xref: /freebsd/sys/kern/kern_timeout.c (revision adc56f5a383771f594829b7db9c263b6f0dcf1bd)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_callout_profiling.h"
43 #include "opt_ddb.h"
44 #if defined(__arm__)
45 #include "opt_timer.h"
46 #endif
47 #include "opt_rss.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bus.h>
52 #include <sys/callout.h>
53 #include <sys/domainset.h>
54 #include <sys/file.h>
55 #include <sys/interrupt.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/lock.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/proc.h>
62 #include <sys/sdt.h>
63 #include <sys/sleepqueue.h>
64 #include <sys/sysctl.h>
65 #include <sys/smp.h>
66 
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #include <ddb/db_sym.h>
70 #include <machine/_inttypes.h>
71 #endif
72 
73 #ifdef SMP
74 #include <machine/cpu.h>
75 #endif
76 
77 #ifndef NO_EVENTTIMERS
78 DPCPU_DECLARE(sbintime_t, hardclocktime);
79 #endif
80 
81 SDT_PROVIDER_DEFINE(callout_execute);
82 SDT_PROBE_DEFINE1(callout_execute, , , callout__start, "struct callout *");
83 SDT_PROBE_DEFINE1(callout_execute, , , callout__end, "struct callout *");
84 
85 #ifdef CALLOUT_PROFILING
86 static int avg_depth;
87 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
88     "Average number of items examined per softclock call. Units = 1/1000");
89 static int avg_gcalls;
90 SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
91     "Average number of Giant callouts made per softclock call. Units = 1/1000");
92 static int avg_lockcalls;
93 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
94     "Average number of lock callouts made per softclock call. Units = 1/1000");
95 static int avg_mpcalls;
96 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
97     "Average number of MP callouts made per softclock call. Units = 1/1000");
98 static int avg_depth_dir;
99 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
100     "Average number of direct callouts examined per callout_process call. "
101     "Units = 1/1000");
102 static int avg_lockcalls_dir;
103 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
104     &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
105     "callout_process call. Units = 1/1000");
106 static int avg_mpcalls_dir;
107 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
108     0, "Average number of MP direct callouts made per callout_process call. "
109     "Units = 1/1000");
110 #endif
111 
112 static int ncallout;
113 SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &ncallout, 0,
114     "Number of entries in callwheel and size of timeout() preallocation");
115 
116 #ifdef	RSS
117 static int pin_default_swi = 1;
118 static int pin_pcpu_swi = 1;
119 #else
120 static int pin_default_swi = 0;
121 static int pin_pcpu_swi = 0;
122 #endif
123 
124 SYSCTL_INT(_kern, OID_AUTO, pin_default_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_default_swi,
125     0, "Pin the default (non-per-cpu) swi (shared with PCPU 0 swi)");
126 SYSCTL_INT(_kern, OID_AUTO, pin_pcpu_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_pcpu_swi,
127     0, "Pin the per-CPU swis (except PCPU 0, which is also default");
128 
129 /*
130  * TODO:
131  *	allocate more timeout table slots when table overflows.
132  */
133 u_int callwheelsize, callwheelmask;
134 
135 /*
136  * The callout cpu exec entities represent informations necessary for
137  * describing the state of callouts currently running on the CPU and the ones
138  * necessary for migrating callouts to the new callout cpu. In particular,
139  * the first entry of the array cc_exec_entity holds informations for callout
140  * running in SWI thread context, while the second one holds informations
141  * for callout running directly from hardware interrupt context.
142  * The cached informations are very important for deferring migration when
143  * the migrating callout is already running.
144  */
145 struct cc_exec {
146 	struct callout		*cc_curr;
147 	void			(*cc_drain)(void *);
148 	void			*cc_last_func;
149 	void			*cc_last_arg;
150 #ifdef SMP
151 	void			(*ce_migration_func)(void *);
152 	void			*ce_migration_arg;
153 	sbintime_t		ce_migration_time;
154 	sbintime_t		ce_migration_prec;
155 	int			ce_migration_cpu;
156 #endif
157 	bool			cc_cancel;
158 	bool			cc_waiting;
159 };
160 
161 /*
162  * There is one struct callout_cpu per cpu, holding all relevant
163  * state for the callout processing thread on the individual CPU.
164  */
165 struct callout_cpu {
166 	struct mtx_padalign	cc_lock;
167 	struct cc_exec 		cc_exec_entity[2];
168 	struct callout		*cc_next;
169 	struct callout		*cc_callout;
170 	struct callout_list	*cc_callwheel;
171 	struct callout_tailq	cc_expireq;
172 	struct callout_slist	cc_callfree;
173 	sbintime_t		cc_firstevent;
174 	sbintime_t		cc_lastscan;
175 	void			*cc_cookie;
176 	u_int			cc_bucket;
177 	u_int			cc_inited;
178 #ifdef KTR
179 	char			cc_ktr_event_name[20];
180 #endif
181 };
182 
183 #define	callout_migrating(c)	((c)->c_iflags & CALLOUT_DFRMIGRATION)
184 
185 #define	cc_exec_curr(cc, dir)		cc->cc_exec_entity[dir].cc_curr
186 #define	cc_exec_last_func(cc, dir)	cc->cc_exec_entity[dir].cc_last_func
187 #define	cc_exec_last_arg(cc, dir)	cc->cc_exec_entity[dir].cc_last_arg
188 #define	cc_exec_drain(cc, dir)		cc->cc_exec_entity[dir].cc_drain
189 #define	cc_exec_next(cc)		cc->cc_next
190 #define	cc_exec_cancel(cc, dir)		cc->cc_exec_entity[dir].cc_cancel
191 #define	cc_exec_waiting(cc, dir)	cc->cc_exec_entity[dir].cc_waiting
192 #ifdef SMP
193 #define	cc_migration_func(cc, dir)	cc->cc_exec_entity[dir].ce_migration_func
194 #define	cc_migration_arg(cc, dir)	cc->cc_exec_entity[dir].ce_migration_arg
195 #define	cc_migration_cpu(cc, dir)	cc->cc_exec_entity[dir].ce_migration_cpu
196 #define	cc_migration_time(cc, dir)	cc->cc_exec_entity[dir].ce_migration_time
197 #define	cc_migration_prec(cc, dir)	cc->cc_exec_entity[dir].ce_migration_prec
198 
199 struct callout_cpu cc_cpu[MAXCPU];
200 #define	CPUBLOCK	MAXCPU
201 #define	CC_CPU(cpu)	(&cc_cpu[(cpu)])
202 #define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
203 #else
204 struct callout_cpu cc_cpu;
205 #define	CC_CPU(cpu)	&cc_cpu
206 #define	CC_SELF()	&cc_cpu
207 #endif
208 #define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
209 #define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
210 #define	CC_LOCK_ASSERT(cc)	mtx_assert(&(cc)->cc_lock, MA_OWNED)
211 
212 static int timeout_cpu;
213 
214 static void	callout_cpu_init(struct callout_cpu *cc, int cpu);
215 static void	softclock_call_cc(struct callout *c, struct callout_cpu *cc,
216 #ifdef CALLOUT_PROFILING
217 		    int *mpcalls, int *lockcalls, int *gcalls,
218 #endif
219 		    int direct);
220 
221 static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
222 
223 /**
224  * Locked by cc_lock:
225  *   cc_curr         - If a callout is in progress, it is cc_curr.
226  *                     If cc_curr is non-NULL, threads waiting in
227  *                     callout_drain() will be woken up as soon as the
228  *                     relevant callout completes.
229  *   cc_cancel       - Changing to 1 with both callout_lock and cc_lock held
230  *                     guarantees that the current callout will not run.
231  *                     The softclock() function sets this to 0 before it
232  *                     drops callout_lock to acquire c_lock, and it calls
233  *                     the handler only if curr_cancelled is still 0 after
234  *                     cc_lock is successfully acquired.
235  *   cc_waiting      - If a thread is waiting in callout_drain(), then
236  *                     callout_wait is nonzero.  Set only when
237  *                     cc_curr is non-NULL.
