1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * From: @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_kdtrace.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/bus.h> 45 #include <sys/callout.h> 46 #include <sys/condvar.h> 47 #include <sys/interrupt.h> 48 #include <sys/kernel.h> 49 #include <sys/ktr.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mutex.h> 53 #include <sys/proc.h> 54 #include <sys/sdt.h> 55 #include <sys/sleepqueue.h> 56 #include <sys/sysctl.h> 57 #include <sys/smp.h> 58 59 #ifdef SMP 60 #include <machine/cpu.h> 61 #endif 62 63 SDT_PROVIDER_DEFINE(callout_execute); 64 SDT_PROBE_DEFINE(callout_execute, kernel, , callout_start, callout-start); 65 SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_start, 0, 66 "struct callout *"); 67 SDT_PROBE_DEFINE(callout_execute, kernel, , callout_end, callout-end); 68 SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_end, 0, 69 "struct callout *"); 70 71 static int avg_depth; 72 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0, 73 "Average number of items examined per softclock call. Units = 1/1000"); 74 static int avg_gcalls; 75 SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0, 76 "Average number of Giant callouts made per softclock call. Units = 1/1000"); 77 static int avg_lockcalls; 78 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0, 79 "Average number of lock callouts made per softclock call. Units = 1/1000"); 80 static int avg_mpcalls; 81 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0, 82 "Average number of MP callouts made per softclock call. Units = 1/1000"); 83 /* 84 * TODO: 85 * allocate more timeout table slots when table overflows. 86 */ 87 int callwheelsize, callwheelbits, callwheelmask; 88 89 /* 90 * The callout cpu migration entity represents informations necessary for 91 * describing the migrating callout to the new callout cpu. 92 * The cached informations are very important for deferring migration when 93 * the migrating callout is already running. 94 */ 95 struct cc_mig_ent { 96 #ifdef SMP 97 void (*ce_migration_func)(void *); 98 void *ce_migration_arg; 99 int ce_migration_cpu; 100 int ce_migration_ticks; 101 #endif 102 }; 103 104 /* 105 * There is one struct callout_cpu per cpu, holding all relevant 106 * state for the callout processing thread on the individual CPU. 107 * In particular: 108 * cc_ticks is incremented once per tick in callout_cpu(). 109 * It tracks the global 'ticks' but in a way that the individual 110 * threads should not worry about races in the order in which 111 * hardclock() and hardclock_cpu() run on the various CPUs. 112 * cc_softclock is advanced in callout_cpu() to point to the 113 * first entry in cc_callwheel that may need handling. In turn, 114 * a softclock() is scheduled so it can serve the various entries i 115 * such that cc_softclock <= i <= cc_ticks . 116 * XXX maybe cc_softclock and cc_ticks should be volatile ? 117 * 118 * cc_ticks is also used in callout_reset_cpu() to determine 119 * when the callout should be served. 120 */ 121 struct callout_cpu { 122 struct cc_mig_ent cc_migrating_entity; 123 struct mtx cc_lock; 124 struct callout *cc_callout; 125 struct callout_tailq *cc_callwheel; 126 struct callout_list cc_callfree; 127 struct callout *cc_next; 128 struct callout *cc_curr; 129 void *cc_cookie; 130 int cc_ticks; 131 int cc_softticks; 132 int cc_cancel; 133 int cc_waiting; 134 int cc_firsttick; 135 }; 136 137 #ifdef SMP 138 #define cc_migration_func cc_migrating_entity.ce_migration_func 139 #define cc_migration_arg cc_migrating_entity.ce_migration_arg 140 #define cc_migration_cpu cc_migrating_entity.ce_migration_cpu 141 #define cc_migration_ticks cc_migrating_entity.ce_migration_ticks 142 143 struct callout_cpu cc_cpu[MAXCPU]; 144 #define CPUBLOCK MAXCPU 145 #define CC_CPU(cpu) (&cc_cpu[(cpu)]) 146 #define CC_SELF() CC_CPU(PCPU_GET(cpuid)) 147 #else 148 struct callout_cpu cc_cpu; 149 #define CC_CPU(cpu) &cc_cpu 150 #define CC_SELF() &cc_cpu 151 #endif 152 #define CC_LOCK(cc) mtx_lock_spin(&(cc)->cc_lock) 153 #define CC_UNLOCK(cc) mtx_unlock_spin(&(cc)->cc_lock) 154 #define CC_LOCK_ASSERT(cc) mtx_assert(&(cc)->cc_lock, MA_OWNED) 155 156 static int timeout_cpu; 157 void (*callout_new_inserted)(int cpu, int ticks) = NULL; 158 159 static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures"); 160 161 /** 162 * Locked by cc_lock: 163 * cc_curr - If a callout is in progress, it is curr_callout. 