xref: /freebsd/sys/kern/kern_timeout.c (revision 82ea1a07b4894bea20c61afbf702cc46f0711ead)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_callout_profiling.h"
43 #include "opt_ddb.h"
44 #include "opt_rss.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bus.h>
49 #include <sys/callout.h>
50 #include <sys/domainset.h>
51 #include <sys/file.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/ktr.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/proc.h>
59 #include <sys/sdt.h>
60 #include <sys/sleepqueue.h>
61 #include <sys/sysctl.h>
62 #include <sys/smp.h>
63 
64 #ifdef DDB
65 #include <ddb/ddb.h>
66 #include <ddb/db_sym.h>
67 #include <machine/_inttypes.h>
68 #endif
69 
70 #ifdef SMP
71 #include <machine/cpu.h>
72 #endif
73 
74 DPCPU_DECLARE(sbintime_t, hardclocktime);
75 
76 SDT_PROVIDER_DEFINE(callout_execute);
77 SDT_PROBE_DEFINE1(callout_execute, , , callout__start, "struct callout *");
78 SDT_PROBE_DEFINE1(callout_execute, , , callout__end, "struct callout *");
79 
80 #ifdef CALLOUT_PROFILING
81 static int avg_depth;
82 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
83     "Average number of items examined per softclock call. Units = 1/1000");
84 static int avg_gcalls;
85 SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
86     "Average number of Giant callouts made per softclock call. Units = 1/1000");
87 static int avg_lockcalls;
88 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
89     "Average number of lock callouts made per softclock call. Units = 1/1000");
90 static int avg_mpcalls;
91 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
92     "Average number of MP callouts made per softclock call. Units = 1/1000");
93 static int avg_depth_dir;
94 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
95     "Average number of direct callouts examined per callout_process call. "
96     "Units = 1/1000");
97 static int avg_lockcalls_dir;
98 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
99     &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
100     "callout_process call. Units = 1/1000");
101 static int avg_mpcalls_dir;
102 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
103     0, "Average number of MP direct callouts made per callout_process call. "
104     "Units = 1/1000");
105 #endif
106 
107 static int ncallout;
108 SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &ncallout, 0,
109     "Number of entries in callwheel and size of timeout() preallocation");
110 
111 #ifdef	RSS
112 static int pin_default_swi = 1;
113 static int pin_pcpu_swi = 1;
114 #else
115 static int pin_default_swi = 0;
116 static int pin_pcpu_swi = 0;
117 #endif
118 
119 SYSCTL_INT(_kern, OID_AUTO, pin_default_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_default_swi,
120     0, "Pin the default (non-per-cpu) swi (shared with PCPU 0 swi)");
121 SYSCTL_INT(_kern, OID_AUTO, pin_pcpu_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_pcpu_swi,
122     0, "Pin the per-CPU swis (except PCPU 0, which is also default)");
123 
124 /*
125  * TODO:
126  *	allocate more timeout table slots when table overflows.
127  */
128 static u_int __read_mostly callwheelsize;
129 static u_int __read_mostly callwheelmask;
130 
131 /*
132  * The callout cpu exec entities represent informations necessary for
133  * describing the state of callouts currently running on the CPU and the ones
134  * necessary for migrating callouts to the new callout cpu. In particular,
135  * the first entry of the array cc_exec_entity holds informations for callout
136  * running in SWI thread context, while the second one holds informations
137  * for callout running directly from hardware interrupt context.
138  * The cached informations are very important for deferring migration when
139  * the migrating callout is already running.
140  */
141 struct cc_exec {
142 	struct callout		*cc_curr;
143 	callout_func_t		*cc_drain;
144 	void			*cc_last_func;
145 	void			*cc_last_arg;
146 #ifdef SMP
147 	callout_func_t		*ce_migration_func;
148 	void			*ce_migration_arg;
149 	sbintime_t		ce_migration_time;
150 	sbintime_t		ce_migration_prec;
151 	int			ce_migration_cpu;
152 #endif
153 	bool			cc_cancel;
154 	bool			cc_waiting;
155 };
156 
157 /*
158  * There is one struct callout_cpu per cpu, holding all relevant
159  * state for the callout processing thread on the individual CPU.
160  */
161 struct callout_cpu {
162 	struct mtx_padalign	cc_lock;
163 	struct cc_exec 		cc_exec_entity[2];
164 	struct callout		*cc_next;
165 	struct callout_list	*cc_callwheel;
166 	struct callout_tailq	cc_expireq;
167 	sbintime_t		cc_firstevent;
168 	sbintime_t		cc_lastscan;
169 	void			*cc_cookie;
170 	u_int			cc_bucket;
171 	u_int			cc_inited;
172 #ifdef KTR
173 	char			cc_ktr_event_name[20];
174 #endif
175 };
176 
177 #define	callout_migrating(c)	((c)->c_iflags & CALLOUT_DFRMIGRATION)
178 
179 #define	cc_exec_curr(cc, dir)		cc->cc_exec_entity[dir].cc_curr
180 #define	cc_exec_last_func(cc, dir)	cc->cc_exec_entity[dir].cc_last_func
181 #define	cc_exec_last_arg(cc, dir)	cc->cc_exec_entity[dir].cc_last_arg
182 #define	cc_exec_drain(cc, dir)		cc->cc_exec_entity[dir].cc_drain
183 #define	cc_exec_next(cc)		cc->cc_next
184 #define	cc_exec_cancel(cc, dir)		cc->cc_exec_entity[dir].cc_cancel
185 #define	cc_exec_waiting(cc, dir)	cc->cc_exec_entity[dir].cc_waiting
186 #ifdef SMP
187 #define	cc_migration_func(cc, dir)	cc->cc_exec_entity[dir].ce_migration_func
188 #define	cc_migration_arg(cc, dir)	cc->cc_exec_entity[dir].ce_migration_arg
189 #define	cc_migration_cpu(cc, dir)	cc->cc_exec_entity[dir].ce_migration_cpu
190 #define	cc_migration_time(cc, dir)	cc->cc_exec_entity[dir].ce_migration_time
191 #define	cc_migration_prec(cc, dir)	cc->cc_exec_entity[dir].ce_migration_prec
192 
193 struct callout_cpu cc_cpu[MAXCPU];
194 #define	CPUBLOCK	MAXCPU
195 #define	CC_CPU(cpu)	(&cc_cpu[(cpu)])
196 #define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
197 #else
198 struct callout_cpu cc_cpu;
199 #define	CC_CPU(cpu)	&cc_cpu
200 #define	CC_SELF()	&cc_cpu
201 #endif
202 #define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
203 #define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
204 #define	CC_LOCK_ASSERT(cc)	mtx_assert(&(cc)->cc_lock, MA_OWNED)
205 
206 static int __read_mostly cc_default_cpu;
207 
208 static void	callout_cpu_init(struct callout_cpu *cc, int cpu);
209 static void	softclock_call_cc(struct callout *c, struct callout_cpu *cc,
210 #ifdef CALLOUT_PROFILING
211 		    int *mpcalls, int *lockcalls, int *gcalls,
212 #endif
213 		    int direct);
214 
215 static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
216 
217 /**
218  * Locked by cc_lock:
219  *   cc_curr         - If a callout is in progress, it is cc_curr.
