1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 39 * $Id$ 40 */ 41 42 /* Portions of this software are covered by the following: */ 43 /****************************************************************************** 44 * * 45 * Copyright (c) David L. Mills 1993, 1994 * 46 * * 47 * Permission to use, copy, modify, and distribute this software and its * 48 * documentation for any purpose and without fee is hereby granted, provided * 49 * that the above copyright notice appears in all copies and that both the * 50 * copyright notice and this permission notice appear in supporting * 51 * documentation, and that the name University of Delaware not be used in * 52 * advertising or publicity pertaining to distribution of the software * 53 * without specific, written prior permission. The University of Delaware * 54 * makes no representations about the suitability this software for any * 55 * purpose. It is provided "as is" without express or implied warranty. * 56 * * 57 *****************************************************************************/ 58 59 #include "opt_cpu.h" /* XXX */ 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/dkstat.h> 64 #include <sys/callout.h> 65 #include <sys/kernel.h> 66 #include <sys/proc.h> 67 #include <sys/resourcevar.h> 68 #include <sys/signalvar.h> 69 #include <sys/timex.h> 70 #include <vm/vm.h> 71 #include <vm/vm_param.h> 72 #include <vm/vm_prot.h> 73 #include <sys/lock.h> 74 #include <vm/pmap.h> 75 #include <vm/vm_map.h> 76 #include <sys/sysctl.h> 77 78 #include <machine/cpu.h> 79 #define CLOCK_HAIR /* XXX */ 80 #include <machine/clock.h> 81 82 #ifdef GPROF 83 #include <sys/gmon.h> 84 #endif 85 86 static void initclocks __P((void *dummy)); 87 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 88 89 /* Exported to machdep.c. */ 90 struct callout *callfree, *callout; 91 92 static struct callout calltodo; 93 94 /* Some of these don't belong here, but it's easiest to concentrate them. */ 95 static long cp_time[CPUSTATES]; 96 long dk_seek[DK_NDRIVE]; 97 static long dk_time[DK_NDRIVE]; 98 long dk_wds[DK_NDRIVE]; 99 long dk_wpms[DK_NDRIVE]; 100 long dk_xfer[DK_NDRIVE]; 101 102 int dk_busy; 103 int dk_ndrive = 0; 104 char dk_names[DK_NDRIVE][DK_NAMELEN]; 105 106 long tk_cancc; 107 long tk_nin; 108 long tk_nout; 109 long tk_rawcc; 110 111 /* 112 * Clock handling routines. 113 * 114 * This code is written to operate with two timers that run independently of 115 * each other. The main clock, running hz times per second, is used to keep 116 * track of real time. The second timer handles kernel and user profiling, 117 * and does resource use estimation. If the second timer is programmable, 118 * it is randomized to avoid aliasing between the two clocks. For example, 119 * the randomization prevents an adversary from always giving up the cpu 120 * just before its quantum expires. Otherwise, it would never accumulate 121 * cpu ticks. The mean frequency of the second timer is stathz. 122 * 123 * If no second timer exists, stathz will be zero; in this case we drive 124 * profiling and statistics off the main clock. This WILL NOT be accurate; 125 * do not do it unless absolutely necessary. 126 * 127 * The statistics clock may (or may not) be run at a higher rate while 128 * profiling. This profile clock runs at profhz. We require that profhz 129 * be an integral multiple of stathz. 130 * 131 * If the statistics clock is running fast, it must be divided by the ratio 132 * profhz/stathz for statistics. (For profiling, every tick counts.) 133 */ 134 135 /* 136 * TODO: 137 * allocate more timeout table slots when table overflows. 138 */ 139 140 /* 141 * Bump a timeval by a small number of usec's. 142 */ 143 #define BUMPTIME(t, usec) { \ 144 register volatile struct timeval *tp = (t); \ 145 register long us; \ 146 \ 147 tp->tv_usec = us = tp->tv_usec + (usec); \ 148 if (us >= 1000000) { \ 149 tp->tv_usec = us - 1000000; \ 150 tp->tv_sec++; \ 151 } \ 152 } 153 154 int stathz; 155 int profhz; 156 static int profprocs; 157 int ticks; 158 static int psdiv, pscnt; /* prof => stat divider */ 159 int psratio; /* ratio: prof / stat */ 160 161 volatile struct timeval time; 162 volatile struct timeval mono_time; 163 164 /* 165 * Phase/frequency-lock loop (PLL/FLL) definitions 166 * 167 * The following variables are read and set by the ntp_adjtime() system 168 * call. 169 * 170 * time_state shows the state of the system clock, with values defined 171 * in the timex.h header file. 172 * 173 * time_status shows the status of the system clock, with bits defined 174 * in the timex.h header file. 175 * 176 * time_offset is used by the PLL/FLL to adjust the system time in small 177 * increments. 178 * 179 * time_constant determines the bandwidth or "stiffness" of the PLL. 180 * 181 * time_tolerance determines maximum frequency error or tolerance of the 182 * CPU clock oscillator and is a property of the architecture; however, 183 * in principle it could change as result of the presence of external 184 * discipline signals, for instance. 