238  */
239 
240 /*
241  * Resets the execution entity tied to a specific callout cpu.
242  */
243 static void
244 cc_cce_cleanup(struct callout_cpu *cc, int direct)
245 {
246 
247 	cc_exec_curr(cc, direct) = NULL;
248 	cc_exec_cancel(cc, direct) = false;
249 	cc_exec_waiting(cc, direct) = false;
250 #ifdef SMP
251 	cc_migration_cpu(cc, direct) = CPUBLOCK;
252 	cc_migration_time(cc, direct) = 0;
253 	cc_migration_prec(cc, direct) = 0;
254 	cc_migration_func(cc, direct) = NULL;
255 	cc_migration_arg(cc, direct) = NULL;
256 #endif
257 }
258 
259 /*
260  * Checks if migration is requested by a specific callout cpu.
261  */
262 static int
263 cc_cce_migrating(struct callout_cpu *cc, int direct)
264 {
265 
266 #ifdef SMP
267 	return (cc_migration_cpu(cc, direct) != CPUBLOCK);
268 #else
269 	return (0);
270 #endif
271 }
272 
273 /*
274  * Kernel low level callwheel initialization
275  * called on the BSP during kernel startup.
276  */
277 static void
278 callout_callwheel_init(void *dummy)
279 {
280 	struct callout_cpu *cc;
281 
282 	/*
283 	 * Calculate the size of the callout wheel and the preallocated
284 	 * timeout() structures.
285 	 * XXX: Clip callout to result of previous function of maxusers
286 	 * maximum 384.  This is still huge, but acceptable.
287 	 */
288 	memset(CC_CPU(curcpu), 0, sizeof(cc_cpu));
289 	ncallout = imin(16 + maxproc + maxfiles, 18508);
290 	TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
291 
292 	/*
293 	 * Calculate callout wheel size, should be next power of two higher
294 	 * than 'ncallout'.
295 	 */
296 	callwheelsize = 1 << fls(ncallout);
297 	callwheelmask = callwheelsize - 1;
298 
299 	/*
300 	 * Fetch whether we're pinning the swi's or not.
301 	 */
302 	TUNABLE_INT_FETCH("kern.pin_default_swi", &pin_default_swi);
303 	TUNABLE_INT_FETCH("kern.pin_pcpu_swi", &pin_pcpu_swi);
304 
305 	/*
306 	 * Only BSP handles timeout(9) and receives a preallocation.
307 	 *
308 	 * XXX: Once all timeout(9) consumers are converted this can
309 	 * be removed.
310 	 */
311 	timeout_cpu = PCPU_GET(cpuid);
312 	cc = CC_CPU(timeout_cpu);
313 	cc->cc_callout = malloc(ncallout * sizeof(struct callout),
314 	    M_CALLOUT, M_WAITOK);
315 	callout_cpu_init(cc, timeout_cpu);
316 }
317 SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
318 
319 /*
320  * Initialize the per-cpu callout structures.
321  */
322 static void
323 callout_cpu_init(struct callout_cpu *cc, int cpu)
324 {
325 	struct callout *c;
326 	int i;
327 
328 	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
329 	SLIST_INIT(&cc->cc_callfree);
330 	cc->cc_inited = 1;
331 	cc->cc_callwheel = malloc_domainset(sizeof(struct callout_list) *
332 	    callwheelsize, M_CALLOUT,
333 	    DOMAINSET_PREF(pcpu_find(cpu)->pc_domain), M_WAITOK);
334 	for (i = 0; i < callwheelsize; i++)
335 		LIST_INIT(&cc->cc_callwheel[i]);
336 	TAILQ_INIT(&cc->cc_expireq);
337 	cc->cc_firstevent = SBT_MAX;
338 	for (i = 0; i < 2; i++)
339 		cc_cce_cleanup(cc, i);
340 #ifdef KTR
341 	snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name),
342 	    "callwheel cpu %d", cpu);
343 #endif
344 	if (cc->cc_callout == NULL)	/* Only BSP handles timeout(9) */
345 		return;
346 	for (i = 0; i < ncallout; i++) {
347 		c = &cc->cc_callout[i];
348 		callout_init(c, 0);
349 		c->c_iflags = CALLOUT_LOCAL_ALLOC;
350 		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
351 	}
352 }
353 
354 #ifdef SMP
355 /*
356  * Switches the cpu tied to a specific callout.
357  * The function expects a locked incoming callout cpu and returns with
358  * locked outcoming callout cpu.
359  */
360 static struct callout_cpu *
361 callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
362 {
363 	struct callout_cpu *new_cc;
364 
365 	MPASS(c != NULL && cc != NULL);
366 	CC_LOCK_ASSERT(cc);
367 
368 	/*
369 	 * Avoid interrupts and preemption firing after the callout cpu
370 	 * is blocked in order to avoid deadlocks as the new thread
371 	 * may be willing to acquire the callout cpu lock.
372 	 */
373 	c->c_cpu = CPUBLOCK;
374 	spinlock_enter();
375 	CC_UNLOCK(cc);
376 	new_cc = CC_CPU(new_cpu);
377 	CC_LOCK(new_cc);
378 	spinlock_exit();
379 	c->c_cpu = new_cpu;
380 	return (new_cc);
381 }
382 #endif
383 
384 /*
385  * Start standard softclock thread.
386  */
387 static void
388 start_softclock(void *dummy)
389 {
390 	struct callout_cpu *cc;
391 	char name[MAXCOMLEN];
392 #ifdef SMP
393 	int cpu;
394 	struct intr_event *ie;
395 #endif
396 
397 	cc = CC_CPU(timeout_cpu);
398 	snprintf(name, sizeof(name), "clock (%d)", timeout_cpu);
399 	if (swi_add(&clk_intr_event, name, softclock, cc, SWI_CLOCK,
400 	    INTR_MPSAFE, &cc->cc_cookie))
401 		panic("died while creating standard software ithreads");
402 	if (pin_default_swi &&
403 	    (intr_event_bind(clk_intr_event, timeout_cpu) != 0)) {
404 		printf("%s: timeout clock couldn't be pinned to cpu %d\n",
405 		    __func__,
406 		    timeout_cpu);
407 	}
408 
409 #ifdef SMP
410 	CPU_FOREACH(cpu) {
411 		if (cpu == timeout_cpu)
412 			continue;
413 		cc = CC_CPU(cpu);
414 		cc->cc_callout = NULL;	/* Only BSP handles timeout(9). */
415 		callout_cpu_init(cc, cpu);
416 		snprintf(name, sizeof(name), "clock (%d)", cpu);
417 		ie = NULL;
418 		if (swi_add(&ie, name, softclock, cc, SWI_CLOCK,
419 		    INTR_MPSAFE, &cc->cc_cookie))
420 			panic("died while creating standard software ithreads");
421 		if (pin_pcpu_swi && (intr_event_bind(ie, cpu) != 0)) {
422 			printf("%s: per-cpu clock couldn't be pinned to "
423 			    "cpu %d\n",
424 			    __func__,
425 			    cpu);
426 		}
427 	}
428 #endif
429 }
430 SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
431 
432 #define	CC_HASH_SHIFT	8
433 
434 static inline u_int
435 callout_hash(sbintime_t sbt)
436 {
437 
438 	return (sbt >> (32 - CC_HASH_SHIFT));
439 }
440 
441 static inline u_int
442 callout_get_bucket(sbintime_t sbt)
443 {
444 
445 	return (callout_hash(sbt) & callwheelmask);
446 }
447 
448 void
449 callout_process(sbintime_t now)
450 {
451 	struct callout *tmp, *tmpn;
452 	struct callout_cpu *cc;
453 	struct callout_list *sc;
454 	sbintime_t first, last, max, tmp_max;
455 	uint32_t lookahead;
456 	u_int firstb, lastb, nowb;
457 #ifdef CALLOUT_PROFILING
458 	int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
459 #endif
460 
461 	cc = CC_SELF();
462 	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
463 
464 	/* Compute the buckets of the last scan and present times. */
465 	firstb = callout_hash(cc->cc_lastscan);
466 	cc->cc_lastscan = now;
467 	nowb = callout_hash(now);
468 
469 	/* Compute the last bucket and minimum time of the bucket after it. */
470 	if (nowb == firstb)
471 		lookahead = (SBT_1S / 16);
472 	else if (nowb - firstb == 1)
473 		lookahead = (SBT_1S / 8);
474 	else
475 		lookahead = (SBT_1S / 2);
476 	first = last = now;
477 	first += (lookahead / 2);
478 	last += lookahead;
479 	last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
480 	lastb = callout_hash(last) - 1;
481 	max = last;
482 
483 	/*
484 	 * Check if we wrapped around the entire wheel from the last scan.