220  *                     If cc_curr is non-NULL, threads waiting in
221  *                     callout_drain() will be woken up as soon as the
222  *                     relevant callout completes.
223  *   cc_cancel       - Changing to 1 with both callout_lock and cc_lock held
224  *                     guarantees that the current callout will not run.
225  *                     The softclock() function sets this to 0 before it
226  *                     drops callout_lock to acquire c_lock, and it calls
227  *                     the handler only if curr_cancelled is still 0 after
228  *                     cc_lock is successfully acquired.
229  *   cc_waiting      - If a thread is waiting in callout_drain(), then
230  *                     callout_wait is nonzero.  Set only when
231  *                     cc_curr is non-NULL.
232  */
233 
234 /*
235  * Resets the execution entity tied to a specific callout cpu.
236  */
237 static void
238 cc_cce_cleanup(struct callout_cpu *cc, int direct)
239 {
240 
241 	cc_exec_curr(cc, direct) = NULL;
242 	cc_exec_cancel(cc, direct) = false;
243 	cc_exec_waiting(cc, direct) = false;
244 #ifdef SMP
245 	cc_migration_cpu(cc, direct) = CPUBLOCK;
246 	cc_migration_time(cc, direct) = 0;
247 	cc_migration_prec(cc, direct) = 0;
248 	cc_migration_func(cc, direct) = NULL;
249 	cc_migration_arg(cc, direct) = NULL;
250 #endif
251 }
252 
253 /*
254  * Checks if migration is requested by a specific callout cpu.
255  */
256 static int
257 cc_cce_migrating(struct callout_cpu *cc, int direct)
258 {
259 
260 #ifdef SMP
261 	return (cc_migration_cpu(cc, direct) != CPUBLOCK);
262 #else
263 	return (0);
264 #endif
265 }
266 
267 /*
268  * Kernel low level callwheel initialization
269  * called on the BSP during kernel startup.
270  */
271 static void
272 callout_callwheel_init(void *dummy)
273 {
274 	struct callout_cpu *cc;
275 	int cpu;
276 
277 	/*
278 	 * Calculate the size of the callout wheel and the preallocated
279 	 * timeout() structures.
280 	 * XXX: Clip callout to result of previous function of maxusers
281 	 * maximum 384.  This is still huge, but acceptable.
282 	 */
283 	ncallout = imin(16 + maxproc + maxfiles, 18508);
284 	TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
285 
286 	/*
287 	 * Calculate callout wheel size, should be next power of two higher
288 	 * than 'ncallout'.
289 	 */
290 	callwheelsize = 1 << fls(ncallout);
291 	callwheelmask = callwheelsize - 1;
292 
293 	/*
294 	 * Fetch whether we're pinning the swi's or not.
295 	 */
296 	TUNABLE_INT_FETCH("kern.pin_default_swi", &pin_default_swi);
297 	TUNABLE_INT_FETCH("kern.pin_pcpu_swi", &pin_pcpu_swi);
298 
299 	/*
300 	 * Initialize callout wheels.  The software interrupt threads
301 	 * are created later.
302 	 */
303 	cc_default_cpu = PCPU_GET(cpuid);
304 	CPU_FOREACH(cpu) {
305 		cc = CC_CPU(cpu);
306 		callout_cpu_init(cc, cpu);
307 	}
308 }
309 SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
310 
311 /*
312  * Initialize the per-cpu callout structures.
313  */
314 static void
315 callout_cpu_init(struct callout_cpu *cc, int cpu)
316 {
317 	int i;
318 
319 	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
320 	cc->cc_inited = 1;
321 	cc->cc_callwheel = malloc_domainset(sizeof(struct callout_list) *
322 	    callwheelsize, M_CALLOUT,
323 	    DOMAINSET_PREF(pcpu_find(cpu)->pc_domain), M_WAITOK);
324 	for (i = 0; i < callwheelsize; i++)
325 		LIST_INIT(&cc->cc_callwheel[i]);
326 	TAILQ_INIT(&cc->cc_expireq);
327 	cc->cc_firstevent = SBT_MAX;
328 	for (i = 0; i < 2; i++)
329 		cc_cce_cleanup(cc, i);
330 #ifdef KTR
331 	snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name),
332 	    "callwheel cpu %d", cpu);
333 #endif
334 }
335 
336 #ifdef SMP
337 /*
338  * Switches the cpu tied to a specific callout.
339  * The function expects a locked incoming callout cpu and returns with
340  * locked outcoming callout cpu.
341  */
342 static struct callout_cpu *
343 callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
344 {
345 	struct callout_cpu *new_cc;
346 
347 	MPASS(c != NULL && cc != NULL);
348 	CC_LOCK_ASSERT(cc);
349 
350 	/*
351 	 * Avoid interrupts and preemption firing after the callout cpu
352 	 * is blocked in order to avoid deadlocks as the new thread
353 	 * may be willing to acquire the callout cpu lock.
354 	 */
355 	c->c_cpu = CPUBLOCK;
356 	spinlock_enter();
357 	CC_UNLOCK(cc);
358 	new_cc = CC_CPU(new_cpu);
359 	CC_LOCK(new_cc);
360 	spinlock_exit();
361 	c->c_cpu = new_cpu;
362 	return (new_cc);
363 }
364 #endif
365 
366 /*
367  * Start softclock threads.
368  */
369 static void
370 start_softclock(void *dummy)
371 {
372 	struct callout_cpu *cc;
373 	char name[MAXCOMLEN];
374 	int cpu;
375 	bool pin_swi;
376 	struct intr_event *ie;
377 
378 	CPU_FOREACH(cpu) {
379 		cc = CC_CPU(cpu);
380 		snprintf(name, sizeof(name), "clock (%d)", cpu);
381 		ie = NULL;
382 		if (swi_add(&ie, name, softclock, cc, SWI_CLOCK,
383 		    INTR_MPSAFE, &cc->cc_cookie))
384 			panic("died while creating standard software ithreads");
385 		if (cpu == cc_default_cpu)
386 			pin_swi = pin_default_swi;
387 		else
388 			pin_swi = pin_pcpu_swi;
389 		if (pin_swi && (intr_event_bind(ie, cpu) != 0)) {
390 			printf("%s: %s clock couldn't be pinned to cpu %d\n",
391 			    __func__,
392 			    cpu == cc_default_cpu ? "default" : "per-cpu",
393 			    cpu);
394 		}
395 	}
396 }
397 SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
398 
399 #define	CC_HASH_SHIFT	8
400 
401 static inline u_int
402 callout_hash(sbintime_t sbt)
403 {
404 
405 	return (sbt >> (32 - CC_HASH_SHIFT));
406 }
407 
408 static inline u_int
409 callout_get_bucket(sbintime_t sbt)
410 {
411 
412 	return (callout_hash(sbt) & callwheelmask);
413 }
414 
415 void
416 callout_process(sbintime_t now)
417 {
418 	struct callout *tmp, *tmpn;
419 	struct callout_cpu *cc;
420 	struct callout_list *sc;
421 	sbintime_t first, last, max, tmp_max;
422 	uint32_t lookahead;
423 	u_int firstb, lastb, nowb;
424 #ifdef CALLOUT_PROFILING
425 	int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
426 #endif
427 
428 	cc = CC_SELF();
429 	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
430 
431 	/* Compute the buckets of the last scan and present times. */
432 	firstb = callout_hash(cc->cc_lastscan);
433 	cc->cc_lastscan = now;
434 	nowb = callout_hash(now);
435 
436 	/* Compute the last bucket and minimum time of the bucket after it. */
437 	if (nowb == firstb)
438 		lookahead = (SBT_1S / 16);
439 	else if (nowb - firstb == 1)
440 		lookahead = (SBT_1S / 8);
441 	else
442 		lookahead = (SBT_1S / 2);
443 	first = last = now;
444 	first += (lookahead / 2);
445 	last += lookahead;
446 	last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
447 	lastb = callout_hash(last) - 1;
448 	max = last;
449 
450 	/*
451 	 * Check if we wrapped around the entire wheel from the last scan.