164 * If curr_callout is non-NULL, threads waiting in 165 * callout_drain() will be woken up as soon as the 166 * relevant callout completes. 167 * cc_cancel - Changing to 1 with both callout_lock and c_lock held 168 * guarantees that the current callout will not run. 169 * The softclock() function sets this to 0 before it 170 * drops callout_lock to acquire c_lock, and it calls 171 * the handler only if curr_cancelled is still 0 after 172 * c_lock is successfully acquired. 173 * cc_waiting - If a thread is waiting in callout_drain(), then 174 * callout_wait is nonzero. Set only when 175 * curr_callout is non-NULL. 176 */ 177 178 /* 179 * Resets the migration entity tied to a specific callout cpu. 180 */ 181 static void 182 cc_cme_cleanup(struct callout_cpu *cc) 183 { 184 185 #ifdef SMP 186 cc->cc_migration_cpu = CPUBLOCK; 187 cc->cc_migration_ticks = 0; 188 cc->cc_migration_func = NULL; 189 cc->cc_migration_arg = NULL; 190 #endif 191 } 192 193 /* 194 * Checks if migration is requested by a specific callout cpu. 195 */ 196 static int 197 cc_cme_migrating(struct callout_cpu *cc) 198 { 199 200 #ifdef SMP 201 return (cc->cc_migration_cpu != CPUBLOCK); 202 #else 203 return (0); 204 #endif 205 } 206 207 /* 208 * kern_timeout_callwheel_alloc() - kernel low level callwheel initialization 209 * 210 * This code is called very early in the kernel initialization sequence, 211 * and may be called more then once. 212 */ 213 caddr_t 214 kern_timeout_callwheel_alloc(caddr_t v) 215 { 216 struct callout_cpu *cc; 217 218 timeout_cpu = PCPU_GET(cpuid); 219 cc = CC_CPU(timeout_cpu); 220 /* 221 * Calculate callout wheel size 222 */ 223 for (callwheelsize = 1, callwheelbits = 0; 224 callwheelsize < ncallout; 225 callwheelsize <<= 1, ++callwheelbits) 226 ; 227 callwheelmask = callwheelsize - 1; 228 229 cc->cc_callout = (struct callout *)v; 230 v = (caddr_t)(cc->cc_callout + ncallout); 231 cc->cc_callwheel = (struct callout_tailq *)v; 232 v = (caddr_t)(cc->cc_callwheel + callwheelsize); 233 return(v); 234 } 235 236 static void 237 callout_cpu_init(struct callout_cpu *cc) 238 { 239 struct callout *c; 240 int i; 241 242 mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE); 243 SLIST_INIT(&cc->cc_callfree); 244 for (i = 0; i < callwheelsize; i++) { 245 TAILQ_INIT(&cc->cc_callwheel[i]); 246 } 247 cc_cme_cleanup(cc); 248 if (cc->cc_callout == NULL) 249 return; 250 for (i = 0; i < ncallout; i++) { 251 c = &cc->cc_callout[i]; 252 callout_init(c, 0); 253 c->c_flags = CALLOUT_LOCAL_ALLOC; 254 SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle); 255 } 256 } 257 258 #ifdef SMP 259 /* 260 * Switches the cpu tied to a specific callout. 261 * The function expects a locked incoming callout cpu and returns with 262 * locked outcoming callout cpu. 263 */ 264 static struct callout_cpu * 265 callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu) 266 { 267 struct callout_cpu *new_cc; 268 269 MPASS(c != NULL && cc != NULL); 270 CC_LOCK_ASSERT(cc); 271 272 /* 273 * Avoid interrupts and preemption firing after the callout cpu 274 * is blocked in order to avoid deadlocks as the new thread 275 * may be willing to acquire the callout cpu lock. 276 */ 277 c->c_cpu = CPUBLOCK; 278 spinlock_enter(); 279 CC_UNLOCK(cc); 280 new_cc = CC_CPU(new_cpu); 281 CC_LOCK(new_cc); 282 spinlock_exit(); 283 c->c_cpu = new_cpu; 284 return (new_cc); 285 } 286 #endif 287 288 /* 289 * kern_timeout_callwheel_init() - initialize previously reserved callwheel 290 * space. 