485 	 * In case, we need to scan entirely the wheel for pending callouts.
486 	 */
487 	if (lastb - firstb >= callwheelsize) {
488 		lastb = firstb + callwheelsize - 1;
489 		if (nowb - firstb >= callwheelsize)
490 			nowb = lastb;
491 	}
492 
493 	/* Iterate callwheel from firstb to nowb and then up to lastb. */
494 	do {
495 		sc = &cc->cc_callwheel[firstb & callwheelmask];
496 		tmp = LIST_FIRST(sc);
497 		while (tmp != NULL) {
498 			/* Run the callout if present time within allowed. */
499 			if (tmp->c_time <= now) {
500 				/*
501 				 * Consumer told us the callout may be run
502 				 * directly from hardware interrupt context.
503 				 */
504 				if (tmp->c_iflags & CALLOUT_DIRECT) {
505 #ifdef CALLOUT_PROFILING
506 					++depth_dir;
507 #endif
508 					cc_exec_next(cc) =
509 					    LIST_NEXT(tmp, c_links.le);
510 					cc->cc_bucket = firstb & callwheelmask;
511 					LIST_REMOVE(tmp, c_links.le);
512 					softclock_call_cc(tmp, cc,
513 #ifdef CALLOUT_PROFILING
514 					    &mpcalls_dir, &lockcalls_dir, NULL,
515 #endif
516 					    1);
517 					tmp = cc_exec_next(cc);
518 					cc_exec_next(cc) = NULL;
519 				} else {
520 					tmpn = LIST_NEXT(tmp, c_links.le);
521 					LIST_REMOVE(tmp, c_links.le);
522 					TAILQ_INSERT_TAIL(&cc->cc_expireq,
523 					    tmp, c_links.tqe);
524 					tmp->c_iflags |= CALLOUT_PROCESSED;
525 					tmp = tmpn;
526 				}
527 				continue;
528 			}
529 			/* Skip events from distant future. */
530 			if (tmp->c_time >= max)
531 				goto next;
532 			/*
533 			 * Event minimal time is bigger than present maximal
534 			 * time, so it cannot be aggregated.
535 			 */
536 			if (tmp->c_time > last) {
537 				lastb = nowb;
538 				goto next;
539 			}
540 			/* Update first and last time, respecting this event. */
541 			if (tmp->c_time < first)
542 				first = tmp->c_time;
543 			tmp_max = tmp->c_time + tmp->c_precision;
544 			if (tmp_max < last)
545 				last = tmp_max;
546 next:
547 			tmp = LIST_NEXT(tmp, c_links.le);
548 		}
549 		/* Proceed with the next bucket. */
550 		firstb++;
551 		/*
552 		 * Stop if we looked after present time and found
553 		 * some event we can't execute at now.
554 		 * Stop if we looked far enough into the future.
555 		 */
556 	} while (((int)(firstb - lastb)) <= 0);
557 	cc->cc_firstevent = last;
558 #ifndef NO_EVENTTIMERS
559 	cpu_new_callout(curcpu, last, first);
560 #endif
561 #ifdef CALLOUT_PROFILING
562 	avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
563 	avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
564 	avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
565 #endif
566 	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
567 	/*
568 	 * swi_sched acquires the thread lock, so we don't want to call it
569 	 * with cc_lock held; incorrect locking order.
570 	 */
571 	if (!TAILQ_EMPTY(&cc->cc_expireq))
572 		swi_sched(cc->cc_cookie, 0);
573 }
574 
575 static struct callout_cpu *
576 callout_lock(struct callout *c)
577 {
578 	struct callout_cpu *cc;
579 	int cpu;
580 
581 	for (;;) {
582 		cpu = c->c_cpu;
583 #ifdef SMP
584 		if (cpu == CPUBLOCK) {
585 			while (c->c_cpu == CPUBLOCK)
586 				cpu_spinwait();
587 			continue;
588 		}
589 #endif
590 		cc = CC_CPU(cpu);
591 		CC_LOCK(cc);
592 		if (cpu == c->c_cpu)
593 			break;
594 		CC_UNLOCK(cc);
595 	}
596 	return (cc);
597 }
598 
599 static void
600 callout_cc_add(struct callout *c, struct callout_cpu *cc,
601     sbintime_t sbt, sbintime_t precision, void (*func)(void *),
602     void *arg, int cpu, int flags)
603 {
604 	int bucket;
605 
606 	CC_LOCK_ASSERT(cc);
607 	if (sbt < cc->cc_lastscan)
608 		sbt = cc->cc_lastscan;
609 	c->c_arg = arg;
610 	c->c_iflags |= CALLOUT_PENDING;
611 	c->c_iflags &= ~CALLOUT_PROCESSED;
612 	c->c_flags |= CALLOUT_ACTIVE;
613 	if (flags & C_DIRECT_EXEC)
614 		c->c_iflags |= CALLOUT_DIRECT;
615 	c->c_func = func;
616 	c->c_time = sbt;
617 	c->c_precision = precision;
618 	bucket = callout_get_bucket(c->c_time);
619 	CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
620 	    c, (int)(c->c_precision >> 32),
621 	    (u_int)(c->c_precision & 0xffffffff));
622 	LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
623 	if (cc->cc_bucket == bucket)
624 		cc_exec_next(cc) = c;
625 #ifndef NO_EVENTTIMERS
626 	/*
627 	 * Inform the eventtimers(4) subsystem there's a new callout
628 	 * that has been inserted, but only if really required.
629 	 */
630 	if (SBT_MAX - c->c_time < c->c_precision)
631 		c->c_precision = SBT_MAX - c->c_time;
632 	sbt = c->c_time + c->c_precision;
633 	if (sbt < cc->cc_firstevent) {
634 		cc->cc_firstevent = sbt;
635 		cpu_new_callout(cpu, sbt, c->c_time);
636 	}
637 #endif
638 }
639 
640 static void
641 callout_cc_del(struct callout *c, struct callout_cpu *cc)
642 {
643 
644 	if ((c->c_iflags & CALLOUT_LOCAL_ALLOC) == 0)
645 		return;
646 	c->c_func = NULL;
647 	SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
648 }
649 
650 static void
651 softclock_call_cc(struct callout *c, struct callout_cpu *cc,
652 #ifdef CALLOUT_PROFILING
653     int *mpcalls, int *lockcalls, int *gcalls,
654 #endif
655     int direct)
656 {
657 	struct rm_priotracker tracker;
658 	void (*c_func)(void *);
659 	void *c_arg;
660 	struct lock_class *class;
661 	struct lock_object *c_lock;
662 	uintptr_t lock_status;
663 	int c_iflags;
664 #ifdef SMP
665 	struct callout_cpu *new_cc;
666 	void (*new_func)(void *);
667 	void *new_arg;
668 	int flags, new_cpu;
669 	sbintime_t new_prec, new_time;
670 #endif
671 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
672 	sbintime_t sbt1, sbt2;
673 	struct timespec ts2;
674 	static sbintime_t maxdt = 2 * SBT_1MS;	/* 2 msec */
675 	static timeout_t *lastfunc;
676 #endif
677 
678 	KASSERT((c->c_iflags & CALLOUT_PENDING) == CALLOUT_PENDING,
679 	    ("softclock_call_cc: pend %p %x", c, c->c_iflags));
680 	KASSERT((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE,
681 	    ("softclock_call_cc: act %p %x", c, c->c_flags));
682 	class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
683 	lock_status = 0;
684 	if (c->c_flags & CALLOUT_SHAREDLOCK) {
685 		if (class == &lock_class_rm)
686 			lock_status = (uintptr_t)&tracker;
687 		else
688 			lock_status = 1;
689 	}
690 	c_lock = c->c_lock;
691 	c_func = c->c_func;
692 	c_arg = c->c_arg;
693 	c_iflags = c->c_iflags;
694 	if (c->c_iflags & CALLOUT_LOCAL_ALLOC)
695 		c->c_iflags = CALLOUT_LOCAL_ALLOC;
696 	else
697 		c->c_iflags &= ~CALLOUT_PENDING;
698 
699 	cc_exec_curr(cc, direct) = c;
700 	cc_exec_last_func(cc, direct) = c_func;
701 	cc_exec_last_arg(cc, direct) = c_arg;
702 	cc_exec_cancel(cc, direct) = false;
703 	cc_exec_drain(cc, direct) = NULL;
704 	CC_UNLOCK(cc);
705 	if (c_lock != NULL) {
706 		class->lc_lock(c_lock, lock_status);
707 		/*
708 		 * The callout may have been cancelled
709 		 * while we switched locks.