452 	 * In case, we need to scan entirely the wheel for pending callouts.
453 	 */
454 	if (lastb - firstb >= callwheelsize) {
455 		lastb = firstb + callwheelsize - 1;
456 		if (nowb - firstb >= callwheelsize)
457 			nowb = lastb;
458 	}
459 
460 	/* Iterate callwheel from firstb to nowb and then up to lastb. */
461 	do {
462 		sc = &cc->cc_callwheel[firstb & callwheelmask];
463 		tmp = LIST_FIRST(sc);
464 		while (tmp != NULL) {
465 			/* Run the callout if present time within allowed. */
466 			if (tmp->c_time <= now) {
467 				/*
468 				 * Consumer told us the callout may be run
469 				 * directly from hardware interrupt context.
470 				 */
471 				if (tmp->c_iflags & CALLOUT_DIRECT) {
472 #ifdef CALLOUT_PROFILING
473 					++depth_dir;
474 #endif
475 					cc_exec_next(cc) =
476 					    LIST_NEXT(tmp, c_links.le);
477 					cc->cc_bucket = firstb & callwheelmask;
478 					LIST_REMOVE(tmp, c_links.le);
479 					softclock_call_cc(tmp, cc,
480 #ifdef CALLOUT_PROFILING
481 					    &mpcalls_dir, &lockcalls_dir, NULL,
482 #endif
483 					    1);
484 					tmp = cc_exec_next(cc);
485 					cc_exec_next(cc) = NULL;
486 				} else {
487 					tmpn = LIST_NEXT(tmp, c_links.le);
488 					LIST_REMOVE(tmp, c_links.le);
489 					TAILQ_INSERT_TAIL(&cc->cc_expireq,
490 					    tmp, c_links.tqe);
491 					tmp->c_iflags |= CALLOUT_PROCESSED;
492 					tmp = tmpn;
493 				}
494 				continue;
495 			}
496 			/* Skip events from distant future. */
497 			if (tmp->c_time >= max)
498 				goto next;
499 			/*
500 			 * Event minimal time is bigger than present maximal
501 			 * time, so it cannot be aggregated.
502 			 */
503 			if (tmp->c_time > last) {
504 				lastb = nowb;
505 				goto next;
506 			}
507 			/* Update first and last time, respecting this event. */
508 			if (tmp->c_time < first)
509 				first = tmp->c_time;
510 			tmp_max = tmp->c_time + tmp->c_precision;
511 			if (tmp_max < last)
512 				last = tmp_max;
513 next:
514 			tmp = LIST_NEXT(tmp, c_links.le);
515 		}
516 		/* Proceed with the next bucket. */
517 		firstb++;
518 		/*
519 		 * Stop if we looked after present time and found
520 		 * some event we can't execute at now.
521 		 * Stop if we looked far enough into the future.
522 		 */
523 	} while (((int)(firstb - lastb)) <= 0);
524 	cc->cc_firstevent = last;
525 	cpu_new_callout(curcpu, last, first);
526 
527 #ifdef CALLOUT_PROFILING
528 	avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
529 	avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
530 	avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
531 #endif
532 	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
533 	/*
534 	 * swi_sched acquires the thread lock, so we don't want to call it
535 	 * with cc_lock held; incorrect locking order.
536 	 */
537 	if (!TAILQ_EMPTY(&cc->cc_expireq))
538 		swi_sched(cc->cc_cookie, 0);
539 }
540 
541 static struct callout_cpu *
542 callout_lock(struct callout *c)
543 {
544 	struct callout_cpu *cc;
545 	int cpu;
546 
547 	for (;;) {
548 		cpu = c->c_cpu;
549 #ifdef SMP
550 		if (cpu == CPUBLOCK) {
551 			while (c->c_cpu == CPUBLOCK)
552 				cpu_spinwait();
553 			continue;
554 		}
555 #endif
556 		cc = CC_CPU(cpu);
557 		CC_LOCK(cc);
558 		if (cpu == c->c_cpu)
559 			break;
560 		CC_UNLOCK(cc);
561 	}
562 	return (cc);
563 }
564 
565 static void
566 callout_cc_add(struct callout *c, struct callout_cpu *cc,
567     sbintime_t sbt, sbintime_t precision, void (*func)(void *),
568     void *arg, int cpu, int flags)
569 {
570 	int bucket;
571 
572 	CC_LOCK_ASSERT(cc);
573 	if (sbt < cc->cc_lastscan)
574 		sbt = cc->cc_lastscan;
575 	c->c_arg = arg;
576 	c->c_iflags |= CALLOUT_PENDING;
577 	c->c_iflags &= ~CALLOUT_PROCESSED;
578 	c->c_flags |= CALLOUT_ACTIVE;
579 	if (flags & C_DIRECT_EXEC)
580 		c->c_iflags |= CALLOUT_DIRECT;
581 	c->c_func = func;
582 	c->c_time = sbt;
583 	c->c_precision = precision;
584 	bucket = callout_get_bucket(c->c_time);
585 	CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
586 	    c, (int)(c->c_precision >> 32),
587 	    (u_int)(c->c_precision & 0xffffffff));
588 	LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
589 	if (cc->cc_bucket == bucket)
590 		cc_exec_next(cc) = c;
591 
592 	/*
593 	 * Inform the eventtimers(4) subsystem there's a new callout
594 	 * that has been inserted, but only if really required.