185 * 186 * time_precision is usually equal to the kernel tick variable; however, 187 * in cases where a precision clock counter or external clock is 188 * available, the resolution can be much less than this and depend on 189 * whether the external clock is working or not. 190 * 191 * time_maxerror is initialized by a ntp_adjtime() call and increased by 192 * the kernel once each second to reflect the maximum error 193 * bound growth. 194 * 195 * time_esterror is set and read by the ntp_adjtime() call, but 196 * otherwise not used by the kernel. 197 */ 198 int time_status = STA_UNSYNC; /* clock status bits */ 199 int time_state = TIME_OK; /* clock state */ 200 long time_offset = 0; /* time offset (us) */ 201 long time_constant = 0; /* pll time constant */ 202 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 203 long time_precision = 1; /* clock precision (us) */ 204 long time_maxerror = MAXPHASE; /* maximum error (us) */ 205 long time_esterror = MAXPHASE; /* estimated error (us) */ 206 207 /* 208 * The following variables establish the state of the PLL/FLL and the 209 * residual time and frequency offset of the local clock. The scale 210 * factors are defined in the timex.h header file. 211 * 212 * time_phase and time_freq are the phase increment and the frequency 213 * increment, respectively, of the kernel time variable at each tick of 214 * the clock. 215 * 216 * time_freq is set via ntp_adjtime() from a value stored in a file when 217 * the synchronization daemon is first started. Its value is retrieved 218 * via ntp_adjtime() and written to the file about once per hour by the 219 * daemon. 220 * 221 * time_adj is the adjustment added to the value of tick at each timer 222 * interrupt and is recomputed from time_phase and time_freq at each 223 * seconds rollover. 224 * 225 * time_reftime is the second's portion of the system time on the last 226 * call to ntp_adjtime(). It is used to adjust the time_freq variable 227 * and to increase the time_maxerror as the time since last update 228 * increases. 229 */ 230 static long time_phase = 0; /* phase offset (scaled us) */ 231 long time_freq = 0; /* frequency offset (scaled ppm) */ 232 static long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 233 static long time_reftime = 0; /* time at last adjustment (s) */ 234 235 #ifdef PPS_SYNC 236 /* 237 * The following variables are used only if the kernel PPS discipline 238 * code is configured (PPS_SYNC). The scale factors are defined in the 239 * timex.h header file. 240 * 241 * pps_time contains the time at each calibration interval, as read by 242 * microtime(). pps_count counts the seconds of the calibration 243 * interval, the duration of which is nominally pps_shift in powers of 244 * two. 245 * 246 * pps_offset is the time offset produced by the time median filter 247 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 248 * this filter. 249 * 250 * pps_freq is the frequency offset produced by the frequency median 251 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 252 * by this filter. 253 * 254 * pps_usec is latched from a high resolution counter or external clock 255 * at pps_time. Here we want the hardware counter contents only, not the 256 * contents plus the time_tv.usec as usual. 257 * 258 * pps_valid counts the number of seconds since the last PPS update. It 259 * is used as a watchdog timer to disable the PPS discipline should the 260 * PPS signal be lost. 261 * 262 * pps_glitch counts the number of seconds since the beginning of an 263 * offset burst more than tick/2 from current nominal offset. It is used 264 * mainly to suppress error bursts due to priority conflicts between the 265 * PPS interrupt and timer interrupt. 266 * 267 * pps_intcnt counts the calibration intervals for use in the interval- 268 * adaptation algorithm. It's just too complicated for words. 269 */ 270 struct timeval pps_time; /* kernel time at last interval */ 271 long pps_offset = 0; /* pps time offset (us) */ 272 long pps_jitter = MAXTIME; /* pps time dispersion (jitter) (us) */ 273 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 274 long pps_freq = 0; /* frequency offset (scaled ppm) */ 275 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 276 long pps_ff[] = {0, 0, 0}; /* frequency offset median filter */ 277 long pps_usec = 0; /* microsec counter at last interval */ 278 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 279 int pps_glitch = 0; /* pps signal glitch counter */ 280 int pps_count = 0; /* calibration interval counter (s) */ 281 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 282 int pps_intcnt = 0; /* intervals at current duration */ 283 284 /* 285 * PPS signal quality monitors 286 * 287 * pps_jitcnt counts the seconds that have been discarded because the 288 * jitter measured by the time median filter exceeds the limit MAXTIME 289 * (100 us). 290 * 291 * pps_calcnt counts the frequency calibration intervals, which are 292 * variable from 4 s to 256 s. 293 * 294 * pps_errcnt counts the calibration intervals which have been discarded 295 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 296 * calibration interval jitter exceeds two ticks. 