710 		 */
711 		if (cc_exec_cancel(cc, direct)) {
712 			class->lc_unlock(c_lock);
713 			goto skip;
714 		}
715 		/* The callout cannot be stopped now. */
716 		cc_exec_cancel(cc, direct) = true;
717 		if (c_lock == &Giant.lock_object) {
718 #ifdef CALLOUT_PROFILING
719 			(*gcalls)++;
720 #endif
721 			CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
722 			    c, c_func, c_arg);
723 		} else {
724 #ifdef CALLOUT_PROFILING
725 			(*lockcalls)++;
726 #endif
727 			CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
728 			    c, c_func, c_arg);
729 		}
730 	} else {
731 #ifdef CALLOUT_PROFILING
732 		(*mpcalls)++;
733 #endif
734 		CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
735 		    c, c_func, c_arg);
736 	}
737 	KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running",
738 	    "func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct);
739 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
740 	sbt1 = sbinuptime();
741 #endif
742 	THREAD_NO_SLEEPING();
743 	SDT_PROBE1(callout_execute, , , callout__start, c);
744 	c_func(c_arg);
745 	SDT_PROBE1(callout_execute, , , callout__end, c);
746 	THREAD_SLEEPING_OK();
747 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
748 	sbt2 = sbinuptime();
749 	sbt2 -= sbt1;
750 	if (sbt2 > maxdt) {
751 		if (lastfunc != c_func || sbt2 > maxdt * 2) {
752 			ts2 = sbttots(sbt2);
753 			printf(
754 		"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
755 			    c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
756 		}
757 		maxdt = sbt2;
758 		lastfunc = c_func;
759 	}
760 #endif
761 	KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle");
762 	CTR1(KTR_CALLOUT, "callout %p finished", c);
763 	if ((c_iflags & CALLOUT_RETURNUNLOCKED) == 0)
764 		class->lc_unlock(c_lock);
765 skip:
766 	CC_LOCK(cc);
767 	KASSERT(cc_exec_curr(cc, direct) == c, ("mishandled cc_curr"));
768 	cc_exec_curr(cc, direct) = NULL;
769 	if (cc_exec_drain(cc, direct)) {
770 		void (*drain)(void *);
771 
772 		drain = cc_exec_drain(cc, direct);
773 		cc_exec_drain(cc, direct) = NULL;
774 		CC_UNLOCK(cc);
775 		drain(c_arg);
776 		CC_LOCK(cc);
777 	}
778 	if (cc_exec_waiting(cc, direct)) {
779 		/*
780 		 * There is someone waiting for the
781 		 * callout to complete.
782 		 * If the callout was scheduled for
783 		 * migration just cancel it.
784 		 */
785 		if (cc_cce_migrating(cc, direct)) {
786 			cc_cce_cleanup(cc, direct);
787 
788 			/*
789 			 * It should be assert here that the callout is not
790 			 * destroyed but that is not easy.
791 			 */
792 			c->c_iflags &= ~CALLOUT_DFRMIGRATION;
793 		}
794 		cc_exec_waiting(cc, direct) = false;
795 		CC_UNLOCK(cc);
796 		wakeup(&cc_exec_waiting(cc, direct));
797 		CC_LOCK(cc);
798 	} else if (cc_cce_migrating(cc, direct)) {
799 		KASSERT((c_iflags & CALLOUT_LOCAL_ALLOC) == 0,
800 		    ("Migrating legacy callout %p", c));
801 #ifdef SMP
802 		/*
803 		 * If the callout was scheduled for
804 		 * migration just perform it now.
805 		 */
806 		new_cpu = cc_migration_cpu(cc, direct);
807 		new_time = cc_migration_time(cc, direct);
808 		new_prec = cc_migration_prec(cc, direct);
809 		new_func = cc_migration_func(cc, direct);
810 		new_arg = cc_migration_arg(cc, direct);
811 		cc_cce_cleanup(cc, direct);
812 
813 		/*
814 		 * It should be assert here that the callout is not destroyed
815 		 * but that is not easy.
816 		 *
817 		 * As first thing, handle deferred callout stops.
818 		 */
819 		if (!callout_migrating(c)) {
820 			CTR3(KTR_CALLOUT,
821 			     "deferred cancelled %p func %p arg %p",
822 			     c, new_func, new_arg);
823 			callout_cc_del(c, cc);
824 			return;
825 		}
826 		c->c_iflags &= ~CALLOUT_DFRMIGRATION;
827 
828 		new_cc = callout_cpu_switch(c, cc, new_cpu);
829 		flags = (direct) ? C_DIRECT_EXEC : 0;
830 		callout_cc_add(c, new_cc, new_time, new_prec, new_func,
831 		    new_arg, new_cpu, flags);
832 		CC_UNLOCK(new_cc);
833 		CC_LOCK(cc);
834 #else
835 		panic("migration should not happen");
836 #endif
837 	}
838 	/*
839 	 * If the current callout is locally allocated (from
840 	 * timeout(9)) then put it on the freelist.
841 	 *
842 	 * Note: we need to check the cached copy of c_iflags because
843 	 * if it was not local, then it's not safe to deref the
844 	 * callout pointer.
845 	 */
846 	KASSERT((c_iflags & CALLOUT_LOCAL_ALLOC) == 0 ||
847 	    c->c_iflags == CALLOUT_LOCAL_ALLOC,
848 	    ("corrupted callout"));
849 	if (c_iflags & CALLOUT_LOCAL_ALLOC)
850 		callout_cc_del(c, cc);
851 }
852 
853 /*
854  * The callout mechanism is based on the work of Adam M. Costello and
855  * George Varghese, published in a technical report entitled "Redesigning
856  * the BSD Callout and Timer Facilities" and modified slightly for inclusion
857  * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
858  * used in this implementation was published by G. Varghese and T. Lauck in
859  * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
860  * the Efficient Implementation of a Timer Facility" in the Proceedings of
861  * the 11th ACM Annual Symposium on Operating Systems Principles,
862  * Austin, Texas Nov 1987.
863  */
864 
865 /*
866  * Software (low priority) clock interrupt.
867  * Run periodic events from timeout queue.