595 	 */
596 	if (SBT_MAX - c->c_time < c->c_precision)
597 		c->c_precision = SBT_MAX - c->c_time;
598 	sbt = c->c_time + c->c_precision;
599 	if (sbt < cc->cc_firstevent) {
600 		cc->cc_firstevent = sbt;
601 		cpu_new_callout(cpu, sbt, c->c_time);
602 	}
603 }
604 
605 static void
606 softclock_call_cc(struct callout *c, struct callout_cpu *cc,
607 #ifdef CALLOUT_PROFILING
608     int *mpcalls, int *lockcalls, int *gcalls,
609 #endif
610     int direct)
611 {
612 	struct rm_priotracker tracker;
613 	callout_func_t *c_func, *drain;
614 	void *c_arg;
615 	struct lock_class *class;
616 	struct lock_object *c_lock;
617 	uintptr_t lock_status;
618 	int c_iflags;
619 #ifdef SMP
620 	struct callout_cpu *new_cc;
621 	callout_func_t *new_func;
622 	void *new_arg;
623 	int flags, new_cpu;
624 	sbintime_t new_prec, new_time;
625 #endif
626 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
627 	sbintime_t sbt1, sbt2;
628 	struct timespec ts2;
629 	static sbintime_t maxdt = 2 * SBT_1MS;	/* 2 msec */
630 	static callout_func_t *lastfunc;
631 #endif
632 
633 	KASSERT((c->c_iflags & CALLOUT_PENDING) == CALLOUT_PENDING,
634 	    ("softclock_call_cc: pend %p %x", c, c->c_iflags));
635 	KASSERT((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE,
636 	    ("softclock_call_cc: act %p %x", c, c->c_flags));
637 	class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
638 	lock_status = 0;
639 	if (c->c_flags & CALLOUT_SHAREDLOCK) {
640 		if (class == &lock_class_rm)
641 			lock_status = (uintptr_t)&tracker;
642 		else
643 			lock_status = 1;
644 	}
645 	c_lock = c->c_lock;
646 	c_func = c->c_func;
647 	c_arg = c->c_arg;
648 	c_iflags = c->c_iflags;
649 	c->c_iflags &= ~CALLOUT_PENDING;
650 
651 	cc_exec_curr(cc, direct) = c;
652 	cc_exec_last_func(cc, direct) = c_func;
653 	cc_exec_last_arg(cc, direct) = c_arg;
654 	cc_exec_cancel(cc, direct) = false;
655 	cc_exec_drain(cc, direct) = NULL;
656 	CC_UNLOCK(cc);
657 	if (c_lock != NULL) {
658 		class->lc_lock(c_lock, lock_status);
659 		/*
660 		 * The callout may have been cancelled
661 		 * while we switched locks.
662 		 */
663 		if (cc_exec_cancel(cc, direct)) {
664 			class->lc_unlock(c_lock);
665 			goto skip;
666 		}
667 		/* The callout cannot be stopped now. */
668 		cc_exec_cancel(cc, direct) = true;
669 		if (c_lock == &Giant.lock_object) {
670 #ifdef CALLOUT_PROFILING
671 			(*gcalls)++;
672 #endif
673 			CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
674 			    c, c_func, c_arg);
675 		} else {
676 #ifdef CALLOUT_PROFILING
677 			(*lockcalls)++;
678 #endif
679 			CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
680 			    c, c_func, c_arg);
681 		}
682 	} else {
683 #ifdef CALLOUT_PROFILING
684 		(*mpcalls)++;
685 #endif
686 		CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
687 		    c, c_func, c_arg);
688 	}
689 	KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running",
690 	    "func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct);
691 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
692 	sbt1 = sbinuptime();
693 #endif
694 	THREAD_NO_SLEEPING();
695 	SDT_PROBE1(callout_execute, , , callout__start, c);
696 	c_func(c_arg);
697 	SDT_PROBE1(callout_execute, , , callout__end, c);
698 	THREAD_SLEEPING_OK();
699 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
700 	sbt2 = sbinuptime();
701 	sbt2 -= sbt1;
702 	if (sbt2 > maxdt) {
703 		if (lastfunc != c_func || sbt2 > maxdt * 2) {
704 			ts2 = sbttots(sbt2);
705 			printf(
706 		"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
707 			    c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
708 		}
709 		maxdt = sbt2;
710 		lastfunc = c_func;
711 	}
712 #endif
713 	KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle");
714 	CTR1(KTR_CALLOUT, "callout %p finished", c);
715 	if ((c_iflags & CALLOUT_RETURNUNLOCKED) == 0)
716 		class->lc_unlock(c_lock);
717 skip:
718 	CC_LOCK(cc);
719 	KASSERT(cc_exec_curr(cc, direct) == c, ("mishandled cc_curr"));
720 	cc_exec_curr(cc, direct) = NULL;
721 	if (cc_exec_drain(cc, direct)) {
722 		drain = cc_exec_drain(cc, direct);
723 		cc_exec_drain(cc, direct) = NULL;
724 		CC_UNLOCK(cc);
725 		drain(c_arg);
726 		CC_LOCK(cc);
727 	}
728 	if (cc_exec_waiting(cc, direct)) {
729 		/*
730 		 * There is someone waiting for the
731 		 * callout to complete.
732 		 * If the callout was scheduled for
733 		 * migration just cancel it.
734 		 */
735 		if (cc_cce_migrating(cc, direct)) {
736 			cc_cce_cleanup(cc, direct);
737 
738 			/*
739 			 * It should be assert here that the callout is not
740 			 * destroyed but that is not easy.
741 			 */
742 			c->c_iflags &= ~CALLOUT_DFRMIGRATION;
743 		}
744 		cc_exec_waiting(cc, direct) = false;
745 		CC_UNLOCK(cc);
746 		wakeup(&cc_exec_waiting(cc, direct));
747 		CC_LOCK(cc);
748 	} else if (cc_cce_migrating(cc, direct)) {
749 #ifdef SMP
750 		/*
751 		 * If the callout was scheduled for
752 		 * migration just perform it now.
753 		 */
754 		new_cpu = cc_migration_cpu(cc, direct);
755 		new_time = cc_migration_time(cc, direct);
756 		new_prec = cc_migration_prec(cc, direct);
757 		new_func = cc_migration_func(cc, direct);
758 		new_arg = cc_migration_arg(cc, direct);
759 		cc_cce_cleanup(cc, direct);
760 
761 		/*
762 		 * It should be assert here that the callout is not destroyed
763 		 * but that is not easy.
764 		 *
765 		 * As first thing, handle deferred callout stops.
766 		 */
767 		if (!callout_migrating(c)) {
768 			CTR3(KTR_CALLOUT,
769 			     "deferred cancelled %p func %p arg %p",
770 			     c, new_func, new_arg);
771 			return;
772 		}
773 		c->c_iflags &= ~CALLOUT_DFRMIGRATION;
774 
775 		new_cc = callout_cpu_switch(c, cc, new_cpu);
776 		flags = (direct) ? C_DIRECT_EXEC : 0;
777 		callout_cc_add(c, new_cc, new_time, new_prec, new_func,
778 		    new_arg, new_cpu, flags);
779 		CC_UNLOCK(new_cc);
780 		CC_LOCK(cc);
781 #else
782 		panic("migration should not happen");
783 #endif
784 	}
785 }
786 
787 /*
788  * The callout mechanism is based on the work of Adam M. Costello and
789  * George Varghese, published in a technical report entitled "Redesigning
790  * the BSD Callout and Timer Facilities" and modified slightly for inclusion
791  * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
792  * used in this implementation was published by G. Varghese and T. Lauck in
793  * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
794  * the Efficient Implementation of a Timer Facility" in the Proceedings of
795  * the 11th ACM Annual Symposium on Operating Systems Principles,
796  * Austin, Texas Nov 1987.