297 * 298 * pps_stbcnt counts the calibration intervals that have been discarded 299 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 300 */ 301 long pps_jitcnt = 0; /* jitter limit exceeded */ 302 long pps_calcnt = 0; /* calibration intervals */ 303 long pps_errcnt = 0; /* calibration errors */ 304 long pps_stbcnt = 0; /* stability limit exceeded */ 305 #endif /* PPS_SYNC */ 306 307 /* XXX none of this stuff works under FreeBSD */ 308 #ifdef EXT_CLOCK 309 /* 310 * External clock definitions 311 * 312 * The following definitions and declarations are used only if an 313 * external clock (HIGHBALL or TPRO) is configured on the system. 314 */ 315 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 316 317 /* 318 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 319 * interrupt and decremented once each second. 320 */ 321 int clock_count = 0; /* CPU clock counter */ 322 323 #ifdef HIGHBALL 324 /* 325 * The clock_offset and clock_cpu variables are used by the HIGHBALL 326 * interface. The clock_offset variable defines the offset between 327 * system time and the HIGBALL counters. The clock_cpu variable contains 328 * the offset between the system clock and the HIGHBALL clock for use in 329 * disciplining the kernel time variable. 330 */ 331 extern struct timeval clock_offset; /* Highball clock offset */ 332 long clock_cpu = 0; /* CPU clock adjust */ 333 #endif /* HIGHBALL */ 334 #endif /* EXT_CLOCK */ 335 336 /* 337 * hardupdate() - local clock update 338 * 339 * This routine is called by ntp_adjtime() to update the local clock 340 * phase and frequency. The implementation is of an adaptive-parameter, 341 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 342 * time and frequency offset estimates for each call. If the kernel PPS 343 * discipline code is configured (PPS_SYNC), the PPS signal itself 344 * determines the new time offset, instead of the calling argument. 345 * Presumably, calls to ntp_adjtime() occur only when the caller 346 * believes the local clock is valid within some bound (+-128 ms with 347 * NTP). If the caller's time is far different than the PPS time, an 348 * argument will ensue, and it's not clear who will lose. 349 * 350 * For uncompensated quartz crystal oscillatores and nominal update 351 * intervals less than 1024 s, operation should be in phase-lock mode 352 * (STA_FLL = 0), where the loop is disciplined to phase. For update 353 * intervals greater than thiss, operation should be in frequency-lock 354 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 355 * 356 * Note: splclock() is in effect. 357 */ 358 void 359 hardupdate(offset) 360 long offset; 361 { 362 long ltemp, mtemp; 363 364 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 365 return; 366 ltemp = offset; 367 #ifdef PPS_SYNC 368 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 369 ltemp = pps_offset; 370 #endif /* PPS_SYNC */ 371 372 /* 373 * Scale the phase adjustment and clamp to the operating range. 374 */ 375 if (ltemp > MAXPHASE) 376 time_offset = MAXPHASE << SHIFT_UPDATE; 377 else if (ltemp < -MAXPHASE) 378 time_offset = -(MAXPHASE << SHIFT_UPDATE); 379 else 380 time_offset = ltemp << SHIFT_UPDATE; 381 382 /* 383 * Select whether the frequency is to be controlled and in which 384 * mode (PLL or FLL). Clamp to the operating range. Ugly 385 * multiply/divide should be replaced someday. 386 */ 387 if (time_status & STA_FREQHOLD || time_reftime == 0) 388 time_reftime = time.tv_sec; 389 mtemp = time.tv_sec - time_reftime; 390 time_reftime = time.tv_sec; 391 if (time_status & STA_FLL) { 392 if (mtemp >= MINSEC) { 393 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 394 SHIFT_UPDATE)); 395 if (ltemp < 0) 396 time_freq -= -ltemp >> SHIFT_KH; 397 else 398 time_freq += ltemp >> SHIFT_KH; 399 } 400 } else { 401 if (mtemp < MAXSEC) { 402 ltemp *= mtemp; 403 if (ltemp < 0) 404 time_freq -= -ltemp >> (time_constant + 405 time_constant + SHIFT_KF - 406 SHIFT_USEC); 407 else 408 time_freq += ltemp >> (time_constant + 409 time_constant + SHIFT_KF - 410 SHIFT_USEC); 411 } 412 } 413 if (time_freq > time_tolerance) 414 time_freq = time_tolerance; 415 else if (time_freq < -time_tolerance) 416 time_freq = -time_tolerance; 417 } 418 419 420 421 /* 422 * Initialize clock frequencies and start both clocks running. 423 */ 424 /* ARGSUSED*/ 425 static void 426 initclocks(dummy) 427 void *dummy; 428 { 429 register int i; 430 431 /* 432 * Set divisors to 1 (normal case) and let the machine-specific 433 * code do its bit. 434 */ 435 psdiv = pscnt = 1; 436 cpu_initclocks(); 437 438 /* 439 * Compute profhz/stathz, and fix profhz if needed. 440 */ 441 i = stathz ? stathz : hz; 442 if (profhz == 0) 443 profhz = i; 444 psratio = profhz / i; 445 } 446 447 /* 448 * The real-time timer, interrupting hz times per second. 449 */ 450 void 451 hardclock(frame) 452 register struct clockframe *frame; 453 { 454 register struct callout *p1; 455 register struct proc *p; 456 register int needsoft; 457 458 /* 459 * Update real-time timeout queue. 