868  */
869 void
870 softclock(void *arg)
871 {
872 	struct callout_cpu *cc;
873 	struct callout *c;
874 #ifdef CALLOUT_PROFILING
875 	int depth = 0, gcalls = 0, lockcalls = 0, mpcalls = 0;
876 #endif
877 
878 	cc = (struct callout_cpu *)arg;
879 	CC_LOCK(cc);
880 	while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
881 		TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
882 		softclock_call_cc(c, cc,
883 #ifdef CALLOUT_PROFILING
884 		    &mpcalls, &lockcalls, &gcalls,
885 #endif
886 		    0);
887 #ifdef CALLOUT_PROFILING
888 		++depth;
889 #endif
890 	}
891 #ifdef CALLOUT_PROFILING
892 	avg_depth += (depth * 1000 - avg_depth) >> 8;
893 	avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
894 	avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
895 	avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
896 #endif
897 	CC_UNLOCK(cc);
898 }
899 
900 /*
901  * timeout --
902  *	Execute a function after a specified length of time.
903  *
904  * untimeout --
905  *	Cancel previous timeout function call.
906  *
907  * callout_handle_init --
908  *	Initialize a handle so that using it with untimeout is benign.
909  *
910  *	See AT&T BCI Driver Reference Manual for specification.  This
911  *	implementation differs from that one in that although an
912  *	identification value is returned from timeout, the original
913  *	arguments to timeout as well as the identifier are used to
914  *	identify entries for untimeout.
915  */
916 struct callout_handle
917 timeout(timeout_t *ftn, void *arg, int to_ticks)
918 {
919 	struct callout_cpu *cc;
920 	struct callout *new;
921 	struct callout_handle handle;
922 
923 	cc = CC_CPU(timeout_cpu);
924 	CC_LOCK(cc);
925 	/* Fill in the next free callout structure. */
926 	new = SLIST_FIRST(&cc->cc_callfree);
927 	if (new == NULL)
928 		/* XXX Attempt to malloc first */
929 		panic("timeout table full");
930 	SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
931 	callout_reset(new, to_ticks, ftn, arg);
932 	handle.callout = new;
933 	CC_UNLOCK(cc);
934 
935 	return (handle);
936 }
937 
938 void
939 untimeout(timeout_t *ftn, void *arg, struct callout_handle handle)
940 {
941 	struct callout_cpu *cc;
942 
943 	/*
944 	 * Check for a handle that was initialized
945 	 * by callout_handle_init, but never used
946 	 * for a real timeout.
947 	 */
948 	if (handle.callout == NULL)
949 		return;
950 
951 	cc = callout_lock(handle.callout);
952 	if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
953 		callout_stop(handle.callout);
954 	CC_UNLOCK(cc);
955 }
956 
957 void
958 callout_handle_init(struct callout_handle *handle)
959 {
960 	handle->callout = NULL;
961 }
962 
963 void
964 callout_when(sbintime_t sbt, sbintime_t precision, int flags,
965     sbintime_t *res, sbintime_t *prec_res)
966 {
967 	sbintime_t to_sbt, to_pr;
968 
969 	if ((flags & (C_ABSOLUTE | C_PRECALC)) != 0) {
970 		*res = sbt;
971 		*prec_res = precision;
972 		return;
973 	}
974 	if ((flags & C_HARDCLOCK) != 0 && sbt < tick_sbt)
975 		sbt = tick_sbt;
976 	if ((flags & C_HARDCLOCK) != 0 ||
977 #ifdef NO_EVENTTIMERS
978 	    sbt >= sbt_timethreshold) {
979 		to_sbt = getsbinuptime();
980 
981 		/* Add safety belt for the case of hz > 1000. */
982 		to_sbt += tc_tick_sbt - tick_sbt;
983 #else
984 	    sbt >= sbt_tickthreshold) {
985 		/*
986 		 * Obtain the time of the last hardclock() call on
987 		 * this CPU directly from the kern_clocksource.c.
988 		 * This value is per-CPU, but it is equal for all
989 		 * active ones.
990 		 */
991 #ifdef __LP64__
992 		to_sbt = DPCPU_GET(hardclocktime);
993 #else
994 		spinlock_enter();
995 		to_sbt = DPCPU_GET(hardclocktime);
996 		spinlock_exit();
997 #endif
998 #endif
999 		if (cold && to_sbt == 0)
1000 			to_sbt = sbinuptime();
1001 		if ((flags & C_HARDCLOCK) == 0)
1002 			to_sbt += tick_sbt;
1003 	} else
1004 		to_sbt = sbinuptime();
1005 	if (SBT_MAX - to_sbt < sbt)
1006 		to_sbt = SBT_MAX;
1007 	else
1008 		to_sbt += sbt;
1009 	*res = to_sbt;
1010 	to_pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
1011 	    sbt >> C_PRELGET(flags));
1012 	*prec_res = to_pr > precision ? to_pr : precision;
1013 }
1014 
1015 /*
1016  * New interface; clients allocate their own callout structures.
1017  *
1018  * callout_reset() - establish or change a timeout
1019  * callout_stop() - disestablish a timeout
1020  * callout_init() - initialize a callout structure so that it can
1021  *	safely be passed to callout_reset() and callout_stop()
1022  *
1023  * <sys/callout.h> defines three convenience macros:
1024  *
1025  * callout_active() - returns truth if callout has not been stopped,
1026  *	drained, or deactivated since the last time the callout was
1027  *	reset.
1028  * callout_pending() - returns truth if callout is still waiting for timeout
1029  * callout_deactivate() - marks the callout as having been serviced
1030  */
1031 int
1032 callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t prec,
1033     void (*ftn)(void *), void *arg, int cpu, int flags)
1034 {
1035 	sbintime_t to_sbt, precision;
1036 	struct callout_cpu *cc;
1037 	int cancelled, direct;
1038 	int ignore_cpu=0;
1039 
1040 	cancelled = 0;
1041 	if (cpu == -1) {
1042 		ignore_cpu = 1;
1043 	} else if ((cpu >= MAXCPU) ||
1044 		   ((CC_CPU(cpu))->cc_inited == 0)) {
1045 		/* Invalid CPU spec */
1046 		panic("Invalid CPU in callout %d", cpu);
1047 	}
1048 	callout_when(sbt, prec, flags, &to_sbt, &precision);
1049 
1050 	/*
1051 	 * This flag used to be added by callout_cc_add, but the
1052 	 * first time you call this we could end up with the
1053 	 * wrong direct flag if we don't do it before we add.
1054 	 */
1055 	if (flags & C_DIRECT_EXEC) {
1056 		direct = 1;
1057 	} else {
1058 		direct = 0;
1059 	}
1060 	KASSERT(!direct || c->c_lock == NULL,
1061 	    ("%s: direct callout %p has lock", __func__, c));
1062 	cc = callout_lock(c);
1063 	/*
1064 	 * Don't allow migration of pre-allocated callouts lest they
1065 	 * become unbalanced or handle the case where the user does
1066 	 * not care.
1067 	 */
1068 	if ((c->c_iflags & CALLOUT_LOCAL_ALLOC) ||
1069 	    ignore_cpu) {
1070 		cpu = c->c_cpu;
1071 	}
1072 
1073 	if (cc_exec_curr(cc, direct) == c) {
1074 		/*
1075 		 * We're being asked to reschedule a callout which is
1076 		 * currently in progress.  If there is a lock then we
1077 		 * can cancel the callout if it has not really started.
1078 		 */
1079 		if (c->c_lock != NULL && !cc_exec_cancel(cc, direct))
1080 			cancelled = cc_exec_cancel(cc, direct) = true;
1081 		if (cc_exec_waiting(cc, direct) || cc_exec_drain(cc, direct)) {
1082 			/*
1083 			 * Someone has called callout_drain to kill this
1084 			 * callout.  Don't reschedule.
1085 			 */
1086 			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
1087 			    cancelled ? "cancelled" : "failed to cancel",
1088 			    c, c->c_func, c->c_arg);
1089 			CC_UNLOCK(cc);
1090 			return (cancelled);
1091 		}
1092 #ifdef SMP
1093 		if (callout_migrating(c)) {
1094 			/*
1095 			 * This only occurs when a second callout_reset_sbt_on
1096 			 * is made after a previous one moved it into
1097 			 * deferred migration (below). Note we do *not* change
1098 			 * the prev_cpu even though the previous target may
1099 			 * be different.