797  */
798 
799 /*
800  * Software (low priority) clock interrupt.
801  * Run periodic events from timeout queue.
802  */
803 void
804 softclock(void *arg)
805 {
806 	struct callout_cpu *cc;
807 	struct callout *c;
808 #ifdef CALLOUT_PROFILING
809 	int depth = 0, gcalls = 0, lockcalls = 0, mpcalls = 0;
810 #endif
811 
812 	cc = (struct callout_cpu *)arg;
813 	CC_LOCK(cc);
814 	while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
815 		TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
816 		softclock_call_cc(c, cc,
817 #ifdef CALLOUT_PROFILING
818 		    &mpcalls, &lockcalls, &gcalls,
819 #endif
820 		    0);
821 #ifdef CALLOUT_PROFILING
822 		++depth;
823 #endif
824 	}
825 #ifdef CALLOUT_PROFILING
826 	avg_depth += (depth * 1000 - avg_depth) >> 8;
827 	avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
828 	avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
829 	avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
830 #endif
831 	CC_UNLOCK(cc);
832 }
833 
834 void
835 callout_when(sbintime_t sbt, sbintime_t precision, int flags,
836     sbintime_t *res, sbintime_t *prec_res)
837 {
838 	sbintime_t to_sbt, to_pr;
839 
840 	if ((flags & (C_ABSOLUTE | C_PRECALC)) != 0) {
841 		*res = sbt;
842 		*prec_res = precision;
843 		return;
844 	}
845 	if ((flags & C_HARDCLOCK) != 0 && sbt < tick_sbt)
846 		sbt = tick_sbt;
847 	if ((flags & C_HARDCLOCK) != 0 || sbt >= sbt_tickthreshold) {
848 		/*
849 		 * Obtain the time of the last hardclock() call on
850 		 * this CPU directly from the kern_clocksource.c.
851 		 * This value is per-CPU, but it is equal for all
852 		 * active ones.
853 		 */
854 #ifdef __LP64__
855 		to_sbt = DPCPU_GET(hardclocktime);
856 #else
857 		spinlock_enter();
858 		to_sbt = DPCPU_GET(hardclocktime);
859 		spinlock_exit();
860 #endif
861 		if (cold && to_sbt == 0)
862 			to_sbt = sbinuptime();
863 		if ((flags & C_HARDCLOCK) == 0)
864 			to_sbt += tick_sbt;
865 	} else
866 		to_sbt = sbinuptime();
867 	if (SBT_MAX - to_sbt < sbt)
868 		to_sbt = SBT_MAX;
869 	else
870 		to_sbt += sbt;
871 	*res = to_sbt;
872 	to_pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
873 	    sbt >> C_PRELGET(flags));
874 	*prec_res = to_pr > precision ? to_pr : precision;
875 }
876 
877 /*
878  * New interface; clients allocate their own callout structures.
879  *
880  * callout_reset() - establish or change a timeout
881  * callout_stop() - disestablish a timeout
882  * callout_init() - initialize a callout structure so that it can
883  *	safely be passed to callout_reset() and callout_stop()
884  *
885  * <sys/callout.h> defines three convenience macros:
886  *
887  * callout_active() - returns truth if callout has not been stopped,
888  *	drained, or deactivated since the last time the callout was
889  *	reset.
890  * callout_pending() - returns truth if callout is still waiting for timeout
891  * callout_deactivate() - marks the callout as having been serviced
892  */
893 int
894 callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t prec,
895     callout_func_t *ftn, void *arg, int cpu, int flags)
896 {
897 	sbintime_t to_sbt, precision;
898 	struct callout_cpu *cc;
899 	int cancelled, direct;
900 	int ignore_cpu=0;
901 
902 	cancelled = 0;
903 	if (cpu == -1) {
904 		ignore_cpu = 1;
905 	} else if ((cpu >= MAXCPU) ||
906 		   ((CC_CPU(cpu))->cc_inited == 0)) {
907 		/* Invalid CPU spec */
908 		panic("Invalid CPU in callout %d", cpu);
909 	}
910 	callout_when(sbt, prec, flags, &to_sbt, &precision);
911 
912 	/*
913 	 * This flag used to be added by callout_cc_add, but the
914 	 * first time you call this we could end up with the
915 	 * wrong direct flag if we don't do it before we add.
916 	 */
917 	if (flags & C_DIRECT_EXEC) {
918 		direct = 1;
919 	} else {
920 		direct = 0;
921 	}
922 	KASSERT(!direct || c->c_lock == NULL,
923 	    ("%s: direct callout %p has lock", __func__, c));
924 	cc = callout_lock(c);
925 	/*
926 	 * Don't allow migration if the user does not care.
927 	 */
928 	if (ignore_cpu) {
929 		cpu = c->c_cpu;
930 	}
931 
932 	if (cc_exec_curr(cc, direct) == c) {
933 		/*
934 		 * We're being asked to reschedule a callout which is
935 		 * currently in progress.  If there is a lock then we
936 		 * can cancel the callout if it has not really started.
937 		 */
938 		if (c->c_lock != NULL && !cc_exec_cancel(cc, direct))
939 			cancelled = cc_exec_cancel(cc, direct) = true;
940 		if (cc_exec_waiting(cc, direct) || cc_exec_drain(cc, direct)) {
941 			/*
942 			 * Someone has called callout_drain to kill this
943 			 * callout.  Don't reschedule.
944 			 */
945 			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
946 			    cancelled ? "cancelled" : "failed to cancel",
947 			    c, c->c_func, c->c_arg);
948 			CC_UNLOCK(cc);
949 			return (cancelled);
950 		}
951 #ifdef SMP
952 		if (callout_migrating(c)) {
953 			/*
954 			 * This only occurs when a second callout_reset_sbt_on
955 			 * is made after a previous one moved it into
956 			 * deferred migration (below). Note we do *not* change
957 			 * the prev_cpu even though the previous target may
958 			 * be different.
959 			 */
960 			cc_migration_cpu(cc, direct) = cpu;
961 			cc_migration_time(cc, direct) = to_sbt;
962 			cc_migration_prec(cc, direct) = precision;
963 			cc_migration_func(cc, direct) = ftn;
964 			cc_migration_arg(cc, direct) = arg;
965 			cancelled = 1;
966 			CC_UNLOCK(cc);
967 			return (cancelled);
968 		}
969 #endif
970 	}
971 	if (c->c_iflags & CALLOUT_PENDING) {
972 		if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
973 			if (cc_exec_next(cc) == c)
974 				cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
975 			LIST_REMOVE(c, c_links.le);
976 		} else {
977 			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
978 		}
979 		cancelled = 1;
980 		c->c_iflags &= ~ CALLOUT_PENDING;
981 		c->c_flags &= ~ CALLOUT_ACTIVE;
982 	}
983 
984 #ifdef SMP
985 	/*
986 	 * If the callout must migrate try to perform it immediately.