460 * At front of queue are some number of events which are ``due''. 461 * The time to these is <= 0 and if negative represents the 462 * number of ticks which have passed since it was supposed to happen. 463 * The rest of the q elements (times > 0) are events yet to happen, 464 * where the time for each is given as a delta from the previous. 465 * Decrementing just the first of these serves to decrement the time 466 * to all events. 467 */ 468 needsoft = 0; 469 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) { 470 if (--p1->c_time > 0) 471 break; 472 needsoft = 1; 473 if (p1->c_time == 0) 474 break; 475 } 476 477 p = curproc; 478 if (p) { 479 register struct pstats *pstats; 480 481 /* 482 * Run current process's virtual and profile time, as needed. 483 */ 484 pstats = p->p_stats; 485 if (CLKF_USERMODE(frame) && 486 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 487 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 488 psignal(p, SIGVTALRM); 489 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 490 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 491 psignal(p, SIGPROF); 492 } 493 494 /* 495 * If no separate statistics clock is available, run it from here. 496 */ 497 if (stathz == 0) 498 statclock(frame); 499 500 /* 501 * Increment the time-of-day. 502 */ 503 ticks++; 504 { 505 int time_update; 506 struct timeval newtime = time; 507 long ltemp; 508 509 if (timedelta == 0) { 510 time_update = CPU_THISTICKLEN(tick); 511 } else { 512 time_update = CPU_THISTICKLEN(tick) + tickdelta; 513 timedelta -= tickdelta; 514 } 515 BUMPTIME(&mono_time, time_update); 516 517 /* 518 * Compute the phase adjustment. If the low-order bits 519 * (time_phase) of the update overflow, bump the high-order bits 520 * (time_update). 521 */ 522 time_phase += time_adj; 523 if (time_phase <= -FINEUSEC) { 524 ltemp = -time_phase >> SHIFT_SCALE; 525 time_phase += ltemp << SHIFT_SCALE; 526 time_update -= ltemp; 527 } 528 else if (time_phase >= FINEUSEC) { 529 ltemp = time_phase >> SHIFT_SCALE; 530 time_phase -= ltemp << SHIFT_SCALE; 531 time_update += ltemp; 532 } 533 534 newtime.tv_usec += time_update; 535 /* 536 * On rollover of the second the phase adjustment to be used for 537 * the next second is calculated. Also, the maximum error is 538 * increased by the tolerance. If the PPS frequency discipline 539 * code is present, the phase is increased to compensate for the 540 * CPU clock oscillator frequency error. 541 * 542 * On a 32-bit machine and given parameters in the timex.h 543 * header file, the maximum phase adjustment is +-512 ms and 544 * maximum frequency offset is a tad less than) +-512 ppm. On a 545 * 64-bit machine, you shouldn't need to ask. 546 */ 547 if (newtime.tv_usec >= 1000000) { 548 newtime.tv_usec -= 1000000; 549 newtime.tv_sec++; 550 time_maxerror += time_tolerance >> SHIFT_USEC; 551 552 /* 553 * Compute the phase adjustment for the next second. In 554 * PLL mode, the offset is reduced by a fixed factor 555 * times the time constant. In FLL mode the offset is 556 * used directly. In either mode, the maximum phase 557 * adjustment for each second is clamped so as to spread 558 * the adjustment over not more than the number of 559 * seconds between updates. 560 */ 561 if (time_offset < 0) { 562 ltemp = -time_offset; 563 if (!(time_status & STA_FLL)) 564 ltemp >>= SHIFT_KG + time_constant; 565 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 566 ltemp = (MAXPHASE / MINSEC) << 567 SHIFT_UPDATE; 568 time_offset += ltemp; 569 time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - 570 SHIFT_UPDATE); 571 } else { 572 ltemp = time_offset; 573 if (!(time_status & STA_FLL)) 574 ltemp >>= SHIFT_KG + time_constant; 575 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 576 ltemp = (MAXPHASE / MINSEC) << 577 SHIFT_UPDATE; 578 time_offset -= ltemp; 579 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - 580 SHIFT_UPDATE); 581 } 582 583 /* 584 * Compute the frequency estimate and additional phase 585 * adjustment due to frequency error for the next 586 * second. When the PPS signal is engaged, gnaw on the 587 * watchdog counter and update the frequency computed by 588 * the pll and the PPS signal. 589 */ 590 #ifdef PPS_SYNC 591 pps_valid++; 592 if (pps_valid == PPS_VALID) { 593 pps_jitter = MAXTIME; 594 pps_stabil = MAXFREQ; 595 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 596 STA_PPSWANDER | STA_PPSERROR); 597 } 598 ltemp = time_freq + pps_freq; 599 #else 600 ltemp = time_freq; 601 #endif /* PPS_SYNC */ 602 if (ltemp < 0) 603 time_adj -= -ltemp >> 604 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 605 else 606 time_adj += ltemp >> 607 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 608 609 #if SHIFT_HZ == 7 610 /* 611 * When the CPU clock oscillator frequency is not a 612 * power of two in Hz, the SHIFT_HZ is only an 613 * approximate scale factor. In the SunOS kernel, this 614 * results in a PLL gain factor of 1/1.28 = 0.78 what it 615 * should be. In the following code the overall gain is 616 * increased by a factor of 1.25, which results in a 617 * residual error less than 3 percent. 