291 * 292 * This code is called just once, after the space reserved for the 293 * callout wheel has been finalized. 294 */ 295 void 296 kern_timeout_callwheel_init(void) 297 { 298 callout_cpu_init(CC_CPU(timeout_cpu)); 299 } 300 301 /* 302 * Start standard softclock thread. 303 */ 304 static void 305 start_softclock(void *dummy) 306 { 307 struct callout_cpu *cc; 308 #ifdef SMP 309 int cpu; 310 #endif 311 312 cc = CC_CPU(timeout_cpu); 313 if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK, 314 INTR_MPSAFE, &cc->cc_cookie)) 315 panic("died while creating standard software ithreads"); 316 #ifdef SMP 317 CPU_FOREACH(cpu) { 318 if (cpu == timeout_cpu) 319 continue; 320 cc = CC_CPU(cpu); 321 if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK, 322 INTR_MPSAFE, &cc->cc_cookie)) 323 panic("died while creating standard software ithreads"); 324 cc->cc_callout = NULL; /* Only cpu0 handles timeout(). */ 325 cc->cc_callwheel = malloc( 326 sizeof(struct callout_tailq) * callwheelsize, M_CALLOUT, 327 M_WAITOK); 328 callout_cpu_init(cc); 329 } 330 #endif 331 } 332 333 SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL); 334 335 void 336 callout_tick(void) 337 { 338 struct callout_cpu *cc; 339 int need_softclock; 340 int bucket; 341 342 /* 343 * Process callouts at a very low cpu priority, so we don't keep the 344 * relatively high clock interrupt priority any longer than necessary. 345 */ 346 need_softclock = 0; 347 cc = CC_SELF(); 348 mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET); 349 cc->cc_firsttick = cc->cc_ticks = ticks; 350 for (; (cc->cc_softticks - cc->cc_ticks) <= 0; cc->cc_softticks++) { 351 bucket = cc->cc_softticks & callwheelmask; 352 if (!TAILQ_EMPTY(&cc->cc_callwheel[bucket])) { 353 need_softclock = 1; 354 break; 355 } 356 } 357 mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET); 358 /* 359 * swi_sched acquires the thread lock, so we don't want to call it 360 * with cc_lock held; incorrect locking order. 361 */ 362 if (need_softclock) 363 swi_sched(cc->cc_cookie, 0); 364 } 365 366 int 367 callout_tickstofirst(int limit) 368 { 369 struct callout_cpu *cc; 370 struct callout *c; 371 struct callout_tailq *sc; 372 int curticks; 373 int skip = 1; 374 375 cc = CC_SELF(); 376 mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET); 377 curticks = cc->cc_ticks; 378 while( skip < ncallout && skip < limit ) { 379 sc = &cc->cc_callwheel[ (curticks+skip) & callwheelmask ]; 380 /* search scanning ticks */ 381 TAILQ_FOREACH( c, sc, c_links.tqe ){ 382 if (c->c_time - curticks <= ncallout) 383 goto out; 384 } 385 skip++; 386 } 387 out: 388 cc->cc_firsttick = curticks + skip; 389 mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET); 390 return (skip); 391 } 392 393 static struct callout_cpu * 394 callout_lock(struct callout *c) 395 { 396 struct callout_cpu *cc; 397 int cpu; 398 399 for (;;) { 400 cpu = c->c_cpu; 401 #ifdef SMP 402 if (cpu == CPUBLOCK) { 403 while (c->c_cpu == CPUBLOCK) 404 cpu_spinwait(); 405 continue; 406 } 407 #endif 408 cc = CC_CPU(cpu); 409 CC_LOCK(cc); 410 if (cpu == c->c_cpu) 411 break; 412 CC_UNLOCK(cc); 413 } 414 return (cc); 415 } 416 417 static void 418 callout_cc_add(struct callout *c, struct callout_cpu *cc, int to_ticks, 419 void (*func)(void *), void *arg, int cpu) 420 { 421 422 CC_LOCK_ASSERT(cc); 423 424 if (to_ticks <= 0) 425 to_ticks = 1; 426 c->c_arg = arg; 427 c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING); 428 c->c_func = func; 429 c->c_time = ticks + to_ticks; 430 TAILQ_INSERT_TAIL(&cc->cc_callwheel[c->c_time & callwheelmask], 431 c, c_links.tqe); 432 if ((c->c_time - cc->cc_firsttick) < 0 && 433 callout_new_inserted != NULL) { 434 cc->cc_firsttick = c->c_time; 435 (*callout_new_inserted)(cpu, 436 to_ticks + (ticks - cc->cc_ticks)); 437 } 438 } 439 440 static void 441 callout_cc_del(struct callout *c, struct callout_cpu *cc) 442 { 443 444 if (cc->cc_next == c) 445 cc->cc_next = TAILQ_NEXT(c, c_links.tqe); 446 if (c->c_flags & CALLOUT_LOCAL_ALLOC) { 447 c->c_func = NULL; 448 SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle); 449 } 450 } 451 452 static struct callout * 453 softclock_call_cc(struct callout *c, struct callout_cpu *cc, int *mpcalls, 454 int *lockcalls, int *gcalls) 455 { 456 void (*c_func)(void *); 457 void *c_arg; 458 struct lock_class *class; 459 struct lock_object *c_lock; 460 int c_flags, sharedlock; 461 #ifdef SMP 462 struct callout_cpu *new_cc; 463 void (*new_func)(void *); 464 void *new_arg; 465 int new_cpu, new_ticks; 466 #endif 467 #ifdef DIAGNOSTIC 468 struct bintime bt1, bt2; 469 struct timespec ts2; 470 static uint64_t maxdt = 36893488147419102LL; /* 2 msec */ 471 static timeout_t *lastfunc; 472 #endif 473 474 cc->cc_next = TAILQ_NEXT(c, c_links.tqe); 475 class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL; 476 sharedlock = (c->c_flags & CALLOUT_SHAREDLOCK) ? 0 : 1; 477 c_lock = c->c_lock; 478 c_func = c->c_func; 479 c_arg = c->c_arg; 480 c_flags = c->c_flags; 481 if (c->c_flags & CALLOUT_LOCAL_ALLOC) 482 c->c_flags = CALLOUT_LOCAL_ALLOC; 483 else 484 c->c_flags &= ~CALLOUT_PENDING; 485 cc->cc_curr = c; 486 cc->cc_cancel = 0; 487 CC_UNLOCK(cc); 488 if (c_lock != NULL) { 489 class->lc_lock(c_lock, sharedlock); 490 /* 491 * The callout may have been cancelled 492 * while we switched locks. 493 */ 494 if (cc->cc_cancel) { 495 class->lc_unlock(c_lock); 496 goto skip; 497 } 498 /* The callout cannot be stopped now. */ 499 cc->cc_cancel = 1; 500 501 if (c_lock == &Giant.lock_object) { 502 (*gcalls)++; 503 CTR3(KTR_CALLOUT, "callout %p func %p arg %p", 504 c, c_func, c_arg); 505 } else { 506 (*lockcalls)++; 507 CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p", 508 c, c_func, c_arg); 509 } 510 } else { 511 (*mpcalls)++; 512 CTR3(KTR_CALLOUT, "callout mpsafe %p func %p arg %p", 513 c, c_func, c_arg); 514 } 515 #ifdef DIAGNOSTIC 516 binuptime(&bt1); 517 #endif 518 THREAD_NO_SLEEPING(); 519 SDT_PROBE(callout_execute, kernel, , callout_start, c, 0, 0, 0, 0); 520 c_func(c_arg); 521 SDT_PROBE(callout_execute, kernel, , callout_end, c, 0, 0, 0, 0); 522 THREAD_SLEEPING_OK(); 523 #ifdef DIAGNOSTIC 524 binuptime(&bt2); 525 bintime_sub(&bt2, &bt1); 526 if (bt2.frac > maxdt) { 527 if (lastfunc != c_func || bt2.frac > maxdt * 2) { 528 bintime2timespec(&bt2, &ts2); 529 printf( 530 "Expensive timeout(9) function: %p(%p) %jd.%09ld s\n", 531 c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec); 532 } 533 maxdt = bt2.frac; 534 lastfunc = c_func; 535 } 536 #endif 537 CTR1(KTR_CALLOUT, "callout %p finished", c); 538 if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0) 539 class->lc_unlock(c_lock); 540 skip: 541 CC_LOCK(cc); 542 /* 543 * If the current callout is locally allocated (from 544 * timeout(9)) then put it on the freelist. 545 * 546 * Note: we need to check the cached copy of c_flags because 547 * if it was not local, then it's not safe to deref the 548 * callout pointer. 549 */ 550 if (c_flags & CALLOUT_LOCAL_ALLOC) { 551 KASSERT(c->c_flags == CALLOUT_LOCAL_ALLOC, 552 ("corrupted callout")); 553 c->c_func = NULL; 554 SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle); 555 } 556 cc->cc_curr = NULL; 557 if (cc->cc_waiting) { 558 /* 559 * There is someone waiting for the 560 * callout to complete. 561 * If the callout was scheduled for 562 * migration just cancel it. 563 */ 564 if (cc_cme_migrating(cc)) 565 cc_cme_cleanup(cc); 566 cc->cc_waiting = 0; 567 CC_UNLOCK(cc); 568 wakeup(&cc->cc_waiting); 569 CC_LOCK(cc); 570 } else if (cc_cme_migrating(cc)) { 571 #ifdef SMP 572 /* 573 * If the callout was scheduled for 574 * migration just perform it now. 575 */ 576 new_cpu = cc->cc_migration_cpu; 577 new_ticks = cc->cc_migration_ticks; 578 new_func = cc->cc_migration_func; 579 new_arg = cc->cc_migration_arg; 580 cc_cme_cleanup(cc); 581 582 /* 583 * Handle deferred callout stops 584 */ 585 if ((c->c_flags & CALLOUT_DFRMIGRATION) == 0) { 586 CTR3(KTR_CALLOUT, 587 "deferred cancelled %p func %p arg %p", 588 c, new_func, new_arg); 589 callout_cc_del(c, cc); 590 goto nextc; 591 } 592 593 c->c_flags &= ~CALLOUT_DFRMIGRATION; 594 595 /* 596 * It should be assert here that the 597 * callout is not destroyed but that 598 * is not easy. 599 */ 600 new_cc = callout_cpu_switch(c, cc, new_cpu); 601 callout_cc_add(c, new_cc, new_ticks, new_func, new_arg, 602 new_cpu); 603 CC_UNLOCK(new_cc); 604 CC_LOCK(cc); 605 #else 606 panic("migration should not happen"); 607 #endif 608 } 609 #ifdef SMP 610 nextc: 611 #endif 612 return (cc->cc_next); 613 } 614 615 /* 616 * The callout mechanism is based on the work of Adam M. Costello and 617 * George Varghese, published in a technical report entitled "Redesigning 618 * the BSD Callout and Timer Facilities" and modified slightly for inclusion 619 * in FreeBSD by Justin T. Gibbs. The original work on the data structures 620 * used in this implementation was published by G. Varghese and T. Lauck in 621 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for 622 * the Efficient Implementation of a Timer Facility" in the Proceedings of 623 * the 11th ACM Annual Symposium on Operating Systems Principles, 624 * Austin, Texas Nov 1987. 625 */ 626 627 /* 628 * Software (low priority) clock interrupt. 629 * Run periodic events from timeout queue. 630 */ 631 void 632 softclock(void *arg) 633 { 634 struct callout_cpu *cc; 635 struct callout *c; 636 struct callout_tailq *bucket; 637 int curticks; 638 int steps; /* #steps since we last allowed interrupts */ 639 int depth; 640 int mpcalls; 641 int lockcalls; 642 int gcalls; 643 644 #ifndef MAX_SOFTCLOCK_STEPS 645 #define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */ 646 #endif /* MAX_SOFTCLOCK_STEPS */ 647 648 mpcalls = 0; 649 lockcalls = 0; 650 gcalls = 0; 651 depth = 0; 652 steps = 0; 653 cc = (struct callout_cpu *)arg; 654 CC_LOCK(cc); 655 while (cc->cc_softticks - 1 != cc->cc_ticks) { 656 /* 657 * cc_softticks may be modified by hard clock, so cache 658 * it while we work on a given bucket. 659 */ 660 curticks = cc->cc_softticks; 661 cc->cc_softticks++; 662 bucket = &cc->cc_callwheel[curticks & callwheelmask]; 663 c = TAILQ_FIRST(bucket); 664 while (c != NULL) { 665 depth++; 666 if (c->c_time != curticks) { 667 c = TAILQ_NEXT(c, c_links.tqe); 668 ++steps; 669 if (steps >= MAX_SOFTCLOCK_STEPS) { 670 cc->cc_next = c; 671 /* Give interrupts a chance. */ 672 CC_UNLOCK(cc); 673 ; /* nothing */ 674 CC_LOCK(cc); 675 c = cc->cc_next; 676 steps = 0; 677 } 678 } else { 679 TAILQ_REMOVE(bucket, c, c_links.tqe); 680 c = softclock_call_cc(c, cc, &mpcalls, 681 &lockcalls, &gcalls); 682 steps = 0; 683 } 684 } 685 } 686 avg_depth += (depth * 1000 - avg_depth) >> 8; 687 avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8; 688 avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8; 689 avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8; 690 cc->cc_next = NULL; 691 CC_UNLOCK(cc); 692 } 693 694 /* 695 * timeout -- 696 * Execute a function after a specified length of time. 697 * 698 * untimeout -- 699 * Cancel previous timeout function call. 700 * 701 * callout_handle_init -- 702 * Initialize a handle so that using it with untimeout is benign. 703 * 704 * See AT&T BCI Driver Reference Manual for specification. This 705 * implementation differs from that one in that although an 706 * identification value is returned from timeout, the original 707 * arguments to timeout as well as the identifier are used to 708 * identify entries for untimeout. 