987 	 * If the callout is currently running, just defer the migration
988 	 * to a more appropriate moment.
989 	 */
990 	if (c->c_cpu != cpu) {
991 		if (cc_exec_curr(cc, direct) == c) {
992 			/*
993 			 * Pending will have been removed since we are
994 			 * actually executing the callout on another
995 			 * CPU. That callout should be waiting on the
996 			 * lock the caller holds. If we set both
997 			 * active/and/pending after we return and the
998 			 * lock on the executing callout proceeds, it
999 			 * will then see pending is true and return.
1000 			 * At the return from the actual callout execution
1001 			 * the migration will occur in softclock_call_cc
1002 			 * and this new callout will be placed on the
1003 			 * new CPU via a call to callout_cpu_switch() which
1004 			 * will get the lock on the right CPU followed
1005 			 * by a call callout_cc_add() which will add it there.
1006 			 * (see above in softclock_call_cc()).
1007 			 */
1008 			cc_migration_cpu(cc, direct) = cpu;
1009 			cc_migration_time(cc, direct) = to_sbt;
1010 			cc_migration_prec(cc, direct) = precision;
1011 			cc_migration_func(cc, direct) = ftn;
1012 			cc_migration_arg(cc, direct) = arg;
1013 			c->c_iflags |= (CALLOUT_DFRMIGRATION | CALLOUT_PENDING);
1014 			c->c_flags |= CALLOUT_ACTIVE;
1015 			CTR6(KTR_CALLOUT,
1016 		    "migration of %p func %p arg %p in %d.%08x to %u deferred",
1017 			    c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1018 			    (u_int)(to_sbt & 0xffffffff), cpu);
1019 			CC_UNLOCK(cc);
1020 			return (cancelled);
1021 		}
1022 		cc = callout_cpu_switch(c, cc, cpu);
1023 	}
1024 #endif
1025 
1026 	callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags);
1027 	CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1028 	    cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1029 	    (u_int)(to_sbt & 0xffffffff));
1030 	CC_UNLOCK(cc);
1031 
1032 	return (cancelled);
1033 }
1034 
1035 /*
1036  * Common idioms that can be optimized in the future.
1037  */
1038 int
1039 callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1040 {
1041 	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1042 }
1043 
1044 int
1045 callout_schedule(struct callout *c, int to_ticks)
1046 {
1047 	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1048 }
1049 
1050 int
1051 _callout_stop_safe(struct callout *c, int flags, callout_func_t *drain)
1052 {
1053 	struct callout_cpu *cc, *old_cc;
1054 	struct lock_class *class;
1055 	int direct, sq_locked, use_lock;
1056 	int cancelled, not_on_a_list;
1057 
1058 	if ((flags & CS_DRAIN) != 0)
1059 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, c->c_lock,
1060 		    "calling %s", __func__);
1061 
1062 	KASSERT((flags & CS_DRAIN) == 0 || drain == NULL,
1063 	    ("Cannot set drain callback and CS_DRAIN flag at the same time"));
1064 
1065 	/*
1066 	 * Some old subsystems don't hold Giant while running a callout_stop(),
1067 	 * so just discard this check for the moment.
1068 	 */
1069 	if ((flags & CS_DRAIN) == 0 && c->c_lock != NULL) {
1070 		if (c->c_lock == &Giant.lock_object)
1071 			use_lock = mtx_owned(&Giant);
1072 		else {
1073 			use_lock = 1;
1074 			class = LOCK_CLASS(c->c_lock);
1075 			class->lc_assert(c->c_lock, LA_XLOCKED);
1076 		}
1077 	} else
1078 		use_lock = 0;
1079 	if (c->c_iflags & CALLOUT_DIRECT) {
1080 		direct = 1;
1081 	} else {
1082 		direct = 0;
1083 	}
1084 	sq_locked = 0;
1085 	old_cc = NULL;
1086 again:
1087 	cc = callout_lock(c);
1088 
1089 	if ((c->c_iflags & (CALLOUT_DFRMIGRATION | CALLOUT_PENDING)) ==
1090 	    (CALLOUT_DFRMIGRATION | CALLOUT_PENDING) &&
1091 	    ((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE)) {
1092 		/*
1093 		 * Special case where this slipped in while we
1094 		 * were migrating *as* the callout is about to
1095 		 * execute. The caller probably holds the lock
1096 		 * the callout wants.
1097 		 *
1098 		 * Get rid of the migration first. Then set
1099 		 * the flag that tells this code *not* to
1100 		 * try to remove it from any lists (its not
1101 		 * on one yet). When the callout wheel runs,
1102 		 * it will ignore this callout.
1103 		 */
1104 		c->c_iflags &= ~CALLOUT_PENDING;
1105 		c->c_flags &= ~CALLOUT_ACTIVE;
1106 		not_on_a_list = 1;
1107 	} else {
1108 		not_on_a_list = 0;
1109 	}
1110 
1111 	/*
1112 	 * If the callout was migrating while the callout cpu lock was
1113 	 * dropped,  just drop the sleepqueue lock and check the states
1114 	 * again.
1115 	 */
1116 	if (sq_locked != 0 && cc != old_cc) {
1117 #ifdef SMP
1118 		CC_UNLOCK(cc);
1119 		sleepq_release(&cc_exec_waiting(old_cc, direct));
1120 		sq_locked = 0;
1121 		old_cc = NULL;
1122 		goto again;
1123 #else
1124 		panic("migration should not happen");
1125 #endif
1126 	}
1127 
1128 	/*
1129 	 * If the callout is running, try to stop it or drain it.
1130 	 */
1131 	if (cc_exec_curr(cc, direct) == c) {
1132 		/*
1133 		 * Succeed we to stop it or not, we must clear the
1134 		 * active flag - this is what API users expect.  If we're
1135 		 * draining and the callout is currently executing, first wait
1136 		 * until it finishes.
1137 		 */
1138 		if ((flags & CS_DRAIN) == 0)
1139 			c->c_flags &= ~CALLOUT_ACTIVE;
1140 
1141 		if ((flags & CS_DRAIN) != 0) {
1142 			/*
1143 			 * The current callout is running (or just
1144 			 * about to run) and blocking is allowed, so
1145 			 * just wait for the current invocation to
1146 			 * finish.
1147 			 */
1148 			if (cc_exec_curr(cc, direct) == c) {
1149 				/*
1150 				 * Use direct calls to sleepqueue interface
1151 				 * instead of cv/msleep in order to avoid
1152 				 * a LOR between cc_lock and sleepqueue
1153 				 * chain spinlocks.  This piece of code
1154 				 * emulates a msleep_spin() call actually.