1100 			 */
1101 			cc_migration_cpu(cc, direct) = cpu;
1102 			cc_migration_time(cc, direct) = to_sbt;
1103 			cc_migration_prec(cc, direct) = precision;
1104 			cc_migration_func(cc, direct) = ftn;
1105 			cc_migration_arg(cc, direct) = arg;
1106 			cancelled = 1;
1107 			CC_UNLOCK(cc);
1108 			return (cancelled);
1109 		}
1110 #endif
1111 	}
1112 	if (c->c_iflags & CALLOUT_PENDING) {
1113 		if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1114 			if (cc_exec_next(cc) == c)
1115 				cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1116 			LIST_REMOVE(c, c_links.le);
1117 		} else {
1118 			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1119 		}
1120 		cancelled = 1;
1121 		c->c_iflags &= ~ CALLOUT_PENDING;
1122 		c->c_flags &= ~ CALLOUT_ACTIVE;
1123 	}
1124 
1125 #ifdef SMP
1126 	/*
1127 	 * If the callout must migrate try to perform it immediately.
1128 	 * If the callout is currently running, just defer the migration
1129 	 * to a more appropriate moment.
1130 	 */
1131 	if (c->c_cpu != cpu) {
1132 		if (cc_exec_curr(cc, direct) == c) {
1133 			/*
1134 			 * Pending will have been removed since we are
1135 			 * actually executing the callout on another
1136 			 * CPU. That callout should be waiting on the
1137 			 * lock the caller holds. If we set both
1138 			 * active/and/pending after we return and the
1139 			 * lock on the executing callout proceeds, it
1140 			 * will then see pending is true and return.
1141 			 * At the return from the actual callout execution
1142 			 * the migration will occur in softclock_call_cc
1143 			 * and this new callout will be placed on the
1144 			 * new CPU via a call to callout_cpu_switch() which
1145 			 * will get the lock on the right CPU followed
1146 			 * by a call callout_cc_add() which will add it there.
1147 			 * (see above in softclock_call_cc()).
1148 			 */
1149 			cc_migration_cpu(cc, direct) = cpu;
1150 			cc_migration_time(cc, direct) = to_sbt;
1151 			cc_migration_prec(cc, direct) = precision;
1152 			cc_migration_func(cc, direct) = ftn;
1153 			cc_migration_arg(cc, direct) = arg;
1154 			c->c_iflags |= (CALLOUT_DFRMIGRATION | CALLOUT_PENDING);
1155 			c->c_flags |= CALLOUT_ACTIVE;
1156 			CTR6(KTR_CALLOUT,
1157 		    "migration of %p func %p arg %p in %d.%08x to %u deferred",
1158 			    c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1159 			    (u_int)(to_sbt & 0xffffffff), cpu);
1160 			CC_UNLOCK(cc);
1161 			return (cancelled);
1162 		}
1163 		cc = callout_cpu_switch(c, cc, cpu);
1164 	}
1165 #endif
1166 
1167 	callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags);
1168 	CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1169 	    cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1170 	    (u_int)(to_sbt & 0xffffffff));
1171 	CC_UNLOCK(cc);
1172 
1173 	return (cancelled);
1174 }
1175 
1176 /*
1177  * Common idioms that can be optimized in the future.
1178  */
1179 int
1180 callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1181 {
1182 	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1183 }
1184 
1185 int
1186 callout_schedule(struct callout *c, int to_ticks)
1187 {
1188 	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1189 }
1190 
1191 int
1192 _callout_stop_safe(struct callout *c, int flags, void (*drain)(void *))
1193 {
1194 	struct callout_cpu *cc, *old_cc;
1195 	struct lock_class *class;
1196 	int direct, sq_locked, use_lock;
1197 	int cancelled, not_on_a_list;
1198 
1199 	if ((flags & CS_DRAIN) != 0)
1200 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, c->c_lock,
1201 		    "calling %s", __func__);
1202 
1203 	/*
1204 	 * Some old subsystems don't hold Giant while running a callout_stop(),
1205 	 * so just discard this check for the moment.
1206 	 */
1207 	if ((flags & CS_DRAIN) == 0 && c->c_lock != NULL) {
1208 		if (c->c_lock == &Giant.lock_object)
1209 			use_lock = mtx_owned(&Giant);
1210 		else {
1211 			use_lock = 1;
1212 			class = LOCK_CLASS(c->c_lock);
1213 			class->lc_assert(c->c_lock, LA_XLOCKED);
1214 		}
1215 	} else
1216 		use_lock = 0;
1217 	if (c->c_iflags & CALLOUT_DIRECT) {
1218 		direct = 1;
1219 	} else {
1220 		direct = 0;
1221 	}
1222 	sq_locked = 0;
1223 	old_cc = NULL;
1224 again:
1225 	cc = callout_lock(c);
1226 
1227 	if ((c->c_iflags & (CALLOUT_DFRMIGRATION | CALLOUT_PENDING)) ==
1228 	    (CALLOUT_DFRMIGRATION | CALLOUT_PENDING) &&
1229 	    ((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE)) {
1230 		/*
1231 		 * Special case where this slipped in while we
1232 		 * were migrating *as* the callout is about to
1233 		 * execute. The caller probably holds the lock
1234 		 * the callout wants.
1235 		 *
1236 		 * Get rid of the migration first. Then set
1237 		 * the flag that tells this code *not* to
1238 		 * try to remove it from any lists (its not
1239 		 * on one yet). When the callout wheel runs,
1240 		 * it will ignore this callout.
1241 		 */
1242 		c->c_iflags &= ~CALLOUT_PENDING;
1243 		c->c_flags &= ~CALLOUT_ACTIVE;
1244 		not_on_a_list = 1;
1245 	} else {
1246 		not_on_a_list = 0;
1247 	}
1248 
1249 	/*
1250 	 * If the callout was migrating while the callout cpu lock was
1251 	 * dropped,  just drop the sleepqueue lock and check the states
1252 	 * again.
1253 	 */
1254 	if (sq_locked != 0 && cc != old_cc) {
1255 #ifdef SMP
1256 		CC_UNLOCK(cc);
1257 		sleepq_release(&cc_exec_waiting(old_cc, direct));
1258 		sq_locked = 0;
1259 		old_cc = NULL;
1260 		goto again;
1261 #else
1262 		panic("migration should not happen");
1263 #endif
1264 	}
1265 
1266 	/*
1267 	 * If the callout is running, try to stop it or drain it.
1268 	 */
1269 	if (cc_exec_curr(cc, direct) == c) {
1270 		/*
1271 		 * Succeed we to stop it or not, we must clear the
1272 		 * active flag - this is what API users expect.  If we're
1273 		 * draining and the callout is currently executing, first wait
1274 		 * until it finishes.
1275 		 */
1276 		if ((flags & CS_DRAIN) == 0)
1277 			c->c_flags &= ~CALLOUT_ACTIVE;
1278 
1279 		if ((flags & CS_DRAIN) != 0) {
1280 			/*
1281 			 * The current callout is running (or just
1282 			 * about to run) and blocking is allowed, so
1283 			 * just wait for the current invocation to
1284 			 * finish.
1285 			 */
1286 			while (cc_exec_curr(cc, direct) == c) {
1287 				/*
1288 				 * Use direct calls to sleepqueue interface
1289 				 * instead of cv/msleep in order to avoid
1290 				 * a LOR between cc_lock and sleepqueue
1291 				 * chain spinlocks.  This piece of code
1292 				 * emulates a msleep_spin() call actually.
1293 				 *
1294 				 * If we already have the sleepqueue chain
1295 				 * locked, then we can safely block.  If we
1296 				 * don't already have it locked, however,
1297 				 * we have to drop the cc_lock to lock
1298 				 * it.  This opens several races, so we
1299 				 * restart at the beginning once we have
1300 				 * both locks.  If nothing has changed, then
1301 				 * we will end up back here with sq_locked
1302 				 * set.