709 */ 710 struct callout_handle 711 timeout(ftn, arg, to_ticks) 712 timeout_t *ftn; 713 void *arg; 714 int to_ticks; 715 { 716 struct callout_cpu *cc; 717 struct callout *new; 718 struct callout_handle handle; 719 720 cc = CC_CPU(timeout_cpu); 721 CC_LOCK(cc); 722 /* Fill in the next free callout structure. */ 723 new = SLIST_FIRST(&cc->cc_callfree); 724 if (new == NULL) 725 /* XXX Attempt to malloc first */ 726 panic("timeout table full"); 727 SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle); 728 callout_reset(new, to_ticks, ftn, arg); 729 handle.callout = new; 730 CC_UNLOCK(cc); 731 732 return (handle); 733 } 734 735 void 736 untimeout(ftn, arg, handle) 737 timeout_t *ftn; 738 void *arg; 739 struct callout_handle handle; 740 { 741 struct callout_cpu *cc; 742 743 /* 744 * Check for a handle that was initialized 745 * by callout_handle_init, but never used 746 * for a real timeout. 747 */ 748 if (handle.callout == NULL) 749 return; 750 751 cc = callout_lock(handle.callout); 752 if (handle.callout->c_func == ftn && handle.callout->c_arg == arg) 753 callout_stop(handle.callout); 754 CC_UNLOCK(cc); 755 } 756 757 void 758 callout_handle_init(struct callout_handle *handle) 759 { 760 handle->callout = NULL; 761 } 762 763 /* 764 * New interface; clients allocate their own callout structures. 765 * 766 * callout_reset() - establish or change a timeout 767 * callout_stop() - disestablish a timeout 768 * callout_init() - initialize a callout structure so that it can 769 * safely be passed to callout_reset() and callout_stop() 770 * 771 * <sys/callout.h> defines three convenience macros: 772 * 773 * callout_active() - returns truth if callout has not been stopped, 774 * drained, or deactivated since the last time the callout was 775 * reset. 776 * callout_pending() - returns truth if callout is still waiting for timeout 777 * callout_deactivate() - marks the callout as having been serviced 778 */ 779 int 780 callout_reset_on(struct callout *c, int to_ticks, void (*ftn)(void *), 781 void *arg, int cpu) 782 { 783 struct callout_cpu *cc; 784 int cancelled = 0; 785 786 /* 787 * Don't allow migration of pre-allocated callouts lest they 788 * become unbalanced. 789 */ 790 if (c->c_flags & CALLOUT_LOCAL_ALLOC) 791 cpu = c->c_cpu; 792 cc = callout_lock(c); 793 if (cc->cc_curr == c) { 794 /* 795 * We're being asked to reschedule a callout which is 796 * currently in progress. If there is a lock then we 797 * can cancel the callout if it has not really started. 798 */ 799 if (c->c_lock != NULL && !cc->cc_cancel) 800 cancelled = cc->cc_cancel = 1; 801 if (cc->cc_waiting) { 802 /* 803 * Someone has called callout_drain to kill this 804 * callout. Don't reschedule. 805 */ 806 CTR4(KTR_CALLOUT, "%s %p func %p arg %p", 807 cancelled ? "cancelled" : "failed to cancel", 808 c, c->c_func, c->c_arg); 809 CC_UNLOCK(cc); 810 return (cancelled); 811 } 812 } 813 if (c->c_flags & CALLOUT_PENDING) { 814 if (cc->cc_next == c) { 815 cc->cc_next = TAILQ_NEXT(c, c_links.tqe); 816 } 817 TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c, 818 c_links.tqe); 819 820 cancelled = 1; 821 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING); 822 } 823 824 #ifdef SMP 825 /* 826 * If the callout must migrate try to perform it immediately. 827 * If the callout is currently running, just defer the migration 828 * to a more appropriate moment. 829 */ 830 if (c->c_cpu != cpu) { 831 if (cc->cc_curr == c) { 832 cc->cc_migration_cpu = cpu; 833 cc->cc_migration_ticks = to_ticks; 834 cc->cc_migration_func = ftn; 835 cc->cc_migration_arg = arg; 836 c->c_flags |= CALLOUT_DFRMIGRATION; 837 CTR5(KTR_CALLOUT, 838 "migration of %p func %p arg %p in %d to %u deferred", 839 c, c->c_func, c->c_arg, to_ticks, cpu); 840 CC_UNLOCK(cc); 841 return (cancelled); 842 } 843 cc = callout_cpu_switch(c, cc, cpu); 844 } 845 #endif 846 847 callout_cc_add(c, cc, to_ticks, ftn, arg, cpu); 848 CTR5(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d", 849 cancelled ? "re" : "", c, c->c_func, c->c_arg, to_ticks); 850 CC_UNLOCK(cc); 851 852 return (cancelled); 853 } 854 855 /* 856 * Common idioms that can be optimized in the future. 