618 */ 619 /* Same thing applies for FreeBSD --GAW */ 620 if (hz == 100) { 621 if (time_adj < 0) 622 time_adj -= -time_adj >> 2; 623 else 624 time_adj += time_adj >> 2; 625 } 626 #endif /* SHIFT_HZ */ 627 628 /* XXX - this is really bogus, but can't be fixed until 629 xntpd's idea of the system clock is fixed to know how 630 the user wants leap seconds handled; in the mean time, 631 we assume that users of NTP are running without proper 632 leap second support (this is now the default anyway) */ 633 /* 634 * Leap second processing. If in leap-insert state at 635 * the end of the day, the system clock is set back one 636 * second; if in leap-delete state, the system clock is 637 * set ahead one second. The microtime() routine or 638 * external clock driver will insure that reported time 639 * is always monotonic. The ugly divides should be 640 * replaced. 641 */ 642 switch (time_state) { 643 644 case TIME_OK: 645 if (time_status & STA_INS) 646 time_state = TIME_INS; 647 else if (time_status & STA_DEL) 648 time_state = TIME_DEL; 649 break; 650 651 case TIME_INS: 652 if (newtime.tv_sec % 86400 == 0) { 653 newtime.tv_sec--; 654 time_state = TIME_OOP; 655 } 656 break; 657 658 case TIME_DEL: 659 if ((newtime.tv_sec + 1) % 86400 == 0) { 660 newtime.tv_sec++; 661 time_state = TIME_WAIT; 662 } 663 break; 664 665 case TIME_OOP: 666 time_state = TIME_WAIT; 667 break; 668 669 case TIME_WAIT: 670 if (!(time_status & (STA_INS | STA_DEL))) 671 time_state = TIME_OK; 672 } 673 } 674 CPU_CLOCKUPDATE(&time, &newtime); 675 } 676 677 /* 678 * Process callouts at a very low cpu priority, so we don't keep the 679 * relatively high clock interrupt priority any longer than necessary. 680 */ 681 if (needsoft) { 682 if (CLKF_BASEPRI(frame)) { 683 /* 684 * Save the overhead of a software interrupt; 685 * it will happen as soon as we return, so do it now. 686 */ 687 (void)splsoftclock(); 688 softclock(); 689 } else 690 setsoftclock(); 691 } 692 } 693 694 /* 695 * Software (low priority) clock interrupt. 696 * Run periodic events from timeout queue. 697 */ 698 /*ARGSUSED*/ 699 void 700 softclock() 701 { 702 register struct callout *c; 703 register void *arg; 704 register void (*func) __P((void *)); 705 register int s; 706 707 s = splhigh(); 708 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) { 709 func = c->c_func; 710 arg = c->c_arg; 711 calltodo.c_next = c->c_next; 712 c->c_next = callfree; 713 callfree = c; 714 splx(s); 715 (*func)(arg); 716 (void) splhigh(); 717 } 718 splx(s); 719 } 720 721 /* 722 * timeout -- 723 * Execute a function after a specified length of time. 724 * 725 * untimeout -- 726 * Cancel previous timeout function call. 727 * 728 * See AT&T BCI Driver Reference Manual for specification. This 729 * implementation differs from that one in that no identification 730 * value is returned from timeout, rather, the original arguments 731 * to timeout are used to identify entries for untimeout. 732 */ 733 void 734 timeout(ftn, arg, ticks) 735 timeout_t ftn; 736 void *arg; 737 register int ticks; 738 { 739 register struct callout *new, *p, *t; 740 register int s; 741 742 if (ticks <= 0) 743 ticks = 1; 744 745 /* Lock out the clock. */ 746 s = splhigh(); 747 748 /* Fill in the next free callout structure. */ 749 if (callfree == NULL) 750 panic("timeout table full"); 751 new = callfree; 752 callfree = new->c_next; 753 new->c_arg = arg; 754 new->c_func = ftn; 755 756 /* 757 * The time for each event is stored as a difference from the time 758 * of the previous event on the queue. Walk the queue, correcting 759 * the ticks argument for queue entries passed. Correct the ticks 760 * value for the queue entry immediately after the insertion point 761 * as well. Watch out for negative c_time values; these represent 762 * overdue events. 763 */ 764 for (p = &calltodo; 765 (t = p->c_next) != NULL && ticks > t->c_time; p = t) 766 if (t->c_time > 0) 767 ticks -= t->c_time; 768 new->c_time = ticks; 769 if (t != NULL) 770 t->c_time -= ticks; 771 772 /* Insert the new entry into the queue. */ 773 p->c_next = new; 774 new->c_next = t; 775 splx(s); 776 } 777 778 void 779 untimeout(ftn, arg) 780 timeout_t ftn; 781 void *arg; 782 { 783 register struct callout *p, *t; 784 register int s; 785 786 s = splhigh(); 787 for (p = &calltodo; (t = p->c_next) != NULL; p = t) 788 if (t->c_func == ftn && t->c_arg == arg) { 789 /* Increment next entry's tick count. */ 790 if (t->c_next && t->c_time > 0) 791 t->c_next->c_time += t->c_time; 792 793 /* Move entry from callout queue to callfree queue. */ 794 p->c_next = t->c_next; 795 t->c_next = callfree; 796 callfree = t; 797 break; 798 } 799 splx(s); 800 } 801 802 /* 803 * Compute number of hz until specified time. Used to 804 * compute third argument to timeout() from an absolute time. 805 */ 806 int 807 hzto(tv) 808 struct timeval *tv; 809 { 810 register unsigned long ticks; 811 register long sec, usec; 812 int s; 813 814 /* 815 * If the number of usecs in the whole seconds part of the time 816 * difference fits in a long, then the total number of usecs will 817 * fit in an unsigned long. Compute the total and convert it to 818 * ticks, rounding up and adding 1 to allow for the current tick 819 * to expire. Rounding also depends on unsigned long arithmetic 820 * to avoid overflow. 