1303 				 */
1304 				if (!sq_locked) {
1305 					CC_UNLOCK(cc);
1306 					sleepq_lock(
1307 					    &cc_exec_waiting(cc, direct));
1308 					sq_locked = 1;
1309 					old_cc = cc;
1310 					goto again;
1311 				}
1312 
1313 				/*
1314 				 * Migration could be cancelled here, but
1315 				 * as long as it is still not sure when it
1316 				 * will be packed up, just let softclock()
1317 				 * take care of it.
1318 				 */
1319 				cc_exec_waiting(cc, direct) = true;
1320 				DROP_GIANT();
1321 				CC_UNLOCK(cc);
1322 				sleepq_add(
1323 				    &cc_exec_waiting(cc, direct),
1324 				    &cc->cc_lock.lock_object, "codrain",
1325 				    SLEEPQ_SLEEP, 0);
1326 				sleepq_wait(
1327 				    &cc_exec_waiting(cc, direct),
1328 					     0);
1329 				sq_locked = 0;
1330 				old_cc = NULL;
1331 
1332 				/* Reacquire locks previously released. */
1333 				PICKUP_GIANT();
1334 				CC_LOCK(cc);
1335 			}
1336 			c->c_flags &= ~CALLOUT_ACTIVE;
1337 		} else if (use_lock &&
1338 			   !cc_exec_cancel(cc, direct) && (drain == NULL)) {
1339 
1340 			/*
1341 			 * The current callout is waiting for its
1342 			 * lock which we hold.  Cancel the callout
1343 			 * and return.  After our caller drops the
1344 			 * lock, the callout will be skipped in
1345 			 * softclock(). This *only* works with a
1346 			 * callout_stop() *not* callout_drain() or
1347 			 * callout_async_drain().
1348 			 */
1349 			cc_exec_cancel(cc, direct) = true;
1350 			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1351 			    c, c->c_func, c->c_arg);
1352 			KASSERT(!cc_cce_migrating(cc, direct),
1353 			    ("callout wrongly scheduled for migration"));
1354 			if (callout_migrating(c)) {
1355 				c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1356 #ifdef SMP
1357 				cc_migration_cpu(cc, direct) = CPUBLOCK;
1358 				cc_migration_time(cc, direct) = 0;
1359 				cc_migration_prec(cc, direct) = 0;
1360 				cc_migration_func(cc, direct) = NULL;
1361 				cc_migration_arg(cc, direct) = NULL;
1362 #endif
1363 			}
1364 			CC_UNLOCK(cc);
1365 			KASSERT(!sq_locked, ("sleepqueue chain locked"));
1366 			return (1);
1367 		} else if (callout_migrating(c)) {
1368 			/*
1369 			 * The callout is currently being serviced
1370 			 * and the "next" callout is scheduled at
1371 			 * its completion with a migration. We remove
1372 			 * the migration flag so it *won't* get rescheduled,
1373 			 * but we can't stop the one thats running so
1374 			 * we return 0.
1375 			 */
1376 			c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1377 #ifdef SMP
1378 			/*
1379 			 * We can't call cc_cce_cleanup here since
1380 			 * if we do it will remove .ce_curr and
1381 			 * its still running. This will prevent a
1382 			 * reschedule of the callout when the
1383 			 * execution completes.
1384 			 */
1385 			cc_migration_cpu(cc, direct) = CPUBLOCK;
1386 			cc_migration_time(cc, direct) = 0;
1387 			cc_migration_prec(cc, direct) = 0;
1388 			cc_migration_func(cc, direct) = NULL;
1389 			cc_migration_arg(cc, direct) = NULL;
1390 #endif
1391 			CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1392 			    c, c->c_func, c->c_arg);
1393  			if (drain) {
1394 				cc_exec_drain(cc, direct) = drain;
1395 			}
1396 			CC_UNLOCK(cc);
1397 			return ((flags & CS_EXECUTING) != 0);
1398 		}
1399 		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1400 		    c, c->c_func, c->c_arg);
1401 		if (drain) {
1402 			cc_exec_drain(cc, direct) = drain;
1403 		}
1404 		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1405 		cancelled = ((flags & CS_EXECUTING) != 0);
1406 	} else
1407 		cancelled = 1;
1408 
1409 	if (sq_locked)
1410 		sleepq_release(&cc_exec_waiting(cc, direct));
1411 
1412 	if ((c->c_iflags & CALLOUT_PENDING) == 0) {
1413 		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1414 		    c, c->c_func, c->c_arg);
1415 		/*
1416 		 * For not scheduled and not executing callout return
1417 		 * negative value.
1418 		 */
1419 		if (cc_exec_curr(cc, direct) != c)
1420 			cancelled = -1;
1421 		CC_UNLOCK(cc);
1422 		return (cancelled);
1423 	}
1424 
1425 	c->c_iflags &= ~CALLOUT_PENDING;
1426 	c->c_flags &= ~CALLOUT_ACTIVE;
1427 
1428 	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1429 	    c, c->c_func, c->c_arg);
1430 	if (not_on_a_list == 0) {
1431 		if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1432 			if (cc_exec_next(cc) == c)
1433 				cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1434 			LIST_REMOVE(c, c_links.le);
1435 		} else {
1436 			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1437 		}
1438 	}
1439 	callout_cc_del(c, cc);
1440 	CC_UNLOCK(cc);
1441 	return (cancelled);
1442 }
1443 
1444 void
1445 callout_init(struct callout *c, int mpsafe)
1446 {
1447 	bzero(c, sizeof *c);
1448 	if (mpsafe) {
1449 		c->c_lock = NULL;
1450 		c->c_iflags = CALLOUT_RETURNUNLOCKED;
1451 	} else {
1452 		c->c_lock = &Giant.lock_object;
1453 		c->c_iflags = 0;
1454 	}
1455 	c->c_cpu = timeout_cpu;
1456 }
1457 
1458 void
1459 _callout_init_lock(struct callout *c, struct lock_object *lock, int flags)
1460 {
1461 	bzero(c, sizeof *c);
1462 	c->c_lock = lock;
1463 	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1464 	    ("callout_init_lock: bad flags %d", flags));
1465 	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1466 	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1467 	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
1468 	    (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
1469 	    __func__));
1470 	c->c_iflags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1471 	c->c_cpu = timeout_cpu;
1472 }
1473 
1474 #ifdef APM_FIXUP_CALLTODO
1475 /*
1476  * Adjust the kernel calltodo timeout list.  This routine is used after
1477  * an APM resume to recalculate the calltodo timer list values with the
1478  * number of hz's we have been sleeping.  The next hardclock() will detect
1479  * that there are fired timers and run softclock() to execute them.
1480  *
1481  * Please note, I have not done an exhaustive analysis of what code this
1482  * might break.  I am motivated to have my select()'s and alarm()'s that
1483  * have expired during suspend firing upon resume so that the applications
1484  * which set the timer can do the maintanence the timer was for as close
1485  * as possible to the originally intended time.  Testing this code for a
1486  * week showed that resuming from a suspend resulted in 22 to 25 timers
1487  * firing, which seemed independent on whether the suspend was 2 hours or
1488  * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
1489  */
1490 void
1491 adjust_timeout_calltodo(struct timeval *time_change)
1492 {
1493 	struct callout *p;
1494 	unsigned long delta_ticks;
1495 
1496 	/*
1497 	 * How many ticks were we asleep?
1498 	 * (stolen from tvtohz()).
1499 	 */
1500 
1501 	/* Don't do anything */
1502 	if (time_change->tv_sec < 0)
1503 		return;
1504 	else if (time_change->tv_sec <= LONG_MAX / 1000000)
1505 		delta_ticks = howmany(time_change->tv_sec * 1000000 +
1506 		    time_change->tv_usec, tick) + 1;
1507 	else if (time_change->tv_sec <= LONG_MAX / hz)
1508 		delta_ticks = time_change->tv_sec * hz +
1509 		    howmany(time_change->tv_usec, tick) + 1;
1510 	else
1511 		delta_ticks = LONG_MAX;
1512 
1513 	if (delta_ticks > INT_MAX)
1514 		delta_ticks = INT_MAX;
1515 
1516 	/*
1517 	 * Now rip through the timer calltodo list looking for timers
1518 	 * to expire.