1155 				 *
1156 				 * If we already have the sleepqueue chain
1157 				 * locked, then we can safely block.  If we
1158 				 * don't already have it locked, however,
1159 				 * we have to drop the cc_lock to lock
1160 				 * it.  This opens several races, so we
1161 				 * restart at the beginning once we have
1162 				 * both locks.  If nothing has changed, then
1163 				 * we will end up back here with sq_locked
1164 				 * set.
1165 				 */
1166 				if (!sq_locked) {
1167 					CC_UNLOCK(cc);
1168 					sleepq_lock(
1169 					    &cc_exec_waiting(cc, direct));
1170 					sq_locked = 1;
1171 					old_cc = cc;
1172 					goto again;
1173 				}
1174 
1175 				/*
1176 				 * Migration could be cancelled here, but
1177 				 * as long as it is still not sure when it
1178 				 * will be packed up, just let softclock()
1179 				 * take care of it.
1180 				 */
1181 				cc_exec_waiting(cc, direct) = true;
1182 				DROP_GIANT();
1183 				CC_UNLOCK(cc);
1184 				sleepq_add(
1185 				    &cc_exec_waiting(cc, direct),
1186 				    &cc->cc_lock.lock_object, "codrain",
1187 				    SLEEPQ_SLEEP, 0);
1188 				sleepq_wait(
1189 				    &cc_exec_waiting(cc, direct),
1190 					     0);
1191 				sq_locked = 0;
1192 				old_cc = NULL;
1193 
1194 				/* Reacquire locks previously released. */
1195 				PICKUP_GIANT();
1196 				goto again;
1197 			}
1198 			c->c_flags &= ~CALLOUT_ACTIVE;
1199 		} else if (use_lock &&
1200 			   !cc_exec_cancel(cc, direct) && (drain == NULL)) {
1201 
1202 			/*
1203 			 * The current callout is waiting for its
1204 			 * lock which we hold.  Cancel the callout
1205 			 * and return.  After our caller drops the
1206 			 * lock, the callout will be skipped in
1207 			 * softclock(). This *only* works with a
1208 			 * callout_stop() *not* callout_drain() or
1209 			 * callout_async_drain().
1210 			 */
1211 			cc_exec_cancel(cc, direct) = true;
1212 			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1213 			    c, c->c_func, c->c_arg);
1214 			KASSERT(!cc_cce_migrating(cc, direct),
1215 			    ("callout wrongly scheduled for migration"));
1216 			if (callout_migrating(c)) {
1217 				c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1218 #ifdef SMP
1219 				cc_migration_cpu(cc, direct) = CPUBLOCK;
1220 				cc_migration_time(cc, direct) = 0;
1221 				cc_migration_prec(cc, direct) = 0;
1222 				cc_migration_func(cc, direct) = NULL;
1223 				cc_migration_arg(cc, direct) = NULL;
1224 #endif
1225 			}
1226 			CC_UNLOCK(cc);
1227 			KASSERT(!sq_locked, ("sleepqueue chain locked"));
1228 			return (1);
1229 		} else if (callout_migrating(c)) {
1230 			/*
1231 			 * The callout is currently being serviced
1232 			 * and the "next" callout is scheduled at
1233 			 * its completion with a migration. We remove
1234 			 * the migration flag so it *won't* get rescheduled,
1235 			 * but we can't stop the one thats running so
1236 			 * we return 0.
1237 			 */
1238 			c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1239 #ifdef SMP
1240 			/*
1241 			 * We can't call cc_cce_cleanup here since
1242 			 * if we do it will remove .ce_curr and
1243 			 * its still running. This will prevent a
1244 			 * reschedule of the callout when the
1245 			 * execution completes.
1246 			 */
1247 			cc_migration_cpu(cc, direct) = CPUBLOCK;
1248 			cc_migration_time(cc, direct) = 0;
1249 			cc_migration_prec(cc, direct) = 0;
1250 			cc_migration_func(cc, direct) = NULL;
1251 			cc_migration_arg(cc, direct) = NULL;
1252 #endif
1253 			CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1254 			    c, c->c_func, c->c_arg);
1255  			if (drain) {
1256 				KASSERT(cc_exec_drain(cc, direct) == NULL,
1257 				    ("callout drain function already set to %p",
1258 				    cc_exec_drain(cc, direct)));
1259 				cc_exec_drain(cc, direct) = drain;
1260 			}
1261 			CC_UNLOCK(cc);
1262 			return ((flags & CS_EXECUTING) != 0);
1263 		} else {
1264 			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1265 			    c, c->c_func, c->c_arg);
1266 			if (drain) {
1267 				KASSERT(cc_exec_drain(cc, direct) == NULL,
1268 				    ("callout drain function already set to %p",
1269 				    cc_exec_drain(cc, direct)));
1270 				cc_exec_drain(cc, direct) = drain;
1271 			}
1272 		}
1273 		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1274 		cancelled = ((flags & CS_EXECUTING) != 0);
1275 	} else
1276 		cancelled = 1;
1277 
1278 	if (sq_locked)
1279 		sleepq_release(&cc_exec_waiting(cc, direct));
1280 
1281 	if ((c->c_iflags & CALLOUT_PENDING) == 0) {
1282 		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1283 		    c, c->c_func, c->c_arg);
1284 		/*
1285 		 * For not scheduled and not executing callout return
1286 		 * negative value.
1287 		 */
1288 		if (cc_exec_curr(cc, direct) != c)
1289 			cancelled = -1;
1290 		CC_UNLOCK(cc);
1291 		return (cancelled);
1292 	}
1293 
1294 	c->c_iflags &= ~CALLOUT_PENDING;
1295 	c->c_flags &= ~CALLOUT_ACTIVE;
1296 
1297 	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1298 	    c, c->c_func, c->c_arg);
1299 	if (not_on_a_list == 0) {
1300 		if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1301 			if (cc_exec_next(cc) == c)
1302 				cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1303 			LIST_REMOVE(c, c_links.le);
1304 		} else {
1305 			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1306 		}
1307 	}
1308 	CC_UNLOCK(cc);
1309 	return (cancelled);
1310 }
1311 
1312 void
1313 callout_init(struct callout *c, int mpsafe)
1314 {
1315 	bzero(c, sizeof *c);
1316 	if (mpsafe) {
1317 		c->c_lock = NULL;
1318 		c->c_iflags = CALLOUT_RETURNUNLOCKED;
1319 	} else {
1320 		c->c_lock = &Giant.lock_object;
1321 		c->c_iflags = 0;
1322 	}
1323 	c->c_cpu = cc_default_cpu;
1324 }
1325 
1326 void
1327 _callout_init_lock(struct callout *c, struct lock_object *lock, int flags)
1328 {
1329 	bzero(c, sizeof *c);
1330 	c->c_lock = lock;
1331 	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1332 	    ("callout_init_lock: bad flags %d", flags));
1333 	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1334 	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1335 	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
1336 	    (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
1337 	    __func__));
1338 	c->c_iflags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1339 	c->c_cpu = cc_default_cpu;
1340 }
1341 
1342 static int
1343 flssbt(sbintime_t sbt)
1344 {
1345 
1346 	sbt += (uint64_t)sbt >> 1;
1347 	if (sizeof(long) >= sizeof(sbintime_t))
1348 		return (flsl(sbt));
1349 	if (sbt >= SBT_1S)
1350 		return (flsl(((uint64_t)sbt) >> 32) + 32);
1351 	return (flsl(sbt));
1352 }
1353 
1354 /*
1355  * Dump immediate statistic snapshot of the scheduled callouts.