821 * 822 * Otherwise, if the number of ticks in the whole seconds part of 823 * the time difference fits in a long, then convert the parts to 824 * ticks separately and add, using similar rounding methods and 825 * overflow avoidance. This method would work in the previous 826 * case but it is slightly slower and assumes that hz is integral. 827 * 828 * Otherwise, round the time difference down to the maximum 829 * representable value. 830 * 831 * If ints have 32 bits, then the maximum value for any timeout in 832 * 10ms ticks is 248 days. 833 */ 834 s = splclock(); 835 sec = tv->tv_sec - time.tv_sec; 836 usec = tv->tv_usec - time.tv_usec; 837 splx(s); 838 if (usec < 0) { 839 sec--; 840 usec += 1000000; 841 } 842 if (sec < 0) { 843 #ifdef DIAGNOSTIC 844 printf("hzto: negative time difference %ld sec %ld usec\n", 845 sec, usec); 846 #endif 847 ticks = 1; 848 } else if (sec <= LONG_MAX / 1000000) 849 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 850 / tick + 1; 851 else if (sec <= LONG_MAX / hz) 852 ticks = sec * hz 853 + ((unsigned long)usec + (tick - 1)) / tick + 1; 854 else 855 ticks = LONG_MAX; 856 if (ticks > INT_MAX) 857 ticks = INT_MAX; 858 return (ticks); 859 } 860 861 /* 862 * Start profiling on a process. 863 * 864 * Kernel profiling passes proc0 which never exits and hence 865 * keeps the profile clock running constantly. 866 */ 867 void 868 startprofclock(p) 869 register struct proc *p; 870 { 871 int s; 872 873 if ((p->p_flag & P_PROFIL) == 0) { 874 p->p_flag |= P_PROFIL; 875 if (++profprocs == 1 && stathz != 0) { 876 s = splstatclock(); 877 psdiv = pscnt = psratio; 878 setstatclockrate(profhz); 879 splx(s); 880 } 881 } 882 } 883 884 /* 885 * Stop profiling on a process. 886 */ 887 void 888 stopprofclock(p) 889 register struct proc *p; 890 { 891 int s; 892 893 if (p->p_flag & P_PROFIL) { 894 p->p_flag &= ~P_PROFIL; 895 if (--profprocs == 0 && stathz != 0) { 896 s = splstatclock(); 897 psdiv = pscnt = 1; 898 setstatclockrate(stathz); 899 splx(s); 900 } 901 } 902 } 903 904 /* 905 * Statistics clock. Grab profile sample, and if divider reaches 0, 906 * do process and kernel statistics. 907 */ 908 void 909 statclock(frame) 910 register struct clockframe *frame; 911 { 912 #ifdef GPROF 913 register struct gmonparam *g; 914 #endif 915 register struct proc *p; 916 register int i; 917 struct pstats *pstats; 918 long rss; 919 struct rusage *ru; 920 struct vmspace *vm; 921 922 if (CLKF_USERMODE(frame)) { 923 p = curproc; 924 if (p->p_flag & P_PROFIL) 925 addupc_intr(p, CLKF_PC(frame), 1); 926 if (--pscnt > 0) 927 return; 928 /* 929 * Came from user mode; CPU was in user state. 930 * If this process is being profiled record the tick. 931 */ 932 p->p_uticks++; 933 if (p->p_nice > NZERO) 934 cp_time[CP_NICE]++; 935 else 936 cp_time[CP_USER]++; 937 } else { 938 #ifdef GPROF 939 /* 940 * Kernel statistics are just like addupc_intr, only easier. 941 */ 942 g = &_gmonparam; 943 if (g->state == GMON_PROF_ON) { 944 i = CLKF_PC(frame) - g->lowpc; 945 if (i < g->textsize) { 946 i /= HISTFRACTION * sizeof(*g->kcount); 947 g->kcount[i]++; 948 } 949 } 950 #endif 951 if (--pscnt > 0) 952 return; 953 /* 954 * Came from kernel mode, so we were: 955 * - handling an interrupt, 956 * - doing syscall or trap work on behalf of the current 957 * user process, or 958 * - spinning in the idle loop. 959 * Whichever it is, charge the time as appropriate. 960 * Note that we charge interrupts to the current process, 961 * regardless of whether they are ``for'' that process, 962 * so that we know how much of its real time was spent 963 * in ``non-process'' (i.e., interrupt) work. 964 */ 965 p = curproc; 966 if (CLKF_INTR(frame)) { 967 if (p != NULL) 968 p->p_iticks++; 969 cp_time[CP_INTR]++; 970 } else if (p != NULL) { 971 p->p_sticks++; 972 cp_time[CP_SYS]++; 973 } else 974 cp_time[CP_IDLE]++; 975 } 976 pscnt = psdiv; 977 978 /* 979 * We maintain statistics shown by user-level statistics 980 * programs: the amount of time in each cpu state, and 981 * the amount of time each of DK_NDRIVE ``drives'' is busy. 982 * 983 * XXX should either run linked list of drives, or (better) 984 * grab timestamps in the start & done code. 985 */ 986 for (i = 0; i < DK_NDRIVE; i++) 987 if (dk_busy & (1 << i)) 988 dk_time[i]++; 989 990 /* 991 * We adjust the priority of the current process. The priority of 992 * a process gets worse as it accumulates CPU time. The cpu usage 993 * estimator (p_estcpu) is increased here. The formula for computing 994 * priorities (in kern_synch.c) will compute a different value each 995 * time p_estcpu increases by 4. The cpu usage estimator ramps up 996 * quite quickly when the process is running (linearly), and decays 997 * away exponentially, at a rate which is proportionally slower when 998 * the system is busy. The basic principal is that the system will 999 * 90% forget that the process used a lot of CPU time in 5 * loadav 1000 * seconds. This causes the system to favor processes which haven't 1001 * run much recently, and to round-robin among other processes. 