857 */ 858 int 859 callout_schedule_on(struct callout *c, int to_ticks, int cpu) 860 { 861 return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu); 862 } 863 864 int 865 callout_schedule(struct callout *c, int to_ticks) 866 { 867 return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu); 868 } 869 870 int 871 _callout_stop_safe(c, safe) 872 struct callout *c; 873 int safe; 874 { 875 struct callout_cpu *cc, *old_cc; 876 struct lock_class *class; 877 int use_lock, sq_locked; 878 879 /* 880 * Some old subsystems don't hold Giant while running a callout_stop(), 881 * so just discard this check for the moment. 882 */ 883 if (!safe && c->c_lock != NULL) { 884 if (c->c_lock == &Giant.lock_object) 885 use_lock = mtx_owned(&Giant); 886 else { 887 use_lock = 1; 888 class = LOCK_CLASS(c->c_lock); 889 class->lc_assert(c->c_lock, LA_XLOCKED); 890 } 891 } else 892 use_lock = 0; 893 894 sq_locked = 0; 895 old_cc = NULL; 896 again: 897 cc = callout_lock(c); 898 899 /* 900 * If the callout was migrating while the callout cpu lock was 901 * dropped, just drop the sleepqueue lock and check the states 902 * again. 903 */ 904 if (sq_locked != 0 && cc != old_cc) { 905 #ifdef SMP 906 CC_UNLOCK(cc); 907 sleepq_release(&old_cc->cc_waiting); 908 sq_locked = 0; 909 old_cc = NULL; 910 goto again; 911 #else 912 panic("migration should not happen"); 913 #endif 914 } 915 916 /* 917 * If the callout isn't pending, it's not on the queue, so 918 * don't attempt to remove it from the queue. We can try to 919 * stop it by other means however. 920 */ 921 if (!(c->c_flags & CALLOUT_PENDING)) { 922 c->c_flags &= ~CALLOUT_ACTIVE; 923 924 /* 925 * If it wasn't on the queue and it isn't the current 926 * callout, then we can't stop it, so just bail. 927 */ 928 if (cc->cc_curr != c) { 929 CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p", 930 c, c->c_func, c->c_arg); 931 CC_UNLOCK(cc); 932 if (sq_locked) 933 sleepq_release(&cc->cc_waiting); 934 return (0); 935 } 936 937 if (safe) { 938 /* 939 * The current callout is running (or just 940 * about to run) and blocking is allowed, so 941 * just wait for the current invocation to 942 * finish. 943 */ 944 while (cc->cc_curr == c) { 945 946 /* 947 * Use direct calls to sleepqueue interface 948 * instead of cv/msleep in order to avoid 949 * a LOR between cc_lock and sleepqueue 950 * chain spinlocks. This piece of code 951 * emulates a msleep_spin() call actually. 952 * 953 * If we already have the sleepqueue chain 954 * locked, then we can safely block. If we 955 * don't already have it locked, however, 956 * we have to drop the cc_lock to lock 957 * it. This opens several races, so we 958 * restart at the beginning once we have 959 * both locks. If nothing has changed, then 960 * we will end up back here with sq_locked 961 * set. 962 */ 963 if (!sq_locked) { 964 CC_UNLOCK(cc); 965 sleepq_lock(&cc->cc_waiting); 966 sq_locked = 1; 967 old_cc = cc; 968 goto again; 969 } 970 971 /* 972 * Migration could be cancelled here, but 973 * as long as it is still not sure when it 974 * will be packed up, just let softclock() 975 * take care of it. 976 */ 977 cc->cc_waiting = 1; 978 DROP_GIANT(); 979 CC_UNLOCK(cc); 980 sleepq_add(&cc->cc_waiting, 981 &cc->cc_lock.lock_object, "codrain", 982 SLEEPQ_SLEEP, 0); 983 sleepq_wait(&cc->cc_waiting, 0); 984 sq_locked = 0; 985 old_cc = NULL; 986 987 /* Reacquire locks previously released. */ 988 PICKUP_GIANT(); 989 CC_LOCK(cc); 990 } 991 } else if (use_lock && !cc->cc_cancel) { 992 /* 993 * The current callout is waiting for its 994 * lock which we hold. Cancel the callout 995 * and return. After our caller drops the 996 * lock, the callout will be skipped in 997 * softclock(). 