			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
524 			    c, c->c_func, c->c_arg);
525 			mtx_unlock_spin(&callout_lock);
526 			if (sq_locked)
527 				sleepq_release(&callout_wait);
528 			return (0);
529 		}
530 
531 		if (safe) {
532 			/*
533 			 * The current callout is running (or just
534 			 * about to run) and blocking is allowed, so
535 			 * just wait for the current invocation to
536 			 * finish.
537 			 */
538 			while (c == curr_callout) {
539 
540 				/*
541 				 * Use direct calls to sleepqueue interface
542 				 * instead of cv/msleep in order to avoid
543 				 * a LOR between callout_lock and sleepqueue
544 				 * chain spinlocks.  This piece of code
545 				 * emulates a msleep_spin() call actually.
546 				 *
547 				 * If we already have the sleepqueue chain
548 				 * locked, then we can safely block.  If we
549 				 * don't already have it locked, however,
550 				 * we have to drop the callout_lock to lock
551 				 * it.  This opens several races, so we
552 				 * restart at the beginning once we have
553 				 * both locks.  If nothing has changed, then
554 				 * we will end up back here with sq_locked
555 				 * set.
556 				 */
557 				if (!sq_locked) {
558 					mtx_unlock_spin(&callout_lock);
559 					sleepq_lock(&callout_wait);
560 					sq_locked = 1;
561 					goto again;
562 				}
563 
564 				callout_wait = 1;
565 				DROP_GIANT();
566 				mtx_unlock_spin(&callout_lock);
567 				sleepq_add(&callout_wait,
568 				    &callout_lock.lock_object, "codrain",
569 				    SLEEPQ_SLEEP, 0);
570 				sleepq_wait(&callout_wait);
571 				sq_locked = 0;
572 
573 				/* Reacquire locks previously released. */
574 				PICKUP_GIANT();
575 				mtx_lock_spin(&callout_lock);
576 			}
577 		} else if (use_mtx && !curr_cancelled) {
578 			/*
579 			 * The current callout is waiting for it's
580 			 * mutex which we hold.  Cancel the callout
581 			 * and return.  After our caller drops the
582 			 * mutex, the callout will be skipped in
583 			 * softclock().
584 			 */
585 			curr_cancelled = 1;
586 			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
587 			    c, c->c_func, c->c_arg);
588 			mtx_unlock_spin(&callout_lock);
589 			KASSERT(!sq_locked, ("sleepqueue chain locked"));
590 			return (1);
591 		}
592 		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
593 		    c, c->c_func, c->c_arg);
594 		mtx_unlock_spin(&callout_lock);
595 		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
596 		return (0);
597 	}
598 	if (sq_locked)
599 		sleepq_release(&callout_wait);
600 
601 	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
602 
603 	if (nextsoftcheck == c) {
604 		nextsoftcheck = TAILQ_NEXT(c, c_links.tqe);
605 	}
606 	TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_links.tqe);
607 
608 	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
609 	    c, c->c_func, c->c_arg);
610 
611 	if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
612 		c->c_func = NULL;
613 		SLIST_INSERT_HEAD(&callfree, c, c_links.sle);
614 	}
615 	mtx_unlock_spin(&callout_lock);
616 	return (1);
617 }
618 
619 void
620 callout_init(c, mpsafe)
621 	struct	callout *c;
622 	int mpsafe;
623 {
624 	bzero(c, sizeof *c);
625 	if (mpsafe) {
626 		c->c_mtx = NULL;
627 		c->c_flags = CALLOUT_RETURNUNLOCKED;
628 	} else {
629 		c->c_mtx = &Giant;
630 		c->c_flags = 0;
631 	}
632 }
633 
634 void
635 callout_init_mtx(c, mtx, flags)
636 	struct	callout *c;
637 	struct	mtx *mtx;
638 	int flags;
639 {
640 	bzero(c, sizeof *c);
641 	c->c_mtx = mtx;
642 	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED|CALLOUT_NETGIANT)) == 0,
643 	    ("callout_init_mtx: bad flags %d", flags));
644 	/* CALLOUT_RETURNUNLOCKED makes no sense without a mutex. */
645 	KASSERT(mtx != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
646 	    ("callout_init_mtx: CALLOUT_RETURNUNLOCKED with no mutex"));
647 	c->c_flags = flags & (CALLOUT_RETURNUNLOCKED|CALLOUT_NETGIANT);
648 }
649 
650 #ifdef APM_FIXUP_CALLTODO
651 /*
652  * Adjust the kernel calltodo timeout list.  This routine is used after
653  * an APM resume to recalculate the calltodo timer list values with the
654  * number of hz's we have been sleeping.  The next hardclock() will detect
655  * that there are fired timers and run softclock() to execute them.
656  *
657  * Please note, I have not done an exhaustive analysis of what code this
658  * might break.  I am motivated to have my select()'s and alarm()'s that
659  * have expired during suspend firing upon resume so that the applications
660  * which set the timer can do the maintanence the timer was for as close
661  * as possible to the originally intended time.  Testing this code for a
662  * week showed that resuming from a suspend resulted in 22 to 25 timers
663  * firing, which seemed independant on whether the suspend was 2 hours or
664  * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
665  */
666 void
667 adjust_timeout_calltodo(time_change)
668     struct timeval *time_change;
669 {
670 	register struct callout *p;
671 	unsigned long delta_ticks;
672 
673 	/*
674 	 * How many ticks were we asleep?
675 	 * (stolen from tvtohz()).
676 	 */
677 
678 	/* Don't do anything */
679 	if (time_change->tv_sec < 0)
680 		return;
681 	else if (time_change->tv_sec <= LONG_MAX / 1000000)
682 		delta_ticks = (time_change->tv_sec * 1000000 +
683 			       time_change->tv_usec + (tick - 1)) / tick + 1;
684 	else if (time_change->tv_sec <= LONG_MAX / hz)
685 		delta_ticks = time_change->tv_sec * hz +
686 			      (time_change->tv_usec + (tick - 1)) / tick + 1;
687 	else
688 		delta_ticks = LONG_MAX;
689 
690 	if (delta_ticks > INT_MAX)
691 		delta_ticks = INT_MAX;
692 
693 	/*
694 	 * Now rip through the timer calltodo list looking for timers
695 	 * to expire.
696 	 */
697 
698 	/* don't collide with softclock() */
699 	mtx_lock_spin(&callout_lock);
700 	for (p = calltodo.c_next; p != NULL; p = p->c_next) {
701 		p->c_time -= delta_ticks;
702 
703 		/* Break if the timer had more time on it than delta_ticks */
704 		if (p->c_time > 0)
705 			break;
706 
707 		/* take back the ticks the timer didn't use (p->c_time <= 0) */
708 		delta_ticks = -p->c_time;
709 	}
710 	mtx_unlock_spin(&callout_lock);
711 
712 	return;
713 }
714 #endif /* APM_FIXUP_CALLTODO */
715