1002 */ 1003 if (p != NULL) { 1004 p->p_cpticks++; 1005 if (++p->p_estcpu == 0) 1006 p->p_estcpu--; 1007 if ((p->p_estcpu & 3) == 0) { 1008 resetpriority(p); 1009 if (p->p_priority >= PUSER) 1010 p->p_priority = p->p_usrpri; 1011 } 1012 1013 /* Update resource usage integrals and maximums. */ 1014 if ((pstats = p->p_stats) != NULL && 1015 (ru = &pstats->p_ru) != NULL && 1016 (vm = p->p_vmspace) != NULL) { 1017 ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024; 1018 ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024; 1019 ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024; 1020 rss = vm->vm_pmap.pm_stats.resident_count * 1021 PAGE_SIZE / 1024; 1022 if (ru->ru_maxrss < rss) 1023 ru->ru_maxrss = rss; 1024 } 1025 } 1026 } 1027 1028 /* 1029 * Return information about system clocks. 1030 */ 1031 static int 1032 sysctl_kern_clockrate SYSCTL_HANDLER_ARGS 1033 { 1034 struct clockinfo clkinfo; 1035 /* 1036 * Construct clockinfo structure. 1037 */ 1038 clkinfo.hz = hz; 1039 clkinfo.tick = tick; 1040 clkinfo.profhz = profhz; 1041 clkinfo.stathz = stathz ? stathz : hz; 1042 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 1043 } 1044 1045 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 1046 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 1047 1048 #ifdef PPS_SYNC 1049 /* 1050 * hardpps() - discipline CPU clock oscillator to external PPS signal 1051 * 1052 * This routine is called at each PPS interrupt in order to discipline 1053 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1054 * and leaves it in a handy spot for the hardclock() routine. It 1055 * integrates successive PPS phase differences and calculates the 1056 * frequency offset. This is used in hardclock() to discipline the CPU 1057 * clock oscillator so that intrinsic frequency error is cancelled out. 1058 * The code requires the caller to capture the time and hardware counter 1059 * value at the on-time PPS signal transition. 1060 * 1061 * Note that, on some Unix systems, this routine runs at an interrupt 1062 * priority level higher than the timer interrupt routine hardclock(). 1063 * Therefore, the variables used are distinct from the hardclock() 1064 * variables, except for certain exceptions: The PPS frequency pps_freq 1065 * and phase pps_offset variables are determined by this routine and 1066 * updated atomically. The time_tolerance variable can be considered a 1067 * constant, since it is infrequently changed, and then only when the 1068 * PPS signal is disabled. The watchdog counter pps_valid is updated 1069 * once per second by hardclock() and is atomically cleared in this 1070 * routine. 1071 */ 1072 void 1073 hardpps(tvp, usec) 1074 struct timeval *tvp; /* time at PPS */ 1075 long usec; /* hardware counter at PPS */ 1076 { 1077 long u_usec, v_usec, bigtick; 1078 long cal_sec, cal_usec; 1079 1080 /* 1081 * An occasional glitch can be produced when the PPS interrupt 1082 * occurs in the hardclock() routine before the time variable is 1083 * updated. Here the offset is discarded when the difference 1084 * between it and the last one is greater than tick/2, but not 1085 * if the interval since the first discard exceeds 30 s. 1086 */ 1087 time_status |= STA_PPSSIGNAL; 1088 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1089 pps_valid = 0; 1090 u_usec = -tvp->tv_usec; 1091 if (u_usec < -500000) 1092 u_usec += 1000000; 1093 v_usec = pps_offset - u_usec; 1094 if (v_usec < 0) 1095 v_usec = -v_usec; 1096 if (v_usec > (tick >> 1)) { 1097 if (pps_glitch > MAXGLITCH) { 1098 pps_glitch = 0; 1099 pps_tf[2] = u_usec; 1100 pps_tf[1] = u_usec; 1101 } else { 1102 pps_glitch++; 1103 u_usec = pps_offset; 1104 } 1105 } else 1106 pps_glitch = 0; 1107 1108 /* 1109 * A three-stage median filter is used to help deglitch the pps 1110 * time. The median sample becomes the time offset estimate; the 1111 * difference between the other two samples becomes the time 1112 * dispersion (jitter) estimate. 