998 */ 999 cc->cc_cancel = 1; 1000 CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p", 1001 c, c->c_func, c->c_arg); 1002 KASSERT(!cc_cme_migrating(cc), 1003 ("callout wrongly scheduled for migration")); 1004 CC_UNLOCK(cc); 1005 KASSERT(!sq_locked, ("sleepqueue chain locked")); 1006 return (1); 1007 } else if ((c->c_flags & CALLOUT_DFRMIGRATION) != 0) { 1008 c->c_flags &= ~CALLOUT_DFRMIGRATION; 1009 CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p", 1010 c, c->c_func, c->c_arg); 1011 CC_UNLOCK(cc); 1012 return (1); 1013 } 1014 CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p", 1015 c, c->c_func, c->c_arg); 1016 CC_UNLOCK(cc); 1017 KASSERT(!sq_locked, ("sleepqueue chain still locked")); 1018 return (0); 1019 } 1020 if (sq_locked) 1021 sleepq_release(&cc->cc_waiting); 1022 1023 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING); 1024 1025 CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p", 1026 c, c->c_func, c->c_arg); 1027 TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c, 1028 c_links.tqe); 1029 callout_cc_del(c, cc); 1030 1031 CC_UNLOCK(cc); 1032 return (1); 1033 } 1034 1035 void 1036 callout_init(c, mpsafe) 1037 struct callout *c; 1038 int mpsafe; 1039 { 1040 bzero(c, sizeof *c); 1041 if (mpsafe) { 1042 c->c_lock = NULL; 1043 c->c_flags = CALLOUT_RETURNUNLOCKED; 1044 } else { 1045 c->c_lock = &Giant.lock_object; 1046 c->c_flags = 0; 1047 } 1048 c->c_cpu = timeout_cpu; 1049 } 1050 1051 void 1052 _callout_init_lock(c, lock, flags) 1053 struct callout *c; 1054 struct lock_object *lock; 1055 int flags; 1056 { 1057 bzero(c, sizeof *c); 1058 c->c_lock = lock; 1059 KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0, 1060 ("callout_init_lock: bad flags %d", flags)); 1061 KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0, 1062 ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock")); 1063 KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags & 1064 (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class", 1065 __func__)); 1066 c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK); 1067 c->c_cpu = timeout_cpu; 1068 } 1069 1070 #ifdef APM_FIXUP_CALLTODO 1071 /* 1072 * Adjust the kernel calltodo timeout list. This routine is used after 1073 * an APM resume to recalculate the calltodo timer list values with the 1074 * number of hz's we have been sleeping. The next hardclock() will detect 1075 * that there are fired timers and run softclock() to execute them. 1076 * 1077 * Please note, I have not done an exhaustive analysis of what code this 1078 * might break. I am motivated to have my select()'s and alarm()'s that 1079 * have expired during suspend firing upon resume so that the applications 1080 * which set the timer can do the maintanence the timer was for as close 1081 * as possible to the originally intended time. Testing this code for a 1082 * week showed that resuming from a suspend resulted in 22 to 25 timers 1083 * firing, which seemed independant on whether the suspend was 2 hours or 1084 * 2 days. Your milage may vary. - Ken Key <key@cs.utk.edu> 1085 */ 1086 void 1087 adjust_timeout_calltodo(time_change) 1088 struct timeval *time_change; 1089 { 1090 register struct callout *p; 1091 unsigned long delta_ticks; 1092 1093 /* 1094 * How many ticks were we asleep? 1095 * (stolen from tvtohz()). 1096 */ 1097 1098 /* Don't do anything */ 1099 if (time_change->tv_sec < 0) 1100 return; 1101 else if (time_change->tv_sec <= LONG_MAX / 1000000) 1102 delta_ticks = (time_change->tv_sec * 1000000 + 1103 time_change->tv_usec + (tick - 1)) / tick + 1; 1104 else if (time_change->tv_sec <= LONG_MAX / hz) 1105 delta_ticks = time_change->tv_sec * hz + 1106 (time_change->tv_usec + (tick - 1)) / tick + 1; 1107 else 1108 delta_ticks = LONG_MAX; 1109 1110 if (delta_ticks > INT_MAX) 1111 delta_ticks = INT_MAX; 1112 1113 /* 1114 * Now rip through the timer calltodo list looking for timers 1115 * to expire. 1116 */ 1117 1118 /* don't collide with softclock() */ 1119 CC_LOCK(cc); 1120 for (p = calltodo.c_next; p != NULL; p = p->c_next) { 1121 p->c_time -= delta_ticks; 1122 1123 /* Break if the timer had more time on it than delta_ticks */ 1124 if (p->c_time > 0) 1125 break; 1126 1127 /* take back the ticks the timer didn't use (p->c_time <= 0) */ 1128 delta_ticks = -p->c_time; 1129 } 1130 CC_UNLOCK(cc); 1131 1132 return; 1133 } 1134 #endif /* APM_FIXUP_CALLTODO */ 1135