1356  */
1357 static int
1358 sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1359 {
1360 	struct callout *tmp;
1361 	struct callout_cpu *cc;
1362 	struct callout_list *sc;
1363 	sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1364 	int ct[64], cpr[64], ccpbk[32];
1365 	int error, val, i, count, tcum, pcum, maxc, c, medc;
1366 	int cpu;
1367 
1368 	val = 0;
1369 	error = sysctl_handle_int(oidp, &val, 0, req);
1370 	if (error != 0 || req->newptr == NULL)
1371 		return (error);
1372 	count = maxc = 0;
1373 	st = spr = maxt = maxpr = 0;
1374 	bzero(ccpbk, sizeof(ccpbk));
1375 	bzero(ct, sizeof(ct));
1376 	bzero(cpr, sizeof(cpr));
1377 	now = sbinuptime();
1378 	CPU_FOREACH(cpu) {
1379 		cc = CC_CPU(cpu);
1380 		CC_LOCK(cc);
1381 		for (i = 0; i < callwheelsize; i++) {
1382 			sc = &cc->cc_callwheel[i];
1383 			c = 0;
1384 			LIST_FOREACH(tmp, sc, c_links.le) {
1385 				c++;
1386 				t = tmp->c_time - now;
1387 				if (t < 0)
1388 					t = 0;
1389 				st += t / SBT_1US;
1390 				spr += tmp->c_precision / SBT_1US;
1391 				if (t > maxt)
1392 					maxt = t;
1393 				if (tmp->c_precision > maxpr)
1394 					maxpr = tmp->c_precision;
1395 				ct[flssbt(t)]++;
1396 				cpr[flssbt(tmp->c_precision)]++;
1397 			}
1398 			if (c > maxc)
1399 				maxc = c;
1400 			ccpbk[fls(c + c / 2)]++;
1401 			count += c;
1402 		}
1403 		CC_UNLOCK(cc);
1404 	}
1405 
1406 	for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1407 		tcum += ct[i];
1408 	medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1409 	for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1410 		pcum += cpr[i];
1411 	medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1412 	for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1413 		c += ccpbk[i];
1414 	medc = (i >= 2) ? (1 << (i - 2)) : 0;
1415 
1416 	printf("Scheduled callouts statistic snapshot:\n");
1417 	printf("  Callouts: %6d  Buckets: %6d*%-3d  Bucket size: 0.%06ds\n",
1418 	    count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
1419 	printf("  C/Bk: med %5d         avg %6d.%06jd  max %6d\n",
1420 	    medc,
1421 	    count / callwheelsize / mp_ncpus,
1422 	    (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1423 	    maxc);
1424 	printf("  Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1425 	    medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1426 	    (st / count) / 1000000, (st / count) % 1000000,
1427 	    maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1428 	printf("  Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1429 	    medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1430 	    (spr / count) / 1000000, (spr / count) % 1000000,
1431 	    maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1432 	printf("  Distribution:       \tbuckets\t   time\t   tcum\t"
1433 	    "   prec\t   pcum\n");
1434 	for (i = 0, tcum = pcum = 0; i < 64; i++) {
1435 		if (ct[i] == 0 && cpr[i] == 0)
1436 			continue;
1437 		t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1438 		tcum += ct[i];
1439 		pcum += cpr[i];
1440 		printf("  %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1441 		    t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1442 		    i - 1 - (32 - CC_HASH_SHIFT),
1443 		    ct[i], tcum, cpr[i], pcum);
1444 	}
1445 	return (error);
1446 }
1447 SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1448     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1449     0, 0, sysctl_kern_callout_stat, "I",
1450     "Dump immediate statistic snapshot of the scheduled callouts");
1451 
1452 #ifdef DDB
1453 static void
1454 _show_callout(struct callout *c)
1455 {
1456 
1457 	db_printf("callout %p\n", c);
1458 #define	C_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, c->e);
1459 	db_printf("   &c_links = %p\n", &(c->c_links));
1460 	C_DB_PRINTF("%" PRId64,	c_time);
1461 	C_DB_PRINTF("%" PRId64,	c_precision);
1462 	C_DB_PRINTF("%p",	c_arg);
1463 	C_DB_PRINTF("%p",	c_func);
1464 	C_DB_PRINTF("%p",	c_lock);
1465 	C_DB_PRINTF("%#x",	c_flags);
1466 	C_DB_PRINTF("%#x",	c_iflags);
1467 	C_DB_PRINTF("%d",	c_cpu);
1468 #undef	C_DB_PRINTF
1469 }
1470 
1471 DB_SHOW_COMMAND(callout, db_show_callout)
1472 {
1473 
1474 	if (!have_addr) {
1475 		db_printf("usage: show callout <struct callout *>\n");
1476 		return;
1477 	}
1478 
1479 	_show_callout((struct callout *)addr);
1480 }
1481 
1482 static void
1483 _show_last_callout(int cpu, int direct, const char *dirstr)
1484 {
1485 	struct callout_cpu *cc;
1486 	void *func, *arg;
1487 
1488 	cc = CC_CPU(cpu);
1489 	func = cc_exec_last_func(cc, direct);
1490 	arg = cc_exec_last_arg(cc, direct);
1491 	db_printf("cpu %d last%s callout function: %p ", cpu, dirstr, func);
1492 	db_printsym((db_expr_t)func, DB_STGY_ANY);
1493 	db_printf("\ncpu %d last%s callout argument: %p\n", cpu, dirstr, arg);
1494 }
1495 
1496 DB_SHOW_COMMAND(callout_last, db_show_callout_last)
1497 {
1498 	int cpu, last;
1499 
1500 	if (have_addr) {
1501 		if (addr < 0 || addr > mp_maxid || CPU_ABSENT(addr)) {
1502 			db_printf("no such cpu: %d\n", (int)addr);
1503 			return;
1504 		}
1505 		cpu = last = addr;
1506 	} else {
1507 		cpu = 0;
1508 		last = mp_maxid;
1509 	}
1510 
1511 	while (cpu <= last) {
1512 		if (!CPU_ABSENT(cpu)) {
1513 			_show_last_callout(cpu, 0, "");
1514 			_show_last_callout(cpu, 1, " direct");
1515 		}
1516 		cpu++;
1517 	}
1518 }
1519 #endif /* DDB */
1520