1113 */ 1114 pps_tf[2] = pps_tf[1]; 1115 pps_tf[1] = pps_tf[0]; 1116 pps_tf[0] = u_usec; 1117 if (pps_tf[0] > pps_tf[1]) { 1118 if (pps_tf[1] > pps_tf[2]) { 1119 pps_offset = pps_tf[1]; /* 0 1 2 */ 1120 v_usec = pps_tf[0] - pps_tf[2]; 1121 } else if (pps_tf[2] > pps_tf[0]) { 1122 pps_offset = pps_tf[0]; /* 2 0 1 */ 1123 v_usec = pps_tf[2] - pps_tf[1]; 1124 } else { 1125 pps_offset = pps_tf[2]; /* 0 2 1 */ 1126 v_usec = pps_tf[0] - pps_tf[1]; 1127 } 1128 } else { 1129 if (pps_tf[1] < pps_tf[2]) { 1130 pps_offset = pps_tf[1]; /* 2 1 0 */ 1131 v_usec = pps_tf[2] - pps_tf[0]; 1132 } else if (pps_tf[2] < pps_tf[0]) { 1133 pps_offset = pps_tf[0]; /* 1 0 2 */ 1134 v_usec = pps_tf[1] - pps_tf[2]; 1135 } else { 1136 pps_offset = pps_tf[2]; /* 1 2 0 */ 1137 v_usec = pps_tf[1] - pps_tf[0]; 1138 } 1139 } 1140 if (v_usec > MAXTIME) 1141 pps_jitcnt++; 1142 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1143 if (v_usec < 0) 1144 pps_jitter -= -v_usec >> PPS_AVG; 1145 else 1146 pps_jitter += v_usec >> PPS_AVG; 1147 if (pps_jitter > (MAXTIME >> 1)) 1148 time_status |= STA_PPSJITTER; 1149 1150 /* 1151 * During the calibration interval adjust the starting time when 1152 * the tick overflows. At the end of the interval compute the 1153 * duration of the interval and the difference of the hardware 1154 * counters at the beginning and end of the interval. This code 1155 * is deliciously complicated by the fact valid differences may 1156 * exceed the value of tick when using long calibration 1157 * intervals and small ticks. Note that the counter can be 1158 * greater than tick if caught at just the wrong instant, but 1159 * the values returned and used here are correct. 1160 */ 1161 bigtick = (long)tick << SHIFT_USEC; 1162 pps_usec -= pps_freq; 1163 if (pps_usec >= bigtick) 1164 pps_usec -= bigtick; 1165 if (pps_usec < 0) 1166 pps_usec += bigtick; 1167 pps_time.tv_sec++; 1168 pps_count++; 1169 if (pps_count < (1 << pps_shift)) 1170 return; 1171 pps_count = 0; 1172 pps_calcnt++; 1173 u_usec = usec << SHIFT_USEC; 1174 v_usec = pps_usec - u_usec; 1175 if (v_usec >= bigtick >> 1) 1176 v_usec -= bigtick; 1177 if (v_usec < -(bigtick >> 1)) 1178 v_usec += bigtick; 1179 if (v_usec < 0) 1180 v_usec = -(-v_usec >> pps_shift); 1181 else 1182 v_usec = v_usec >> pps_shift; 1183 pps_usec = u_usec; 1184 cal_sec = tvp->tv_sec; 1185 cal_usec = tvp->tv_usec; 1186 cal_sec -= pps_time.tv_sec; 1187 cal_usec -= pps_time.tv_usec; 1188 if (cal_usec < 0) { 1189 cal_usec += 1000000; 1190 cal_sec--; 1191 } 1192 pps_time = *tvp; 1193 1194 /* 1195 * Check for lost interrupts, noise, excessive jitter and 1196 * excessive frequency error. The number of timer ticks during 1197 * the interval may vary +-1 tick. Add to this a margin of one 1198 * tick for the PPS signal jitter and maximum frequency 1199 * deviation. If the limits are exceeded, the calibration 1200 * interval is reset to the minimum and we start over. 1201 */ 1202 u_usec = (long)tick << 1; 1203 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1204 || (cal_sec == 0 && cal_usec < u_usec)) 1205 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1206 pps_errcnt++; 1207 pps_shift = PPS_SHIFT; 1208 pps_intcnt = 0; 1209 time_status |= STA_PPSERROR; 1210 return; 1211 } 1212 1213 /* 1214 * A three-stage median filter is used to help deglitch the pps 1215 * frequency. The median sample becomes the frequency offset 1216 * estimate; the difference between the other two samples 1217 * becomes the frequency dispersion (stability) estimate. 1218 */ 1219 pps_ff[2] = pps_ff[1]; 1220 pps_ff[1] = pps_ff[0]; 1221 pps_ff[0] = v_usec; 1222 if (pps_ff[0] > pps_ff[1]) { 1223 if (pps_ff[1] > pps_ff[2]) { 1224 u_usec = pps_ff[1]; /* 0 1 2 */ 1225 v_usec = pps_ff[0] - pps_ff[2]; 1226 } else if (pps_ff[2] > pps_ff[0]) { 1227 u_usec = pps_ff[0]; /* 2 0 1 */ 1228 v_usec = pps_ff[2] - pps_ff[1]; 1229 } else { 1230 u_usec = pps_ff[2]; /* 0 2 1 */ 1231 v_usec = pps_ff[0] - pps_ff[1]; 1232 } 1233 } else { 1234 if (pps_ff[1] < pps_ff[2]) { 1235 u_usec = pps_ff[1]; /* 2 1 0 */ 1236 v_usec = pps_ff[2] - pps_ff[0]; 1237 } else if (pps_ff[2] < pps_ff[0]) { 1238 u_usec = pps_ff[0]; /* 1 0 2 */ 1239 v_usec = pps_ff[1] - pps_ff[2]; 1240 } else { 1241 u_usec = pps_ff[2]; /* 1 2 0 */ 1242 v_usec = pps_ff[1] - pps_ff[0]; 1243 } 1244 } 1245 1246 /* 1247 * Here the frequency dispersion (stability) is updated. If it 1248 * is less than one-fourth the maximum (MAXFREQ), the frequency 1249 * offset is updated as well, but clamped to the tolerance. It 1250 * will be processed later by the hardclock() routine. 1251 */ 1252 v_usec = (v_usec >> 1) - pps_stabil; 1253 if (v_usec < 0) 1254 pps_stabil -= -v_usec >> PPS_AVG; 1255 else 1256 pps_stabil += v_usec >> PPS_AVG; 1257 if (pps_stabil > MAXFREQ >> 2) { 1258 pps_stbcnt++; 1259 time_status |= STA_PPSWANDER; 1260 return; 1261 } 1262 if (time_status & STA_PPSFREQ) { 1263 if (u_usec < 0) { 1264 pps_freq -= -u_usec >> PPS_AVG; 1265 if (pps_freq < -time_tolerance) 1266 pps_freq = -time_tolerance; 1267 u_usec = -u_usec; 1268 } else { 1269 pps_freq += u_usec >> PPS_AVG; 1270 if (pps_freq > time_tolerance) 1271 pps_freq = time_tolerance; 1272 } 1273 } 1274 1275 /* 1276 * Here the calibration interval is adjusted. If the maximum 1277 * time difference is greater than tick / 4, reduce the interval 1278 * by half. If this is not the case for four consecutive 1279 * intervals, double the interval. 1280 */ 1281 if (u_usec << pps_shift > bigtick >> 2) { 1282 pps_intcnt = 0; 1283 if (pps_shift > PPS_SHIFT) 1284 pps_shift--; 1285 } else if (pps_intcnt >= 4) { 1286 pps_intcnt = 0; 1287 if (pps_shift < PPS_SHIFTMAX) 1288 pps_shift++; 1289 } else 1290 pps_intcnt++; 1291 } 1292 #endif /* PPS_SYNC */ 1293