1519 	 */
1520 
1521 	/* don't collide with softclock() */
1522 	CC_LOCK(cc);
1523 	for (p = calltodo.c_next; p != NULL; p = p->c_next) {
1524 		p->c_time -= delta_ticks;
1525 
1526 		/* Break if the timer had more time on it than delta_ticks */
1527 		if (p->c_time > 0)
1528 			break;
1529 
1530 		/* take back the ticks the timer didn't use (p->c_time <= 0) */
1531 		delta_ticks = -p->c_time;
1532 	}
1533 	CC_UNLOCK(cc);
1534 
1535 	return;
1536 }
1537 #endif /* APM_FIXUP_CALLTODO */
1538 
1539 static int
1540 flssbt(sbintime_t sbt)
1541 {
1542 
1543 	sbt += (uint64_t)sbt >> 1;
1544 	if (sizeof(long) >= sizeof(sbintime_t))
1545 		return (flsl(sbt));
1546 	if (sbt >= SBT_1S)
1547 		return (flsl(((uint64_t)sbt) >> 32) + 32);
1548 	return (flsl(sbt));
1549 }
1550 
1551 /*
1552  * Dump immediate statistic snapshot of the scheduled callouts.
1553  */
1554 static int
1555 sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1556 {
1557 	struct callout *tmp;
1558 	struct callout_cpu *cc;
1559 	struct callout_list *sc;
1560 	sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1561 	int ct[64], cpr[64], ccpbk[32];
1562 	int error, val, i, count, tcum, pcum, maxc, c, medc;
1563 #ifdef SMP
1564 	int cpu;
1565 #endif
1566 
1567 	val = 0;
1568 	error = sysctl_handle_int(oidp, &val, 0, req);
1569 	if (error != 0 || req->newptr == NULL)
1570 		return (error);
1571 	count = maxc = 0;
1572 	st = spr = maxt = maxpr = 0;
1573 	bzero(ccpbk, sizeof(ccpbk));
1574 	bzero(ct, sizeof(ct));
1575 	bzero(cpr, sizeof(cpr));
1576 	now = sbinuptime();
1577 #ifdef SMP
1578 	CPU_FOREACH(cpu) {
1579 		cc = CC_CPU(cpu);
1580 #else
1581 		cc = CC_CPU(timeout_cpu);
1582 #endif
1583 		CC_LOCK(cc);
1584 		for (i = 0; i < callwheelsize; i++) {
1585 			sc = &cc->cc_callwheel[i];
1586 			c = 0;
1587 			LIST_FOREACH(tmp, sc, c_links.le) {
1588 				c++;
1589 				t = tmp->c_time - now;
1590 				if (t < 0)
1591 					t = 0;
1592 				st += t / SBT_1US;
1593 				spr += tmp->c_precision / SBT_1US;
1594 				if (t > maxt)
1595 					maxt = t;
1596 				if (tmp->c_precision > maxpr)
1597 					maxpr = tmp->c_precision;
1598 				ct[flssbt(t)]++;
1599 				cpr[flssbt(tmp->c_precision)]++;
1600 			}
1601 			if (c > maxc)
1602 				maxc = c;
1603 			ccpbk[fls(c + c / 2)]++;
1604 			count += c;
1605 		}
1606 		CC_UNLOCK(cc);
1607 #ifdef SMP
1608 	}
1609 #endif
1610 
1611 	for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1612 		tcum += ct[i];
1613 	medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1614 	for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1615 		pcum += cpr[i];
1616 	medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1617 	for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1618 		c += ccpbk[i];
1619 	medc = (i >= 2) ? (1 << (i - 2)) : 0;
1620 
1621 	printf("Scheduled callouts statistic snapshot:\n");
1622 	printf("  Callouts: %6d  Buckets: %6d*%-3d  Bucket size: 0.%06ds\n",
1623 	    count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
1624 	printf("  C/Bk: med %5d         avg %6d.%06jd  max %6d\n",
1625 	    medc,
1626 	    count / callwheelsize / mp_ncpus,
1627 	    (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1628 	    maxc);
1629 	printf("  Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1630 	    medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1631 	    (st / count) / 1000000, (st / count) % 1000000,
1632 	    maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1633 	printf("  Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1634 	    medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1635 	    (spr / count) / 1000000, (spr / count) % 1000000,
1636 	    maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1637 	printf("  Distribution:       \tbuckets\t   time\t   tcum\t"
1638 	    "   prec\t   pcum\n");
1639 	for (i = 0, tcum = pcum = 0; i < 64; i++) {
1640 		if (ct[i] == 0 && cpr[i] == 0)
1641 			continue;
1642 		t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1643 		tcum += ct[i];
1644 		pcum += cpr[i];
1645 		printf("  %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1646 		    t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1647 		    i - 1 - (32 - CC_HASH_SHIFT),
1648 		    ct[i], tcum, cpr[i], pcum);
1649 	}
1650 	return (error);
1651 }
1652 SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1653     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1654     0, 0, sysctl_kern_callout_stat, "I",
1655     "Dump immediate statistic snapshot of the scheduled callouts");
1656 
1657 #ifdef DDB
1658 static void
1659 _show_callout(struct callout *c)
1660 {
1661 
1662 	db_printf("callout %p\n", c);
1663 #define	C_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, c->e);
1664 	db_printf("   &c_links = %p\n", &(c->c_links));
1665 	C_DB_PRINTF("%" PRId64,	c_time);
1666 	C_DB_PRINTF("%" PRId64,	c_precision);
1667 	C_DB_PRINTF("%p",	c_arg);
1668 	C_DB_PRINTF("%p",	c_func);
1669 	C_DB_PRINTF("%p",	c_lock);
1670 	C_DB_PRINTF("%#x",	c_flags);
1671 	C_DB_PRINTF("%#x",	c_iflags);
1672 	C_DB_PRINTF("%d",	c_cpu);
1673 #undef	C_DB_PRINTF
1674 }
1675 
1676 DB_SHOW_COMMAND(callout, db_show_callout)
1677 {
1678 
1679 	if (!have_addr) {
1680 		db_printf("usage: show callout <struct callout *>\n");
1681 		return;
1682 	}
1683 
1684 	_show_callout((struct callout *)addr);
1685 }
1686 
1687 static void
1688 _show_last_callout(int cpu, int direct, const char *dirstr)
1689 {
1690 	struct callout_cpu *cc;
1691 	void *func, *arg;
1692 
1693 	cc = CC_CPU(cpu);
1694 	func = cc_exec_last_func(cc, direct);
1695 	arg = cc_exec_last_arg(cc, direct);
1696 	db_printf("cpu %d last%s callout function: %p ", cpu, dirstr, func);
1697 	db_printsym((db_expr_t)func, DB_STGY_ANY);
1698 	db_printf("\ncpu %d last%s callout argument: %p\n", cpu, dirstr, arg);
1699 }
1700 
1701 DB_SHOW_COMMAND(callout_last, db_show_callout_last)
1702 {
1703 	int cpu, last;
1704 
1705 	if (have_addr) {
1706 		if (addr < 0 || addr > mp_maxid || CPU_ABSENT(addr)) {
1707 			db_printf("no such cpu: %d\n", (int)addr);
1708 			return;
1709 		}
1710 		cpu = last = addr;
1711 	} else {
1712 		cpu = 0;
1713 		last = mp_maxid;
1714 	}
1715 
1716 	while (cpu <= last) {
1717 		if (!CPU_ABSENT(cpu)) {
1718 			_show_last_callout(cpu, 0, "");
1719 			_show_last_callout(cpu, 1, " direct");
1720 		}
1721 		cpu++;
1722 	}
1723 }
1724 #endif /* DDB */
1725